
STRICTLY LOCAL PHONOLOGICAL PROCESSES

by

Jane Chandlee

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Linguistics

Spring 2014

c© 2014 Jane Chandlee
All Rights Reserved

STRICTLY LOCAL PHONOLOGICAL PROCESSES

by

Jane Chandlee

Approved:
Benjamin Bruening, Ph.D.
Chair of the Department of Linguistics and Cognitive Science

Approved:
George H. Watson, Ph.D.
Dean of the College of Arts and Science

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jeffrey Heinz, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Irene Vogel, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Benjamin Bruening, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Herbert Tanner, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
James Rogers, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

This is actually the hardest section to write, because there simply are no words

to convey my gratitude to the people who have seen me through to this point. I am

humbled by the extent of their generosity, dedication, and caring. I’ll do what I can,

but in truth I’ll be thanking them all for years to come.

First, to Jeff Heinz, whose enthusiasm, kindness, and tireless support never

cease to amaze me: thank you. From our very first meeting I have never doubted that

I found my mentor.

Thanks also to my committee members. To Irene Vogel and Benjamin Bruening,

thank you for setting high standards and inspiring me to meet them by being the

kind of scholars I want to be. To Jim Rogers, thanks for your valuable insights and

contributions and for helping me to start taking myself seriously as a scholar. And to

Bert Tanner, thank you for your support of my work and for opening my eyes to the

vast potential of interdisciplinary research.

I would also like to thank the professors I worked with throughout my Mas-

ter’s program at Boston University, for humoring a fiction writer who wanted to learn

about linguistics and for giving me the knowledge and confidence to go on to a PhD

program. Thanks in particular to Cathy O’Connor, Jonathan Barnes, Paul Hagstrom,

and especially Nanette Veilleux of Simmons College.

And last but far from least, thank you to my parents, Eileen and Larry, for

taking me seriously when I changed my career plans, for not taking me seriously when

I said I couldn’t do this, and for never once suggesting that I try to get my job at the

bank back.

And now, onward.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii
LIST OF FIGURES . ix
ABSTRACT . xiii

Chapter

1 INTRODUCTION . 1

1.1 Restricting Phonology . 1
1.2 Locality in Phonology . 7
1.3 Outline . 8

2 BACKGROUND . 11

2.1 Empirical Perspective . 11
2.2 Computational Perspective . 14

2.2.1 Expressive power of grammars 15
2.2.2 Finite state descriptions of language patterns 17
2.2.3 Strictly Local languages and the Subregular Hierarchy 24

2.3 Learning Phonology . 29

2.3.1 Learning rules . 29
2.3.2 Learning in OT . 30

2.4 Mathematical Preliminaries . 32

2.4.1 Strings, languages, relations, and functions 32
2.4.2 Finite state automata . 33
2.4.3 Learning framework . 34

v

3 MODELING PHONOLOGICAL PROCESSES WITH STRICTLY
LOCAL FUNCTIONS . 36

3.1 Input Strictly Local Functions . 38
3.2 Output Strictly Local Functions . 43
3.3 Word Boundary Processes . 47
3.4 Multiple Targets and Contexts . 49

4 METATHESIS . 62

4.1 Decomposing metathesis . 65
4.2 Local Metathesis . 73
4.3 Long-Distance Metathesis . 76
4.4 Displacement . 79
4.5 Summary . 90

5 WORD FORMATION PROCESSES 95

5.1 Affixation . 95
5.2 Reduplication . 98

5.2.1 Partial reduplication . 98
5.2.2 Full reduplication . 106

6 LEARNING STRICTLY LOCAL FUNCTIONS 109

6.1 The Onward Subsequential Transducer Induction Algorithm (OSTIA) 110

6.1.1 Modifying OSTIA to learning phonological mappings 113

6.2 The ISL Function Learning Algorithm (ISLFLA) 115

6.2.1 The algorithm . 116
6.2.2 Identification in the limit . 120
6.2.3 Complexity results . 123

6.2.3.1 Time complexity . 123

vi

6.2.3.2 Size of the characteristic sample 123

6.3 Demonstrations . 124

6.3.1 Substitution . 124

6.3.1.1 German final devoicing 124
6.3.1.2 English flapping . 125

6.3.2 Greek fricative deletion . 126
6.3.3 Dutch schwa epenthesis . 127
6.3.4 Discussion of learning results 129

7 DISCUSSION . 138

7.1 Empirical Coverage of SL Functions 138
7.2 Implications of Learning Results . 147
7.3 Explanations of Typology . 151

8 CONCLUSION . 154

Appendix

FORMAL CHARACTERIZATIONS AND PROPERTIES OF
STRICTLY LOCAL FUNCTIONS 177

A.1 Preliminaries . 177
A.2 ISL Functions . 179

A.2.1 Constructing TISL(f) for a phonological rule 180

A.3 OSL Functions . 182

A.3.1 Constructing TOSL(f) . 183

A.4 Word-initial processes . 183
A.5 Minimization . 183
A.6 Properties of SL Functions . 185

vii

LIST OF TABLES

3.1 Mapping by Mode of Application 37

3.2 Subregions of the Class of ISL Functions 57

4.1 Summary of Displacement Processes 91

5.1 Summary of Computational Properties of Partial Reduplication
Patterns . 106

viii

LIST OF FIGURES

2.1 Rule-based derivations of plural and past tense allomorphy 13

2.2 Fragment of a constraint-based grammar 14

2.3 FSA for the language Laa . 18

2.4 A finite state transducer . 20

2.5 Relationship between regular relations and subsequential functions
(to be revised) . 21

2.6 Subsequential finite state transducer 22

2.7 Left and Right subsequential functions 23

2.8 Relationship between subsequential and SL functions (to be revised) 24

2.9 Subregular Hierarchy of formal languages (LTT = Locally Threshold
Testable, TSL = Tier-based Strictly Local, LT = Locally Testable,
PT = Piecewise Testable, SL = Strictly Local, SP = Strictly
Piecewise) . 25

2.10 Canonical SL-2 finite state acceptor 26

3.1 TISL for the simultaneous application of (1), k = 3, Σ = {a, b} . . . 43

3.2 TOSL for the left-to-right application of (1), k = 3, Σ = {a, b} . . . 44

3.3 TOSL for (8), k = 2, Σ = {N, D, V} 46

3.4 TSL for (11), k = 3, Σ = {a, b} . 48

3.5 TSL for (12), k = 3, Σ = {a, b} . 49

3.6 TISL for Tonkawa glide vocalization, k = 2, Σ = {C, j, w} 53

ix

3.7 TISL for (21), k = 3, Σ = {a, b, c} 54

3.8 TISL for (23), k = 2, Σ = {a, b} . 56

3.9 TOSL for (23), k = 2, Σ = {a, b} 56

3.10 Relationship among left subsequential, right subsequential, OSL, and
ISL functions . 57

3.11 TSL for Coeur d’Alene n-deletion, k = 2, Σ = {s, n, ?, ì} 59

3.12 TSL for Czech j -epenthesis, k = 2, Σ = {?, V, j, i} 60

4.1 TSL for Rotuman copying, k = 4, Σ = {C, a} 74

4.2 TSL for Rotuman deletion, k = 5, Σ = {C, a} 75

4.3 SFST for Greek copy process, Σ = {C, r, V} 83

4.4 SFST for Greek deletion process, Σ = {C, r, V} 85

4.5 TSL for Rotuman metathesis, k = 4, Σ = {C, V} 92

5.1 TSL for English un-prefixation, k = 2, Σ = {?} 96

5.2 TSL for English ing-suffixation, k = 2, Σ = {?} 97

5.3 TSL for Tagalog um-infixation, k = 4, Σ = {C, V, M} 97

5.4 Schematized TSL for Tagalog partial reduplication, k = 3, Σ = {C, V} 99

5.5 TSL for Tagalog partial reduplication, k =3, Σ = {s, a, u} 101

5.6 Minimized TSL for Marshallese partial reduplication, k = 4, Σ = {C,
V} . 102

5.7 TSL for Pima partial reduplication, k = 3, Σ = {C, V} 103

5.8 SFST for Koryak partial reduplication, Σ = {C, V} 104

5.9 TSL for full reduplication in L = a≤4 107

6.1 OTST for the example data set in (2), Σ = {a}, Γ = {b, c} 111

x

6.2 Final output of OSTIA for the data set in (2) 113

6.3 Branch of a prefix tree for input aabc 115

6.4 Non-determinism after merging q and q′ 118

6.5 Before pushback . 118

6.6 After pushback : x = ls and y = lt 118

6.7 Irreparable non-determinism . 119

6.8 Non-determinism from an outer loop merge 121

6.9 ISLFLA output for German final devoicing test, k = 2, Σ = {D, T, N} 126

6.10 ISLFLA output (minimized) for English flapping test, k = 3, Σ = {t,
V, v, ?} . 127

6.11 ISLFLA output for Greek deletion test, k = 2, Σ = {T,D,s,?} 128

6.12 ISLFLA output for Dutch epenthesis test, k = 2, Σ = {l, r, K, ?} . 129

6.13 ISLFLA output for German final devoicing with Σ = {b, d, g, V} . 135

7.1 Subregular Hierarchy of formal languages (LTT = Locally Threshold
Testable, PT = Piecewise Testable, TSL = Tier-based Strictly Local,
LT = Locally Testable, SP = Strictly Piecewise, SL = Strictly Local) 143

7.2 FSA for surface forms in Sacapulteco, Σ = {?, S, S} 144

A.1 Minimized TISL(f) for (2), k = 3, Σ = {a, b} 184

A.2 Minimized TOSL(f) for (2), k = 3, Σ = {a, b} 184

A.3 A subsequential function f1 which is neither ISL nor OSL, Σ = {a, b,
c} . 185

A.4 A subsequential function f2 which is ISL but not OSL, k = 2, Σ = {a,
b} . 186

A.5 A subsequential function f3 which is OSL but not ISL, k = 2, Σ = {a,
b} . 186

xi

A.6 OSL function f . 187

A.7 OSL function g . 187

A.8 A subsequential function f4 which is both ISL and OSL but for which
ψ2 is not SL, k = 2, Σ = {a, b} . 188

xii

ABSTRACT

This dissertation identifies a strong computational property of phonological and

morphological processes with local triggers. It is shown that the input-output map-

ping that underlies these processes can be modeled with Strictly Local (SL) functions,

a previously undefined class of subregular relations. The SL functions, which are di-

vided into two proper subclasses of subsequential functions (the Input SL functions

and Output SL functions) are defined in automata-theoretic terms by combining the

properties of subsequential transduction (Mohri, 1997) and the Strictly Local formal

languages (McNaughton and Papert, 1971; Rogers and Pullum, 2011; Rogers et al.,

2013). Importantly, the property of strict locality is independent of and compatible

with both rule- and constraint-based grammatical formalisms, since it holds of the

input-output mappings that both formalisms describe. The range of processes that

are shown to be Strictly Local includes substitution, deletion, insertion, synchronic

metathesis, local partial reduplication, and general affixation. This computational

property aids in identifying the set of ‘phonologically possible’ processes within the

larger set of logically possible processes. In addition, a learning algorithm that prov-

ably learns the class of ISL functions by using strict locality as an inductive principle

will be presented. These combined contributions to typology and learning demonstrate

how computational analysis can enhance our understanding of the nature of locality in

phonological processes.

xiii

Chapter 1

INTRODUCTION

1.1 Restricting Phonology

The starting point of this thesis is a deceptively simple question: what is a

possible phonological process? Even acknowledging the wide range of variation we find

in the phonologies of the world’s languages, the range of logically possible variation is

much wider. Phonologists have clear intuitions about what is and is not a plausible

phonological pattern, yet the precise metric by which plausibility is assessed remains

an open question. What exactly distinguishes the subset of attested and expected

phenomena - in other words, what is phonologically possible - from the larger set of

what is logically possible?

This thesis addresses this question from the computational perspective and pro-

poses that phonological processes with local triggers all have a defining property known

as strict locality. This property is revealed through an analysis of these processes as

infinite mappings (i.e., functions) from input to output forms, mappings that can be

computed by only keeping track of substrings of bounded length. In this way strict

locality is shown to hold over the computation of the mapping, as opposed to the

grammatical formalism (e.g., rules or constraints) employed to describe the process

in question. This result has two main contributions. First, in describing the input-

output mapping directly, the analysis is equally compatible with and independent of the

primary theories of generative phonology (i.e., Sound Pattern of English (SPE) (Chom-

sky and Halle, 1968) and Optimality Theory (OT) (Prince and Smolensky, 1991, 1993,

2004)), both of which describe the same mapping. The result thus establishes a clear

boundary for the range of local processes that these theories should and should not

1

predict. Second, the property of strict locality leads directly to an approach to how

these processes can be learned.

Thus far phonological possibility has most often been expressed as phonological

naturalness, with ‘natural’ being variably defined in terms of either universal principles

or phonetic motivation. In the latter case, patterns are deemed natural because they

facilitate (or ‘optimize’) articulation or perception (see, for example Hume and Johnson

(2001) and Hayes et al. (2004)) or are otherwise amenable to a phonetic explanation

(Blevins, 2004). Explanations in the former category point to the widespread occur-

rence of certain patterns in typologically-diverse languages, with the assumption that

their prevalence is due to a bias for UG-supported or unmarked language structures.

For example, word-final consonant deletion before consonant-initial words is consid-

ered natural (Schane et al., 1974) because it creates the unmarked CV syllables that

are permitted in all languages. Naturalness accounts in both camps are supported by

experimental studies that suggest that natural generalizations are easier to learn than

unnatural ones (Schane et al. (1974); Healy and Levitt (1980); Wilson (2003, 2006);

Peperkamp et al. (2006); Seidl and Buckley (2005); Carpenter (2010); Hayes and White

(2013), among others). However, other work has shown that generalizations that do

not meet such criteria for naturalness not only exist (Bach and Harms, 1972; Hellberg,

1978; Anderson, 1981; Buckley, 2000; Odden, 2007; Blevins, 2008) but can have psy-

chological reality (Pycha et al., 2003; Hayes et al., 2009). Indeed, Buckley (2002, 2003)

argues that the apparent ease with which children acquire ‘natural’ processes is due to

their regularity (i.e., ‘accessibility’), not their inherent naturalness.

Early on, the concept of naturalness was conflated with formal complexity, as

measured by the number of features specified in the rule for a process (Chomsky and

Halle, 1968; Anderson, 1974). For example, given a language that includes {b, d, g}

in its sound inventory, the observation that the underlying forms /dAb/ and /dAd/ are

pronounced as [dAp] and [dAt], respectively, is consistent with both of the following

rules.

2

(1) a. [-son, +ant] → [-voice] / #

b. [-son] → [-voice] / #

In this case, despite the lack of evidence for the surface form of a word ending in /g/,

rule (1-b) might be considered more natural because it is formally simpler than rule

(1-a) in that it includes fewer features (see Halle (1959, 1961, 1962, 1964)). And indeed

it represents a more significant linguistic generalization, in the sense of Chomsky and

Halle (1968). Since this measure of formal complexity is inversely related to the number

of segments affected by the rule (i.e., a smaller number of features identifies a larger set

of segments), its success as a metric of naturalness relies on the psychological reality

of feature-based representations (not to mention the correct feature system). In other

words, if speakers actually represent processes in terms of segments, then rule (1-a)

should be preferred under the assumption that a process that targets fewer segments

is simpler. This is why Chomsky (1965) emphasizes that ‘it is necessary to devise

notations and to restrict the form of rules in such a way that significant considerations

of complexity and generality are converted into considerations of length, so that real

generalizations shorten the grammar and spurious ones do not’ (42). The larger claim

is that the feature representation of rules corresponds to the language learner’s own

evaluation measure, allowing it to select the correct (= formally simpler) generalizations

and disregard the ‘spurious’ ones. It is less clear how to measure the formal complexity

of a constraint-based grammar, though measures in terms of restrictiveness have been

proposed (Anttila, 1997; Prince and Tesar, 1999; Riggle, 2010).

Note that neither approach to defining phonological plausibility (naturalness

and formal complexity) necessarily predicts the non-existence of patterns. Indeed,

non-existence cannot be proven. This is why the question of plausibility is often tied

to the question of learnability. The phonological grammar consists (in part) of those

generalizations that the learner has induced from the observed data. Thus the data

might reflect both natural and unnatural generalizations, or both formally simpler and

formally more complex generalizations, but the biases of the learner will determine

3

the content of the grammar. The experimental studies cited above provide conflicting

evidence for whether a naturalness bias is at work in phonological learning. Fewer

studies have tested for a ‘simplicity’ bias, but the subjects in the study of Pycha et al.

(2003) did learn a formally simpler generalization better than a more complex one.1

This is where the computational approach can make a real contribution: it

identifies precise computational properties that hold of the observed patterns but not

of the unattested ones and therefore establishes clear predictions for what patterns

will and will not be found cross-linguistically. This idea is not novel. As early as

Chomsky (1959) it was observed that ‘such purely mathematical investigation may

provide deeper insight into the formal properties that distinguish natural languages

among all sets of finite strings in a finite alphabet’ (139). The approach is to recognize

the set of patterns we are interested in characterizing as a proper subset of what is

logically possible. (This differs from the natural/unnatural distinction, since those sets

are necessarily disjoint.) Using computational analysis, we can narrow in on this subset

by establishing the restrictions that make it a proper subset. In this way the result

that local processes are in fact Strictly Local extends previous research by Johnson

(1972), Koskenniemi (1983), and Kaplan and Kay (1994) that showed that phonological

mappings are regular relations. Since the Strictly Local functions will be shown to be

a proper subset of regular relations, the central contribution is a better (i.e., more

restrictive) characterization of local processes.

Throughout the thesis the term ‘process’ will be used to refer to differences

between an underlying form or UR (i.e., underlying representation, an item from the

mental lexicon) and its surface form or SR (i.e., surface representation, the pronounced

variant of the lexical item). It is important to keep in mind, however, that the analyses

do not assume a rule-based grammatical formalism. It is true that in constraint-based

formalisms such as OT and its variants like Harmonic Grammar (HG) (Legendre et al.,

1990), and Harmonic Serialism (HS) (McCarthy, 2000a; Pater, 2012), the notion of a

1 The results of Hayes et al. (2009) also suggest an influence of a simplicity bias, thought the authors
note that their study was not designed to test that hypothesis specifically.

4

‘process’ does not exist, because differences between the UR and SR are not encoded

as ‘changes’ but rather stem from the interaction of the constraint ranking and the

candidate set. Yet, the advent of these theories has not led phonologists to abandon

the analysis and discussion of individual patterns, and in fact much of the progress

that has been made in OT research has come from showing how it accounts for them.

Though it is less clear how to isolate the individual generalizations of an OT grammar,

since the UR is matched to the SR in one fell swoop as opposed to a step-by-step

derivation, Baković (2013) discusses how a rewrite rule of the form in (2-a) corresponds

to the fragment of an OT grammar in (2-b). The context-sensitive change from A to B

expressed by the rule corresponds to a preference for whatever faithfulness violations

are incurred by that change over the allowance of the marked sequence CAD.

(2) a. A → B / C D

b. *CAD � FAITH(A→B)

The equivalence schematized in (2) is not meant to downplay the theoretical differ-

ences between SPE and OT, differences that have clear and interesting implications

for our understanding of mental representations in phonology (Kager, 1999; McCarthy,

2008). Rather, it is meant to justify the methodology of this thesis, which is to abstract

away from the procedure of the UR 7→ SR mapping and directly analyze the nature

of the mapping itself. This approach, which offers insights into the nature of phono-

logical processes that are not conditioned by the choice of rules versus constraints, is

not without precedent. Recently Tesar (2008, 2014) has argued that the majority of

phonological input-output mappings are output-driven, and this property offers signif-

icant benefits to a learner that assumes its target grammar is restricted in this way.

Though Tesar’s actual learning framework is grounded in OT, the property of being

output-driven is uncontroversially not bound to any particular generative theory of

phonology. Thus, this thesis will present analyses of single differences between a UR

and SR, differences which under a rule-based formalism are described with a single

5

rule, with the understanding that the overall results are equally compatible with a

constraint-based grammatical formalism.

These analyses will support the central claim that a large number and range

of phonological and morphological processes have the computational property of strict

locality, which will be defined in Chapter 3. This property will be shown to distinguish a

process like (3), which has no phonetic motivation but is attested (in Kashaya (Oswalt,

1961, 1976; Buckley, 2000)), from the one in (4), which is not only unattested but would

be considered implausible by most if not all phonologists.

(3) Kashaya

a. /i/ → [u] / d

b. /cad+i/ 7→ [cadú] ‘Look!’

(4) /i/ → [u] / x (x is a string with an even number of obstruents)

Despite the strong intuitions of phonologists regarding the implausibility of a process

like (4), it is unclear what actually rules it out. Nothing inherent to either SPE or OT

prevents the construction of rules or constraints, respectively, that can describe such

a pattern. This is not an oversight, but rather a decision to devote attention to what

are viewed as more relevant distinctions, such as the natural/unnatural distinction

discussed above. In other words, (4) hasn’t been ruled out because it so clearly falls

outside of the range of what is phonologically possible. Yet that certainty is precisely

the point. The property that distinguishes (4) from (3) - strict locality - will be

argued to be a defining property of local phonological generalizations. This means the

impossibility of (4) will be attributed not to a property of rules or constraints, but to

a property of the phonological mappings themselves.

This claim of theory-independence is not meant to imply that the theory is

somehow extraneous. Indeed, as will be discussed in Chapter 7, the complete picture

of what constitutes a possible phonological pattern will surely incorporate several ex-

planatory factors, including computational properties, phonetic naturalness, and other

6

insights into the mental representations of language that phonological theory can pro-

vide. But the proposed property of strict locality will play a key role by delimiting the

typological range a phonological theory should predict.

1.2 Locality in Phonology

Strict locality, as a computational property, will be defined in formal terms that

draw from previous work in formal language theory and computer science (McNaughton

and Papert, 1971; Rogers and Pullum, 2011; Rogers et al., 2013). But locality in general

has long been recognized as significant to phonology, in the sense that phonological

changes tend to involve adjacent segments. Kenstowicz (1994), for example, remarks on

‘the well-established generalization that linguistic rules do not count beyond two’ (597).

Yet the role of locality in phonology cannot be directly conceived of as adjacency, given

the prominence of processes like vowel harmony that involve non-adjacent segments.2

It is telling, however, that such non-local phenomena have not been used as evidence

against the overall local nature of phonology. Rather, the tendency has been to recast

non-local patterns in such a way that they become local.

Consider a non-local process in which the target and trigger are separated by

some number of intervening segments. A variety of proposals have been put forth for

how to ‘ignore’ this intervening material so that the target and trigger can be treated as

adjacent. Most notably, Autosegmental Phonology (Goldsmith, 1976, 1979; Clements,

1976) proposed the separation of certain classes of segments onto their own tiers. For

example, given a consonant tier and a vowel tier, a vowel harmony process can be recast

as local since the harmonizing vowels are adjacent on their own tier. Other approaches

along these lines include the use of metrical structure (Liberman, 1975; Liberman and

Prince, 1977) or planes (McCarthy, 1979; Archangeli, 1985; Odden, 1994). Alterna-

tively, intervening segments can be treated as ‘transparent’ due to underspecification

2 Though this thesis will only investigate its role in phonology, locality also comes into play in syn-
tax, in which certain constraints (e.g., subjacency) enforce dependencies between the closest possible
elements.

7

of the feature that identifies the target (Steriade, 1987; Paradis and Prunet, 1989,

1991; Shaw, 1991), or through some other means (Jensen, 1974; Halle and Vergnaud,

1978; Kiparsky, 1981; Archangeli and Pulleyblank, 1987, 1994; Anderson and Ewen,

1987; Gafos, 1996; Gafos and Lombardi, 1999; Baković and Wilson, 2000; Heinz, 2010).

Lastly, some authors have instead argued that intervening segments do not need to be

ignored at all, since they in fact participate in the process (Flemming, 1995; Nı́ Chiosáin

and Padgett, 1997; Bessell, 1998; Walker, 1998; Nı́ Chiosáin and Padgett, 2001). For

example, if consonants also take on the relevant feature in a vowel harmony process,

then the harmonizing is in fact local.

The conception of phonological locality proposed in this thesis will be computa-

tional in nature, following the work of Heinz (2007, 2009), and it will be defined in terms

of contiguity rather than strict adjacency. It is not a coincidence that both the rules of

SPE and the constraints of OT, HG, HS that are employed to describe local phenom-

ena refer to contiguous substrings of a word. This reliance on contiguous substrings is

a reflection of the significance of locality to phonological generalizations. Accordingly,

this thesis will propose locality as a defining property of local phonological processes

by modeling these processes with a previously undefined class of subregular relations

called the Strictly Local functions. Furthermore, it will be shown that the structure

of the class of SL functions enables a learning algorithm to learn these phonological

processes.

1.3 Outline

Chapter 2 has four main objectives. It first introduces both the empirical and

computational perspectives that serve as the backdrop for the analyses presented in

the thesis. This includes the conception of phonological processes as functions and the

formalism of finite state automata. Second, it presents the formal languages known as

Strictly Local languages, which form the basis for the property of strict locality that will

be shown to hold of local phonological processes. Third, it briefly reviews the previous

work on learning in phonology, to anticipate the demonstration in Chapter 6 of how

8

strict locality can be used as an inductive principle by a phonological learner. Lastly,

it establishes the mathematical notations that will be used throughout the thesis.

Chapter 3 defines the class of Strictly Local functions, which in fact consists of

two intersecting but non-equivalent classes called the Input Strictly Local functions and

the Output Strictly Local functions. These functions will be established as a proper

subset of the subsequential functions, which in turn are a proper subset of the regular

relations. The restriction that identifies the SL functions as a proper subset is based

on the SL formal languages. In addition, it is shown how a phonological rule of the

form xi → yi / U V can be compiled into a finite state machine that describes a

Strictly Local function. In this rule, U and V refer to the sets of left and right contexts,

respectively, for a phonological change, xi is a member of the set of targets of the change,

and yi is its respective structural change. Once this characterization of Strictly Local

functions is established, it will be shown to model the common phonological processes

of local substitution, deletion, and insertion.

Chapter 4 extends the Strictly Local analysis to metathesis processes. It first

motivates the copy-delete analysis of metathesis (Blevins and Garrett, 1998, 2004;

Heinz, 2005a; Chandlee and Heinz, 2012), under which metathesis is actually the result

of a copying process followed by deletion of the original. It then divides metathesis

patterns into three categories - local metathesis, long-distance metathesis, and dis-

placement - and identifies the conditions under which each is Strictly Local. In sum,

the claim is that all synchronic metathesis is Strictly Local, while certain diachronic

displacement cases are not.

Chapter 5 moves beyond phonology proper to discuss a number of word-formation

processes that are also Strictly Local. In particular, general affixation is shown to be

Strictly Local, as well as local partial reduplication (i.e., partial reduplication in which

the reduplicant is affixed adjacent to the base material it was copied from). Non-

local partial reduplication and full reduplication, which are not Strictly Local, are also

discussed.

Chapter 6 presents a learning algorithm for the class of Input Strictly Local

9

functions, called the ISLFLA. It first discusses the algorithm known as OSTIA (Oncina

et al., 1993), the intuitions of which serve as the foundation for the ISLFLA, as well

as previous work on using OSTIA to learn phonological rules (Gildea and Jurafsky,

1995, 1996). It then describes in detail how the ISLFLA uses the property of strict

locality to generalize an Input Strictly Local function from a finite set of positive data

and proves that it indeed learns any function in this class in less time and with less

data than OSTIA. Lastly, it provides four demonstrations of the algorithm based on

attested phonological processes and discusses the insights provided by the learner in

the larger context of phonological acquisition.

Chapter 7 discusses the contributions of the thesis and the key areas for future

work. Specifically, it quantifies the empirical coverage of SL functions using the P-Base

database of phonological patterns (Mielke, 2004) and then addresses the potential

to expand this coverage in a variety of directions, including optional rules and free

variation, processes that apply across word boundaries, non-local processes such as

long-distance harmony and dissimilation, and suprasegmental phenomena like tonal

patterns and stress assignment. Lastly, the current results will be situated into the

bigger picture, both in terms of the relation between individual processes and the total

grammar and the relation between computational properties and other explanatory

factors like phonetic naturalness.

Chapter 8 concludes, followed by an appendix that provides a formal construc-

tion for Strictly Local finite state transducers that describe phonological rules as well

as theorems for the properties of Strictly Local functions that have been proven thus

far.

10

Chapter 2

BACKGROUND

This chapter first argues for the role of phonological processes in the phonological

grammar. It then introduces the conception of a phonological process as a mapping

or function as well as the utility of identifying formal properties of mappings and

grammars. Since the analyses used throughout the thesis will rely on finite state

automata, the conventions of this formalism will also be presented. Also discussed are

the Strictly Local languages, a class of formal languages that provide the foundation for

the strict locality property that will be shown to hold of phonological mappings. Lastly,

a brief review of the previous work on learning in phonology is provided, followed by

the mathematical preliminaries that will be used throughout the rest of the work.

2.1 Empirical Perspective

Despite the differences between rule- and constraint-based grammatical for-

malisms, both assume that the grammar maps an underlying form to a surface form.

Consider, for example, the observable fact that the English plural morpheme has three

distinct pronunciations, as shown in (1).

(1) a. bats, [bæt-s]

b. balls, [bAl-z]

c. bases, [beIs-1z]

Closer inspection of a larger set of examples would reveal that the occurrence of each

pronunciation is not random, but is conditioned by the last segment of the word the

suffix attaches to. Specifically, the [-s] variant follows voiceless segments, [-z] follows

11

voiced segments, and [-1z] follows sibilants (voiced and voiceless). The question is how

to account for these variable yet systematic pronunciations within the grammar. One

option is to posit three different plural morphemes, one for each pronunciation, the

choice of which is conditioned by the preceding segment. But this analysis doesn’t

explain why the pattern looks like (1) as opposed to (2).

(2) a. bats, [bæt-z]

b. balls, [bAl-1z]

c. bases, [beIs-s]

In other words, it fails to capture the generalization that the morpheme variant is not

just conditioned by the preceding segment, but either matches it in voicing ([-s] and [-

z]) or avoids a sequence of two sibilants ([-1z]). It also fails to capture the generalization

that a parallel set of facts can be observed with the past tense morpheme, as shown in

(3).

(3) a. pitched, [pItS-t]

b. played, [pleI-d]

c. bunted, [b2nt-1d]

Again we observe three distinct pronunciations, [-t], [-d], and [-1d], that either match the

voicing of the preceding segment ([-t] and [-d]) or avoid a sequence of two alveolar stops

([-1d]). Furthermore, looking beyond English we find many languages that likewise

favor or enforce word-final obstruent clusters with the same voicing feature. A possible

analysis that reflects these larger generalizations is that these morphemes each have

a single underlying form - /-z/ for the plural and /-d/ for the past tense - which is

mapped to the correct surface form by the phonological grammar. Under a rule-based

grammatical formalism, this mapping would involve the processes of epenthesis and

assimilation in (4). Sample derivations are shown in Figure 2.1.

12

(4) a. Sibilant cluster epenthesis: ∅ → 1 / [+sibilant] [+sibilant]

b. Alveolar stop cluster epenthesis:

∅ → 1 / [-son,-cont,+ant,+cor] [-son,-cont,+ant,+cor]

c. Voice assimilation: [+voice] → [-voice] / [-voice] #

/bæt+z/ /bAl+z/ /beIs+z/
Sibilant cluster epen. — — [beIs1z]
Voice assimilation [bæts] [bAlz] [beIs1z]

/pItS+d/ /pleI+d/ /b2nt+d/
Alveolar stop cluster epen. — — [b2nt1d]
Voice assimilation [pItSt] [pleId] [b2nt1d]

Figure 2.1: Rule-based derivations of plural and past tense allomorphy

Under a constraint-based grammatical formalism, the mapping would involve

the constraint rankings in (5), as demonstrated in the tableaux in Figure 2.2. In (5)

*SS and *DD are markedness constraints that are violated by sequences of two sibilants

and two alveolar stops, respectively, and *TD# is a markedness constraint violated

by a word-final sequence of a voiceless and voiced obstruent. DEP is a faithfulness

constraint violated by a segment in the surface form without a correspondent in the

underlying form, and IDENT(voice) is a faithfulness constraint violated by a segment

whose voicing feature differs between the underlying and surface form.1

(5) {*SS, *DD} � {*TD#, DEP} � IDENT(voice)

Thus, the assumption that a phonological grammar maps an underlying form to

a surface form says nothing about how the grammar matches a particular UR to its SR.

Both rule- and constraint-based theories describe the same mapping. The next section

1 This analysis omits the constraints that ensure the epenthetic vowel is [1].

13

/bæt+z/ *SS *DD *TD# DEP IDENT(voice)
[bæt1z] !*

�[bæts] *
[bætz] !*

/b2nt+d/ *SS *DD *TD# DEP IDENT(voice)

�[b2nt1d] *
[b2ntt] !* *
[b2ntd] !* *

Figure 2.2: Fragment of a constraint-based grammar

will discuss how this commonality of the UR 7→ SR mapping serves as the foundation

for the computational perspective taken in this thesis.

2.2 Computational Perspective

In the current work, a process such as voicing assimilation is taken to be an

infinite function that maps any UR that contains a TD# sequence to a corresponding

SR with a TT# sequence, as in (6).

(6) a. f(bæt+z) = bæts

b. f(bAl+z) = bAlz

c. f(pItS+d) = pItSt

d. ...

In this way, the analyses that follow abstract away from the mechanism by which this

mapping is represented in the grammar. The insights gained by analyzing the nature

of these mappings will be shown to include 1) a more precise characterization of what

constitutes a possible phonological process, and 2) an approach to how these mappings

can be learned. Furthermore, these findings will be independent of and compatible

with both rule- and constraint-based theories of phonological grammar. The next two

14

sections will discuss these contributions in turn.

2.2.1 Expressive power of grammars

A lot of what we know about the computational properties of language patterns

comes from work identifying the expressive power of the grammars that generate them.

One means of measuring this expressive power is to classify the pattern on the Chomsky

hierarchy of formal languages2 (Chomsky, 1956), shown in (7).

(7) finite ⊂ regular ⊂ context-free ⊂ context-sensitive ⊂ recursively enumerable

Grammars are classified on this hierarchy based on the languages they generate, mean-

ing regular grammars generate regular languages, context-free grammars generate con-

text -free languages, etc. Previous work in the computational analysis of natural lan-

guage patterns revealed a difference between the expressive power needed to describe

syntactic versus phonological patterns (see Heinz and Idsardi (2011)). For example,

syntactic phenomena can be context-free (Chomsky, 1956, 1959) or context-sensitive

(Schieber, 1985; Kobele, 2006). Interestingly, though SPE-style phonological analyses

use context-sensitive rewrite rules of the form in (2-a), Johnson (1972) showed that

the CAD 7→ CBD mapping is actually a regular relation (i.e., it generates a regular

language) provided the rule does not apply to its own output within the same cycle. In

other words, after one rule application derives CBD from CAD, the same rule cannot

apply again to the B created by the first application. This restriction echoes the strict

cyclicity condition that was proposed by Chomsky (1973) for syntax and adapted to

phonology by Mascaró (1976).

The need for the condition on the rule’s application is demonstrated with the

example rule in (8).

2 Though related, mappings and languages are two different entities. Languages are simply sets of
strings (e.g., L = {w1, w2, w3, ...}), while mappings are sets of string pairs (e.g., R = {(w1, w2),
(w3, w4), ...} where R(w1) = w2,R(w3) = w4,...).

15

(8) ∅ → ab / b

A single application of this rule to the input ab derives aabb. This output has two

possible locations for an additional insertion: either aa bb or aab b. The first one is

ruled out by the condition, since it falls within the output of the first application of the

rule. Were that option allowed, the rule would in fact generate the context-free language

anbn. With the restriction on the rule’s application, however, it instead generates the

regular language a(ab)nb. Johnson’s result thus draws a distinction between what a

grammar is capable of generating and what it actually needs to generate.

Kaplan and Kay (1994) expanded on this finding using the fact that the regular

relations are closed under composition. If two regular relations f and g are ordered

such that the output of f is used as the input of g, a single relation, written g ◦ f , can

be generated via functional composition. This composed relation, which is equivalent

to g(f(x)), maps the input of f directly to the output of g.3 The closure property

means that if both f and g are regular, then g ◦ f will be regular as well. Thus a

grammar of ordered rewrite rules, each of which (as Johnson showed) describes a reg-

ular relation, can be composed into a single relation that is also regular. This single

relation will map the UR directly to the SR without proceeding through intermediate

representations. The significance of this result is that the interactions among the indi-

vidual generalizations, or rules, in the total grammar does not increase the grammar’s

power beyond regular. An alternative means of combining rules into the grammar is

proposed by Koskenniemi (1983), whose rule system proceeds in parallel fashion rather

than sequentially. In this two-level system, the input-output mapping of the entire

phonology has to fall within the intersection of all the individual rule mappings in

order to be valid. This approach has theoretical consequences as, like OT, it does away

with rule ordering and intermediate representations, but it still does not increase the

formal power of the system (Karttunen, 1993).

3 Assuming g is defined for the image of that input under f .

16

The work of Johnson (1972), Kaplan and Kay (1994), and Koskenniemi (1983)

narrowed the computational complexity bound of phonological processes to regular,

but an even tighter computational bound is desirable for at least two reasons. First,

the class of regular relations is too large, in the sense that many regular relations exist

that are not likely to be attested in any natural language phonology. In other words,

being regular is a necessary but not a sufficient condition for being a phonological

mapping. Recall the example of an implausible phonological rule from the previous

chapter, repeated below in (9-b).

(9) a. /i/ → [u] / d

b. /i/ → [u] / x (x is a string with an even number of obstruents)

Both of the rules in (9) describe regular relations, which means the computational

property of being regular cannot tell us why (9-a) is plausible while (9-b) is not.

Second, the class of regular relations is not believed to be identifiable in the

limit in the sense of Gold (1967)4, so the property of regularity cannot be used to learn

phonological mappings from positive data. These two concerns are in fact related; part

of the reason why a learner cannot learn any regular relation is because the hypothesis

space of regular relations is too large and unstructured for the learner to make the

right distinctions among the data. A natural next step then is to narrow the bound

on the hypothesis space. That is precisely what this thesis sets out to do, in proposing

a subregular class of relations to model phonological processes. But first, since these

relations will be characterized with finite state automata, the next section will introduce

this formalism.

2.2.2 Finite state descriptions of language patterns

The regular languages mentioned above can be described with several converging

characterizations. These include regular expressions, monadic second order logical

4 See §2.4 for a definition of this learning framework.

17

formulae, and finite state automata, which will be introduced in this section. Only

the basics of automata theory will be presented here; for more on automata and their

linguistic applications, see Roche and Schabes (1997), Hopcroft et al. (2001), Beesley

and Karttunen (2003), and Roark and Sproat (2007).

Consider the language Laa that consists of strings of a’s and b’s that contain an

even number of a’s. This language contains an infinite number of strings, which makes

it more convenient to represent it with the finite state acceptor (FSA) in Figure 2.3.

This FSA can be thought of as a grammar for Laa, since for any given string of a’s and

b’s the FSA can be used to determine whether or not that string is in Laa.

0

b

1a
a

b

Figure 2.3: FSA for the language Laa

FSAs consist of a set of states, which are represented in Figure 2.3 with circles,

and transitions, which are represented with labeled arrows that connect the states.

Transitions that start and end in the same state are called loops. The state marked in

bold is the initial state. Beginning in this state, the FSA reads a given input string

one symbol at a time and takes the transition that matches the current input symbol.

States marked with double circles are final or accepting states. If the last symbol of

the input leads to a final state, the string is accepted, meaning it is in the language the

FSA describes. If the last symbol leads to a non-final state, the string is not in the

language.

As an example, consider two strings abaaa and baaa. We know the former is in

Laa but the latter is not. The series of transitions the FSA will take (called a path)

when parsing abaaa is shown in (10).

18

(10)
a b a a a

0 → 1 → 1 → 0 → 1 → 0

When the FSA reaches the end of the string, it is in state 0. Since this is an accepting

state, the string is correctly determined to be in the language. In contrast, the path

for the input baaa is shown in (11).

(11)
b a a a

0 → 0 → 1 → 0 → 1

This time the FSA ends in state 1, which is not an accepting state, so this string is not

in the language. More generally, the FSA will only be in the accepting state 0 if it has

seen an even number of a’s, and it will only be in the non-accepting state 1 if it has

seen an odd number of a’s. Thus for any input, it will correctly determine whether or

not it is in the language Laa.

This example clearly demonstrates that the states of a FSA represent the crucial

pieces of information that are needed to distinguish those strings that are and are not

in the language. For Laa, that crucial information is simply the parity of the number

of a’s the string contains. Thus two states suffice: one for even and one for odd.

Languages will differ in what information the FSA needs to keep track of, but it is the

fact that some FSA exists to describe a language that makes it a regular language.

Switching now from formal languages to relations, there is a corresponding finite

state description of regular relations as well: finite state transducers (FSTs). These

represent relations by again reading an input string but also producing a corresponding

output string. FSTs can also be thought of as acceptors of pairs of strings. In other

words, the pair (w1, w2) is accepted by a FST if the FST produces the output w2 for

the input w1. The difference between FSAs and FSTs is reflected in the diagrams by

labeling the transitions with pairs of symbols instead of single symbols, as in Figure

2.4. The symbol to the left of the colon corresponds to the input and the symbol to

the right corresponds to the output.

19

0

b:0

1a:1
a:1

b:0

Figure 2.4: A finite state transducer

The FST in Figure 2.4 maps strings of a’s and b’s to strings of 1’s and 0’s, such that

all a’s are rewritten as 1’s and all b’s are rewritten as 0’s. This mapping then includes

(aaaa, 1111), (bbb, 000), (aba, 101), (bbaa, 0011), etc., and a sample path for input aba

is shown in (12). The top line is the input, the bottom line is the output, and the

middle line is the series of states, as before.

(12)

a b a

0 → 1 → 1 → 0

1 0 1

The relation represent by Figure 2.4 is only defined for input strings with an even

number of a’s (i.e., its domain is Laa). This means a string like abaa does not have

a corresponding output, since the end of this input will be reached in the non-final

state 1, just as in the FSA example above. Also note that the FST in Figure 2.4 is

deterministic, which means that each state only has one outgoing transition for each

possible input symbol. The consequence of determinism is that any given input string

will only be mapped to a single output string. Thus the relation represented by Figure

2.4 is more accurately called a function. The alternative, non-determinism, would

result in the FST mapping each input to a set of outputs.

The class of regular relations are those mappings that can be represented with

a FST (either deterministic or non-deterministic). As discussed above in §2.2.1, the

regular relations are sufficient for modeling phonological rules of the form A → B / C

20

D (where A, B, C, and D are regular languages), but there is motivation for a restric-

tion to a subclass of these relations. One viable subclass is the class of subsequential

functions, which are describable with deterministic FSTs in which all states are final

and each state has a final output string that is appended to the current output if the

input string concludes in that state. These additional properties of subsequential FSTs

(hereafter SFSTs, see Definition 9 in §2.4.2) restrict the kinds of mappings that they

can describe, so that the subsequential functions are a proper subset of the regular

relations (Mohri, 1997), as indicated in Figure 2.5.

 REGULAR RELATIONS

 SUBSEQUENTIAL FUNCTIONS

Figure 2.5: Relationship between regular relations and subsequential functions (to
be revised)

As an example, consider the SFST in Figure 2.6. This automaton is similar to

the one in Figure 2.4 above, except both states are final and the state labels include

the final output string of the state (to the right of the comma). Note: λ represents the

empty string. This SFST describes a function that maps input strings with an even

number of a’s to themselves, while input strings with an odd number of a’s are mapped

to themselves plus one additional ‘a’ appended to the end. To clarify how this works,

the paths for inputs abaa and baa are shown in (13) and (14), respectively.

21

0,!

b:b

1,aa:a
a:a

b:b

Figure 2.6: Subsequential finite state transducer

(13)

a b a a

0 → 1 → 1 → 0 → 1

a b a a a

(14)

b a a

0 → 0 → 1 → 0

b a a λ

The mapping represented by the SFST in Figure 2.6 is more specifically a left subse-

quential mapping, because it can be described with a SFST that reads the input from

left-to-right. A corresponding class of right subsequential functions exists which read

the input from right-to-left. This means the class of subsequential functions is in fact

two intersecting classes, as shown in Figure 2.7. As will be shown with phonological

examples in the next chapter, certain mappings are only subsequential if the SFST can

read the input from right-to-left.

Previous work has shown that many phonological processes can be modeled with

(either left or right) subsequential functions, including vowel harmony (Gainor et al.,

2012; Heinz and Lai, 2013), metathesis and partial reduplication (Chandlee et al., 2012;

Chandlee and Heinz, 2012), consonant harmony (Luo, 2013) and dissimilation (Payne,

2013), and some (but not all) tonal patterns (Jardine, 2013).5 Though these findings

5 Based on this thesis we can add substitution, deletion, and insertion to this list. See the next
chapter for details.

22

REGULAR RELATIONS

LEFT

SUBSEQUENTIAL

FUNCTIONS

RIGHT

SUBSEQUENTIAL

FUNCTIONS

Figure 2.7: Left and Right subsequential functions

are significant in that they provide a tighter characterization of phonological mappings

than that proposed by Johnson (1972), Koskenniemi (1983), and Kaplan and Kay

(1994), this thesis will propose an even tighter characterization, which is motivated by

the fact that not all subsequential functions are feasible phonological mappings.

The desired restriction will be achieved by combining the properties of subse-

quential transduction with the properties of a certain class of formal languages, called

the Strictly Local languages, to define a class of functions called the Strictly Local

functions. This means all Strictly Local functions are also subsequential functions,

though the Strictly Local class will cross-cut the classes of left and right subsequential.

Figure 2.8 depicts the relationship among the classes of regular relations, left and right

subsequential functions, and the (to be defined) Strictly Local functions. This diagram

will be revised in the next chapter once the SL functions are discussed in more detail.

Recasting this hierarchy in terms of finite state automata, we have seen that the regular

relations are describable with FSTs and the subsequential functions are describable

with SFSTs. The SL functions will also be characterized in terms of automata, meaning

a certain type of SFST will be defined that describes only Strictly Local functions.

Since the properties that make these SFSTs Strictly Local are drawn from the formal

23

REGULAR RELATIONS

LEFT SUBSEQUENTIAL

FUNCTIONS

RIGHT SUBSEQUENTIAL

FUNCTIONS

 SL FUNCTIONS

Figure 2.8: Relationship between subsequential and SL functions (to be revised)

Strictly Local languages, the next section will discuss those languages in detail.

2.2.3 Strictly Local languages and the Subregular Hierarchy

The regular languages were defined above as those languages that can be de-

scribed with regular expressions, monadic second order logical formulae, or finite state

acceptors. But there are also several well-studied classes of subregular languages that

are described with more restrictive grammars. Collectively, these languages form a Sub-

regular Hierarchy (McNaughton and Papert, 1971; Rogers and Pullum, 2011; Rogers

et al., 2013), depicted in Figure 2.9. Like the Chomsky Hierarchy (in (7) above), the

regions of the Subregular Hierarchy are distinguished by the formal complexity of the

grammars that can describe them. Here only the most restricted class, the Strictly Lo-

cal (hereafter SL) languages will be discussed, though a couple of other regions will be

commented on in Chapter 7. For more details on the entire hierarchy, see McNaughton

and Papert (1971), Rogers and Pullum (2011), and Rogers et al. (2013).

The SL languages are those that can be described with grammars that consist

of a set of substrings of length k (called k-factors). A given string is a member of the

24

Regular

Star-Free

LTT

LT PT

TSL

SL SP

1

Figure 2.9: Subregular Hierarchy of formal languages (LTT = Locally Threshold
Testable, TSL = Tier-based Strictly Local, LT = Locally Testable, PT
= Piecewise Testable, SL = Strictly Local, SP = Strictly Piecewise)

language if and only if its own k-factors are a subset of the grammar.6 For example,

consider a language that includes all strings of a’s and b’s that do not end in ‘a’. Using

to represent a word boundary, the restriction on the strings of this language can be

expressed as follows: strings cannot contain the 2-factor a#. The grammar for this

language is then all possible 2-factors except a#, or G = {#a,#b, aa, ab, ba, bb, b#}.

Since factors of length 2 are sufficient to describe this language, it is called a Strictly

2-Local, or SL-2, language. The example in (15) shows how this grammar G recognizes

aaab as a string of this language, while aaaa is ruled out.

(15) a. 2-factors of aaab: {#a, aa, ab, b#} ⊆ G X

b. 2-factors of aaaa: {#a, aa, a#} ⇒ a# /∈ G ×

The 2-factors of aaab are all in G, so this string is in the language. But aaaa contains the

‘illegal’ 2-factor a#, so it is not in the language. The Strictly Local designation refers

to the fact that a string’s well-formedness can be determined solely by examining these

contiguous substrings of bounded length. This is sometimes explained as a scanner

6 Alternatively, the grammar could be the set of k-factors that are not permitted, in which case a
string is a member of the language if and only if its own k-factors are not in the grammar.

25

reading the string from left-to-right with a window that only reveals k symbols at a

time. As soon as an illegal sequence of k symbols is found, the string is automatically

ruled out, regardless of what came before or what may come after. Likewise, if the

end of the string is reached without detecting any illegal sequences, the string is well-

formed, regardless of which k-factors from the grammar it contains or the order in

which they appear.

The SL languages also have an automata-theoretic characterization, meaning

they are the languages that can be recognized by a certain type of FSA. A FSA for the

example SL-2 language defined above (strings of a’s and b’s that do not end in ‘a’) is

shown in Figure 2.10.

!

bb
a

a

b

a
b

a

Figure 2.10: Canonical SL-2 finite state acceptor

This FSA is the canonical FSA for this SL-2 language, because the states correspond

to factors up to length k− 1 and the transitions are defined such that being in a state

means those are the most recent k − 1 symbols of the input. Thus, in Figure 2.10 the

states are labeled with all possible substrings from the alphabet {a, b} up to length

k − 1 = 2 − 1 = 1. The FSA will only be in state a if it just read an ‘a’, and it will

only be in state b if it just read a ‘b’. Given such a structure, a SL FSA encodes the

k-factors that are and are not permitted in the strings of the language it represents

via the transitions that are and are not defined. For example, the fact that there is a

transition from state b on the input ‘a’ in Figure 2.10 tells us that the k-factor ba is

allowed in this language. And the restriction against strings ending in ‘a’ is achieved

26

by marking state a as a non-final state. Any input string that ends in this state will

be (correctly) rejected from the language.

In addition to the k-factor grammar and automata-theoretic characterizations,

the SL languages are also defined as those languages that have the property expressed

in the following theorem.

Theorem 1 (Suffix Substitution Closure (Rogers and Pullum, 2011)). L is Strictly

Local if ∃k ∈ N such that given strings u1, v1, u2, v2, and x where the length of x is

k − 1, if u1xv1, u2xv2 are in L, then it must be the case that u1xv2 is in L.

This property - called the Suffix Substitution Closure or the SSC - is just another way

of encoding strict locality as the defining property of a SL language. It essentially

says that if two strings that are known to be in the language overlap by a sequence

of k − 1 symbols, then the string created by swapping the portions that follow those

k − 1 symbols is also guaranteed to be in the language. This guarantee stems from

the fact that if the substrings of these two strings (e.g., u1, u2, v1, v2, x) are already

known to be acceptable, then nothing about the recombination of these substrings can

disrupt well-formedness. In other words, there can be no ‘long-distance’ dependency

that makes the combination of u1 with v2 ill-formed.

Thinking about the SSC in terms of the FSA description, consider two strings

with different paths that at one point reach the same state. So the strings bab and

abb both at one or more points take the FSA in Figure 2.10 to state b. After that

point, whatever path the FSA takes for the rest of one string is also available when it

is parsing the other string. Nothing about the path that led to the state in the first

place determines where it can go next. Only the state itself determines what can come

next.

These three characterizations - the k-factor grammars, the SL FSAs, and the

SSC - all converge to define the exact same class of languages. Thus a language is SL

if there is some k for which the language can be described in any of these three ways.

In contrast, to prove a language is not SL is to prove there is no such k. The SSC is

27

the clearest way to make such an argument. Consider, for example, the language Laa
discussed above, in which all strings contain an even number of a’s and any number of

b’s. Using the SSC, it can be shown that this language is not SL for any k. If it was

SL for some k, then the SSC should hold. Consider some k that is an arbitrary even

number. Then we know the strings aak−1b and bak−1a are both in Laa. Following the

SSC, we can parse these strings into u1, v1, u2, v2, and x as in (16).

(16)
u1 x v1 u2 x v2

a ak−1 b b ak−1 a

By the SSC, the string u1xv2 must also be in the language. But this string is aak−1a

or ak+1, which is not in Laa because it contains an odd number of a’s (recall k is

even). A parallel argument can be made assuming k is odd. Since in both cases k is

arbitrary, we can conclude that there is no value of k for which the SSC will hold of

this language. Therefore by Theorem 1, it is not a SL language. Other examples of

non-SL languages include 1) strings of a’s and b’s that both start and end with ‘b’ (e.g.,

Xbaab, *aaab), 2) strings of any number of a’s and exactly three b’s (e.g., Xaababb,

*aaabb), and 3) strings of a’s, b’s, and c’s such that a ‘b’ cannot follow an ‘a’ anywhere

in the string (e.g., Xbaacacc, *baacacb). In contrast, other examples of SL languages

include 1) strings that do not begin with ‘b’ (SL-2), 2) strings in which a ‘b’ does not

immediately precede an ‘a’ (SL-2), and 3) strings that do not have sequences of three

b’s in a row (SL-3).

Once we start thinking about alphabets of phonemes instead of abstract symbols

like ‘a’ and ‘b’, these restrictions that characterize SL languages begin to resemble

phonotactic restrictions. And indeed, Heinz (2007, 2009, 2010) has discussed how local

phonotactic constraints can be modeled with SL languages. Consider again the example

of English word-final obstruent clusters. The constraint on valid surface forms can be

modeled with a SL-3 grammar that excludes the 3-factors for word-final obstruent

clusters that disagree in voicing (e.g., gs#, tz#, bs#, etc.). Such a grammar will only

generate and recognize the set of well-formed surface forms according to the phonotactic

28

restriction. But, as mentioned above, a phonological mapping cannot be modeled with

a set of strings, and therefore the SL languages are not sufficient for modeling the

process by which an underlying voiced obstruent surfaces as its voiceless counterpart.

What is needed is a functional counterpart to these languages that will encode this

notion of strict locality in a mapping. Defining this functional counterpart - the SL

functions - is precisely the central contribution of this thesis.

This chapter thus far has presented the two key components of the definition of

SL functions that will be proposed: 1) subsequential transduction and 2) SL languages.

How these components combine to define SL functions is the topic of the next chapter.

But first, since one of the motivations for modeling phonological processes with SL

functions is that it leads to an approach to the learning problem, the next section will

review some of the previous literature on learning in phonology.

2.3 Learning Phonology

A native speaker’s complete knowledge of the sound patterns in his or her lan-

guage includes at least three key areas: knowledge of contrast, knowledge of phono-

tactics, and knowledge of alternations or processes. The role of each of these areas in

the acquisition of the others is a subject of ongoing research, and so attention is often

focused on one area at a time. This thesis proposes an approach to the learning of

phonological processes, and so this section will briefly review the literature on this area

of learning in the two main frameworks of generative phonology, SPE and OT. For a

selection of the research on phonotactic learning, see Hayes and Wilson (2008), Heinz

(2007, 2009), and Heinz and Koirala (2010). And for more detailed discussion of the

research that is outlined below, see Tesar (2003) and Heinz and Riggle (2011).

2.3.1 Learning rules

Comparatively little is known about the learning of phonological generalizations

expressed as rules. Johnson (1984) presents a procedure for learning an ordered set of

phonological rules of the form a → b / C, where C is a feature matrix of which ‘a’ is

29

a subset. Given a paradigm of underlying and surface forms parsed into component

morphemes, this learner works backward by unapplying the (hypothesized) last rule

to the surface form and positing the intermediate forms and rules that will lead to the

underlying form. Unordered rules thus pose a problem for this procedure. Furthermore,

it relies on an enumerative strategy for determining the last rule in the series, which

offers little insight into the inductive principles at work in phonological learning.

Albright and Hayes (1999, 2002) propose an analogical learning model that,

given inflectional data pairs (e.g., present 7→ past), identifies the structural changes

and contexts of the alternations. Initially this procedure creates separate rules for each

observed data point, but the learner gradually generalizes over the set of rules it has

collected so far to create rules that account for as many forms as possible. Touretzky

et al. (1990) propose a similar method in which the learner is given underlying-surface

pairs. Lastly, Gildea and Jurafsky (1995, 1996) take an approach very similar to the

one that will be presented in this thesis and demonstrate how phonological rules can

be learned when encoded as subsequential finite state transducers. Much more will be

said about their methodology and findings in Chapter 6, but their work highlights the

utility of insightful learning biases in phonological learning.

2.3.2 Learning in OT

The shift in generative phonology toward constraint-based grammars initiated

a large and ongoing body of work on how such grammars can be learned. In part, the

greater attention that has been paid to learning within OT is due to the fact that the

structure of OT grammars readily lends itself to learning algorithms that can identify

the constraint ranking that is consistent with a given set of positive data. The inherent

logic of an OT grammar is that a winning candidate (which can be identified as the

correct surface form) must be preferred by at least one constraint that dominates

all of the constraints that prefer any other candidate. This fact can be exploited

by a learning algorithm that is equipped with the (by assumption) innate constraint

set. The first algorithm to do this, called Recursive Constraint Demotion (Tesar and

30

Smolensky, 1993; Tesar, 1995), gradually identifies the constraint ranking by placing

at the top those constraints that do not prefer any losers to winners. It recursively

applies this logic, each time disregarding any winner-loser pairs that have already been

accounted for as well as any constraints that have already been ranked, until it has

either identified the ranking that is consistent with all of the data or has detected

an inconsistency in the data. A later version of this algorithm, called Error-Driven

Constraint Demotion (Tesar and Smolensky, 1996, 1998, 2000), constructs its own set

of winner-loser pairs. Again taking the observed surface form to be the winner, the

learner uses the given underlying form to generate a set of losing candidates that will

provide the most information regarding the correct constraint ranking. In this sense

the structure and logic of OT enables the learner to generate its own negative data

from the observed (positive) data, which provides crucial information for inducing the

grammar.

This central approach to learning within OT has since been adapted to and

explored in the context of a variety of sub-problems, including learning the hidden

structure of overt forms (Tesar, 1998a,b; Tesar and Smolensky, 1998; Jarosz, 2013),

learning the underlying forms (Tesar et al., 2003; Alderete et al., 2005; Merchant and

Tesar, 2008; Jarosz, 2006b), learning from surface forms alone (Riggle, 2004, 2006b),

dealing with structural ambiguity (Tesar, 2002, 2004; Jarosz, 2009a), learning restric-

tive grammars (Jarosz, 2006a, 2009b), handling optionality, gradience, and noisy data

(Boersma, 1997, 1998, 2000; Boersma and Hayes, 2001), handling exceptions (Pater,

2004), predicting stages of acquisition (Jarosz, 2007), the role of frequency in acquisi-

tion (Jarosz, 2010, 2011), learning phonotactics (Prince and Tesar, 1999, 2004; Hayes,

2004; Pater, 2004; Magri, 2010, 2011, 2012), and learning alternations from phonotac-

tics (Tesar and Prince, 2003).7

The extensive progress that has been made in OT models of learning indeed

adds to the appeal of OT as a theory of phonological grammar. And these learning

7 See also Pulleyblank and Turkel (1995, 1996, 1998, 2000) for a genetic algorithm approach to learning
in OT.

31

mechanisms are in fact compatible with any phenomenon (linguistic or otherwise)

that can be described in OT. Tesar and Smolensky (1998), for example, state that

their learning results ‘are nevertheless independent of the details of any substantive

analysis of particular phenomena. The results apply equally to phonology, syntax, and

any other domain admitting an Optimality Theoretic analysis’ (230). Such versatility

of the learning mechanism discredits assumptions about language-particular cognitive

mechanisms, and offers no explanation for the computational (Heinz and Idsardi, 2011)

and experimental (Lai, 2012) evidence for different learning mechanisms for different

linguistic domains (e.g., phonology versus syntax). Thus, following the arguments of

Heinz (2007), the approach to learning advocated in this thesis will make use of a

property that holds of the UR 7→ SR mapping itself, not of the particular grammatical

formalism used to describe it. The idea is that the defining property of the mappings

and the inductive principle of the learner are one and the same, because the structure

of the mappings is also the structure of the learner’s hypothesis space (see also Dresher

(1999), who makes a similar argument in favor of the cue-based learning model of

Dresher and Kaye (1990)). This connection explains why the phonological patterns are

restricted in the way that they are, since the learner can only learn the patterns that

have this property. Patterns without the property that happen to be consistent with

the data will not find their way into the grammar.

The next and final section of this chapter will present the mathematical nota-

tions that will be used throughout the rest of the thesis.

2.4 Mathematical Preliminaries

2.4.1 Strings, languages, relations, and functions

An alphabet, Σ, is a finite set of symbols. A string or word, w, is a finite sequence

of symbols from Σ. The set of all possible strings using symbols in Σ is represented

as Σ∗, and this set includes the unique string of zero symbols, called the empty string

and represented with λ. The length of a string is the number of symbols it contains

32

and is designated |w| (so |λ| = 0). The set of all possible strings of length n and of

length up to and including n is Σn and Σ≤n, respectively.

If w = ps for some p, s ∈ Σ∗, then p is a prefix of w and s is a suffix of w. The

set of prefixes of w, Pref(w) = {p ∈ Σ∗ | ∃s ∈ Σ∗ [w = ps]}, and the set of suffixes

of w, Suff(w) = {s ∈ Σ∗ | ∃p ∈ Σ∗ [w = ps]}. The unique suffix of w of length n is

Suffn(w). If |w| < n, Suffn(w) = w. If w = ps, then ws−1 = p and p−1w = s. The

longest string in a set S, max(S), is s ∈ S such that ∀s′ ∈ S, |s′| < |s|. The longest

common prefix of a set of strings S, lcp(S), is then max(∩w∈SPref(w)).

A language L is a subset of Σ∗ (L ⊆ Σ∗). A relation R is a subset of the

cross-product of the two languages: R ⊆ L1×L2 = {(w1, w2) | w1 ∈ L1 and w2 ∈ L2}.

The left projection of a relation R is ψ1 = {w1 | ∃w2 [(w1, w2) ∈ R]}, and the right

projection ofR is ψ2 = {w2 | ∃w1 [(w1, w2) ∈ R]}. A relation f is a function if ∀w1 ∈ ψ1

there is exactly one w2 ∈ ψ2. For a function f and a string x ∈ Σ∗, the set of tails of

x with respect to f is tailsf (x) = {(y, v) | f(xy) = uv ∧ u = lcp(f(xΣ∗))}. This set

is empty if x /∈ ∩w∈ψ1Pref(w).

2.4.2 Finite state automata

Definition 1 (DFSA). A deterministic finite state acceptor (DFSA) is a five-tuple

τ = {Q, q0, F,Σ, δ}, where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q

is the set of final states, Σ is the alphabet, and δ : (Q × Σ) 7→ Q is the transition

function (i.e., δ(q, a) = q′ if there is a transition from q to q′ on input a).

The transition function of a DFSA can be extended to strings as follows (adapted

from Hopcroft et al. (2001)). ∀q ∈ Q,

δ̂(q, w) =

 q if w = λ

δ(δ̂(q, w′), a) if w = w′a for some a ∈ Σ

The language recognized by τ is L(τ) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}.

Definition 2 (FST). (Oncina et al., 1993) A finite state transducer (FST) is a six-

tuple τ = {Q,Σ,Γ, q0, F, E}, where Q is a set of states, Σ and Γ are the input and

33

output alphabets, respectively, q0 is the initial state, F ⊆ Q are final states, and E ⊆

(Q× Σ× Γ∗ ×Q) is a set of edges.

The set of edgesE of a FST is associated with a transition function δ: ∀(q, a, o, q′)

∈ E, δ(q, a) = (o, q′). Two auxiliary functions that specify only the output string and

destination state of a given transition will also be useful. They are defined as follows:

∀(q, a, o, q′) ∈ E, δ1(q, a) = o, and δ2(q, a) = q′.

Definition 3 (SFST). A subsequential finite state transducer (SFST) is a six-tuple

τ = {Q,Σ,Γ, q0, E, σ}, where Q is again a finite set of states, all of which are final,

and q0,Σ,Γ, and E are defined as for FSTs. The final output function σ : Q 7→ Γ∗

maps each state to a (possibly empty) string that is appended to the output of any input

string that ends in that state.

SFSTs are deterministic on the input, meaning (q, a, u, r), (q, a, v, s) ∈ E ⇒

(u = v ∧ r = s). A path in a SFST is a sequence of edges in E, π = (q0, a1, o1, q1)...

(qn−1, an, on, qn), qi ∈ Q, ai ∈ Σ, oi ∈ Γ∗, 1 ≤ i ≤ n, which can also be condensed to

(q0, a1...an, o1...on, qn). Let Πτ be the set of all possible paths in τ . The function f

realized by τ is then f(w1) = w2σ(q) such that (q0, w1, w2, q) ∈ Πτ (Oncina et al.,

1993).

2.4.3 Learning framework

The learning results presented in Chapter 6 follow the Gold paradigm of identi-

fication in the limit (Gold, 1967). This section presents the crucial definitions for this

framework.

A text t is an infinite sequence (or set) of items from the target language or

mapping. The nth element of this sequence is denoted by t(n), and by t[n] is meant

the finite portion of the sequence up to the nth item, or t(0), t(1), ..., t(n). A learner φ:

t[n] 7→ G maps finite sequences of texts to grammars. These grammars can be thought

of as hypotheses for the grammar that generates the target language or mapping. If

the target is a language, these hypothesis grammars might, for example, be in the form

34

of finite state acceptors. If the target is a mapping, they might be in the form of a

finite state transducer.

There are two criteria for a learner to identify a language or mapping in the

limit. The first is convergence. A learner converges on a text t iff there exists n ∈ N

such that for all m > n, φ(t[m]) = φ(t[n]). In other words, there is a point at which, no

matter what additional data the learner observes, its hypothesis grammar will never

change. The second criterion is correctness, which is simply that this grammar the

learner has converged to generates exactly the target language or mapping. And by

extension, a learner identifies a class of languages or mappings in the limit if for any

language or mapping in that class, the learner identifies it in the limit.

While some dispute the relevance of the Gold framework to natural language

learning (Clark and Lappin, 2012), others defend it Heinz (to appear). The Gold

framework is a relatively difficult paradigm in which to prove learnability, on account

of the requirement that the learner identify exactly the correct target and that it

do so using only positive examples. In other paradigms, the requirement of exact

identification is relaxed (see for example, Valiant (1984) and Kearns and Vazirani

(1994)) or the use of negative data is allowed (i.e., the text includes examples that the

learner is explicitly told are not in the language). Some classes of languages that are

not Gold-learnable are learnable in a different paradigm (e.g., the regular languages,

see de la Higuera (2010)). But the Gold paradigm is appropriate in the context of

natural language learning, since child language learners neither use nor consistently

receive examples of negative data.

35

Chapter 3

MODELING PHONOLOGICAL PROCESSES WITH STRICTLY
LOCAL FUNCTIONS

This chapter defines Strictly Local functions and shows how they can model

local phonological processes such as substitution, deletion, and insertion. Strictly Local

functions are the functional counterpart of the SL languages discussed in the previous

chapter. And like those languages, the definition of SL functions will involve k-factors,

or substrings up to a certain length k. Recall that SL languages can be defined with a

grammar that consists of the k-factors that are allowed in strings of the language. They

can thus model the set of valid surface forms in a natural language (i.e., phonotactics).

To model phonological processes, the SL functions will map (or ‘rewrite’) illegal k-

factors in the input to the corresponding ‘repaired’ string as dictated by the process

(i.e., a string with segments substituted for others, or deleted, or inserted, etc.).

Defining SL functions in terms of a grammar, however, is not as straightforward

as in the case of SL languages. Consider the simple rule in (1), which will be used

throughout this chapter for demonstration purposes.

(1) a → b / a a

This process substitutes a ‘b’ for an ‘a’ that appears between two other a’s. It fol-

lows that the language that includes this process disallows the sequence ∗aaa in sur-

face strings, a phonotactic restriction that could be modeled with a SL-3 grammar

that omits this 3-factor. But what grammar models the process that repairs these

sequences? One might consider a grammar of tuples in which the first member is a k-

factor and the second is the string that k-factor is mapped to (e.g., {(aaa, aba), (baa, baa),

(bbb, bbb), ...}). But the k-factors of a word overlap, such that the word itself is not

36

simply the concatenation of its k-factors. For example, the word w = abcda con-

tains the 2-factors #a, ab, bc, cd, da, and a#, but the concatenation of these 2-factors

(aabbccddaa) does not equal w. This overlapping nature of k-factors raises the ques-

tion of how to correctly piece together the output string for a given input using a

tuple-grammar like the one above.

Therefore, this chapter will instead present an automata-theoretic characteriza-

tion of SL functions, which handles this ‘overlapping problem’ and produces the correct

output string for a given input. The SL functions will in fact be defined with two dis-

tinct subclasses: the Input Strictly Local (ISL) functions and the Output Strictly Local

(OSL) functions. These two classes are formally distinct, but there is also a linguis-

tic motivation for separating them. Consider again the example rule in (1). Table 3.1

shows that this rule in fact corresponds to two distinct mappings depending on whether

it is applied to the input aaaaa in a simultaneous manner or left-to-right (Kaplan and

Kay, 1994; Hulden, 2009).

Table 3.1: Mapping by Mode of Application

Simultaneous Left-to-Right
aaaaa 7→ abbba aaaaa 7→ ababa

There is another logically possible mode of application: right-to-left. But a correspond-

ing third definition for the function that can model this mapping is not necessary, for

reasons that will be discussed below. The difference between simultaneous and left-

to-right application lies in whether the left context of the rule is verified using the

most recent input (= simultaneous) or the most recent output (= left-to-right). This

becomes intuitive when one considers the difference in the two application modes. For

simultaneous application all possible targets of the rule are located before any change

has been made (i.e., only the input string matters), while in left-to-right application

37

one change can feed or bleed a following application (i.e., the output determines what

happens next).

This difference carries over to the SL function definitions: simultaneous appli-

cation is modeled with Input Strictly Local functions and left-to-right application is

modeled with Output Strictly Local functions. The definitions of these two classes of

functions, as well as a procedure for compiling phonological rules into their respective

transducers, will be presented in §§3.1 and 3.2. But first, it is worth reiterating that

although the example processes used throughout this and the next two chapters will be

first expressed with rules, the analysis is always meant to show that it is the mapping

that is Strictly Local, not the rule itself. Furthermore, though the FST constructions

will be applied to rules, the rules are just an intermediate step in the procedure of

modeling a phonological mapping with a SL transducer. Developing a SL transducer

construction from an OT grammar is beyond the scope of this thesis, but the wealth of

previous work on FST representations of OT (see Frank and Satta (1998), Karttunen

(1998), Eisner (2000), Gerdemann and van Noord (2000), and Riggle (2004), among

others) suggests that such a construction will be a feasible area of future research.

3.1 Input Strictly Local Functions

This section will define Input Strictly Local functions, which will be shown

to model the simultaneous application of a phonological rule. Before presenting the

definition itself, it is worth elaborating on the definition of tails from the previous

chapter, as this concept forms a crucial part of the definition. Formally, the tails of

a string x in the prefixes of the domain of a function is the set tailsf (x) = {(y, v) |

f(xy) = uv ∧ u = lcp(f(xΣ∗))}. Informally, the tails are the contributions to the

output string of all possible extensions of x.

As an example, consider a function for post-nasal obstruent voicing, a process

(attested in Coatlán Mixe (Wichmann, 1995)) that can be represented with the rule in

(2).

38

(2) [-son] → [+voice] / [+nasal]

For demonstration purposes, assume an alphabet of Σ = {D, T, V, N}, where D is a

voiced obstruent, T is its voiceless counterpart, V is a vowel, and N is a nasal. Now

consider the example string VN. The function would map this string to the output

VN. In fact, any input string that begins with VN will be mapped to an output string

that begins with VN. This means that every string in the infinite set of strings from

Σ∗ that have VN as a prefix1 will be mapped to an output string with VN as a prefix;

thus VN is called the longest common prefix of all of these output strings.

The remainder of the output string will differ depending on the next input

symbol. Extending the input with T, V, N, or # will extend the output by T, V,

N, and λ, respectively. But extending it with D will extend the output by T. These

pairings of ‘input extension’ and ‘output extension’ are members of the set of tails

(with respect to f) for VN, as shown in (3).

(3) tailsf (VN) = {(T, T), (V, V), (N, N), (D, T), (#, λ)...}

As an infinite set, tailsf (VN) includes all possible extensions of VN (of any length).

Only the shortest of these (the single symbol ones) are represented in (3), but that is

sufficient to observe that the longest common prefix of the collective output extensions

is λ. In this way, the set of tails isolate the contributions to the output of each possible

input extension. Note that these output contributions do not have to be unique - both

T and D extend the output of VN by T. What is important is that there is no prefix

common to the entire set of outputs.

The other crucial aspect of the definition of ISL functions is that the tails of VN

are also the tails of DVN, TVN, NN, and, in fact, any string that ends with N. What

all such strings have in common is a suffix of length k − 1 (since in this example k =

1 Here the term prefix has no morphological import, but is simply some portion of a string starting
from the beginning. See §2.4 for a formal definition.

39

2).2 The fact that strings with the same k − 1 length suffix have the same set of tails

is the defining property of an ISL function (i.e., they are the functions for which this

property is true).

Definition 4 (Input Strictly Local Function). A function f is Input Strictly Local iff

∃k ∈ N such that for all u1, u2 ∈ Σ∗, it is the case that if Suffk−1(u1) = Suffk−1(u2)

then tailsf (u1) = tailsf (u2).

As discussed in the previous chapter, an automata-theoretic characterization of

these functions will be employed in the analyses that follow. The following theorem

defines the FSTs that describe ISL functions - a proof that these FSTs correspond

exactly to the class of ISL functions is in the appendix.

Theorem 2. A function f is Input Strictly Local iff ∃k ∈ N such that f can be described
with a SFST3 TISL(f) for which

1. Q = Σ≤k−1 and q0 = λ

2. (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ = Suffk−1(qa)
]
.

The first part of the theorem, which echoes the definition of the FSAs that accept

SL languages, says that the states of the SFSTs that describe Input SL functions

correspond to the set of possible k− 1-factors. The second part defines the transitions

between states in such a way that it is only possible to be in a state if those k − 1

symbols correspond to the most recent input.

To prove that a given phonological process is SL, it is sufficient to construct a

SL FST that describes it. Before the construction procedure is presented, a quick note

on FST alphabets. The definition of SFSTs in §2.4 of Chapter 2 includes distinct input

and output alphabets, Σ and Γ, respectively. Since both ISL and OSL FSTs are by

definition SFSTs, this distinction will be maintained. And in fact, from a phonological

standpoint it makes sense to have two alphabets, under the assumption that URs

2 Again, here the term suffix has no morphological meaning, but simply refers to a portion of the
string starting from the end. See §2.4 for a formal definition.

3 See Definition 3.

40

contain only phonemes and SRs contain only allophones. Also by assumption, the

input alphabet is a subset of the output alphabet.

Given a rule of the form in (4) that applies simultaneously, where x, y, u, and v

are strings, TISL can be constructed as follows.4

(4) x→ y / u v (simultaneous)

For k = |uxv|, the state set Q = Σ≤k−1 and the initial state q0 = λ. Transitions are

defined for each state and input symbol. By Theorem 2, the destination state of these

transitions is always the state that corresponds to the suffix of length k − 1 of the

sequence q plus a. But some care must be taken to determine the outputs of these

transitions.

Consider some string s ∈ Σ∗, which is of length n = |s|. This string can also be

written as s1s2...sn, where si ∈ Σ for 1 ≤ i ≤ n. Likewise, the strings u, x, v from (4)

can be written u1...um, x1...xl, and v1...vr, where m = |u|, l = |x|, and r = |v|. Now

consider the string of input symbols in (5).

(5) s1 ... sn u1 ... um x1 ... xl v1 ... vr−1 vr

Since k = m + l + r, we know there is a state in Q that corresponds to u1...vr−1. In

some sense this is the state the FST is ‘looking for’, since once it is in this state it has

seen the entire context for the process and must enact the change of x→ y. Before it

reaches that state, however, it must proceed through a series of states that each contain

some portion of uxv. This is because Q contains states for all possible sequences up to

length k− 1, which means there are states for sn...vr−2, sn−1...vr−3, sn−2...vr−4, and so

on. These states all have some portion of uxv as a suffix.

Once the FST is in a state that has all of u as a suffix, as long as it continues

to read in symbols from xv it must withhold the output (i.e., it must output λ). This

is because x may or may not have to be output as y - that decision cannot be made

4 See the appendix for a formal construction.

41

until all of xv has been read in or a symbol not in xv is read, in which case the FST

‘resets’ and begins looking for u again.

Therefore, when determining the output of a transition, there are four conditions

to consider:

1. q has u plus some proper prefix of xv as a suffix, and a extends further into xv :

q a
s1 ... sn u1 ... um x1 ... xl v1 ... vr−1 vr

The output of this transition is λ, and the destination state is called a ‘holding’
state (because the output is being withheld).

2. q has u plus some proper prefix of xv as a suffix, but a moves outside of xv.
Since q is a holding state, the output must include whatever was being held (i.e.,
whatever portion of xv was already seen). However, if the destination state is
also a holding state and the string being held in that state overlaps the output to
some degree, this ‘overlap’ must not be included in the output.5 The overlapping
portion can be determined as the longest prefix of the string being held in the
destination state that is also a suffix of the output:

overlap
output string: x1 x2 ... v1 v2 a
string held in destination state: x1 x2 x3 x4

3. q is all but the last symbol of uxv, and a is that last symbol.

q a
s1 ... sn u1 ... um x1 ... xl v1 ... vr−1 vr

The output is yv, minus whatever portion (if any) of it is being held in the
destination state.

4. If none of the other conditions apply, the output is the same as the input.

Lastly, the final output function σ simply maps each state to the (possibly

empty) string it is holding. The above procedure produces the TISL in Figure 3.1 for

the rule in (1), which describes the correct mapping for simultaneous application.

5 This situation only arises when u, x and/or v are not distinct, as in (1).

42

a

aa,a

a:!
ab

b:b

! a:a

bb:b

a:b b:ab

ba

a:a

bb
b:b

a:!

b:b

a:a

b:b

a:a

b:b

Figure 3.1: TISL for the simultaneous application of (1), k = 3, Σ = {a, b}

Transitions δ(a, a) and δ(ba, a) fall under condition 1 above, transition δ(aa, b) falls

under condition 2, transition δ(aa, a) falls under condition 3, and all other transitions

fall under condition 4. Note that σ has assigned the string a to state aa. This is the a

that will become a b if another a is read in. If the string instead ends in state aa, the

σ function ‘returns’ that a unaltered by appending it to the current output.

3.2 Output Strictly Local Functions

As stated above, the difference between ISL and OSL is that in the latter the

transduction pays attention to the most recent output. This leads to the following defi-

nition for Output Strictly Local functions, which can model the left-to-right application

of a rule.

Definition 5 (Output Strictly Local Functions). A function f is Output Strictly Lo-

cal iff ∃k ∈ N such that for all u1, u2 ∈ Σ∗, it is the case that if Suffk−1(f(u1)) =

Suffk−1(f(u2)) then tailsf (u1) = tailsf (u2).

43

As with ISL functions, a corresponding FST characterization of OSL functions

will be used in the analyses that follow. This FST is defined in the following theorem

(see the appendix for a proof that these FSTs describe OSL functions).

Theorem 3. A function f is Output Strictly Local iff ∃k ∈ N such that f can be
described with a SFST TOSL(f) for which

1. Q = Γ≤k−1 and q0 = λ

2. (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ = Suffk−1(qu)
]
.

The procedure for compiling a rule of the form in (6) into an OSL transducer is

as follows.

(6) x→ y / u v (left-to-right)

For k = |uxv|, the state set Q = Γ≤k−1 and the initial state q0 = λ. For the transitions

from each state q on each input symbol, the destination state always corresponds to

the suffix of length k − 1 of q plus the output of the transition. The outputs of the

transitions and the final output funciton can be determined using the same procedure

as for TISL above. Figure 3.2 shows TOSL for the rule in (1) and describes the correct

mapping for left-to-right application.

a aa,aa:!

ab
b:b

!
a:a

bb:b

baa:ba

b:ab

a:a
bb

b:b

a:!
b:b

a:a

b:b

a:a

b:b

Figure 3.2: TOSL for the left-to-right application of (1), k = 3, Σ = {a, b}

44

What about right-to-left application? Indeed we want to model this mode of

application as well, to accommodate cases of regressive harmony like the example from

Kolokuma Ijo shown in (7).

(7) Kolokuma Ijo (Williamson, 1965)

a. /wãi/ 7→ [w̃ã̃i] ‘breath’

b. /sanlo/ 7→ [sãnlo] ‘gills’

c. [+son] → [+nasal] / [+nasal]

Recall from the previous chapter that the subsequential functions are divided into two

subclasses, left and right subsequential, that differ in terms of the direction in which the

input string is read (left-to-right or right-to-left, respectively). Since the SL functions

are a proper subset of subsequential, it follows that these two options for reading the

input string should be available for SL functions as well. The example in (7-a) shows us

that the rule is applied iteratively, which means an ISL function will not be sufficient

to model this mapping. Thus, what we need is an OSL function that reads the input

string from right-to-left.

We can simulate this right-to-left reading of the input by first reversing the

input and then reversing the output that the OSL function maps this reversed input

to. This procedure allows us to essentially treat regressive rules as progressive (i.e.,

left-to-right). Consider the progressive nasal harmony rule in (8), which is the mirror

version of the rule in (7-c).

(8) [+son] → [+nasal] / [+nasal]

Assuming an alphabet of Σ = {N, D, V}, where N is a nasalized segment, D is an

obstruent, and V is a sonorant, TOSL for this process is shown in Figure 3.3.

Now consider the input VVND. If we reverse this string, we get DNVV, which

is mapped to DNNN by the FST in Figure 3.3. If we then reverse this output, we get

NNND. Thus we have modeled the mapping of VVND 7→ NNND, which corresponds

45

!,!

V,!
V:V

D,!D:D N,!

N:N

V:V

D:D

N:N

V:V D:D

N:N
D:D

V:N
N:N

Figure 3.3: TOSL for (8), k = 2, Σ = {N, D, V}

to regressive nasal harmony.6

So far we have seen how to model the simultaneous, left-to-right, and right-to-

left application of a rule of the form in (4), repeated in (9),

(9) x→ y / u v

where x, y, u, v are strings. Many phonological processes can be described with rules of

this form, but the empirical coverage is limited in that the rule format assumes a single

target, x, and a single triggering context of u v. In practice, however, most processes

involve multiple targets and contexts, because they apply to natural classes rather than

single strings. In addition, it is unclear how the schema in (9) will accommodate rules

triggered by a word boundary. If the word boundary # is simply included in Σ, the

formalism over-generates in that # can appear anywhere in the strings x, y, u, and v.

For example, it would allow for rules such as in (10).

(10) a. #→ a / a a

b. a→ # / ab a

c. a→ b / a ###

6 See Heinz and Lai (2013) for more details on using reversed strings to achieve right-to-left mappings.

46

Rules such as these are not plausible from a phonological standpoint.7 The rule schema

therefore needs to be modified in such a way that it can handle word-boundary processes

without allowing for rules like those in (10). The next two sections will adapt this rule

schema to accommodate word boundary processes and multiple targets and triggers,

respectively.

3.3 Word Boundary Processes

To disallow rules of the sort in (10), the word boundary symbol # must be

restricted to being either the first symbol of u or the last symbol of v. So given (4)

we specify that x, y ∈ Σ∗, u ∈ {#, λ}·Σ∗ and v ∈ Σ∗· {#, λ}. This means # is not

included in the alphabet Σ. It does, however, contribute to the value of k, since it is

part of the structural environment uxv.

Word-final processes can now be handled with the final output function. So

far that function has served to return any held material in the event a transduction

concludes in a holding state. Now its use will be extended to perform the rewriting of

the k -factor in the event the rule is triggered by the word-final boundary. In that case

(and only in that case), instead of rewriting uxv on a transition, as before, the final

output function assigns yv to the state that corresponds to all but the last symbol of

uxv (the last symbol being #). As a result, if the string ends, the trigger of the process

has been found, and the change yv is appended to the current output.

Modifying the example from above, consider the rule in (11), which includes the

word-final boundary in the triggering context.

(11) a→ b / a #

The transducer for this rule is shown in Figure 3.4. Note that in this case both the ISL

and the OSL FST construction produce the same FST. This is because the simultaneous

and left-to-right application of word-boundary processes do not differ (i.e., there can

7 Though see Chapter 7 for discussion of processes that take place across word boundaries.

47

only be a single application of the rule).8 More generally, we only observe different

mappings for the different modes of application when there is some overlap between

the target of the rule and the triggering context. Thus for this and all future examples,

TSL will be used if TISL = TOSL.

a,!

aa,b

a:!

ab,!
b:b

!,!
a:a

b,!b:b

a:a b:ab

ba,!

a:a

bb,!
b:b

a:!

b:b

a:a

b:b

a:a

b:b

Figure 3.4: TSL for (11), k = 3, Σ = {a, b}

Processes triggered by the word-initial boundary require a change to the state

set and the initial state. Consider the example rule in (12), which includes the word-

initial boundary in its triggering context:

(12) a→ b / # a

In order to perform the correct transduction, the FST needs to distinguish between a

word-initial aa and a non-initial aa. This distinction is accomplished with a separate

state for #a and aa. Thus the state set needs to include states for # followed by all

8 An exception is a deletion rule like a → λ / # a. Applied simultaneously this rule maps aaa to
aa. Applied left-to-right it maps aaa to λ.

48

possible k − 2-factors. The change to the initial state (in just these cases) is q0 = #.

TSL for the rule in (12) is shown in Figure 3.5.

aa,!

a:a

ab,!

b:b

#,!

#b,!

b:b

#a,a
a:!

ba,!

a:a

bb,!b:b

a:a

b:b

a:a

b:b

a:a

b:b

a:ba

b:ab

Figure 3.5: TSL for (12), k = 3, Σ = {a, b}

3.4 Multiple Targets and Contexts

Phonologists frequently generalize phonological processes as applying to multi-

ple targets in multiple contexts. These sets of targets and contexts are typically not

arbitrary, but correspond to natural classes. Consider, for example, the nasal assimi-

lation process found in English as well as many other languages. This process can be

expressed with a rule like (13), by which a velar nasal is substituted for an alveolar

one just in case the following sound is a velar stop, like /k/.9

(13) n → N / k

9 This process can also be represented with an underspecified nasal, N, that takes on the place feature
of a following obstruent. The distinction between these two representations of the rule are not relevant
to the present discussion.

49

This rule clearly falls within the scope of the above constructions, with x = n, y = N,

u = λ, and v = k. However, the process of nasal assimilation is not fully captured by

the rule in (13). For one thing, the change also takes place with v = g. Secondly, a

clearly related change takes place before bilabial stops. So in fact, nasal assimilation

consists of the four rules in (14).10

(14) a. n → N / k

b. n → N / g

c. n → m / p

d. n → m / b

To capture the fact that this set of rules actually describes a single process, phonologists

prefer to use natural classes in their rule formalisms. The set of rules in (14) (as well

as the fact that /n/ surfaces as [n] before alveolars) can instead be represented with

the single rule in (15).

(15) [+nasal] → [αplace] / [αplace, −son]

Since the FST constructions presented above assume an alphabet of segments, we must

find another way to capture the fact that the rules in (14) describe a single process.11

One possibility is to create a separate FST for each rule by the above procedure and

then compose the four FSTs into a single FST by transducer composition. This method

would enforce a strict ordering of the rules in (14), since composition uses the output

of one function as the input to the next. In this particular example, ordering the rules

would not present a problem, since the triggering contexts are distinct. For a given

/n/, only one of the possible values of v (i.e., k, g, p, b) can follow it, so exactly one of

10 Again, under the analysis with the underlying unspecified N, two additional rules are needed to
change N to [n] before the alveolar stops /t/ and /d/.

11 Using an alphabet of features is a natural solution, but one that falls outside the scope of this
thesis.

50

the rules will apply. Another example, however, shows that the ordering enforced by

composition will not always be so benign.

The (now extinct) Native American language Tonkawa has a vocalization process

by which a glide becomes its vowel counterpart before a consonant or word-finally

(Hoijer, 1933). The feature-based rule for this process is shown in (16), and an example

is shown in (17).

(16) [-syllabic,-cons] → [+syllabic] / {[+cons], #}

(17) Tonkawa

a. PePejawoPc ‘I work’

b. PePejau do:xoPc ‘I finish working’

Expanding this rule to its segmental representation gives the pair of rules in (18),

(18) a. j → i / {C, #}

b. w → u / {C, #}

where C ranges over the consonant inventory of Tonkawa, C = {p, t, k, kw, P, ts, s, x,

xw, h, m, n, l, j, w}. Thus the full expansion of (16) contains 32 rules, one for each of

the rules in (18) for each of the 16 possible right contexts.

As members of C, the glides /j/ and /w/ should trigger vocalization of a pre-

ceding glide, meaning the input jjj should be mapped to iii.12 Likewise, the mappings

www 7→ uuu, jwj 7→ iui, and wjw 7→ uiu are expected. Note that the improbability

of these input forms is not relevant. The FST that models a particular process should

produce the correct output for any possible input. The actual subset of possible inputs

that the language will make use of is determined by other factors. In SPE, for instance,

morpheme structure constraints dictate the subset of Σ∗ that a rule will actually see

as input. But these constraints are independent of the rule itself. And in OT, the

12 This is true for either mode of application; when a rule only has a right context, simultaneous and
left-to-right application yield the same mapping. This point will be discussed further below.

51

conception of a process as a total function is actually built into the theory through the

assumption of Richness of the Base (Prince and Smolensky, 1991, 1993).

To return to the present case, combining the two rules in (18) via composition

will not yield the correct mappings for jwj or wjw regardless of how the rules are

ordered, because one rule will bleed the other. This is demonstrated with the sample

derivations in (19).

(19)

/wjw/ /jwj/

/j/-vocalization [wiw] /w/-vocalization [juj]

/w/-vocalization *[wiu] /j/-vocalization *[jui]

Either ordering fails on at least one input, which suggests that composition is not

the correct method by which a set of rules defined over strings should be combined to

capture the single process normally defined with features. Instead, a single FST should

be constructed for the entire set. This requires modifying the rule schema to (20),

(20) xi → yi / U V

where U ⊆ {#, λ}·Σ∗ is a set of left contexts, V ⊆ Σ∗· {#, λ} is a set of right contexts,

and (xi, yi) ∈ X × Y where X, Y ⊆ Σ∗ are sets of targets and structural changes,

respectively. Crucially, the sets U,X, and V must be finite subsets in order for the rule

to be described with a SL function. This condition will be discussed further toward

the end of the chapter. The cross-product of X and Y is necessary, because it is not

the case that any string from X can be rewritten as any string from Y (which would

be implied by simply specifying X → Y). For example, in the case of Tonkawa, it is

not sufficient to define X as the set of glides and Y as the set of high vowels. The

glides /j/ and /w/ must be paired with [i] and [u], respectively.

Whereas before the FST only had to look for a single uxv string, now it must

keep track of a set of them. That set includes all possible uxv combinations, with

u ∈ U , x ∈ X, and v ∈ V . The value of k is now the length of the longest such

52

uxv string. To see how this works, first consider an example process with two targets

changing in the same context, as in (21). TISL for this process is shown in Figure 3.7

(next page).

(21) a. a → b / a a

b. b → c / a a

Figure 3.7 maps aaaba to abaca. Note the b:a transition from state aa to state ab. In

the previous example (Figure 3.1), this transition was b:ab. Since in that example aab

is not a rewritable k -factor, the a being held in state aa is returned when b is read

in. In this example, however, aba is a rewritable k -factor, and so state ab is a holding

state. Hence the ‘b’-transition out of aa withholds b, the portion of the output being

held in the destination state ab.

Now consider again the Tonkawa example, which has multiple targets and mul-

tiple contexts. For ease of reading, let C again refer to any consonant. So the set of

right contexts is V = {#, C}. TISL for this process is shown in 3.6.

λ,λ

C,λ
C:C

j,ij:λ

w,u

w:λ

C:C

j:λ

w:λ

C:iC
j:i

w:i

C:uC

j:u

w:u

Figure 3.6: TISL for Tonkawa glide vocalization, k = 2, Σ = {C, j, w}

53

a,!

ac,!

c:c

aa,a

a:!

ab,b

b:!

!,!

a:a

c,!

c:c

b,!

b:b

cc,!

c:c

cb,!

b:b

ca,!

a:a

ba,!

a:a

bb,!

b:b

bc,!

c:c

c:c

a:!

b:!

a:a

b:b

c:c

c:c

b:b

a:a

c:c

b:b

a:a

a:a

b:b

c:c

c:c

a:!

b:!

c:c

b:b

a:a

c:ac

a:b

b:a

a:ca

b:bb

c:bc

Figure 3.7: TISL for (21), k = 3, Σ = {a, b, c}

54

Note that the example in Figure 3.6 also demonstrates the special case when U

= {λ}, since the process is only triggered by a following context. This is also a case in

which left-to-right application yields the same mapping as simultaneous. To see why,

consider the left-to-right application of the rule in (22) to the string aaaa.

(22) a → b / a

In this rule the same string, a, is the target and the triggering context, a circumstance

that can (as we’ve seen) lead to a different mapping depending on the mode of applica-

tion. However, since the rule only has a following context and we are moving from the

left to the right, each a will not become the target of the rule until after it has served

as a context. So the rule will apply to the first a (triggered by the second), then the

second (triggered by the third), and then the third (triggered by the fourth), to give

the output of bbba. This is the same result as applying the rule simultaneously.

By this reasoning, in the opposite case of a rule with only a preceding context,

as in (23), the two modes of application should produce different mappings.

(23) a → b / a

And indeed this is the case.13 TISL for (23) (which maps aaaa to abbb) is shown in

Figure 3.8. TOSL (which maps aaaa to abab) is shown in Figure 3.9.

Notice these FSTs contain no λ-output transitions, which means there are no

holding states (and therefore the final output function assigns λ to all states). This

is because 1) with no following context, once the target is seen the change can be

made immediately, and 2) |x| = 1. If |x| > 1, then λ transitions are needed until the

FST verifies that all of x has been seen. It turns out that the presence or absence of

λ-output transitions has an effect on the learning of the process the FST describes. In

particular, it affects the amount of data the learner needs to see to correctly converge

on the FST. More will be said about this in Chapter 6.

13 Though this time right-to-left application is the same as simultaneous.

55

a,!

a:b

b,!

b:b

!,!

a:a

b:b

a:a

b:b

Figure 3.8: TISL for (23), k = 2, Σ = {a, b}

a,!
b,!

b:b

a:b

!,!

a:a

b:b
a:a

b:b

Figure 3.9: TOSL for (23), k = 2, Σ = {a, b}

Now that it has been shown that SL functions can collectively model three

different modes of rule application - simultaneous, left-to-right, and right-to-left, the

diagram in Figure 2.8 can be revised to better represent the relationship between sub-

sequential and SL functions. Some mappings (e.g., progressive harmony) can only be

described with OSL functions that read the input from left-to-right, and likewise some

mappings (e.g., regressive harmony) can only be described with OSL functions that

read the input from right-to-left. This means the OSL functions, like the subsequential

functions, are two intersecting classes, as shown in Figure 3.10.

ISL functions, on the other hand, do not describe different mappings depending

on the direction in which the input is read. As a result, they are located in the

diagram in the intersection of left and right subsequential. The diagram distinguishes

56

REGULAR RELATIONS

LEFT SUBSEQUENTIAL

RIGHT SUBSEQUENTIAL

OSL

FUNC

TION

S

ISL

OSL

FUNC

TION

S

Figure 3.10: Relationship among left subsequential, right subsequential, OSL, and
ISL functions

four regions of ISL functions based on whether the mapping corresponds to left-to-

right OSL (written
−−→
OSL), right-to-left OSL (written

←−−
OSL), both, or neither. These

four possibilities are listed in Table 3.2 below, along with examples for each.

Table 3.2: Subregions of the Class of ISL Functions

ISL =
−−→
OSL Rule (18)

ISL =
←−−
OSL Rule (23)

ISL =
−−→
OSL =

←−−
OSL Rule (11)

ISL 6= OSL See Figure A.4

This chapter has so far demonstrated that SL functions can model the mappings

for rules that fit any of the following schemas:

(24) a. xi → yi / U V

b. xi → yi / V

c. xi → yi / U

57

Collectively, these three schemas cover all local substitution processes, which are among

the most common phonological processes observed in the world’s languages. Also

among the most common processes are deletion and insertion, which can also be mod-

eled with SL functions.

In what follows, the term deletion is being used as a blanket term for processes

like syncope, apocope, apheresis, etc. - any process that can be represented with a rule

like in (25), where all targets x are paired with ∅.14

(25) xi → ∅ / U V

Consider the example of a deletion process in Coeur d’Alene in which /n/ is deleted

before a voiceless alveolar fricative (Johnson, 1975):

(26) Coeur d’Alene

a. /h@nsti:m@lgwis/ 7→ [hIstE:milgwEs] ‘my relative’

b. /sntS’Emq@ns/ 7→ [sIntS’amq@s] ‘its tip’

c. /tSEgwiX@ns/ 7→ [tS@gwtS@gwaX@s] ‘his wings’

(27) /n/ → ∅ / {s, ì}

TSL for this rule is shown in Figure 3.11. To improve the readability of the FST,

following Beesley and Karttunen (2003) the symbol ? is used as an abbreviation for

any segment in the inventory that isn’t /s/, /n/, or /ì/. This FST differs minimally

from the ones used above for substitution processes. In substitution processes, a target

string xi is held until the requisite context for the change is verified. If it is verified,

then it is replaced with yi; otherwise xi is returned unchanged. For Coeur d’Alene, the

result of assigning y to ∅ is that, if the context of the deletion is found, the held target

is simply not returned.

14 The use of ∅ follows the notation from SPE (Chomsky and Halle, 1968), though this symbol
typically designates the empty set rather than the empty string.

58

!,!

s,!

s:s ɬ,!

ɬ:ɬ

?,!

?:?

n,n

n:!

s:s ɬ:ɬ

?:?

n:!

s:s

ɬ:ɬ

?:?
n:!

s:s

ɬ:ɬ
?:?

n:!s:s
ɬ:ɬ ?:n?

n:n

Figure 3.11: TSL for Coeur d’Alene n-deletion, k = 2, Σ = {s, n, ?, ì}

The third and final type of process that will be discussed in this chapter is inser-

tion, which again is being used as a blanket term for epenthesis, prothesis, anaptyxis

- any process that can be represented with a rule like in (28).

(28) ∅ → y / U V

An example of insertion is a process in Czech by which the glide [j] is epenthesized

between /i/ and any other vowel (Harkins, 1953). Note: here V = vowel.

(29) ∅ → j / i V

(30) Czech

a. biografu 7→ bijografu ‘movie theatre’

b. pionirski 7→ pijonirski ‘pioneer’

59

Figure 3.12 presents TSL for this process. Again in the interest of readability, a reduced

alphabet of Σ = {i, j, ?, V} is assumed, where ? is any segment in the inventory aside

from those already listed.

i,!

i:ji
j,!

j:j
?,!

?:?

V,!V:jV

!,!

i:i

j:j

?:?

V:V

i:i

j:j

?:?
V:V

i:i

j:j

?:?

V:V
i:i

j:j ?:?
V:V

Figure 3.12: TSL for Czech j -epenthesis, k = 2, Σ = {?, V, j, i}

Thus Strictly Local functions can model the local phonological processes of

substitution, deletion, and insertion. More generally, by conjecture, any such process

for which the target and the triggering context form a contiguous substring bounded

by some length k can be modeled with a SL function. This observation is formalized

in the following proposition, the proof of which is being left for future work.

Proposition 1. The mapping of a rule A → B / C D is SL iff CAD is a finite

language.

The requirement that CAD be finite is what rules out a process like in (4),

repeated below in (31).

(31) /i/ → [u] / x (x is a string with an even number of obstruents)

60

The set of strings that satisfy the condition on x (i.e., C) is infinite, so by extension

CAD is infinite. To see why it then follows that the process is not SL, recall the

defining property of SL functions (expressed in Definitions 4 and 5) that the same

suffix of length k − 1 implies the same tails. Consider two input strings w,w′ from an

alphabet Σ = {d, i}. Let w = (id)k and w′ = d(id)k, for some arbitrary k ∈ N. If k is

even, then the tails of w include (λ, λ), (d, d), and (i, u), while the tails of w′ include

(λ, λ), (d, d), and (i, i). If k is odd, then the tails of w include (λ, λ), (d, d), and (i, i)

while the tails of w′ include (λ, λ), (d, d), and (i, u). Thus no matter what value we

choose for k, w and w′ have the same suffix of length k− 1 but they have different sets

of tails. This means the process is not SL for any k.

In this way, the SL classification delimits the range of processes that are phono-

logically possible and accounts for why a process like (31) is unattested and phono-

logically implausible. Of course, there are other kinds of non-SL processes that are

attested, namely long-distance phenomena like vowel harmony with transparent vow-

els (Nevins, 2010; Gainor et al., 2012; Heinz and Lai, 2013) and long-distance consonant

harmony (Hansson, 2001; Rose and Walker, 2004; Luo, 2013) and dissimilation (Suzuki,

1998; Bennett, 2013; Payne, 2013). More will be said about these types of non-SL pro-

cesses in Chapter 7. The next chapter turns to the discussion of metathesis processes

and establishes the conditions under which they too can be categorized as SL.

61

Chapter 4

METATHESIS

The previous chapter demonstrated that substitution, deletion, and insertion

processes can be modeled with SL functions provided the target and triggering context

form a contiguous substring bounded by some length k. A natural question is how

many of these processes actually meet this condition. There are certainly examples of

substitution that do not meet it, such as long-distance consonant harmony (Hansson,

2001; Rose and Walker, 2004) and dissimilation (Suzuki, 1998; Bennett, 2013) (these

exceptions will be discussed further in Chapter 7). It is less clear whether there ex-

ist similar long-distance cases of deletion and insertion. A review of cross-linguistic

typological surveys of these processes could therefore provide more evidence for the

empirical coverage of SL functions.

In addition to identifying the kinds of processes that are SL, it is useful to exam-

ine SL and non-SL processes of a similar type side-by-side. The goal is to better convey

what makes a process SL by seeing how it differs from a non-SL version of the same

type. To that end, this chapter turns to metathesis processes, by which the segments in

a word are reordered. Metathesis, or more generally, phonological movement, serves as

a useful case study for closely examining the SL/non-SL distinction, in part because it

has inspired many cross-linguistic surveys that provide ample evidence for its typolog-

ical range (see Grammont, 1906; Ultan, 1978; Blevins and Garrett, 1998, 2004; Hume,

2000; Buckley, 2011, among others). Interestingly, the investigation presented here

will reveal that the SL/non-SL distinction corresponds to the synchronic/diachronic

62

distinction. Specifically, it will show that all synchronic metathesis is SL, while certain

diachronic displacement cases are not.1

As a secondary goal, this chapter will also provide computational evidence that

metathesis differs minimally from the more ‘common’ processes of substitution, dele-

tion, and insertion, thereby supporting the research that has aimed to rescue metathesis

from its original reputation as a marginal or exceptional process. Prior to Grammont

(1906) and Ultan (1978), metathesis was largely considered to be non-regular or spo-

radic, attributed to speech errors or diachronic sound change or otherwise excluded

from the synchronic phonological grammar. This tendency to explain metathesis with

grammar-external factors reflected the view that it is somehow exceptional. In some

ways this exceptionality is echoed in the grammatical treatments of metathesis: Hume

(2001) notes that metathesis rules differ from those for substitution, deletion, and in-

sertion because they target more than one segment (e.g., sk → ks). Likewise, Chomsky

and Halle (1968)’s treatment of the Kasem metathesis process exemplified in (1) also

involved a rule (shown in (2)) that differs from those more commonly proposed for

phonological changes.

(1) Kasem

/pia+i/ 7→ [paii] ‘yams’

(2) SD: [+voc, -cons]1, [-cons]2, [+voc, -cons]3

SC: 1 2 3 → 2 1 3 except when 2 = 3 = [a]

1 A note on terminology. A range of phenomena have been discussed under the banner of ‘metathe-
sis’ that vary in terms of the number of segments that are relocated (one or two) and whether the
movement is local or long-distance. Authors have likewise used a variety of terms to distinguish these
patterns: reciprocal (two segments) versus simple (one segment) metathesis, interversion (contigu-
ous segments) versus metathesis (non-contiguous segments), transposition (local) versus displacement
(long-distance), etc. In this chapter the following three categories will be distinguished: 1) local
metathesis, in which two adjacent segments switch positions, 2) long-distance metathesis, in which
two segments switch positions around overt intervening material, and 3) displacement, in which a
single segment or feature is relocated in the string.

63

Chomsky and Halle note that this analysis of Kasem metathesis uses ‘powerful trans-

formational machinery of the sort that is used in the syntax. This increase in the power

of the formal devices of phonology did not seem fully justified since it was made only

to handle a marginal type of phenomenon’ (427). Though their proposed rule does not

actually have the level of power needed for syntax (it is regular, and in fact subsequen-

tial), their remark again reflects the view that metathesis is somehow exceptional.2

OT analyses of metathesis, on the other hand, rescued it from the fringes, since

under the assumptions of Correspondence Theory (McCarthy and Prince, 1995, 1999)

metathesis is neither exceptional nor unexpected. However, the actual treatment of

metathesis in a constraint-based grammar can still render it exceptional (albeit indi-

rectly) when the constraints that account for it increase the formal complexity of the

grammar. OT analyses of metathesis introduced the family of Linearity constraints

(McCarthy and Prince, 1999; McCarthy, 2000b; Hume, 1995, 1998, 2001); if a certain

segment is disfavored in a certain context by a markedness constraint, then segment

reordering will be preferred in a language that ranks faithfulness to linear order below

that markedness constraint. Violations of Linearity are based on the number of

precedence relations in the input string, which means the number of possible violations

increases quadratically with the length of the string (Heinz, 2005b). Such constraints

increase the grammar’s formal complexity (Frank and Satta, 1998), and this added

power does not even guarantee the correct predictions. Using a counterexample from

Kwara’ae, Heinz (2005b) shows that the gradient nature of Linearity wrongly pre-

dicts that the most local reordering will be universally preferred.

This chapter will instead provide computational evidence for the unexception-

ality of metathesis by categorizing it as SL along with local substitution, deletion, and

insertion. In doing so it will assume the alternative view of metathesis as not resulting

from transposition but rather from a copying process followed by deletion of the origi-

nal segment the copy was made from (Blevins and Garrett, 1998, 2004; Heinz, 2005a;

2 Though in a different chapter they (somewhat contradictorily) refer to metathesis as ‘a perfectly
common phonological process’ (361).

64

Chandlee and Heinz, 2012). Since copying is a particular type of insertion, metathesis

patterns can be decomposed into the more ‘elementary’ operations of insertion and

deletion. Such a view lessens the unwarranted exceptionality of metathesis. In addi-

tion, the decomposition analysis allows for a unified treatment of local metathesis and

long-distance displacement, for which a transposition analysis is less intuitive. The

next section will detail and motivate this alternative view of metathesis as the result

of copying and deletion. §§4.2 and 4.3 will then show that local and long-distance

metathesis, respectively, are SL processes. §4.4 will discuss examples of both SL and

(diachronic) non-SL displacement, and then §4.5 will summarize the findings presented

in this chapter.

4.1 Decomposing metathesis

Consider the classic case of CV-metathesis in the Rotuman phase alternation.

All content words in Rotuman have a ‘complete’ form and an ‘incomplete’ form; the

distinction more or less corresponds to definite versus indefinite. In many cases, the

incomplete form is derived from the complete form via word-final consonant-vowel

metathesis (Churchward, 1940), as exemplified in (3):3

(3) Rotuman

a. hosa 7→ hoas ‘flower’

b. hula 7→ hual ‘moon’

c. tiko 7→ tiok ‘flesh’

A single, transposition rule for this process is shown in (4), but the same surface form

is derived with the two strictly ordered rules in (5).

(4) C1V2 → V2C1 / V1 #

(5) a. Copy: ∅ → V2 / V1 CV2#

3 The incomplete phase can also be derived via deletion, umlaut, or diphthongization. See McCarthy
(2000b) and references therein for accounts of what conditions the choice of process.

65

b. Delete: V2 → ∅ / V1V2C #

Rule (5-a) copies the vowel that ‘moves’ and rule (5-b) deletes the original vowel the

copy was made from. In a similar proposal, Blevins and Garrett (1998) analyze the

Rotuman pattern as anticipatory co-articulation of V2, which perseverates over the

consonant to compensate for its reduction when V1 is stressed. The phonetic motivation

for their account supports the assumption in (5) that it is the vowel that is copied,

though the same surface form could be derived by copying the consonant (e.g., V1C1V2

7→ V1C1V2C1 7→ V1V2C1).

Another example that involves vowel copying is found in Kwara’ae, which has

a very similar metathesis pattern as Rotuman, as shown in (6-a) and (6-b) below.

As discussed by Heinz (2005a), the non-metathesized form is used as a citation form

(for careful speech), while the metathesized form is the normal form used in typical

discourse. In addition, Kwara’ae speakers optionally exhibit the form in (6-c) in certain

focused positions.

(6) Kwara’ae

a. Citation: kulu ‘heavy’

b. Normal: kuul

c. Focused: kuulu

Under the copy-delete view of metathesis, this focused form is actually the intermediate

stage in which the copying, but not yet the deletion, has taken place. On the other

hand, if kulu is mapped directly to kuul via a transposition rule like (4), then the

derivational connection between the normal and focused forms is lost (i.e., they must

be the result of completely different rules applying to the citation form). In addition,

the fact that the focused form is kuulu and not *kulul indicates that the vowel and

not the consonant is copied.

These examples do not, however, lead to the conclusion that it is always the

vowel that copies. Harris and Halle (2005), for example, propose a copying analysis of

66

the Spanish data in (7) (dashes indicate clitic boundaries).

(7) Spanish

a. véndan-lo ‘Sell-PL it.’

b. véndan-lon

c. vénda-lon

In (7), the verbal plural suffix -n is optionally copied onto the following clitic, as in

(7-b), or else metathesizes to that location, as in (7-c). That this suffix originates on

the verb is evidenced by the fact that the plural on clitics is usually marked with -s.

Harris and Halle (2005) propose a framework in which both (7-b) and (7-c) are the

result of reduplication, but it is also possible to view (7-b) as an intermediate stage of

the metathesis in (7-c), as was done for Kwara’ae.

Lastly, in Zoque the sequence jt metathesizes to tj word-initially, but surfaces

as jtj everywhere else (Wonderly, 1951). These facts can be unified if the word-initial

cluster is subject to both copying and deletion, but deletion does not apply to non-

initial clusters.

A couple of languages also provide diachronic evidence for the intermediate form.

Kiparsky (1976) attributes to Grammont (1948), Schwyzer (1953), Lejeune (1955), and

Diver (1958) the view that diachronic Greek sonorant-glide metathesis (e.g., *phanjo: >

phajno: > pháıno:, ‘show’) proceeded through a stage with two palatalized sonorants:

nj > njnj > jn). And Hock (1985) proposes an intermediate diachronic stage of

metathesis that results from Latin glide epenthesis: sapiat > *sapya > *saypya >

saypa > Spanish, sepa, ‘would know’.

In addition to languages with evidence of intermediate metathesis forms, lan-

guages that demonstrate independent use of the component copy and deletion processes

also support the decomposition analysis. An example is found in the Ethiopian lan-

guage Arbore. Hayward (1984) reports a metathesis process in which the second part

of a geminate vowel switches positions with a following laryngeal that is itself followed

67

by a non-laryngeal consonant. The rule for this process is shown in (8). For readability,

let H represent the set of [-cons, -son] sounds and C represent the set of [+cons] sounds.

Examples of the process are shown in (9) - note that the laryngeal also becomes voiced

intervocalically.

(8) V1H → HV1 / V1 C

(9) Arbore

a. /zeehs+e/ 7→ [zeHese] ‘caused to melt’

b. /sooh+ne/ 7→ [soHone] ‘twisted into rope’

c. /keeP+t+e/ 7→ [kePete] ‘planted’

The same language has an epenthesis process in which a vowel is copied between a

sequence of a vowel plus a laryngeal and a non-laryngeal, as in (10). Examples are

shown in (11).

(10) ∅ → V1 / V1H C

(11) a. /gileP+n+e/ 7→ [gilePene] ‘begged’

b. /burah+t+e/ 7→ [buraHate] ‘scattered’

c. /seP+t+aw/ 7→ [sePetaw] ‘my cow’

d. /leh+t+atto/ 7→ [leHetatto] ‘that ewe’

Thus Arbore has two different processes that both generate a V1HV1C sequence. Under

the copy-delete view of metathesis, the examples in (9) are the result of copying followed

by deletion (i.e., V1V1HC 7→ V1V1HV1C 7→ V1HV1C), while the examples in (11) are

the result of just copying (i.e., V1HC 7→ V1HV1C).

As another example, Najdi Arabic has a metathesis process by which a C1aC2C3at

template surfaces as C1C2aC3at when C2 is a guttural (i.e., uvular, pharyngeal, or la-

ryngeal) consonant (al Mozainy, 1981; al Mozainy et al., 1985), as shown in (12-a).

The same dialect also exhibits an independent process that deletes /a/ in the context

68

C CaC (Abboud, 1979), as in (12-b).

(12) Najdi Arabic

a. naQéat 7→ nQaéat ‘ewe’

b. /sakan-/ ‘dwell’ skanat ‘she dwelled’

In another dialect, Negev Bedouin Arabic, when a prefix ending in /a/ is attached to

a CC-initial template, /a/-epenthesis breaks up the two consonants if the first one is

guttural (Blanc, 1970). An example is shown in (13).

(13) Negev Bedouin Arabic

ja+èlam 7→ jaèalam ‘he dreams’

Blevins and Garrett (1998) propose that the Najdi Arabic deletion process (CaCaC 7→

CCaC) and the Negev Bedouin epenthesis (aQC 7→ aQaC) existed before the dialectal

split, and that both dialects have the epenthesis. The difference is that Najdi employs

the subsequent deletion, with a result that looks like metathesis (aQC 7→ aQaC 7→ QaC).

Still more evidence comes from analyses of dialect variation that are simplified

by the assumption of separate copy and deletion processes. For example, Mills and

Grima (1980) propose that what appears to be C1VC2 7→ C1C2V metathesis in Leti and

Moa is in fact the result of ordered epenthesis and syncope rules. Sample derivations

are shown in (14). Note that the epenthesis process is in fact copying, since the inserted

vowel matches the stem vowel.

(14) Leti and Moa

/ulit/ /arak/ /irun/

Epenthesis uliti araka irunu

Syncope ulti arka irnu

‘skin’ ‘liquor’ ‘nose’

69

They extend this analysis to words that end in VC by positing an abstract underlying

[+cons] segment, as in the Leti derivations in (15). This abstract segment (represented

by X) is also deleted, which triggers compensatory lengthening of the preceding vowel.

(15) Leti

/tuXin/ /weXin/

Epenthesis tuXini weXini

Syncope tuXni weXni

X-Deletion tu:ni we:ni

‘coco shell’ ‘pretty’

Their evidence for this analysis is that it accounts for a difference between Leti and

Moa with a simple reordering of these component rules. In Moa, from the same UR the

correct SR is derived by ordering X-deletion before syncope. This bleeds the application

of syncope, which only targets vowels between consonants.

(16) Moa

/tuXin/ /weXin/

Epenthesis tuXini weXini

X-Deletion tuini weini

Syncope – –

‘coco shell’ ‘pretty’

Thus a surface difference between the two languages can be explained with simple

rule ordering, but only if the metathesis effect is the result of two separate processes.

Another difference between Leti and Moa that can be explained with this assumption

is what happens to nouns when the third person possessive morpheme is attached.

The morpheme is -n in Leti and -ni in Moa. As shown in (17), the morpheme triggers

epenthesis and syncope in Leti but only syncope in Moa (shown in (18)).

(17) Leti

70

/tutu+n/ /ati+n/ /mata+n/

Epenthesis tutunu atini matana

Syncope tutnu atni matna

‘its point’ ‘his heart’ ‘his eye’

(18) Moa

/tutu+ni/ /ati+ni/ /mata+ni/

Syncope tutni atni matni

‘its point’ ‘his heart’ ‘his eye’

This analysis reduces the observed differences between the two languages to a differ-

ence in the morpheme - the presence of a vowel in the Moa suffix makes epenthesis

unnecessary. Without the independence of the epenthesis and deletion processes, the

explanation would have to be that Leti has metathesis in all cases and Moa has metathe-

sis in some cases and syncope in others. The copy-delete analysis of metathesis thus

unifies the observed facts for two languages that are expected to behave similarly.4

Also in the domain of language variation, Blevins and Garrett (1998) suggest

that the difference between Polish and Ukrainian exemplified in (19) is explained if

Polish developed copy plus delete but Ukrainian developed only the copying.

(19)
Proto-Slavic Polish Ukrainian

*melko mleko molokó ‘milk’

Other proposals have been put forth that differ from the copy-delete analysis

but still treat metathesis effects not as movement but as the result of more elementary

operations. Demers (1974), for example, proposes that both of the Lummi forms in

(20) share the underlying form /c’@Ps@+t+N+s/. The different surface forms are not

4 van der Hulst and van Engelenhoven (1995) also presents a non-metathesis account for Leti grounded
in Government Phonology (Kaye et al., 1985; Charette, 1988, 1990; Harris, 1990), in which the variable
position of a vowel is due to delinking/reassociation to a syllable template. A Correspondence Theory
account is presented in the study of Hume (1998) mentioned above.

71

the result of metathesis, but unstressed vowel deletion.5

(20) Lummi

a. c’@stNs ‘he’s getting hit’

b. c’s@tNs ‘someone hit him’

And McCarthy (1989), under an assumption of planar segregation of vowels and conso-

nants, proposes that CV metathesis effects are the result of the vowel spreading across

a consonant. Hume (1991) argues against this analysis based on incorrect predictions

it makes for Maltese Arabic6, but still proposes an autosegmental, lexical phonology

account of the data in (21) in which metathesis is the result of deletion and epenthesis.7

(21) Maltese

a. korob ‘to groan (perfective)’

b. yo-korb-u ‘they groan (imperfective)’

In (21), a syncope rule that deletes unstressed vowels in non-final open syllables applies

to yV-korob (V is an unassociated vowel slot on the skeletal tier) to dervie yV-krob,

but this only deletes the V slot associated to the vowel melody [o]. The vowel melody

itself is left floating and reassociates to the prefix V slot, to derive yo-krob. On the next

cycle syncope applies again to give yo-krb-u, which again leaves the [o] melody floating.

In the post-lexical cycle, another V slot is epenthesized before the unsyllabified medial

sononant, to give yo-kVrb-u. The floating [o] associates to this new V slot to give

yo-korb-u. Thus, once again, what looks like metathesis is analyzed as the result of

independently-motivated rules of deletion and insertion.

5 The underlying P is deleted by a separate process.

6 Specifically, Hume (1991) shows based on an interaction of metathesis and guttural assimilation that
the metathesis must take place after plane conflation, not before as assumed by McCarthy (1989).

7 See also Besnier (1987) for a similar autosegmental account of Rotuman metathesis.

72

Given the collective evidence in support of the decomposition view of metathesis,

the next section will turn to the computational analysis and show how the component

copying and deletion processes can be modeled with SL functions.

4.2 Local Metathesis

Consider again the example of Rotuman metathesis and the proposed rule for

the copying component, repeated in (22) and (23), respectively.

(22) Rotuman

a. hosa 7→ hoas ‘flower’

b. hula 7→ hual ‘moon’

c. tiko 7→ tiok ‘flesh’

(23) ∅ → V2 / V1 CV2#

This rule is similar to the insertion rule considered in the previous chapter, though the

difference between copying and general insertion needs to be acknowledged. Whereas

general insertion was handled by simply pairing the inserted string with ∅ to fill out

the xi → yi portion of the rule, copying requires matching yi to some portion of u or

v. In (23), this is indicated with indexing that identifies the inserted vowel as being

identical to the word-final vowel. This requirement that distinguishes copying from

general insertion is formalized in (24).

(24) ∅ → y / u v, where u = u′yu′′ ∨ v = v′yv′′

The condition on (24) requires the inserted string to be a substring of either the left or

right context of the insertion point. A rule of this form can still be submitted to the

construction procedure for a Strictly Local transducer. Figure 4.1 shows TSL for the

Rotuman copy process. Note that this FST is minimized, for ease of reading.8

8 The construction procedure for SL FSTs presented in the previous chapter does not create the
minimal transducer. An alternative construction that does produce the minimal one is included in

73

!,!

C
a,!

a

a

aC,C

C:!

C:CC
aCa,aCaa:!

a:Caa

C:Ca

Figure 4.1: TSL for Rotuman copying, k = 4, Σ = {C, a}

The FST in Figure 4.1 was constructed with the alphabet Σ = {C, a}, with C repre-

senting any consonant and /a/ being the only vowel. Though any vowel can serve as

the left context of the copying, the epenthesized vowel must match the one in the right

context (i.e., VCa is rewritten as VaCa for any V and any C). And this is true for all

vowels, not just /a/ (i.e., VCi 7→ ViCi, VCu 7→ VuCu, etc.). Thus Figure 4.1 actually

presents a subgraph of the complete FST for Rotuman copying, as the complete graph

includes separate states and transitions for all possible C, V, and V1 combinations.

Since this is a word-final process, the copied vowel is inserted via the final output

function. For example, the input form aCa will conclude in state aCa, at which point

the current output will be just a. The final output function will append aCa to

this output, for the correct mapping of aCa 7→ aaCa. The second step to achieve

metathesis is to delete the original vowel that the copy matches. For Rotuman, this

process corresponds to the rule in (25).

(25) V2 → ∅ / V1V2C #

TSL for this rule is shown in Figure 4.2, again minimized and again with an abbreviated

alphabet of {C, a}.

the appendix.

74

!,!

C
a,!a

C
aa,!a

a

aaC,!

C

C aaCa,!a:!

C:aC

a:aa

Figure 4.2: TSL for Rotuman deletion, k = 5, Σ = {C, a}

Figure 4.1 maps aCa# to aaCa# and Figure 4.2 maps aaCa# to aaC#. Their com-

bined effect is to map aCa# to aaC#, which corresponds to word-final CV metathesis.

Examples like in Rotuman and Kwara’ae have traditionally been categorized as

local metathesis, because the segments that change position are adjacent to one an-

other. Additional examples of local metathesis are found synchronically in Chawchila

(Newman, 1944), Yuman languages (Langdon, 1976), Western Munster Irish (Mal-

one, 1971), Munyo and Rendille (Heine, 1980), Lithuanian (Seo and Hume, 2001), Kui

(Winfield, 1928), DEg (Crouch, 1994), Bisayan dialects (Zorc, 1977), Kon. ekor Gad-

aba (Bhaskararao, 1980), Helong and Dawanese (Steinhauer, 1996), Korean, Tagalog

(Ultan, 1978), and Kurmanji (Kahn, 1976), and diachronically in West Somerset En-

glish (Elworthy, 1875), the South-Central group of Dravidian languages (Krishnamurti,

1955, 1978; Subrahmanyam, 1983), Mandaic languages (Malone, 1971, 1985), and At-

tic and Ionic Greek (Ultan, 1978). See Blevins and Garrett (1998), Hume (2000), and

Buckley (2011) for additional examples.

But metathesis in general is not restricted to adjacent segments. Another cat-

egory, often called long-distance metathesis, involves non-adjacent segments surfacing

in each other’s positions. The next section turns to these long-distance patterns.

75

4.3 Long-Distance Metathesis

This section presents examples of metathesis around intervening segments and

shows that in fact such processes are also SL provided that the number of segments

between the segments that metathesize is bounded. This condition appears to be met

in all synchronic cases.9 An example from Cuzco Quechua (Davidson, 1977) is shown

in (26). In this process, a glide and a liquid metathesize around an intervening vowel.

(26) Cuzco Quechua

yuraq 7→ ruyaq ‘white’

Under the copy-delete analysis, this metathesis mapping is the result of the four pro-

cesses shown in (27).

(27) a. ∅ → r / Vr

b. r → ∅ / rV

c. ∅ → y / yrV

d. y → ∅ / rVy

Note that the form of these rules assumes they will be applied in the order listed. In

particular, the context of the y insertion (27-c) and deletion (27-d) assumes that the r

insertion and deletion has already taken place. It is true, however, that the same final

result could be obtained if the two y rules were applied before the two r rules (in which

case the y would be included in the context of the r rules). The lack of independent

evidence to determine which of these two orderings is correct favors the formulation of

the rules shown in (28).

9 Mielke and Hume (2001) actually argue that all synchronic metathesis is local, and long-distance
cases like the ones presented in this section tend to be non-regular or are otherwise amenable to a non-
movement analysis. Since, as will be shown, synchronic long-distance metathesis is still SL, whether
or not these processes should be considered metathesis is tangential to the main point. However, if
Mielke and Hume are correct, the evidence is strong that synchronic phonological movement is very
restricted.

76

(28) a. ∅ → r / (y)Vr

b. r → ∅ / r(y)V

c. ∅ → y / y(r)V

d. y → ∅ / (r)Vy

With the rules in (28), many possible orderings will result in the correct yV r 7→ rV y

mapping (i.e., any ordering so long as (28-a) precedes (28-b) and (28-c) precedes

(28-d)). And just as in Rotuman, each of these rules can be modeled with a SL FST.

Thus we have no computational reason to distinguish cases of local and long-distance

metathesis: both are SL. What is crucial to the Cuzco Quechua metathesis being SL,

however, is that the amount of material that intervenes between the two segments in-

volved in the metathesis is bounded. In this case, the intervening material is a single

vowel, so it is bounded by length 1. This bound allows us to identify the k-value of

the SL function, which for the rules in (28), is either 3 or 4. Additional examples of

SL metathesis with intervening segments are found in Gashowu (Newman, 1944), Yu-

man languages (Langdon, 1976), Madagascan dialects, Gayo, Agde French, Caribbean

French Creole, Algarve Portuguese (Ultan, 1978), Salishan languages (Noonan, 1997),

and Hebrew (Horowitz, 1960). Again see Hume (2000) for additional examples.

Are all long-distance metathesis patterns SL? A non-SL version of long-distance

metathesis would be a process like the one in Cuzco Quechua in which there is no

upper bound on the amount of material that intervenes between the two segments that

metathesize. Reviews of the typology of metathesis (Ultan, 1978; Blevins and Garrett,

1998, 2004; Hume, 2000, 2001; Buckley, 2011; Chandlee et al., 2012) suggest that such

patterns do not occur synchronically. Possible diachronic cases include Ilocano, Span-

ish, and Breton. In the Tagalog > Ilocano data in (29) and (30) (from Anttila (1989)),

the segments /t/ and /s/ appear to metathesize regardless of how many segments

intervene.

(29) Tagalog > Ilocano

77

a. taNis > saNit ‘weep’

b. tubus > subbot ‘redeem’

c. tigis > sigit ‘decant’

d. tamis > samqit ‘sweet’

(30) a. gatos ‘trillion’ > gasut ‘hundred’

b. tastas > satsat ‘rip’

Another, often-cited example is the r...l > l...r change in Spanish (Penny, 1991) and

Breton (Ultan, 1978):

(31) Old Spanish > Spanish

a. parabla > palabra ‘word’

b. periglo > peligro ‘danger’

c. miraglo > milagro ‘miracle’

(32) Leonese > Breton

a. mervel > melver ‘to die’

b. teûrel > teûler ‘to throw’

c. brélim > blérim ‘grindstone’

Ultan (1978) suggests that this pattern is influenced by an independently-motivated

process of regressive dissimilation, whereby r...r > l...r, which is extended by analogy

to words with r...l. Similarly, Wanner (1989) proposes, at least in the case of Spanish,

that the /l/ was first changed to /r/ to create a preferred stop-/r/ onset cluster, and

then the other /r/ was changed to /l/ due to liquid dissimilation. Regardless of the

correct account of these long-distance metathesis cases, as diachronic processes they

do not disprove the claim that synchronic metathesis is SL.

There is, however, another process called displacement that is often discussed

along with metathesis but differs in that only a single segment (or feature or secondary

articulation) moves from its original position. The movement in these displacement

78

processes appears to be less restricted than in metathesis. The next section will discuss

the extent to which these processes can be categorized as SL.

4.4 Displacement

Among displacement patterns there is a prevalence of liquid movement, and

a careful examination of how these processes vary reveals the crucial distinction be-

tween SL and non-SL displacement. First, Lipski (1990) describes an /r/-displacement

phenomenon in many Spanish dialects, as exemplified in (33).

(33) Spanish

a. abarcar > abracar ‘to include’

b. cabestro > cabresto ‘halter’

c. cobertor > corbetor ‘bedspread’

The leftward movement of /r/ in these examples is not as unbounded as it appears at

first glance. The movement in (33-a) is in fact identical to local metathesis, as the /r/

just shifts to the other side of the preceding vowel. It has already been established

that such a process is SL. In (33-b) and (33-c), the /r/ moves farther, but still not

unboundedly far; it moves to the corresponding position in the adjacent syllable (i.e.,

from onset to onset or coda to coda). Since languages restrict the amount of material

that can appear in a syllable, there is in fact a bound on how many segments intervene

between the /r/’s original and final positions. Thus (33-b) and (33-c) are the result of

the processes represented in (34) and (35), respectively.

(34) Onset-to-onset

a. Copy: ∅ → r / C V(C)Cr

b. Delete: r → ∅ / CrV(C)C

(35) Coda-to-coda

a. Copy: ∅ → r / V CVr

79

b. Delete: r → ∅ / VrCV

There are also cases of rightward movement, as in the examples in (36).

(36) Spanish

a. albarda > albadra ‘saddle’

b. fraude > faudre ‘fraud’

Again this movement is either local, as in (36-a), or targets the onset of the adjacent

syllable, as in (36-b). A corresponding pair of rules like those in (34) could then

describe this movement. Lipski notes that rightward movement is less common, and

indeed he provides no cases of rightward coda-to-coda movement.

As was shown in the discussion of local and long-distance metathesis, rules of

the form in (34) and (35) can be modeled with SL functions. Lipski (1990) provides

a large number of examples of this phenomenon, and all of them are either local (like

(33-a) and (36-a)) or target the adjacent syllable position (like (33-b), (33-c), and

(36-b)).10 Indeed, Lipski notes that, ‘a maximum of two syllables is ever involved in

/r/-transposition’ (96). Spanish /r/-displacement thus serves as a useful example of

a process that at first glance may appear less constrained than the cases of local and

long-distance metathesis detailed above, but in fact is still Strictly Local.

A nearly identical pattern is found in Luchonnais Gascon (Grammont, 1906;

Dumenil, 1987). Examples (from Dumenil (1987)) are presented below.

(37) Latin > Gascon

a. capra > craba ‘goat’

b. cambra > cramba ‘bedroom’

c. tendru > trendo ‘tender’

10 There is a single exception (out of over 100 examples) in Tribucio > Tiburcio. But perhaps this
is actually the result of two movements, Tribucio > Tibrucio > Tiburcio. Regardless, the movement
still targets the adjacent syllable and so a SL function could model it.

80

Dumenil (1987) suggests that the displacement of /r/ could be the result of two local

movements, such that the change in (37-a) was actually capra > carpa > crapa. The

evidence for this analysis is a few examples for which the intermediate form (e.g.,

carpa) is in free variation with the final form (e.g., crapa). But as this free variation

is only evident in a few cases, Dumenil instead generalizes the process as the liquid

moving to the onset of the preceding syllable. Grammont (1906) and Blevins and

Garrett (1998) likewise describe the Bagnéres-de-Luchon pattern exemplified in (38)

as the liquid moving one syllable to the left.

(38) Latin > Bagnéres-de-Luchon

a. kámera > *kámbra > crambo ‘room, chamber’

b. kápra > crabo ‘goat’

c. *eskombrá:re > escrumba ‘to sweep’

Still another case of liquid displacement is attested diachronically in Italian

(Vennemann, 1988), shown in (39), and as free variation, shown in (40) (Vennemann,

1996).

(39) Old Italian > Italian

a. fabula > fabla11 > flaba > fiaba ‘fairy tale’

b. fundula > fundla > flunda > fionda ‘catapult’

(40) a. Tuscan: vetro/vreto ‘glass’

b. Calabria: crapestu/capestro ‘rope’ frinesta/finestra ‘window’

Vennemann schematizes the pattern as #CVCLV > #CLVCV and #CVCVCLV >

#CLVCVCV. The first case (as in (39) and (40-a)) is again movement to an adjacent

syllable onset. The second case skips over a syllable (as in (40-b)) to the first syllable

11 Vennemann posits this form (and fundla) to account for the loss of the vowel.

81

onset.12 The clearest generalization is that the movement always targets the first

syllable onset. The same pattern is reported by (Rohlfs, 1950) for a South Italian

dialect of Greek. Examples are shown in (41).

(41) Classical > South Italian Greek

a. kopros > kropo ‘dung’

b. gambros > grambo ‘son-in-law’

c. kapistrion > krapisti ‘halter’

Again, examples (41-a) and (41-b) are consistent with the adjacent-syllable analysis,

while (41-c) instead suggests the movement targets the first syllable.13 The question

of interest for the SL status of this pattern is what happens in a word with four or

more syllables. If the movement only occurs in words of two or three syllables, the

movement is bounded and the process can be described with a SL function. But if, no

matter how far into the word the /r/ originates, the movement occurs and targets the

first syllable, then this pattern is not SL. To see why, consider the copy and deletion

rules for the Greek pattern, shown in (42).

(42) a. Copy: ∅ → r / #C xCr

b. Delete: r → ∅ / #CrxC

In these rules, x represents a string of unbounded length that intervenes between the

original location of the copy and its copied location (the initial onset). Recall the

defining property of SL functions: the same suffix of length k − 1 implies the same

12 One could posit that the movement in finestra did target the adjacent syllable, but since nr is
not a good onset cluster, it continued on to the initial onset: finestra > finresta > frinesta. But this
doesn’t explain the example of capestro, since presumably pr is a valid cluster. It is interesting to
note that Vennemann cites the following pair for Old Italian: capestro > capresto. Perhaps, then, the
actual forms for Calabria are capestro and capresto > crapesto, in which case the adjacent syllable
analysis can be maintained. Though see Coffman (2013).

13 Penny (1991) also gives two examples of what looks like an opposite process for Latin > Spanish,
in which /r/ moves to the onset of the last syllable: praesepe > pesebre, crepare > quebrar. With
just two examples, however, it is unclear what to make of these cases.

82

tails. This property can be used to show that the processes in (42) are not SL for

any k. Using the deletion process to demonstrate, we consider two input strings CrxC

and CxC, where |x| = k − 2 for some k ∈ N. Since both strings end in xC, both

strings have the same suffix of length k−1.14 But, they have different tails. If CrxC is

extended by r, the output string will be extended by λ, since the r is deleted according

to (42-b). But if CxC is extended by r, the output string will be extended by r as well,

since this r is not a target for deletion. Thus (r, λ) is in the tails of CrxC while (r, r)

is in the tails of CxC. Since the choice of k was arbitrary, it follows that no matter

what value is assigned to k, the two strings will have the same suffix of length k − 1

but different tails. This means the property never holds, and so the process is not SL.

A similar argument would show that the copy process is also not SL.

Both processes are, however, subsequential. More specifically, the copy process

is right subsequential, while the deletion process is left subsequential. Consider the

SFST in Figure 4.3.

!,!

C:C
V:V

r,!r:r
V:V

r:r

rC,!C:C

V:V
r:r

rCC,rC

C:!
V:CV
r:Cr

C:C

Figure 4.3: SFST for Greek copy process, Σ = {C, r, V}

Recall that a mapping is right subsequential if the mapping that results from processing

the input string right-to-left is left subsequential. Consider the input string CxCr,

which is subject to the Greek copy process, (42-a). Processing this string right-to-left

is equivalent to processing the reversed string left-to-right. As demonstrated in (43),

14 Here we are applying the definition for ISL functions, though a parallel argument proves the
processes are also not OSL.

83

using this reversed string as input to the SFST in Figure 4.3 gives the output rCxrC.

Since the input was revered, this output must also be reversed.

(43)

1 Input string: CxCr

2 Reversed input string: rCxC

3 Output for reversed input string: rCxrC

4 Reversed output string: CrxCr

Since the mapping from line 2 to 3 (rCxC 7→ rCxrC) is left subsequential (it is

described by the SFST in Figure 4.3), the mapping from line 1 to 4 (CxCr 7→ CrxCr,

which corresponds to (42-a)) is right subsequential.

Note that the SFST in Figure 4.3 is not a Strictly Local one, because the

transitions do not always lead to the state that corresponds to the most recent input

or output. In particular, the x string in the rule’s context is processed between the

rC and rCC states. It is necessary for the SFST to remain in these two states in

order to ‘remember’ the fact that a prior rC substring has been found (and therefore

another r must be inserted before the final consonant).15 The SFST moves to state

rCC when it reads a C, just in case this C is the final one. If it is in fact the final one,

the copied r is inserted via the final output function, which appends rC to the output.

If more material follows (another r or a V), the SFST returns to state rC, indicating

that this was not the final C, but still remembering that the trigger for r-copying (rC)

was previously found. Moving out of these states to other states that correspond to

the most recent input or output (e.g., states for CrV or V V r), which is required by

SL transducers, would force the FST to ‘forget’ that it has already seen this rC. This

is the very nature of SL transduction - memory is limited to a fixed bound of previous

segments. General memory such as ‘rC was seen at some arbitrary previous point’ is

not possible.

15 Remember this SFST will process reversed strings, so by ‘final consonant’ is actually meant ‘initial
onset’.

84

Moving on to the deletion component of Greek /r/-displacement, consider the

SFST in Figure 4.4, which describes the mapping of (42-b). This process is left sub-

sequential, which means it can be described with the SFST without having to reverse

the strings. The SFST first determines if the input string begins with Cr, since only

these strings are subject to the deletion process. If the string does not begin with Cr,

the SFST proceeds to state ? and outputs all remaining input unchanged. Otherwise

it looks for the next Cr cluster, deleting the r once it is located. Thus an input string

like CrxCr will be mapped to CrxC. Combing the mappings of Figures 4.3 and 4.4

gives CxCr 7→ CrxCr 7→ CrxC, which correctly models Greek /r/-displacement.

!,!

?,!

V:V

r:r

C,!

C:C

C:C
V:V
r:r

C:C
V:V

Cr,!

r:r

V:V
r:r

CrC,!C:C

r:!

V:V

C:C

Figure 4.4: SFST for Greek deletion process, Σ = {C, r, V}

Thinking about it in a different way, in the case of the deletion SFST, the first

r serves as a cue that another r will follow that needs to be deleted. So the SFST must

locate this second r, but it does not need to hold on to any material as it does so. As a

result, the unboundedness of the x string is not a problem. In the case of copying, the

situation is the opposite: an r may or may not need to be epenthesized, but this time

the position of the epenthesized r precedes the trigger of that epenthesis, and the two

85

are separated by the unbounded x. Thus the SFST would have to hold onto all of the

material in x until it locates the trigger r, which is why the unbounded length of x is

a problem. Reversing the string solves this problem, because once again the original r

will proceed the location of the copy.

More generally, Chandlee and Heinz (2012) call this type of copying ‘pre-pivot’

copying, since the copy precedes the original. They show that such a process is right

subsequential if the amount of material being copied is bounded and the left context

of the copy’s location is bounded. These conditions are met by the Greek copying,

since only a single segment is copied and it is placed in the initial onset, making the

left context the bounded string #C. For the copying to be left subsequential, three

conditions must be met: 1) the string between the original and copy is bounded, 2)

the string being copied is bounded, and 3) the right context of the original is bounded.

The alternative, ‘post-pivot’ copying, in which the copy follows the original, is left

subsequential if at least the second two conditions are met. Metathesis patterns that

involve pre-pivot copying have a corresponding process of post-pivot deletion, and

patterns with post-pivot copying have a corresponding pre-pivot deletion process. The

same conditions hold for the deletion processes to be either left or right subsequential.

Thus, as discussed above, the post-pivot Greek deletion is left subsequential because

only a single segment is being deleted and the right context of the segment to be deleted

is λ (i.e., bounded by 0).16

Liquid displacement has thus served as a useful case study that distinguishes SL

displacement in which the movement is bounded (e.g., Spanish, Gascon, and Bagnéres-

de-Luchon) and non-SL but subsequential patterns in which the movement is not (e.g.,

Italian and Greek, pending further data). Additional examples of displacement involv-

ing segments other than liquids can now be discussed with this distinction in mind.

Several languages demonstrate aspiration or /h/-displacement, such as Marathi

(Bloch, 1915; Turner, 1969; Ultan, 1978), as shown in (44).

16 This doesn’t mean there can’t be any material after the deleted segment. It means the right context
that identifies the segment to be deleted is empty.

86

(44) Marathi

a. kamhkh > khamhk ‘armpit’

b. omhthh > homhth

c. m@hisi > mh@is ‘buffalo’

d. p@tth@r > ph@tt@r ‘stone’

Ultan (1978) describes the process as movement from a word-final or word-medial posi-

tion to the word-initial sound, but Blevins and Garrett (2004) describe it as ‘aspiration

(or breathy voice) has regularly shifted to word-initial position from the onset of a sec-

ond syllable’ (14). This latter description is consistent with (44-c) and (44-d), but not

(44-a) or (44-b) in which the movement is from coda to onset of the same syllable. In

the absence of an example in which the aspiration involves distinct, non-adjacent syl-

lables, the pattern appears to be SL. The same is true for similar processes in Romani

((45)) and Greek ((46)).17

(45) Old Indo-Aryan > Romani (Matras, 2002)

a. duddha > *dhud > thud ‘milk’

b. bandh > phand ‘to shut’

(46) Greek (Lejeune, 1972; Steriade, 1982)

a. /pro+hódos/ → [phroódos] ‘gone’

b. /tétr+hippos/ → [téthrippos] ‘with four horses’

Next, Langdon (1976) and Hinton and Langdon (1976) report a process of

‘glottal-stop inversion’ in the La Huerta dialect of (Tipai) Diegueño, by which an

17 Aspiration movement has also been reported for Sanskrit, in which root-final aspiration appears
instead on the root-initial consonant (e.g., /budh/, ‘know’ is sometimes [bhud]). It was first reported
by Whitney (1896), who does not use the term metathesis, and indeed both Anderson (1974) and
Janda and Joseph (1989) argue against a movement-based account of this data.

87

initial glottal stop shifts to the position immediately before the verbal root.18

(47) La Huerta Diegueño

/Pnj+m+ka+náp/ 7→ [njmkaPnáp] ‘you told me’

Whether this process is SL or just subsequential depends on whether there is an upper

bound on the number of segments between the word-initial position and the root (in

(47) the root is nap). If there is such a bound, the process can be modeled with a SL

FST, provided the alphabet includes a symbol that identifies the first segment of the

root (e.g., a bracket, such that the input would be Pnymka[nap). If not, the process

is still subsequential: it could be modeled with left subsequential post-pivot copying

followed by right subsequential pre-pivot deletion.

Another example with displacement of glottalization as a secondary articulation

is found in the Salishan language Shuswap, in which ‘the glottalized resonant of a suffix

yields its glottalization to the final resonant of a stressed root’ (Kuipers (1974), p. 30).

Examples are presented in (48) and (49).

(48) Shuswap

a. kPwul ‘make’

b. -(e)wPs ‘road’

c. x-kPwúlP-ws-m ‘make a trail’

(49) a. kPwuy ‘long object lies’

b. -(e)wPs ‘road’

c. c-x-kPwúyP-ws ‘log lying across the road’

This process is SL if there is some bound on the number (and size) of the suffixes that

can attach to the root. Such a bound might generally be plausible, if we assume a root

can only have a single suffix for tense, aspect, plurality, and whatever other features

18 Hinton and Langdon (1976) actually identify the 2-subject/1-object prefix in La Huerta as nymP-,
but still propose the same movement of P to pre-root position.

88

are encoded morphologically in a given language. But as the examples above show,

Shuswap has ‘lexical suffixes’ which are used not for inflection but in a manner similar

to compounding. Establishing a limit on the number of additions to a compound is

less likely. Allowing again for a bracket or other symbol to mark the end of the root

(e.g., xkPwúl]wPsm), this process could be modeled with right subsequential pre-pivot

copying and left subsequential post-pivot deletion. Thus it is subsequential but not

SL.

The last example that will be discussed is a process of pharyngeal displace-

ment attested in the interior Salishan language Colville (Mattina, 1979), by which a

pharyngeal in the root is shifted to a stressed lexical suffix, as shown in (50).

(50) Colville

a. pQas ‘scared’ c-ps-QáyaP ‘senseless’

b. q’wQáy ‘black’ q’w@y-Qás ‘black man’

c. pQáw ‘he ran down’ pw-@n-cQát-@lx ‘they make noise running down’

The correct generalization of this process is not entirely clear. In the majority of

Mattina (1979)’s examples, the root pharyngeal becomes the onset of the next syllable

to the right, as in (50-a) and (50-b). If that is always the case, then this process is

formally identical to the rightward shift of /r/ in Spanish, which was already determined

to be SL. In (50-c), the pharyngeal crosses two morpheme boundaries, but still only

one syllable boundary if the loss of the root vowel results in resyllabification (i.e.,

pw@n.cQá.t@lx). Indeed Bessell (1998) suggests that the domain of this movement may

be the foot.

The crucial (missing) data point would be one in which the pharyngeal moves

across multiple syllable boundaries. In that case, the process could be derived with

post-pivot copying of the root pharyngeal into the onset position of a following stressed

syllable (assuming stress is marked), followed by pre-pivot deletion of the original. The

functions that model these copy and deletion processes would not be SL, but they

89

would be left and right subsequential, respectively. Alternatively, since the pharyngeal

movement is clearly related to stress, one could posit that stress in this language is

signaled with a pharyngeal quality on the vowel. Under that analysis, there would be

no movement at all, as the loss of the root pharyngeal would be simply a reflex of

the stress shift to the suffix. Indeed, the movement does not occur unless the stress is

shifted away from the root.19

Whether or not the La Huerta, Shuswap, and Colville displacement processes

are SL is of particular interest, since if not they are the only cases found to date of syn-

chronic non-SL movement (both metathesis and displacement). Under the assumption

that only synchronic processes have to be learned, the absence of non-SL synchronic

metathesis or displacement lends support to the proposed learning mechanism for SL

processes that will be presented in Chapter 6.

4.5 Summary

This chapter has shown that local and long-distance metathesis processes are

Strictly Local. In addition, a review of displacement processes suggests that synchronic

displacement is also SL, though further investigation is needed of the La Huerta,

Shuswap, and Colville processes. Non-SL displacement characterized by unbounded

movement is also attested, but appears to be limited to the diachronic domain. Table

4.1 summarizes the types of displacement discussed in this chapter.

These findings raise an interesting question: if unbounded movement is possible,

why is there still a prevalence for SL diachronic movement? If it turns out that the

few non-SL processes, both diachronic and synchronic, can be explained as the result

of (or due to interaction with) other factors, then a strong restriction for phonological

movement to be local can be established and serve as a further distinction between the

kinds of patterns observed in phonology versus syntax.

19 Blevins and Garrett (1998) also suggest a non-movement account of Colville pharyngeal displace-
ment as vowel-retracting harmony.

90

Table 4.1: Summary of Displacement Processes

Diachronic Synchronic
SL Spanish Greek aspiration

Gascon
Bagnéres-de-Luchon

Marathi
Romani

Non-SL Italian La Huerta?
Greek liquids Shuswap?

Colville?

As a final note, this chapter has presented both computational and empirical

evidence to support the view that metathesis is not an exceptional phonological process.

The empirical evidence suggests that both metathesis and displacement patterns can be

decomposed into copying, a particular type of insertion, and deletion. Such an analysis

was proposed as an alternative to a transposition analysis, in which the reordering of

segments is a single operation. The computational evidence is that these component

copy and deletion processes are SL just like the more common insertion and deletion

processes discussed in the previous chapter. It turns out, however, that the SL status of

metathesis does not depend on this decomposition. Rotuman metathesis, for example,

can also be modeled with a SL-4 substitution process. The SL FST in Figure 4.5

models the rule in (51).

(51) V1C1 → C1V1 / V #

Thus, analyzing local or long-distance metathesis as transposition instead of copying

followed by deletion does not require any additional formal power, since the pattern is

SL under both analyses. This is the kind of insight gained by directly modeling input-

output mappings, since as was mentioned at the beginning of this chapter, accounting

for metathesis in both SPE and OT required an increase in the formal complexity of

the grammar.

91

!,!

C,!

C:C

V,!

V:V

CC,!

C:C

CV,!

V:V

VC,C

VCV,VC

V:!

VCC,!

C:CC

CVC,C

C:CV

CVV,!

V:CVV

CCV,!

V:V

CCC,!

C:C

VVV,! V:V

VVC,C

C:!

C:!

V:V V:!

C:CC V:V

C:!

V:V

C:C

VV,!

V:V

C:!

C:!

V:V

V:!

C:CC

C:!

V:V

V:V

C:C

Figure 4.5: TSL for Rotuman metathesis, k = 4, Σ = {C, V}

92

It would be interesting to also seek additional experimental evidence for the

psychological reality of the decomposition of metathesis. Such evidence would also

speak to a larger question of interest, which is whether or not individual processes

have psychological reality independently of the larger grammar. Since the answer to

that question touches on one of the key distinctions between the SPE and OT models

of the phonological grammar, pursuing it could lead to strong implications beyond just

the correct account of metathesis patterns.

The decomposition analysis does, however, unify metathesis and displacement

in a clearer way than the transposition analysis. The intervening material between the

original and final positions of a displaced segment may be unbounded, and a transpo-

sition rule would have to include this unbounded material in the target and structural

change. For example, the Greek liquid displacement, as transposition, would have the

rule in (52), where again x is a string of segments of unknown length.

(52) CxCr → CrxC / #

Unlike the transposition rule in (51), the rule in (52) includes an unbounded amount

of material in the target and structural change. As mentioned at the beginning of this

chapter, the use of a multiple-segment target and structural change is what initially

distinguished metathesis from other processes and inspired alternative analyses that

avoided that expansion of the rule formalism. That in turn casts suspicion on an

analysis requiring targets and structural changes of unbounded length. One possibility

is that metathesis, as it has been defined in this chapter (i.e., both local and long-

distance) is transposition, while displacement is copying and deletion. But viewing

both metathesis and displacement as copy-delete has the advantage of unifying all

cases of phonological movement.

The next chapter turns to the modeling of processes outside of phonology proper,

in particular, the word formation processes of affixation and reduplication. It will

be shown that the analysis of copying presented in this chapter extends to partial

93

reduplication cases, again provided there is a bound on the amount of material copied

and the material that intervenes between the original and the copy.

94

Chapter 5

WORD FORMATION PROCESSES

The previous two chapters demonstrated the range of phonological processes

that can be classified as Strictly Local. This chapter turns to word formation processes

and demonstrates the extent to which they too are SL. In particular, the treatment

of metathesis as involving a component of copying suggests a natural connection to

reduplication patterns. Also like metathesis, reduplication has been accounted for

in a variety of ways that generally aim to simplify a seemingly complicated process.

Such analyses include, among others, attaching a reduplicative template to the CV-

skeleton (Marantz, 1982), loops over a representation of a word’s precedence relations

(Raimy, 1999, 2000), OT constraints requiring correspondence between the base and

the reduplicant (McCarthy and Prince, 1995), and an OT constraint Redup that

generally favors reduplication structures (Zuraw, 2002).

Given that morphological processes involve larger structural units than phono-

logical processes, it would not be surprising if they likewise involved greater computa-

tional complexity. But this chapter will show that both general affixation and many

types of partial reduplication are also SL. It is not the case, however, that all redupli-

cation is SL, nor even subsequential, and these exceptions will also be discussed.

5.1 Affixation

Both prefixation and suffixation can be handled straightforwardly by SL FSTs.

Figure 5.1 shows TSL for English un− prefixation (e.g., undo, untie, uncover, etc.).

This time the symbol ? represents any segment in the inventory. As soon as the FST

reads in a single symbol (i.e., as soon as it rules out the empty string input), it prefixes

95

un− to that symbol and then moves to a state where all remaining input is outputted

unchanged.

#,! ?,!?:ʌn?

?:?

Figure 5.1: TSL for English un-prefixation, k = 2, Σ = {?}

Likewise, suffixation is a simple matter of outputting the entire input unchanged

and then attaching the suffix via the final output function. The FST in Figure 5.2

models English −ing suffixation (e.g., singing, reading, watching, etc.).1

As for infixation, it too is SL provided there is a bound on the amount of material

between the edge of the string and the infix’s position. As an example, consider um-

infixation in Tagalog, which derives the finite form of a verb (Orgun and Sprouse, 1999;

Klein, 2005):

1 These FSTs for prefixation and suffixation are constructed with the assumption that the prefix/suffix
should not be appended to the empty string. Without that assumption, these operations could be
achieved with the single state machines shown below.

!,nʌ ?:? !,ɪ" ?:?

Note that the prefixation FST (on the left) is right subsequential. To prefix un− to an input string
like ‘do’ (/du/), that string is first reversed (ud), then outputted unchanged (by the ?:? loop), and
then the reversed prefix (n2) is appended to the end of the output. This entire output is then reversed:
(ud+ n2)r = 2ndu, ‘undo’.

96

!,! ?,ɪ"?:?

?:?

Figure 5.2: TSL for English ing-suffixation, k = 2, Σ = {?}

(1) Tagalog

sulat ‘write’ sumlat ‘to write’

gradwet ‘graduate’ grumadwet ‘to graduate’

mahal ‘expensive’ *mumahal

Figure 5.3 shows TSL for this infixation process. The alphabet for the FST is Σ =

{C, V, M}, where V is a vowel, M is a labial sonorant, and C is any other consonant.

#,!

#C,!

C:C
?,!

V:V
M:M

V:umV

M:M

#CC,!

C:C C:C
V:V
M:M

V:umV
M:M

C:C

Figure 5.3: TSL for Tagalog um-infixation, k = 4, Σ = {C, V, M}

97

The FST inserts the infix in the word-initial context #C V, as in sumlat, or

#CC V, as in grumadwet.2 The process is not permitted after an initial vowel or

labial sonorant, as shown with *mumahal. For ease of reading, in the FST the state ?

represents the point at which it has been determined whether or not the infixation is

licit. After this point, all input is outputted unchanged, as indicated by the loops at

this state.

Despite the fact that this Tagalog infixation process has contextual variability

and blocking, it is still SL because the position of the infix is a fixed distance from the

word boundary (in this case, either 1 or 2 segments). An infixation process without

such a fixed position would be one, for example, in which the infix is place in the exact

center of the string. The hypothesis that all affixation is SL predicts the non-existence

of such a process, a prediction shared by OT treatments of affixation that restrict the

position of the affix using edge alignment constraints (McCarthy and Prince, 1996).

Since, as this section has shown, general affixation is a Strictly Local process,

the SL status of reduplication processes will hinge on the nature of the copying. The

next section presents the kinds of copying involved in reduplication and determines

which can be classified as SL.

5.2 Reduplication

Reduplication has traditionally been divided into two categories, full (or total)

and partial. In partial reduplication, some portion (the reduplicant) is copied from the

word (the base). In full reduplication, the entire word is copied. These two categories

will be discussed in turn.

5.2.1 Partial reduplication

In partial reduplication patterns, some portion of a word is copied and then

affixed to it. For an example of reduplicative prefixation, we can again look to Tagalog

2 According to Orgun and Sprouse (1999) and Klein (2005), in the case of #CC V, the infix can
also variably appear in #C CV. Modeling free variation is beyond the scope of this thesis, but see
Chapter 7 for comments on this future direction.

98

(Blake, 1917):

(2) Tagalog

súlat ‘write’ susúlat ‘will write’

In this example, the future tense of a verb is derived by copying the first CV of the

base and then prefixing it. We can schematize this process as in (3), where the dash

indicates the morpheme boundary between the reduplicant affix and the base and x

refers to the remainder of the base after the initial CV.

(3) C1V1-C1V1x

A rule for this reduplication process is shown in (4)3, and a SL FST that models it is

shown in Figure 5.4.

(4) ∅ → C1V1 / # C1V1

#,!

#C,!
C:C

?,!
V:V

C:C

V:VCV

C:C

Figure 5.4: Schematized TSL for Tagalog partial reduplication, k = 3, Σ = {C, V}

Note that Figure 5.4 is just a schema for the complete FST for the Tagalog reduplication

pattern. The complete FST contains a branch like Figure 5.4 for each possible CV

combination. Despite the larger size of this complete FST, however, it is still SL. And

3 The rules presented in this chapter are meant to highlight the connection between SL copying in
metathesis and reduplication, but no theoretical claim is being made here that rules are the correct
grammatical representation of reduplication.

99

as in Figure 5.3 the ? state in Figure 5.4 represents the point at which the prefixation

has taken place and so the rest of the input is outputted unchanged.

To get a sense of what the complete FST looks like, Figure 5.5 presents the FST

for Tagalog, assuming an alphabet of only {s, a, u}. The crucial transitions are from

state #s: if the next input symbol is a vowel (either ‘a’ or ‘u’), the environment for

partial reduplication (i.e., CV-initial words) has been fulfilled. The outgoing ‘a’ and

‘u’ transitions from this state include in the output the copied sa and su, respectively.

The partial reduplication schema in (3) is an example of what has been called

local reduplication, since the reduplicant is affixed adjacent to the portion of the base

it is copied from. Another category that meets this condition is schematized in (5), in

which the reduplicant is a suffix copied from the end of the base. An example from

Marshallese is shown in (6) (Byrd, 1993).

(5) xC1V1C2-C1V1C2

(6) Marshallese

ebbok ‘to make full’ ebbok-bok ‘puffy’

l7NON ‘fear’ l7NON-NON ‘very afraid’

This process copies the final CVC of the base and then suffixes that copy to the base.

A rule for this copying is shown in (7).

(7) ∅ → C1V1C2 / C1V1C2 #

And a SL FST that models the process is shown in Figure 5.6. As with general

suffixation (Figure 5.2), the reduplicated suffix is appended via the final output function

in Figure 5.6, but only to strings that end in CVC (i.e., strings that end in state CVC).

And as with the Tagalog reduplication, the pattern in Marshallese is considered local

because the reduplicant is affixed adjacent to the portion of the base it was copied

from.

100

#,!

#s,!

s:s

#u,!

u:u

#a,!

a:a

ss,!

s:s

su,!

u:usu

sa,!

a:asa

us,!

s:s

uu,!

u:u

ua,!

a:a

as,!

s:s

au,!

u:u

aa,!

a:a

s:s

u:u

a:a s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

s:s

u:u

a:a

Figure 5.5: TSL for Tagalog partial reduplication, k =3, Σ = {s, a, u}

101

!,!

V:V C,!
C:C

C:C

CV,!

V:V

V:V CVC,CVCC:C

V:V

C:C

Figure 5.6: Minimized TSL for Marshallese partial reduplication, k = 4, Σ = {C, V}

Lastly, a reduplicant can also serve as an infix, such as in the example in (8)

from Pima (Riggle, 2006a).

(8) Pima

sipuk ‘cardinal’ sispuk ‘cardinals’

(9) C1V-C1-x

As shown in the schema in (9), this process copies the initial consonant and infixes it

after the initial CV of the base. A rule for this process is shown in (10), and the SL

FST is shown in 5.7.

(10) ∅ → C1 / #C1V

Figure 5.7 maps all CV-initial inputs to outputs with the initial C inserted after the

first vowel. Like the Tagalog infixation example in the previous section, in Pima

reduplicative infixation the distance between the infix and the edge of the word (which

is also the material it was copied from) is bounded, so this process can be modeled

with a SL function.

The examples of local reduplicative prefixation and suffixation contrast with

their non-local counterparts, in which the reduplicant is copied from one end of the

102

CC,!

C:C

CV,!

V:V

#,!

#C,!
C:C

#V,!

V:V

VC,!

C:C

V:V

VV,!

C:CV:V

C:C

V:VC

C:C

V:V

C:C

V:V

Figure 5.7: TSL for Pima partial reduplication, k = 3, Σ = {C, V}

string but affixed to the opposite end (Riggle, 2003). An example of non-local suffix-

ation from Koryak (Bogoras, 1969; Kenstowicz, 1979; Krause, 1980) is shown in (11)

and schematized in (12).

(11) Koryak

mItqa ‘oil’ mItqa-mIt ‘oil’ (absolute)

(12) C1V1C2x-C1V1C2

And a rule for this copying process is shown in (13).

(13) ∅ → C1V1C2 / C1V1C2x #

What makes this process non-local is the x string that intervenes between the position

of the reduplicant and the portion of the base that it copies. Since the length of this x

is unbounded, we cannot identify a k-value for this process. In other words, there is no

k such that a FST that only keeps track of the previous k− 1 symbols can distinguish

strings that begin with CVC from those that do not.

103

Though Koryak partial reduplication is not SL, it is left subsequential. The

SFST in Figure 5.8 models the rule in (13).

#,!

#C,!
C:C

?,!V:V

C:C

#CV,!
V:V

C:C
V:VV:V

#CVC,CVC

C:C

C:C
V:V

Figure 5.8: SFST for Koryak partial reduplication, Σ = {C, V}

Within the first three input symbols, this SFST distinguishes strings that begin with

CVC from those that do not. From that point on these two types of strings are handled

by different states (labeled #CVC and ?, respectively), and those in the former category

have a CVC suffix appended to their output strings via the final output function. One

might question how this FST differs from the one in Figure 5.4 above, which also has a

? state and is Strictly Local. The difference is that in Figure 5.4, the ? state represents

all k−1-factors except the ones already included in the FST. This means the FST will

not encounter the same k − 1-factor in two different states. In Figure 5.8, however,

there is no k such that the FST could not encounter the same k − 1-factor in states

#CVC and ?, since both states have loops for C and V. This means it keeps track of

information other than just the previous k − 1 symbols: it distinguishes whether the

104

input string began with CVC (by being in state #CVC) or not (by being in state ?).

Thus Figure 5.4 is a SL FST, but Figure 5.8 is not.

The Koryak example shows that non-local reduplicative suffixation is not SL,

but it is still subregular. More will be said about non-SL but still subsequential pro-

cesses in Chapter 7. Some researchers have addressed the seemingly exceptional nature

of non-local copying like that in Koryak by classifying it as something other than redu-

plication (Nelson, 2005), under the assumption that reduplication is by default local

(i.e., the ‘edge-in association’ of Marantz (1982)). However, the question of whether

non-local reduplication is truly reduplication is tangential to the issue of whether or

not it is SL. As an attested process, non-local copying sheds light on the extent to

which morphological processes are Strictly Local.

It is unclear whether cases of non-local reduplicative prefixation exist.4 This

would be a process like the one schematized in (14), in which a portion of the string

starting from the end is copied and then used as a prefix.

(14) C1V1-xC1V1

Such a process is again not SL, but still subsequential. More precisely, it is right

subsequential because (as discussed in the previous chapter) it is pre-pivot copying.

Given an input string of the form xC1V1, reversing this string gives V1C1x
r. Consider

a SFST that models the rule in (15).

(15) ∅ → V1C1 / V1C1x #

We know such a SFST exists because this rule differs minimally from the Koryak

example in (13). This SFST would map V1C1x
r to V1C1x

rV1C1. The reverse of this

output is C1V1xC1V1, the expected output for non-local prefixation.

It is also unclear whether non-SL reduplicative infixation exists. This would

(presumably) be a process in which some portion of the base is copied and then infixed

4 It is not part of the factorial typology of Riggle (2003)’s OT analysis.

105

at an arbitrary position in the string. Here ‘arbitrary’ means there is no bound on the

amount of material between the word-boundary and the position of the infix. Such a

process would certainly not be SL, and in fact it would not even be subsequential. It

was possible to model non-local prefixation and suffixation with SFSTs because the

position of these affixes is fixed with respect to the word-boundary. The lack of this

fixed position would force the FST to keep track of an unbounded number of input

symbols, which it cannot do (i.e., it could not then be finite state).5 The existence of

such a pattern would pose a challenge for the subregular status of morpho-phonology,

and therefore an unequivocal example would be both surprising and interesting.

Table 5.1 summarizes the findings for partial reduplication patterns. The next

section turns to full reduplication.

Table 5.1: Summary of Computational Properties of Partial Reduplication Patterns

SL Left subsequential Right subsequential
Local prefixation X X X
Local suffixation X X X
Local infixation X X X

Non-local prefixation X
Non-local suffixation X

5.2.2 Full reduplication

In addition to partial reduplication, many languages exhibit full (or total) redu-

plication, in which the entire string appears twice. In a classic example from Indonesian,

the plural of a noun is derived from the singular via full reduplication (Sneddon, 1996):

(16) Indonesian

buku ‘book’ buku-buku ‘books’

5 See Jardine (2013) and Heinz and Lai (2013) for a similar explanation and formal proofs for the
non-subsequentiality of tonal plateauing and (unattested) sour grapes vowel harmony, respectively.

106

Full reduplication is not Strictly Local. Nor for that matter is it subsequential, or even

regular, because no finite state machine can model the infinite mapping of this process.

It is true that if every person’s lexicon is finite, there will be a longest word, and setting

k to the length of that longest word plus one would permit a SL FST to model full

reduplication. Each word would correspond to a path in the FST and each state would

append its own k−1 factor to the end of the output. For example, consider a language

of strings of a’s in which the longest word is of length 4. The SL FST in Figure 5.9

models full reduplication in this language.

!,! a,aa aa,aaa aaa,aaaa aaaa,aaaaa

Figure 5.9: TSL for full reduplication in L = a≤4

This FST will correctly map a 7→ a-a, aa 7→ aa-aa, aaa 7→ aaa-aaa, and aaaa 7→

aaaa-aaaa. If this language added a word of length 5, the k-value is increased to 6 and

the FST could be extended to accommodate full reduplication of this word as well.

And so on, up to whatever the longest word ends up being. But this is precisely the

difference between modeling just the input that has been seen so far and modeling the

infinite mapping the data represents. Speakers of a language with full reduplication

can do more than just produce the reduplicated form for any word in their lexicons.

They can produce the reduplicated form for any possible word, including longer words

that are not yet in their lexicons. It is this generalization that a FST like Figure 5.9

misses, and that no FST can model. This important distinction between modeling

finite data and infinite mappings is the basis for the approach to learning SL functions

presented in the next chapter.

107

Thus full reduplication is a counter-example to the hypothesis that morphology

is also subregular. Instead, full reduplication is context-sensitive. Computationally,

then, it has more in common with syntax than phonology (Chomsky, 1956, 1959; Ko-

bele, 2006). That fact could be taken as evidence that full and partial reduplication

are not really two subtypes of a single process. Instead, full reduplication can be con-

sidered as a particular case of syntactic copying, while morphological reduplication

is always partial. More generally, the computational classifications presented in this

chapter highlight which processes merit further attention and what typological gaps

warrant scrutiny. We have seen that some morphological processes (e.g., general af-

fixation, local partial reduplication) are Strictly Local, while others (e.g., non-local

partial reduplication) are not SL but still subsequential, or even non-regular (e.g., full

reduplication).6 While some treatments aim to unify the various forms reduplication

can take (e.g., Raimy (2000)), perhaps we should also investigate further how they

differ.

With this understanding of the range of phonological and morphological pro-

cesses that can be modeled with SL functions, the next chapter will present an algo-

rithm that learns such processes by using their defining property of strict locality as

an inductive principle.

6 The computational properties of templatic morphology remain to be investigated.

108

Chapter 6

LEARNING STRICTLY LOCAL FUNCTIONS

One motivation for restricting the range of possible phonological patterns is

to investigate whether the nature of the restrictions can explain how humans learn

phonology. Restrictions in the form of computational properties serve to structure the

hypothesis space of a learner in such a way that logically possible mappings that are

consistent with the data but do not have the computational property in question are

not even considered. This chapter will demonstrate that strict locality can delimit a

learner’s hypothesis space in just this way.

As already discussed in Chapter 2, the regular relations are not believed to

be learnable within the Gold paradigm (Gold, 1967), so the finding that phonological

mappings are regular (Johnson, 1984; Koskenniemi, 1983; Kaplan and Kay, 1994) does

not provide a clear approach to the learning problem. In contrast, the subsequential

class of subregular functions is identifiable in the limit from positive data by the

algorithm known as OSTIA (Onward Subsequential Transducer Induction Algorithm)

(Oncina et al., 1993). OSTIA generalizes from a finite set of input-output string pairs

and converges on a SFST that describes the mapping they represent. Since all of the

phonological mappings that have been shown to be Strictly Local are by definition

also subsequential, it follows that OSTIA can learn them. And by extension, perhaps

humans generalize from their language data in the same manner in which OSTIA does

(i.e., by assuming their target is a subsequential mapping).

However, when tested on a phonological example with natural language data,

OSTIA did not in fact converge on the correct target function (Gildea and Jurafsky,

1995, 1996). In addition, there exist subsequential functions that do not resemble the

kinds of mappings we find and expect to find in natural language phonology. Together

109

these facts suggest that the phonological learner is assuming more than just subsequen-

tiality when it converges on a phonological mapping. This chapter proposes that the

learner instead assumes that its target is a Strictly Local function. As a demonstration,

a learning algorithm is presented that identifies the ISL functions in the limit by us-

ing strict locality as an inductive principle. A comparable algorithm for learning OSL

functions is being left for future work, but the chapter will end with some discussion

of how such an algorithm can be developed.

The algorithm that will be presented is called the Input Strictly Local Function

Learning Algorithm (ISLFLA). As it is based on OSTIA, the next section will first

present in detail how OSTIA generalizes from positive data to a subsequential function.

It will be shown, however, that the restriction on the ISLFLA’s hypothesis space (i.e.,

the class of ISL functions) allows it to converge on its target faster and with less data

than OSTIA.

6.1 The Onward Subsequential Transducer Induction Algorithm (OSTIA)

OSTIA is essentially a two stage algorithm: 1) build a prefix tree and 2) merge

states. Prefix trees will be discussed in detail in this and the next section. State merging

is widely used in grammatical inference; for other examples see Angluin (1982), Heinz

(2009), and de la Higuera (2010).

As mentioned above, the input data to OSTIA is a set of input-output string

pairs that sample the target function. Consider the example subsequential function in

(1), from Oncina et al. (1993).

(1)

t(an) =


λ n = 0

bn+1 n odd

bnc n even

The domain of this function is the set of strings of a’s of any length. If the length of

the input string is even, the output is an equal number of b’s plus a ‘c’. If the length of

110

the input string is odd, the output is a string of b’s that is one longer than the input.

A data set T that samples this function is shown in (2).

(2) T = {(λ, λ), (a, bb), (aa, bbc), (aaa, bbbb), (aaaa, bbbbc)}

The first step of the algorithm is to create a finite state representation of this data set.

This representation is a particular type of SFST called an onward tree subsequential

transducer (OTST). The OTST for the data set in (2) is shown in Figure 6.1. Notice

that when the tree is constructed each input string is augmented with the end-of-word

marker #, which leads each state to a final state.

!

aa:bb

#
#:!

aaa:!

a#
#:!

aaaa:bb

aa#
#:c

aaaa aaaa##:!
a:c

aaa#
#:!

Figure 6.1: OTST for the example data set in (2), Σ = {a}, Γ = {b, c}

This representation is called a tree because it branches out from the initial state

(the ‘root’) and, more importantly, it contains no loops. What this means is that the

FST represents only the data set from which it was built. It does not generalize beyond

that set and therefore cannot produce an output for any input aside from those in the

data. Lastly, the onward designation of the OTST indicates that it produces output

on the transitions as soon as it has enough information to do so. For example, the

‘a’ transition from the root produces the output bb, because (based on the data set)

all input strings that begin with a are mapped to output strings that begin with bb.

111

Formally, onwardness is achieved when the longest common prefix of all outputs of all

transitions leaving a state is λ.

Since the target subsequential function can produce an output for any input

in its domain, it is necessary to generalize beyond the OTST. OSTIA achieves this

generalization via state merging, a process that combines states while preserving tran-

sitions. State merging can be thought of as a means of reducing information. Given a

characteristic sample of the target transduction, the OTST created from that sample

contains the maximum amount of information about the transduction. Merging states

is a way of discarding all but the necessary information to get the transduction right.

For example, in Figure 6.1, states a and aaa are both reached on a transition

labeled a : bb. These states will be merged in the course of OSTIA’s run, so that in the

result (see Figure 6.2 below) only state a remains. This is possible because according

to the target function, it does not matter whether the transducer has seen one ‘a’ or

three; what does matter is whether it has seen an even or odd number of a’s.

State merging takes place in both an inner and an outer loop of the algorithm.

The outer loop considers all possible pairs of states for merging. If the merging intro-

duces non-determinism, the inner loop attempts to remove it by an operation called

pushback followed by additional state merges. The pushback operation will be discussed

further in §6.2. Removing non-determinism is necessary to ensure that the final FST

the algorithm converges on (as well as all intermediate FSTs) is still subsequential.

Therefore if the inner loop determines that it cannot remove the non-determinism, the

original (outer loop) merge is rejected, and the algorithm moves on to the next pair

of states. The final output of OSTIA for the data in (2) is shown in Figure 6.2. The

reader can verify that this SFST indeed describes the function in (1).

It is proven in Oncina et al. (1993) that this algorithm can identify any subse-

quential function in the limit from positive data. However, as stated above, a study by

Gildea and Jurafsky (1995, 1996) found that given natural language data OSTIA was

unable to learn a phonological mapping. The next section discusses this result.

112

!

#:!
aa:bb

#:! aa

a:!

#:c
a:bb

Figure 6.2: Final output of OSTIA for the data set in (2)

6.1.1 Modifying OSTIA to learning phonological mappings

Gildea and Jurafsky (1995, 1996) (hereafter GJ) tested OSTIA using a corpus

of natural language data to see if it would learn the English flapping rule in (3).

(3) t → R / V́ (ô) V

Flapping is a substitution process by which a /t/ surfaces as a flap when it follows a

stressed vowel and an optional /ô/ and precedes an unstressed vowel. GJ found that

the output of OSTIA when given natural language data did not correctly describe

the mapping of this rule. Why? OSTIA is guaranteed to learn in the limit any

subsequential function, but to succeed it requires a characteristic sample of the target

function. In the case of flapping this characteristic sample is not present in a natural

language dictionary. More specifically, the mapping that describes only the flapping

process is a total function. This means that every state in the flapping SFST has a

transition for every symbol in the alphabet. But a natural language corpus does not

contain the necessary data for OSTIA to generalize a total function, because the corpus

reflects more than just the flapping process. It also reflects the phonotactic constraints

that dictate the language’s valid surface forms. Thus OSTIA will not find evidence for

every transition from every state, because certain sequences of alphabet symbols are

prohibited. As a result, it does not converge on the correct transducer that models

just the flapping process.

GJ’s solution was to equip OSTIA with three learning heuristics that are largely

113

assumed in phonological theory. These include 1) faithfulness (corresponding underly-

ing and surface segments tend to be similar), 2) community (segments within a natural

class behave alike), and 3) context (phonological rules refer to variables in their con-

texts). Their modified version of OSTIA successfully learned the flapping rule, as well

as several others.

Their study reveals the value of these particular learning assumptions and of

prior knowledge in general. It was also successful in terms of getting OSTIA to suc-

ceed with natural language data. Another desirable objective, however, is to obtain

theoretical results. For instance, it is also important to show that a learner succeeds

not just on a set of test cases, but on the entire class of functions those test cases

are drawn from. Such a proof would remove any concern that the learner succeeded

based on some unknown property of the particular examples on which it was tested.

OSTIA itself can provably learn the class of subsequential functions, but no such proof

is provided for GJ’s modified OSTIA. In particular, their faithfulness bias is incor-

porated with an alignment operation over the input-output data pairs that alters the

onwardness property of the initial tree transducer. But the onwardness property plays

a crucial role in Oncina et al. (1993)’s proof of OSTIA’s correctness.

This chapter proposes a different approach to learning phonological mappings.

In particular, the next section introduces the ISLFLA, a learning algorithm that prov-

ably learns the class of Input Strictly Local functions by using strict locality as an

inductive principle to generalize from positive data. The learner’s use of the strict

locality property is similar to the context bias employed by GJ’s learner, but the struc-

ture of the ISL class also allows for a theoretical result of identification in the limit

(presented in §6.8). The range of processes that have been shown to be ISL and the

success of this learning strategy together suggest that the human phonological learner

generalizes in the same manner as the ISLFLA when learning local processes.

114

6.2 The ISL Function Learning Algorithm (ISLFLA)

Like OSTIA, the ISLFLA first builds an onward prefix tree representation of the

data set and then merges states to converge on a FST that describes the target function.

The two algorithms differ, however, in the state merging criterion. OSTIA, as described

above, merges any two states provided that any resulting non-determinism can be

removed without altering the transduction represented by the data. The ISLFLA

likewise insists on maintaining determinism (and therefore subsequentiality), but it

also requires the two states that are merged to share a suffix of length k−1. To clarify

what this means: each state is a string, and more specifically each state is a prefix of

one of the input forms in the data set. This is true just by construction of the initial

prefix tree. The suffixes of these strings represent the most recent symbols on the path

leading into that state. For example, consider the branch of a tree for the input form

aabc, shown in Figure 6.3. Note this figure depicts a prefix tree, not a tree transducer.

! aa aaa aabb aabcc

Figure 6.3: Branch of a prefix tree for input aabc

The suffixes of each state correspond to the incoming paths of varying lengths.

For example, the suffixes of state aabc include λ, c, bc, abc, and aabc, which correspond

to the incoming paths of length 0, 1, 2, 3, and 4, respectively. The ISLFLA will only

merge states that were reached on the same path of length k − 1, which is equivalent

to having the same suffix of length k − 1. So for a target function with a k-value of

2, states a and aa in Figure 6.3 could be merged, since both have the same suffix of

length 1.

This state merging strategy is motivated by the fact that the states in the target

TISL are k − 1-factors, and no other distinctions among states need to be maintained

115

to capture a SL transduction. In other words, it is not necessary to maintain the entire

path leading into a state, because the last k−1 symbols will suffice. It follows that this

state merging criterion means the ISLFLA can only learn SL functions. And it learns

specifically ISL (not OSL) functions because the states in the prefix tree represent

prefixes of the input (not the output) strings.

A non-SL function could not be learned by this strategy, since the k− 1-factors

do not provide enough information for non-SL patterns. It could not, for example,

learn the function in (1), because there is no k such that a SL-k FST could distinguish

strings of even and odd lengths. Note that this tactic of merging states that share a

suffix of length k − 1 was previously applied to learning local phonotactics by Heinz

(2007)1 and local processes by Chandlee and Koirala (2014) and Chandlee and Jardine

(2014). The difference between the latter two works and the current results will be

discussed in §6.3.4 below.

6.2.1 The algorithm

This section describes in detail how the ISLFLA works. The pseudo-code is

presented below. Like OSTIA, the data is submitted to the learner in the form of a

prefix tree transducer (PTT), defined in Definition 6.

Definition 6 (Prefix Tree Transducer). Given T = {(w,w′) | f(w) = w′} for a function
f , a prefix tree transducer for T is PTT (T) = (Q,Σ,Γ, q0, δ), where Σ,Γ are the input
and output alphabets, respectively, and

• Q =
⋃
{Pref(w#)|(w,w′) ∈ T}

• q0 = λ

• δ = {(u, a, λ, ua) | u, ua ∈ Q} ∪ {(w,#, w′, w#) | (w,w′) ∈ T}

The algorithm’s first step is to submit this PTT to a function that makes it

onward. Following Oncina et al. (1993), this onward function starts from the leaves

1 Though locality was expressed in terms of n-grams rather than SL languages, the idea is the same.

116

Data: PTT (T)
Result: TISL(f)
τ = onward(PTT);
q = next(Qτ , first(Qτ));
while q < last(Qτ) do

merge(q, Suffk−1(q));
while ∃(q, a, x, q1), (q, a, y, q2) ∈ δτ do

if a = # ∧ x 6= y then
Exit(‘Insufficient data.’);

else
pushback(q1, lcp(x, y));
pushback(q2, lcp(x, y));
merge(q1, q2);

end

end
q = next(Qτ , q);

end
return τ ;

Algorithm 1: Pseudo-code for the ISLFLA

of the PTT and iteratively advances the longest common prefix of the outputs of all

outgoing transitions toward the root. Once this is done, the algorithm begins merging

states, gradually collapsing the tree down to the SL FST.

Like OSTIA, the learner merges states in a pair of nested loops. The outer

loop iterates through the state set of the tree, which is ordered lexicographically, and

merges each state q with the state that corresponds to its suffix of length k−1. This is

the first key difference between the ISLFLA and OSTIA - unlike OSTIA, the ISLFLA

does not search the tree for a state to merge q with, because it knows exactly which

state to merge it with (i.e., all q will be merged with Suffk−1(q)).

Similar to OSTIA, however, the ISLFLA uses an inner loop to remove any non-

determinism that results from the outer loop merge. Consider the situation depicted in

Figure 6.4, in which the merge of q with q′ = Suffk−1(q) has created non-determinism

for input ‘a’.

117

q' q2a:y

q q1a:x

q'

q1a:x

q2
a:y

Figure 6.4: Non-determinism after merging q and q′

The learner detects the presence of such a situation by searching the transition function

δ for two edges with the same origin state and the same input symbol (i.e., (q, a, x, q1)

and (q, a, y, q2)). To remove this non-determinism, it first determines the longest com-

mon prefix of the two output strings x and y. Let l = lcp(x, y) be this longest common

prefix. This string l will be retained as the output from q′ on ‘a’; whatever is left of

x and y after l is removed will be ‘pushed back’ toward the leaves of the tree. More

specifically, s = l−1x and t = l−1y will be prefixed to the output strings of all tran-

sitions leaving states q1 and q2, respectively. This situation is depicted in Figures 6.5

and 6.6.

q'

q1a:x

q2

a:y

q3
a:u

q4b:v

q5a:w

q6

b:z

Figure 6.5: Before pushback

q'

q1a:l

q2

a:l

q3
a:su

q4b:sv

q5a:tw

q6

b:tz

Figure 6.6: After pushback : x = ls and
y = lt

118

After pushback, states q1 and q2 can be merged to remove the non-determinism.

It is easy to see in Figure 6.6 that this merge will create additional non-determinism,

since both q1 and q2 have transitions on inputs ‘a’ and ‘b’. The inner loop will continue

to iterate until all non-determinism is removed, and then the outer loop will move on

to the next state in the queue. When the outer loop reaches the end of the queue, the

algorithm halts and outputs the FST.

Another important difference between the ISLFLA and OSTIA is the ability to

reject state merges. As explained above, OSTIA will reject (and subsequently undo)

some state merges if it finds that the resulting non-determinism cannot be removed

with the inner loop procedure of pushback + merge. More precisely, it will reject any

merge that leads to the situation depicted in Figure 6.7.

q

q##:x

q'#

#:z

Figure 6.7: Irreparable non-determinism

Because the destination states of the two transitions leaving q in Figure 6.7 do not

have any outgoing transitions (which is true of all states reached on #), the operation

of pushing back the longest common prefix of x and z cannot apply. Thus there is no

way to remove this non-determinism, and so OSTIA will reject whatever state merging

led to this scenario. The ISLFLA, however, does not reject any merges. If it were

to reject a merge, the possibility would arise that two states with the same suffix of

length k − 1 would remain distinct in the final FST the learner outputs. Such an

FST would not satisfy the definition of being Strictly Local. Of course the situation

in Figure 6.7 is problematic for the ISLFLA as well, since its final output must also

119

be deterministic. Therefore, when it enters the inner loop it first checks that the non-

determinism it needs to remove is not of the form in Figure 6.7. If it is, the algorithm

halts and outputs a message indicating that it does not have sufficient data to identify

the correct SL FST. Of course, the learner will also fail if the function the data samples

is not actually ISL, though it cannot distinguish these two scenarios.

The next section will present a proof that the ISLFLA will always identify the

correct TISL(f) provided the data set contains a characteristic sample for f and f is

ISL. The proof relies in part on the fact that given such a sample (which will also be

defined), the ISLFLA will never encounter the fatal situation in Figure 6.7.

6.2.2 Identification in the limit

This section presents a proof that the algorithm ISLFLA identifies the class

of ISL functions in the limit from positive data, in the sense of Gold (1967). Before

going through the formal proof, it may be useful to discuss the intuitions behind it.

Essentially the proof follows from the fact that given a characteristic sample for the

target function (which will be defined below), the algorithm merges all and only states

with the same suffix of length k−1. The result will be a FST that meets the definition

for TISL(f).

It is easy to see that merges in the outer loop only involve states with the same

suffix of length k−1. This is also the case for merges that take place in the inner loop.

Consider the scenario depicted in Figure 6.8, in which q is a state created by an outer

loop merge. After pushback, states s and t will be merged. If x = Suffk−1(q), then

both s and t must have xa as a suffix. Since |xa| = k, then it follows that Suffk−1(s) =

Suffk−1(t). It also follows that additional states merged to remove non-determinism

resulting from the merge of s and t will have the same suffix of length k − 1. To show

that all states with the same suffix of length k− 1 will be merged, the proof will show

that the ISLFLA will never encounter the situation in Figure 6.7, provided the data

set includes a characteristic sample defined as follows.

120

q

sa:u

t
a:v

Figure 6.8: Non-determinism from an outer loop merge

Definition 7 (Characteristic Sample). Given a k-ISL function f and TISL(f), let Q′ =
{q ∈ Q such that σ(q) 6= λ}. A characteristic sample for f is S = S ′ ∪ S ′′, where

1. S ′ = {(w,w′) | [w ∈ Σ≤k ∧ f(w) = w′]}

2. S ′′ = {(wa,w′′) | [a ∈ Σ ∧ w ∈ Σk ∧ Suffk−1(w) ∈ Q′ ∧ f(wa) = w′′]}

The first part of Definition 7 says that the sample must include all possible substrings

up to length k paired with their respective outputs according to f . The second part

says that for those substrings of length k that end in a state in TISL that has a non-

empty final output string mapped to it by σ, the sample must also include input-output

pairs for the substring plus each of the symbols in the alphabet. This means that for

those ISL functions for which σ maps the empty string to all states, the characteristic

sample consists of only the first part. One such example will be presented in the next

section.

Notice that this definition for a characteristic sample assumes that the target

function is total. Though SL functions are not total by definition, this thesis has

been treating the mappings of phonological processes as total functions for the reasons

mentioned in Chapter 3. Whether the ISLFLA can identify partial functions, and what

a characteristic sample would be in those cases, is not yet known.

The following theorem establishes the result of identification in the limit for the

ISLFLA. Its proof follows.

Theorem 4. The ISLFLA identifies the class of ISL functions in the limit.

121

Proof. It must be shown that given an ISL function f and a dataset D such that S

⊆ D, where S is a characteristic sample as defined in Definition 7, the output of the

ISLFLA is TISL.

Let PTT (D) = (QPTT , q0PTT ,Σ,Γ, δPTT) be the input to the ISLFLA and T =

(QT , q0T ,Σ,Γ, δT) be its output. First it is shown that QT = Σ≤k−1. By definition of

PTT (D) (Definition 6) and S (Definition 7), Σ≤k−1 ⊆ QPTT . Since the ISLFLA only

merges states with the same suffix of length k− 1, Σ≤k−1 ⊆ QT . Since it does not exit

until all states q have been merged with Suffk−1(q), QT = Σ≤k−1.

Next it is shown that given S, it will never be the case that two states q1 and q2

are merged such that δ1(q1,#) 6= δ1(q2,#). Let δ1(q1,#) = z and δ1(q2,#) = x with

z 6= x and q1 = Suffk−1(q2). By definition of ISL functions (Definition 4, Chapter

3), tailsf (q1) = tailsf (q2), so if z 6= x it must be the case that q2 does not have

transitions for all a ∈ Σ. This is because the only way for the output strings of the

outgoing transitions of q2 to differ from those of q1 is if fewer transitions were present

on q2 when the PTT was made onward. (By definition of S we know q1 has transitions

for all a ∈ Σ.) But since tailsf (q1) = tailsf (q2), we also know that z = ux for some

u ∈ Γ∗.

Since, by definition of S, all states up to length k have transitions for all a ∈ Σ,

|q2| ≥ k + 1. This means ∃q′ ∈ Σk that will be merged with some other state before

q2 will. This merge will cause non-determinism, which in turn will trigger pushback

and cause u to move further down the branch toward q2. By extension there will be

|q2| − k states between q1 and q2, each of which will be merged, triggering pushback of

u, so that by the time q1 and q2 are merged, δ1(q2,#) = ux = z = δ1(q2,#). Thus, all

non-determinism can be removed, and so T is subsequential.

It remains to show that ∀q ∈ QT , a ∈ Σ, δ2(q, a) = Suffk−1(qa). Since state

merging preserves transitions, this follows from the construction of PTT (D). By Def-

inition 4 (Chapter 3), T = TISL.

122

6.2.3 Complexity results

This section establishes complexity bounds on the runtime of ISLFLA and the

size of the characteristic sample for ISL functions.2

6.2.3.1 Time complexity

Let n denote the number of states of the PTT; n is at most the sum of the lengths

of the input strings of the pairs in the sample. Let m be the length of the longest output

string in the sample. We show that the time complexity is in O(n ·m · k · |Σ|). First,

making the PTT onward can be done in O(m · n): it consists of a depth-first parsing

of the PTT from its root, with a computation at each state of the lcp of the outgoing

transition outputs after the recursive computation of the function (see de la Higuera

(2010), Chap. 18, for details). As the computation of the lcp takes at most m steps

and has to be done for each state, the complexity of this step is effectively in O(m ·n).

For the two loops, we need to find a bound on the number of merges that can

occur. States q such that |q| < k do not yield any merges in the outer loop. All other

states q′ are merged with Suffk−1(q), in the outer or inner loop. The number of merges

is thus bounded by n. Computing the suffix of length k − 1 of any word can be done

in O(k) with a correct implementation of strings of characters.

The test of the inner loop can be done in constant time and so can the merge

and pushback procedures. After each merge, the test of the inner loop needs to be

done at most |Σ| times. As computing the lcp has a complexity in O(m), the overall

complexity of the two loops is in O(n ·m · k · |Σ|).

The overall complexity of the algorithm is thus O(m · n + n · m · k · |Σ|) =

O(n ·m · k · |Σ|).

6.2.3.2 Size of the characteristic sample

Let TISL = (Q, q0,Σ,Γ, δ, σ) be the target transducer for f . We define m =

max{|u| | (q, a, u, q′) ∈ δ} and p = max{|v| | (q,#, v) ∈ σ}. The first part of the

2 The results in this section were established in collaboration with Jeffrey Heinz and Rémi Eyraud.

123

characteristic sample, S ′, covers all and only the states of the target: the set of input

strings of these pairs is thus linear in n and the set of output strings is at most n ·m+p.

Thus the size of S ′ is at most n · (n+ n ·m+ p) = O(n2 ·m+ n · p).

Concerning the second part S ′′ of the characteristic sample, its cardinality is

at most n · |Σ| (in the rare case where Q′ = Q). Each input string of S ′′ is of size

k + 1 and each output string is at most of length (k + 1) · m + p. The size of S ′′ is

thus in O(n · |Σ| · (k · m + p)). Therefore, the size of the characteristic sample is in

O(n · |Σ| · k ·m+ n2 ·m+ n · |Σ| · p), which is clearly polynomial in the size of TISL.

We observe that both of the bounds established are improvements over OSTIA,

which has a complexity of O(n3(m+ |Σ|) + nm|Σ|) (de la Higuera, 2010). This result

is not surprising, since ISL functions have less generative power than subsequential

functions, and it demonstrates how greater a priori knowledge enables learning with

less time and data.

6.3 Demonstrations

This section presents four demonstrations of the ISLFLA using natural language

examples. These demonstrations include two examples of substitution processes - Ger-

man final devoicing and English flapping - as well as one example of deletion (from

Greek) and one epenthesis process (from Dutch).

6.3.1 Substitution

6.3.1.1 German final devoicing

Final devoicing, attested in German (as well as Russian, Dutch, Polish, and

several other languages), is a process by which a word-final voiced obstruent surfaces

as its voiceless counterpart.

(4) German

a. /ba:d/ 7→ [ba:t] ‘bath’

b. /sa:g/ 7→ [sa:k] ‘say’

124

c. /wald/ 7→ [walt] ‘forest’

A rule for this process is shown in (5), where D is a voiced obstruent and T is a voiceless

obstruent.

(5) D → T / #

The ISLFLA was given an artificial corpus of input-output string pairs for the final

devoicing mapping. Since k = 2, the input forms were all possible words up to length

3 over the alphabet Σ = {D, T, N}, where D and T are defined as above and N is

a sonorant. Each input was paired with a corresponding output form in which the

above rule was applied if the necessary context was present in the input form. The

total corpus consisted of 40 string pairs. The output of the learner, shown in Figure

6.9, is the correct TISL for the SL-2 function that models final devoicing. Note that

the actual FST that the learner outputs has transitions on # that lead to a final state.

The output on these # transitions corresponds to the final output string assigned to

that state (since that transition is only taken if the end of the input has been reached).

Such a representation differs from, but is equivalent to, the FSTs presented in previous

chapters in which all states are final and the final output string is included in the

state label. The FSTs presented in this section have therefore been converted to be

consistent with those in previous chapters.

6.3.1.2 English flapping

The second test case is the process of flapping in English, exemplified in (6) and

described with the rule in (7).

(6) English

a. /b2tr
"
/ 7→ [b2Rr

"
] ‘butter’

b. /wAtr
"
/ 7→ [wARr

"
] ‘water’

(7) t → R / V́ V

125

!,!

D,T

D:!

T,!T:T

N,!

N:N

D:D

T:DT

N:DN

D:!
T:T

N:N

D:!

T:T

N:N

Figure 6.9: ISLFLA output for German final devoicing test, k = 2, Σ = {D, T, N}

The ISLFLA was given an artificial corpus of input-output pairs for this rule. This

time k = 3, so the inputs were all possible words up to length 4 over the alphabet Σ =

{V, v, t, ?}, where V is a stressed vowel, v is an unstressed vowel, and ? is any segment

in English except V, v, or t. This resulted in a corpus of 340 pairs. The output of

the ISLFLA is shown in Figure 6.10. Note this FST is minimized for readability. This

output is the correct TISL for the SL-3 function that models English flapping.

6.3.2 Greek fricative deletion

The test case for deletion is a process in Greek by which an interdental frica-

tive is deleted when it precedes a voiceless coronal fricative (Joseph and Philippaki-

Warburton, 1987). This process is described by the rule in (8).

(8) {T, D} → ∅ / {s, T}

The corpus for this process was again artificially generated, using the alphabet Σ =

{T, D, s, ?}, where ? represents any segment aside from T, D, or s. All possible strings

up to length 3 (since k = 2) were created from this alphabet, resulting in a corpus of

126

!,!

v:v
?:?
t:t

V,!

V:V

?:?

v:v

V:V

Vt,t

t:!

t:tt

v:ɾv
?:t?

V:tV

Figure 6.10: ISLFLA output (minimized) for English flapping test, k = 3, Σ = {t,
V, v, ?}

53 pairs. The output of the learner is shown in Figure 6.11 and is the correct TISL for

the SL-2 function that models this deletion process.

6.3.3 Dutch schwa epenthesis

The final test case is a process of @-epenthesis found in Dutch. As described with

the rule in (9), this process inserts a schwa between a liquid and a [-coronal] consonant

(Warner et al., 2001). Examples are shown in (10).

(9) ∅ → @ / {l, r} [-coronal]

(10) Dutch

a. /mElk/ 7→ [mEl@k] ‘milk’

b. /VIlx/ 7→ [VIl@x] ‘willow’

c. /hYlp/ 7→ [hYl@p] ‘help’

Again k = 2 for this process, but this time only input forms up to length 2 are needed

for the learner to identify the correct function. This is a case in which the characteristic

127

!,!

","

":!
#,#

#:!

?,!

?:?

s,!

s:s

":"
#:!

?:"?

s:s

":#

#:!

?:#?
s:s

":!

#:!
?:?

s:s":!
#:! ?:?

s:s

Figure 6.11: ISLFLA output for Greek deletion test, k = 2, Σ = {T,D,s,?}

sample includes only part one of Definition 7, because the final output function of TISL
maps the empty string to all states (i.e., in Definition 7, Q′ = ∅). As the proof of

Theorem 4 showed, the need for strings of longer length stems from the need to avoid

merging states with different final output strings. When all final output strings are λ,

this conflict is avoided.

All possible inputs up to length 2 were generated using the alphabet Σ = {l, r,

K, ?}, where K represents any [-coronal] consonant and ? represents any other segment

in the Dutch inventory aside from those already in the alphabet. These input forms

were paired with output forms according to the epenthesis rule to form a corpus of

21 pairs. The learner outputs the correct TISL for the SL-2 function that models this

epenthesis process, as shown in Figure 6.12.

128

λ,λ

?,λ

?:?
K,λ

K:K

l,λ

l:l

r,λ

r:r

?:?
K:K

l:l

r:r

?:?

K:K

l:l
r:r

?:?

K:əK
l:l

r:r?:?
K:əK l:l

r:r

Figure 6.12: ISLFLA output for Dutch epenthesis test, k = 2, Σ = {l, r, K, ?}

6.3.4 Discussion of learning results

This chapter has presented a learning algorithm for local processes that uses

strict locality as a learning bias to generalize an ISL function for a target phonological

mapping from positive data that reflects that mapping. It also provided a proof that

given sufficient data the learner will learn any ISL function. It is clearly necessary

and desirable to extend these results to OSL functions. Though that extension will be

left for future work, it appears that the learning of OSL functions will require only a

single change to the current ISLFLA. Recall that the key difference between the FSTs

that model ISL and OSL functions is in the transition function. For ISL functions, the

129

destination state of each transition corresponds to the most recent k−1 symbols of the

input. For OSL functions the destination state of each transition corresponds to the

most recent k − 1 symbols of the output. Just by nature of how the initial prefix tree

transducer is constructed by the learner (i.e., the states are prefixes of the input strings

in the data set), the learner only has access to the input side of the transduction when

it performs state merging. As a result, the FST the learner converges on is for an ISL

function.

The proposed modification that should enable the algorithm to learn OSL func-

tions is for it to merge states that were reached by the same k−1 output symbols. This

will presumably require a different construction for the initial prefix tree transducer, so

that the states are prefixes of the output strings of the data set. Also, as the method

of removing non-determinism involves shifting the transition outputs, care will have to

be taken so that the destination states always correspond to the most recent output

symbols. Development of this version of the learner, as well as the corresponding proof

that it can learn any OSL function, will be an important next step in the current

research program.

To more clearly articulate the contributions of the current learning results, it

is useful to compare them to the results for OSTIA (Oncina et al., 1993), Gildea and

Jurafsky (1995, 1996)’s modified OSTIA, and the learners for local processes proposed

in Chandlee and Koirala (2014) and Chandlee and Jardine (2014). First, the fact that

all SL functions are subsequential functions and the fact that OSTIA can learn any

subsequential function together mean that OSTIA can learn any SL function. And

indeed it can, provided it is given a characteristic sample as defined in Oncina et al.

(1993). However, the other relevant fact is that the SL functions are a proper subset

of the subsequential functions, which means OSTIA can learn many functions that are

not SL. So if the human phonological learner used only subsequentiality (and not strict

locality) as a learning bias, then these subsequential but non-SL functions would be

within its reach. Consider again the rule in (11) from Chapter 1.

130

(11) /i/ → [u] / x (x is a string with an even number of obstruents)

This process could not be represented with a SL FST, but it could be represented

with a subsequential FST, because a subsequential function (like the one in (1)) can

distinguish between strings with an even and an odd number of obstruents. But such a

process is unattested, and many if not most phonologists would consider it implausible.

Following Heinz (2007), the view advocated in this thesis is that the range of ‘possible’

phonological patterns is delimited in part by the manner in which they are learned.

Under this view, if humans use only subsequentiality as an inductive principle when

learning phonological patterns, the absence of processes like (11) in the typology is

left unexplained. In contrast, the proposal that the phonological learner assumes not

just subsequentiality but also strict locality explains both how local processes can be

learned and why processes like (11) are not found (i.e., because they can’t be learned).

In addition, because the ISLFLA allows for only a subset of the state merges that

OSTIA attempts, and because it does not search for a state to merge another state

with (i.e., it merges each state with its own suffix of length k − 1), the ISLFLA can

converge on the correct FST in less time and with less data than OSTIA, as was shown

in §6.2.3 above.

Next, while it is important to note that the study of GJ and the current work had

different objectives, a comparison of the approaches is instructive for understanding

how the ISLFLA fits into a larger model of phonological learning. As discussed above

in §6.1.1, GJ modified OSTIA so that it could learn phonological rules from natural

language data, with the primary objective of showing the usefulness and importance of

their incorporated learning biases - community, faithfulness, and context. In fact the

strict locality learning bias of the ISLFLA is an alternative implementation of their

context bias, as it too exploits the fact that phonological changes are defined in terms

of some amount of material to the left and right of the segment affected by the change.

The other two biases in their study, community and faithfulness, addressed problems

OSTIA faced when using natural language data. As discussed above, the issue with a

131

natural language corpus is that on account of the language’s phonotactic constraints it

does not provide sufficient information for generalizing a total function. In particular,

the prefix tree transducer built from such a corpus will not have transitions from all

states for all alphabet symbols, reflecting the fact that not all symbols can follow all

other symbols in a given language (e.g., the word-initial t state in a tree built from an

English corpus would not have an outgoing transition for ‘l’, because the sequence #tl

is not permitted in English).

These missing transitions affect the way the outputs are shifted when the prefix

tree is made onward. Recall that onwardness ensures that the longest common prefix

(lcp) of all output strings of all transitions leaving a state is λ. If a state is missing

transitions for one or more alphabet symbols, then this lcp will be determined based

on a smaller number of strings than if the state had transitions for all symbols. This

is problematic when trying to generalize a total function from such data, because the

lcp will be computed based on incomplete information. In other words, the lcp is

the output that the FST can be confident about producing after a certain amount of

input. The missing transitions can be thought of as counterexamples that, if present,

would cause the FST to output a different lcp.

GJ handle this problem with their faithfulness bias, which forces a certain align-

ment between the input and output strings of the data set. This alignment prevents

the incorrect shifting of outputs that OSTIA allows, but it also means the prefix tree

transducer is not onward. As mentioned above, the assumption that the transducer

is onward is important for the proof that the learner learns any function in the class.

So a modification to the algorithm that improves its performance on natural language

data comes as the expense of identifying the class of functions it learns.

The artificial corpora that were constructed for the tests of the ISLFLA consisted

of all possible strings over the alphabet up to a certain length. This means that, unlike

in a natural language corpus, there were no restrictions on the sequences of symbols

in a string, which in turn means the prefix tree transducers were not missing any

crucial transitions. Thus the algorithm succeeded without a forced alignment like that

132

employed by GJ. However, when the ISLFLA is run with natural language data it makes

the same mistakes that OSTIA does when adjusting the outputs on the transitions (i.e.,

it moves more output than it should). On the one hand, this suggests a need for the

ISLFLA to be modified in some fashion similar to GJ’s modifications to OSTIA so that

it too can handle natural language data, though preferably in a way that maintains

the result of identification in the limit. On the other hand, this apparent shortcoming

of the ISLFLA actually speaks to the larger question of how the phonological learning

problem should be factored. In both the tests of the ISLFLA presented above and

GJ’s tests of OSTIA, the learner is being tasked with learning a single phonological

mapping (e.g., final devoicing, flapping, etc.). And both learners approach this task

with an essentially blank slate: OSTIA has no existing knowledge of the language this

mapping is a part of, and the ISLFLA is given only the value of k.3 But the state of

the human phonological learner is not believed to be so impoverished when it begins

to learn phonological processes.

There is evidence from the experimental language acquisition literature that

knowledge of a language’s phonotactics precedes knowledge of processes. Phonotactic

knowledge is evident as early as nine months (Friederici and Wessels, 1993; Jusczyk

et al., 1993b,a, 1994), while knowledge of alternations/processes comes later (Tesar

and Prince, 2003; Hayes, 2004; Kerkhoff, 2004). In addition, based on evidence from

artificial language learning experiments, Pater and Tessier (2003) suggest that knowl-

edge of phonotactics can assist in the learning of processes. If that is the case, testing

learners like OSTIA or the ISLFLA with natural language corpora makes little sense,

since the task in that case is to simultaneously learn both the process in question and

phonotactic knowledge it has already acquired. The question then is how to augment

the learner with this previously acquired knowledge. One option is to give it data of the

form used in the demonstrations presented above (i.e., data for all possible sequences

3 An obvious question is how can it know the value of k for the function it is learning before it has
learned it. It remains an issue for future work whether a learner can figure out both the function and
the k-value.

133

of segments) to simulate that it is ignoring the phonotactic restrictions it has already

figured out. If, however, the human phonological learner is in fact using its existing

knowledge of phonotactics when learning processes, then computational models like

the ISLFLA should incorporate and exploit that knowledge more directly.

Alternatively, it might be possible to enable the ISLFLA to induce the missing

data from the given data. How? Recall the Suffix Substitution property of the SL

languages (discussed in Chapter 2), which guarantees that u1xv2 is in a SL-k language

if u1xv1 and u2xv2 are both in the language and |x| = k − 1. The defining property

of SL functions (i.e., the same suffix of length k − 1 implies the same tails) is similar

in spirit to the SSC, and the learner could use it to create additional data from the

existing data and thereby reduce the needed characteristic sample. The details of

such a mechanism need to be worked out, but it suggests potential for the ISLFLA to

succeed with natural language data.

The third and final learning bias employed by GJ is called community, and it

encodes the fact that segments within natural classes tend to behave similarly. In other

words, it is not a coincidence that final devoicing targets the set of segments {b, d, g,

z, Z, dZ}, since these segments comprise the natural class of voiced obstruents. Neither

OSTIA nor the ISLFLA have the ability to deduce that if a process applies to {b, d,

Z} then it is likely to also apply to {g, z, dZ}. GJ equipped OSTIA with a bias that

allowed it to make just such a deduction.

On the one hand, the tests of the ISLFLA presented above avoided this issue

entirely by using reduced alphabets (e.g. {T, D, N} for German). This was done

primarily for readability of the resulting FSTs. In fact the learner will also succeed

on alphabets that correspond to the complete phoneme inventory of each language.

As a small test case, consider the output of the ISLFLA for final devoicing with the

alphabet Σ = {b, d, g, V}, shown in Figure 6.13.

134

!,!

d,t

d:!
V,!

V:V

b,p

b:!

g,k

g:!

d:d V:dV

b:d

g:d

d:!

V:V

b:!
g:!

d:b

V:bV
b:b

g:bd:g
V:gV b:g

g:g

Figure 6.13: ISLFLA output for German final devoicing with Σ = {b, d, g, V}

As can be seen in the figure, the ISLFLA again correctly learns final devoicing,

including the fact that d 7→ t, b 7→ p, and g 7→ k. This shows that its success on the

{T, D, N} alphabet was not due to the simplifying assumption that the process only

affects D 7→ T. As before, what is crucial is that the data set includes the characteristic

sample with all possible sequences from the alphabet. In this sense, GJ’s modification

to OSTIA that allows it to generalize natural classes also serves as another mechanism

for filling in missing transitions. The fact remains, however, that the ISLFLA neither

uses nor learns any knowledge of natural classes of segments. By assumption, the

human learner already has knowledge of natural classes when it learns phonological

processes - either because this knowledge is part of UG or else because it was acquired

at an earlier stage of acquisition. So as with phonotactic knowledge, the ISLFLA

should not necessarily be expected to learn natural classes at the same time it learns

135

processes. But, also as in the case of phonotactics, if in fact humans are exploiting

their knowledge of natural classes when they learn processes, then the computational

model should indeed incorporate and make use of this knowledge. As generalizations

over segments, natural classes could serve as a useful and principled mechanism for

inducing the crucial missing data.

This mechanism could be in the form of a simplicity bias, with the learner’s

line of reasoning proceeding something like this: for an observed process that targets

both /b/ and /d/, it is simpler to assume that it also targets /g/. Some manner

of correction must also be incorporated, in the event the learner observes a counter-

example to an earlier assumption (i.e., it notices that in fact the process does not target

/g/). Initially it would assume a process targets the largest natural class the observed

segments belong to, but then it could gradually shrink that class to accommodate the

full set of data. This is another area in which the use of feature alphabets could lead

to important developments.

Lastly, it should be noted that the ISLFLA presented in this chapter has evolved

from previous learning results presented in Chandlee and Koirala (2014) and Chandlee

and Jardine (2014). The learning algorithms proposed in those works also involved the

two stages of 1) building a prefix tree transducer and 2) merging states with the same

suffix of length k − 1. The former was the first to demonstrate the utility of this state

merging strategy for learning mappings, but it could not guarantee that its output

would be subsequential because the prefix tree was not onward and the algorithm

lacked a principled mechanism for removing non-determinism. Chandlee and Jardine

(2014) addressed these shortcomings by modifying OSTIA itself with the SL state

merging criterion. Thus the learner’s output was guaranteed to be both subsequential

and SL, but only if the data set was closed under a certain property that prevents the

problematic situation depicted in Figure 6.7 above. The stronger learning result of

identification in the limit was possible for the current version of the ISLFLA because

it discards OSTIA’s searching strategy and instead merges each state directly with its

own suffix of length k − 1.

136

To conclude, this chapter has presented a learning algorithm that demonstrates

the utility of strict locality as an inductive principle when generalizing from finite

data. If human learners likewise generalize in this way when learning local phonological

mappings, then these results suggest a reason why these mappings have this property

in the first place: without it they’d be unlearnable. The larger implication is that

phonological learning is modular, since clearly non-SL processes will also fall outside

of the purview of this learner. The next chapter will include a discussion of how these

results might be extended to the learning of non-SL processes.

For formal learning theory, the main contribution of this chapter is that the

class of Input SL functions is identifiable in the limit from positive data. For language

acquisition, this result demonstrates some utility for the property of strict locality when

generalizing from positive data, though further work is needed to better understand

how strict locality interacts with other aspects of the total system of phonological

learning.

137

Chapter 7

DISCUSSION

This chapter will further discuss the contributions of this thesis, as well as re-

maining issues and areas for future work. This discussion is divided into three sections:

§7.1 quantifies the empirical coverage of SL functions by reporting the results of a sur-

vey of the P-Base database (v.1.95, Mielke (2004)) and discussing the potential of

extending the SL analysis to the non-SL exceptions, §7.2 further discusses the implica-

tions of the learning results presented in the previous chapter, and §7.3 addresses the

relationship between computational explanations of typology and other explanatory

factors like phonological naturalness.

7.1 Empirical Coverage of SL Functions

Chapters 3, 4, and 5 demonstrated the range of phonological and morphological

processes that can be modeled with SL functions. To better quantify the empirical cov-

erage of strict locality, a review was conducted of the approximately 5500 patterns from

over 500 languages in the P-Base database (v.1.95, Mielke (2004)) to determine how

may of them are SL-describable. A process was considered SL if a k-value could be iden-

tified such that a SL-k transducer could be constructed to model the process. By this

measure, 94% of the processes in the database are necessarily SL. The remaining 6%,

which includes suprasegmental processes, across-word-boundary and pre/post-pausal

processes, and vowel and consonant harmony, are either non-SL or SL given additional

assumptions. These cases will be addressed further below. The results of this survey

lend weight to the claim that strict locality is a strong property of many phonological

processes, but it is not meant to reflect the cross-linguistic proportion of SL to non-SL

138

processes. Indeed this particular database was not intended to represent the distribu-

tion of local and long-distance processes.1 And in fact, as will now be discussed, future

work could reveal that some of the processes in the remaining 6% are also SL.

First, this thesis has focused on segmental phonology, putting aside processes

like stress and tone assignment. At the phonotactic level, Heinz (2007) and Rogers

et al. (2013) have shown that most stress patterns are SL for some k, which means the

set of well-formed strings according to the surface stress pattern is a SL language. This

finding suggests some potential for the mappings that correspond to stress assignment

to likewise be describable with SL functions. Consider again a rule of the form in (1).

(1) A → B / C D

One way to think of the process that this rule represents is as a repair for a violation

of the phonotactic constraint *CAD. Such a constraint can itself be modeled with a SL

language, where k = |CAD|. So there is some correspondence between SL phonotac-

tics and SL processes. Stress assignment (and tonal) patterns comprise only 0.6% of

the patterns in P-Base, but other databases exist that provide a more comprehensive

cross-linguistic view of stress assignment.2 As for tonal processes, it is already known

that they are not all SL, as Jardine (2013) discusses one category (tonal plateauing)

that is not even subsequential. But as with stress assignment, the interest will lie in

determining whether non-SL patterns are the exception or the norm in suprasegmental

phonology.

Second, approximately 3% of the processes in P-Base take place across a word

boundary or are triggered by a pause. An example of the former is found in Slovene,

as shown in the examples in (2). The rule for this process is shown in (3) (Herrity,

2000).

1 The sample reflected what grammars were present in the library of Ohio State University (circa
2004), where it was originally created.

2 e.g., UD Phonology Lab Stress Pattern Database (http://phonology.cogsci.udel.edu/dbs/stress/),
StressTyp (http://www.unileiden.net/stresstyp/)

139

(2) Slovene

a. /z/ brátom 7→ z brátom ‘with the brother’

b. /z/ mı́ze 7→ z mı́ze ‘from the table’

c. /z/ stréhe 7→ s stréhe ‘from the roof’

(3) /z/ → [s] / ## [-voice]

An example of a pre-pausal process is found in Bengali, as reported by Ray (1966).

The rule is shown in (4)

(4) Bengali

/bh/ → [B] / before pause or juncture

Processes such as these were classified with the 6% that are not necessarily SL, because

they are only SL if the FST alphabet can be augmented with symbols to represent

certain boundaries. Indeed it is easy to see that the process in (3) targets a sequence

like z##b, which is bounded by length 4. The current construction of a SL FST

assumes a mapping from UR 7→ SR in which the UR and SR are single words. But

if that assumption is relaxed and if the alphabet includes a symbol for a between-

word boundary, then we can model (3) with a SL FST.3 This between-word boundary

symbol needs to be distinct from the morpheme boundary symbol, which is typically

either + or -, since some processes, like the one in (5), may be triggered by morpheme

boundaries but not between-word boundaries.

(5) Catalan (Wheeler, 1979)

a. ∅ → d / {n, l} +r

b. /bOl+R+E+m/ 7→ [buldREm] ‘we shall want’

c. /ofEn+R+E+m/ 7→ [uf@ndREm] ‘we shall offend’

3 The FST will actually be SL-3, since the between-word boundary is now a single symbol.

140

This extension of the UR 7→ SR mapping from single words to multiple-word strings

was also assumed in SPE. According to that theory, the input to the phonological

component of the grammar is not in fact single words, but the sentences (i.e., strings

of formatives) that were constructed by the syntactic component (Chomsky and Halle,

1968, pg. 9). Thus the existence of processes triggered by various boundaries (e.g.,

morpheme, word, between-word) is expected, and the SL FST formalism should be able

to handle them. But a question is raised regarding how many different types of bound-

aries to allow. The answer relies on the correct description of the processes that are

being modeled - provided the boundary has psychological reality (i.e., speakers clearly

only apply the process in the presence of the boundary) its inclusion in the alphabet is

justified. The prediction is that the processes are still SL regardless of which type of

boundary they involve, though it would be interesting to investigate further whether

there are differences among the various types of boundary processes. In particular,

since the boundary type can correspond to different interfaces (phonology-morphology,

phonology-syntax, morphology-syntax), it may be the case that the computational

properties of these processes also differ. If not, this would be further evidence that the

prevalence of the SL restriction extends beyond phonology proper.

As for processes triggered by a pause, such as (4), these too can be accom-

modated by adding a designated symbol to the alphabet to represent ‘pause’, though

there is less theoretical support for doing so. It is unclear what component of the

grammar is involved in such alternations, since clearly the pauses in a string are not

represented underlyingly. For present purposes, it suffices to note that IF we allow for

a ‘pause’ symbol in the string, the process is SL, though more needs to be understood

about how incorporating such discourse factors affects the predicted range of what is

phonologically possible.

Third, just over 2% of the patterns in the database are vowel harmony patterns.

Vowel harmony is among the most prominent examples of non-local or long-distance

processes, but its SL status in fact depends on whether or not the language has trans-

parent vowels. Consider the two sets of vowel harmony rules in (6) and (7), where

141

α is the harmonizing feature. Rules (6-a) and (7-a) are for progressive (left-to-right)

harmony, and rules (6-b) and (7-b) are for regressive (right-to-left) harmony.

(6) a. V[−α] → [+α] / V[+α](C)(C)

b. V[−α] → [+α] / (C)(C)V[+α]

(7) a. V[−α] → [+α] / V[+α]C0

b. V[−α] → [+α] / C0V[+α]

The rules in (6) are for a language that allows only single-consonant codas and onsets,

but they could be modified to accommodate more or less restrictive syllable structures.

The idea is that the number of consonants that will intervene between the two vowels

involved in the harmony process is bounded by the length of the maximum allowed

coda + onset. The two vowels are not adjacent, but they are also not arbitrarily far

apart, and so both of these rules could be modeled with OSL functions.

On the other hand, the rules in (7) cannot be modeled with SL functions, because

the string represented by C0 is unbounded. So the SL status of vowel harmony without

transparent vowels depends on the correct generalization of the process: if (6) is correct

then the process is SL, but if (7) is correct, then it is not. Vowel harmony is also not

SL when the language has transparent vowels that do not participate in the harmony

process. Once transparent vowels are introduced, there is no longer an upper bound

on the amount of material that can intervene between the two harmonizing vowels.

The remaining patterns in the database include substitution processes that are

conditioned by the presence or absence of another element in the string. An example

from Sacapulteco is shown in (8) and exemplified in (9) (Dubois, 1981) (note: /-S/ is

the passive morpheme).

(8) /-S/ → [s] / after stem containing {ts, ts’, s}

(9) Sacapulteco

a. /sik’i+S/ 7→ [sik’is] ‘it was read’

142

b. /tsili+S/ 7→ [tsilis] ‘it was returned’

c. /ts’ono+S/ 7→ [ts’onos] ‘it was asked for’

d. /kuPum+asa+S/ 7→ [kuPmasas] ‘it was moved’

This consonant harmony process is not SL for any k, because the entire stem (which

is unbounded in length) must be checked for the presence or absence of one of the

triggering segments {ts, ts’, s}. Two things can be said about such processes. One,

a large percentage of them are subsequential (Luo, 2013), which means they are sub-

regular (Mohri, 1997). Two, the phonotactic restrictions that correspond to them can

be modeled with a subregular language - just not a SL one. Heinz (2010) shows that

the Strictly Piecewise (SP) languages can model the set of well-formed strings derived

from long-distance consonant harmony processes. Recall the Subregular Hierarchy of

formal languages, which was discussed in Chapter 2 and is shown again in Figure 7.1.

Regular

Star-Free

LTT

LT PT

TSL

SL SP

1

Figure 7.1: Subregular Hierarchy of formal languages (LTT = Locally Threshold
Testable, PT = Piecewise Testable, TSL = Tier-based Strictly Local, LT
= Locally Testable, SP = Strictly Piecewise, SL = Strictly Local)

The Strictly Piecewise (SP) languages differ minimally from the SL languages in

that they are described with grammars of subsequences of length k instead of substrings.

The difference is that a subsequence is not necessarily contiguous. So the substrings

of length 2 of the string abca include {#a, ab, bc, ca, a#}, while the subsequences

143

of length 2 include {a...b, a...c, a...a, b...c, b...a, c...a}. In other words, subsequences

encode restrictions in terms of precedence instead of contiguity.

The Sacapulteco process in (9) indicates that the language has a phonotactic

restriction against the subsequences ts...S, ts’...S, and s...S.4 The set of well-formed

surface forms is accepted by the FSA in Figure 7.2. In this FSA, S = {ts, ts’, s} and

? represents any segment except for S and S.

0

?

S
S

ʃ

ʃ

S
?

Sʃ
?

Figure 7.2: FSA for surface forms in Sacapulteco, Σ = {?, S, S}

The FSA has separate states for S and S, and once state S is reached there is no way to

reach state S. In this way it models the restriction against S preceding S. As with the

SL FSAs, however, this FSA does not model the process by which a S that does follow

a S becomes [s]. For that we need some functional counterpart to the SP languages,

which to date does not exist. Though defining such a functional class is being left

for future work, this thesis hopefully points to a fruitful approach: to combine the

properties of subsequential transduction with the properties of SP languages. The

resulting functional class has the potential to model long-distance consonant harmony

processes such as (9), as well as long-distance dissimilation processes, which have also

4 A similar restriction holds in Navaho (Sapir and Hoijer, 1967).

144

been shown to be largely subsequential (Payne, 2013). Long-distance harmony and

dissimilation processes such as these are similar to the non-SL displacement cases

discussed in Chapter 4, except they involve substitution instead of copying and deletion.

Likewise, the non-SL vowel harmony patterns, which are also subsequential

(Gainor et al., 2012; Heinz and Lai, 2013), might be describable with a functional

counterpart to the Tier-based Strictly Local (TSL) languages, which also has yet to

be defined (see Heinz et al. (2011) for TSL phonotactics). The TSL languages are

those for which SL constraints are defined over a specified tier of segments.5 In the

case of vowel harmony, this tier would contain only harmonizing vowels, and a SL-2

constraint would prohibit adjacent vowels that disagree in the harmonizing feature.

This to-be-defined class of TSL functions will also be needed to model long-distance

dissimilation with blocking, such as the Latin liquid dissimilation process exemplified

in (10) (Jensen, 1974; Odden, 1994).

(10) Latin

a. /navalis/ 7→ navalis ‘naval’

b. /solalis/ 7→ solaris ‘solar’

c. /floralis/ 7→ floralis ‘floral’

Comparing (10-a) and (10-b) we see that a /l/ that follows another /l/ surfaces as

[r], unless an /r/ already appears somewhere between the two /l/’s, as in (10-c). As

discussed by Heinz (2010), the phonotactics of this pattern cannot be modeled with

a SP language. The reason is that the change in (10-b) cannot be captured with a

constraint against the subsequence l...l, since that constraint is violated by the well-

formed floralis. With a k-value of 3, the subsequence l...r...l could be permitted, while

l...l...l is ungrammatical. But this approach makes the wrong predictions, since a word

like floralisralis, which should be well-formed, contains both l...r...l and l...l...l. More

generally, the SP grammars cannot require the presence of a subsequence. They can

5 Similar to autosegmental representations in phonology.

145

only state which subsequences are and are not permitted. But as with vowel harmony

with transparent vowels, once a tier is defined (in this case a tier for liquids) the

constraint can be reinterpreted as SL-2, with the substring *ll prohibited.

It has been suggested that the SL, TSL, and SP languages are sufficient to

model phonotactics (Heinz, 2013). By hypothesis, their functional counterparts - the

SL functions presented in this thesis and the as yet undefined SP and TSL functions -

will be sufficient to model processes.

While the primary topic of interest in this thesis has been phonological processes,

it was also shown that the SL analysis extends to some types of morpho-phonological

and morphological processes. The treatment of metathesis, for example, included cases

that repair phonotactic violations or are triggered by prosodic factors like stress. But it

also included cases like the Rotuman complete/incomplete distinction, which appears

morphological in nature but is derived via CV-metathesis. Thus metathesis processes

appear to span the phonology-morphology boundary. And Chapter 5 demonstrated

that certain processes that are unequivocally morphological, like affixation and partial

reduplication, are also SL. But there are also clear examples of morphological processes

that are not SL, such as non-local partial and full reduplication. The previous research

on computational properties of natural language has largely focused on phonology and

syntax, while relatively less is known about morphology. It will be an interesting area

of future research to determine where morphology is situated with respect to phonology

and syntax in terms of the computational complexity of its processes. In particular,

the computational properties of templatic morphology could lead to important insights.

As morphological analysis of surface forms is a key area of natural language processing

research, this could also be an area in which greater connections can be established

between theoretical and applied computational linguistics.

One last direction in which to expand the empirical coverage of the SL FST

formalism is free variation or rules that apply optionally. The deterministic nature

of the SL FSTs requires each input string to be mapped to exactly one output, but

certain phenomena are better modeled with a mapping from a single underlying form

146

to two (or more) surface forms. In addition, the choice of surface form is often modeled

stochastically, with certain factors making one option more likely than another. One

possible adaptation of the current SL FSTs that would maintain subsequentiality is

the p-subsequential transducers studied by Mohri (1997). These transducers are still

deterministic except for the final output function, which allows for up to p possible

final output strings per state. Another route would be to combine the properties of

SL languages with some type of non-deterministic weighted transducer, in which the

outgoing transitions of each state are assigned weights corresponding to the probability

of that particular path extension. These weights would be determined by training the

FST on some representative data set. Since the learning algorithm presented in Chapter

6 relies in part on the assumption that its target is deterministic, a different algorithm

would be needed to learn this new type of weighted transducer.

7.2 Implications of Learning Results

This thesis has demonstrated that the property of strict locality can be used

as an inductive principle to learn a phonological mapping, but the learning algorithm

presented in Chapter 6 is not meant to be a complete model of phonological learning.

It was shown that this learner can learn a mapping corresponding to a single process,

but the question remains whether the human learner targets processes individually

or the total phonological grammar. The research reviewed in Chapter 2 on learning

within OT assumes the latter scenario: equipped with the universal set of constraints,

the OT learner is tasked with learning the grammar (i.e., the ranking) that directly

maps the UR to the SR. An important question for future work is how strict locality

can be used to learn not just individual processes but the total grammar.

Given a set of SL processes, their respective SL functions could be combined

into a single function by composition. A learner like the ISLFLA could then be tasked

with learning this total grammar function given data that samples it. However, the

feasibility of this approach depends on whether SL functions have the property of

closure under composition. Recall from Chapter 2 that the regular relations are closed

147

under composition; this means that the relation that results from composing two or

more regular relations is guaranteed to also be regular. For SL functions, the question is

whether the composition of two SL functions is also SL. In the case of OSL functions,

the answer is no. Since closure properties serve as guarantees that the result of an

operation (in this case composition) will always have the property in question, the

existence of even one counter-example disproves the closure property.

A counter-example to the closure under composition of OSL functions can be

constructed using the long-distance nasal assimilation example from Kikongo, shown

in (11) (Meinhof, 1932; Dereau, 1955; Webb, 1965; Ao, 1991; Odden, 1994; Piggott,

1996; Rose and Walker, 2004). This process causes a suffix voiced stop to surface as

nasal when the stem contains a nasal.

(11) Kikongo

a. /tu+kun+idi/ 7→ [tukunini] ‘we planted’

b. /tu+nik+idi/ 7→ [tunikini] ‘we ground’

The mapping in (11) cannot be modeled with a SL function, because the trigger of the

process (a nasal in the stem) can be arbitrarily far away from the target in the suffix.

However, the same mapping can be achieved as the composition of the two processes

in (12) and (13).

(12) [−nasal] → [+nasal] / [+nasal]

(13) {[−cons], [−voice]} → [−nasal] /

Given the input /tunikidi/, applying the rule in (12) left-to-right produces the output

[tuñik̃̃iñi]. Using this output as the input to the rule in (13) gives the output [tunikini].

Both of these processes are SL ((12) is OSL and (13) is both ISL and OSL). But the

composition of (12) and (13) gives the mapping of /tunikidi/ 7→ [tunikini]. As stated

148

above, this mapping is not SL.6

It remains to be seen whether the ISL functions are closed under composition.

Even if they are not, the ISLFLA can still be tested on cases in which the result of

composing two (or more) ISL functions is ISL, since the lack of a closure property only

means this is not guaranteed to be the case. It does not mean that such cases do not

exist. Success on this kind of test case would lend further support to the suggestion

that humans can learn phonology by generalizing in the way the ISLFLA does, but

cases in which the composed function is not SL will certainly merit further attention.

Do such cases exist in natural language, and, if so, how do humans learn them?

Notice that the two processes in (12) and (13) are similar in spirit to the copy-

delete decomposition of phonological movement reviewed in Chapter 4. The two steps

of copying and deletion were employed to model long-distance movement, and likewise

the spreading (which can be seen as copying of a feature) and removal of nasality in this

case achieves long-distance assimilation. The similarity between these cases raises two

additional questions, one linguistic and one formal. The linguistic interest is whether all

so-called long-distance processes can in fact be modeled as the composition of a series of

local operations, as has been suggested in the literature (Flemming, 1995; Nı́ Chiosáin

and Padgett, 1997; Bessell, 1998; Walker, 1998; Nı́ Chiosáin and Padgett, 2001). The

formal interest is whether any regular relation and/or subsequential function can be

decomposed into two SL functions.

It has already been established by Elgot and Mezei (1965) that any regular

function is equivalent to the composition of two subsequential functions, one left and

one right (see also Heinz and Lai (2013), who use this theorem to categorize various

vowel harmony patterns). The left subsequential function reads the input left-to-right

and possibly marks it up in some manner, and then the right subsequential function

reads the output of the first function right-to-left and removes the markings. This is

very similar to the treatment of nasal assimilation above - the first function marks up

6 For a formal proof see the appendix.

149

segments with the nasal feature and the second one removes that marking from the

segments that should not have it. Marking up segments in this way introduces abstract

intermediate representations that never surface, so the contributions of such analyses

tie into the debate in phonology on the right level of abstraction (see Kiparsky, 1968;

Hyman, 1970; Kenstowicz and Kisseberth, 1977).

Of course the closure under composition property is only important under the

assumption that processes are NOT learned individually. If they are learned individu-

ally, then the strategy of the ISLFLA is sufficient. But the distinction between learning

individual processes versus an entire grammar really reflects a larger open question of

the degree to which individual processes have psychological reality. The fact that Ger-

man speakers apply final devoicing to a nonce word that ends in a voiced obstruent

could be taken as evidence that these speakers ‘know’ the process of final devoicing.

But this empirical fact is equally compatible with the explanation that they are merely

submitting the nonce word to the entire grammar and the output has a word-final

voiceless obstruent. Thus it would be an interesting future research direction to devise

psycholinguistic studies that can provide evidence that processes have some autonomy

in terms of mental representation. A careful examination of acquisition data could also

provide insight into the intermediate states of the incomplete phonological grammar.

For example, to what degree are the ‘incorrect’ grammars that children use on their

way to acquiring the correct grammar best described as individual processes being

missing, applied in the wrong order, etc.?

Perhaps the true role of strict locality in learning will only be revealed in the

context of the total picture of phonological learning. The assumption for now is that it

indeed plays a role, since otherwise its prominence among phonological processes would

be reduced to coincidence. To put it another way, the findings of this thesis raise a

question: why are so many processes SL? The proposed answer is that it is because

those are the processes that can be learned. If there is no role for strict locality in

learning, the question remains.

Of course this view is only compatible with a modular account of phonological

150

learning, since it is not the case that all processes are Strictly Local. Until comparable

properties are identified for long-distance harmony and dissimilation processes, the

details of this modular approach cannot be nailed down. The general idea, though, is

that the complete phonological learner includes separate modules for separate classes

of processes. This thesis has proposed that one of these modules uses the property

of strict locality as an inductive principle to learn SL processes. Additional classes of

processes will likewise be targeted by additional modules that employ corresponding

inductive principles based on the computational property that defines their target class

of processes. As discussed above, a working hypothesis is that there will be at least

two such modules: one for SL processes and one for SP or TSL processes (or both).

Given the evidence that separate learning modules are already needed for learning

phonology and learning syntax (Lai, 2012, 2014), it seems reasonable to also posit

separate learning modules within each of these domains.

7.3 Explanations of Typology

To return to the question posed at the beginning: what is a possible phono-

logical process? This thesis has demonstrated the important role that computational

properties play in accounting for the range of attested variation, but the complete pic-

ture of what is ‘phonologically possible’ will surely involve several interacting factors.

In addition to computational properties, there seems to be a clear role for phonetic

explanations, either optimization or diachronic reanalysis due to misperception, varia-

tion, etc. (e.g., Evolutionary Phonology (Blevins, 2004)). The need for some type of

phonetic explanation is clear from the examples in (14).

(14) a. /n/ → N / {k, g}

b. /n/ → tS / {k, g, b}

The rule in (14-a) is attested in many languages and has a clear phonetic explanation

in that anticipatory co-articulation has caused the nasal to assimilate to the place

feature of the following stop. As we saw in Chapter 3, this is a substitution process

151

that can be modeled with a SL-2 function. The rule in (14-b) can also be modeled

with a SL-2 function, yet it has no clear phonetic motivation. As an analysis of some

attested alternation, it is highly suspect. The fact that both of these processes - one

expected and one not likely to be found in any language - are both SL suggests yet

again that this class of functions is still too large to fully characterize phonological

mappings. However, the needed restriction this time is not a computational one, since

the two processes are computationally equivalent.

Recall again the rule schema that was used to generalize the kinds of processes

that are SL, repeated in (15).

(15) xi → yi / U V

The use of an index on the x and y strings was justified by the fact that a target of a

process cannot be changed into any arbitrary segment; its structural change is specified

by the rule. In the case of final devoicing, the set X contains voiced obstruents and

the set Y contains voiceless obstruents, but the definition of the rule includes pairing

the strings in these sets appropriately ((b, p), (d, t), (g, k), etc.). As part of the rule’s

definition, this prevents the FST from mapping b to k, but nothing prevents us from

defining the pairings differently (e.g., (b, t), (g, p), (d, k)). In other words, nothing is

incorporated into the formalism itself that can recognize which pairings are the correct

ones. Likewise, nothing in the formalism indicates that {k, g} but not {k, g, b} is a

reasonable set of right contexts for a change from /n/ to [N].

Moving forward, then, it will be interesting to see how our understanding of

phonetic naturalness can be translated into restrictions on the strings in X, Y , U , and

V , as well as co-occurrence restrictions among the strings in these sets. Such restric-

tions would augment the current SL FST formalism in such a way that it combines

computational and phonetic-based explanations of phonological typology. Two possi-

ble directions for establishing such restrictions are 1) identifying which k-factors are

cross-linguistically marked, and 2) hypothesizing an upper bound on the k-value for

152

phonological processes. The goal would be to define a phonological subclass of the SL

functions, which would still be within the scope of the ISLFLA proposed in Chapter 6.

153

Chapter 8

CONCLUSION

-It’s not possible!

-Not probable.
Pirates of the Caribbean

This dissertation has used computational analysis to propose a defining property

of phonological and morphological processes with local triggers. It has defined a class

of subregular functions and shown how these functions can model the mappings that

underly such processes. The implication of this result is that this functional class

delimits the expected range of variation for local processes. An explanation for why

local processes are restricted in this way was provided through a demonstration that

the defining property of strict locality can be used to learn these SL mappings. If the

module of the phonological learner responsible for learning local processes is biased to

only search the hypothesis space of Strictly Local mappings, then mappings without

this property will not have a place in phonological grammars.

Since the computational analyses presented throughout the thesis describe the

mapping from underlying to surface form directly, these results are independent of

and compatible with both of the predominant theories of generative phonology, SPE

and OT. Phonologists have used these theories to describe a wide range of attested

phenomena, in the process revealing many insights into the mental representations of

phonological grammars. As for the goal of identifying what is phonologically possible,

the approach has been to generalize over the range of attested phenomena that have

been described and establish guidelines for what is and is not there. In other words,

conceptions of what is possible have been made based on the set of rules or constraints

that have been proposed to account for attested patterns.

154

The alternative approach advocated by the current work is to assume that the

set of possible processes is defined in part by their computational properties. For now,

restricting our attention to local processes, the claim is that this set is the set of SL

functions, which are defined with a much stronger computational property than has

been previously established for phonology. This claim leads to the hypothesis in (1).

(1) SL hypothesis: Local phonological processes are Strictly Local mappings.

Now the question is how to guarantee that the theory of phonology generates only

the SL class. The answer will lie in a closer examination of the difference between the

patterns we do and do not see and how the current formulation of rules and constraints

(and their interactions) allow for the patterns we wish to rule out. This has always

been a goal of research in generative phonology, but the findings of this thesis are

meant to remove one of the uncertainties by identifying exactly the class we want to

generate.

The combined evidence of the empirical coverage and learnability of SL map-

pings indicates that strict locality is the right notion of locality in phonological pro-

cesses. Future work will seek comparable properties for long-distance processes, lead-

ing to a more complete characterization of the kinds of computations required by the

phonological grammar.

As a working hypothesis, the SL hypothesis highlights the importance of look-

ing for the exceptions. As was revealed by the discussion of displacement patterns in

Chapter 4, the data collected about a language and the descriptions of its patterns

typically do not reflect the goal of drawing computational distinctions. But the SL

hypothesis can serve as a guiding principle for collecting the data that would crucially

distinguish whether the pattern is SL or not. Such investigations will either uphold

the hypothesis, or else provide informative exceptions. Under the assumption that the

exceptions will be less probable than the rule, their appearance should spark further

155

investigation into what other factors bring them about. Only through such examina-

tions of the attested, the possible, and the improbable - examinations made possible

by hypotheses like (1) - can we truly understand the nature of phonological processes.

156

Bibliography

Abboud, P. F. (1979). The verb in northern Najdi Arabic. Bulletin of the School of
Oriental and African Studies, 42:467–499.

al Mozainy, H. (1981). Vowel alternations in a Bedouin Hijazi Arabic dialect: Abstract-
ness and stress. PhD thesis, University of Texas Austin.

al Mozainy, H., Bley-Vroman, R., and McCarthy, J. J. (1985). Stress shift and metrical
structure. Linguistic Inquiry, 16:135–144.

Albright, A. and Hayes, B. (1999). An automated learner for phonology and morphol-
ogy. Unpublished manuscript, UCLA.

Albright, A. and Hayes, B. (2002). Modeling english past tense intuitions with minimal
generalization. In Maxwell, M., editor, Proceedings of the 6th Meeting of the ACL
Special Interest Group in Computational Phonology (SIGPHON).

Alderete, J., Brasoveanua, A., Merchant, N., Prince, A., and Tesar, B. (2005). Contrast
analysis aids in the learning of phonological underlying forms. In Alderete, J., Han,
C., and Kochetov, A., editors, WCCFL 24: Proceedings of the 24th West Coast
Conference on Formal Linguistics, pages 34–42. Somerville, MA, Cascadilla.

Anderson, J. and Ewen, C. (1987). Principles of Dependency Phonology. Cambridge,
Cambridge University Press.

Anderson, S. R. (1974). The Organization of Phonology. New York, Academic Press.

Anderson, S. R. (1981). Why phonology isn’t ‘natural’. Linguistic Inquiry, 12:493–539.

Angluin, D. (1982). Inference of reversible languages. Journal for the Association of
Computing Machinery, 29(3):741–765.

Anttila, A. (1997). Deriving variation from grammar : A study of Finnish genitives.
John Benjamins.

Anttila, R. (1989). Historical and Comparative Linguistics. Amsterdam and Philadel-
phia, John Benjamins, 2nd edition.

Ao, B. (1991). Kikongo nasal harmony and context-sensitive underspecification. Lin-
guistic Inquiry, 22:193–96.

157

Archangeli, D. (1985). Yokuts harmony: Evidence for coplanar representation in non-
linear phonology. Linguistic Inquiry, 16:335–372.

Archangeli, D. and Pulleyblank, D. (1987). Minimal and maximal rules: Effects of tier
scansion. In NELS 17: Proceedings of the 17th Annual Meeting of the North East
Linguistic Society, pages 16–35. GLSA, University of Massachusetts Amherst.

Archangeli, D. and Pulleyblank, D. (1994). Grounded Phonology. Cambridge, MA,
MIT Press.

Bach, E. and Harms, R. T. (1972). How do languages get crazy rules? In Stockwell,
R. P. and Macaulay, R. K., editors, Linguistic Change and Generative Theory, pages
1–21. Bloomington, Indiana University Press.

Baković, E. (2013). Blocking and Complementarity in Phonological Theory. Bristol,
CT, Equinox.

Baković, E. and Wilson, C. (2000). Transparency, strict locality, and targeted con-
straints. In Billerey, R. and Lillehaugen, B. D., editors, WCCFL 19: Proceedings
of the 19th West Coast Conference on Formal Linguistics, pages 43–56. Somerville,
MA, Cascadilla.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. Center for the
Study of Language and Information.

Bennett, W. (2013). Dissimilation, Consonant Harmony, and Surface Correspondence.
PhD thesis, Rutgers University.

Besnier, N. (1987). An autosegmental approach to metathesis in Rotuman. Lingua,
73:201–223.

Bessell, N. J. (1998). Local and non-local consonant-vowel interaction in Interior Salish.
Phonology, 15:1–40.

Bhaskararao, P. (1980). Kon. ekor Gadaba: A Dravidian language. Pune, Deccan Col-
lege, Post-Graduate Institute.

Blake, F. R. (1917). Reduplication in Tagalog. The American Journal of Philology,
38(4):425–431.

Blanc, H. (1970). The Arabic dialect of the Negev Bedouins. In Proceedings of the
Israel Academy of Sciences and Humanities, volume 4, pages 112–150.

Blevins, J. (2004). Evolutionary Phonology. Cambridge, Cambridge University Press.

Blevins, J. (2008). Consonant epenthesis: Natural and unnatural histories. In Good,
J., editor, Language universals and language change, pages 79–109. Oxford, Oxford
University Press.

158

Blevins, J. and Garrett, A. (1998). The origins of consonant-vowel metathesis. Lan-
guage, 74(3):508–556.

Blevins, J. and Garrett, A. (2004). The evolution of metathesis. In Hayes, B., Kirch-
ner, R., and Steriade, D., editors, Phonetically Based Phonology, pages 117–156.
Cambridge, Cambridge University Press.

Bloch, J. (1915). La Formation de la Langue Marathe. Paris, E. Champion.

Boersma, P. (1997). How we learn variation, optionality, and probability. In Proceedings
of the Institute of Phonetic Sciences 21.

Boersma, P. (1998). Functional phonology: Formalizing the interactions between artic-
ulatory and perceptual drives. PhD thesis, University of Amsterdam.

Boersma, P. (2000). Learning a grammar in functional phonology. In Dekkers, J.,
van der Leeuw, F., and van de Weijer, J., editors, Optimality Theory: Phonology,
Syntax, and Acquisition. New York, Oxford University Press.

Boersma, P. and Hayes, B. (2001). Empirical tests of the Gradual Learning Algorithm.
Linguistic Inquiry, 32:45–86.

Bogoras, W. (1969). Chukchee. In Boas, F., editor, Handbook of American Indian Lan-
guages, Bureau of American Ethnology Bulletin 40, Part 2, pages 631–903. Wash-
ington, DC, Government Printing Office.

Buckley, E. (2000). On the naturalness of unnatural rules. In Proceedings from the 2nd
Workshop on American Indigenous Languages. UCSB Working Papers in Linguis-
tics, volume 9.

Buckley, E. (2002). Rule naturalness and the acquisition of phonology. Talk given at
the Second North American Phonology Conference, Concordia University, Montréal,
April 25-28.

Buckley, E. (2003). Children’s unnatural phonology. Berkeley Linguistics Society,
29:523–534.

Buckley, E. (2011). Metathesis. In van Oostendorp, M., Ewen, C., Hume, E., and Rice,
K., editors, The Blackwell Companion to Phonology, volume 3. Wiley-Blackwell.

Byrd, D. (1993). Marshallese suffixal reduplication. In Mead, J., editor, WCCFL 11:
Proceedings of the 11th West Coast Conference on Formal Linguistics.

Carpenter, A. C. (2010). A naturalness bias in learning stress. Phonology, 27:345–392.

Chandlee, J., Athanasopoulou, A., and Heinz, J. (2012). Evidence for classifying
metathesis patterns as subsequential. In Choi, J., Hogue, E. A., Punske, J., Tat,
D., Schertz, J., and Trueman, A., editors, WCCFL 29: Proceedings of the 29th West
Coast Conference on Formal Linguistics. Somerville, MA, Cascadilla.

159

Chandlee, J. and Heinz, J. (2012). Bounded copying is subsequential: implications for
metathesis and reduplication. In Proceedings of the 12th Meeting of the ACL Special
Interest Group in Computational Morphology and Phonology (SIGMORPHON).

Chandlee, J. and Jardine, A. (2014). Learning phonological mappings by learning
Strictly Local functions. In Kingston, J., Moore-Cantwell, C., Pater, J., and Staubs,
R., editors, Proceedings of the 2013 Meeting on Phonology. LSA.

Chandlee, J. and Koirala, C. (2014). Learning local phonological rules. In Proceedings
of the 37th Penn Linguistics Colloquium.

Charette, M. (1988). Some Constraints on Governing Relations in Phonology. PhD
thesis, McGill University.

Charette, M. (1990). Conditions on Phonological Government. Cambridge, Cambridge
University Press.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions
on Information Theory 113124, IT-2.

Chomsky, N. (1959). On certain formal properties of grammars. Information and
Control, 2:137–167.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA, MIT Press.

Chomsky, N. (1973). Conditions on transformations. In Anderson, S. and Kiparsky, P.,
editors, A Festschrift for Morris Halle, pages 232–286. Holt, Rinehart, and Winston,
New York.

Chomsky, N. and Halle, M. (1968). The Sound Pattern of English. New York, Harper
& Row.

Churchward, C. (1940). Rotuman Grammar and Dictionary. Sydney, Methodist Church
of Australasia, Department of Overseas Missions.

Clark, A. and Lappin, S. (2012). Computational learning theory and language ac-
quisition. In Kempson, R., Asher, N., and Fernando, T., editors, Philosophy of
Linguistics, pages 445–475. Elsevier.

Clements, G. N. (1976). Vowel Harmony in Nonlinear Generative Phonology: An
Autosegmental Model. Bloomington, Indiana University Linguistics Club.

Coffman, I. (2013). Explaining long-distance liquid metathesis: Misperception vs. opti-
mization. In Fainleib, Y., LaCara, N., and Park, Y., editors, NELS 41: Proceedings
of the 41st Annual Meeting of the North East Linguistic Society, pages 113–126.
GLSA, University of Massachusetts Amherst.

Crouch, M. (1994). The phonology of DEg, ms. GILLBT, Ghana.

160

Davidson, J. (1977). A Contrastive Study of the Grammatical Structures of Aymara
and Cuzco Quechua. PhD thesis, University of California, Berkeley.

de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Grammars.
Cambridge, Cambridge University Press.

Demers, R. A. (1974). Alternating roots in Lummi. International Journal of American
Linguistics, 40(1):15–21.

Dereau, L. (1955). Cours de Kikongo. Namur, A. Wesmael-Charlier.

Diver, W. (1958). On the prehistory of Greek consonantism. Word, 14:1–25.

Dresher, E. (1999). Charting the learning path: Cues to parameter setting. Linguistic
Inquiry, 30:27–67.

Dresher, E. and Kaye, J. (1990). A computational learning model for metrical phonol-
ogy. Cognition, 34:137–195.

Dubois, J. W. (1981). The Sacapultec Language. Ann Arbor, UMI.

Dumenil, A. (1987). A rule-account of metathesis in Gascon. Lingvisticae Investiga-
tiones, 11:81–113.

Eisner, J. (2000). Directional constraint evaluation in Optimality Theory. In Proceed-
ings of the 18th International Conference on Computational Linguistics (COLING
2000), pages 257–263. Morgan Kaufmann.

Elgot, C. C. and Mezei, J. E. (1965). On relations defined by generalized finite au-
tomata. IBM Journal of Research and Development, 9(1):47–68.

Elworthy, F. T. (1875). The Dialect of West Somerset (English Dialect Society, Series
D, Miscellaneous, 7). London, Trübner.

Flemming, E. (1995). Vowels undergo consonant harmony. Paper presented at the
Trilateral Phonology Weekend, Stanford University.

Frank, R. and Satta, G. (1998). Optimality Theory and the generative complexity of
constraint violability. Computational Linguistics, 24(2):307–315.

Friederici, A. D. and Wessels, J. M. (1993). Phonotactic knowledge and its use in infant
speech perception. Perception & Psychophysics, 54:287–295.

Gafos, A. (1996). The Articulatory Basis of Locality in Phonology. PhD thesis, Johns
Hopkins University.

161

Gafos, A. and Lombardi, L. (1999). Consonant transparency and vowel echo. In
Tamanji, P., Hirotani, M., and Hall, N., editors, NELS 29: Proceedings of the 29th
Annual Meeting of the North East Linguistic Society, pages 81–96. GLSA, University
of Massachusetts Amherst.

Gainor, B., Lai, R., and Heinz, J. (2012). Computational characterizations of vowel
harmony patterns and pathologies. In Choi, J., Hogue, E. A., Punske, J., Tat, D.,
Schertz, J., and Trueman, A., editors, WCCFL 29: Proceedings of the 29th West
Coast Conference on Formal Linguistics, pages 63–71. Somerville, MA, Cascadilla.

Gerdemann, D. and van Noord, G. (2000). Approximation and exactness in finite state
Optimality Theory. In Proceedings of the 5th Meeting of the ACL Special Interest
Group in Computational Phonology (SIGPHON 2000).

Gildea, D. and Jurafsky, D. (1995). Automatic induction of finite state transducers
for simple phonological rules. In Proceedings of the 33rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 9–15. Association for Computational
Linguistics.

Gildea, D. and Jurafsky, D. (1996). Learning bias and phonological-rule induction.
Computational Linguistics, 22(4):497–530.

Gold, E. (1967). Language identification in the limit. Information and Control, 10:447–
474.

Goldsmith, J. (1976). Autosegmental Phonology. PhD thesis, MIT.

Goldsmith, J. (1979). Autosegmental Phonology. New York, Garland.

Grammont, M. (1905-1906). La métathèse dans le parler de Bagnéres-de-Luchon.
Mémoires de la Société de Linguistique de Paris, 13:73–90.

Grammont, M. (1948). Phonétique du Grec Ancien. Lyon, IAC.

Halle, M. (1959). Questions of linguistics. Nuovo Cimento, 13:494–517.

Halle, M. (1961). On the role of simplicity in linguistic description. In Jakobson, R.,
editor, Structure of Language and Its Mathematical Aspects, Proceedings of the 12th
Symposium in Applied Mathematics, pages 89–94. American Mathematical Society.

Halle, M. (1962). Phonology in generative grammar. Word, 18:54–72.

Halle, M. (1964). On the bases of phonology. In Fodor, J. and Katz, J. J., editors, The
Structure of Language: Readings in the Philosophy of Language. Englewood Cliffs,
NJ, Prentice-Hall.

Halle, M. and Vergnaud, J.-R. (1978). Metrical structures in phonology. ms., MIT.

162

Hansson, G. (2001). Theoretical and Typological Issues in Consonant Harmony. PhD
thesis, University of California, Berkeley.

Harkins, W. E. (1953). A Modern Czech Grammar. New York, King’s Crown Press.

Harris, J. (1990). Segmental complexity and phonological government. Phonology,
7:255–300.

Harris, J. and Halle, M. (2005). Unexpected plural inflections in Spanish: Reduplication
and metathesis. Linguistic Inquiry, 36(2):195–222.

Hayes, B. (2004). Phonological acquisition in Optimality Theory: the early stages. In
Kager, R., Pater, J., and Zonneveld, W., editors, Fixing Priorities: Constraints in
Phonological Acquisition. Cambridge University Press.

Hayes, B., Kirchner, R., and Steriade, D. (2004). Phonetically Based Phonology. Cam-
bridge, Cambridge University Press.

Hayes, B. and White, J. (2013). Phonological naturalness and phonotactic learning.
Linguistic Inquiry, 44:45–75.

Hayes, B. and Wilson, C. (2008). A maximum entropy model of phonotactics and
phonotactic learning. Linguistic Inquiry, 39:379–440.

Hayes, B., Zuraw, K., Siptár, P., and Londe, Z. (2009). Natural and unnatural con-
straints in Hungarian vowel harmony. Language, 85(4):822–863.

Hayward, D. (1984). The Arbore Language: A First Investigation, Including a Vocab-
ulary. Hamburg, Helmut Buske Verlag.

Healy, A. F. and Levitt, A. G. (1980). Accessibility of the voicing distinction for
learning phonological rules. Memory and Cognition, 8(2):107–114.

Heine, B. (1980). The Non-Bantu Languages of Kenya. Berlin, Dietrich Reimer Verlag.

Heinz, J. (2005a). Optional partial metathesis in Kwara’ae. In Proceedings of AFLA
12, pages 91–102.

Heinz, J. (2005b). Reconsidering linearity: Evidence from CV metathesis. In Alderete,
J., Han, C.-H., and Kochetov, A., editors, WCCFL 24: Proceedings of the 24th West
Coast Conference on Formal Linguistics, pages 200–208. Somerville, MA, Cascadilla.

Heinz, J. (2007). The Inductive Learning of Phonotactic Patterns. PhD thesis, Uni-
versity of California, Los Angeles.

Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology, 26:303–
351.

163

Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry, 41:623–661.

Heinz, J. (2013). The typology of phonological generalizations: A computational
perspective. Talk given at Meeting on Phonological Typology, Oxford University,
Somerville College, Oxford, United Kingdom, August 2013.

Heinz, J. (2014). (to appear) Computational theories of learning and developmental
psycholinguistics. In Lidz, J., Synder, W., and Pater, J., editors, The Cambridge
Handbook of Developmental Linguistics. Cambridge, Cambridge University Press.

Heinz, J. and Idsardi, W. (2011). Sentence and word complexity. Science,
333(6040):295–297.

Heinz, J. and Koirala, C. (2010). Maximum likelihood estimation of feature-based dis-
tributions. In Proceedings of the 11th Meeting of the ACL Special Interest Group in
Computational Morphology and Phonology (SIGMORPHON), pages 28–37. Associ-
ation for Computational Linguistics.

Heinz, J. and Lai, R. (2013). Vowel harmony and subsequentiality. In Kornai, A.
and Kuhlmann, M., editors, Proceedings of the 13th Meeting on the Mathematics of
Language (MoL 13), pages 52–63.

Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-based Strictly Local constraints
for phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 58–64. Association for Computational Linguistics.

Heinz, J. and Riggle, J. (2011). Learnability. In van Oostendorp, M., Ewen, C., Hume,
B., and Rice, K., editors, Blackwell Companion to Phonology. Wiley-Blackwell.

Hellberg, S. (1978). Unnatural phonology. Journal of Linguistics, 14:157–177.

Herrity, P. (2000). Slovene: A comprehensive grammar. London and New York: Rout-
ledge.

Hinton, L. and Langdon, M. (1976). Object-subject pronominal prefixes in La Huerta
Diegueño. In Langdon, M. and Silver, S., editors, Hokan Studies: Papers from the 1st
Conference on Hokan Languages, held in San Diego, CA, April 23-25, 1970, pages
113–128. Mouton.

Hock, H. H. (1985). Regular metathesis. Linguistics, 23:529–546.

Hoijer, H. (1933). Tonkawa: An Indian language of Texas. New York, Handbook of
American Indian Languages 3.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to Automata
Theory, Languages, and Computation. Boston, Addison Wesley, 2nd edition.

164

Horowitz, E. (1960). How the Hebrew Language Grew. Jewish Educational Committee
Press, New York.

Hulden, M. (2009). Finite-State Machine Construction Methods and Algorithms for
Phonology and Morphology. PhD thesis, University of Arizona.

Hume, E. (1991). Metathesis in Maltese: Implications for the Strong Morphemic
Plane Hypothesis. In Sherer, T., editor, NELS 21: Proceedings of the 21st Annual
Meeting of the North East Linguistic Society, pages 157–171. GLSA, University of
Massachusetts Amherst.

Hume, E. (1995). Beyond linear order: Prosodic constraints and CV metathesis. In
Gabriele, L., Hardison, D., and Westmoreland, R., editors, FLSM VI: Papers from
the 6th Annual Meeting of the Formal Linguistics Society of Mid-America, volume 1,
pages 15–26. Indiana University Linguistics Club.

Hume, E. (1998). Metathesis in phonological theory: the case of Leti. Lingua, 10.

Hume, E. (2000). Metathesis website. http://www.ling.ohio-
state.edu/ ehume/metathesis/.

Hume, E. (2001). Metathesis: formal and functional considerations. In Surface Syllable
Structure and Segment Sequencing, pages 1–25. Leiden, NL, HIL.

Hume, E. and Johnson, K. (2001). The Role of Speech Perception in Phonology. San
Diego, Academic Press.

Hyman, L. (1970). How concrete is phonology? Language, 46:58–76.

Janda, R. D. and Joseph, B. D. (1989). In further defense of a non-phonological account
of Sanskrit root-initial aspiration alternations. In ESCOL 88. Proceedings of the 5th
Eastern States Conference on Linguistics, pages 246–260. The Ohio State University
Department of Linguistics.

Jardine, A. (2013). Tone is (computationally) different. ms., University of Delaware.

Jarosz, G. (2006a). Rich Lexicons and Restrictive Grammars - Maximum Likelihood
Learning in Optimality Theory. PhD thesis, Johns Hopkins University.

Jarosz, G. (2006b). Richness of the Base and probabilistic unsupervised learning in
Optimality Theory. In Proceedings of the 8th Meeting of the ACL Special Inter-
est Group in Computational Phonology (SIGPHON). Association for Computational
Linguistics.

Jarosz, G. (2007). Stages of acquisition without ranking biases: the roles of frequency
and markedness in phonological learning. In Becker, M., editor, UMass Occasional
Papers in Linguistics.

165

Jarosz, G. (2009a). Naive parameter learning for Optimality Theory - the hidden
structure problem. In NELS 40: Proceedings of the 40th Annual Meeting of the
North East Linguistic Society. GLSA, University of Massachusetts Amherst.

Jarosz, G. (2009b). Restrictiveness in phonological grammar and lexicon learning. In
Proceedings of the 43rd Annual Meeting of the Chicago Linguistic Society.

Jarosz, G. (2010). Implicational markedness and frequency in constraint-based compu-
tational models of phonological learning. Journal of Child Language, 37(3):565–606.

Jarosz, G. (2011). The roles of phonotactics and frequency in the learning of alterna-
tions. In Proceedings of the 35th Annual Meeting of the Boston University Conference
on Language Development.

Jarosz, G. (2013). Learning with hidden structure in Optimality Theory and Harmonic
Grammar: Beyond robust interpretive parsing. Phonology, 30(1):27–71.

Jensen, J. T. (1974). A constraint on variables in phonology. Language, 50(4):675–686.

Johnson, C. (1972). Formal Aspects of Phonological Description. The Hague, Mouton.

Johnson, M. (1984). A discovery procedure for certain phonological rules. In Pro-
ceedings of the 10th International Conference on Computational Linguistics, pages
344–347.

Johnson, R. E. (1975). The Role of Phonetic Detail in Coeur d’Alene Phonology. Ann
Arbor, UMI.

Joseph, B. D. and Philippaki-Warburton, I. (1987). Modern Greek. Wolfeboro, NH,
Croom Helm.

Jusczyk, P., Cutler, A., and Redanz, N. (1993a). Infants preference for the predominant
stress patterns of English words. Child Development, 64:675–687.

Jusczyk, P., Friederici, A. D., Wessels, J. M. I., Svenkerud, V. Y., and Jusczyk, M.
(1993b). Infants’ sensitivity to the sound patterns of native language words. Journal
of Memory and Language, 32(3):402–420.

Jusczyk, P., Luce, P., and Charles-Luce, J. (1994). Infants sensitivity to phonotactic
patterns in the native language. Journal of Memory and Language, 33:630–645.

Kager, R. (1999). Optimality Theory. Cambridge, Cambridge University Press.

Kahn, M. (1976). How abstract is pharyngology: Evidence from Kurmanji. In Mufwene,
S. S., Walker, C. A., and Steever, S. B., editors, Papers from the 12th Regional
Meeting of the Chicago Linguistic Society, April 23-25, 1976, pages 313–20. Chicago
Linguistic Society.

166

Kaplan, R. and Kay, M. (1994). Regular models of phonological rule systems. Com-
putational Linguistics, 20:371–387.

Karttunen, L. (1993). Finite-state constraints. In Goldsmith, J., editor, The Last
Phonological Rule, pages 173–194. University of Chicago Press.

Karttunen, L. (1998). The proper treatment of optimality in computational phonology.
In Proceedings of FSMNLP ’98. International Workshop on Finite-State Methods in
Natural Language Processing, pages 1–12.

Kaye, J., Lowenstamm, J., and Vergnaud, J.-R. (1985). The internal structure of
phonological representations: A theory of charm and government. Phonology Year-
book, 2:305–328.

Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning
Theory. Cambridge, MA, MIT Press.

Kenstowicz, M. (1979). Chukchee vowel harmony and epenthesis. In Clyne, P., Hanks,
W., and Hofbauer, C., editors, Proceedings of CLS 15: The Elements: Parasession
on Linguistic Units and Level, pages 402–412. Chicago, Chicago Linguistic Society.

Kenstowicz, M. (1994). Phonology in Generative Grammar. Blackwell.

Kenstowicz, M. and Kisseberth, C. (1977). Topics in Phonological Theory. Academic
Press.

Kerkhoff, A. (2004). Acquisition of voicing alternations. In Baauw, S. and van Kampen,
J., editors, Proceedings of GALA 2003, volume 2, pages 269–280. LOT.

Kiparsky, P. (1968). How abstract is phonology? Bloomington: Indiana University
Linguistics Club.

Kiparsky, P. (1976). Sonorant clusters in Greek. Language, 43(3):619–635.

Kiparsky, P. (1981). Vowel harmony. ms., MIT.

Klein, T. B. (2005). Infixation and segmental constraint effects: um and in in Tagalog,
Chamorro, and Toba Batak. Lingua, 115(7):959–995.

Kobele, G. (2006). Generating Copies: An Investigation into Structural Identity in
Language and Grammar. PhD thesis, UCLA.

Koskenniemi, K. (1983). Two-Level Morphology: A general computational model for
word-form recognition and production. University of Helsinki, Department of General
Linguistics.

Krause, S. (1980). Topics in Chukchee phonology and morphology. PhD thesis, Uni-
versity of Illinois, Urbana-Champaign.

167

Krishnamurti, B. (1955). The history of vowel-length in Telugu verbal bases. Journal
of the American Oriental Society, 75:237–52.

Krishnamurti, B. (1978). Areal and lexical diffusion of sound change: Evidence from
Dravidian. Language, 54:1–20.

Kuipers, A. H. (1974). The Shuswap Language. The Hague, Mouton.

Lai, R. (2012). Domain Specificity in Phonology. PhD thesis, University of Delaware.

Lai, R. (2014). Learnable vs. unlearnable harmony patterns. Linguistic Inquiry, to
appear.

Langdon, M. (1976). Metathesis in Yuman languages. Language, 52:866–83.

Legendre, G., Miyata, Y., and Smolensky, P. (1990). Harmonic grammar: A formal
multi-level connectionist theory of linguistic well-formedness: Theoretical founda-
tions. In Proceedings of the 12th Annual Conference of the Cognitive Science Society,
pages 388–395. Lawrence Erlbaum Associates.

Lejeune, M. (1955). Traité de phonétique Grecque. Paris, Klincksieck, 2nd edition.

Lejeune, M. (1972). Phonétique historique de Mycénien et du Grec Ancien. Paris,
Klincksieck.

Liberman, M. (1975). The Intonational System of English. PhD thesis, MIT.

Liberman, M. and Prince, A. (1977). On stress and linguistic rhythm. Linguistic
Inquiry, 8:249–336.

Lipski, J. M. (1990). Metathesis as template matching: A case study from Spanish.
Folia Linguistica Historica, 11:89–104.

Luo, H. (2013). Long-distance consonant harmony and subsequentiality. ms., University
of Delaware.

Magri, G. (2010). Complexity of the acquisition of phonotactics in Optimality Theory.
In Heinz, J., Cahill, L., and Wicentowski, R., editors, Proceedings of the 11th meeting
of the ACL Special Interest Group in Computational Morphology and Phonology
(SIGMORPHON), pages 19–27. Association for Computational Linguistics.

Magri, G. (2011). An online model of the acquisition of phonotactics within Optimality
Theory. In L.Carlson, C.Hölscher, and Shipley, T., editors, Proceedings of the 33rd
annual conference of the Cognitive Science Society. Cognitive Science Society.

168

Magri, G. (2012). An approximation approach to the problem of the acquisition of
phonotactics in Optimality Theory. In Cahill, L. and Albright, A., editors, Pro-
ceedings of the 12th meeting of the ACL Special Interest Group in Computational
Morphology and Phonology (SIGMORPHON), pages 52–61. Association for Compu-
tational Linguistics.

Malone, J. (1971). Systematic metathesis in Mandaic. Language, 47:394–415.

Malone, J. L. (1985). Classical mandaic radical metathesis, radical assimilation, and
the devil’s advocate. General Linguistics, 25(2):92–122.

Marantz, A. (1982). Re reduplication. Linguistic Inquiry, 13(3):435–482.

Mascaró, J. (1976). Catalan Phonology and the Phonological Cycle. PhD thesis, MIT.

Matras, Y. (2002). Romani: A linguistic introduction. Cambridge, Cambridge Univer-
sity Press.

Mattina, A. (1979). Pharyngeal movement in Colville and related phenomena in the
Interior Salish languages. International Journal of American Linguistics, 45:17–24.

McCarthy, J. J. (1979). Formal Problems in Semitic Phonology and Morphology. PhD
thesis, MIT.

McCarthy, J. J. (1989). Linear order in phonological representations. Linguistic In-
quiry, 20:71–100.

McCarthy, J. J. (2000a). Harmonic serialism and parallelism. In Hirotani, M., Coet-
zee, A., Hall, N., and Kim, J., editors, NELS 30: Proceedings of the 30th Annual
Meeting of the North East Linguistic Society, pages 501–524. GLSA, University of
Massachusetts Amherst.

McCarthy, J. J. (2000b). The prosody of phase in Rotuman. Natural Language &
Linguistic Theory, 18(1):147–197.

McCarthy, J. J. (2008). Doing Optimality Theory. Malden, MA: Wiley-Blackwell.

McCarthy, J. J. and Prince, A. (1995). Faithfulness and reduplicative identity. In
Beckman, J., Dickey, L. W., and Urbanczyk, S., editors, University of Massachusetts
Occasional Papers in Linguistics [UMOP] 18: Papers in Optimality Theory, pages
249–384. GLSA University of Massachusetts Amherst.

McCarthy, J. J. and Prince, A. (1996). Prosodic morphology 1986. Technical Report 32,
Rutgers University Center for Cognitive Science.

McCarthy, J. J. and Prince, A. (1999). Faithfulness and identity in prosodic mor-
phology. In Kager, R., van der Hulst, H., and Zonneveld, W., editors, The Prosody
Morphology Interface, pages 218–309. Cambridge, Cambridge University Press.

169

McNaughton, R. and Papert, S. (1971). Counter-Free Automata. Cambridge, MA,
MIT Press.

Meinhof, C. (1932). Introduction to the phonology of the Bantu languages. Berlin:
Dietrich Reimer/Ernst Vohsen.

Merchant, N. and Tesar, B. (2008). Learning underlying forms by searching restricted
lexical subspaces. In Proceedings of CLS 41.

Mielke, J. (2004). P-Base 1.95. http://137.122.133.199/ Jeff/pbase/.

Mielke, J. and Hume, E. (2001). Consequences of word recognition for metathesis. In
Hume, E., Smith, N., and van de Weijer, J., editors, Surface Syllable Structure and
Segment Sequencing, pages 135–158. Leiden: HIL.

Mills, R. F. and Grima, J. (1980). Historical developments in Lettinese. In Naylor,
P. B., editor, Austronesian studies: Papers from the 2nd Eastern Conference on Aus-
tronesian Languages, pages 273–83. Ann Arbor, The University of Michigan Center
for South and Southeast Asian Studies.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23:269–311.

Nelson, N. (2005). Wrong side reduplication is epiphenomenal: evidence from Yoruba.
In Hurch, B., editor, Studies on Reduplication, pages 135–160. Berlin, Mouton de
Gruyter.

Nevins, A. (2010). Locality in Vowel Harmony. Cambridge, MA, MIT Press.

Newman, S. (1944). Yokuts language of California. New York, Viking Fund Publica-
tions in Anthropology.

Nı́ Chiosáin, M. and Padgett, J. (1997). Markedness, segment realization, and locality
in spreading. Technical report. Report no. LRC-97-01, Linguistics Research Center,
UC Santa Cruz, CA.

Nı́ Chiosáin, M. and Padgett, J. (2001). Markedness, segment realization, and locality
in spreading. In Lombardi, L., editor, Segmental phonology in Optimality Theory,
pages 118–156. Cambridge, Cambridge University Press.

Noonan, M. (1997). Inverted roots in Salish. International Journal of American Lin-
guistics, 63:475–515.

Odden, D. (1994). Adjacency parameters in phonology. Language, 70(2):289–330.

Odden, D. (2007). The unnatural tonology of Zina Kotoko. In Riad, T. and Gussen-
hoven, C., editors, Tones and Tunes, Vol. 1: Typological studies in word and sentence
prosody, pages 63–89. Berlin, Mouton de Gruyter.

170

Oncina, J., Garćıa, P., and Vidal, E. (1993). Learning subsequential transducers for
pattern recognition interpretation tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(5):448–457.

Orgun, C. O. and Sprouse, R. L. (1999). From mparse to control: Deriving ungram-
maticality. Phonology, 16:191–224.

Oswalt, R. L. (1961). A Kashaya Grammar (Southwestern Pomo). PhD thesis, UC
Berkeley.

Oswalt, R. L. (1976). Comparative verb morphology of Pomo. In Langdon, M. and
Silver, S., editors, Hokan Studies, pages 13–28. Mouton.

Paradis, C. and Prunet, J.-F. (1989). On coronal transparency. Phonology, 6:317–348.

Paradis, C. and Prunet, J.-F. (1991). The special status of coronals: Internal and
external evidence. San Diego, Academic Press.

Pater, J. (2004). Exceptions and Optimality Theory: Typology and learnability. In
Conference on Redefining Elicitation: Novel Data in Phonological Theory. New York
University.

Pater, J. (2012). Serial Harmonic Grammar and Berber syllabification. In Borowsky,
T., Kawahara, S., Shinya, T., and Sugahara, M., editors, Prosody Matters: Essays
in Honor of Elisabeth O. Selkirk, pages 43–72. London, Equinox Press.

Pater, J. and Tessier, A. M. (2003). Phonotactic knowledge and the acquisition of
alternations. In Proceedings of the 15th International Congress on Phonetic Sciences,
pages 1777–1180.

Payne, A. (2013). Dissimilation as a subsequential process. ms., University of Delaware.

Penny, R. (1991). A History of the Spanish Language. Cambridge, Cambridge Univer-
sity Press.

Peperkamp, S., Skoruppa, K., and Dupoux, E. (2006). The role of phonetic naturalness
in phonological rule acquisition. In Bamman, D., Magnitskaia, T., and Zaller, C.,
editors, Proceedings of the 30th Annual Boston University Conference on Language
Development, pages 464–475. Somerville, MA: Cascadilla.

Piggott, G. L. (1996). Implications of consonant nasalization for a theory of harmony.
Canadian Journal of Linguistics, 41:141–74.

Prince, A. and Smolensky, P. (1991). Notes on connectionism and Harmony Theory
in linguistics. Technical Report CU-CS-533-91, Department of Computer Science,
University of Colorado, Boulder.

171

Prince, A. and Smolensky, P. (1993). Optimality Theory: Constraint interaction in
generative grammar. Technical Report RuCCS-TR-2, Rutgers University Center for
Cognitive Science.

Prince, A. and Smolensky, P. (2004). Optimality Theory: Constraint Interaction in
Generative Grammar. Malden, MA and Oxford, England, Blackwell.

Prince, A. and Tesar, B. (1999). Learning phonotactic distributions. Technical Report
RuCCS-TR-54, Rutgers Center for Cognitive Science, Rutgers University.

Prince, A. and Tesar, B. (2004). Learning phonotactic distributions. In Kager, R.,
Pater, J., and Zonneveld, W., editors, Fixing Priorities: Constraints in Phonological
Acquisition, pages 245–291. Cambridge, Cambridge University Press.

Pulleyblank, D. and Turkel, W. J. (1995). The acquisition of variable constraint rank-
ings by a genetic algorithm. Paper presented at the 2nd Workshop on Processing
Consequences of Contrasting Language Phonologies, Scuola Internazionale Superiore
di Studi Avanzati, Trieste.

Pulleyblank, D. and Turkel, W. J. (1996). Optimality Theory and learning algorithms:
the representation of recurrent featural asymmetries. In Durand, J. and Laks, B.,
editors, Current Trends in Phonology: Models and Methods, volume 2, pages 653–
684. University of Salford Publications.

Pulleyblank, D. and Turkel, W. J. (1998). The logical problem of language acquisition
in Optimality Theory. In Barbosa, P., Fox, D., Hagstrom, P., McGinnis, M., and
Pesetsky, D., editors, Is the Best Good Enough?: Optimality and Competition in
Syntax, pages 399–420. Cambridge, MA, MIT Press.

Pulleyblank, D. and Turkel, W. J. (2000). Learning phonology: Genetic algorithms
and Yoruba tongue-root harmony. In Dekkers, J., van der Leeuw, F., and van de
Weijer, J., editors, Optimality Theory: Phonology, Syntax, and Acquisition, pages
554–591. Oxford, Oxford University Press.

Pycha, A., Nowak, P., Shin, E., and Shosted, R. (2003). Phonological rule-learning
and its implications for a theory of vowel harmony. In Garding, G. and Tsujimura,
M., editors, WCCFL 22: Proceedings of the 22nd West Coast Conference on Formal
Linguistics, pages 423–435. Somerville, MA, Cascadilla.

Raimy, E. (1999). Representing Reduplication. PhD thesis, University of Delaware.

Raimy, E. (2000). The Phonology and Morphology of Reduplication. Mouton de
Gruyter.

Ray, P. S. (1966). Bengali Language Handbook. Washington, D.C., Center for Applied
Linguistics.

172

Riggle, J. (2003). Non-local reduplication. In NELS 34: Proceedings of the 34th Annual
Meeting of the North East Linguistic Society. GLSA, University of Massachusetts
Amherst.

Riggle, J. (2004). Generation, Recognition, and Learning in Finite State Optimality
Theory. PhD thesis, UCLA.

Riggle, J. (2006a). Infixing reduplication in Pima and its theoretical consequences.
Natural Language & Linguistic Theory, 24:857–891.

Riggle, J. (2006b). Using entropy to learn OT grammars from surface forms alone. In
Baumer, D., Montero, D., and Scanlon, M., editors, WCCFL 25: Proceedings of the
25th West Coast Conference on Formal Linguistics. Somerville, MA, Cascadilla.

Riggle, J. (2010). Sampling rankings. ms., University of Chicago.

Roark, B. and Sproat, R. (2007). Computational Approaches to Morphology and Syntax.
Oxford, Oxford University Press.

Roche, E. and Schabes, Y. (1997). Finite-State Language Processing. Cambridge, MA,
MIT Press.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., and Wibel, S. (2013). Cognitive
and sub-regular complexity. In Morrill, G. and Nederhof, M.-J., editors, Formal
Grammar, Lecture Notes in Computer Science, volume 8036, pages 90–108. Springer.

Rogers, J. and Pullum, G. (2011). Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information, 20:329–342.

Rohlfs, G. (1950). Historische grammatik der unteritalienischen Gräzität. München,
Verlag der Bayerischen Akademie der Wissenchaften.

Rose, S. and Walker, R. (2004). A typology of consonant agreement as correspondence.
Language, 80:475–531.

Sapir, E. and Hoijer, H. (1967). The phonology and morphology of the Navaho language.
Berkeley, University of California Press.

Schane, S. A., Tranel, B., and Lane, H. (1974). On the psychological reality of a natural
rule of syllable structure. Cognition, 3(4):351–358.

Schieber, S. (1985). Evidence against the context-freeness of natural language. Lin-
guistics and Philosophy, 8:333–343.

Schwyzer, E. (1953). Griechische Grammatik I. München, Beck, 2nd edition.

Seidl, A. and Buckley, E. (2005). On the learning of arbitrary phonological rules.
Language Learning and Development, 1:289–316.

173

Seo, M. and Hume, E. (2001). A comparative OT account of metathesis in Faroese and
Lithuanian. In Hume, E., Smith, N., and van de Weijer, J., editors, Surface syllable
structure and segment sequencing. Leiden, NL, HIL.

Shaw, P. (1991). Consonant harmony systems: The special status of coronal harmony.
In Paradis, C. and Prunet, J.-F., editors, The Special Status of Coronals, pages
125–157. New York, Academic Press.

Sneddon, J. (1996). Indonesian: a comprehensive grammar. Routledge.

Steinhauer, H. (1996). Synchronic metathesis and apocope in three austronesian lan-
guages of the Timor area. In The 4th International Symposium on Language and
Linguistics, pages 471–493. Institute of Language and Culture for Rural Develop-
ment, Mahidol University.

Steriade, D. (1982). Greek Prosodies and the Nature of Syllabification. PhD thesis,
MIT.

Steriade, D. (1987). Locality conditions and feature geometry. In NELS 17: Proceedings
of the 17th Annual Meeting of the North East Linguistic Society, pages 595–617.
GLSA, University of Massachusetts Amherst.

Subrahmanyam, P. S. (1983). Dravidian Comparative Phonology. Annamalainagar,
Annamalai University.

Suzuki, K. (1998). A Typological Investigation of Dissimilation. PhD thesis, University
of Arizona.

Tesar, B. (1995). Computational Optimality Theory. PhD thesis, University of Col-
orado, Boulder.

Tesar, B. (1998a). Error-driven learning in Optimality Theory via the efficient com-
putation of optimal forms. In Barbosa, P., Fox, D., Hagstrom, P., McGinnis, M.,
and Pesetsky, D., editors, Is the Best Good Enough?: Optimality and Competition
in Syntax, pages 421–435. Cambridge, MA, MIT Press.

Tesar, B. (1998b). An iterative strategy for language learning. Lingua, 104:131–145.

Tesar, B. (2002). Enforcing grammatical restrictiveness can help resolve structural
ambiguity. In Mikkelsen, L. and Potts, C., editors, WCCFL 21: Proceedings of the
21st West Coast Conference on Formal Linguistics, pages 443–456. Somerville, MA,
Cascadilla.

Tesar, B. (2003). Learnability. In Frawley, W., editor, The Oxford International En-
cyclopedia of Linguistics. Oxford, Oxford University Press, 2nd edition.

Tesar, B. (2004). Using inconsistency detection to overcome structural ambiguity.
Linguistic Inquiry, 35(2):219–253.

174

Tesar, B. (2008). Output-driven maps. ms., Rutgers University.

Tesar, B. (2014). Output-Driven Phonology: Theory and Learning. Cambridge, Cam-
bridge University Press.

Tesar, B., Alderete, J., Horwood, G., Merchant, N., Nishitani, K., and Prince, A.
(2003). Surgery in language learning. In Garding, G. and Tsujimura, M., editors,
WCCFL 22: Proceedings of the 22nd West Coast Conference on Formal Linguistics,
pages 477–490. Somerville, MA, Cascadilla.

Tesar, B. and Prince, A. (2003). Using phonotactics to learn phonological alternations.
In Proceedings of CLS 39, Vol. II: The Panels.

Tesar, B. and Smolensky, P. (1993). The learnability of Optimality Theory: An algo-
rithm and some basic complexity results. ms., University of Colorado, Boulder.

Tesar, B. and Smolensky, P. (1996). Learnability in Optimality Theory (short version).
Technical Report JHU-CogSci-96-2, Cognitive Science Department, The Johns Hop-
kins University.

Tesar, B. and Smolensky, P. (1998). Learnability in Optimality Theory. Linguistic
Inquiry, pages 229–268.

Tesar, B. and Smolensky, P. (2000). Learnability in Optimality Theory. Cambridge,
MA, MIT Press.

Touretzky, D. S., III, G. E., and Wheeler, D. W. (1990). Phonological rule induction:
An architectural solution. Technical Report AIP-118, Carnegie Mellon University.

Turner, R. L. (1969). A Comparative Dictionary of the Indo-Aryan Languages. London,
Oxford University Press.

Ultan, R. (1978). A typological view of metathesis. In Greenberg, J. H., editor,
Universals of human language, Vol. 2, Phonology, pages 367–402. Stanford, CA,
Stanford University Press.

Valiant, L. (1984). A theory of the learnable. Communications of the ACM, 27.

van der Hulst, H. and van Engelenhoven, A. (1995). Metathesis effects in Tutukeian-
Letinese. In van der Hulst, H. and van de Weijer, J., editors, Leiden in Last. HIL
phonology papers I. HIL Publications 1, pages 243–267. The Hague, Holland Aca-
demic Graphics.

Vennemann, g. N. T. (1988). Preference Laws for Syllable Structure and the Explana-
tion of Sound Change. Berlin, Mouton de Gruyter.

175

Vennemann, g. N. T. (1996). The development of reduplicating verbs in Germanic. In
Rauch, I. and Carr, G. F., editors, Insights in Germanic linguistics II: Classic and
contemporary, pages 297–336. Berlin, Mouton de Gruyter.

Walker, R. (1998). Nasalization, Neutral Segments, and Opacity Effects. PhD thesis,
University of California, Santa Cruz.

Wanner, D. (1989). On metathesis in diachrony. Papers from the 25th Annual Regional
Meeting of the Chicago Linguistic Society, pages 434–450.

Warner, N., Jongman, A., Cutler, A., and Mücke, D. (2001). The phonological status
of Dutch epenthetic schwa. Phonology, 18:387–420.

Webb, N. (1965). Phonology and noun morphology of the Kindibu dialect of Kikongo.
Master’s thesis, UCLA.

Wheeler, M. (1979). Phonology of Catalan. Oxford, Basil Blackwell.

Whitney, W. D. (1896). A Sanskrit Grammar. Leipzig and Boston, Breitkopf and
Härtel and Ginn and Company, 3rd edition.

Wichmann, S. (1995). The Relationship Among the Mixe-Zoquean Languages of Mexico.
Salt Lake City: University of Utah Press.

Williamson, K. (1965). A Grammar of the Kolokuma Dialect of Ijo. Cambridge,
Cambridge University Press.

Wilson, C. (2003). Experimental investigation of phonological naturalness. In Garding,
G. and Tsujimura, M., editors, WCCFL 22: Proceedings of the 22nd West Coast
Conference for Formal Linguistics, pages 533–546. Somerville, MA, Cascadilla.

Wilson, C. (2006). Learning phonology with substantive bias: An experimental and
computational study of velar palatalization. Cognitive Science, 30:945–982.

Winfield, W. W. (1928). A Grammar of the Kui Language. Calcutta, The Asiatic
Society of Bengal.

Wonderly, W. L. (1951). Zoque II: Phonemes and morphophonemes. International
Journal of American Linguistics, 17(2):105–123.

Zorc, D. P. (1977). The Bisayan dialects of the Philippines: Subgrouping and recon-
struction. Pacific Linguistics, Series C, 44. Canberra, Department of Linguistics,
Research School of Pacific Studies, The Australian National University.

Zuraw, K. (2002). Aggressive reduplication. Phonology, 19(3):395–439.

176

Appendix

FORMAL CHARACTERIZATIONS AND PROPERTIES OF STRICTLY
LOCAL FUNCTIONS

This appendix formalizes the construction of SL FSTs and presents a few ad-

ditional properties of SL functions. §A.1 repeats the relevant mathematical notations

from the end of Chapter 2. §§A.2 and A.3 prove that the language-theoretic and

automata-theoretic characterizations of ISL and OSL functions, respectively, are equiv-

alent. These sections also present the formal construction of TISL(f) and TOSL(f),

respectively, for a given phonological rule. §A.4 addresses the special case of word-

boundary processes, and §A.5 provides the minimization procedure for SL FSTs.

Lastly, §A.6 presents the properties of SL functions that are known so far.1

A.1 Preliminaries

An alphabet, Σ, is a finite set of symbols. The set of all possible strings of

symbols in Σ is Σ∗, and the set of all possible strings of length n and of length up to

and including n is Σn and Σ≤n, respectively. The empty string containing zero symbols

is represented with λ. The length of a string w is the number of symbols it contains

and is designated |w| (so |λ| = 0).

If w = ps for some p, s ∈ Σ∗, then p is a prefix of w and s is a suffix of w. The

set of prefixes of w, Pref(w) = {p ∈ Σ∗ | ∃s ∈ Σ∗ [w = ps]}, and the set of suffixes

of w, Suff(w) = {s ∈ Σ∗ | ∃p ∈ Σ∗ [w = ps]}. The unique suffix of w of length n is

Suffn(w). If |w| < n, Suffn(w) = w. If w = ps, then ws−1 = p and p−1w = s. The

longest string in a set S, max(S), is s ∈ S such that ∀s′ ∈ S, |s′| < |s|. The longest

common prefix of a set of strings S, lcp(S), is then max(∩w∈SPref(w)).

1 The proofs in this appendix were developed in collaboration with Jeffrey Heinz and Rémi Eyraud.

177

A language L is a subset of Σ∗ (L ⊆ Σ∗). A relation R is a subset of the cross-

product of two languages: R ⊆ L1 ×L2 = {(w1, w2) | w1 ∈ L1 and w2 ∈ L2}. The left

projection of a relation R is ψ1 = {w1 | ∃w2 [(w1, w2) ∈ R]}, and the right projection

of R is ψ2 = {w2 | ∃w1 [(w1, w2) ∈ R]}. A relation f is a function if ∀w1 ∈ ψ1 there is

exactly one w2 ∈ ψ2.

Definition 8 (FST). (Oncina et al., 1993) A finite state transducer (FST) is a six-

tuple τ = {Q,Σ,Γ, q0, F, E}, where Q is a set of states, Σ and Γ are the input and

output alphabets, respectively, q0 is the initial state, F ⊆ Q are final states, and E ⊆

(Q× Σ× Γ∗ ×Q) is a set of edges.

The set of edgesE of a FST is associated with a transition function δ: ∀(q, a, o, q′)

∈ E, δ(q, a) = (o, q′). Two auxiliary functions that specify only the output string and

destination state of a given transition will also be useful. They are defined as follows:

∀(q, a, o, q′) ∈ E, δ1(q, a) = o, and δ2(q, a) = q′.

Definition 9 (SFST). A subsequential finite state transducer (SFST) is a six-tuple

τ = {Q,Σ,Γ, q0, E, σ}, where Q is again a finite set of states, all of which are final,

and q0,Σ,Γ, and E are defined as for FSTs. The final output function σ : Q 7→ Γ∗

maps each state to a (possibly empty) string that is appended to the output of any input

string that ends in that state.

SFSTs are deterministic on the input, meaning (q, a, u, r), (q, a, v, s) ∈ E ⇒

(u = v ∧ r = s). A path in a SFST is a sequence of edges in E, π = (q0, a1, o1, q1)...

(qn−1, an, on, qn), qi ∈ Q, ai ∈ Σ, oi ∈ Γ∗, 1 ≤ i ≤ n, which can also be condensed to

(q0, a1...an, o1...on, qn). Let Πτ be the set of all possible paths in τ . The function f

realized by τ is then f(w1) = w2σ(q) such that (q0, w1, w2, q) ∈ Πτ (Oncina et al.,

1993).

In the canonical form of a SFST, the states correspond to the distinct sets of

tailsf (x) for x ∈ Σ∗, with tailsf (x) = {(y, v) | f(xy) = uv ∧ u = lcp(f(xΣ∗))}

(see Chapter 3 for a more detailed explanation of tails). This set is empty if x /∈

178

∩w∈ψ1Pref(w). If two strings x1, x2 ∈ Σ∗ have the same set of tails with respect to a

function f , we write x1 ∼f x2.

A.2 ISL Functions

Definition 10 (Input Strictly Local Function). A function f is Input Strictly Local iff

∃k ∈ N such that for all u1, u2 ∈ Σ∗, it is the case that if Suffk−1(u1) = Suffk−1(u2)

then tailsf (u1) = tailsf (u2).

Theorem 5. A function f is Input Strictly Local iff ∃k ∈ N such that f can be described
with a SFST TISL(f) for which

1. Q = Σ≤k−1 and q0 = λ

2. (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ = Suffk−1(qa)
]
.

Proof. (⇒) Consider any f such that there is a k such that for all u1, u2 ∈ Σ∗ it is the

case that if Suffk−1(u1) = Suffk−1(u2) then tailsf (u1) = tailsf (u2). We show that

TISL(f) exists. Since Q = Σ≤k−1 is a finite set, the equivalence relation ∼f partitions

Σ∗ into at most |Q| blocks. Hence f is subsequential and a canonical subsequential

transducer T (f) = {QT ,Σ,Γ, q0, ET , σT } exists.

We construct T ′ recognizing f from T (f) using a mapping h from the states

of T ′ to T (f): ∀w ∈ Σk−1, h(w) = tailsf (w). Construct T ′ = {Q,Σ,Γ, q0, E, σ} as

follows.

• Q = Σ≤k−1 and q0 = λ

• ∀q ∈ Q, σ(q) = σT (h(q))

• ∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗, [(q, a, u, Suffk−1(qa)) ∈ E iff (h(q), a, u, h(qa)) ∈ ET]

We show that T ′ = TISL(f). Clearly, by its construction, the states and

transitions meet the requirements of (1) and (2) in Theorem 5. The mapping h

ensures that T ′ computes the same function as T (f) because f is k-ISL: for all

x, x′ ∈ Σ∗, if Suffk−1(x) = Suffk−1(x′) then tailsf (x) = tailsf (x
′). As proof, we

show the paths are in one-to-one correspondence between the two machines. Con-

sider any x = x1 · · ·xn, with ∀i xi ∈ Σ. It follows that f(x) = yz such that

179

(tailsf (λ), x, y, tailsf (x)) ∈ ΠT and σT (tailsf (x)) = z. Furthermore, there is a

path in T (f) equal to the following sequence of edges:

(tailsf (λ), x1, y1, tailsf (x1)),

(tailsf (x1), x2, y2, tailsf (x1x2)), · · ·

(tailsf (xx
−1
n), xn, yn, tailsf (x))

where y1 · · · yn = y (with each yi ∈ Γ∗). By the definition of E of T ′, this corresponds

to the sequence of edges,

(λ, x1, y1, Suff
k−1(x1)),

(Suffk−1(x1), x2, y2, Suff
k−1(x1x2)), · · ·

(Suffk−1(xx−1n), xn, yn, Suff
k−1(x)).

Also, by definition of σ, σ(Suffk−1(x)) = σT (tailsf (x)) = z. Thus T ′(x) = yz.

A similar argument shows that for any x if T ′(x) = yz (where (λ, x, y, Suffk−1(x)) ∈

ΠT ′ and σ(Suffk−1(x)) = z, then f(x) = yz.

(⇐) Consider T = {Q,Σ,Γ, q0, E, σ} for some function f and some k ∈ N such

that Q = Σ≤k−1, q0 = λ, and (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ =

Suffk−1(qa)
]
. Now consider any u1, u2 ∈ Σ∗ such that Suffk−1(u1) = Suffk−1(u2). By

construction of T , both u1 and u2 lead to the same state and therefore tailsf (u1) =

tailsf (u2). Thus f is k-ISL.

A.2.1 Constructing TISL(f) for a phonological rule

Given a rule of the form in (1),

(1) xi → yi / U V

where U ⊆ {#, λ}·Σ∗, V ⊆ Σ∗· {#, λ}, and (xi, yi) ∈ X × Y for X, Y ⊆ Σ∗, provided

U , X, and V are finite we can construct TISL(f) as follows. Let UXV = {uxv |

180

u ∈ U, x ∈ X, v ∈ V } and let k = |max(UXV)|. In other words, the k-value of the

function has to cover the longest possible uxv string.

Let H be the set of all possible strings formed by concatenating a string from

X (a target) with a string from V (a right context). So H = {xv | x ∈ X and v ∈ V }.

These are the strings that the FST will ‘hold’ all prefixes of (if they are preceded

by some u ∈ U) until it verifies that an entire xv has been read, at which point it

will output the corresponding yv. The following auxiliary function π will be used to

determine, for any given state q, the (possibly empty) string being held in q.

π(q) =

 z q = suz for s ∈ Σ∗ and z ∈ Pref(h) for some h ∈ H

λ otherwise

TISL(f) = {Q,Σ,Γ, q0, δ, σ}, where,

• Σ is the input alphabet and Γ is the output alphabet, with Σ ⊆ Γ

• Q = Σ≤k−1

• q0 = λ

• ∀q ∈ Q and a ∈ Σ,

1. If q = suh0...hi for any s ∈ Σ∗, u ∈ U , and h ∈ H and a = hi+1, then
δ(q, a) = (λ, Suffk−1(qa)).

2. Else if q = suh0...hi for any s ∈ Σ∗, u ∈ U , and h ∈ H but a 6= hi+1, let
o = π(q)a be the output, OR if qa = uxiv for some u ∈ U, xi ∈ X, and
v ∈ V , let o = yiv be the output. Now let t = π(Suffk−1(qa)) be the string
being held in the destination state. The portion (if any) of o that overlaps
with t is r = max(Suff(o) ∩ Pref(t)). Then δ(q, a) = (or−1, Suffk−1(qa)).

3. If neither of the above conditions holds, then δ(q, a) = (a, Suffk−1(qa)).

• ∀q ∈ Q,

σ(q) =

{
yiv if q# = uxiv for some u ∈ U, xi ∈ X, v ∈ V
π(q) otherwise

181

A.3 OSL Functions

Definition 11 (Output Strictly Local Functions). A function f is Output Strictly

Local iff ∃k ∈ N such that for all u1, u2 ∈ Σ∗, it is the case that if Suffk−1(f(u1)) =

Suffk−1(f(u2)) then tailsf (u1) = tailsf (u2).

Theorem 6. A function f is Output Strictly Local iff ∃k ∈ N such that f can be
described with a SFST TOSL(f) for which

1. Q = Γ≤k−1 and q0 = λ

2. (∀q ∈ Q, ∀a ∈ Σ, ∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ = Suffk−1(qu)
]
.

Proof. (⇒) Consider any f such that there is a k such that for all u1, u2 ∈ Σ∗ it is

the case that if Suffk−1(f(u1)) = Suffk−1(f(u2)) then tailsf (u1) = tailsf (u2). We

show that TOSL(f) exists. Since Q = Γ≤k−1 is a finite set, the equivalence relation

∼f partitions Σ∗ into at most |Q| blocks. Hence f is subsequential and a canonical

subsequential transducer T (f) = {QT ,Σ,Γ, q0, ET , σT } exists.

We construct T ′ recognizing f from T (f), again utilizing a mapping h from the

states of T ′ onto T (f). h is defined recursively as follows:

1. λ 7→h tailsf (λ)

2. (∀u ∈ Σ∗, a ∈ Σ), [Suffk−1(f(ua)) 7→h tailsf (ua)]

Since T (f) exists, h can be determined by considering only u ∈ Σk−2. Now

construct T ′ = {Q,Σ,Γ, q0, E, σ} as follows.

• Q = Γ≤k−1 and q0 = λ

• ∀q ∈ Q, σ(q) = σT (h(q))

• ∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗, [(q, a, u, Suffk−1(qu)) ∈ E iff (h(q), a, u, h(Suffk−1(qu)))
∈ ET]

We show that T ′ = TOSL(f). Clearly, by its construction, the states and tran-

sitions meet the requirements of (1) and (2) of Theorem 6. As before, the mapping

h ensures that T ′ computes the same function as T (f) because f is k-OSL: for all

x, x′ ∈ Σ∗ if Suffk−1(f(x)) = Suffk−1(f(x′)) then tailsf (x) = tailsf (x
′).

182

(⇐) Consider T = {Q,Σ,Γ, q0, E, σ} for some function f and some k ∈ N

such that Q = Γ≤k−1, q0 = λ, and (∀q ∈ Q, ∀a ∈ Σ,∀u ∈ Γ∗)[(q, a, u, q′) ∈ E ⇒ q′ =

Suffk−1(qu)
]
. Now consider any u1, u2 ∈ Σ∗ such that Suffk−1(f(u1)) = Suffk−1(f(u2)).

By construction of T , both u1 and u2 lead to the same state and therefore tailsf (u1) =

tailsf (u2). Thus, f is k-OSL.

A.3.1 Constructing TOSL(f)

TOSL(f) = {Q,Σ,Γ, q0, δ, σ}, where,

• Σ,Γ, q0, and σ are defined as for TISL(f)

• Q = Γ≤k−1

• Conditions 1 and 3 of δ are defined as for TISL(f). Condition 2 is defined as
follows.

– If q = suh0...hi for any s ∈ Γ∗, u ∈ U , and h ∈ H, and a 6= hi+1, let
o = π(q)a be the output, OR if qa = uxiv for some u ∈ U , xi ∈ X, and
v ∈ V , let o = yiv be the output. Now let t = π(Suffk−1(qo)) be the
string being held in the destination state. The overlap between o and t is
r = max(Suff(o) ∩ Pref(t)). Then δ(q, a) = (or−1, Suffk−1(qo)).

A.4 Word-initial processes

If and only if ∃u ∈ U such that u = #u′ for some u′ ∈ Σ∗, the above construc-

tions should be modified as follows:

• Q = {#}·Σ≤k−2 ∪ Σk−1 ∪ {#} (for TISL(f))

• Q = {#}·Γ≤k−2 ∪ Γk−1 ∪ {#} (for TOSL(f))

• q0 = #

A.5 Minimization

The above constructions for TISL(f) and TOSL(f) do not produce minimal FSTs.

The minimal version of both FSTs can be constructed by instead using the state set

Q =
⋃
w∈UXV [Pref(w) − w]. Since k = |max(UXV)|, this state set will include only

the factors up to k − 1 of all possible uxv strings. The FSTs can then be constructed

183

just as before, with one modification. For each transition in δ, if the destination state

Suffk−1(qa) (for TISL(f)) or Suffk−1(qo) (for TISL(f)) is not in Q, then the destination

state of that transition should be q0.

To see an example of this minimized construction, recall the example rule in (2).

The minimized TISL(f) and TOSL(f) are shown in Figures A.1 and A.2, respectively.

(2) a → b / a a

!,!

b:b

a,!a:a
b:b

aa,a

a:!

b:ab

a:b

Figure A.1: Minimized TISL(f) for (2), k = 3, Σ = {a, b}

!,!

b:b
a,!a:a

b:b

aa,a

a:!

a:ba
b:ab

Figure A.2: Minimized TOSL(f) for (2), k = 3, Σ = {a, b}

These minimized SL transducers are in fact the canonical subsequential trans-

ducers for f .

184

A.6 Properties of SL Functions

First, it can be shown that both the ISL and the OSL functions are proper

subclasses of the subsequential functions. They are subclasses by definition, since

every ISL or OSL function is a subsequential function. But there exist subsequential

functions that are neither ISL nor OSL, as stated in the following theorem.

Theorem 7. ISL and OSL functions are proper subclasses of subsequential functions.

Proof. Consider the subsequential function f1 represented by the SFST in Figure A.3.

This function is neither ISL nor OSL for any k ∈ N. Choose any such k. Consider two

inputs bck and ack, which share a common suffix of length k − 1. But f1(bc
kb) = bckb

and f1(ac
kb) = acka, which means tailsf1(bc

k) 6= tailsf1(ac
k). Likewise, the outputs

bck and ack also share a common suffix of length k − 1, but again the tails of their

respective inputs are distinct. Hence by Definitions 10 and 11, there is no k for which

f1 is ISL or OSL.

0,!

b:b, c:c

1,!a:a

a:a, c:c, b:a

Figure A.3: A subsequential function f1 which is neither ISL nor OSL, Σ = {a, b, c}

Next, it can be shown that the classes of ISL and OSL functions are not identical.

Theorem 8. The class of ISL functions is incomparable to the class of OSL functions.

Proof. Consider the function f2 exemplified in Figure A.4. This function is ISL by

Theorem 5. However, it is not OSL. Consider any k ∈ N. Observe that f2(aa
k) =

f2(ab
k) = abk, and so the outputs share the same k − 1-length suffix. However,

tailsf2(aa
k) 6= tailsf2(ab

k), since (a, b) ∈ tailsf2(aa
k) but (a, a) ∈ tailsf2(ab

k).

185

Similarly, consider the function f3 exemplified in Figure A.5. This function is

OSL by Theorem 6. However, it is not ISL. Consider any k ∈ N. The inputs cbk and

abk share the same k − 1-length suffix. However, tailsf3(cb
k) 6= tailsf3(ab

k), since

(b, b) ∈ tailsf3(cb
k) but (b, a) ∈ tailsf3(ab

k).

Finally, the two classes are not disjoint: the identity function, for example,

clearly belongs to both ISL and OSL.

!,!

a,!a:a
b,!

b:b

a:b

b:b
a:a

b:b

Figure A.4: A subsequential function f2 which is ISL but not OSL, k = 2, Σ = {a,
b}

!,!

b,!b:b, c:b

a,!a:a

a:a

a:a, b:a, c:a

Figure A.5: A subsequential function f3 which is OSL but not ISL, k = 2, Σ = {a,
b}

The next theorem establishes that the OSL functions are not closed under com-

position.

Theorem 9. The OSL functions are not closed under composition.

186

Proof. It suffices to provide a counterexample of two functions f and g that are OSL

but their composition g ◦ f is not. Let f be the 2-OSL function represented in Figure

A.6. The input alphabet is Σ = {V, d, n} and the output alphabet is Γ ={V, d, n, Ṽ}.

!,!

V,!
V:V

d,!d:d n,!

n:n

V:V

d:d

n:n

",!

V:"

d:n
n:n

V:V d:d

n:n
V:"

n:n
d:n

Figure A.6: OSL function f

And let g be the 1-OSL function represented in Figure A.7. The input alphabet

is Σ ={V, d, n, Ṽ} and the output alphabet is Γ ={V, d, n}.

!,!

":V
n:n
m:m
d:d
V:V

Figure A.7: OSL function g

The mapping represented by the composition g◦f is not OSL for any k. Consider

the two inputs V k and nV k for some k ∈ N. The outputs of g◦f for these inputs have the

same suffix of length k−1: g(f(V k)) = V k and g(f(nV k)) = nV k. But tailsg◦f (V
k) 6=

187

tailsg◦f (nV
k), since (d, d) ∈ tailsg◦f (V

k) but (d, n) ∈ tailsg◦f (nV
k). Since k is

arbitrary, it follows that g ◦ f is not OSL for any k.

Lastly, it is shown that the right projection of SL functions is not guaranteed

to be a SL language.

Theorem 10. ψ2 of ISL and OSL functions is not necessarily a Strictly Local language.

Proof. Consider function f4 depicted in Figure A.8, which, by Theorems 5 and 6, is

both ISL and OSL. It can be shown that ψ2 of f4 is not SL-k for any k. Choose some

k ∈ N.

Case 1: k is even. Choose w,w′ ∈ ψ2 such that w = akb and w′ = bak. These

strings must be in ψ2 because for n = k/2, f(anb) = akb and f(ban) = bak. If ψ2 is

SL-k, then by Theorem 1 (Chapter 2), since w = a· ak−1· b and w′ = b· ak−1· a are in

ψ2, then a· ak−1· a = ak+1 must also be in ψ2. But this is false, since there is no string

x ∈ Σ∗ such that f(x) = ak+1 (because k + 1 is odd).

Case 2: k is odd. Choose w,w′ ∈ ψ2 such that w = ak+1b and w′ = bak+1. These

strings must be in ψ2 because for n = (k + 1)/2, f(anb) = ak+1b and f(ban) = bak+1.

If ψ2 is SL-k, then by Theorem 1, since w = aa· ak−1· b and w′ = ba· ak−1· a are in ψ2,

then so must be aa· ak−1· a = ak+2. But this is false, since there is no string x ∈ Σ∗

such that f(x) = ak+2 (because k + 2 is odd).

Since k was arbitrary, it is shown that ψ2 is not SL for any k.

!,!

a,!a:aa
b,!

b:b

a:aa

b:b
a:aa

b:b

Figure A.8: A subsequential function f4 which is both ISL and OSL but for which
ψ2 is not SL, k = 2, Σ = {a, b}

188

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Restricting Phonology
	1.2 Locality in Phonology
	1.3 Outline
	2 Background
	2.1 Empirical Perspective
	2.2 Computational Perspective
	2.2.1 Expressive power of grammars
	2.2.2 Finite state descriptions of language patterns
	2.2.3 Strictly Local languages and the Subregular Hierarchy

	2.3 Learning Phonology
	2.3.1 Learning rules
	2.3.2 Learning in OT

	2.4 Mathematical Preliminaries
	2.4.1 Strings, languages, relations, and functions
	2.4.2 Finite state automata
	2.4.3 Learning framework

	3 Modeling Phonological Processes with Strictly Local Functions
	3.1 Input Strictly Local Functions
	3.2 Output Strictly Local Functions
	3.3 Word Boundary Processes
	3.4 Multiple Targets and Contexts

	4 Metathesis
	4.1 Decomposing metathesis
	4.2 Local Metathesis
	4.3 Long-Distance Metathesis
	4.4 Displacement
	4.5 Summary

	5 Word Formation Processes
	5.1 Affixation
	5.2 Reduplication
	5.2.1 Partial reduplication
	5.2.2 Full reduplication

	6 Learning Strictly Local Functions
	6.1 The Onward Subsequential Transducer Induction Algorithm (OSTIA)
	6.1.1 Modifying OSTIA to learning phonological mappings

	6.2 The ISL Function Learning Algorithm (ISLFLA)
	6.2.1 The algorithm
	6.2.2 Identification in the limit
	6.2.3 Complexity results
	6.2.3.1 Time complexity
	6.2.3.2 Size of the characteristic sample

	6.3 Demonstrations
	6.3.1 Substitution
	6.3.1.1 German final devoicing
	6.3.1.2 English flapping

	6.3.2 Greek fricative deletion
	6.3.3 Dutch schwa epenthesis
	6.3.4 Discussion of learning results

	7 Discussion
	7.1 Empirical Coverage of SL Functions
	7.2 Implications of Learning Results
	7.3 Explanations of Typology

	8 Conclusion
	 Formal Characterizations and Properties of Strictly Local Functions
	A.1 Preliminaries
	A.2 ISL Functions
	A.2.1 Constructing TISL(f) for a phonological rule

	A.3 OSL Functions
	A.3.1 Constructing TOSL(f)

	A.4 Word-initial processes
	A.5 Minimization
	A.6 Properties of SL Functions

