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Abstract of the Dissertation

Computational locality of cyclic phonology in Armenian

by

Hossep Dolatian

Doctor of Philosophy

in

Linguistics

Stony Brook University

2020

The title of this dissertation indicates its goal: to determine the computational aspects of cyclic phonology
as it operates in Armenian. This goal is divided into two subgoals based on empirical and computational
questions.

On the empirical side, I show that Armenian requires a model of the morphology-phonology interface
which is interactionist and cyclic, i.e., that morphological structure, prosodic structure, and phonological
rules cyclically interact to create new words. Evidence for this nuanced organization comes from the
stratal phonology of Armenian (cf. Lexical Phonology and Stratal OT: Kiparsky 1982b; Bermúdez-Otero
2018). There are phonological processes which apply differently before derivational morphology than in
inflectional morphology. The main process that I examine is destressed high vowel reduction. This and
other processes indicate not only different strata or levels, but also show signs of unbounded cyclicity and
sensitivity to sublexical prosodic constituents, i.e., the Prosodic Stem (Downing 1999a). These processes
are active in both simplex and compound words. Within compounds, the interaction of all these factors
creates bracketing paradoxes. I solve these paradoxes using a mixture of cyclic prosodic phonology and
Head-Operations (Hoeksema 1988). I show that counter-cyclic approaches to bracketing paradoxes, like
Morphological Merger or Rebracketing (Marantz 1988), are inadequate because they contradict the rest of
Armenian phonology.

There are many different incarnations of cyclic theories of phonology but there are little to no computational
analyses of them. I develop an extensive computational formalization for cyclic or interactionist phonology
by using Monadic-Second Order (MSO) logic, specifically graph-to-graph logical transductions. Logic is
a flexible tool that lets us create iconic formalizations which faithfully replicate phonological theory. I
utilize logical transductions as a way to encode the derivational nature of phonology. The formalism is a
generalization of the work from one-level Declarative Phonology (Bird 1995; Coleman 1998) to a two-level
framework. By formalizing the morphology, prosody, and phonological rule domains, I uncover implicit
factors within cyclic phonology. The ultimate takeaway is that I show that the bulk of the morphology-phonology
interface requires local computation, not global computation. By being local, the computational nature of the

iii



morphology-phonology interface opens doors to understanding how we can provably learn morpho-phonological
processes and how these processes relate to limitations on human cognition (cf. Heinz 2018).
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Chapter 1

Introduction

The title of this dissertation indicates its goal: to compute cyclic phonology in Armenian. As a general
context, this dissertation asks the following fundamental question: What principles govern the alternation in
the pronunciation of morphemes? There is a wide history of research on this topic (Scheer 2011). To answer
this question, I undertake an empirical investigation into Armenian morpho-phonology. With this empirical
background, I develop a computational model that formalizes various aspects of the morphology-phonology
interface. The tool I use is formal logic, specifically graph-to-graph logical transductions. The formalism is
a generalization of the work from one-level Declarative Phonology to a two-level framework.

On the empirical side, Armenian is understudied but it is rich in interactions between phonology and
other modules. I show that Armenian requires a model of the interface which is interactionist and cyclic,
i.e., that morphological structure, prosodic structure, and phonological rules cyclically interact to create
new words. Evidence for this nuanced organization comes from the stratal phonology of Armenian. There
are phonological processes which apply differently before derivational morphology than in inflectional
morphology. These processes indicate not only different strata or levels, but also show signs of unbounded
cyclicity and sensitivity to sublexical prosodic constituents. These processes are active in both simplex and
compound words. Within compounds, the interaction of all these factors creates bracketing paradoxes.

The empirical investigation demonstrates that Armenian phonology is the interaction of four principles:
morphology (Selkirk 1982; Dixon and Aikhenvald 2003), prosody (Nespor and Vogel 1986; Selkirk 1986),
phonological rule domains (Kiparsky 1982b, 2015), and cyclic organization (Cole 1995a; Bermúdez-Otero
2011). The question now is how are these principles computed both individually and together. Theoretically,
there are roughly two extremes of thought: either the interface is computed serially with rules, or in parallel
using global information. But despite many controversies in generative phonology (Bromberger and Halle
1989), there are little computational differences between parallelist vs. serialist theories once they are
converted into explicit computational systems (Karttunen 1993). Their difference comes from how well
they fit into subclasses of computational formalizations such as finite-state machines or regular relations
(Heinz 2018). In other words, what matters is whether some theory is computationally more complicated
than empirically needed. In the case of segmental phonology, global parallelist computation (as found
in OT) is computationally more than what is needed (Chandlee et al. 2018; Strother-Garcia 2019). The
bulk of segmental phonology can be locally computed. This dissertation provides the same result for the
morphology-phonology interface.
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There are many different incarnations of cyclic theories of phonology but there are little to no computational
analyses of them. I develop a computational formalization using Monadic-Second Order (MSO) logic.
Logic is a flexible tool that lets us create iconic formalizations which faithfully replicate phonological theory.
I utilize logical transductions as a way to encode the derivational nature of phonology, i.e., to formalize
phonology as a two-level system instead of a monostratal one-level system (cf. Bird 1995). By formalizing
the morphology, prosody, and phonological rule domains, I uncover implicit factors within cyclic phonology.

The formalization provides a unified framework where we can examine the expressivity of these different
factors. It lets us isolate parts of the theory which are computationally complex from those which are
computationally simple. The ultimate takeaway is that I show that the bulk of the interface requires local
computation, not global computation. The computational result formalizes the intuitions present in many
theories of the interface (Embick 2010; Gribanova 2010), and it shows that there is little to no evidence
for global computation (cf. Prince and Smolensky 2004). By being local, the computational nature of the
morphology-phonology interface opens doors to understanding how we can provably learn morpho-phonological
processes and how these processes relate to limitations on human cognition. I do not discuss learnability
much in this dissertation, however the computational results have clear ramifications on the relative difficulty
of learning morpho-phonology (cf. the learnability of local segmental phonology Ellison 1994; Heinz 2007;
Chandlee 2014).

This introductory chapter gives an overview of the morpho-phonology of Armenian (§1.1), with a focus
on destressed high vowel reduction. The overview sets the empirical background for the computational
formalization of cyclic phonology.1 In §1.2, I go over what must be computationally defined as part of
a cyclic interactionist system for the morphology-phonology interface. As a computational tool, I do not
use finite-state mechanisms because they are designed for linear inputs, not hierarchical structure (§1.3).
I instead use formal logic and logical transductions within the general framework of two-level Declarative
Phonology (§1.4). Finally in §1.5, I preview the results of the dissertation and give a guide to the dissertation,
with a focus on computing the generative capacity of the interface. In the appendix, I provide a concise
summary of different strands of work in computational or mathematical phonology.

1Data is collected from the grammars cited in the bibliography, dictionaries from www.nayiri.com, Wiktionary, and my
own native (Western) judgments. Glosses are taken from Armenian-English dictionaries if available, otherwise my own translation.
Data is transcribed in IPA. The tap is transcribed as /r/ while the trill is /ṙ/ and the lax mid-vowels /E,O/ are transcribed as /e,o/. In
Western Armenian, voiceless consonants are aspirated. I do not mark aspiration because it is not contrastive. Armenian citations
are Romanized based on the ISO 9985 transliteration system. Glossing follows the Leipzig standards. The glosses which I use are:
ABL ablative, ACC accusative, AOR aorist, DAT dative, DEF definite, DIM diminutive, GEN genitive, IMP imperative, INF infinitive,
INST instrumental, LOC locative, NMLZ nominalization, NOM nominative, PL plural, POSS possessive, PRS present, PRTP participle,
PST past. I refer to Classical and Modern Armenian as separate lects. Modern Western and Eastern Armenian are separate dialects
or lects. The three form three lects.

2
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1.1 Empirical landscape of the interface in Armenian

Armenian is an understudied Indo-European language. It is a primarily-suffixing, agglutinative language
with two standard dialects: Standard Western and Standard Eastern Armenian, and almost 40 attested
non-standard dialects of varying degrees of mutual intelligibility. In this thesis, I analyze two morphophonological
processes in depth: destressed high vowel reduction and compound bracketing paradoxes. The outcome
requires a cyclic interactionist model which has multiple strata (levels, cophonologies) and which references
sublexical prosodic constituents. In this chapter, I give a brief overview of these processes and their factors.2

1.1.1 Destressed vowel reduction and cyclicity

In Armenian, stress regularly falls on the word’s rightmost full vowel (1). This vowel can be part of the
root (1a), a derivational suffix (1b), or an inflectional suffix (1c) as long as it not a schwa (1d).

(1) a. kór
>
dz ‘work’

b. kor
>
dz-avór ‘worker’

c. kor
>
dz-avor-nér ‘workers’

d. kor
>
dz-avor-nér-@ ‘with workers’

Although primary stress appears only once on the surface,3 there is evidence that stress is being actively
assigned and reassigned cyclically as each suffix is added. The evidence is the reduction of destressed high
vowels to a schwa (2a) or nothing (2b).

2To give a larger empirical context, there is limited work on Armenian. To my knowledge, this dissertation is the first to focus
on the morphophonology of Armenian. Most linguistic descriptions and analyses of the standard dialects are written in Armenian
(Ač.aṙyan 1971; Xačatryan 1988). Outside of Armenia, there are some structuralist grammars (Fairbanks 1948; Johnson 1954),
language maintenance/attrition studies (Davidian 1987; Godson 2004; Karapetian 2014; Al-Bataineh 2015), sociolinguistic studies
(Donabédian 2001a, 2018), and descriptive or teaching grammars (Gulian 1902; Kogian 1949; Bardakjian and Thomson 1977;
Minassian 1980; Andonian 1999; Hagopian 2005).

There is a small but growing set of in-depth generative and non-generative work on Modern Armenian syntax-semantics
(Seropian 1968; Haig 1980; Comrie 1984; Donabédian 1991; Tamrazian 1994; Sigler 1997; Ackerman 1998; Ackerman et al.
2004; Ackerman and Nikolaeva 1997, 2014; Dum-Tragut 2009; Megerdoomian 2009; Yeghiazaryan 2010; Kahnemuyipour and
Megerdoomian 2011, 2017; Su 2012; Khanjian 2013; Giorgi and Haroutyunian 2016, 2019; Ouwayda 2017; Hodgson 2019; Sağ
2019), morphology-semantics (Donabédian 1993, 2001b; Kozintseva 1995; Bale and Khanjian 2008, 2014; Bale et al. 2010,
2011; Haroutyunian 2011; Giorgi 2011; Donabédian 2016; Martí 2020) phonology-phonetics (Kassabian 1971; Vaux 1998b;
Hacopian 2003; Haghverdi 2016; Hovakimyan 2016; Seyfarth and Garellek 2018; Toparlak 2019; Skopeteas 2019), and morphology
(Donabédian 1997; Baronian 2006; Boyacioglu 2010; Wolf 2013; Arregi et al. 2013; Daniel and Khurshudian 2015; Bezrukov 2016;
Oyer 2017; Plungian 2018). There are many descriptive studies on Classical Armenian and etymology (Godel 1975; Thomson 1989;
Clackson 1994; Kortlandt 2003; Ravnæs 2005; Martirosyan 2009; Olsen 2011, 2017; Macak 2017; Sayeed and Vaux 2017; Klein
et al. 2017), with some in-depth generative and non-generative treatments (Connolly 1972; Hammalian 1984; Vaux 1994; Halle and
Vaux 1998; Garrett 1998; Pierce 2007; Caha 2013; Meyer 2013; DeLisi 2015; Macak 2016; Balabanian 2019).

As for the non-standard dialects, most work is descriptive surveys or sketches that primarily focus on sound changes from
Classical Armenian (Greppin and Khachaturian 1986; Weitenberg 2002, 2017; Martirosyan 2019). There is a growing body of
descriptive and generative work on these non-standard dialects, mostly byVaux (1992, 1993, 1995a,b, 1996a,b, 1997, 1998a,b,
2000, 2001a,b, 2002, 2003, 2006, 2007, 2008, 2012, 2013) and others (Khachaturian 1983, 1992; Vaux et al. 1996; Halle et al.
2000; Fitzpatrick et al. 2004; Finley 2008a,b; Schirru 2012; Bezrukov 2016; Hodgson 2019; Bezrukov and Dolatian 2020).

3Armenian is reported to have secondary stress on the initial syllable (Vaux 1998b), but its acoustic cues are weak. Secondary
stress likewise does not affect vowel reduction synchronically; though see DeLisi (2015) for evidence of the diachronic role of
initial secondary stress.
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(2) a. h́in ‘old’
h@n-utjún ‘oldness’

b. teǴin ‘yellow’
teGn-orág ‘yellowish’

In terms of its phonological factors, destressed high vowel reduction (DHR) targets only high vowels
which surface as unstressed in the output (3a). Low and mid vowels do not reduce (3b).4.

(3) a. makúr ‘clean’ bad́iZ ‘punishment’
makr-él ‘to clean’ badZ-él ‘to punish’

b. ha
>
dZáX ‘frequent’ darpér ‘different’ ZoGóv ‘assembly’

ha
>
dZaX-él ‘to frequent’ darper-él ‘to distinguish’ ZoGov-él ‘to collect’

*ha
>
dZX-él *darpr-él *ZoGv-él

Second, not just any unstressed high vowel in the output will reduce. Although it is cross-linguistically
common for vowel reduction to target any unstressed vowel or any unstressed high vowel (Crosswhite 2001),
the same cannot be said for Armenian. A high vowel will reduce only if it was stressed at some point of the
derivation but subsequently lost stress, i.e. it is destressed (4).

(4) a. amuśin ‘husband’
amusn-utjúl ‘marriage’
*amsin-utjún

b. irigún ‘evening’
irign-aj́in ‘evening (adj.)’
*irgun-aj́in

To illustrate this point, consider the example amusín (4a) which consists of three high vowels. In the
underived base word, none of the high vowels are reduced and stress is on the final vowel. However, once a
suffix -utjun is added onto the base, stress will shift onto the suffix and the derivative will be amusn-utjún.
The root’s final high vowel will have lost stress and be reduced in the derivative. The other high vowels in
the base do not reduce: *amsin-utjún. The same destressing process is observed in irigún vs. irign-aj́in (4a).

Finally, just as stress assignment is cyclic, so is DHR. Vowel reduction can apply multiple times to a
sequence of destressed high vowels (5a), can apply to suffixes (5b), and can apply in compounds (5c). This
is a case of unbounded cyclicity (Orgun 1994) where every new morpheme can potentially trigger a new
cycle of stress shift and reduction.

(5) a.
>
dźin ‘birth’
>
dz@n-únt ‘birth’5
>
dz@n-@nt-agán ‘generative’

b. ázk ‘nation’
azk-aj́in ‘national’
azk-ajn-utjún ‘nationalist’

c. ḱir ‘handwriting’
k@r-́i

>
tS ‘pen’

dúp ‘box’
k@r-

>
tS-a-dup ‘pencil-box’

Thus, DHR needs access to a word’s derivational history and it can occur multiple times in a word’s
derivation. The analysis requires a cyclic, bottom-up, recursive computation. This requirement can be

4A closed set of words have the vowel /e/ undergo destressed reduction to [i]: sér→[sir-él] ‘love’→‘to love’. These are discussed
in chapter 2.

5The word dz@n-unt is a common word which is diachronically bimorphemic and derived from the root dzín. The root dzín is
rarely if ever used in isolation. It is commonly found in its derivatives and deverbal compounds involving birth: dz@n-i-l ‘to be
born’, asdva

>
dz-a-

>
dzin ‘Virgin Mary (God-

√
birth)’.
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modeled with unbounded stem-level cycles as in traditional Lexical Phonology (Kiparsky 1982b), with
recursive constraint evaluation as in Trans-derivational Correspondence Theory (Benua 1997), or with
phase-based derivations as in Phonological Derivation by Phase (Newell 2008; Scheer 2011, 2012; Samuels
2011). Interestingly, Armenian likewise has destressed diphthong uj reduction to u. Like DHR, diphthong
reduction reduces destressed diphthongs. This reinforces the role of derivational histories in Armenian.

(6) a. z@rúj
>
ts ‘conversation’

z@ru
>
ts-él ‘to converse’

b. hampújr ‘kiss’
hampur-él ‘to kiss’

1.1.2 Destressed vowel reduction and morphological strata

However, cyclicity is not enough. DHR is likewise sensitive to morphological structure. In the examples
above, the relevant suffixes triggered stress shift and DHR. However, although all types of suffixes can
trigger stress shift, not all of them can trigger DHR. In Western Armenian (WArm), DHR is triggered by
derivational suffixes (7a-i) but not inflectional suffixes (7a-ii). Interestingly, diphthong reduction (DDR) is
likewise triggered by derivation (7b-i) but blocked by inflection (7b-ii).

(7) a. i. amuśin ‘husband’
amusn-utjún ‘marriage’

ii. amusin-óv ‘husband-INST’

b. i. z@rúj
>
ts ‘conversation’

z@ru
>
ts-él ‘to converse’

ii. z@ruj
>
ts-óv ‘conversation-INST’

The morphology triggers different phonological rule domains, which I model with lexical strata (also
called levels, cophonologies). I argue that derivational morphology creates morphological stems (8b, MStems)
while inflectional morphology creates morphological words (8c, MWords). MStems trigger the stem-level
phonology, i.e., a set of rules which include stress shift, high vowel reduction, and diphthong reduction. In
contrast, MWords trigger the word-level phonology which only includes stress shift, but not any reduction
process. Free-standing roots (8a) take covert category suffixes (Giegerich 1999; Marantz 2007). The features
of suffixes are glossed; they are repeated as subscripts on MStems and MWords.

(8) a.

MS

MSn

n

-∅/

√

/amusin b.

MSn

n

-utjun/

MSn

n

-∅

√

/amusin c.

MWINST

INST

/-ov/

MSn

n

-∅

√

/amusin

The serial derivation below illustrates the use of strata in order to derive amusn-utjun (7a-i) and amusin-ov
(7a-ii). The analysis is couched in a simple interactionist model like Lexical Phonology. The derivation
involves rounds of morphology and phonology. Phonological rules are applied as part of some cophonology,
whether the stem-level or the word-level. Shaded cells represent inapplicable cycles or steps.
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(9) Serial lexical-phonology spell-out for amusn-utjún (7a-i) and amusin-óv (7a-ii)
MSn

n

-utjun/

MSn

n

-∅

√

/amusin

MWINST

INST

-ov/

MSn

n

-∅

√

/amusin

Input /amusin -∅ -utjun/ /amusin -∅ -ov/

Cycle 1 MORPHO Spell-out amusin -∅ amusin -∅
PHONO SLevel Stress amuśin amuśin

DHR
Cycle 2 MORPHO Spell-out amuśin -/utjun/

PHONO SLevel Stress amusin-utjún
DHR amusn-utjún

Cycle 3 MORPHO Spell-out amuśin -/ov/
PHONO WLevel Stress amusn-utjún amusin-óv

Output [amusn-utjún] [amusin-óv]

1.1.3 Destressed vowel reduction and prosodic structure

This simple picture is complicated once we look at other dialects. In Eastern Armenian (EArm), DHR
is likewise sensitive to the prosodic structure of the inflectional suffix. DHR is triggered by derivational
suffixes (10b) and vowel-initial inflectional suffixes (V-Infl, 10c), but not by consonant-initial inflectional
suffixes (C-Infl, 10e).

(10) a. amuśin ‘husband’
b. Derivation amusn-utjún ‘marriage’ WArm & EArm
c. V-initial Infl. amusn-óv ‘husband-INST’ EArm
d. V-initial Infl. amusin-óv ‘husband-INST’ WArm
e. C-initial Infl. amusin-nér ‘husband-PL’ WArm & EArm

Table 11 below summarizes the morphological and prosodic dichotomies for DHR across the two dialects.

(11) Summary of morphological factors of DHR in Western and Eastern Armenian
Dialect Derivation V-initial Inflection C-initial Inflection

Western Armenian X 7 7

Eastern Armenian X X 7

Crucially, it is not the case that Eastern V-Infl can trigger any reduction process. In both dialects,
destressed diphthongs reduce in derivation (12a-i) but not inflection (12a-ii).
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(12) a. i. z@rúj
>
tsh ‘conversation’

z@ru
>
tsh-él ‘to converse’

ii. z@rúj
>
tsh-óv ‘conversation-INST’

z@ru
>
tsh-nér ‘conversation-PL’

b. i. hambújr ‘kiss’
hambur-él ‘to kiss’

ii. hambujr-óv ‘kiss-INST’
hambujr-nér ‘kiss-PL’

The overapplication is DHR is triggered by vowel-initial inflection suffixes, not C-initial ones. This
points to a prosody-based explanation in terms of syllabification and phonological representation. Within
the framework of prosodic phonology, the careful analysis of agglutinative languages has pointed to a
sublexical phonological constituent which straddles the boundary between derivation and inflection: the
Prosodic Stem or PStem (Downing 2016). The PStem is higher than the foot but below the PWord. I argue
that the prosodic misalignment of the PStem is what triggers the unexpected behavior of V-initial inflection
in Eastern Armenian. In Chapter 2, I explain why alternative constituents like the foot and PWord are not
sufficient.

Specifically, MStems are mapped to non-recursive PStems: (amusín)s (13a), (amusn-utjún)s (13b). PStems
must stay aligned with syllable boundaries. Resyllabification before V-initial inflection causes the PStem to
expand: amusin-óv (WArm) or amusn-óv (EArm). This expansion triggers the PStem-level cophonology
which has stress shift without DHR in WArm, but stress shift with DHR in EArm. Before C-initial inflection,
the PStem stays aligned with the MStem and syllables (13d).

(13) a. Root (10a)

PW

PS

a.mu.śin

b. + Der (10b)
PW

PS

a.mus.n-ut.jún

c. + V-Infl (10d,e)
PW

PS

a.mus(i).n-óv

d. + C-Infl (10e)

PW

-nér

PS

a.mu.sin

Table (14) illustrates the analysis and shows the derivation for amusn-ov (EArm: 10c), amusin-ov (WArm:
10d), and amusin-ner (WArm & EArm: 10e) across the two dialects. PStem boundaries are marked by (...)s.
The derivation involves rounds of morphology, prosody, and phonological rule application. The prosody
rounds show syllabification, mapping PStems, and readjusting PStems.
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(14) Serial lexical-phonology spell-out with prosodic constituents and misalignment for inflected items
EArm WArm EArm &WArm

MWINST

INST

/-ov/

MSn

n

-∅

√

/amusin

MWINST

INST

/-ov/

MSn

n

-∅

√

/amusin

MWPL

PL

/-ner/

MSn

n

-∅

√

/amusin

Input /amusin -∅S -ov/ /amusin -∅S -ov/ /amusin -∅S -ner/

Cycle 1
MORPHO Spell-out /amusin-/ /amusin-/ /amusin-/
PROSODY Syllabify amu.sin a.mu.sin a.mu.śin

Map PStem (amu.sin)s (a.mu.sin)s (a.mu.sin)s
PHONO SLevel Stress (amu.śin)s (a.mu.śin)s (a.mu.śin)s

DHR
Cycle 2
MORPHO Spell-out (a.mu.śin)s - /-ov/ (a.mu.śin)s - /-ov/ (a.mu.śin)s - /-ner/
PROSODY Syllabify (a.mu.śi.n)s-ov (a.mu.śi.n)s-ov (a.mu.śin)s-ner

Adjust PStem (a.mu.śi.n-ov)s (a.mu.śi.n-ov)s
PHONO PStem-level Stress (a.mu.ši.n-óv)s

DHR (EArm) (a.mus.n-óv)s
WLevel Stress (a.mu.si.n-óv)s (a.mu.sin)s-nér

Output amusn-óv amusin-óv amusin-nér

In Cycle 1, the root amusin is spelled-out and goes through the stem-level cophonology to get stressed.
Here, the MStem maps onto a PStem: (amusin)s. In Cycle 2, the inflectional suffixes are spelled out and
syllabified. The V-initial suffix -ov syllabifies with the stem, while the C-initial -ner does not.

PStems must be aligned with syllable boundaries. Before C-initial inflection, the PStem stays well-aligned
with both the MStem and syllable boundaries: (amusín)s-ner. It undergoes the word-level cophonolgy of
stress shift without reduction: amusin-nér.

But before V-initial inflection, resyllabification makes the PStem become misaligned from syllable boundaries:
*(amusí.n)-ov. This is repaired by PStem expansion into the inflectional suffix: (amusín-ov)s. The expansion
of the PStem triggers the PStem-level cophonology. In Western Armenian, the PStem-level cophonology
includes stress shift but not reduction: (amusin-óv)s. In Eastern Armenian, the PStem-level includes stress
shift, high vowel reduction, but not diphthong reduction: (amusn-óv)s. The word-level phonology then
applies for all inflected items: amusn-óv, amusin-óv.

The Armenian data thus provide evidence for combining cyclicity, prosodic constituents, morphological
structure, and phonological rule domains. The analysis for vowel reduction necessitates using lexical
phonology’s concepts of cyclicity and strata, and prosodic phonology’s concept of phonological constituents
and non-isomorphism. In Part II, I provide a computational formalization for the different pieces of the
analysis: cyclicity, morphological structure, prosodic structure, and phonological rule domains. The next
section shows how these same principles arise in compounds.
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1.1.4 Emergence of a bracketing paradox in compounds

The behavior of vowel reduction dissects different principles in Armenian phonology. These principles
conspire in compounds to create a bracketing paradox. In general, Armenian compounds are formed by
combining two word-like morphological units with a linking vowel -a-: an

>
tsrev-a-

>
tSúr (15a).

(15) a. an
>
tsrév +

>
tSúr ‘rain + water’

an
>
tsrev-a-

>
tSúr ‘rain-water’

b.
>
tSár + śird ‘evil + heart’
>
tSar-a-śird ‘evil-hearted’

The output of compounding has primary stress on the final full vowel. The presence of only one primary
stress shows that a compound forms at most one phonological word in Armenian.

Although the above description looks straightforward, Armenian compounds exhibit a bracketing paradox
where we see a mismatch between the morphological and phonological structures. The paradox is found in
plural formation. In simplex nouns, the plural is formed by adding the suffix -er after monosyllabic bases
(16a-i), -ner after polysyllabic bases (16a-ii). In some compounds, the plural counts the number of syllables
in the entire compound:

>
Sar-a-sird-ner (16b-ii). But in other compounds, the plural only counts the number

of syllables in the second stem: an
>
tsrev-a-

>
tSur-er (16b-i). I underline the domain of syllable counting.

(16) a. i. pág ‘yard, lot’
pag-ér ‘yards, lots’

ii. panág ‘army’
panag-nér ‘armies’

b. i. an
>
tsrev-a-

>
tSúr ‘rain-water’

an
>
tsrev-a-

>
tSur-ér ‘rain-waters’

ii.
>
tSar-a-śird ‘evil-hearted’
>
tSar-a-sird-nér ‘evil-hearted people’

Within Armenian linguistics, the existence of this bracketing paradox is well-known (Vaux 1998b; Dum-Tragut
2009). However, there is relatively little theoretical attention on understanding the morpho-phonological
factors, consequences, and correlates for compound formation in Armenian. In Chapter 3 , I fill this
gap. I show that the paradox is largely due to endocentricity. The plural counts the number of syllables
in the semantic head. If the compound is exocentric, then the plural counts the number of syllables in
the entire compound (16b-ii); while if the compound is endocentric, then the plural counts the number
of syllables in the second stem (16b-i). I model this paradox with cyclic head-operations (Hoeksema
1984; Aronoff 1988). I show that counter-cyclic tools such as rebracketing (Sproat 1985; Marantz 1988)
would contradict the cyclic phonology of compounds. This is because compounding triggers the same
set of stem-level rules as derivational morphology, e.g., DHR: jergír and jergr-a-kúnt (17a-i). Thus, by
understanding how compounding creates the same phonological rule domains as derivational morphology,
we weed out alternative analyses. The cyclic phonology applies regardless whether the compound has a
paradoxical plural (17a-ii) or not (17b-ii).

(17) a. i. jerǵir + kúnt ‘Earth + sphere’
jergr-a-kúnt ‘globe’

ii. jergr-a-kunt-ér ‘globes’

b. i. azńiv + śird ‘sincere + heart’
azn@v-a-śird ‘sincere-hearted’

ii. azn@v-a-sird-nér ‘sincere-hearted (PL)’

As an additional complication, the bracketing paradox is affected by the prosodic structure of bisyllabic
compounds. Unsurprisingly, exocentric disyllabic compounds are always transparently pluralized: kar-daS-ner
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(18a). But the bracketing paradox can variably under-apply when the bisyllabic compound is endocentric:
xa

>
tS-kar-(n)er (18b).

(18) a. kár + daS-él ‘stone + to carve’
kar-dáS ‘stone carver, mason’

kar-daS-nér ‘stone carvers, masons’

b. xá
>
tS + kár ‘cross + stone’

xa
>
tS-kár ‘cross-stone’

xa
>
tS-kar-ér ‘cross-stones’

xa
>
tS-kar-nér

I argue that this variation requires the use of a prosodic constituent as the prosodic head, specifically the
Prosodic Stem (Downing 1999a). I argue that in endocentric compounds, the semantic head h maps to a
PStem. A PStem can optionally expand in bisyllabic compounds; this causes the plural suffix to count the
number of syllables in the optionally expanded PStem instead of just the semantic head. As in DHR, the
Prosodic Stem is thus active in different areas of the Armenian grammar. I show that alternative prosodic
constituents such as feet or recursive PWords are inadequate.

1.2 Connecting theory and computation

The Armenian data showed that there are four principle factors which govern the phonology of Armenian.
These are the language’s morphology, prosody, phonological rule domains, and cyclic organization between
them. These four principles are sketched out in (19).

(19) Sketch of an interactionist model

Input
root

Morphology Prosody Phonology
Output
root with materialadd parse apply produce

add

There is a wide typology of theories for the morphology-phonology interface. The above model is an
interactionist model because the modules in the graph are interleaved together (Kaisse and Hargus 1993):
morphology feeds phonology and vice versa. The model is also cyclic because the phonological rules
reference the output of previous rounds of phonology. Cyclicity is a hallmark feature of early generative
grammar (Chomsky and Halle 1968; Brame 1974), while interactionism is a later development, e.g., in
Lexical Phonology (Kiparsky 1982b), Stratal OT (Bermúdez-Otero 2018), and Phase-based Phonology
(Newell 2008). There is often a clear mutual dependency between morphology and prosodic structure within
interactionist models (Hargus 1993; Booij and Lieber 1993). This is in contrast to non-interactionist models
(Chomsky and Halle 1968; Halle and Vergnaud 1987a) where all morphological processes precede all
prosodic or phonological processes. Even though non-interactionist models don’t interleave the morphology
and phonology, these models are still cyclic because the phonology is processed in cyclic chunks

Between these two extremes of theoretical thought, there are theories which combine some aspects
of interactionism and non-interactionism, e.g., Stratal OT has a cyclic stem-level rules but post-cyclic
word-level rules. Individual theories may add additional principles or stipulations such as the Strict Cyclicity
Condition (Kean 1974; Mascaró 1976), Structure Preservation Myers (1991), among others. Individual
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theories likewise diverge over what representations they use for the three principle components, such as if
the morphology uses trees (Halle and Marantz 1993) or feature sets (Stump 2001), if the prosody allows
recursive prosodic constituents (Selkirk 2011) or not (Nespor and Vogel 1986), and if the phonological rule
domains reference morphological constituents (Inkelas 2014) or morphemes (Pater 2007).

But going beyond these differences, the interactionist model is an essentially common framework, and
many theories of the morphology-phonology interface are couched in it. The questions now are how we
compute the interactionist model, and what we can learn from the computation. In Parts II and III, I answer
this question and develop a large-scale computational formalization for cyclic interactionist phonology.
I formalize the essential factors of cyclic interactionist phonology, i.e., the four factors of morphology,
prosody, phonological rule domains, and cyclic organization. Given a computational formalization, I then
evaluate the model and show that the bulk of the morphology-phonology interface is computationally local.

1.3 Problems in computing the interface

Although cyclic phonology is a common theoretical tool, there has historically been little computational
formalizations of it (Sproat 1992b:108). To my knowledge, the earliest and most extant formalization is
Williams (1993) who develops a software package in Prolog for running a lexical-phonology derivation
(Williams 1993, 1994; Williams et al. 1989). In terms of learnability, the most sophisticated learning
algorithm for cyclic phonology is Nazarov and Pater (2017) which is couched in Stratal OT. In this section,
I explain that this bleak picture is partially affected by the use of finite-state calculus which is the most
common computational formalism for morpho-phonology. In the next section, I discuss how alternative
logic-based formalisms do not have this problem.

1.3.1 Finite-state formalization of phonology and morphology

The most common tools in computing morphology and phonology are finite-state acceptors (FSAs) and
finite-state transducer (FST). The use of finite-state machines (FSMs) has a long history in computational
phonology. FSMs were applied early on in computing linguistic structure (Chomsky 1956), yet were found
to be inadequate for computing syntactic structure (Chomsky 1957; Miller and Chomsky 1963; Levelt
1974). However Johnson (1972) showed that virtually any SPE-style phonological rule can be converted
into an FST. His result was independently echoed by Kaplan and Kay (1994). FSTs quickly became a
common formalism for computing phonological processes (Kornai 1995, 2007; Gildea and Jurafsky 1996),
with ample implementational and software tools (Mohri 1997; Roche and Schabes 1997; Hulden 2009a).

FSTs were likewise found to be largely adequate for computing morphological processes (Koskenniemi
1984; Sproat 1992b; Beesley and Karttunen 2003; Roark and Sproat 2007). However, while all attested
phonological processes are definable by finite-state calculus, most but not all morphological processes are
finite-state. FSTs can define partial reduplication but not total reduplication (Culy 1985).6 Furthermore,
although generating a string of morphemes is within finite-state power, generating the semantic bracketing
of a word is argued to not be finite-state because of center-embedding and long-distance dependencies

6As a technical clarification, this present discussion concerns 1-way FSTs which process the input in one diection. These are
the types of FSTs generally used in computational linguistics. In contrast, 2-way FSTs can read the input in multiple directions
(Filiot and Reynier 2016) and are adequate for computing reduplication (Dolatian and Heinz 2018b).
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created by the use of prefixes and suffixes (Langendoen 1981; Selkirk 1982; Carden 1983; Hammond 1993;
Oseki 2018; Oseki et al. 2019).

Putting the semantics of morphology aside, morphological functions are generally finite-state regardless
of the differences between many morphological theories, including item-and-arrangement models (Beesley
and Karttunen 2003), item-and-process models (Roark and Sproat 2007), realizational models (Karttunen
2003), Distributed Morphology (Ermolaeva and Edmiston 2018), among many others. There are little to no
computational differences among different morphological theories (Roark and Sproat 2007:ch.3).

One productive line of inquiry in finite-state approaches to morpho-phonology is understanding the
generative capacity of morpho-phonology by defining what subclasses of finite-state calculus are needed to
compute morphology and phonology (Rogers and Pullum 2011; Jäger and Rogers 2012; Rogers et al. 2013;
Chandlee 2014; Chandlee and Heinz 2017; Heinz 2018). This research program on subregular finite-state
phonology and morphology has wide empirical coverage. I provide a concise summary or state-of-the-art
on subregular phonology in §1.A.1.

Thus, it is clear that finite-state devices and calculus provide valuable insight on the computational nature
of phonology and morphology. However, this thesis does not utilize finite-state calculus in formalizing the
morphology-phonology interface. The next section explains why this is so.

1.3.2 Problems in finite-state phonology and morphology

Although finite-state tools are versatile and efficient ways to compute phonology and morphology, these
tools are designed for linear systems. They cannot process an input which is hierarchical with multiple
levels of hidden structure, i.e., morphological structure, prosodic structure, and cyclic derivations.7 In order
for an FST to compute an input which has some hierarchical structure, all this hierarchy must be flattened
down and replaced with special boundary symbols. For example, the prosodic structure in the word banána
(20a) has to be replaced with special symbols denoting the left- and right-boundaries for syllables, feet, and
prosodic words (20b).

(20) a.

PW

Σ

σ

na

σ

ná

σ

ba

b. (w(σba)σ(Σ(σná)σ(σna)σ)Σ)w

By using boundaries, FSTs can efficiently compute different morphological and prosodic processes, such
as for syllabification and word-level prosody (Kiraz and Möbius 1998; Yap 2006; Hulden 2006; Idsardi

7The closest tools are finite-state tree transducers (Comon et al. 2007) which I do not consider. However, these might not
be fully adequate because morphophonological structure is like a directed acyclic graph, not a single tree. This is because 1)
morphological and prosodic trees are separate representations 2) with separate tree roots, but 3) they dominate the same segments,
and 4) morphological nodes can have directed edges to prosodic nodes.
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2009; Yu 2017), phrasal prosody or intonation (Reich 1969; Pierrehumbert 1980; Yu and Stabler 2017;
Yu 2019), tone (Gibbon 1987, 2001a; Yli-Jyrä 2013, 2015; Yli-Jyrä 2019), prosodic morphology and
partial reduplication (Walther 1998, 1999, 2000; Cohen-Sygal and Wintner 2006; Hulden and Bischoff
2009), speech synthesis (Laporte 1997), and debugging (Karttunen 2006a,b; Hulden 2017). Some even use
context-free grammars (CFGs) to iconically capture morphological and prosodic structure (Church 1983;
Cole and Coleman 1992; Coleman 1995a; Coleman and Pierrehumbert 1997; Chew 2003); though some of
these formalization add various restrictions to the CFGs so that they can only generate regular languages
(cf. Church 1983). Many of these case studies are found in Declarative Phonology (§1.4, §1.A.2).

Although FSTs can work with these boundaries, it is an open question if these computational models act
as iconic or faithful replicas of linguistic theory. For example, they may require placing a bound on the depth
of the tree, remove transformations, require trees to all be right-branching, among other stipulations. In fact,
certain processes seem to use local information when computed over these hierarchical structures. However,
by being flattened, what is local in the tree can be non-local in the string. Because of this difference, it is
likely that the expressivity of morpho-phonological processes when given hierarchical inputs is different
than when given flattened inputs. For example, when tonal processes are defined in terms of strings, they
can be computationally more complex, less local, or more expressive than when these same processes are
defined in more iconic representations like autosegmental grammars (Jardine 2016c).

1.4 Formalizing the interface with formal logic

Because of the aforementioned problems, I do not use FSTs to computational define cyclic phonology.
Instead, I compute the interface by using formal logic, specifically MSO graph-to-graph transductions. I use
logic because it is versatile enough to directly and faithfully encode linguistic representations. It is explicit
enough to test for correctness, and it is systematic enough to measure its complexity or generative capacity.8

In syntax, there is substantial work on logical formalisms and model-theoretical syntax (Rogers 1997,
1998; Pullum and Scholz 2001; Morawietz 2003; Kobele 2006; Pullum 2007; ter Meulen 2012; Graf 2013).9

This thesis is the not the first application of formal logic to morphology or phonology. The most developed
research program for applying logic to phonology was Declarative Phonology or DP (Bird 1995; Coleman
1998). DP was a one-level system which did not utilize transformations between inputs to outputs. As a
constraint-based formalism, its heyday was in the early 1990s but it virtually disappeared since the rise of
OT (Prince and Smolensky 2004). In recent years, there has been a program of logical and model-theoretic
approaches to phonology (Potts and Pullum 2002; Graf 2010b; Vu et al. 2018; Strother-Garcia 2019; Chandlee
and Jardine 2019b; Danis and Jardine 2019). This program utilizes logical transductions in order to transform
an input structure to an output structure. The recent program is still in its infancy and does not have a name.
For ease comparison, I call this recent program two-level Declarative Phonology or 2-level DP.

This thesis utilizes the tools of 2-level DP in order to formalize cyclic phonology. In this section, I first
explain how logic can be used to formalize phonological processes, both in traditional 1-level DP and in

8To clarify, I do not argue thatlogical treatments of phonology are in general better than finite-state treatments of phonology.
They are two points on a continuum of computational work on phonology (Heinz prep).

9Similar to subregular phonology, there is likewise a recent research program on investigating what computational subclasses
are needed to define syntactic-semantic processes, especially by projecting strict-locality and tier-based strict-locality to trees
(Laszakovits 2018; Vu 2018, 2019; Vu et al. 2019; Graf and Shafiei 2019a; Graf 2019b; Ikawa et al. 2020; Shafiei and Graf
2020; Graf and De Santo 2019; Ji and Heinz 2020).
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contemporary 2-level DP (§1.4.1). I then explain the reason why 1-level and 2-level diverge in their formal
power (§1.4.2).

1.4.1 Use of logical formalizations in phonology

This section has two goals. I explain how logic can be used to formalize phonological processes, and I
show how 1-level and 2-level DP diverge in their formalizations. Briefly, 1-level DP treats all phonological
processes or alternations as well-formedness statements on possible surface words. There is no input-to-output
transduction. In contrast, 2-level DP allows the use of logical functions or logically-defined transductions
from an input structure to an output structure. The difference between 1-level and 2-level DP is similar to
the dichotomy between feature-filling vs. feature-changing phonology.

Consider the non-existent language below. On the surface, this language only has the sounds [p,ph,a]. The
aspirated [ph] and unaspirated [p] appear in complementary distribution: the stop is unaspirated intervocalically,
and aspirated elsewhere (21a). Morphemes alternate in aspiration under prefixation (21b) and suffixation
(21c). Aspiration is thus allophonic. Because aspiration appears in the least restricted type of environment,
the underlying phoneme is aspirated /ph/.

(21) a. pha apa aph

b. pha a-pa

c. aph ap-a

One possible analysis would posit full specification for the phoneme /ph/. That is, the phoneme /ph/
is specified as aspirated or [+aspirated]. A rule of intervocalic de-aspiration (22a) then applies to change
[+aspirated] to [-aspirated] intervocalically. This rule is feature-changing. Assume that a voiceless bilabial
stop is specified as [+stop], and that there are no other stops in the language. In contrast, an alternative
analysis would posit under-specification for the phoneme /ph/. Underlyingly, this phonemes lacks any
specification for aspiration. The phoneme /p/ is underlying neither aspirated [+aspirated] nor unaspirated
[-aspirated]. The rules in (22b) inserts a specification for aspiration: [-aspirated] intervocalically, [+aspirated]
elsewhere. These rules are feature-filling.

(22) Aspiration rule as...
a. Feature-changing: [+stop,+aspirated] → [-aspirated] / V_V
b. Feature-filling: [+stop] → [-aspirated] / V_V

→ [+aspirated] / elsewhere

1-level and 2-level DP differ in this regard. 1-level DP assumes that all phonological processes are
feature-filling while 2-level DP makes no such commitment. Given some ‘input’ in 1-level DP, a process
cannot be defined such that it changes anything about this input whether by deletion, epenthesis, or feature-changing
rules. It can only specify information by converting underspecified properties into fully specified properties.
In contrast, 2-level DP accepts the full gamut of possible phonological transformations: epenthesis, deletion,
metathesis, feature changing, etc.

Because of their different premises, the two models differ in their architecture of phonological processes
and in how phonology is computed. 1-level DP is non-derivational and mono-stratal: there is only one level
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of representation which is simply ‘further specified’. Again, 2-level DP makes no such assumption and can
be multi-stratal and derivational with an input level and an output level. 1-level DP can be implemented
by finite-state acceptors and by logical statements, while 2-level DP can be implemented by finite-state
transducers and logical transductions. I expand on these points below.

To illustrate these differences, consider the logical formulas below. The two traditions posit different
possible input forms for the aspirated [pha] and unaspirated [apa]. In 2-level DP, the input can be /pha/ and
/apha/. A rule of deaspiration is formalized as a pair of input-to-output functions which generate the output
string [pha] and [apa]. These functions are shown below.

(23) Logically-defined functions for aspiration in 2-level DP

a. φ-aspirated(x1)
def
= +aspirated(x) ∧ intervocalic(x)

Some segment x is [-aspirated] in the output if it as [+aspirated] and intervocalic in the input

b. φ+aspirated(x1)
def
= +aspirated(x) ∧ ¬intervocalic(x)

Some segment x is [+aspirated] in the output if it as [+aspirated] and not intervocalic in the input

The logical formulas are interpreted as follows. On the surface, a consonant x is unaspirated or [-aspirated]
(23a) if it is underlyingly aspirated but intervocalic. It is aspirated or [+aspirated] (23b) if it is underlyingly
aspirated and not intervocalic. The notation, font, and additional symbols are further explained in Chapter
4.

In Part II, I use logical transductions from 2-level DP to compute hierarchical outputs from hierarchical
inputs. That is, I use these same types of logical formulas to compute cyclic phonology and to generate
morphological structure, prosodic structure, and phonological rule domains.

In contrast in 1-level DP, the ‘input’ is an underspecified representation which encodes its possible
allomorphs, e.g., [pha] and [apa] are underlyingly /{p,ph}a/ and /a{p,ph}a/. The input segment is in fact a
union of possible realizations. The labial segment can either be unaspirated [p] or aspirated [ph] depending
on its context. The job of ‘rules’ in 1-level DP is to filter out these possible realizations. In terms of formal
logic, rules in 1-level DP can be stated in terms of relatively simple logical statements such as the following.

(24) Logical statements for the distribution of aspiration in 1-level DP
a. stop(x) ∧ intervocalic(x)→ −aspirated(x)

If some segment x is a stop and intervocalic, then it must be unaspirated
b. stop(x) ∧ ¬intervocalic(x)→ +aspirated(x)

If some segment x is a stop and not intervocalic, then it must be aspirated

The statement in (24a) states that if a stop is intervocalic then it must simultaneously be unaspirated.
In contrast, the statement in (24b) states that if a stop is not intervocalic, then it must simultaneously
be aspirated. When the input representations and the logical statements are combined, we get the right
pronounced forms [pha], [apha]. I use the term ‘simultaneously’ to emphasize the fact there is no input-to-output
transduction in 1-level DP.
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1.4.2 Reasons for the logical split

Both 1-level and 2-level DP are computationally well-grounded formalizations of phonology. This thesis
utilizes 2-level DP in order to faithfully replicate the derivational aspects of cyclic phonology. This section
takes a step back and explains why 1-level and 2-level DP differ in the first place. Retrospectively, I argue
that 1-level DP eschews transformations because of the limitations on computational and mathematical
resources at the time.

There is an intimate connection between formal logic and finite state calculus (Büchi 1960; Thomas 1997;
McNaughton and Papert 1971; Filiot and Reynier 2016). There are likewise connections between subclasses
of finite-state calculus and logical formalisms (Rogers et al. 2013; Rogers and Lambert 2019a,b; Lambert
and Rogers 2019) and work on converting between logical formalisms and finite-state calculus (Vaillette
2003, 2004; Hulden 2009b). When computed over strings, the representation and filtering ‘rules’ of 1-level
DP can be modeled by FSAs; while the rules of 2-level DP can be modeled by FSTs.

One reason why 1-level DP assumes feature-filling rules and mono-stratal computation is because this
makes 1-level DP computable by string-based FSAs (Bird and Ellison 1994). In general, FSAs are defined
in terms of a single level of representation: they accept well-formed strings and reject ill-formed strings.
They cannot handle transformations between multiple levels of representation. By treating phonology as
mono-stratal and non-transformational, practitioners of 1-level DP aim to make their phonological models be
integrated with non-transformational frameworks for syntax, such as Head-Based Phrase-Structure Grammar
(Bird 1992; Klein 1993), categorial grammars (Wheeler 1981, 1988; Bach and Wheeler 1981), unification-based
grammars with attribute-value matrixes (Scobbie 1991a; Bird 1991b; Bird and Klein 1994), and sign-based
grammars (Orgun 1996). However, the fact that 1-level DP sought to use FSAs does not mean that phonological
transformations are incomputible. Such computations are instead handled by finite-state transducers (FSTs)
which transduce or map an input form to an output form. FSAs are a special type of FST.

Given the dichotomy between FSAs and FSTs, the reason why early DP was 1-level is that, at the time
when 1-level DP was developing, there were limited computational resources for computing transformations.
These limitations came from two sources. First, in the early 1980s and 90s, there were some feasibility
problems in constructing, implementing, or composing large FSTs for natural language (Kaplan and Kay
1994; Karttunen 1993:180). This encouraged the use of FST intersection (Koskenniemi 1983b,a, 1984).
However, these implementational limitations for FSTs are largely solved now. Second, the reason why
1-level DP did not use logical transductions is because 1-level DP arose before logical transductions were
extensively developed. When DP first started, there was little to no work in theoretical computer science
on developing logical transductions. A hallmark paper on defining logical transductions is Courcelle (1994)
which was written after the bulk of 1-level DP was set out (Bird 1991a; Ellison and Scobbie 1993). The
dissertations which later became Bird (1995) and Coleman (1998) were written before 1994.

In sum, despite their computational differences, both 1-level and 2-level DP are well-defined frameworks.
There is substantial earlier work in 1-level DP and recent work in 2-level DP. A summary of work in each
tradition is given in §1.A.2 and §1.A.3 respectively. Importantly, a major development in 1-level DP was
Chew (2003) who developed a computational model of Russian, with a near complete formalization of
Russian morphology, prosody, and rule domains. His formalization was non-derivational and monostratal.
This dissertation has a similar goal of formalizing Armenian phonology with many of its non-phonological
factors, i.e., morphology, prosody, and rule domains. But unlike Chew (2003), I formalize Armenian
phonology as a cyclic, interactionist, two-level declarative model. By doing so, this dissertation is a more
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iconic formalization of the morphology-phonology interface as it is commonly conceptualized in generative
linguistics.

1.5 Guide to the dissertation: Generative capacity of the interface

By using logical transductions, I formalize a substantial chunk of the morphology-phonology interface.
As a theoretical backdrop, I assume a simple interactionist model where the Morphology, Prosody, and
Phonological Rule domains have a recursive architecture. The output of the Phonology can act as input to
another round of Morphology. This interactionist architecture is what creates cyclic phonology.

(25) Sketch of an interactionist model

Input
root

Morphology Prosody Phonology
Output
root with materialadd parse apply produce

add

In Part I, I expand on the empirical and theoretical aspects of this model. I document and analyze a large
fragment of Armenian morpho-phonology. I expand on the overview of strata, destressed reduction, and
compounds given in §1.1. Readers who are interested in what Armenian brings to the theoretical table
are encouraged to read these chapters. Computationally-minded readers can skip these chapters. The
formalization uses data on Armenian which was already explained in the overview in §1.1.

In Chapter 2, I describe the complications present in destressed high vowel reduction in Armenian. It
is a cyclic processes which is present in both Modern Western and Eastern Armenian, and inherited from
Classical Armenian. I expand on the how Armenian phonology is organized into a stem-level and word-level
strata based on high vowel reduction and other processes. I show evidence for the existence of the Prosodic
Stem as a sublexical prosodic constituent which is larger than the foot but smaller than the Prosodic Word.

In Chapter 3, I go over compounding in Armenian and how compounds show a bracketing paradox in
plural formation. I document the distribution of the paradox across the Armenian lexicon. I argue that
the data requires a cyclic mechanism such as head-operations, and that it cannot be done with common
counter-cyclic mechanisms such as rebraketing. By understanding the phonology and prosodic structure
of compounds, I then show that the limited variation in compound pluralization is further evidence for the
Prosodic Stem.

With this empirical setting in place, Parts II and III formalize the interface. In Part II, I first go over the
preliminaries of the logical notation in Chapter 4. I set up the notation to handle the hierarchical structure
in morphology and phonology. In Chapter 5, I use the logical notation to define the individual components
of the interactionist model. I define logical transductions for computing the Morphology, Prosody, and
Phonological Rule Domains. These are exemplified for a simplex free-standing root like amusin ‘husband’.

In Chapter 6, I exploit the cyclic nature of the interface. I define additional transductions for generating
derived, inflected, and compounded words. Computing these more complex words requires minimal modifications
to the set of Morphological, Prosodic, and Phonological transductions. Crucially, I show that these processes

17



are computationally local. They are local because they do not need quantifiers, i.e., they have Quantifier-Free
computation (Strother-Garcia 2018, 2019). In order to facilitate the logical definitions, I distinguish between
the triggers and targets of these linguistic processes. Whereas the target of these processes are segments, the
trigger is often the topmost morphological node in the tree. I encapsulate the information about this topmost
node into a constant that I call the SETTINGS of the derivation. By doing this encapsulation, I make explicit
the fact that the derivation is implicitly guided by regularly examining the input morphological structure.
The encapsulation likewise acts as a way to factorize the potentially local target of morpho-phonological
processes from the potentially non-local trigger of these processes.

(26) Sketch of an interactionist model with an explicit stage for the SETTINGS

Input
root

Morphology Settings Prosody Phonology
Output
root with
materialadd examine parse apply

trigger

produce

add

I emphasize that the formalization is meta-theoretical. As a young science, theoretical linguistics is
still generating new language theories, and the field has witnessed many significant shifts in theoretical
frameworks (Anderson 1985; Scheer 2011; Goldsmith 2012). I have tried to keep the computational formalism
as simple as possible by formalizing only the basic aspects of interactionist models. With these basics,
I have formalized a substantial chunk of the interface. Table (27) acts as a summary of some of the
morpho-phonological processes or principles that I have formalized. A more detailed table is provided
in the conclusion chapter §10. I do not formalize theory-specific additions such as Strict Cyclicity, phases,
or output-output constraints.

(27) Aspects of the morphology-phonology interface which are defined
Morphology Prosody Phonological Rule Domains
Affix linearization Syllabification Domains triggered by

Zero Generating syllables Morphemes
Prefix Syllable ordering Morphological constituents
Suffix Resyllabification Prosodic constituents
Mobile Affix Tiers over syllables

Affix Allomorphy Mapping
Inwards-sensitive Generating prosodic constituents
Outwards-sensitive Misaligning prosodic constituents
Phono-conditioned Restructuring prosodic constituents
Morpho-conditioned Recursive Prosody

Tiers over dominance Generating
Compounding Flattening

Formation Compound prosody
Head-marking

The ultimate goal of Part II is to show not only that we can use logic to define the morphology-phonology
interface, but we also then know that the interface is computationally simple and local. By being local, these
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results indicate that we need simple computational resources to compute the interface. This opens doors to
understanding how the interface can be provably learned and how its computational properties may reflect
the cognitive capacities of natural language.

To hammer down on this final point about locality and generative capacity, Part III takes a step back and
examines the the various assumptions of the interactionist model.

In Chapter 7, I apply the logical formalization in order to understand the computational properties of
affixation and allomorphy. Again, I show that the bulk of affixation and allomorphy are computationally
local. I provide formal heuristics for determining what is local in phonologically- or morphologically-conditioned
allomorphy; this chapter thus formalizes the common intuition found in morphological theories of what
constitutes local allomorphy (cf. Embick 2010). Using these heuristics, I show that there does exist some
non-local affixation processes (cf. Paster 2006). I furthermore show that, besides locality, affixation tends
displays the computational property of order-preservation. Order-preservation is a constraint on possible
input-to-output correspondence relations.

In Chapter 8, I peel away some of the assumptions of my formalization. I show that without using an
encapsulation mechanism such as a SETTINGS, prosodic transductions are still local; however, phonological
rule domains may potentially require non-local triggers. I emphasize potentially because it is difficult to find
concrete cases where the morphological trigger is not within a finite bound from the target. Interestingly,
if we assume a non-interactionist model, then post-cyclic prosody is largely still a local process. Pockets
of non-locality are then found in more complex prosodic transductions such as compound prosody and
recursive prosody.

Finally, Chapter 9 discusses computational and empirical problems within cyclicity and with the interactionist
model itself. Computationally, without a bound on cycles, the computation has unrestricted expressivity
(Kaplan and Kay 1994:365). Empirically, there are a class of processes which reference information that is
generated from future morphological or phonological processes. These include cases of outward-sensitive
allomorphy and postcyclic phonology. In order to compute these processes, I show that all we need
is to simply enrich the input with a mechanism that keeps track of all future morphological operations.
Similar mechanisms are used in Distributed Morphology (Halle and Marantz 1993) and Paradigm-Function
Morphology (Stump 2001). I combine the benefits of both those theories in order to define a computationally
simple way to encode morphological look-ahead. This encoding enriches our sketch of an interactionist
model. This enrichment likewise provides a partial solution to the computational problem of cyclicity.

(28) Sketch of an interaction model with an Operation stage

Input
root

Operation Morphology Settings Prosody Phonology
Output
root with
materialproceed add examine parse apply

trigger

produce

proceed

I conclude in Chapter 10.
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1.A Appendix on computational phonology

Although the computational formalization is couched within 2-level Declarative Phonology, my formalization
has been heavily influenced by developments within subregular finite-state phonology and within 1-level
Declarative Phonology. In this appendix, I go over the empirical coverage of these two frameworks. There
is relatively little work in 2-level Declarative Phonology because of its recency. By providing the coverage
of these three approaches, I hope to foster inspiration on how to combine the insights or tools of each
framework for future work.

1.A.1 Developments in subregular phonology

Although finite-state calculus is sufficient to compute most morphological and phonological processes,
many of these processes require specific subclasses of finite-state machines. There has been much recent
work in defining which subclasses of finite-state calculus are needed to compute morphology and phonology
(Heinz 2007; Rogers and Pullum 2011; Jäger and Rogers 2012; Rogers et al. 2013; Chandlee and Heinz
2017; Heinz 2018). This research program on subregular finite-state phonology and morphology has
wide empirical coverage. I go over some these areas below.

As a general overview of its empirical coverage, there has been work on defining the right computational
subclasses for:

1. local phonotactics (Chandlee 2014), including metathesis (Chandlee et al. 2012), iterative processes
(Chandlee et al. 2015), opacity (Chandlee et al. 2018), and dissimilation (Payne 2014, 2017)

2. long-distance phonotactics (Heinz 2007; Chandlee and Heinz 2018), including consonant harmony
(Heinz 2010; Luo 2017), vowel harmony (Gainor et al. 2012; Heinz and Lai 2013; Lai 2015), and
their mappings (Burness and McMullin 2020)

3. morphological processes such as affixation (Chandlee 2017), reduplication (Chandlee and Heinz
2012), and cyclic rule domains (Bjorkman and Dunbar 2016)

4. suprasegmental processes such as tone (Jardine 2016a), tone sandhi (Chandlee 2019), stress (Heinz
2007, 2009, 2014), and sign language phonology (Rawski 2019a)

5. features or feature-based representations (Heinz and Koirala 2010; Strother-Garcia et al. 2017; Vu
et al. 2018; Chandlee et al. 2019)

There have been applications to cognition (Rogers and Pullum 2011; Lai 2012, 2015; Heinz and Idsardi
2013; Hwangbo 2015; Avcu 2018, 2019; Rogers and Lambert 2019a; Lambert and Rogers 2019) and
learnability (Heinz 2007; Jardine et al. 2014; Chandlee and Jardine 2014; Chandlee and Koirala 2014;
Chandlee et al. 2014, 2015), including statistical learning (Heinz and Koirala 2010; Vu et al. 2018; Shibata
and Heinz 2019) . One promising strand of work is discovering how these subregular classes correspond
to different types of logical structures (Rogers and Pullum 2011; Strother-Garcia 2018, 2019; Chandlee and
Jardine 2019b; Rawski 2019b; Rogers and Lambert 2019b; Lambert and Rogers 2020) and different neural
network implementations (Shibata and Heinz 2016; Avcu et al. 2017; Rawski and Heinz 2019; Rawski
2019b; Nelson et al. 2020). A much more recent direction is finding the connection between subregular
classes and information theory (Dai and Futrell 2020). In terms of implementation, the most sophisticated
software support for subregular languages and processes is Aksënova (2020a,b)’s SigmaPie package.

One strand of work in subregular phonology has been defining new subclasses of finite-state calculus
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based on linguistic concepts. A major development in this strand are tier-based languages and functions
(Heinz et al. 2011). Tier-based formalisms have mostly been used to compute long-distance processes,
such as consonant harmony (McMullin 2016; McMullin and Hansson 2016), vowel harmony (Aksënova
and Deshmukh 2018; Mayer and Major 2018; Andersson et al. 2020), stress (Hao and Andersson 2019),
morphology (Aksënova et al. 2016), semantics (Graf 2019b), and syntax when defined over trees.10 These
have results in learnabilty (Jardine 2016b; Jardine and Heinz 2016a; Jardine and McMullin 2017) and
cognition (McMullin and Hansson 2019). Various extensions or refinements to tier-based formalisms have
been proposed to handle diverse types of locality domains and blockers over phonological (Graf 2017; Graf
and Mayer 2018; De Santo 2018; De Santo and Graf 2019; Karakaş 2020), prosodic (Baek 2018; Hao
2020), and morphological structure (Aksënova and De Santo 2018; Moradi et al. 2019). These extensions
have some results on learnability (McMullin et al. 2019; Burness and McMullin 2019).

Other developments in subregular phonology have been defining more complex finite-state subclasses
based on strategies such as accessing individual transitions or actions for rhythmic syncope (Hao and Bowers
2019), intermediate markup and weak determinism for tonal processes (Lamont et al. 2019), and serial
decomposition for long-distance processes (Lamont 2018).

There has likewise been work on extended finite-state subclasses to more enriched types of machines,
functions, and representations. These extensions include two-way transducers for reduplication (Dolatian
and Heinz 2018a,b, 2019a,b, Dolatian and Heinz forthcoming; Nelson et al. 2020), autosegmental grammars
for tone (Jardine 2016c, 2017a, 2019, 2020), and multi-tape transducers for Semitic templates (Kay 1987;
Kiraz 2000, 2001; Hulden 2009c; Dolatian and Rawski 2020a,b), tone (Wiebe 1992; Rawski and Dolatian
2020), and features (Carson-Berndsen 1998).

1.A.2 Developments in One-level Declarative Phonology

In mainstream contemporary phonological or morphological research, 1-level DP is not widely used. Its
reliance on using only feature-filling rules and no transformations had currency in the late 1980s and early
1990s due to problems in rule-based phonology and computing cascades of rules. However, even with its
theoretical limitation to only feature-filling processes, there was a coherent body of work that came out of
1-level DP.

Two significant monograph-sized overviews of the tradition are Bird (1995) and Coleman (1998). They
develop case studies in phonotactics and prosody to clarify the theory. Smaller conceptual overviews and
theoretical motivations for DP can be found in (Scobbie 1991b; Bird et al. 1992; Scobbie 1993a; Bird
1994; Scobbie et al. 1996). Earlier developments are (Wheeler 1981; Scobbie 1991a). Contrasts with other
constraint-based approaches can be found in (LaCharité and Paradis 1993; Scobbie 1993a; Coleman 2011;
Scobbie 1993b). Retrospective overviews are (Coleman 2006, 2011; Hammond 2009). Two major papers
are (Bird and Klein 1994; Bird and Ellison 1994). Two large edited volumes are (Bird 1991a; Ellison and
Scobbie 1993) which contain multiple case studies. The most significant recent development is Chew (2003)
who provides an extensive formalization of Russian morphotactics, phonotactics, and prosody using 1-level
DP.

A wide-ranging yet intimate set of phonological phenomena have been modeled in 1-level DP. These
include reduplication (Keane 2005), templates (Bird and Blackburn 1991; Klein 1993; Bird and Klein

10See footnote 9 for a some work on subregular syntax when defined over trees.
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1994), prosodic morphology (Walther 1998, 1999), morphotactics and allomorphy (Ellison 1993; Ogden
1999), focus and intonation (Oehrle 1991; Bird 1991c; van der Linden 1991), prosodic representations for
syllabification, stress, feet, and word-level prosody (Klein 1991; Walther 1993; Dirksen 1993; Coleman
1991, 1992, 1993, 2000), especially Berber (Scobbie 1993a; Coleman 1996), autosegmental structure and
tone (Bird and Klein 1990; Coleman and Local 1991), defaults and exceptions (Calder and Bird 1991;
Gibbon 2001b), speech synthesis (Coleman and Local 1992; Coleman 1995b), morphological domains and
lexical phonology (Cole and Coleman 1992; Coleman 1995a; Orgun 1998), suprasegmental features and
Firthian prosody (Ogden 1993; Broe 1991a,b). Most of these applications were theory-neutral; though
Russell (1993) developed a computational formalization using Government Phonology.

1.A.3 Recent developments in Two-level Declarative Phonology

Compared to subregular phonology and 1-level DP, there has been less work in 2-level DP because of its
recency. Most work has focused on phonotactics (Rogers and Pullum 2011; Rogers et al. 2013; Heinz 2018)
with recent applications to syllabification (Strother-Garcia 2018, 2019), tone (Jardine and Heinz 2016b;
Chandlee and Jardine 2019a; Jardine 2014, 2016c, 2017b; Koser et al. 2019; Zhu 2020; Mamadou and
Jardine 2020), stress (Koser and Jardine 2019), local and long-distance phonotactics (Chandlee and Jardine
2019b), cliticization (Ashton 2012), theory-evaluation (Graf 2010a; 2010b, Payne et al. 2017, Danis and
Jardine 2019, Jardine et al. to appear, Oakden to appear), learnability (Strother-Garcia et al. 2017; Vu et al.
2018; Chandlee et al. 2019), and the relationship with neural network implementations (Rawski 2019b).

A lot of work has focused on finding how various phonological theories or representations are computationally
equivalent, whether in syllabification (Strother-Garcia 2019) or tone (Danis and Jardine 2019, Jardine et al.
to appear, Oakden to appear). There is likewise work in using restricted types of recursive functions in
computing long-distance dependencies (Chandlee and Jardine 2019b), which can be potentially extended
to iterative prosody. These recursive logical functions have links with Boolean monadic recursive program
schemes; this opens doors to implementation and function composition (Bhaskar et al. 2020). This thesis
resembles Chew (2003) in that I provide a systematic formalization for hierarchical aspects of phonology,
specifically on computing morphological structure, prosodic structure, and phonological rule domains.
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Part I

Cyclic Phonology in Armenian
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Chapter 2

Cyclic phonology of destressed reduction

2.1 Introduction

Phonological processes are often sensitive to morphological, prosodic, and derivational structure (Kiparsky
1982b; Nespor and Vogel 1986; Inkelas and Zec 1990; Hargus and Kaisse 1993; Wiese 1994; Scheer 2011).
In this chapter, I establish the architecture of the morphology-phonology interface for Armenian.

In terms of Morphology, Armenian distinguishes between morphological stems (MStems) vs. morphological
words (MWords). The former is created from derivational morphology, while the latter from inflectional
morphology. For the Prosody, MWords map to prosodic words (PWords),while MStems map to a smaller
prosodic constituent called the prosodic stem (PStem). For the Phonology of rule domains, MStems and
MWords trigger stem- vs. word-level strata. Interestingly, misaligned PStems trigger a separate PStem-level
cophonology or rule domain. These three aspects of the interface (Morphology, Prosody, Phonology) are
organized in a cyclic or interactionist derivation.

I establish the above architecture based on a widespread morphophonological process: Destressed High
Vowel Reduction (29). Armenian is an Indo-European language with two modern standard dialects: Western
(WArm) and Eastern Armenian (EArm). In both dialects, stress is final (29a) and suffixation triggers stress
shift. Derivational suffixes also trigger the reduction of destressed (29b), not unstressed high vowels (29c),
in a process of Destressed High Vowel Reduction (DHR). But the dialects vary on DHR in inflection. In
WArm, DHR is not triggered by inflection (29e,29f); while in EArm, DHR is triggered by V-initial but not
by C-initial inflection (29d,29f).

(29) a. Base amuśin ‘husband’
b. Der. Suffix amusn-utjún ‘marriage’
c. *amsin-utjún

d. V-initial Infl. amusn-óv ‘husband-INST’ Eastern
e. amusin-óv ‘husband-INST’ Western
f. C-initial Infl. amusin-nér ‘husband-PL’ Eastern & Western

Focusing first on Western Armenian, I show how primary stress is assigned (§2.2). Then in §2.3, I break
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down DHR into its phonological, derivational, and morphological factors in WArm.

Phonologically, DHR targets high vowels which lost stress (§2.3.1). DHR is insensitive to other phonological
factors such as the distance between the destressed and the newly stressed syllables . Derivationally, I show
that DHR is a cyclic process that applies when certain suffixes trigger stress shift (§2.3.2). DHR thus shows
a Derived Environment Effect. In fact, DHR can apply a potentially unbounded number of times, depending
on how much derivational morphology we have. But morphologically, not every suffix can trigger DHR
in WArm (§2.3.3). Specifically in WArm, DHR applies in derivation but not inflection. I argue that this
morphological distinction is the basis for stem-level vs. word-level strata. DHR is a stem-level rule in
WArm, not word-level. Section §2.4 then provides more evidence for strata in Armenian.

Moving on to the Eastern Armenian, I argue that DHR is also a stem-level rule in EArm In §2.5. The
reason why V-initial inflection can trigger DHR is prosodic: syllabification and prosodic misalignment. I
argue that the relevant prosodic constituent is not a metrical foot or the prosodic word (PWord). Instead,
pre-inflectional DHR is due to the misalignment of the Prosodic Stem (Downing 1999a) (§2.5.4). This
constituent is straddled between V-initial inflection and C-initial inflection. It triggers some but not all
stem-level rules; this means that the PStem is a prosodic constituent which is indexed with its own cophonology.
However, the use of the Prosodic Stem for DHR is not stipulative, and in §2.6 I give independent evidence
for the PStem from appendix incorporation.

Based on DHR in WArm and EArm, I posited a hierarchy of cophonologies: the stem-level, PStem-level,
and word-level. In §2.7, I show that lexical variation in DHR supports the existence of the PStem-level
cophonology. These cophonologies form a monotonic hierarchy where possible constraint rerankings are
controlled by the Strong Domain Hypothesis (Myers 1991).

Finally, I explain the microvariation between the two dialects as due to diachrony (§2.8). Both dialects
descend from Classical Armenian (CArm), where DHR was word-level. In terms of the phonological
life-cycle, DHR narrowed from the word-level in CArm to the stem-level in WArm and to PStem-level
in EArm (30). I argue that this divergence happened because of CArm’s morpheme inventory. In Classical
Armenian, nominal inflection was either V-initial suffixes like dative -oj, or single consonantal suffixes
like plural -k. There were no stressable C-initial consonants like *-ner.1 The modern dialects developed
stressable C-initial inflection like -ner. I argue this change created the PStem in modern Armenian. In
EArm, DHR narrowed down to the PStem-level instead of all the way to the stem-level.

(30) Domain of Destressed High Vowel Reduction across Classical, Western, and Eastern Armenian

Lect Morphological Domain Cophonology
Derivation V-initial Inflection C-initial Inflection

CArm 3 3 word-level
EArm 3 3 7 stem-level and PStem-level
WArm 3 7 7 stem-level

I conclude in §2.9. In the appendix, I sketch a diachronic analysis for the origins of destressed reduction
based on opacity (§2.A). I also summarize the judgment of different grammarians on the productivity of
destressed reduction (§2.B).

1Throughout this chapter, the term ‘C-initial inflection’ is used to mean C-initial inflectional suffixes which contain a vowel like
-ner but unlike -k.
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2.2 Stress in Armenian

In Armenian, primary stress falls on the rightmost full vowel in the word. Primary stress assignment is
edge-based, quantity-insensitive, word-bound, and avoids schwas. There is little evidence for feet. The data
in this section is from Western Armenian, but the generalizations extend to Classical and Eastern Armenian.

First, stress is edge-based because it can fall on the final full vowel in a root (31a-i), derivational suffix
(31a-ii), or inflectional suffix (31a-iii). Compounds are formed by concatenating two stems with the linking
vowel -a-. They surface with final stress (31b-ii), even when inflected (31b-iii).

(31) a. i. kór
>
dz ‘work’

ii. kor
>
dz-avór ‘worker’

iii. kor
>
dz-avor-nér ‘workers’

b. i. seGán ‘table’
ii. kor

>
dz-a-seGán ‘work-bench’

iii. kor
>
dz-a-seGan-nér ‘work-benches’

Second, stress is quantity-insensitive. Stress ignores the coda size of the final or penultimate syllable
(32a). Vowel length is not phonemic; vowel-glide sequences exist and aren’t heavy (32b).

(32) a. i. kór
>
dz ‘work’

kor
>
dz-́i ‘work-GEN

kor
>
dz-óv ‘work-INST

b. i. kájl ‘wolf’
kajl-́i ‘wolf-GEN

kajl-óv ‘wolf-INST

Third, stress is word-bound. It cannot go outside the word and fall on a clitic (33a-iii) or a clitic cluster
(33a-iv). Compounds behave the same (33b). Lists of such unstressable clitics can be found in Margaryan
(1997:78) and Khanjian (2013:72).

(33) a. i. kor
>
dz-avór ‘a worker’

ii. kor
>
dz-avor-óv ‘with a...’

iii. kor
>
dz-avor-óv al ‘also with...’

iv. kor
>
dz-avor-óv al e ‘is also with...’

b. i. kor
>
dz-a-seGán ‘a work-bench’

ii. kor
>
dz-a-seGan-óv ‘with a...’

iii. kor
>
dz-a-seGan-óv al ‘also with ...’

iv. kor
>
dz-a-seGan-óv al e ‘is also with...’

Fourth, stress generally does not fall on the final vowel if it is a schwa.2 Instead, stress is on the preceding
full vowel (34). The final schwa can be part of either an inflectional suffix (34a) or the root (34b). The schwa
can be either underlying (34c) or epenthetic, whether this epenthesis is optional (34d) or obligatory (34b).

(34) a. kór
>
dz-@ /kor

>
dz-DEF/ ‘work-DEF’

b. jerpém@n /jerpemn/ ‘sometimes’
c. ṕit@r < Eng. [piR@ô] ‘Peter’
d. pókr ∼ pók@r /pokr/ ‘small’

Primary stress assignment as occurring within the prosodic word (PWord). A simple stress rule is given
in (35). The PWord is largely isomorphic with the morphological word (MWord), i.e., it includes derivation,
compounding, and inflection, but not clitics. The only non-isomorphism is when a MWord-final consonant

2Haghverdi (2016) documents cases where final schwas can get stress in Eastern Armenian. In a larger study, Skopeteas (2019)
finds similar effects but argues it is due to phrasal boundary tones. In onomatopoeic words with only schwas, both initial (Vaux
1998b:133) and final stress (Ač.aṙyan 1971:339) are documented. The (un-)stressability of schwas is not crucial to this chapter.

26



resyllabifies with a V-initial clitic and leaves the PWord (35d). MWords and PWords are marked by the
subscripts W and w.

(35) a. Primary Stress Assignment
Assign stress on the rightmost syllable if it has a full vowel (σV ). Otherwise if the final syllable
has a schwa (σ@), then stress the penultimate full vowel
σV → σV ´ / _ (σ@) #

b. {kor
>
dz-@}W −→ (kór

>
dz-@)w

c. {kor
>
dz-avor-ov}W −→ (kor

>
dz-avor-óv)w

d. {kor
>
dz-avor-ov}W al e −→ (kor

>
dz-avor-ó.)wv=al e

As for secondary stress, it is on the initial syllable (36) (Abeġyan 1933:20). This creates a hammock
pattern because primary and secondary stress are on opposite sides of the word (Gordon 2002). Secondary
stress is not iterative; long lapses of unstressed syllables are found (36d). To illustrate the lapses, I show
hypothetical foot boundaries. Clitics are ignored by stress (36e).

(36) Surface Hypothetical Feet
a. nàmág (nà)(mág) ‘letter’
b. bàdasxán (bà)(das.xán) ‘answer’
c. bàdasxan-avór (bà.das)xa(na.vór) ‘responsible’
d. bàdasxan-avor-ner-óv (bà.das)xa.na.vor(ne.róv) ‘responsible-PL-INST’
e. bàdasxan-avor-ner-óv al e (bà.das)xa.na.vor(ne.ró.)v=al e ‘is also with responsible people’

Although I show hypothetical foot boundaries in (36), the stress data do not show any positive evidence
for feet (DeLisi 2015:42ff, 2018:115). Armenian lacks common correlates found in final-iambic languages.
For example, stress is quantity insensitive and phonetically cued by pitch (Athanasopoulou et al. 2017).
Turkish and French have stress patterns similar to Armenian and have been argued to lack feet (Özçelik
2017). Feet will be shown to be irrelevant for the analysis of Armenian prosody and reduction.

2.3 Destressed High Vowel Reduction in Western Armenian

In Western Armenian (WArm), there is evidence that stress is being assigned and reassigned as each suffix
is added, i.e., on a cyclic basis. The evidence is Destressed High Vowel Reduction (DHR).

(37) a. Base amuśin ‘husband’
b. Der. Suffix amusn-utjún ‘marriage’
c. *amsin-utjún

d. V-initial Infl. amusin-óv ‘husband-INST’ Western
e. C-initial Infl. amusin-nér ‘husband-PL’ Western
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Adding a derivational suffix triggers a cycle of stress assignment and the reduction of the destressed high
vowel i (37b). In contrast, the unstressed high vowel u does not reduce (37c). DHR distinguishes derivation
from inflection: inflection triggers stress shift but not reduction (37d,37e). I expand on the phonological
(§2.3.1), derivational (§2.3.2), and morphological (§2.3.3) factors behind DHR.

2.3.1 Phonology of reduction

Phonologically, DHR is limited to high vowels, and it is affected by stress shift and marked syllable
structure (§2.3.1.1). It is insensitive to other phonological factors, such as secondary stress and the location
of the destressed vs. newly stressed syllables (§2.3.1.2). I go through these factors below.

2.3.1.1 Destressing and syllabifiability

Among monophthongs, only a stress-less high i or u can reduce (38a,38b). Non-high vowels do not.3

(38) a. bad́iZ ‘punishment’ amís ‘month’
badZ-él ‘to punish’ ams-agán ‘salary’

b. makúr ‘clean (adj)’ d@xúr ‘sad’
makr-él ‘to clean’ d@xr-utjún ‘sadness’

c. ha
>
dZáx ‘frequent’ arák ‘fast’

ha
>
dZax-él ‘to frequent’ arak-anál ‘to speed up’

d. darpér ‘different’ arhést ‘craft’
darper-él ‘to differentiate’ arhest-avór ‘craftsman’

e. ZoGóv ‘assembly’ atór ‘chair’
ZoGov-él ‘to collect’ ator-ág ‘stool’

However, not just any stressless high vowel can reduce; it has to specifically be a destressed high vowel
(Katvalyan 1989:89; Margaryan 1997:87; Vaux 1998b:148; Khanjian 2009). A destressed vowel is a vowel
which is stressed in the base but not in the derivative: badíZ ∼ badZ-él (38a). To illustrate, the words in (39)
have multiple high vowels. But note that only the destressed high vowel can reduce in the derivative.

(39) a. irigún ‘evening’
irign-aj́in ‘evening (adj.)’
*irgun-aj́in

b. amuśin ‘husband’
amusn-anál ‘to marry’
*amsin-anál

c. diǵin ‘lady’
dign-utjún ‘ladyship’
*dgin-utjún

The same applies for roots with multiple vowels but only one high vowel. If the high vowel is unstressed
in the base, it stays unstressed in the derivative and does not reduce (40). It does not matter if the high vowel
is in the first (40a) or second syllable (40b), or whether it has an onset or not (40c).

(40) a.
>
dzi

>
dzáG ‘laughter’ nihár ‘skinny’ kiSér ‘night’

>
dzi

>
dzaG-él ‘to laugh’ nihar-utjún ‘skinniness’ kiSer-aj́in ‘nocturnal’

3An exceptional set of roots with non-high vowels show apparent destressed reduction. These are discussed in §2.8.

28



b. m@xitár ‘comforter’ vostigán ‘policeman’ heGinág ‘author’
m@xitar-ánk ‘comfort’ vostigan-uh́i ‘policewoman’ heGinag-él ‘to compose’

c. imást ‘meaning’ uráx ‘happy’ iSxán ‘prince’
imast-agán ‘intellectual’ urax-anál ‘to be happy’ iSxan-utjún ‘principality’

Unsurprisingly, if affixation does not trigger stress shift, then there is no destressed reduction. In (41), the
nominalizer -k cannot trigger stress shift for phonological reasons: it lacks a full vowel.

(41) a. daŕi ‘year’
daŕi-k ‘age’

b. kaxtńi ‘secret (adj)’
kaxtńi-k ‘secret (n)’

c. paŕi ‘good’
paŕi-k ‘charity’

DHR manifests as vowel deletion (42a), unless deletion would create an unsyllabifiable consonant cluster.
In general, the maximal syllable is CVCC: complex onsets are banned while complex codas have falling
sonority.4 To avoid bad clusters, the destressed high vowel is replaced by a schwa (42b). Whether the
schwa is epenthetic (Vaux 1998b; Khanjian 2009) or corresponds to the destressed vowel (Xačatryan 1988)
is controversial but orthogonal to this chapter.

(42) a. amuśin ‘husband’
amusn-utjún ‘marriage’
*amus@n-utjún

b. azńiv ‘honest’
azn@v-utjún ‘honesty’
*aznv-utjún

2.3.1.2 Insensitivity to other prosodic factors

Having shown what phonological factors control DHR, I now go over prosodic factors which do not affect
reduction. First, DHR is only sensitive to primary stress and it ignores secondary stress. Initial secondary
stress does not protect destressed high vowels in monosyllabic roots from DHR: púrt derives p@rt-a-va

>
dZár.5

(43) DHR ignores root or suffix size in derivation

Root size σ σσ

púrt ‘wool’ gamúr
>
dZ ‘bridge’

Suffix size -σ p@rt-éG ‘woolly’ gam@r
>
dZ-ág ‘small bridge’

-σσ p@rt-arán ‘wool shop’ gam@r
>
dZ-aj́in ‘relating to bridges’

Compound size LV-σ p@rt-a-kór
>
dz ‘wool-stapler’ gam@r

>
dZ-a-dúrk ‘bridge-toll’

LV-σσ p@rt-a-va
>
dZár ‘wool-seller’ gam@r

>
dZ-a-k@lúx ‘bridge-head’

4There are a few known exceptions to the ban on complex onsets: consonant-glide clusters (Vaux 1998b:81), borrowed proper
names (Baronian 2017), word-initial obstruent-rhotic clusters (T’oxmaxyan 1988), and word-initial obstruent clusters that are
aspirated or fricated (Hovakimyan 2016). The main exception to falling-sonority complex codas are stem-final appendixes (Vaux
and Wolfe 2009). This is discussed in §2.6.1.

5To explain this, we could argue that high vowels do not get secondary stress (Vaux 1998b:149). But this is not confirmed
from acoustic data (T’oxmaxyan 1983; Athanasopoulou et al. 2017). Furthermore, it is unclear if secondary stress is relevant.
Secondary stress has weaker cues in Armenian than primary stress (Abeġyan 1933:20). Although there are diachronic processes
which reference secondary stress, e.g., medial syncope (§2.5.1) (DeLisi 2018), there are no attested synchronic processes which do.
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Second, DHR is not pretonic reduction (43). The destressed vowel can be at any distance from the stressed
vowel: púrt ∼ p@rt-a-va

>
dZár. When a derivational suffix is added to a root, DHR can apply regardless of the

size of the root or suffix. Most derivational suffixes are monosyllabic or disyllabic (Dum-Tragut 2009:652);
there are no larger suffixes. DHR likewise applies in compounds. The size of the first or second root doesn’t
matter (43). Most roots are monosyllabic or disyllabic, but larger roots exist (44). These can reduce just like
smaller roots, whether before derivational suffixes or in compounding.

(44) DHR for trisyllabic roots
σσσ stem Derivative 2nd stem Compound

a. ZoGovúrt ZoGov@rt-anó
>
ts hamár ZoGov@rt-a-hamár

‘populace’ ‘populace’ ‘count’ ‘demography’
b. potoŕig potorg-ál Sún

>
tS potorg-a-Sún

>
tS

‘storm’ ‘to bluster’ ‘breath’ ‘tempestuous’
c. m@deŕim m@derm-utjún

>
tsájn m@derm-a-

>
tsájn

‘intimate’ ‘intimacy’ ‘voice’ ‘intimate voiced’

Finally, in previous examples, stress shifted to a V-initial element. But when DHR applies in derivational
morphology, the syllable structure of the new element does not matter. The derivational element can be a
V-initial or C-initial suffix (45a).6 In compounding, the linking vowel -a- is generally used (Donabédian
2004). In some compounds, the linking vowel is exceptionally absent but DHR can still apply (45b).

(45) a. ZoGovúrt ‘populace’
ZoGov@rt-agán ‘popular’
ZoGov@rt-ján ‘popular’

b. dún + dés ’house + see!’
d@n-dés ‘house-keeper’

2.3.2 Derivational history and reduction

Having established the relatively simple phonology behind DHR, I now show how DHR is sensitive to
a word’s derivational history. Because DHR is mainly triggered by stress shift, I show that DHR shows a
Derived Environment Effect (§2.3.2.1) and it displays unbounded cyclicity (§2.3.2.2).

2.3.2.1 Destressed vowel reduction as a Derived Environment Effect

As said, the application of DHR depends on a word’s derivational history. This makes DHR a Derived
Environment Effect (DEE) (Kiparsky 1973) which shows Non-Derived Environment Blocking (NDEB)
(Kiparsky 1993). There is a wide literature on how to formalize DEEs (Łubowicz 2002; Wolf 2008; Burzio
2011; Inkelas 2014). For Armenian, Vaux (1998b:148) uses rules with the Strict Cycle Condition while
Khanjian (2009) uses constraints with Comparative Markedness (McCarthy 2003; Lubowicz 2003). Here, I
represent DHR by a simple rule (46) that references ‘destressed’ vowels via a diacritic: ǐ,ǔ

6There is variation in DHR when the suffix -jan is used to form surnames, e.g. manug ‘small’∼manug-ján ‘Manougian’, sarkis
∼ sarkis-ján (two names in WArm), vs. sargis ∼ sarg@s-ján (two names in EArm).
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(46) Destressed High Vowel Reduction (DHR)
If a high vowel is destressed, it is deleted or replaced by a schwa. Deletion is used if it won’t create
an unsyllabifiable cluster; otherwise a schwa is used
ǐ,ǔ→ ∅ / VC1(C2)_ CV such that C1C2 can form a complex coda

@ / elsewhere

I illustrate a sample derivation below.7

(47) a. hivánt ‘sick’ hanḱist ‘relaxed’ amuśin ‘husband’
hivant-anál ‘to become sick’ hank@st-anál ‘to relax’ amusn-anál ‘to marry’
*h@vant-anál *hankist-anál *amsin-anál

b. Deriving base-derivative pairs for destressed high vowel reduction

Base Underlying form /hivant/ /hankist/ /amusin/
Stress hivánt hanḱist amuśin

Derivative Suffixation hivánt-anal hanḱist-anal amuśin-anal
Stress hivǎnt-anál hanǩist-anál amušin-anál
DHR hank@st-anál amusn-anál

From hivánt, we derive hivant-anál. The high vowel does not reduce because it is unstressed in both the
base and the derivative. For hankíst ∼ hank@st-anál, the high vowel i is reduced because it was destressed,
i.e., stressed in the base but not in the derivative. The vowel is reduced to a schwa because deletion cannot
form a syllabifiable cluster. And for amusín ∼ amusn-anál, the first high vowel u does not reduce because
it wasn’t stressed in the base. The second high vowel i is reduced because it is destressed. It is is deleted
because the resulting cluster is syllabifiable.

2.3.2.2 Unbounded cyclicity in DHR

Because DHR depends on cyclic stress shift, DHR shows signs of unbounded cyclicity. In all previous
examples, the destressed high vowel was in a root, but destressed high vowels in suffixes can also reduce.

(48) a. ázk ‘nation’
azk-aj́in ‘national’
azk-ajn-agán ‘nationalist’

b. jérk ‘song’
jerk-́i

>
tS ‘singer’

jerk-
>
tS-uh́i ‘female singer’

c. márz- ‘√sports’

marz-́i
>
tS ‘trainer’

marz-
>
tS-agán ‘of trainers’

Multiple application of DHR is found in compounds. The individual stems in a compound can consist of
zero (49a) or more derivational suffixes (49b). Compounds generally have at most two stems. Compounds
with three or more stems are rarer and restricted to technical jargon; but when formed, they can show DHR
(49c). Outside of compounds, it is rare to find a word with destressed high vowels in both roots and suffixes.

7I am currently developing a formalization using constraint conjunction (Łubowicz 2002): *i,u[-STRESS]&IDENT[STRESS].
This is violated by unstressed high vowels that lost stress in the derivation.
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(49) a. śird ‘heart’
lár ‘string’
s@rd-a-lár ‘heart-string’

b. ḱir ‘handwriting’
k@r-́i

>
tS ‘pen’

dúp ‘box’
k@r-

>
tS-a-dup ‘pencil-box’

c. jerǵir ‘Earth’
>
tSúr ‘water’
volórt ‘circuit’
jergr-a-

>
tS@r-olórt ...8

Thus, DHR is a cyclic process that can apply a potentially unbounded number of times, depending on the
number of morphemes. In this way, it resembles stress preservation in English (Chomsky and Halle 1968;
Collie 2007, 2008), destressed a-raising in Romanian (Steriade 2008a), and a-raising in Qashgar Uyghur
(Orgun 1994; Nevins and Vaux 2008:10ff).

Unbounded cyclicity is theoretically and empirically controversial (Bermúdez-Otero 2011). It was assumed
in earlier rule-based cyclic phonology (Chomsky et al. 1956; Chomsky and Halle 1968) and lexical phonology
(Kiparsky 1982b). It is possible in some current frameworks via recursive computation (Kenstowicz 1996;
Benua 1997) or probabilistic stem storage (Collie 2007, 2008; Bermúdez-Otero and McMahon 2006; Bermúdez-Otero
2016). The unbounded cyclicity of DHR cannot be reduced to other factors such as prosodic alignment
(Liberman 1975; McCarthy and Cohn 1998) (cf. Cohn 1989; Duanmu 1999).

2.3.3 Morphology of reduction

In contrast to the previous sections, not every instance of stress shift will cause DHR. Stress shift is
triggered by derivation (compounding and affixation) and by inflection (50). But DHR is more restricted. In
WArm, it is triggered in derivation (50ii,iii) but not inflection (50iv-vi) (Avetisyan 2007:41, 2011:72).

(50) Application of DHR in WArm derivation, but not inflection
a. monosyllabic base b. polysyllabic base

i Base túxt ‘paper’ amuśin ‘husband’
ii Der. Suffix t@xt-arán ‘paper-mill’ amusn-utjún ‘marriage’
iii Compound t@rám ‘money’ zúrg ‘deprived’

t@xt-a-t@rám ‘paper-money’ amusn-a-zúrg ‘spouse-deprived’
iv V-initial Infl. tuxt-óv ‘paper-INST’ amusin-óv ‘husband-INST’
v C-initial Infl. N/A amusin-nér ‘husband-PL’
vi Stacked Infl. tuxt-er-óv ‘paper-PL-INST’ amusin-ner-óv ‘husband-PL-INST’

In WArm, inflection systematically blocks reduction. It does not matter if the inflectional suffix is V-initial
(50iv), C-initial (50v), or stacked (50vi), or if the root is monosyllabic (50a) or larger (50b). Monosyllabic
roots do not have C-initial inflection (50a-v). In fact, regular nominal inflection is agglutinative in Western
Armenian and it robustly blocks DHR. In (51), I show the regular plural and case markers for monosyllabic
and polysyllabic nouns.9 The plural shows phonologically-conditioned allomorphy: -er after monosyllables

8The gloss can be translated as the ‘the hydrosphere of the Earth’s crust’. The v is epenthetic (Vaux 1998b:13). The
linking-vowel is absent before vowels (Donabédian 2004).

9Besides case and plural marking, DHR is inactive throughout Western Armenian regular inflection. Some suffixes lack full
vowels and thus can’t trigger stress shift or DHR: -@/-n -DEF, -@s/-s -1SGPOSS, -@t/-t -2SGPOSS. The plural possessive suffix is
-ni after polysyllabic bases but -er-ni after monosyllabic bases with a spurious plural (Arregi et al. 2013; Wolf 2013). It does not
trigger reduction: Sun-er-nis ‘our dog’, ax

>
tSig-ní-s ‘our girl’. An apparent exception is verbal inflection which shows reduction. But

this isn’t a true exception. Verbs are formed with verbalizing theme vowels: kír ‘writing’ to k@r-é-l ‘to write’. Theme vowels act

32



and -ner elsewhere. The choice is arbitrary and generally not phonologically-optimizing (Vaux 2003).10 But
regardless, DHR generally does not apply in regular inflection, even when inflection is stacked (51).

(51) Regular inflection in Western Armenian without reduction

Base size Citation form Dative/Genitive Ablative Instrumental
Singular σ tuxt ‘paper’ tuxt-i tuxt-e tuxt-ov

σσ+ amusin ‘husband’ amusin-i amusin-e amusin-ov
Plural σ tuxt-er ‘papers’ tuxt-er-u tuxt-er-e tuxt-er-ov

σσ+ amusin-ner ‘husbands’ amusin-ner-u amusin-ner-e amusin-ner-ov

I formalize the above derivation vs. inflection distinction with stem vs. word strata (Kiparsky 1982b, 2000,
2015; Bermúdez-Otero 2011, 2012, 2018). Free-standing roots, derivational suffixes, and compounds form
Morphological Stems (MStems or MS), while inflection creates Morphological Words (MWords or MW).
MStems trigger the stem-level cophonology of stress and DHR; MWords trigger the word-level cophonology
of stress without reduction. In (52), I illustrate the stratal derivation of the base amusin, its derivative
amusn-utjun, and its inflected form amusin-ov.

(52) Stratal derivation of the root amusin, derivative amusn-utjun, and inflected amusin-ov

MWNOM

NOM

-∅

MSn

n

-∅

√

/amusin/

MWNOM

NOM

-∅

MSn

n

/-utjun/

MSn

n

-∅

√

/amusin/

MWINST

INST

/-ov/

MSn

n

-∅

√

/amusin/

Input /amusin -∅S -∅W / /amusin -∅S -utjunS -∅W / /amusin -∅S -ovW /

Cycle 1 MORPH Spell-out /amusin -∅S / /amusin -∅S/ /amusin -∅S/
PROSODY Syllabify a.mu.sin a.mu.sin a.mu.sin
PHONO SLevel Stress a.mu.śin a.mu.śin a.mu.śin

DHR
Cycle 2 MORPH Spell-out a.mu.śin - /-utjunS /

PROSODY Syllabify a.mu.śin-u.tjun
PHONO SLevel Stress a.mu.šin-u.tjún

DHR a.mus.n-u.tjún
Cycle 3 MORPH Spell-out amuśin /-∅W / amusn-utjún /-∅W / a.mu.śin /-ovW /

PROSODY Syllabify a.mu.śi.n-ov
PHONO WLevel Stress amuśin amusn-utjún a.mu.šin-óv

Output amuśin amusn-utjún amusin-óv

as derivational suffixes and are found almost everywhere in a verb’s inflectional paradigm: k@r-é-m ‘I write’. Some paradigm cells
replace the theme vowel with some other V-initial suffix and still show reduction: k@r-a

>
dz ‘written’. Thus, verbal inflection shows

reduction because it requires an intermediate step of adding the theme vowel. Finally, DHR can exceptionally apply in irregular
inflection; I discuss this in §2.7.2.

10Many cases of syllable-counting allomorphy are phonologically-optimizing and reference feet (Kager 1996; González 2005).
But see Vaux (2003); Paster (2005, 2006, 2019) for more cases that do not reference feet and aren’t optimizing.
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Each cycle includes a round of morphological, prosodic, and phonological processes. The phonological
processes are triggered by different cophonologies (Inkelas 2014). The MStems and MWords have a
subscript for their morphosyntactic feature. In their underlying form, affixes have a subscript S or W to
indicate that they trigger the stem-level or word-level cophonology. I assume that free-standing roots form
an MStem with a covert category-head (Giegerich 1999; Marantz 2007). I assume that stems can form
MWords via covert nominative case. Grey cells indicate that a given item doesn’t undergo a certain step.

In Cycle 1, the root is spelled out, syllabified, and undergoes the stem-level phonology to get stressed:
amusín. In Cycle 2, the derivative is formed. The stem-level phonology of stress shift and reduction is
applied: amusn-utjún. In Cycle 3, covert or overt inflection is added and the word-level cophonology is
applied. For the base and derivative, Cycle 3 vacuously places stress on the last syllable again. For the
inflected word amusin-ov, the word-level phonology is applied with stress shift but no reduction: amusin-óv.
I assume that the word-level is postcyclic, and that the stem-level is cyclic (Booij and Rubach 1987). In the
next section, I provide additional evidence for strata in Western Armenian.

2.4 Lexical strata elsewhere in Western Armenian

In WArm, DHR is sensitive to derivation vs. inflection. I formalized this difference with strata. Here, I
show independent evidence for strata elsewhere in WArm: Destressed Diphthong uj-Reduction and vowel
hiatus. Readers should note that these processes are treated as diagnostics for the stem-level cophonology.

2.4.1 Destressed Diphthong uj-Reduction

Armenian has sequences of vowels and glides uj, ju, aj, ja, ej, je, oj, jo, which I descriptively call
diphthongs. Of these, in general, only uj undergoes destressed reduction. Destressed uj reduces to [u]
in derivation, both suffixation (53ii) and compounding (53 iii), but not in inflection (53iv).

(53) Destressed Diphthong uj-Reduction in roots

i. Base ii. Derivative iii. 2nd stem Compound iv. Inflected
a. z@rúj

>
ts z@ru

>
ts-él, *z@r.

>
ts-él ḱir-k z@ru

>
ts-a-ḱir-k z@ruj

>
ts-óv

‘conversation’ ‘to converse’ ‘book’ ‘conversation-book’ ‘conversation-INST’
b. lújs lus-avór, *l@s-avór n@mán lus-a-n@mán lujs-óv

‘light’ ‘luminous’ ‘similar’ ‘light-like’ ‘light-INST

Reduction can apply in suffixes (54a), especially when the suffix is on a bound root (54b).

(54) Destressed Diphthong uj-Reduction in suffixes

i. Root or base Suffixed ii.Derivative iii. 2nd stem Compound iv. Inflected
a. sovór sovor-újt sovor-ut-aj́in mol-utjún sovor-ut-a-mol-utjún sovor-ujt-óv

‘accustomed’ ‘custom’ ‘customary’ ‘addiction’ ‘routinism’ ‘custom-INST’
b. jerev-́il jerev-újt jerev-ut-agán d́ib jerev-ut-a-d́ib jerev-ujt-óv

‘to appear’ ‘appearance’ ‘visible’ ‘type’ ‘phenotype’ ‘appearance-INST’
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Destressed uj reduces to [u]. Destressed Diphthong uj-Reduction (DDR) forms a counterfeeding chain
shift with Destressed High Vowel Reduction (DHR). The [u] does not delete (53a) or further reduce to schwa
(53b).11 This creates a case of stratum-internal opacity. I represent DDR with a simple stem-level rule (55a)
that is ordered after DHR.12 I illustrate a derivation for the derivative z@ru

>
ts-el (53a-ii) and inflected base

z@ruj
>
ts-ov (53a-iv) in (55b). I omit the prosodic step for syllabification.

(55) a. Destressed Diphthong uj-Reduction (DDR)
If a diphthong uj vowel is destressed, it is reduced to u
ǔj→ u

b. Stratal derivation of the derivative z@ru
>
ts-el and z@ruj

>
ts-ov

MSv

v

/-el/

MSn

n

-∅

√

/z@ruj
>
ts/

MWK

NOM

/-ov/

MSn

n

-∅

√

/z@ruj
>
ts/

Input /z@ruj
>
ts -∅S -elS/ /z@ruj

>
ts -∅S -ovW /

Cycle 1 MORPHO Spell-out /z@ruj
>
ts -∅S/ /z@ruj

>
ts -∅S/

PHONO Slevel Stress z@rúj
>
ts z@rúj

>
ts

DHR
DDR

Cycle 2 MORPHO Spell-out z@rúj
>
ts - /-elS/

PHONO SLevel Stress z@rǔj
>
ts-él

DHR
DDR z@ru

>
ts-él

Cycle 3 MORPHO Spell-out z@ru
>
ts-él z@ŕuj

>
ts /-ovW /

PHONO WLevel Stress z@rǔj
>
ts-óv

Output z@ru
>
ts-él z@ruj

>
ts-óv

2.4.2 Vowel hiatus and positional faithfulness effects

Further evidence for strata comes from initial segment protection and vowel hiatus repair. In previous
examples, the reduced destressed high vowel was in a closed CVC(C) syllable. But when the vowel is
root-initial, i.e., in an onsetless syllable in a monosyllabic root, then it generally does not reduce in derivation
or inflection (Margaryan 1997:94ff). Exceptions exist in derivation but not inflection (56c).

11In a handful of derivatives, destressed uj is deleted or replaced by schwa: gabújd ‘blue’ and gabd-a-kújn ‘blue-colored’. This
is due to a sporadic diachronic process of diphthong monophthongization which created synonymous alternating bases: gabújd;
gabúd ‘blue’ (Margaryan 1997:111; Avetisyan 2011:27). If the derivative is formed from the diphthong-base, then diphthong
reduction applies: gabud-a-kújn. Else if the derivative is formed from the monophthong-base, then high vowel reduction applies:
gabd-a-kújn. Monophthongization also targeted some bases with ju:

>
tsjún;

>
tsún ‘snow’ and

>
ts@n-a-márt ‘snowman’. See Greppin

and Khachaturian (1986) on the dialectal distribution of monophthongization. See Khanjian (2009) for discussion on the phonetic
and phonological differences between the diphthongs uj, ju and high vowels.

12Khanjian (2009) formalized this chain shift with distantial faithfulness constraints. I am currently developing a formalization
using constraint conjunction

35



(56) a. íZ ‘viper’ b. úxt ‘vow’ c. íG
>
ts ‘wish’

iZ-agán ‘viperish’ uxt-él ‘to vow’ @G
>
ts-él ‘to wish’

iZ-ér ‘viper-PL’ uxt-ér ‘vow-PL’ iG
>
ts-ér ‘wish-PL’

The preference for stem-initial high vowels to not reduce is due to a positional faithfulness constraint
(Beckman 1997) for stem-edges (57). This constraint blocks DHR at stem edges. It is is ranked higher than
the output constraints which trigger destressed reduction.

(57) Protecting high vowels at stem edges:
IDENT-EDGE: High vowels do not reduce if they are at the edge of a stem.

This constraint also protects stem-final high vowels in vowel hiatus (Casali 1997). This constraint
must differentiate between initial and final edges, between final i and u, and between monosyllabic vs.
polysyllabic roots (cf. Becker et al. 2012). To illustrate, consider the roots in (58) where the destressed
high vowel i is in a stem-final open syllable. If the root is monosyllabic, the high vowel is not deleted in
derivation or inflection. Glide epenthesis applies to repair vowel hiatus.

(58)
>
tśi ‘horse’ t́i ‘shovel’ ĺi ‘copious’
>
tsij-avór ‘horseman’ tij-ág ‘shovel’ lij-anál ‘to fill’
>
tsij-ér ‘horse-PL’ tij-ér ‘shovel-PL’ lij-ér ‘copious-PL’

But if the stem-final i is in a polysyllabic root, we find different possible repairs. In derivation, vowel
hiatus can be repaired by deletion (59a), coalescence (59b) (with /-agan/), glide formation (59c), or glide
epenthesis (59d). The choice is unpredictable and lexeme-specific, but deletion is the most common strategy.
In inflection, only glide epenthesis is allowed in Western Armenian.

(59) a. t@Snamí ‘enemy’
t@Snam-agán ‘hostile’
t@Snamij-é ‘enemy-ABL’

b. hoḱi ‘soul’
hoke-gán ‘spiritual’
hokij-é ‘soul-ABL’

c. g@Gźi ‘island’
g@Gzj-ág ‘islet’
g@Gzij-é ‘island-ABL’

d. vort́i ‘son’
vortij-agán ‘filial’
vortij-é ‘son-ABL’

Similar variation is found for destressed stem-final u in vowel hiatus. Both in monosyllabic (60a) and
larger roots (60b), stem-final /u/ is turned into [v] (glide fortition) in derivation; schwa epenthesis may apply
to repair the consonant cluster. Glide epenthesis can occur but it is less common (60c); deletion is rare. But
in inflection, glide epenthesis is the only productive strategy in Western Armenian.13

(60) a. pú ‘owl’
p@v-ál ‘to screech’
puj-é ‘owl-ABL’

b. meGú ‘bee’
meGv-agán ‘apian’
meGuj-é ‘bee-ABL’

c. ot-a-
>
tSú ‘aviator’

ot-a-
>
tSuj-agán‘aeronatic’

ot-a-
>
tSuj-é ‘aviator-ABL’

13In WArm, pre-inflection glide fortition is restricted to lexicalized phrases. It is more common in EArm (Avetisyan 2007:83;
Vaux 1998b:19). In §2.6.2, I show that pre-inflectional vowel hiatus repair is slightly more lax in Eastern Armenian.
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To summarize, destressed reduction thus does not apply for high vowels at stem-edges because of positional
faithfulness. Instead, vowel hiatus repair rules apply and these vary depending on the high vowel, syllable
size, lexeme, and stratum. All of these processes are sensitive to derivation vs. inflection (Minassian
1980:46ff,95; Margaryan 1997:103ff; Vaux 1998b:19ff; Sowk’iasyan 2004:50).

In the stem-level phonology, we need different lexeme-specific rules or indexed faithfulness constraints
for vowel deletion (MAX-V), glide epenthesis (DEP-j), glide formation (IDENT[SYLL]), glide fortition
(IDENT[CONS]), and vowel coalescence (UNIFORMITY). In the stem-level cophonology, the markedness
constraint *VV is ranked above these faithfulness constraints. The faithfulness constraints have different
rankings in the stem-level, e.g., stem-level deletion needs the ranking *VV >> DEP-j >> MAX-V. In the
word-level phonology, most of these faithfulness constraints are promoted over DEP-j: *VV >> MAX-V
>> DEP-j. This makes glide-epenthesis the only productive hiatus repair rule in the word-level.

2.4.3 Interim summary: Strata in Armenian

The table in (61) summarizes the domains of various morphophonological processes in Western Armenian.
These include Destressed High Vowel and Diphthong uj-Reduction, and vowel hiatus repair. Note how
derivational and inflectional morphology cleanly align with the stem-level and word-level cophonologies.

(61) Domains of destressed reduction processes and vowel hiatus repairs in Western Armenian

Phonological Process Morphological domain Cophonology Structure-changing?
Derivation Inflection

Final primary stress 3 3 stem-level and 3

word-level
Destressed reduction of high vowels 3 7 stem-level 3

of diphthong uj 3 7 stem-level 3

Vowel hiatus repair Glide-epenthesis 3 3 stem-level and 7

word-level
Glide fortition 3 7 stem-level 3

Glide formation 3 7 stem-level 3

Coalescence 3 7 stem-level 3

Deletion 3 7 stem-level 3

Except for stress shift, the word-level processes are structure-building (epenthesis) and not structure-changing
(no reduction, deletion). A process is structure-changing if it changes features or deletes segments. The
tendency for the word-level stratum to respect the phonological structure of previous levels or cycles has
been formalized by Structure-Preservation (Kiparsky 1985) or the Strong Domain Hypothesis (Myers 1991)
in Lexical Phonology, higher ranked faithfulness in Stratal OT (Bermúdez-Otero 2018), and Phonological
Persistence in Phase-based phonology (Newell 2008; Newell and Piggott 2014).
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2.5 Destressed reduction in Eastern Armenian

We have seen so far DHR is triggered in derivation in both dialects:amusín ∼ amusn-utjún ‘husband ∼
marriage’. In WArm, DHR is blocked before both V-initial and C-initial inflection: amusin-óv∼ amusin-nér
‘husband-INST ∼ husband-PL’. But in EArm, DHR applies in derivation amusn-utjún and in V-initial
inflection amusn-óv, not in C-initial inflection amusin-nér. This section shows why reduction is possible
in EArm V-initial inflection. It is not because EArm V-initial inflection is morphosyntactically different
from V-initial inflection in WArm (§2.5.1) or from C-initial inflection (§2.5.2). Instead, it is the result of
syllabification of MStems with inflection. I argue that this triggers the prosodic misalignment of a prosodic
constituent. I argue that this constituent is not a foot or a PWord (§2.5.3), but the Prosodic Stem (§2.5.4).

2.5.1 Similarity of Eastern and Western Armenian morphology and phonology

Eastern and Western Armenian are mutually intelligible. Their main differences are in their phoneme
inventory (Vaux 1998b; Vaux and Samuels 2005; Baronian 2017), verbal conjugation (Vaux 1995a; Kozintseva
1995; Donabédian 2001b; Donabédian 2016; Baronian 2006; Plungian 2018), and syntax (Sigler 1997;
Ackerman et al. 2004; Megerdoomian 2009; Khanjian 2013; Donabédian 2018). But in terms of their
morphophonology, there are few differences (Avetisyan 2007, 2011). Stress is final in EArm (62) just as
it is in WArm. Destressed uj-reduction applies in the stem-level cophonology of derivation, but not in the
word-level cophonology of inflection.

(62) z@rúj
>
tsh ‘conversation’ lújs ‘light’ gújn ‘color’

z@ru
>
tsh-él ‘to converse’ lus-avór ‘luminous’ gun-avór ‘colorful’

z@ruj
>
tsh-óv ‘conversation-INST’ lujs-óv ‘light-INST’ gujn-óv ‘color-INST’

Morphologically, nominal inflection is agglutinative in both dialects. The dialects differ in few slots (63).
EArm has an additional locative case marker -um. The ablative is -i�tsh in EArm but -e in WArm. The
dative/genitive is -i in singular and plural nouns in EArm, but -i in singular and -u in plural nouns in WArm.

(63) Paradigm for regular nominal inflection in Western and Eastern Armenian

Citation form DAT/GEN ABL INST LOC

Singular WArm pag ‘yard’ pag-i pag-e pag-ov
EArm bak ‘yard’ bak-i bak-i

>
ts bak-ov bak-um

Plural WArm pag-er ‘yards’ pag-er-u pag-er-e pag-er-ov
EArm bak-er ‘yards’ bak-er-i bak-er-i

>
ts bak-er-ov bak-er-um

The dialects share almost the same lexicon. Besides loanwords, some differences are due to sporadic
sound changes. One particular sound change is medial syncope (64). In the change from CArm to WArm and
EArm, some (64a) but not all (64b) medial unstressed non-high vowels were syncopated. Medial syncope
was sporadic and more prevalent in WArm than in EArm (64c,64d) (Margaryan 1997:88,109ff,124ff; Vaux
1998b:138,148; Sowk’iasyan 2004:51; Avetisyan 2007:83-5, 2011:54-60,97,123; DeLisi 2018:26).14

14Examples are from Hagopian (2005)’s bi-dialectal glossary. Syncope was not destressed reduction because unstressed vowels
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(64) a. EArm WArm
avél avél ‘broom’
avl-él avl-él ‘to sweep’

b. EArm WArm
uráx uráx ‘happy’
urax-anal urax-anal ‘to be happy’

c. avér avér ‘destruction’ sovór sovór ‘accustomed’
aver-él avr-él ‘to destroy’ sovor-él sorv-́il ‘to study’

d. mé
>
ts mé

>
dz ‘big’ arthún artún ‘awake’

me
>
ts-anál me

>
dz-nál ‘to get big’ arthn-anál art@n-nál ‘to wake up’

To summarize, EArm and WArm have virtually the same morphology. In both dialects, derivation creates
MStems while inflection creates MWords. Destressed uj-reduction applies in the stem-level but not the
word-level cophonology. The fact that diachronic syncope was more common in WArm than in EArm
suggests that WArm should show more destressed reduction than EArm. The next section shows that this is
incorrect; the domain of DHR in EArm is paradoxically larger than in WArm.

2.5.2 Reduction before V-initial inflection and syllabification

In both dialects, DHR applies in derivation. But the dialects differ when it comes to pre-inflectional DHR
(Fairbanks 1948; Johnson 1954; Avetisyan 2007, 2011). In WArm, inflection cannot trigger reduction. But in
EArm, V-initial inflection is morphologically word-level but it unexpectedly triggers the stem-level process
of DHR. It does not trigger other stem-level process like Destressed Diphthong uj-reduction (§2.5.1). In
this section, I show that this difference cannot be reduced to anything other than the phonological shape of
inflectional suffixes.15

The case markers for both monosyllabic and polysyllabic roots are all V-initial (65). EArm shows DHR
before these inflectional suffixes, but WArm does not. Reduced bases are underlined while unreduced bases
are in bold. I show syllable boundaries to emphasize the misalignment of the MStem with syllables.

(65) DHR before V-initial case suffixes in Eastern but not Western Armenian

Dialect Base size Citation form DAT/GEN ABL INST LOC

WArm σ túxt ‘paper’ tux.t-́i tux.t-é tux.t-óv
σσ+ amusin ‘husband’ amusi.n-́i amusi.n-é amusi.n-óv

EArm σ thúxth ‘paper’ th@x.th -́i th@x.th -́i
>

tsh th@x.th-óv th@x.th-úm

σσ+ amusín ‘husband’ amus.n-ú amus.n-́i
>

tsh amus.n-óv amus.n-úm

were targeted, e.g., the inchoative morpheme -anal (64d), and it was largely restricted to trisyllabic words. More cases of
syncope targeting unstressed vowels come from causatives (Johnson 1954:185; Ġaragyowlyan 1979:42), inchoatives (Galstyan
2004), reduplicated verbs (Abrahamyan 1959), and compound linking-vowels (Ēloyan 1972:82). Although syncope was a sporadic
diachronic process and it affected only idiosyncratic sets of words in the standard dialects, some non-standard dialects have
generalized medial syncope into synchronic destressed a-reduction (Mkrtchyan 1952).

15A reviewer notes that a possible reason is language contact with Russian. Eastern Armenian is largely spoken in Iran, Russia,
and Armenia. Armenia was part of the Soviet Union and its speakers are often bilingual in Russian. Russian vowel reduction may
have promoted vowel reduction in EArm. But this is unlikely because the pre-inflectional DHR in EArm is documented earlier than
the Soviet Union (Sargsyan 1987). Furthermore, EArm speakers in Iran are bilingual in Persian, not Russian. They still show the
pre-inflectional DHR: ZoGovúrt ‘populace’ ∼ ZoGov@rt-́in ‘populace-GEN’ (Megerdoomian 2009:31).
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Crucially, the application of DHR varies in the plural. The plural is marked by -er after monosyllabic
bases and -ner after polysyllabic bases (66). The V-initial -er can trigger reduction, while the C-initial -ner
cannot. The plural allomorph -ner is the only productive C-initial inflectional suffix in EArm.16

(66) No DHR before WArm plurals or before EArm C-initial plural, only before EArm V-initial plural

Dialect Base size Citation form DAT/GEN ABL INST LOC

WArm σ tux.t-ér tux.t-er-ú tux.t-er-é tux.t-er-óv
σσ+ amusin.-nér amusin.-ner-ú amusin.-ner-é amusin.-ner-óv

EArm σ th@x.th-ér th@x.th-er-́i th@x.th-er-́i
>
ts th@x.th-er-óv th@x.th-er-úm

σσ+ amusin.-nér amusin.-ner-́i amusin.-ner-́i
>
ts amusin.-ner-óv amusin.-ner-úm

Inflectional suffixes are all monosyllabic and can be stacked. The plural precedes case (66) and it
determines if the base reduces or not, regardless of which case-markers follow it: thúxth ‘paper’ vs. th@x.th-er-óv
‘paper-PL-INST (EArm)’ but amusín ‘husband’ vs. amusin.-ner-óv ‘husband-PL-INST (EArm)’.

To summarize, there is as correlation between pre-inflectional DHR and between the initial segment of
the inflectional suffix. Simply put, reduction applies before V-initial but not C-initial inflection.

2.5.3 High vowel reduction and prosodic misalignment

The previous section showed that pre-inflectional DHR depends on whether the inflectional suffix is V-
vs. C-initial. This points to syllabification as a possible factor. Specifically, pre-inflectional DHR correlates
with the misalignment of the MStem (= the base) and syllables. Before C-initial inflection, the MStem ends
in a syllable: amusin.-nér. Before V-initial inflection, the MStem boundary and syllable boundary are not
aligned: amusi.n-óv→amusn-óv.

Cross-linguistically, morphological constituents often get misaligned from syllable boundaries. When
misaligned, phonological processes can apply differently. This suggests that the relevant phonological
process references a prosodic constituent that is mapped from the morphology. For example, English level-1
suffixes are mostly V-initial and trigger the stem-level rule of stress shift, while level-2 suffixes are mostly
C-initial and do not trigger stress shift (67). Dutch has similar misalignment patterns (van Oostendorp 2004).

(67) (médicine)w (sýnonym)w (áccurate)w (devélop)w
(medícin-al)w (synónym-ous)w (áccurate)w-ness (devélop)w-ment

Raffelsiefen (1999, 2005) analyzed stress shift as caused by the misalignment of the prosodic word
(PWord). V-initial suffixes are outside the MWord but they incorporate into the PWord. By incorporating,
these suffixes cause the PWord to expand and trigger the stem-level phonology. In other words, English
stress-shift applies whenever the PWord gets larger than the MWord.

16EArm used to use -ner to also form plural possesives. In that case, it could trigger reduction in monosyllabic but not polysyllabic
roots: sírt; s@rt-ner-@s ‘heart; our heart(s)’ but g@lúx; g@lux-nér-@s ‘head; our head(s)’ (Dum-Tragut 2009:113). But the use of the
suffix has unclear productivity (Nikita Bezrukov, p.c.); data and generalizations are thus limited. If productive, its ability to trigger
reduction in monosyllables would likely be due to prosodic minimality restrictions (Downing 2006).
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I argue for a similar analysis for Armenian. The MStem maps to some prosodic constituent X. Before
V-initial inflection, X gets misaligned from syllable boundaries and must expand. In WArm, the expansion
of X has no effect. But in EArm, the expansion of X triggers pre-inflectional DHR. The problem is defining
what X is. In this section, I show that two common prosodic constituents (feet and PWords) are unlikely to
be involved in DHR. The evidence points to a distinct prosodic constituent which mediates between feet and
PWords: the Prosodic Stem (PStem).

2.5.3.1 Feet as the domain of pre-inflectional DHR

One hypothetical solution is to have X be a foot: the stem-level cophonology creates feet which later
trigger pre-inflectional DHR (cf. Anttila 2006). But it is unclear how feet would trigger pre-inflectional
DHR. Both V-initial and C-initial suffixes take final stress and would form iambic feet. I sketch out a failed
analysis below for the two inflected items amusn-óv, amusin-nér.

(68) A failed hypothetical derivation using feet

Input /amusin -∅S -ovW / /amusin -∅S -nerW /

Cycle 1 a.(mu.śin) a.(mu.śin)
Cycle 2 MORPH Spell-out suffix a.(mu.śin) /-ov/ a.(mu.śin) /-ner/

PROSODY Syllabify suffix a.(mu.śi.n)-ov a.(mu.śin)-ner
Align foot with syllables a.mu.(śi.n-ov)

PHONO Stress & Shift feet a.mu.(šin-nér)
DHR in 1st syllable of foot a.(musn.-óv) *a.mu.(s@n-nér)

Predicted Output amusn-óv *amus@n-nér
Correct Output amusn-óv amusin-nér

At the end of the stem-level cycle, the base forms a final foot: a(mu.sín). Upon syllabification with
V-initial inflection, the foot is misaligned from syllable boundaries: a.(mu.sí.n)-ov. This triggers shifting the
foot to the suffix: amu(sín-ov). Before C-initial inflection, no misalignment occurs and thus no shift (at first):
a(mu.sín)-ner. So far the derivation shows a prosodic difference between V-initial vs. C-initial inflection:
amu(sín-ov), a(mu.sín)-ner. At this stage, we could argue that DHR targets the first syllable of feet. But this
analysis falls apart once we actually apply stress shift in the word-level: amu.(sǐn-nér). Now, both V-initial
and C-initial inflection have the same foot structure: amu(sǐn-óv), amu.(sǐn-nér). If DHR is formulated to
apply in the first syllable of feet, then we incorrectly predict reduction in both inflected words: amusin-óv,
*amus@n-ner. Without additional machinery, pre-inflectional DHR cannot be formulated in terms of feet.17

Furthermore, as explained in §2.2, there is no independent evidence for iambic feet in Armenian.
17One workaround is to argue that DHR applies if the destressed syllable is 1) the weak part of an iambic foot, and 2) was aligned

with the MStem in the input, but 3) is no longer aligned with the MStem in the output. This works; however it is then unclear what
role is played by the feet. Conditions (2,3) are the descriptive generalizations and do trigger DHR; the use of feet (1) is superfluous.
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2.5.3.2 Recursive PWords and masking different domains

Instead of feet, we could argue that X is a PWord. But this is problematic. All inflectional suffixes are
incorporated into the PWord and obligatorily trigger the word-level process of stress shift (69). Thus, the
domain of final stress (inflection = the PWord) is larger than the domain of DHR (V-initial inflection = X).

(69) a. Base amuśin (amuśin)w ‘husband’ Stress shift? Reduce?
b. V-initial Infl. amusn-óv (amusn-óv)w ‘husband-INST’ 3 3

c. C-initial Infl. amusin-nér (amusin-nér)w ‘husband-PL’ 3 7

d. Stacked Infl. amusin-ner-óv (amusin-ner-óv)w ‘husband-INST-PL’ 3 7

This problem can’t be fixed by pushing stress-assignment to a higher domain, e.g., a recursive PWord’
(Peperkamp 1997; Selkirk 1996; Ito and Mester 2009; Kabak and Revithiadou 2009) or the Clitic/Composite
Group CG (Vogel 2009, 2016). Enclitics are outside the stress domain and syllabify with word-final
consonants (70). Clitics thus follow a PWord boundary and belong to the PWord’ or CG.

(70) Cliticization on...

a. Base amuśin e (amuśi)wn=e ‘husband is’
b. V-initial Infl. amusn-óv e (amusn-ó)wv=e ‘husband-INST is’
c. C-initial Infl. amusin-nér e (amusin-né)wr=e ‘husband-PL is’
d. Stacked Infl. amusin-ner-óv e (amusin-ner-ó)wv=e ‘husband-INST-PL is’

Disregarding clitics, one could argue that the relevant constituent is a minimal vs. maximal PWord
(Bermúdez-Otero, p.c.). I illustrate below. In the word-level stratum, the base first forms a single PWord;
this is before the syllabification of V-initial or C-initial inflection: (amusin)w /-ov,-ner/. When V-initial
inflection is syllabified, the MStem’s PWord is misaligned from its syllable boundaries: (a.mu.si.n)w-ov.
This triggers PWord expansion: (amusin-ov)w. Before C-initial inflection, there is no misalignment and the
MWord is mapped to a recursive PWord: ((amusin)w-ner)w.

(71) Hypothetical derivation using recursive PWords

Input /amusin -∅S -ovW / /amusin -∅S -nerW /

Cycle 1 (a.mu.śin)w (a.mu.śin)w
Cycle 2 MORPH Spell-out suffix (a.mu.śin)w /-ov/ (a.mu.śin)w /-ner/

PROSODY Syllabify suffix (a.mu.śi.n)w-ov (a.mu.śin)w-ner
Align PWord with syllables (a.mu.śin.-ov)w ((a.mu.śin)w-ner)
Map MWord to PWord ((a.mu.śin)w-ner)w

PHONO Stress (a.mu.šin.-óv)w ((a.mu.šin)w-nér)w
DHR (a.musn.-óv)w blocked
*blocked in PWord-final σ

Output amusn-óv amusin-nér
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Moving on to the cophonologies, stress shift applies: (amusǐn-óv)w, ((amusǐn)w-nér)w. This analysis
would argue that DHR is a word-level process and it apples inside PWords: (amusn-óv)w. A faithfulness
constraint protects destressed high vowels in PWord-final syllables: ((amusin)w-ner)w.18

The problem with this analysis is that it argues that DHR is word-level in EArm. But there is evidence
against this. DHR does not apply in regularized inflection (72a), inflected adjectives (72b), or loanwords
(72c). PWords are a common target for post-lexical rules which can be exceptionless and blind to the
diacritics of individual lexemes. But, DHR does not apply to every PWord. Furthermore, post-cyclic lexical
word-level rules tend to be exceptionless (Pesetsky 1979). The data show that DHR has not generalized into
a post-cyclic word-level process. This is further discussed in §2.7.3 in the context of DHR variation.

(72) a. manúk ‘child’
mank-akán ‘childish’
mank-án ‘child-GEN (irreg.)’
manuk-́i ‘child-GEN (reg.)’

b. lúr
>
dZ ‘serious’

l@r
>
dZ-anál ‘to get serious’

lur
>
dZ-́i ‘serious-GEN’

c. f́ilm ‘film’
film-aj́in ‘cinematic’
film-ér ‘film-PL’

Setting aside the empirical problems above, using recursion is also conceptually problematic with unclear
motivation. There is no explicit consensus on the behavior of recursive prosodic constituents. There
is debate over whether recursive constituents can trigger categorically different processes vs. gradiently
different processes (Ladd 1986; Ito and Mester 2009, 2012, 2013; Wagner 2010; Frota and Vigário 2013;
Elfner 2015), whether they can block or trigger lexical processes (Szpyra 1989; Booij 1996; Peperkamp
1997; Raffelsiefen 2005; Kabak and Revithiadou 2009; Bennett 2018), whether they are restricted to the
post-lexical phonology of clitics (Inkelas 1989; Booij 1996; Selkirk 1996; Zec 2005; Tyler 2019), and
whether they act as diacritics for behaviorally different constituents (Vogel 2009, 2012, 2016; Vigário 2010;
Guzzo 2018; Miller 2018, 2020).

To summarize, there is no positive evidence that the relevant prosodic constituent X should be the PWord.
Treating X as a recursive PWord masks the fact that DHR is a lexical process, not a gradient word-level
process. Pre-inflectional DHR instead references a prosodic constituent which is bigger than a foot yet
smaller than a PWord, and bigger than an MStem yet smaller than the MWord.

2.5.4 Pre-inflectional DHR in the Prosodic Stem

In modern Armenian DHR, the relevant morphological constituent is the MStem and the relevant cophonology
is the stem-level cophonology. In this section, I argue that the relevant prosodic constituent X is the Prosodic
Stem or PStem (Downing 1999a). I first summarize the cross-linguistic evidence for the PStem, and show
how the EArm data match that of other languages which have PStems.

2.5.4.1 The role of Prosodic Stems

The traditional prosodic hierarchy assumes only three levels of morphosyntactically derived constituents:
the prosodic word, the prosodic phrase, and the intonational phrase (73a). However, there is cross-linguistic

18This is essentially the same analysis in Macak (2016). The difference is that he doesn’t use any strata and he uses weakly
bracketed feet (Hyde 2002), e.g., a(mu(sin)-nér), *a(mu(si)n-óv).
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work on morphologically complex languages which argues for a more enriched hierarchy that includes at
least one constituent below the PWord: the Prosodic Stem (73b).19

(73) a.

Intonational Phrase (ι)

Phonological Phrase (ϕ)

——-Prosodic Word (ω or PWord)—-

b.
Intonational Phrase (ι)

Phonological Phrase (ϕ)

——-Prosodic Word (ω or PWord)—-

Prosodic Stem (s or PStem)

Just as syntactic phrases and morphological words are the sources of prosodic phrases and prosodic words,
MStems are the source of PStems. The bulk of the evidence for the PStem comes from agglutinative
languages and language families (Czaykowska-Higgins 1997; Downing 2016). The diagnostics used to
detect PStems in other languages also show the PStem in Armenian. In Armenian, the overapplication of
DHR straddles the boundary between the MStem and V-initial inflection. In other agglutinative languages,
stem-level processes have been shown to be sensitive to the syllabification of MStems with V-initial suffixes
or C-final prefixes. To illustrate, Aronoff (1988) analyzes reduplication in KiHehe as targetting the morphological
stem of the word (in italics). The reduplicant (underlined) is linearly found between inflectional prefixes
and the stem (74a). The reduplicant generally copies only stem segments. But when the stem is V-initial,
prefix-final consonants are copied because of syllabification (74b).

(74) a. ku-haata ‘to ferment’
ku-haata∼haata ‘to start fermenting’

b. kw-iita ‘to pour’
kw-iita∼kw-iita ‘to start pouring’

To explain prefix-copying in V-initial stems, Aronoff (1988) analyzes reduplication as also targeting a
prosodic head but does not formalize this concept. Downing (1998b) reanalyzes KiHehe and formalizes the
prosodic head as the PStem. It is mapped from the MStem, but it misaligns because of syllabification.

As a constituent, the PStem can be the target of reduplication, tonal processes, vowel harmony, minimality,
and other sublexical processes (Downing 1998a, 1999a,b). Further evidence for the PStem as a domain for
phonological rules comes from cross-linguistic work on reduplication (Fitzpatrick-Cole 1994; Inkelas and
Zoll 2005; Shaw 2005), prefix-suffix asymmetries (Hyman 2008), minimality (Downing 2005, 2006), strata
(Inkelas 1989, 1993), problems in bracket erasure (Inkelas 2014), and bracketing paradoxes in compounds
(Han 1995). For a summary of the cross-linguistic evidence for the PStem, see Downing (2006, 2016),
Downing and Kadenge (to appear).

2.5.4.2 The Prosodic Stem in Armenian

Applying the PStem to Armenian, I argue that MStems are mapped to non-recursive PStems while
MWords are mapped to PWords. Before V-initial inflection, the PStem is misaligned from the MStem

19The Prosodic Root (PRoot) has also been posited as a constituent mapped from morphological roots. The evidence for the
PRoots, however, is less than for PStems.
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and expands. Before C-initial inflection, the PStem stays isomorphic with the MStem.

(75) Different PStem structures in the two Armenian dialects.
Type of structure Base Derivative V-initial inflection C-initial inflection

Morphology

MWord

NOM

∅

MStem

/amusin/ -∅

MWord

NOM

∅

MStem

a

/-utjun/

MStem

/amusin/ -∅

MWord

INST

/-ov/

MStem

/amusin/ -∅

MWord

PL

/-ner/

MStem

/amusin/ -∅

Prosody

PWord

PStem

amuśin

PWord

PStem

amusn-utjún

PWord

PStem

amus(i)n-óv

PWord

σ

-nér

PStem

amusin

I argue that the PStem is indexed with its own cophonology. In EArm, the PStem triggers Stress Shift
and Destressed High Vowel Reduction (DHR) but not Destressed Diphthong uj-Reduction (DDR). This is
more than the stem-level cophonology, and less than the word-level cophonology. In WArm, the PStem
cophonology is equivalent to the word-level stratum. It triggers stress shift but not reduction.

(76) Distribution of processes and domains across cophonologies

Morphological domain Derivation V-initial Inflection Inflection
Relevant constituent MStems Misaligned PStems MWords
Cophonology Stem-level PStem-level Word-level

Process

Dialect
Both EArm WArm Both

Destressed Diphthong uj Reduction (DDR) 3 7 7 7

Destressed High Vowel Reduction (DHR) 3 3 7 7

Stress Shift 3 3 3 3

The stem-level and word-level strata are morphologically triggered by derivation and inflection. In
contrast, the PStem-level cophonology is an intermediate cophonology: it applies after the stem-level and
before the word-level when the right prosodic conditions are met. Specifically, it applies when V-initial
inflection is added to an MStem and causes the misalignment of the PStem: (a.mu.sin)s→ //(a.mu.si.n)s-ov//
→(a.mu.si.n-ov)s. I stipulate that the PStem-cophonology only occurs when we have PStem misalignment.

Without inflection, an MStem is mapped to an isomorphic PStem as a prosodic process.20 In (77), I show
the condensed cyclic derivation of the free-standing root amusiń and its derivative amusn-utjún. Both are
uninflected.

20In the table, the prosodic mapping of a PStem is a separate step or rule in the serial derivation (cf. Selkirk 1980; Nespor and
Vogel 1986; Selkirk 1986; Güneş 2015). An alternative parallelist formalization is to adapt constraints from MATCH theory and
WRAP theory (Selkirk 2011; Truckenbrodt 1999; Guekguezian 2017a,b) for PStems.
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(77) Stratal and prosodic derivation of the root amusin and its derivative amusn-utjun

Input /amusin -∅S / /amusin -∅S -utjunS/

Cycle 1 MORPH Spell-out /amusin -∅S / Cycle 2 (a.mu.śin)s - /-utjunS /
PROSODY Syllabify a.mu.sin (a.mu.si.n)s-u.tjun

Map PStem (a.mu.sin)s (a.mu.si.n-u.tjun)s
PHONO SLevel Stress (a.mu.śin)s (a.mu.ši.n-u.tjún)s

DHR (a.mus.n-utjún)s

Output amuśin amusn-utjún

In Cycle 1, the base is formed. The input MStem is syllabified and mapped to a PStem: (amusin)s. The
stem-level phonological process of stress assignment applies: (amusín). In Cycle 2, the derivative is formed.
The larger MStem is syllabified and prosodified as a larger non-recursive PStem: (amusín-utjun)s. The
stem-level phonology applies again with stress shift and destressed high vowel reduction: (amusn-utjún)s.
In Cycle 3, the MWord maps to a PWord for both the base and derivative. The word-level cophonology
vacuously applies. The PStem-level cophonology does not apply because there is no misaligned PStem.

Before inflection, the PStem-level cophonology can apply depending on the shape of the suffix and of
the PStem. I illustrate below for the different inflected items with V-initial inflection: amusn-óv (EArm),
amusin-óv (WArm), and C-initial inflection: amusin-nér.

(78) Stratal and prosodic derivation of amusn-ov (EArm), amusin-ov (WArm), and amusin-ner (both)

EArm WArm EArm &WArm
Input /amusin -∅S -ovW / /amusin -∅S -ovW / /amusin -∅S -nerW /

Cycle 1 (a.mu.śin)s (a.mu.śin)s (a.mu.śin)s

Cycle 2 MORPH Spell-out (a.mu.śin)s - /-ovW / (a.mu.śin)s - /-ovW / (a.mu.śin)s - /-nerW /
PROSODY Syllabify (a.mu.śi.n)s-ov (a.mu.śi.n)s-ov (a.mu.śin)s-ner

Readjust PStem (a.mu.si.n-ov)s (a.mu.sin-ov)s
PHONO PStem-level Stress (a.mu.ši.n-óv)s (a.mu.ši.n-óv)s

DHR (EArm) (a.mus.n-óv)s
PHONO WLevel Stress (a.mu.sn-óv)s ((a.mu.sin-óv)s (a.mu.sin)s-nér)

Output amusn-óv amusin-óv amusin-nér

Given the base (a.mu.sin)s, inflection is spelled out and syllabified in Cycle 2. Before C-initial inflection,
the PStem stays isomorphic with the MStem and with syllable boundaries. C-initial inflection is PStem-external:
(a.mu.sin)s-ner. Before V-initial inflection, the PStem becomes misaligned from syllable boundaries: *(a.mu.si.n)s-ov.
To repair this, the PStem is readjusted by incorporating the V-initial inflectional suffix: (a.mu.si.n-ov)s.21

The PStem cophonology is then triggered for the misaligned PStems. EArm’s PStem triggers stress and
DHR amusn-óv, WArm’s PStem only triggers stress amusin-óv. The MWord is mapped to a PWord, and the
word-level phonology applies.

21In an earlier analysis (Dolatian 2019a,b), I argued that the PStem contracted in WArm: (a.mu.si.)sn-ov. The PStem-level
cophonology was the same in both dialects. I argued that PStem expansion would trigger DHR while PStem contraction would not.
I have changed the analysis to make the illustration easier. Both analyses work, but the current analysis fits better with the variation
data.
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2.6 Prosodic stems elsewhere: Appendixes and vowel hiatus

The use of PStems for DHR at first seems stipulative, but there are two other processes in Armenian which
give independent support for the PStem: appendix incorporation in both dialects, and vowel hiatus in EArm.

2.6.1 Stem-level appendixes in modern Armenian

In both dialects, complex codas are at most two consonants and have falling sonority (79a). The exception
is the morpheme k which can follow any cluster of one or two consonants (79b).22 It can form two (79c) or
three (79d) consonant clusters with flat sonority. Transcriptions are in WArm.

(79) a. góG ‘side’ lájn ‘wide’ bahán
>
tS ‘demand’

b. góx-k ‘book cover’ lájn-k ‘width’ bahán
>
tS-k ‘credit’

c. bét-k ‘need’ dará
>
ts-k ‘expanse’ á

>
tS-k ‘eye

d. bárt-k ‘debt’ vár
>
ts-k ‘wages’ gúr

>
ts-k ’breast’

Most instances of -k arose from a diachronic reanalysis and bleaching of the Classical Armenian plural
suffix -k (§2.8.1). Morphologically, the -k can act as a nominalizer (79b) or empty morph: gur�ts-k ‘breast’.
Phonologically, -k has become an extrasyllabic consonant (Vaux 1998b:83-4; Vaux and Wolfe 2009). It is
not extraprosodic; the phonology is sensitive to this -k because the -k can trigger devoicing: /goG-k/→gox-k
(cf. voicing assimilation in Polish appendixes: Rubach and Booij 1990; Rubach 1996, 1997).

As an appendix, the -k must be parsed into some prosodic constituent. I argue that this constituent is
the PStem. In both dialects, -k can be found word-finally (80a), before V-initial (80b), and before C-initial
inflection (80c). Because -k is word-internal, then it is not a PWord-appendix. Vaux (1998b:83-4) argues
that -k is an appendix at the end of cyclic domains. I analyze this cyclic domain as the PStem-juncture
between derivation and inflection. The trees in (80) illustrate this. The -k is a PStem-appendix word-finally
and before C-initial inflection; it is an onset before V-initial inflection.

(80) a. aGót-k ‘prayer’
PWord

PStem

-k

σ

Gót

σ

a

b. aGot-k-́i ‘prayer-GEN’
PWord

PStem

σ

k-́i

σ

Got

σ

a

c. aGot-k-nér ‘prayer-PL’
PWord

σ

-nér

PStem

-k

σ

Got

σ

a

Appendix incorporation thus shows that some prosodic constituent is needed between the MStem and
C-initial inflection. I argue that this is the PStem. An alternative is treating -k as an appendix to a recursive
inner PWord: ((aGotk)w-ner)w. This would work but it faces the same problems of recursion discussed in
§2.5.3. The next section provides more evidence for the PStem that comes from vowel hiatus.

22The suffix is is aspirated in both dialects, but aspiration is not contrastive in WArm. Three other rare extrasyllabic consonants
exist: s, S, x in medaks ‘silk’, jeraSx ‘guarantee’, naxS ‘type of decoration’, etc. They are also appendixes.
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2.6.2 Stem-final high vowels and vowel hiatus in Eastern Armenian

As explained in §2.4.2, stem-final high vowels do not undergo DHR in WArm. Instead, they undergo
different vowel hiatus repair rules in derivation vs. inflection. The same applies in EArm, but EArm shows
the overapplication of stem-level hiatus rules in inflection. I focus on polysyllabic roots.23

For final /i/, both dialects generally use deletion in derivation. In inflection, hiatus is repaired with
glide epenthesis in WArm but with either deletion (81a) or glide epenthesis (81b) in EArm (Margaryan
1997:100ff), though glide-epenthesis is increasingly preferred (Sargsyan 1987:140,197). Just like in WArm
(§2.4.2), other hiatus repair rules like coalescence or glide formation can apply in derivation but not inflection.

(81) a. WArm EArm
jegeGe

>
tśi jekeGe

>
tsh í ‘church’

jegeGe
>
ts-agán jekeGe

>
tsh-akán ‘ecclesiastic’

jegeGe
>
tsij-óv jekeGe

>
tsh-óv ‘church-INST’

b. WArm EArm
madańi matańi ‘ring’
madan-él matan-él ‘to seal’
madanij-óv matanij-óv ‘ring-INST’

Overapplication is also found for stem-final /u/. Both dialects generally use glide fortition to [v] in
derivation. In inflection, WArm uses glide-epenthesis while EArm also uses glide fortition for some (82a)
but not all roots (82b) (Minassian 1980:95; Margaryan 1997:103-7).

(82) a. WArm EArm
t@tú th@thú ‘sour’
hám hám ‘taste’
t@tv-a-hám th@thv-a-hám ‘sour-tasting’
t@tuj-́i th@thv-́i ‘sour-GEN’

b. WArm EArm
jergú jerkú ‘two’

jergv-agán jerkv-akán ‘dual’
jerguj-́i jerkuj-i ‘two-GEN’

To summarize, some EArm roots show the overapplication of some stem-level hiatus repair rules (deletion,
glide fortition) in pre-inflectional vowel hiatus. This is analogous to pre-inflectional DHR. I argue that
this due to the PStem. I argue that the PStem expands before V-initial inflection because of prosodic
well-formedness, either from resyllabification (for DHR) or because the PStem cannot end with vowel
hiatus. PStem expansion triggers certain stem-level rules in EArm. In both dialects, the PStem is also
the site of appendix incorporation. In sum, the Prosodic Stem has independent support in Armenian.

2.7 Lexical Variation in reduction

The previous sections focused on the general behavior of cophonologies and of DHR. I posited three
cophonologies: the stem-level, PStem-level, and word-level. In this section, I go over the lexical variation
in DHR for different lexemes based on their morphological and prosodic context across the two dialects.
As a stem-level process, DHR is not exceptionless and its application can vary by root, suffix, and by the
specific root-suffix combination, i.e., on a lexeme-by-lexeme basis (Margaryan 1997:102-3). The variation

23For final /i/ in monosyllabic roots, both dialects resolve hiatus with glide-epenthesis in derivation and inflection:
>
dzi ‘horse’;

>
dzij-avor ‘horseman’;

>
dzij-ov ‘horse-INST (EArm)’ (§2.4.2). Some earlier grammars document optional glide formation in EArm:

>
dzj-ov (Johnson 1954:20). For final /u/, monosyllabic and polysyllabic roots pattern together.
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data shows that the three cophonologies form a monotonic hierarchy and they respect the Strong Domain
Hypothesis (Myers 1991). The end-result is support for the stratal and prosodic model.

2.7.1 Variation in pre-derivational DHR in both Armenian dialects

I first focus on the variation of DHR in derivation. The data in this section is transcribed in WArm. The
generalizations apply to EArm. Some roots reduce in almost all of their derivatives (83a), in few of their
derivatives (83b), or even optionally in some derivatives (83c).

(83) a. p@lúr ‘hill’
p@lr-ág ‘hillock’
>
tsév ‘shape’
p@lr-a-

>
tsév ‘hill-shaped’

b. morúk ‘beard’
moruk-avór ‘bearded’
moruk-ód

c. g@tú
>
ts ‘beak’

g@t
>
ts-él ‘to peck’

>
tsév ‘shape’
g@t

>
ts-a-

>
tsév ‘beak-shaped’

g@tu
>
ts-a-

>
tsév

Suffixes show variation in undergoing DHR (Minassian 1980:45; Margaryan 1997:98). Some suffixes
cannot reduce at all (84a).24 Other suffixes can trigger DHR but generally resist DHR (84b-i) with exceptions
after bound roots (84b-ii). The suffix -k can’t trigger DHR but it generally blocks reduction of any preceding
destressed high-vowels (84c-i), with some exceptions (84c-ii).25 Certain suffixes like -ik are diachronically
derived from a suffix cluster -i-k (J̌ahowkyan 2010); it does not undergo reduction (84c-iii).

(84) a. Suffixes which resist DHR
i. SárZ ‘motion’ ii. m@r

>
ts-́il ‘to compete’

SarZ-úm ‘motion, action’ ii. m@r
>
ts-úm ‘competition’

SarZ-umn-aj́in ‘mobile, of movement’ ii. m@r
>
ts-umn-aj́in ‘of competitions’

b. Suffixes which trigger but generally resist DHR
i. hád ‘piece’ ii. tapan

>
ts-él ‘to penetrate’

had-́ig ‘grain’ tapan
>
ts-́ig ‘transparent’

had-ig-avór ‘granular’ tapan
>
ts-g-utjún ‘transparency’

c. Suffixes which block DHR
i. t́ir ‘posture’ ii. ḱir ‘character’ iii. gár

>
dz ‘opinion’

t́ir-k ‘position’ ḱir-k ‘book’ gar
>
dz-́i-k ‘thought’

tir-k-aj́in ‘positional’ dún ‘house’ gar
>
dz-i-k-agán ‘suspicious’

k@r-k-dún ‘publishing house’

Because DHR is stem-level, we expect many exceptions and lexical variation (Kiparsky 1982b). This
argues against treating DHR as word-level in EArm (§2.5.3.2). Because the word-level is postcyclic, we
would except much fewer variation than we actually see.

24The nasal n in SarZ-umn-ajin is a relic of nasal ∼ ∅ alternations from Classical Armenian, similar to nasal deletion in English
damn∼damnation.

25Interestingly, some grammars state that -k likewise resists reduction in EArm derivation and inflection: dír-k ‘position’;
dir-k-aj́in ‘positional’; dir-k-óv ‘position-INST (41) (Minassian 1980:45; Margaryan 1997:99), though exceptions exist: b@ṙún

>
tshkh

‘fist’; b@ṙ@n
>
tshkh-a-márt ‘fist fight’; b@ṙ@n

>
tshkh-óv ‘fist-INST’.
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2.7.2 Variation in pre-inflectional DHR in Western Armenian

I next turn to the overapplication of DHR in Western Armenian inflection. In WArm, inflection generally
blocks DHR. The exception is a small closed set of high-frequency roots (85) which show optional reduction
in some of their inflected forms (Avetisyan 2007:83). The reduced form is found in idiomatic phrases.

(85) śird ‘heart’ mítk ‘mind’
sird-́i ‘heart-GEN’ mitk-é ‘mind-ABL’
s@rd-́i-t

>
tSáp ‘heart-GEN-2SGPOSS size’ m@tk-é-t hané ‘mind-ABL-2SGPOSS remove.IMP’

literally... ‘your heart’s size’ literally... ‘remove from your mind’
as in... ‘to your heart’s content’ as in...‘get it out of your head’

Interestingly, most of these roots are monosyllabic and thus do not take C-initial inflection (§2.3.3).
One exception is the common polysyllabic root jergir. In WArm, it can optionally reduce before V-initial
inflection but not C-initial inflection: jerg(i)r-́i, jergir-nér. Another high-frequency word jergin-k behaves
the same. This is analogous to DHR in EArm.

(86) Inflection and reduction in the words jergir ‘land, world, country’ and jergin-k ‘sky, heaven’

V-initial Inflection C-initial Infl.
Base DAT/GEN ABL INST PL

jerǵir jerǵin-k jergir-́i jergin-k-́i jergir-é jergin-k-é jergir-óv jergin-k-óv jergir-nér jergin-k-nér
jergr-́i jerg@n-k-́i jergr-é jerg@n-k-é ?jergr-óv jerg@n-k-óv *jerg@r-nér *jerg@n-k-nér

As for irregular inflection, the DAT/GEN has a handful of allomorphs for irregular nouns (87), including
ablaut (87c) (Hagopian 2005:350ff; Dum-Tragut 2009:68ff; Oyer 2017).

(87) a. ór ‘day’
or-ván ‘day-GEN’

b. @ngér ‘friend’
@nger-ó

>
tS ‘friend-GEN’

c. hájr ‘father’
hór ‘father-GEN’

Irregular inflection sometimes shows the overapplication of DHR. There are a few irregular roots (88a,88b)
and derivational suffixes (88c) with high vowels. Prescriptively they should take only irregular case suffixes,
e.g., irregular genitive -an. Irregular inflection triggers DHR. But these irregular classes can optionally take
regular inflection, e.g., -i. When they do, there is no reduction.

(88) a. ‘girl’ b. ‘spring’ c. ‘promise’
Base ax

>
tŚig karún xost-úm

Irregular genitive ax
>
tS@g-án karn-án xost-m-án

Regular genitive ax
>
tSig-́i karun-́i xost-um-́i

The above facts reinforce the stratal account given for Western Armenian. Cross-linguistically, irregular
or high-frequency inflected words can show traces of stem-level phonology (Kiparsky 1982b), i.e., DHR.
What matters is that pre-inflectional DHR does not extend to the rest of the WArm lexicon. Furthermore,
the fact that DHR in some of these exceptional words distinguishes between V-initial and C-initial inflection
(86) likewise gives support to the role of the PStem.

50



2.7.3 Variation in pre-inflectional DHR in Eastern Armenian

Moving on to Eastern Armenian, DHR generally applies in derivation, V-initial inflection, but not C-initial
inflection. But like pre-derivational DHR in Western Armenian (§2.7.1), not all derivatives and inflected
forms show DHR in EArm (Minassian 1980; Sargsyan 1987; Margaryan 1997). Depending on the root, we
find the following patterns: A root can reduce in derivation and V-initial inflection (89a), in derivation but
not inflection (89b), or in neither derivation nor inflection (89c).26

(89) a. mírg ‘fruit’
m@rg-avet ‘fruit-bearing’
m@rg-́i ‘fruit-GEN’

b. ńist ‘seat’
n@st-él ‘to sit’
nist-i ‘seat-GEN’

c. ḱir
>
tS ‘canyon’

berán ‘mouth’
kir

>
tS-a-berán ‘canyon-end’

kir
>
tS-́i ‘canyon-GEN’

There can also be optional reduction. There are roots which reduce in derivation and optionally in V-initial
inflection (90a), optionally in both (90b), and optionally in derivation but not in inflection (90c).

(90) a. kamúr
>
dZ ‘bridge’

kam@r
>
dZ-ák ‘small bridge’

kamur
>
dZ-́i ‘bridge-GEN’

kam@r
>
dZ-́i

b. ma
>
tsún ‘yoghurt’

ma
>
tsun-ót ‘yoghurt-filled’

ma
>
ts@n-ót

ma
>
tsun-́i ‘yoghurt-GEN’

ma
>
ts@n-́i

c. x@lúrth ‘mole’
x@lurth-eńi ‘moleskin’
x@l@rth-eńi
x@lurth -́i ‘mole-GEN

Furthermore, only two roots can reduce before C-initial inflection in standard EArm (91a) (Margaryan
1997:96). These roots also reduce in derivation and in V-initial inflection.27 A small handful of other
high-frequency roots can reduce in colloquial non-standard EArm (91b) (Margaryan 1997:104). For both
types of roots, reduction applies everywhere: DHR is stem-, PStem-, and word-level for these roots.

(91) a. i. jerḱir ‘world’
jerkr-aj́in ‘earthly’
jerkr-́i ‘world-GEN’
jerk@r-nér ‘world-PL’

ii. sḱizb ‘beginning’
sk@zbn-akán ‘initial’
sk@zb-́i ‘beginning-GEN’
sk@zb-nér ‘beginning-PL’

b. i. ZoGovúrd ‘populace’
ZoGov@rd-nér ‘populace-PL’

ii. serúnd ‘generation’
ser@nd-nér ‘generation-PL’

iii. kerakúr ‘food’
kerak@r-nér ‘food-PL’

Native grammars (Aṙak’elyan 1955; Sargsyan 1987; Margaryan 1997) note that variation in pre-inflectional
DHR in EArm is correlated with multiple factors: frequency, dialectal vs. formal style, syllable count,
syllable shape, vowel quality, part of speech, irregular inflection, and individual derivational suffixes. But
despite all this variation, pre-inflectional DHR is historically robust in EArm as shown in corpus studies of
early modern Eastern Armenian (Sargsyan 1987). Lexicographic and corpus data and tools are, however,
too limited to conduct an extensive statistical study.

26A reviewer notes a useful minimal pair: nist-́i ‘seat-GEN’ and n@st-́i ‘to sit (3SG.SUBJ). The word n@st-́i is an inflected form of
the verb n@st-él. The theme vowel e is replaced by verbal suffix -i which is homophonous with the case marker -i. See §2.3.3.

27The pre-suffixal nasal [sk@zbn-akán] ‘initial’ is a relic of Classical Armenian, see footnote 24.
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2.7.4 Variation in Eastern Armenian as a cue to stem-level status

For EArm, I argued that DHR is a stem-level process and that it applies in V-initial inflection because
DHR is also a PStem-level process. But because of the above variation, one could instead argue that DHR
is word-level and that it underapplies in C-initial inflection because of some prosodic requirement. But this
is unlikely for three reasons which I previewed in §2.5.3.2. First, like WArm, regularization blocks DHR in
EArm inflection (92). Irregular nouns can reduce in derivation and in irregular V-initial inflection, but they
generally do not reduce when they optionally take regular V-initial inflection (Sargsyan 1987:156,172).

(92) a. manúk ‘child’
mank-akán ‘childish’
mank-án ‘child-GEN (irreg.)’
manuk-́i ‘child-GEN (reg.)’

b. diḱin ‘lady’
dikn-́ik ‘doll’
dikn-ó

>
dZ ‘lady-GEN (irreg.)’

dikin-́i ‘lady-GEN (reg.)’

Second, adjectives generally resist pre-inflectional DHR (93). Adjectives reduce in derivation. When
inflected, they are undergo zero-conversion to become nominals. They generally do not reduce in inflection
(Minassian 1980:83; Margaryan 1997:106). Non-application of DHR is more common for adjectives with
destressed u than with destressed i.

(93) a. x́it ‘dense’
x@t-akán ‘condensable’
xit-́i ‘dense-GEN’

=of (a) dense (one)

b. lúr
>
dZ ‘serious’

l@r
>
dZ-anál ‘to get serious’

lur
>
dZ-́i ‘serious-GEN’

=of (a) serious (one)

c. amúr ‘hard’
amr-ó

>
tsh ‘fortress’

amur-́i ‘hard-GEN’
=of (a) hard (one)

Third, DHR is limited to native words (94). Borrowings do not reduce in derivation or inflection (Xačatryan
1988:35,59; Margaryan 1997:95-9). The fact that loanwords behave differently than native words is not
surprising (Itô and Mester 1999).

(94) a. th ím ‘team’
thim-aḱi

>
tsh ‘team-mate’

thim-ér ‘team-PL’

b. f́ilm ‘film’
film-aj́in ‘cinematic’
film-ér ‘film-PL’

c. theńis ‘tennis’
thenis-a-xáG ‘tennis game’
thenis-́i ‘tennis-GEN’

All the above is evidence that DHR is stratally deeper than the word-level. Because the word-level is
postcyclic, a word-level treatment would predict that DHR is not sensitive to morpheme boundaries or to
lexical classes, but that it applies generally across all or most PWords. In other words, word-level rules then
to be exceptionless or have relatively few exceptions (Pesetsky 1979). This is false or DHR.28

2.7.5 Monotonicity in the variation of DHR across Armenian

Combining all the above data, it is clear that root-based, suffix-based, and lexeme-based variation exist in
pre-derivational and pre-inflectional DHR across the two dialects. The existence of variation in morphophonological

28Further evidence comes from heritage speakers of Eastern Armenian. For heritage speakers, DHR tends to not apply in V-initial
inflection (Karapetian 2014:79ff).
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processes is not surprising (Inkelas et al. 1996; Anttila 2002, 2006; Wolf 2011). In my framework, variation
means that roots, suffixes, and lexemes can (de-)activate rules/constraints in different cophonologies. I
formalize the variation in this section.

The variation data across the two dialects showed certain subregularities. These subregularities indicate
a system of implicatory relations (95). These implications support the stratal model because we do not find
roots which reduce in inflection (word-level) more than in derivation (stem-level), i.e., there are no roots
which reduce 1) in inflection but not derivation, 2) obligatorily in inflection but optionally in derivation, or
3) optionally in inflection but never in derivation. The data also support the prosodic model because we do
not find roots which reduce in C-initial (PStem-external) but not V-initial inflection (PStem-internal).

(95) Implicatory relations in variation of DHR in Armenian

DHR in DHR in DHR in
Morphological domain C-initial Inflection implies... V-initial Inflection implies... Derivation
Lexical cophonology Word-level Stem-level
Prosodic cophonology PStem-level

The variation data are monotonic (Graf 2019a). If DHR applies in some domain or cophonology, then it
also applies in smaller ones. If DHR does not apply in some domain or cophonology, then it does not apply
in larger ones. This corroborates the Strong Domain Hypothesis (Myers 1991; McPherson and Hayes 2016).
The variation data indicate that the PStem-level cophonology is an intermediate cophonology between the
stem-level and word-level. This is analogous to how the word-level is an intermediate cophonology between
the stem-level cophonology and the post-lexical phrase-level cophonology.

In a constraint-based system, this monotonicity can be formalized by restricting possible re-rankings
across the hierarchy of cophonologies. LetF,M be a faithfulness and markedness constraint which respectively
block and trigger DHR. M outranks a faithfulness constraint F in a given domain. In larger domains, F can
get promoted but it cannot get demoted; similarly, M can get demoted but not promoted. Applying this to
Armenian, the implicatory relations can be summarized by the constraint rankings below. These constraints
are indexed to individual lexemes or suffixes in order to model variation.

(96) Monotonicity in DHR variation as constraint re-ranking

Lexemes which reduce...
a. everywhere b. in Derivation and V-Inflection c. in Derivation d. Nowhere

Cophonology
Stem-level M » F M » F M » F F » M
PStem-level M » F M » F F » M F » M
Word-level M » F F » M F » M F » M
Example: some EArm roots (91) most EArm lexemes most WArm lexemes loanwords (94)

some WArm roots (86) some EArm roots (89b) some roots (83b,89c)
irregular inflection (88) regularized inflection (92) some suffixes (84)

For most words in both dialects, DHR is active in the stem-level (M » F ) while inactive in the word-level
(F » M ). But for the PStem-level, DHR is active in EArm (M » F , 96b) while inactive in WArm (F »
M , 96c). In between, variation is modeled by different lexeme-specific rankings of M or F . Some WArm

53



lexemes pattern like EArm with M » F in the PStem (96b). This means that DHR applies in derivation,
V-initial inflection, but not C-initial inflection. In contrast, some EArm lexemes pattern like WArm by
ranking F » M in the PStem (96c). This means that DHR applies in derivation, but not inflection. At
the extremes, a given lexeme may specify the ranking M » F in all the cophonologies, triggering DHR
everywhere (96a). Another lexeme may specify the ranking F » M , blocking reduction everywhere (96d).

In sum, the variation data support the existence of three separate but interrelated cophonologies: the
stem-level, PStem-level, and word-level. These cophonologies respect the Strong Domain Hypothesis
because they form a monotonic hierarchy with restrictions on possible re-rankings. Between any two levels,
DHR can only get turned off, not turned on. There also no lexemes which do not reduce in derivation (F »
M ), but do reduce in inflection (M » F ); nor are there lexemes which don’t reduce in V-initial inflection (F
» M ), but do reduce in C-initial inflection (M » F ). These rerankings are banned because they violate the
Strong Domain Hypothesis by demoting faithfulness constraints in later levels.

2.8 Domain narrowing from Classical to modern Armenian

The previous sections established the stratal and prosodic systems for the two modern Armenian dialects,
mostly based on vowel reduction. One question is why the two dialects differ in the domain of DHR. In this
section, I explain this difference by analyzing the history of reduction in Classical Armenian (CArm), the
earliest attested variety of Armenian (∼ 5th century AD). I show how various destressed reduction processes
underwent domain narrowing from the word-level in CArm to the stem-level in WArm or fossilization
(§2.8.1). The analysis highlights the role of the phonological life-cycle as the origin of modern Armenian’s
strata. I speculate on what morphological factors encouraged domain narrowing from Classical to Modern
Armenian (§2.8.2). I argue that these factors led to the emergence of the PStem cophonology (§2.8.3).

2.8.1 Destressed Reduction in Classical Armenian is word-level

Like Modern Armenian, CArm had final stress and alternations between stressed and destressed high
vowels (97a,97b) and diphthongs (97c). The Modern Western Armenian diphthong [uj] is a reflex of
Classical [oj]. Like in Modern Armenian, these alternations in CArm showed a Derived Environment Effect
(Macak 2017:1071). But unlike in Modern Western Armenian, these alternations were triggered by stress
shift before both derivational and inflectional suffixes (97) (Godel 1975:12; Hammalian 1984:93ff; Thomson
1989:15ff; Beekes 2003:155ff; Matasović 2009:93ff; DeLisi 2015:33, 2018:110; Macak 2016:11ff, 2017:1045ff).29

(97) a. CArm WArm
ǵir ḱir ‘letter’
g@r-él k@r-él ‘to write’
g@r-oj kir-é ‘letter-ABL’

b. CArm WArm
>
dZúr

>
tSúr ‘water’

>
dZ@r-akán

>
tS@r-agán ‘aquatic’

>
dZ@r-oj

>
tSur-é ‘water-ABL’

c. CArm WArm
lójs lújs ‘light’
lus-awór lus-avór ‘luminous’
lus-oj lujs-é ‘light-ABL’

29To understand the different pronunciations between Classical and Western Armenian, it should be noted that Western Armenian
underwent a series of consonant voicing and aspiration shifts from Classical Armenian (Baronian 2017). CArm had a three-way
laryngeal contrast Th-T-D while WArm only has a two-way one: Th-D. This change did not affect stress and reduction. All data is
taken from the sources cited in this section. When needed, data was supplemented with CArm dictionaries from www.nayiri.
com and paradigms from Sterling (2004) and https://lrc.la.utexas.edu/eieol/armol. I transcribe CArm data with
aspiration because aspiration is contrastive in this CArm. I do not mark aspiration in the WArm entries because aspiration is not
contrastive in WArm.
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Thus, Destressed High Vowel and Diphthong uj-Reduction were stem-level and word-level in Classical
Armenian. The change from CArm to WArm involved narrowing the domain of destressed reduction to
the stem-level. This follows from the life-cycle of phonological processes (Bermúdez-Otero and Trousdale
2012; Bermúdez-Otero 2014; Ramsammy 2015).

Further evidence of domain narrowing comes from fossilized alternations. In Classical Armenian, other
vowels productively participated in destressed reduction: ja to e, and long ē to i.30 But in modern Western
Armenian, these alternations have become fossilized in a handful of derivatives. In CArm, the destressed
non-high diphthong [ja] would reduce to [e] in derivation and inflection (98). But in modern WArm, the
reduction of [ja] is no longer productive. A small closed set of (often religious) derivatives show ja-reduction
(98a), but other derivatives do not (98b). There is no reduction in inflection (Minassian 1980:43; Xačatryan
1988:67; Margaryan 1997:112; Avetisyan 2011:82).

(98) a. CArm WArm
aṙakhjál arakjál ‘apostle’
aṙakhel-agán arakel-akán ‘apostolic’
aṙakhel-́i arakjal-́i ‘apostle-GEN’

b. CArm WArm
senják senjág ‘room’
senek-́ik senjag-́ig ‘little room’
senek-́i senjag-́i ‘room-GEN’

Another remnant of ja-reduction is the derivational suffix -utjun (99a). In Classical Armenian, the genitive
of -utjun is formed by ablaut -ytjan (99b). The ablative is formed by the adding suffix -ē to the genitive form
-utjan (99c). This triggers ja-reduction to -ten-e. In Modern Armenian, all these different forms of -utjun
have been reanalyzed as either suppletive allomorphs or morpheme-specific rules which are conditioned by
case. The suffix -utjun can optionally take regular inflection without any reduction.

(99) a. Base for ‘happiness’
CArm WArm
urax-uthjún urax-utjún

b. Genitive
CArm WArm
urax-uthján urax-utján

urax-utjun-́i

c. Ablative
CArm WArm
urax-uthen-´̄e urax-uten-é

urax-utjun-é

Besides ja-reduction, Classical Armenian distinguished between short and long front mid-vowels: /e/ vs.
/ē/.31 These two segments were phonemic and minimal pairs can be found (100). They are also spelled
differently with different graphemes: <e> for /e/ and <�> for /ē/. The short mid-vowel /e/ never reduced
(100a), while the long vowel /ē/ would reduce to [i] under stress shift, both in derivation and inflection
(100b).

(100) a. CArm WArm
sér sér ‘race; progeny’
ser-él ser-él ‘to beget’
ser-ój ser-́i ‘progeny-GEN’

b. CArm WArm
s´̄er sér ‘love’
sir-él sir-él ‘to love’
sir-ój ser-́i ‘love-GEN’

30Beekes (2003:147) argues that this diphthong was likely a vowel-vowel sequence [ea] instead of a glide-vowel sequence [ja].
Some treat the ē∼i alternation as a form of destressed raising (Hammalian 1984) instead of destressed reduction (Macak 2017).
Putting aside the issue of terminology, what matters is that the alternation is due to vowel becoming destressed.

31Because there is no data on spoken Classical Armenian, it is unknown how the two mid-vowels were phonetically different.
Traditionally, the reducible vowel is transliterated as a long vowel ē. Diachronically, the long ē is a reflex of a diphthong [ei]
from Proto-Indo-European (Godel 1975:6; Macak 2017:1066). Synchronically, some treat the ē as tense (Hammalian 1984:18;
DeLisi 2015:6), closed (Godel 1975:6; Thomson 1989:14; Matasović 2009:6), a surface diphthong [ei/ej] (Beekes 2003:146), or an
underlying diphthong /ei,ej/ (Vaux 1998b:19).
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In modern Armenian, the two mid-vowels have collapsed into a single lax mid-vowel phoneme /e/.
This creates many cases of homophonous roots: ser ‘love; race’ (100). A handful of core frequent roots
inherited the alternating vowel from Classical Armenian and show destressed ē-reduction in their derivatives.
Reduction does not apply in inflection (101a), except for frozen idioms or social phrases which often include
irregular inflection (101b) (Margaryan 1997:89-93; Sowk’iasyan 2004:49-50; Avetisyan 2011:9,61). The
data below is from WArm.

(101) a. i. gés ‘half’
gis-él ‘to divide’
ges-óv ‘half-INST’

ii. véb ‘novel’
vib-él ‘to narrate’
vib-óv ‘novel-INST’

iii. n@vér ‘gift’
n@vir-él ‘to gift’
n@ver-óv ‘gift-INST’

b. i. sér ‘love’
sir-él ‘to love’
ser-óv ‘love-INST’
sir-óv as in ‘with my warm regards’

ii. dér ‘lord’
dir-él ‘to master’
der-́i ‘lord-GEN’
dir-ó

>
tS as in ‘of the Lord, our God’

Furthermore, both ja- and ē-reduction are also fossilized in EArm.

(102) a. aṙakhjál ‘apostle’
aṙakhel-akán ‘apostolic’
aṙakhjal-́i ‘apostle-GEN’

b. sér ‘love’
sir-él ‘to love’
ser-óv ‘love-INST’

To my knowledge, grammarians agree that ja- and ē-reduction are not productive in Modern Armenian
(Dum-Tragut 2009). These two reduction patterns are fossilized in a finite handful of words and their
derivatives. Because they are highly morpheme-specific, they are likely a case of stem-allomorphy instead
of the product of synchronic rules/constraints (Haugen 2016). Thus, these two processes have reached one
of the last stages of domain-narrowing in the phonological life-cycle (Bermúdez-Otero and Trousdale 2012).

2.8.2 Morphological change and confounds in syllabification

The previous section that many reduction processed narrowed in scope from the word-level in CArm to
the stem-level in WArm. In this section, I argue that contributing factors to the domain narrowing are the
significant changes in Armenian inflection. I later use these changes to explain how DHR diverged between
EArm and WArm, and how they created the PStem.

Nominal inflection in Classical Armenian was largely syncretic and fusional with the same suffix encoding
number and case (Adjarian 1909:5, Halle and Vaux 1998:15; Donabédian 2000; Caha 2013; Sayeed and
Vaux 2017:1154). But in modern Western Armenian, nominal inflection became agglutinative and less
syncretic, with separate morphemes for number and case. The partial paradigms in (103) illustrate this for
regular inflection.32

32For simplicity, I omit the locative because it hasn’t survived into Western Armenian, but it has survived into Eastern Armenian
(§2.5.1). The segment -o- can be segmented as a nominal theme vowel (Halle and Vaux 1998); these theme vowels have not
survived into modern Armenian nominal inflection as separate morphs.
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(103) Regular nominal inflection in Classical and Modern Western Armenian for the word ‘mouth’

NOM ACC DAT GEN ABL INST

CArm Singular beran beran beran-oj beran-oj beran-oj beran-ow
Plural beran-k beran-s beran-o

>
tsh beran-o

>
tsh beran-o

>
tsh beran-ow-k

WArm Singular peran peran peran-i peran-i peran-e peran-ov
Plural peran-ner peran-ner peran-ner-u peran-ner-u peran-ner-e peran-ner-ov

By becoming agglutinative, nominal inflection became more morphologically distinguishable from derivation.
This would make it easier to treat inflection as also phonologically distinguishable from derivation. An
additional change is the introduction of the stressable C-initial inflectional suffix -ner. Unlike the modern
dialects, CArm nominal inflection lacked a stressable C-initial suffix which contains vowels.33 It only had
unstressable lone-consonant suffixes: -k, -s. In the next section, I argue that the creation of this new contrast
between C-initial and V-initial inflection in modern Armenian plays a role in the development of DHR in
Eastern Armenian.

2.8.3 Incomplete narrowing and the Prosodic Stem

This section synthesizes the data from this chapter in order to explain the microvariation of the two dialects
as the consequence of morphological, prosodic, and historical factors. Three prosodic processes were
studied: Stress Shift, Destressed High Vowel Reduction (DHR), and Destressed Diphthong uj-Reduction
(DDR). As shown in (104), these processes have different morphological domains in the three Armenian
lects: Classical (CArm), modern Western (WArm), and modern Eastern (EArm).34 These different morphological
domains correspond to different cophonologies. The narrowing of reduction processes from CArm to the
modern dialects is predicted from the life-cycle of phonological processes (Ramsammy 2015).

(104) Domain of prosodic processes across Classical, Western, and Eastern Armenian

Process Lect Morphological Domain Cophonology
Derivation V-initial Infl. C-initial Infl. Clitics

Stress CArm 3 3 7 word-level
EArm 3 3 3 7 stem-, PStem-, word-level
WArm 3 3 3 7 stem-, PStem-, word-level

i,u Reduction CArm 3 3 7 word-level
EArm 3 3 7 7 stem-, PStem-level
WArm 3 7 7 7 stem-level

uj Reduction CArm 3 3 7 word-level
EArm 3 7 7 7 stem-level
WArm 3 7 7 7 stem-level

33On the surface, aorist formation in CArm verbal conjugation creates C-initial suffixes: sir-e-�tsh-i ‘I loved’. But see Hammalian
(1984:217) and Macak (2016:205) on how this is actually derived from an underlying V-initial suffix /-i

>
tsh/. Similar V-initial

analyses are also extended to other apparent C-initial suffixes in the subjunctive (Hammalian 1984). Besides, verbal inflection
which is morphologically stem-based in Armenian

34The sources listed in §2.8 do not explicitly state that clitics do not trigger stress shift or reduction in CArm. I assume they do
not because I have found no mention of it.
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Classical Armenian did not show any word-internal stratification. I assume it only has one cophonology:
a cyclic word-level cophonology. This cophonology has to be cyclic because of destressed reduction. Final
stress has been constant in the three lects: it applies in every cophonology at every cycle. Reduction was
word-level in CArm but it has narrowed in scope in the modern dialects. For most lexemes in WArm, both
DHR and DDR have completely narrowed from the word-level to the stem-level. But in EArm, narrowing
is partial. DDR has completely narrowed to the stem-level, but DHR occupies an intermediate zone: it
applies in derivation, V-initial but not C-initial inflection. I modeled this zone as a separate cophonology:
the PStem-level. This cophonology is triggered by prosodic misalignment of the Prosodic Stem.

The question now is why DHR did not completely narrow down to the stem-level. The answer is the
interaction of diachronic change and prosody. Domain narrowing from CArm to the modern dialects was
confounded with syllabification. Classical Armenian nominal inflection lacked a stressable C-initial suffix
which contains a vowel, while modern Armenian developed one: the plural -ner.35 I argue that this confound
caused the emergence of the Prosodic Stem, i.e., the prosodic constituent which is mapped from misaligned
(resyllabified) MStems before V-initial inflection. CArm only had V-initial inflection. When EArm learners
developed a C-initial suffix, they reanalyzed DHR as applying in V-initial inflection, not C-initial inflection.
They narrowed DHR down to the PStem-level. In contrast in WArm, the PStem was still created; but, the
above confound was ignored and DHR completely narrowed to the stem-level.

2.9 Conclusion

This chapter examined destressed high vowel reduction (DHR) in modern Armenian. I showed that DHR
is cyclic; and it is sensitive to difference diachronic, morphosyntactic, and prosodic factors across different
Armenian lects. Briefly, these factors are the existence of two lexical strata: the stem-level and word-level.
These two morphologically-derived strata exist alongside the Prosodic Stem and its prosodically-derived
cophonology.

DHR was word-level in Classical Armenian. Over the millennia, reduction underwent domain narrowing
and is now a stem-level rule in modern Western Armenian. But in Eastern Armenian, confounds in strata
and prosody cause reduction to apply in derivation, V-initial inflection, but not C-inflection. I argued
that this is because the dialects developed a new prosodic constituent: the Prosodic Stem (PStem). The
PStem is straddled between derivational morphology and vowel-initial inflectional morphology. It triggers
its own cophonology. In Eastern Armenian, reduction narrowed down to the stem-level and PStem-level
cophonologies. The PStem-level cophonology is triggered by the prosodic misalignment of morphological
stems and syllables before V-initial inflection.

All of the above factors require a model of the morphology-phonology interface such that i) it cyclically
creates prosodic structure and ii) rule application is sensitive to this prosodic structure. Previous work has
shown that lexical phonology and prosodic phonology are partially sensitive to each other (Booij and Rubach
1984; Nespor and Vogel 1986; Szpyra 1989; Cohn 1989; Inkelas 1989, 1993; Booij and Lieber 1993; Hall
1999). What Armenian shows is that prosodic constituents can trigger their own cophonology and trigger
cyclic processes (cf. Mansfield 2017).36

35This suffix appeared sometime during medieval or Middle Armenian (Karst 1901). Future work will examine the stratal
phonology of Middle Armenian.

36An open question is if this PStem analysis can extend to superficially similar cases of conflicts between stem-level strata and
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2.A Diachronic origins of destressed reduction

As shown, destressed reduction is pervasive in Classical and Modern Armenian. The difference between
them is that destressed reduction narrowed in scope, ubiquity, and domain during the change from CArm
to modern Armenian. But the question is, how did destressed reduction appear in the first place? The most
likely answer is phonological reanalysis due to opacity (cf. similar developments in Korean: Cho 2009).37

There is a substantial body of diachronic work on what possible segmental sound changes occurred from
Proto-Indo-European to Classical Armenian via Proto-Armenian (Ač.aṙyan 1971; Kortlandt 2003; Beekes
2003; Macak 2017). But, there is fewer work on prosodic changes besides the emergence of final stress
(DeLisi 2015, 2018; Macak 2016). Because of the lack of data on Proto-Armenian, it is difficult to determine
how destressed vowel reduction became a phonological process in CArm in the first place.

Ač.aṙyan (1971:329) speculates that there was a connection between Classical Armenian destressed reduction
and a diachronic process of unstressed reduction from Proto-Indo-European to Classical Armenian (Beekes
2003:156;Macak 2016:27). Unstressed high vowels were deleted or replaced by schwas while unstressed
midvowels and diphthongs reduced to high or midvowels. I illustrate this below, using PIE reconstructions
for roots from J̌ahowkyan (2010) and of the verbal suffix -em from Olsen (2017). Relevant vowels are in
bold and underlined.

(105) Distribution of high vowels in the change from PIE to Classical Armenian

Surface high vowels which...
... don’t alternate ...alternate under stress shift
a. Root b. Root c. Derivative

PIE *ueikeros *uero *uero + *-im
CArm giSer kir k@r-em
Gloss ‘night’ ‘letter’ ‘I write’

Building off of Ač.aṙyan, it is possible that because of rampant unstressed reduction, CArm speakers
were exposed to surface unstressed high vowels which diachronically derived from underlying unstressed
diphthongs: giSér (105a). But synchronically, there was no evidence for them being anything besides
unstressed high vowels. In contrast, this diachronic reduction process created alternating pairs of stressed
high vowels and their unstressed schwa/deleted counterparts: kir ∼ k@r-él (105b-c). In order to capture this
alternation, speakers had to posit a reduction rule. In order to prevent the rule from over-applying in surface
unstressed high vowels, speakers analyzed this rule as targeting only destressed vowels.

The above scenario is simplified for illustration. The origins of reduction get complicated by postulated
orderings of diachronic sound changes. Ravnæs (1988, 2005) argues that unstressed high vowel reduction
preceded unstressed diphthong reduction which preceded an influx of Parthian loans with unstressed high
vowels. Ultimately though, the synchronic answer is still reanalysis due to opacity

A similar reanalysis happened in Romanian. Romanian has a process of destressed a-raising to [2]
(Steriade 2008a:4). It targets destressed (106a) but not unstressed a (106b). Suffixes which don’t trigger

syllabification-induced processed, e.g., in Kashaya (Buckley 2017).
37My gratitude to Christina Bethin, Ricardo Bermúdez-Otero, and Donca Steriade for discussing the diachronic data.
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stress shift, don’t trigger a-raising (106c-i; stress-taking suffixes do (106c-ii). Raising applies before
derivation and inflection (Steriade, p.c.).

(106) a. sáni-e ‘sled’ pomád-2 ‘pomade’ bárb-2 ‘beard’
s2ni-úts2 ‘sled-DIM’ pom2d-úi ‘apply’ b2rb-ós ‘bearded-MASC’

b. farfuŕi-e ‘plate’ kartóf ‘potato’ papúk ‘slipper’
farfuri-úts2 ‘plate-DIM’ kartof-jór ‘potato-DIM’ paputS-él ‘slipper-DIM’

c. i. ispráv-2 ‘brave deed’
ispráv-nik nobleman’s title

ii. ispr2v-nitS-él nobleman’s title (DIM)

Diachronically, Steriade (2017:20) argues that destressed a-raising happened via the following steps: 1)
In native words, unstressed [a] was raised to 2 early in the language. 2) Loans were then introduced which
had unstressed [a]. 3) In order to handle both the alternating and non-alternating vowels, a-raising was
reanalyzed as targeting destressed instead of unstressed vowels, e.g., in novel derivatives.

(107) Diachronic trajectory of destressed a-raising in Romanian (Steriade 2017)

Steps Example
1. Unstressed /a/→[2] k2már2 ‘room’ < Latin cámera
2. Borrowed unstressed [a] vagabońd ‘vagabond’ < French
3. Destressed /a/→[2] komplikát ‘complicated’

komplik2t-él ‘complicated-DIM’

I suggest virtually the same diachronic analysis for Armenian.

2.B Productivity of high vowel reduction

As explained in §2.7.4, DHR is not a word-level process in either Western or Eastern Armenian. For
example, DHR is systematically blocked in loanwords. This section gives an overview on how grammarians
have judged the productivity of DHR in modern Armenian.

Because DHR does not apply to loanwords, many grammars of Armenian argue that DHR is unproductive,
whether for Western Armenian (Bardakjian and Thomson 1977:241; Hagopian 2005:26) or Eastern Armenian
(Sevak 2009:86; T’oxmaxyan 1983:25). For Eastern Armenian, some grammarians explicitly state that
it is unproductive and fossilized (Xačatryan 1988:35,59), unproductive but active (Khachaturian 1985),
unproductive but conventional (Katvalyan 1989), or unproductive but lexical (Macak 2016:233).

Some argue that reduction is productive with some limitations and tendencies, i.e., that DHR is productive
mostly for monosyllabic bases (Haghverdi 2016:4), derivational morphology, (Minassian 1980:82), frequent
or core vocabulary (Dum-Tragut 2009), diphthong reduction (Hagopian 2005:56), etc. There is some
extension of DHR to neologisms made from native roots (Hagopian 2005:36). It is generally under-learned
by heritage speakers (Karapetian 2014:79ff).
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The most extensive discussion on the subregularity of vowel reduction comes from (Margaryan 1997:89ff)
who argues that vowel reduction is synchronically productive but that it displays high degree of variation
across words and word classes. He extensively catalogues variation data in Armenian which I presented
throughout this chapter. Sargsyan (1987) shows similar corpus results based on diachronic fluctuations in
vowel reduction in early Modern Eastern Armenian.
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Chapter 3

Compounds: Heads and paradoxes

3.1 Introduction

The previous chapter established the cyclic architecture of Armenian based on its morphology, phonology,
and prosody. In this chapter, I discuss a bracketing paradox whereby these different modules create non-isomorphic,
mismatching, or paradoxical structures. The data is transcribed in Western Armenian, but the generalizations
extend to Eastern Armenian.

In simplex nouns, the plural suffix is -er after monosyllabic bases (108a-i), -ner after polysyllabic bases
(108a-ii). But plural formation creates a bracketing paradox in compounds. Compounds are formed by
concatenating two stems, STEM1 and STEM2, normally with a linking vowel -a-. In some cases, the plural
counts the number of syllables in the entire polysyllabic compound and surfaces as -ner (108b-ii). But
in other compounds, the plural only counts the number of syllables in the monosyllabic second stem and
surfaces as -er (108b-i). I underline the domain of syllable counting.

(108) a. i. pág ‘yard, lot’
pag-ér ‘yards, lots’

ii. panág ‘army’
panag-nér ‘armies’

b. i. an
>
tsrév +

>
tSúr ‘rain + water’

an
>
tsrev-a-

>
tSúr ‘rain-water’

an
>
tsrev-a-

>
tSur-ér ‘rain-waters’

ii.
>
tSár + śird ‘evil + heart’
>
tSar-a-śird ‘evil-hearted’
>
tSar-a-sird-nér ‘evil-hearted people’

For certain compounds (108b-i), the plural counts the number of syllables in a morphological subconstituent
of the base. This constitutes a bracketing paradox. In this chapter, I show that it is largely due to endocentricity.
The plural counts the number of syllables in the semantic head. If the compound is exocentric, it counts the
number of syllables in the entire compound (108b-ii); while if the compound is endocentric, it counts the
number of syllables in the second stem (108b-i).

I analyze the bracketing paradox using cyclic Head-Operations (Hoeksema 1984) and Prosodic Phonology
(Nespor and Vogel 1986). I argue that the interaction between the bracketing paradox and the rest of
compound phonology requires the use of stratal levels and cyclicity. I argue that counter-cyclic approaches
like Morphological Merger (Marantz 1988) are inadequate because they contradict Armenian strata.
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In §3.2, I go over theories and types of bracketing paradoxes, with a focus on morphology-phonology
paradoxes. In §3.3, I discuss the basic Armenian data. I show that compounds largely match simplex
stems in their phonology. They form a single prosodic word and undergo stem-level rules. The only
bracketing paradox is how endocentric compounds are pluralized. In §3.4, I show that the bracketing
paradox is productive and based on endocentricity. This signals that Armenian inflection is head-marking.
I formalize the bracketing paradox in §3.5, and I argue for using cyclic Head-Operations and against the
use of counter-cyclic approaches like Morphological Merger. In §3.6, I discuss prosodically-conditioned
variation in pluralizing endocentric compounds. This variation requires combining cyclic Head-Operations
with Prosodic Phonology. I argue that the head of compounds maps to a prosodic constituent p. This
constituent is not a foot or recursive PWord, but is a Prosodic Stem (Downing 1999a). I conclude in §3.7.

3.2 Bracketing paradoxes in morphophonology

Given some word, a bracketing paradox is when the word has two or more contradictory constituency
structures. I focus on cases where the mismatch is between the phonology and morphology, e.g., the English
comparative: happier ∼ unhappier. I first provide a classification of theories for bracketing paradoxes, and
I set up different subtypes of phonology-morphology paradoxes.1

3.2.1 Theories and tools for bracketing paradoxes

Since Pesetsky (1979), there have been different theories for modeling bracketing paradoxes (Newell
2019) and debates over the validity of these paradoxes (Kitagawa 1986; Light 1991; Sproat 1992a; Kang
1993). Here, I go over some classifications for these theories.

One common classification is based on what constituency is posited as primary vs. derived (Sproat 1985).
Most approaches treat the morphological structure as primary, while the phonological representation is
derived. Theories which do this include Morphological Rebracketing (Sproat 1985, 1988), Morphological
Merger (Marantz 1988), Prosodic Phonology (Aronoff and Sridhar 1983; Nespor and Vogel 1986; Cohn
1989; Booij and Lieber 1993), and Local Dislocation (Embick and Noyer 2001; Haugen and Harley 2013;
Deal 2016). A less frequent approach is to let the phonological representation be primary while the morphological
representation is derived; this includes theories like Affix Raising (Pesetsky 1985; Hoeksema 1987) and
Morphological Reanalysis (Kiparsky 1983). A third set of approaches assumes that the morphological and
phonological representations are always identical but they utilize additional tools to let the paradox emerge,
such as counter-cyclicity or the ability of an affix to look inside its base. This set includes Late Adjunction
(Newell 2005, 2008), Paradigm Function Morphology (Stump 1995b,a, 2001), Head Operations (Hoeksema
1984), and autosegmental planes (Halle and Vergnaud 1987a,b; Falk 1991).

To facilitate the application of the above types of theories to Armenian, I reclassify them in terms of
the cyclicity vs. counter-cyclicity of the phonological representation. Some theories assume that the

1For space, I don’t discuss some solutions that developed in non-Chomskyan frameworks, e.g., Autolexical Theory (Chelliah
1995), CG (Chae 1990, 1993), CCG (Bozsahin 1999), HPSG (Crysmann 1999; Müller 2003), LFG (Kim 1991, 1992), Dependency
Grammars (Gross 2011a,b), a.o. I also don’t discuss work that focuses on paradoxes between the morphological, syntactic, and
semantic representations, such as in the phrases transformational grammarian and beautiful dancer (Williams 1981; Strauss 1982;
Sadock 1985; Spencer 1988; Beard 1991; Becker 1993; Fukushima 1999, 2015, 2014; Ackema and Neeleman 2004; Belk 2019).
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temporal order in which both the morphological and phonological structures are generated matches with
the order in which the word’s meaning (semantics) is interpreted, i.e., cyclically. This includes theories
such as Head-Operations and Prosodic Phonology. In contrast, in counter-cyclic theories, the phonological
representation (morpheme spell-out) is generated in a temporal order which does not match the semantic
order. Depending on the theory, the morphological representation can be generated in a temporal order
that either does or doesn’t match the semantics. Most theories for bracketing paradoxes are counter-cyclic,
including Morphological Merger, Morphological Rebracketing, Late Adjunction, among others.

(109) Cyclicity-based classification for theories in bracketing paradoxes
Counter-cyclic Cyclic

Morphological Rebracketing (Sproat 1985),
Morphological Merger (Marantz 1988), Paradigm
Functions (Stump 2001), Linear Dislocaiton (Embick
and Noyer 2001), Late Adjunction (Newell 2005) , ...

Head-Operations (Hoeksema 1984), Prosodic
Phonology (Nespor and Vogel 1986),
Autosegmental Planes (Halle and Vergnaud
1987a)

To illustrate, Prosodic Phonology is a cyclic model. Even though the prosodic and morphological structures
don’t match, the morphemes are spelled-out in the temporal order that matches the semantics (cf. Booij and
Rubach 1984; Cohn 1989; Inkelas 1989). For example in un-(happi-er)w, the prefix un- is spelled-out as
outside the root’s PWord temporally before the suffix -er is added. In contrast, Morphological Merger
is countercyclic. The morphological structure is first generated in the right semantic order, but it is later
modified. The morphemes are phonologically-spelled out based on this modified representation. For
unhappier, the suffix forms a constituent with the root in the modified representation [un[happy-COMP]],
and it spelled out as -er temporarily before the prefix un- is phonologically spelled-out.

3.2.2 Definition and types of bracketing paradoxes

Having set a cyclicity-based classification for the above theories, I now refine the types of representations
that are involved in morphology-phonology paradoxes. I classify paradoxes into allomorphy-based vs.
process-based bracketing paradoxes based on the source of the phonological representation.

A bracketing paradox is allomorphy-based if the paradox between the morphological constituency and
the phonological constituency is based on the allomorphy of a morpheme. There is such a contradiction in
unhappier because the comparative counts the syllables of the root ‘happy’ instead of the base ‘unhappy’.

(110) unhappier Morphology Allomorphy-based Phonology Prosody
COMP

COMP

-er

A

A

happy

NEG

un

Allomorphy

-erhappyun

PW’

PW

háppy-er

PW

ùn-

In contrast, a process-based bracketing paradox occurs for the word ungrammaticality because morphological
constituency contradicts the phonological constituency that’s based on phonological rule domains. Morphologically,
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the adjective grammatical forms a constituent with the prefix un-, not the suffix -ity. But, the domain of
stem-level (SLevel) or Level 1 stress assignment includes the suffix -ity, not the prefix un-. The entire
construction is the domain of word-level (WLevel) processes.

(111) ungrammaticality Morphology Process-based Phonology Prosody
N

n

-ity

A

A

grammatical

NEG

un-

WLevel

SLevel

-ity

SLevel

grammaticalun-

PW’

PW

grammaticál-ity

PW

ùn-

Cross-linguistically for most bracketing paradoxes, the allomorphy-based and process-based representations
tend to be the same and they tend to match prosodic structure. In English, both types of phonological
representations loosely match the prosody, e.g., un- forms its own PWord. Because of this tendency, most
work in morphology-phonology bracketing paradoxes conflate these two types of phonological constituencies.

In Armenian compounds, I argue that these two phonological representations are not identical. In contrast,
the morphological representation matches the domain-based representation, the domain-based representation
does not match the allomorphy-based representation, and the allomorphy-based representation matches the
prosodic representation. Because of this split in which representations match, Armenian is a useful case
study to evaluate different tools for bracketing paradoxes. In the next section, I go over the data and I later
argue that the Armenian data works best with cyclic theories, not counter-cyclic theories.

3.3 Constituencies in Armenian compounds

In this section, I set up the morphological, phonological, and prosodic structure for Armenian simplex
words and compound words. Compound words tend to show isomorphic representations (§3.3.1), and the
only bracketing paradox is present in compound pluralization (§3.3.2).

3.3.1 Matching constituencies in compounds

In terms of morphology, Armenian is primarily suffixing and agglutinative. A root can take on derivational
(112a-ii) and inflectional suffixes (112a-iii). Compounds are formed by combining two stems (STEM1 &
STEM2), normally with a linking vowel -a- (112b-ii).2 A compound can itself take a suffix (112b-iii).

(112) a. i. kór
>
dz ‘work’

ii. kor
>
dz-avór ‘worker

iii. kor
>
dz-avor-nér ‘workers’

b. i. seGán ‘table’
ii. kor

>
dz-a-seGán ‘work-bench

iii. kor
>
dz-a-seGan-nér ‘work-benches’

2Most compounds consist of only two stems but there are compounds which have three or more stems: man@r + lujs + n@gar
‘small + light + picture’ → manr-a-lus-a-n@gar ‘micro-photograph’. A linking vowel is used between each stem. These large
compounds are rarely used and mostly restricted to higher registers. Data on their phonology is limited and I do not discuss them.
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In terms of prosody, compounds and simplex words are similar. Primary stress is on the rightmost full
vowel of the word, whether on a root (112a-i) or a suffix (112a-iii). Final schwas are unstressed (113iii).
Clitics are word-external and are not stressed (113iv). Based on stress, both simplex and compounds form
a single prosodic word. Armenian is thus like Greek in that compounds form a single PWord, contra the
cross-linguistic tendency for compounds to form two PWords (Nespor and Vogel 1986; Nespor 1999; Vogel
2010).

(113) a. i. kor
>
dz-avór ‘a worker’

ii. kor
>
dz-avor-nér ‘workers’

iii. kor
>
dz-avor-nér-@ ‘the workers’

iv. kor
>
dz-avor-nér al ‘also workers’

b. i. kor
>
dz-a-seGán ‘a work-bench’

ii. kor
>
dz-a-seGan-nér ‘work-benches’

iii. kor
>
dz-a-seGan-nér-@ ‘the work-benches’

iv. kor
>
dz-a-seGan-nér al ‘also work-benches’

Besides stress, recall from Chapter 2 that there are phonological processes which apply differently between
derivational and inflectional morphology. For example, there is a process of Destressed High Vowel Reduction
(DHR) whereby destressed high vowels are deleted (114a), or reduced to a schwa (114b) if deletion would
create an unsyllabifiable consonant cluster (Khanjian 2009). Similarly, Armenian has a rule of Destressed
Diphthong uj-Reduction (DDR) whereby a destressed uj is reduced to u (114c). Both types of reduction
apply before derivational suffixes (114ii), compounding (114iii) but not inflectional suffixes (114iv).3

(114) a. DHR via deletion b. DHR to schwa c. DDR
i.

>
dzaǴig ‘flower’

>
tSúr ‘water’ hújn ‘a Greek’

ii.
>
dzaGg-avéd ‘flowery’

>
tS@r-aj́in ‘watery’ hun-agán ‘Greek (adj.)’

iii. tért ‘paper’ pós ‘hole’ háj ‘Armenian’
>
dzaGg-a-tért ‘flower-petal’

>
tS@r-a-pós ‘water-hole’ hun-a-háj ‘Greek-Armenian’

iv.
>
dzaGig-óv ‘flower-INST’

>
tSur-óv ‘water-INST’ hujn-óv ‘Greek-INST’

I analyze these processes in terms of lexical strata or cophonologies. Derivational morphology forms
morphological stems (MStems) and triggers the stem-level phonology, while informational morphology
forms morphological words and triggers the word-level phonology. The reduction processes are stem-level
processes, not word-level. Morphologically, compounds form a single MStem and undergo the same set of
stem-level rules as simplex stems.

Vowel-hiatus repairs likewise shows stratal distinctions. Before derivational suffixes, vowel hiatus with a
base final i is commonly repaired by of deletion (115a-ii); other possible repairs are coalescence (115b-ii,
/-agan/). Similarly for base-final u, hiatus is commonly repaired by glide fortition to v (115c-ii). Compounding
behaves the same and triggers the same set of stem-level rules (115iii). But before inflectional affixes, hiatus
is generally repaired by glide epenthesis (115iv).4

3In Eastern Armenian, V-initial inflection can cause the overapplication of destressed high vowel reduction because of
prosodic misalignment:

>
tS@r-ér ‘waters’. The same extends to compounds, especially endocentric compounds: an

>
dzrev-a-

>
dZ@r-er

‘rain-waters’. The derivation above is just for Western Armenian. There are also fossilized rules of destressed e-to-i reduction
and destressed ja-to-e reduction. These rules apply in some derivatives: sér ‘love’ vs. sir-agan ‘affectionate’, arakjál ‘apostle vs.
arakel-agán ‘apostolic’. They don’t apply in not inflection: ser-óv ‘love-INST’, arakjal-óv ‘apostle-INST’. Both rules apply in
compounding: túxt for sir-a-túxt ‘love-letter’, gérb ‘manner’ for arakel-a-gérb.

4Before derivational suffixes, some rare repair rules are glide formation for i (i→,j), glide epenthesis for i and u, and vowel
deletion for u. Before inflectional suffixes, Eastern Armenian allows vowel deletion for i and glide fortition for u. But these rules
are much less common than glide epenthesis.
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(115) a. Deletion b. Coalescence c. Fortition
i. aGavńi ‘pigeon’ kińi ‘wine’ lezú ‘language’
ii. aGavn-ó

>
ts ‘pigeon-coop’ kin-egán ‘vinic’ lezv-agán ‘linguistic’

iii. dún ‘house’ dún ‘house’ xúmp ‘group’
aGavn-a-dún ‘pigeon-coop’ kin-e-pós ‘wine-shop’ lezv-a-xúmp ‘language-family’

iv. aGavni[j]-óv ‘pigeon-INST’ kini[j]-óv ‘wine-INST’ lezu[j]-óv ‘language-INST’

3.3.2 Paradoxical constituencies in compounds

So far, I have not shown a bracketing paradox for compounds. However, a bracketing paradox occurs
in pluralization. For simplex words, the plural has two phonologically-conditioned allomorphs: -er after
monosyllabic bases (116a-i), -ner after polysyllabic bases (116a-ii,116a-iii). I use the realization rules in
(116b). They will be later revised.

(116) a. i. pág ‘yard, lot’
pag-ér ‘yards, lots’

ii. panág ‘army’
panag-nér ‘armies’

iii. akarág ‘farm’
akarag-nér ‘farms’

b. PL: counting syllables (Version 1)
PL→ -er / #σ _
PL→ -ner /elsewhere

In simplex stems, the allomorphy is a simple case of syllable-counting.5 I show its simple distribution
below. The allomorphy is insensitive to stress because the suffix takes final stress. It not based on the
number of feet; both bi- and trisyllabic words are pluralized the same. And, the allomorphy is insensitive to
the syllable structure of the final syllable, e.g. the suffix -ner is added to a polysyllabic base even if the base
ends in a consonant cluster. Likewise, -er is added to V-final monosyllabic bases; vowel hiatus is repaired
by epenthesis.

(117) Distribution of the plural in simplex nouns

Syllable count
Final σ σ σ-er σσ σσ-ner σσσ σσσ-ner
CV

>
tśi

>
tsi[j]-ér ‘horses’ Sugá Suga-nér ‘stores’ mekená mekena-nér ‘machines’

CVC pát pat-ér ‘ducks’
>
dZagád

>
dZagad-nér ‘foreheads’ kaGapár kaGapar-nér ‘concepts’

CVCC pánd pand-ér ‘prisons’ daGánt daGant-nér ‘talents’ aSxadánk aSxadank-nér ‘works’
CVCCC bártk bartk-ér ‘debts’ lusán

>
tsk lusan

>
tsk-nér ‘margins’ alabást(@)r alabast@r-nér ‘alabasters’

Compounds are always polysyllabic, thus we expect them to always be pluralized with -ner. This is the
case for compounds where STEM2 is polysyllabic; these compounds are always pluralized with -ner.

5The allomorphy does not optimize phonological well-formedness. The only trace of optimization are CVCC bases which end
in a rising-sonority cluster (Vaux 2003; Macak 2016). These clusters optionally take an excrescent or epenthetic schwa: man(@)r
‘small’. Their plural can be bisyllabic with -er: manr-er, or trisyllabic with -ner: man@r-ner. The choice varies by dialect, speaker,
and item. I put these cases aside. A few other morphemes also show suppletion based on syllable count, e.g. the indicative prefix
(Vaux 1998b) and possessive plurals (Arregi et al. 2013; Wolf 2013). None of these processes reference stress-assignment. Macak
(2016) argues that they reference unstressed feet.
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(118) a. gár
>
dZ + haság ‘short + height’

gar
>
dZ-a-haság ‘short’

gar
>
dZ-a-hasag-nér ‘short (people)’

b. kór
>
dz + seGán ‘work + table’

kor
>
dz-a-seGán ‘work-bench’

kor
>
dz-a-seGan-nér ‘work-benches’

But, pluralization exhibits a bracketing paradox in compounds when STEM2 is monosyllabic. In this
situation, some compounds are pluralized with -ner (119a), but some are pluralized with -er (119b). As a
mnemonic, I say that compounds of the first type are transparently pluralized with -ner, while compounds
of the second type are paradoxically pluralized with -er. I underline the syllables which are counted.

(119) a.
>
tSár + śird ‘evil + heart’
>
tSar-a-śird ‘evil-hearted’
>
tSar-a-sird-ner ‘evil-hearted (people)’

b. an
>
tsrév +

>
tSúr ‘rain + water’

an
>
tsrev-a-

>
tSúr ‘rain-water’

an
>
tsrev-a-

>
tSur-er ‘rain-waters’

In (120), I show the different types of constituencies t for the transparent vs. paradoxical compound
plurals. The compounds are identical in their morphological constituency, process-based phonological
constituency, and in their stress-based prosodic constituency. Here, the compound stems form a stem-level
constituent that excludes the word-level plural suffix.6 Crucially, the compounds differ in their allomorphy-based
representation. The allomorphy-based representation of the transparent plural matches the morphology,
while that of the paradoxical plural does not. In the transparent case, the compound takes a suffix -ner
because the plural counts the number of syllables in the compound. But in the paradoxical case, the
plural counts the syllables in STEM2, meaning that STEM2+PL form an allomorphy-based constituent to
the exclusion of STEM1.

(120) Constituencies in compound plurals with monosyllabic STEM2

Morphology Process-based Phonology Allomorphy-based Phonology Prosody

>
tSar-a-sird-ner

PL

PL

-ner

Compound

STEM2

sird

STEM1

>
tSar

WLevel

-ner

SLevel

SLevel

sird

SLevel

>
tSar-a-

Allomorphy

-ner
>
tSar-a-sird

PW

>
tSar-a-sird-ner

an
>
tsrev-a-

>
tSur-er

PL

PL

-er

Compound

STEM2

>
tSur

STEM1

an
>
tsrev

WLevel

-er

SLevel

SLevel

>
tSur

SLevel

an
>
tsrev-a-

Allomorphy

-er
>
tSuran

>
tsrev-a-

PW

>
tSar-a-tSur-er

6I assume a simple morphological model for compounds (Selkirk 1982). In the morphological representation, I omit the linking
vowel. I assume it is a semantically empty morph (Aronoff 1994; Ralli 2008) which is added during phonological spell-out in PF
as a dissociated morpheme (Oltra-Massuet 1999b; Tat 2013; Embick 2015). In the prosodic representation, I omit feet. In §3.6, I
show that two types of compounds have different prosodic constituencies below the PWord-level.
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The bracketing paradox is found for compound pluralization, but not for the rest of the compound
phonology. Visually, the paradoxical plural’s two different phonological representations do not match. The
compound undergoes the same stem-level processes as the transparent plural. I discuss this more in §3.5. In
the next section, I show that this bracketing paradox is robust and that it is triggered by endocentricity

3.4 Endocentricity and Head-marking in Armenian compounds

Having explained how compound plurals form a bracketing paradox, I provide a simple explanation for
the paradox based on endocentricity: only endocentric compounds like ‘rain-water’ can trigger a paradoxical
plural. It is cross-linguistically common for headedness to affect compound structure and phonology (Williams
1981; Zwicky 1985; Hoeksema 1984, 1988, 1992; Di Sciullo and Williams 1987; Stump 1995b; Revithiadou
1999; Scalise et al. 2009; Scalise and Fábregas 2010; Moskal and Smith 2019). For Armenian, the role
of endocentricity is not a novel claim, but it is an established fact in Armenian linguistics (Vaux 1998b;
Dum-Tragut 2009).

Because the paradox is largely unfamiliar in generative linguistics, I go through a representative sample
of compound plurals (§3.4.1). I show that across different types of compounds, the single most common
predictor for pluralization depends on endocentricity. The bracketing paradox is insensitive to other factors
such as the part of speech of the compound members or the semantic relationship between these members.
I show that bracketing paradox is productive (§3.4.2). I show that inflection displays head-marking in
endocentric compounds (§3.4.3), including the percolation of irregular inflection.

The examples is in this section are my native Western judgments for how to pluralize a compound.
The judgments match the prescriptive and descriptive generalizations that are found across grammars on
Armenian (Sowk’iasyan 2004:232; Ezekyan 2007:248; Sevak 2009:152; Dum-Tragut 2009:670-5, a.o.) and
philological research on Armenian compounds (Mkrtčyan 1972, 1973, 1977, 1980; Sargsyan 1979, 1987;
Donabédian 2004; Xačatryan 2009a,b; Karapetyan 2016).

3.4.1 Distribution of the bracketing paradox

I use the following working definition for endocentricity. A compound is endocentric if it is hyponymic;
it is hyponymic if the compound is interpreted as a subtype of STEM2 (cf. Allen 1979’s ‘IS A’ condition).
In this case, STEM2 acts as the semantic head h of the compound. In this section, I go through a taxonomy
of compounds. The three most common constructions are nominal, possessive, and deverbal compounds.
Nominal compounds are endocentric, while possessive and deverbal compounds are exocentric. I show that
only endocentric compounds trigger the bracketing paradox.

For example, the word dun can form the STEM2 of either an endocentric nominal or exocentric possessive
compound. The exocentric one is transparently pluralized with -ner (121a), while the endocentric one is
paradoxically pluralized with -er (121b). In the rest of this section, I don’t gloss the plural.

(121) a. mé
>
dz + dún ‘big + house’

me
>
dz-a-dún ‘opulent’

me
>
dz-a-dun-nér ‘opulent people’

b. aGavńi + dún ‘pigeon + house’
aGavn-a-dún ‘pigeon-coop’
aGavn-a-dun-ér ‘pigeon-coops’
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3.4.1.1 Bracketing paradox in endocentric nominal compounds: X-N=N

In a nominal compound, both STEM2 and the compound are nouns (X-N=N). These are estimated to
constitute around 30% of Armenian compounds (Donabédian 2004). These compounds are endocentric and
are paradoxically pluralized with -er.

(122) dón +
>
dzár ‘holiday + tree’ a

>
dzúx + hór ‘coal + pit’ p@rún

>
tsk + márd ‘fist + fight’

don-a-
>
dzár ‘Christmas tree’ a

>
dzx-a-hór ‘coal-pit’ p@r@n

>
tsk-a-márd ‘fist-fight’

don-a-
>
dzar-ér a

>
dzx-a-hor-ér p@r@n

>
tsk-a-mard-ér

Semantically, STEM1 acts as an adjunct modifier for STEM2. The specific specific semantic relationship
between the two stems is wide-ranging and unpredictable, but it does not affect the bracketing paradox. As
long as the compound stays hyponymic, it is paradoxically pluralized.

(123) a. 2 of 1 arév + SóG ‘sun + ray’ jerǵir + kúnt ‘Earth + sphere’
arev-a-SóG ‘sunray’ jergr-a-kúnt ‘world globe’
arev-a-SoG-ér jergr-a-kunt-ér

b. 2 made from 1 méGr+móm ‘honey + candle’ medáks + kórk ‘silk + carpet’
meGr-a-móm ‘beeswax, wax candle’ medaks-a-kórk ‘silk carpet’
meGr-a-mom-ér medaks-a-kork-ér

c. 2 in 1 ked́in + xórS ‘ground + pit, cavern’ mi
>
tŚin + bád ‘middle + wall’

kedn-a-xórS ‘ditch’ mi
>
tSn-a-bád ‘dividing wall’

kedn-a-xorS-ér mi
>
tSn-a-bad-ér

STEM1 is usually a noun as in the above examples, but STEM1 can range over different parts-of-speech,
such as an adjective, infinitival verb, or a verb root.7 Again, the category of STEM1 does not matter for the
bracketing paradox; the compound is still endocentric and paradoxically pluralized.

(124) a. mán(@)r + véb ‘small + novel’ náx + hájr ‘first + father’
manr-a-véb ‘novella’ nax-a-hájr ‘forefather’
manr-a-veb-ér nax-a-hajr-ér

b. kor
>
dz-é-l + gérb ‘to work + manner’ k@r-é-l +

>
tsév ‘to write + manner’

kor
>
dz-e-l-a-gérb ‘strategy’ k@r-e-l-a-

>
tsév ‘writing style’

kor
>
dz-e-l-a-gerb-ér k@r-e-l-a-

>
tsev-ér

c. aSxad-́i-l + vár
>
ts ‘to work + payment’ marz-é-l + táSt ‘to exercise + field’

aSxad-a-vár
>
ts ‘wage’ marz-a-táSt ‘sports field’

aSxad-a-var
>
ts-ér marz-a-taSt-ér

7Free-standing verbs consist of a root followed a theme vowel -e,-i,-a and tense/agreement marking such as the infinitival -l:
aSxad-i-l ‘to work’. STEM1 can be an infinitival verb or bound verbal root. In these compounds, STEM1 is verbal because the
compound is interpreted as one involving the activity of STEM1. These compounds can be translated with English gerunds.
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3.4.1.2 No bracketing paradox in possessive compounds: X-N=A

Exocentric possessive compounds constitute 5% of common Armenian compounds (Donabédian 2004).
Here STEM2 is a noun but the compound is an adjective (X-N=A). These compounds are interpreted as
metonymic or possessive compounds, whereby the compound possesses STEM2. They are analogous to
English bahuvrihi compounds (blue-eyed) except that there is no overt suffix on STEM2. As adjectives, they
can be substantivized and take nominal inflection. These compounds are non-hyponymic and exocentric: an
evil-hearted person is not a type of heart. They are transparently pluralized with -ner.

(125) >
tSár + śird ‘evil + heart’ ar

>
dzát + várs ‘silver + locks’ táng + ḱin ‘costly + price’

>
tSar-śird ‘evil-hearted’ ar

>
dzat-a-várs ‘silver-locked’ tang-a-ḱin ‘valuable

>
tSar-a-sird-nér ar

>
dzat-a-vars-nér tang-a-kin-nér

STEM1 is usually an adjective (126a). STEM1 can range over other parts-of-speech such as nouns (126b).
In a few rare cases, STEM1 can also be a verbal root (126c). But regardless of what STEM1 is, possessive
compounds are always transparently pluralized.

(126) a. tetév + kájl ‘light + footstep’ z@várt +
>
tsájn ‘cheerful + voice’

tetev-a-kájl ‘light-footed’ z@vart-a-
>
tsájn ‘cheerful-voiced’

tetev-a-kajl-nér z@vart-a-
>
tsajn-nér

b. arjun + kújn ‘blood + color’
>
tsjún + pájl ‘snow + brightness’

arjun-a-kújn ‘blood-colored’
>
tsjún + pájl ‘snow-white’

arjun-a-kujn-nér
>
tsjun-a-pajl-nér

c. xéGt-e-l +
>
tsájn ‘to strangle + voice’ xéGt-e-l + máh ‘to strangle + death’

xeGt-a-
>
tsájn ‘strangled-voiced’ xeGt-a-máh ‘asphyxiated’

xeGt-a-
>
tsajn-nér xeGt-a-mah-nér

3.4.1.3 No bracketing paradox in deverbal compounds: X-VRoot=N/A

Finally, the most common class of compounds are deverbal compounds which are estimated to form at
least 48.6% of Armenian compounds (Donabédian 2004).8 In these compounds, STEM2 is derived from a
verb while the entire compound is a noun or adjective. Because of this mismatch in their parts of speech,
deverbal compounds are non-hyponymic and exocentric. They are transparently pluralized.

(127) goŚig + gar-é-l ‘show + to sew’ g@rág + baSt-é-l ‘fire + to worship’
goSg-a-gár ‘shoe-maker’ g@rag-a-báSt ‘fire-worshipper’
goSg-a-gar-nér g@rag-a-baSt-nér

Armenian deverbal compounds have clear argument structure with STEM2 acting as a verb. They are
analogous to English synthetic compounds like truck driver. But unlike in English, these compounds lack

8This figure is for deverbal compounds where STEM1 is a noun. This figure is larger if we include other categories for STEM1.
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an overt nominalizer suffix on STEM2. Traditionally in Armenian linguistics, STEM2 is called a verbal root
(Vroot),9 because STEM2 lacks the corresponding verb’s theme vowel and tense/agreement suffixes

Semantically, the verbal root STEM2 is salient in these compounds because it assigns a thematic role
to STEM1. In most cases like above, STEM2 is the root of a transitive verb. STEM1 acts as the internal
argument of the verbal root while the entire compound is interpreted as the external argument. As an
internal argument, STEM1 can be a noun (128a), adjective (128b) or even a verbal root (128c).10 But in
pluralization, STEM1’s category does not matter and the compound is transparently pluralized with -ner.

(128) a. manúg + varZ-é-l ‘child + to instruct’ ZoGovúrt + var-é-l ‘populace + to lead’
mang-a-várZ ‘school-teacher’ ZoGov@rt-a-vár ‘demagogue
mang-a-varZ-nér ZoGov@rt-a-var-nér

b. zaźir + xos-́i-l ‘filthy + to speak’ láv + des-n-é-l ‘good + to see’
zazr-a-xós ‘lewd, coarse’ lav-a-dés ‘optimist’
zazr-a-xos-nér lav-a-des-nér

c. @nter
>
ts-an-é-l + sir-é-l ‘to read + love’11 hajhoj-é-l + sir-é-l ‘to swear + to love’

@nter
>
ts-a-sér ‘lover of reading’ hajhoj-a-sér ‘lover of swearing’

@nter
>
ts-a-ser-nér hajhoj-a-ser-nér

Other argument structures also don’t trigger the bracketing paradox. In some compounds, STEM2 is the
root of an intransitive verb. Here, STEM1 acts as a modifier adjunct. It can be an adverb or rarely a noun.

(129) a. jergár + dev-é-l ’long + to last’
jergar-a-dév ‘long-lasting’
jergar-a-dev-nér

b. ked́in + soG-á-l ‘ground + to creep’
kedn-a-sóG ‘ground-crawler’
kedn-a-soG-nér

In some compounds, STEM2 is interpreted as a passive verb, while the compound is interpreted as the
promoted internal argument. Passive verbs have an overt passive affix -v- after the root; but passivization
is covert in compounds. STEM1 can be a noun that acts as an external argument, a noun that acts as an
instrumental adjunct, or an adjective/adverb that modifies the verbal action. As before, passive deverbal
compounds are transparently pluralized with -ner.

(130) a. tév + har-v-́i-l ‘demon + to be beaten’ vodn + gox-v-́i-l ‘foot (archaic) + to be trodden’
tiv-a-hár ‘demon-possessed’ vodn-a-góx ‘foot-trodden’
tiv-a-har-nér vodn-a-gox-nér

b. aváz + bad-v-́i-l ‘sand + to be enclosed’
>
dzár + zart-v-́i-l ‘tree + to be decorated’

avaz-a-bád ‘enclosed with sand’
>
dzar-a-zárt ‘decorated with trees’

avaz-a-bad-nér
>
dzar-a-zart-nér

c. t@Zvár + mars-v-́i-l ‘hard + to be digested’ nór + hjus-v-́i-l ‘new, newly + to be woven’
t@Zvar-a-márs ‘indigestible’ nor-a-hjús ‘newly woven’
t@Zvar-a-mars-nér nor-a-hjus-nér

9The Armenian term is "bayakan armat" /pajagan armad/ ‘verbal root’, or the compound "bayarmat" /paj-armad/
‘verb-root’ (Sowk’iasyan 2004:251; Karapetyan 2016:77, a.o.).

10In some cases, STEM1 is morphologically ambiguous between a verbal root hajhoj-e-l ‘to swear’ or a truncated noun hajhoj-ank
‘swearing (n)’ for hajhoj-a-ser ‘lover of swearing’.
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Crisscrossing both intransitive and passive STEM2 are cases where STEM1 is interpreted as an internal
argument that is possessed by the compound. These are also transparently pluralized.

(131) a. derev + tap(-v)-́i-l ‘leaf + to be shed’
derev-a-táp ‘leafless’
derev-a-tap-nér

b. hújs + xap-́i-l ‘hope + to be tricked’
hus-a-xáp ‘hopeless, desperate’
hus-a-xap-nér

In sum, when STEM2 is a verbal root, the bracketing paradox is not triggered.12 It doesn’t matter whether
STEM1 is an argument, an adjunct, a noun, or another category. Deverbal compounds are non-hyponymic,
exocentric, and transparently pluralized as polysyllabic bases with -ner. As for possessive compounds, they
are also non-hyponymic, exocentric, and transparently pluralized. The ONLY compounds which trigger the
bracketing paradox are endocentric compounds, such as nominal compounds.

3.4.2 Productivity of the bracketing paradox

The previous section showed that endocentricity is the most common denominator in predicting the
bracketing paradox. In this section, I extend the argument by showing that the bracketing paradox is
productive in new types of compounds and for morphologically ambiguous compounds.

The most common compound constructions are nominal, possessive, and deverbal compounds; they are
estimated to constitute almost 90% of existing compounds (Donabédian 2004). But the bracketing paradox
is not restricted to nominal compounds. It is slowly extending to new endocentric compound constructions,
such as adjectival compounds where both STEM2 and the compound are adjectives.

(132) a. derév + x́id ‘leaf + dense’
derev-a-x́id ‘dense with leaves’
derev-a-xid-ér ‘ones dense with leaves’

b. márt + Sád ‘man + many’
mart-a-Sád ‘populous’
mart-a-Sad-ér ‘ones that are populous’

These compounds are very rare in Armenian (Donabédian 2004). Their pluralized forms are rarely if
ever found online, in corpora, grammars, or philological works (cf. Karapetyan 2016:75). But in my own
judgments, these plurals are paradoxically pluralized because they’re hyponymic and endocentric.13

The second piece of evidence comes from ambiguity. In principle, some identical pairs of stems are
ambiguous between hyponymic and non-hyponymic readings. For example, some compound can alternate
between an endocentric nominal and exocentric possessive reading (133a), or between an endocentric
nominal and exocentric deverbal reading (133b). In the latter case, STEM2 can be morphologically parsed

12The above compounds are unambiguously parsed as deverbal because of their clear argument structure. But in some
compounds, STEM2 is morphologically ambiguous between a free-standing noun or an intransitive/passive verbal root: bád ‘cover’
or bad-v-́i-l ‘to be walled’ for baGeG-a-bad ‘ivy-walled’ where STEM1 is baGég ‘ivy’. Because of this ambiguity, these compounds
can be parsed either as a possessive compound or a deverbal compound. Both readings are non-hyponymic, exocentric, and take
the transparent plural: baGeG-a-bad-ner.

13Speaker judgments vary on how to pluralize these compounds. I speculate that morphological ambiguity may play a role. In
many of these adjectival compounds, STEM2 could be parsed an adjective or a verbal root: xid ‘dense’ vs. /xid-/ ‘

√
dense’ in

x@d-an-a-l ‘to be dense’. An adjectival reading would make the compound hyponymic and take a paradoxical plural: derev-a-xid-er,
while a verbal parse would make the compound be non-hyponymic and take a transparent plural: derev-a-xid-ner. Here, the verb
would be interpreted as an intransitive inchoative. I suspect that the deverbal reading is generally dominant.
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as either a noun or a verbal root. But regardless, the endocentric reading is paradoxically pluralized with -er
while the exocentric one is transparently pluralized with -ner.

(133) a. garmír + tév red + wing’ méGm +
>
tsájn ‘mild + voice’

garmr-a-tév ‘red-winged (est.)’; meGm-a-
>
tsájn ‘mild-voiced (est.)’;

‘a red wing’ ‘a mild voice’
garmr-a-tev-nér ‘red-winged things’ meGm-a-

>
tsajn-nér ‘mild-voiced people’

garmr-a-tev-ér red wings’ meGm-a-
>
tsajn-ér ‘mild voices’

b. pájd + hád ‘wood + piece’ márkarid + hád ‘pearl + piece’
pájd + had-é-l ‘wood + to cut’ márkarid + had-é-l ‘pearl + to cut’
pajd-a-hád ‘wood-cutter (est.)’; markard-a-hád ‘piece of pearl (est.)’;

‘piece of wood’ ‘pearl-cutter’
pajd-a-had-nér ‘wood-cutters’ markard-a-had-nér ‘pearl-cutters’
pajd-a-had-ér ‘pieces of wood’ markard-a-had-ér ‘pieces of pearl’

For these potentially ambiguous compounds, one reading is the established reading (est.) which is
listed in dictionaries. For garmr-a-tev, the default reading is the exocentric ‘red-winged’. This meaning
is transparently pluralized: garmr-a-tev-ner ‘red-winged things’. But if a speaker encounters this compound
with a paradoxical plural, then the speaker is forced to reinterpret it as a endocentric nominal compound:
garmr-a-tev-er ‘red wings’.14

To summarize, the bracketing paradox is productive and ultimately driven by endocentricity. The bracketing
paradox is slowly extending from nominal compounds to adjectival compounds. Furthermore, speakers can
alternate their interpretation of a plural compound based on the shape of the plural suffix.

3.4.3 Endocentricity and percolation of irregular inflection

The analysis so far is that pluralization a form of head-marking, and that the plural counts the number
of syllables in the semantic head. Further evidence for the role of headedness comes irregular plurals.
Certain nouns form irregular plurals (134a); their irregular plural is inherited in endocentric compounds
(134b). However, Armenian irregular inflection has been leveling out (Sargsyan 1984). Some endocentric
compounds with an irregular head can optionally get a regular plural (134c) (Sargsyan 1987:212) .15

(134) a. márt ‘man, person’

mart-́ig ‘men, people’

b. d@Gá + márt ‘boy + man’
d@Ga-márt ‘young man’
d@Ga-mart-́ig ‘young men’

c. áj
>
dz + márt ‘goat + man’

aj
>
dz-a-márt ‘satyr’

aj
>
tdz-a-mart-́ig ‘satyrs’

aj
>
tdz-a-mart-ér ‘satyrs’

Cross-linguistically, if one type of inflectional process is head-marking in a language, then other inflectional
processes tend to be head-marking as well (Stump 1995b, 2001). Specifically, we predict that the semantic
head is also the morphological head and it percolates all of its inflectional features (Lieber 1989; Don 2005,
2004). This is borne out in Armenian. Besides irregular plurals, endocentric compounds also inherit the

14These judgments are my own and those of other Armenian speakers consulted.
15I could not find an exocentric compound where STEM2 is mart ‘man’.
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irregular case of their head (Sargsyan 1984, 1987). For example, the genitive of majr can use either the
regular genitive suffix majr-i or irregular ablaut mor (135a). When this irregular noun forms the STEM2
of an endocentric compound, the compound is paradoxically pluralized and inherits the stem’s optional
irregular inflection (135b). In contrast, exocentric compounds don’t inherit irregular morphology at all
(135c).

(135) a. ‘mother’ b. ‘mother + seal = godmother’ c. country + mother = capital
májr g@ńik + májr kaGák + májr

g@nk-a-májr kaGak-a-májr
Plural majr-ér g@nk-a-majr-ér kaGak-a-majr-nér
Reg. Gen. majr-́i g@nk-a-majr-́i kaGak-a-majr-i
Irreg. Gen. mór g@nk-a-mór

Endocentric compounds thus inherit both morphological irregular inflection and phonological syllable-counting
allomorphy. This reinforces the role of heads in the bracketing paradox.16

3.5 Formalizing the bracketing paradox

The previous section established the robustness of the bracketing paradox and the role of headedness. In
this section, I go over how different theories of bracketing paradoxes can or cannot describe the Armenian
data. I argue that only a cyclic model can describe the bracketing paradox. I specifically use cyclic
Head-Operations, and I show that counter-cyclic approaches like Morphological Merger/Rebracketing are
inadequate. I use the running examples below.

(136) a.
>
tSár + śird ‘evil + heart’
>
tSar-a-śird ‘evil-hearted’
>
tSar-a-sird-ner ‘evil-hearted (people)’

b. an
>
tsrév +

>
tSúr ‘rain + water’

an
>
tsrev-a-

>
tSúr ‘rain-water’

an
>
tsrev-a-

>
tSur-er ‘rain-waters’

Head-Operations are a cyclic approach (Hoeksema 1984; Hoeksema and Janda 1988; Aronoff 1988;
Rainer 1993). Below, I derive the transparent and paradoxical plurals from (136) below. The theory assumes
that the temporal order in which the phonological representation is spelled-out matches the hierarchical
layers of the morphology. The two stems are first phonologically realized in Cycle 1. In Cycle 2, they are
concatenated and the linking vowel is added. We determine that the head h of the exocentric compound
is the entire compound (in brackets), while that of the endocentric compound is STEM2. The plural suffix
is then spelled-out in Cycle 3. The plural allomorphy is determined by a head-operation. The realization
rule for plural (137b) counts the number of syllables in the semantic head h.17 The bracketing paradox thus
emerges.

16There is evidence that compounds in Classical Armenian likewise displayed head-marking inflection. Classical Armenian did
not phonologically-conditioned suppletion for the plural, but it had many declension classes based on case assignment. Compounds
tended to inherit the class of their head STEM2 when endocentric (Olsen 2011).

17I have reformulated the realization rule (137b) so that it can encode the intuition behind a head-operation. Formally, in
Categorial Morphology (Hoeksema 1984), an inflectional process F is a head-operation if when given a morphologically complex
input W = XY where Y is the head of W , then the output of F (Z) is XF (Y ).
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(137) a. Deriving the bracketing paradox with Head-Operations
Exocentric Endocentric
‘evil-hearted (people)’ ‘rain-waters’

UR /
>
tSar + sird + PL/ /an

>
tsrev +

>
tSur + PL/

Morphology [ [[
>
tSar][sird]] PL ] [ [[an

>
tsrev][

>
tSur]] PL ]

Cycle 1 Spell-out stems
>
tSar sird an

>
tsrev

>
tSur

Cycle 2 Concatenate stems
>
tSar-a-sird an

>
tsrev-a-

>
tSur

Determine h [
>
tSar-a-sird]h an

>
tsrev-a-[

>
tSur]h

Cycle 3 Spell-out PL
>
tSar-a-sird-ner an

>
tsrev-a-

>
tSur-er

b. PL: counting syllables in the semantic head (h) (Version 2)
PL→ -er / [ σ ]h _
PL→ -ner / elsewhere

In contrast to Head-Operations, a countercylic approach like Morphological Merger (Marantz 1988)
posits that the order in which morphemes are phonologically spelled-out does not match the underlying
morphology. In the morphology, the stems first form a constituent under the scope of the plural. A
rebracketing operation then applies whereby the semantic head of the compound is merged with the plural
suffix. This operation is vacuous for exocentric compounds, but is crucial for endocentric compounds
because now STEM2 forms a constituent with the plural. With this modified constituency, we apply bottom-up
spell-out. The two compounds are spelled-out in two different orders and thus the paradox emerges.

(138) Deriving the bracketing paradox with Morphological Merger
Exocentric Endocentric
‘evil-hearted (people)’ ‘rain-waters’

UR /
>
tSar + sird + PL/ /an

>
tsrev +

>
tSur + PL/

Morphology [ [[
>
tSar][sird]] PL ] [ [[an

>
tsrev][

>
tSur]] PL ]

Rebracketing [ [an
>
tsrev] [[

>
tSur]PL] ]

Cycle 1 Spell-out stems
>
tSar sird Spell-out stems an

>
tsrev

>
tSur

Cycle 2 Concatenate stems
>
tSar-a-sird Spell-out PL an

>
tsrev

>
tSur-er

Cycle 3 Spell-out PL
>
tSar-a-sird-ner Concatenate stems an

>
tsrev-a-

>
tSur-er

So far, both cyclic and counter-cyclic approaches can describe the bracketing paradox in compound
pluralization. In fact, Vaux (1998b:57) formalizes the bracketing paradox in Armenian using Morphological
Merger, specifically in the form of head-to-head movement. Conceptually though, rebracketing is more
redundant than head-operations because both reference the semantic head but the former also uses rebracketing.

However, I argue that counter-cyclic approaches are inadequate once we contrast the bracketing paradox
with the rest of compound phonology. Recall from §3.2.2 that I distinguish between process-based vs.
allomorphy-based bracketing paradoxes. The former occurs in examples like English stress assignment in
ungrammaticality, while the latter occurs in the English comparative unhappier. The two types of paradoxes
involve the contradiction between the morphological structure vs. the process-based and allomorphy-based
representations respectively. The above counter-cyclic approaches assume that in any bracketing paradox,
the allomorphy-based and process-based representations are the same and that they both contradict the
morphological representation. This is where counter-cyclic analyses fall short in Armenian.
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In a counter-cyclic analysis like Morphological Merger, we incorrectly predict that the second member
and the plural form a single domain-based constituent, and that the first member is phonologically non-cohering.
This is not borne out. Both exocentric and endocentric compounds undergo the same set of stem-level rules
between their stems. As explained in §3.3.1, the stem-level rule of destressed high vowel reduction applies
in derivation, but not inflection. It applies in both exocentric (139a) and endocentric compounds (139b).

(139) a. azńiv + śird ‘sincere + heart’
azn@v-a-śird ‘sincere-hearted’
azn@v-a-sird-ner ‘sincere-hearted (people)’

b. jerǵir + kúnt ‘earth + sphere’
jerg-a-kúnt ‘globe’
jergr-a-kunt-er ‘globes’

The two stems form a domain for the application of stem-level rules such as high vowel reduction,
among other rules. The compound forms a larger word-level domain with the plural suffix. Visually, the
process-based representations for endocentric and exocentric compounds are the same, and they match the
morphological representation. The allomorphy-based representation for an endocentric compound matches
neither of them. In the morphology, I show the stems in their underlying form without the linking vowel.

(140) Constituencies in compound plurals with monosyllabic STEM2 and vowel reduction

Morphology Phonology Phonology Prosody

azn@v-a-sird-ner

PL

PL

-ner

Compound

STEM2

/sird/

STEM1

/azniv/

WLevel

-nér

SLevel

SLevel

sird

SLevel

azn@v-a-

Allomorphy

-nerazn@v-a-sird

PW

azn@v-a-sird-ner

jergr-a-kunt-er

PL

PL

-er

Compound

STEM2

/pos/

STEM1

/jergir/

WLevel

-er

SLevel

SLevel

kunt

SLevel

jergr-a-

Allomorphy

-erkuntjergr-a-

PW

jergr-a-kunt-er

When combined with stratal phonology, cyclic head-operations can account for the matching process-based
representation and the mismatching allomorphy-based representation. In Cycle 1, the two stems are first
spelled-out and undergo the stem-level (SLevel) phonology to get stressed. They are then concatenated
into an MStem and their heads are determined. Both concatenations undergo the same stem-level rules of
reduction. The plural suffix is then added and counts the number of syllables in the head. Destressed high
vowels are marked by the diacritic ǐ,ǔ.
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(141) Deriving the bracketing paradox with Head-Operations and strata
Exocentric Endocentric
‘sincere-hearted (people)’ ‘globes’

UR /azniv + sird + PL/ /jergir + kunt + PL/
Morphology [ [[azniv][sird]] PL ] [ [[jergir][kunt]] PL ]

Cycle 1 Spell-out stems azniv sird jergir kunt
SLevel: stress azńiv śird jerǵir kúnt
SLevel: reduction

Cycle 2 Concatenate stems azńiv-a-sird jerǵir-akúnt
Determine h [azńiv-a-śird]h jerǵir-a-[kúnt]h
SLevel: stress [azňiv-a-śird]h jerǧir-a-[kúnt]h
SLevel: reduction [azn@v-a-śird]h jergr-a-[kúnt]h

Cycle 3 Spell-out PL azn@v-a-śird-ner jergr-a-kúnt-er
WLevel: stress azn@v-a-sird-nér jergr-a-kunt-ér

In contrast, a derivation using Morphological Merger and strata does not work. In the original morphological
structure of an endocentric compound, the two stems form a larger MStem which then merges with the
PL to form an MWord. But in the rebracketed version, STEM2 and the plural form a constituent, an
inflected MWord. When concatenated with STEM1, this stem-word compound forms a larger MWord.
This is because MStems generally can’t dominate MWords; stem-word compounds tend to show prosodic
differences from simple stem-stem compounds (cf. stem-word compounds in Greek: Nespor and Ralli 1996;
Nespor 1999; Ralli 2012; Nikolou 2009). Below, I show the original and modified morphological structure
for an endocentric compound.

(142) a. Original
MWPL

PL

MSn

MSn

/pos/

MSn

/
>
tSur/

b. Rebracketed
MWPL

MWPL

PLMSn

/pos/

MSn

/
>
tSur/

The two stems are spelled out and undergo the stem-level rules to get stressed. In the exocentric case,
the two stems are concatenated, undergo the stem-level rules, and get pluralized. But in the endocentric
case, the second stem had formed an MWord with the plural. In Cycle 2, we spell-out the plural suffix and
trigger the word-level phonology. Then at Cycle 3, we concatenate STEM1 with the MWord to form a larger
MWord. But, as an MWord, stem-level rules are blocked and we get the incorrect output without reduction.
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(143) Failed derivation of the bracketing paradox with Morphological Merger and strata
Exocentric Endocentric
‘evil-hearted (people)’ ‘rain-waters’

UR /azniv + sird + PL/ /
>
tSur + pos + PL/

Morphology [ [[azniv][sird]] PL ] [ [[jergir][kunt]] PL ]
Rebracketing [ [jergir] [[kunt]PL] ]

Cycle 1 Spell-out stems azniv sird Spell-out stems jergir kunt
SLevel: stress azńiv śird SLevel: stress jerǵir kúnt
SLevel: reduction SLevel: reduction

Cycle 2 Concatenate stems azńiv-a-sird Spell-out PL jerǵir kúnt-er
SLevel: stress azňiv-a-śird WLevel: stress PL jerǵir kǔnt-ér
SLevel: reduction azn@v-a-śird

Cycle 3 Spell-out PL azn@v-a-śird-ner Concatenate stems jerǵir-a-kunt-ér
WLevel: stress azn@v-a-sird-nér WLevel: stress jerǧir-a-kunt-ér

Output: 3 azn@v-a-sird-ner 7 *jergir-a-kunt-er
expect jergr-a-kunt-er

To summarize, counter-cyclic analyses can work for the compound plurals, but they cause inconsistencies
with the rest of compound phonology. In endocentric compounds, these analyses require that STEM2 and the
plural form a single domain-based constituent, while STEM1 is excluded from this constituent and treated
as a phonologically non-cohering element. This requirement is inconsistent with the fact that STEM1 is
phonologically cohering and that it forms a stem-level domain with STEM2. Faced with this inconsistency,
we either need to abandon counter-cyclic analyses or to abandon lexical strata. In this chapter, I chose the
former approach and I settle on using cyclic Head-Operations. I show in the appendix that there are problems
when replacing strata with phases (Newell 2008) or with the free interleaving of cyclic and non-cyclic
phonology (Halle and Vergnaud 1987b), also known as selective spell-out (Scheer 2011:9).

3.6 Prosodic variation

In this chapter, I focused on the general rules in pluralizing compounds. In the previous section, I
developed a cyclic analysis for the bracketing paradox in compounds by using Head-Operations. The
Head-Operations analysis can adequately describe cases where endocentric compounds are paradoxically
pluralized as monosyllabic, as well as cases where they inherit irregular inflection from their head. For these
cases, another cyclic analysis like Prosodic Phonology (Nespor and Vogel 1986) is by itself inadequate.18 A
prosodic analysis would be unsuited for the percolation of irregular inflection.

In this section, I discuss a type of prosodically-determined variation which cannot be analyzed with
Head-Operations, but requires prosodic constituents like the Prosodic Stem (Downing 1999a).19 I argue that
we need both Head-Operations and Prosodic Phonology in order to describe the full extent of the bracketing

18Using cyclically created autosegmental planes (Halle and Vergnaud 1987a) is also inadequate because it would not distinguish
exocentric and endocentric compounds because both are cyclically formed and have identical stress planes (cf. a similar problem
noted by Cohn 1989). Though in the appendix, I show that counter-cyclically created planes don’t have this problem.

19In this chapter, I only discuss prosodically-conditioned variation. There is limited variation based on generation, dialect,
semantic shift, semantic opacity, metaphoricity, animacy, loanwords, grammaticalization, lexicalization, and frequency (Sargsyan
1979, 1987; Marowt’yan 2003; Avetisyan 2007:43). All relevant data and researxh are unfortunately only available in Armenian.
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paradox. Head-Operations handle both the norm and irregular inflection, while Prosodic Phonology handles
the norm and the variation.

3.6.1 Prosodic heads and bisyllabic minimality

In general, compounds are at least trisyllabic because they surface with the linking vowel -a-. But, some
compounds arbitrarily lack a linking vowel. I call such compounds ‘unlinked’. These unlinked compounds
are less common than linked compounds. They arose from collocations, dialectal borrowings, or sporadic
diachronic syncope of the linking vowel. They are estimated at fewer than a 100 compounds (Ēloyan 1972).

(144) a. xá
>
tS + kár ‘cross + stone’

xa
>
tS-kár ‘cross-stone (ornament)’

xa
>
tS-kar-ér ‘cross-stones’

xa
>
tS-kar-nér

b. kár + daS-el ‘stone, to carve’
kar-dáS ‘stone carver, mason’
*kar-daS-ér ‘stone carvers, masons’
kar-daS-nér

Because the linking-vowel is absent, the above compounds are bisyllabic. Unsurprisingly, exocentric
bisyllabic compounds are transparently pluralized with -ner (144b). But bisyllabic endocentric compounds
are variably pluralized as transparent or paradoxical (144a). Judgements for bisyllabic compounds vary by
speaker, dialect, and era. For the endocentric unlinked compound xa

>
tS-kar (144a), the paradoxical plural

with -er is prescriptive and considered standard in Eastern Armenian. Some consider the transparent plural
as obsolete (Sargsyan 1979:39, Sargsyan 1987:206, Marowt’yan 2003:57). But in my judgments of Western
Armenian, the transparent plural is more common and sounds more natural.

The above variation indicates an emergent minimality effect. In §3.6.2, I provide more examples in order
to understand the extent of the variation. I first formalize this variation using prosodic constituents (145).
The semantic head h is mapped to a prosodic constituent p (the prosodic head). p is optionally restructured
when it is monosyllabic and follows an unparsed word-initial syllable. I discuss the identity of p in §3.6.3.
I argue that the most likely label is the Prosodic Stem (Downing 1999a).

(145) Prosodic mapping (Version 1)
a. Mapping the semantic head h to the prosodic head p

[...]h → (...)p

b. Optional restructuring the prosodic head p in a bisyllabic compound
#σ ( σ )p→ ( σ σ )p

I show the prosodic structure of these bisyllabic compounds, before parsing the suffix.

(146) a. Exocentric

+ -ner

PW

p

kar-daS

kar-daS-ner ‘stone carvers’

b. Endocentric & Paradoxical

+ -er

PW

p

-karxa
>
tS

xa
>
tS-kar-er ‘cross-stones’

c. Endocentric & Transparent

+ -ner

PW

p

xa
>
tS-kar

xa
>
tS-kar-ner ‘cross-stones’
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Inflectional processes are sensitive to both the semantic head h and its prosodic head p. For the plural,
if the h has any irregular inflection features, then the plural is spelled-out as an irregular plural. Otherwise,
when h is regular, the plural counts the number of syllables in both h and p. If both h and p are monosyllabic,
then the allomorph -er is chosen. Otherwise, we use the allomorph -ner. In the latter case, h can be
monosyllabic while its p is polysyllabic; this still triggers the allomorph -ner

(147) PL: counting syllables in semantics and prosodic heads (Version 3)

PL→ -ig / [+IRREGULAR]h
PL→ -er / [( σ )p]h _
PL→ -ner / elsewhere

Below, I show a partial derivation for bisyllabic and trisyllabic compounds. After the stems are concatenated,
the semantic head h is determined in Cycle 2. h is parsed into p. p is optionally restructured in the bisyllabic
endocentric compound (b), while p and h stay isomorphic for exocentric and trisyllabic compounds (a,c,d).
In Cycle 3, The plural is then spelled-out and counts the syllables in the heads. The optional restructuring
creates two possible plurals for xa

>
tS-kar. I omit the application of stem-level and word-level rules.

(148) Deriving optionality in the bracketing paradox

Bisyllabic Compound Trisyllabic Compound
a. Exocentric b. Endocentric c. Exocentric d. Endocentric
‘stone carvers’ ‘cross-stones’ ‘evil-hearted (PL)’ ‘rain-waters’

UR /kar + daS + PL/ /xa
>
tS + kar + PL/ /

>
tSar + sird + PL/ /an

>
tsrev +

>
tSur + PL/

Morphology [ [[kar][daS]] PL ] [ [[xa
>
tS][kar]] PL ] [ [[

>
tSar][sird]] PL ] [ [[an

>
tsrev][

>
tSur]] PL ]

Cycle 1 Spell-out stems kar daS xa
>
tS kar

>
tSar sird an

>
tsrev

>
tSur

Cycle 2 Concatenate stems kar-daS xa
>
tS-kar

>
tSar-a-sird an

>
tsrev-a-

>
tSur

Determine h [kar-daS]h xa
>
tS-[kar]h [

>
tSar-a-sird]h an

>
tsrev-a-[

>
tSur]h

Map p (kar-daS)p xa
>
tS-(kar)p (

>
tSar-a-sird)p an

>
tsrev-a-(

>
tSur)p

Restructure p xa
>
tS-(kar)p, (xa

>
tS-kar)p

Cycle 3 Spell-out PL kar-daS-ner xa
>
tS-kar-er, xa

>
tS-kar-ner

>
tSar-a-sird-ner an

>
tsrev-a-

>
tSur-er

3.6.2 Prosodic minimality across bisyllabic compounds

As said, unlinked compounds are rare (Ēloyan 1972). Thus, endocentric bisyllabic ones are rarer. Fortunately,
another source for bisyllabic compounds comes from cases where STEM2 is monosyllabic and V-initial.
When STEM2 is V-initial, no linking vowel is used and the two stems are syllabified together. If the
compound is endocentric and at least trisyllabic, then it is paradoxically pluralized (149a). But if the
compound is bisyllabic, then it can be paradoxically or transparently pluralized (149b).

(149) a. go
>
dZág + án

>
tsk ‘button + passage’

go
>
dZa.g-án

>
tsk ‘water canal’

go
>
dZa.g-an

>
tsk-ér ‘water canals’

*go
>
dZa.g-an

>
tsk-nér

b. ḱit + án
>
tsk ‘nose + passage’

k@.t-án
>
tsk ‘nasal cavity’

k@.t-an
>
tsk-ér ‘nasal cavities’

k@.t-an
>
tsk-nér
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Optional prosodic restructuring is widespread among endocentric bisyllabic compounds which lack a
linking vowel, either arbitrarily (150a) or because of vowel hiatus (150b). They take either a transparent or
paradoxical plural. Judgments are taken from Sargsyan (1979:39, 1987:205-6) based on Eastern Armenian.

(150) a.
>
tsár + xód ‘horsehair + grass’

>
tSúr + hór ‘water + well’

>
tsar-xód ‘fern’

>
tS@r-hór ‘well’

>
tsar-xod-ér ‘ferns’

>
tS@r-hor-ér ‘wells’

>
tsar-xod-nér

>
tS@r-hor-nér

b. mah + azt ‘death + notice’ kéd + áp ‘river + coast’
ma.h-ázt ‘death notice’ ke.d-áp ‘river-bank’
ma.h-azt-ér ‘death-notices’ ke.d-ap-ér ‘river-banks’
ma.h-azt-nér ke.d-ap-nér

However, for some endocentric bisyllabic compounds, prosodic restructuring is obligatory. For bisyllabic
compounds where STEM2 is the V-initial morpheme an

>
tsk ‘passage’, some of them only accept the transparent

plural (151a), others accept both (151b). Bisyllabic unlinked compounds where STEM2 is gáb ‘tie, knot’
behave the same (151c,d). Additionally, compounds with gab can optionally appear with the linking vowel
-a- and become trisyllabic. When they do, only the paradoxical plural is grammatical.

(151) a. lújs + án
>
tsk ‘light + ...’

>
tSúr + án

>
tsk ‘water + ...’

lu.s-án
>
tsk ‘margin’

>
tS@.r-án

>
tsk ‘canal’

lu.s-an
>
tsk-nér ‘margins’

>
tS@.r-an

>
tsk-nér ‘canals’

b. hér
>
ts + án

>
tsk ‘leaf + ...’ soG-á-l + án

>
tsk ‘to creep + ...’

her.
>
ts-án

>
tsk ‘leaf-vein’ so.G-án

>
tsk ‘loophole’

her.
>
ts-an

>
tsk-ér ‘leaf-veins’ so.G-an

>
tsk-ér ‘loopholes’

her.
>
ts-an

>
tsk-nér so.G-an

>
tsk-nér

c. v́iz + gáb ‘neck + ...’ póG + gáb ‘neck + ...’
v@z-gáb v@z-a-gáb ‘necktie poG-gáb poG-a-gáb ‘necktie’
v@z-gab-nér v@z-a-gab-ér ‘neckties’ poG-gab-ér poG-a-gab-ér ‘neckties’

d. kár + gáb ‘stone + ...’ tév + gáb ‘arm + ...’
kar-gáb kar-a-gáb ‘gorge’ tev-gáb tev-a-gáb ‘cuff’
kar-gab-ér kar-a-gab-ér ‘gorges’ tev-gab-ér tev-a-gab-ér ‘cuffs’
kar-gab-nér tev-gab-nér

Given an endocentric bisyllabic compound, it is unpredictable whether it can be pluralized transparently,
paradoxically, or both. Sargsyan (1979, 1987) speculates that the choice is diachronic, while Marowt’yan
(2003) speculates that the choice depends on the degree of semantic bleaching and lexicalization. Two open
questions are thus 1) the probabilistic distribution of these different plurals and 2) the additional factors
which determine this distribution. Corpus resources on Armenian are too limited to answer these questions.

The last piece of evidence for this constituent p inside endocentric compounds comes from the syllabification
of sibilant-stop clusters. Word-initially, a schwa is epenthesized before sibilant-stop clusters (sT) in Western
Armenian; epenthesis is less common in Eastern Armenian. In exocentric compounds with an sT-initial
STEM2, there is no schwa epenthesis (152a) (Ġaragyowlyan 1979, Sowk’iasyan 2004:27-28,61). But in
endocentric compounds, schwa epenthesis can apply (152b).
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(152) a. /steG
>
dz-e-l/→ @steG

>
dz-é-l ‘to create’ /skest/→ @skést ‘dress’

pán + /steG
>
dz-e-l/ ‘thing, word + ...’ sév + /skest/ ‘black + ...’

pan-a-s.téG
>
dz ‘poet’ sev-a-s.kest ‘dressed in black

(pan-a-s.téG
>
dz)p (sev-a-s.kest)p

b. /skest/→ @s.kést ‘dress’ /sgisp/→ @s.ǵisp ‘start’
súk + /skest/ ‘grief + dress’ daŕi + sgisp ‘year + start’
s@k-a-@skést ‘mourning dress’ dar-e-@sǵisp ‘start of the year’
s@k-a-(@skést)p dar-e-(@sǵisp)p

Compound-internal epenthesis can be explained by positing that epenthesis applies at the left edge of
p: STEM2 in endocentric compounds.20 Epenthesis inside endocentric compounds is not discussed in the
previous literature and it may be a recently emerging bracketing paradox. In my judgment, the above
epenthetic schwas in endocentric compounds are optional but preferred, while epenthesis is banned in
exocentric compounds. Unfortunately, epenthetic schwas are not marked in the orthography; the data is
thus limited to Wiktionary entries which show syllabified forms.

3.6.3 Identity of the prosodic head

To summarize, I repeat below the prosodic structure for trisyllabic and bisyllabic compounds. They all
form a single PWord based on stress. For now, I omit feet and syllables. The constituent p is isomorphic
with the semantic head h in most cases, but it can optionally mismatch in endocentric bisyllabic compounds.
In the previous section, I did not give a label to the prosodic constituent involved in prosodic restructuring.
In this section, I discuss the identity of the prosodic head p.21 I argue that it is unlikely to be a foot or PWord,
but is likely a Prosodic Stem.22

(153) Prosodic structure of different compounds
Trisyllabic Bisyllabic

Exocentric Endocentric Exocentric Endocentric
‘evil-hearted (PL)’ ‘rain-waters’ stone carvers’ ‘cross-stones

+ -ner

PW

p

>
tSar-a-śird + -er

PW

p

>
tSúran

>
tsrev-a- + -ner

PW

p

kar-dáS + -er

PW

p

-kárxa
>
tS + -ner

PW

p

xa
>
tS-kár

20Note that these epenthetic schwas are included in syllable-counting allomorphy: @s.kest-ner ‘dresses’, @sgisp-ner ‘starts’.
21The prosodic head p does not affect stress placement (cf. headedness and accent in Revithiadou 1999; Roon 2005; Gouskova

and Roon 2008; Gouskova 2010). Stress stays final in all compounds.
22An alternative is to let p stay unlabelled, i.e., the morphological structure is cyclically mapped unlabelled prosodic constituents.

Unlabelled prosodic constituents have been proposed before for the recursive mapping of phrasal cycles to gradient and relative
prosodic structure (Wagner 2005, 2010). However, this alternative only recapitulates the problem of not having a label for p.
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3.6.3.1 Feet as prosodic heads

One strategy is to argue that the semantic head h must be right-aligned with a foot. In this analysis,
degenerate feet are optionally restructured in bisyllabic compounds, and the plural counts the number of
syllables in the rightmost foot.

(154) Deriving optionality in the bracketing paradox with feet

Exocentric Endocentric
‘stone carvers’ ‘cross-stones’

UR /kar + daS + PL/ /xa
>
tS + kar + PL/

Cycle 1 ...
Cycle 2 Concatenating stems kar-dáS xa

>
tS-kar

Determine h [kar-dáS]h xa
>
tS-[kar]h

Map f (kar-dáS)f xa
>
tS-(kár)f

Restructure f xa
>
tS-(kár)f , (xa

>
tS-kár)f

Cycle 3 Spell-out PL kar-daS-nér xa
>
tS-kar-ér, xa

>
tS-kar-nér

Treating p as a foot would work for modeling just the bracketing paradox. However, this analysis is
inconsistent with secondary stress assignment. Secondary stress is assigned on the first syllable, both in
simplex (155a) and compound words (155b) (Abeġyan 1933:20; Sowk’iasyan 2004:29).23 Armenian stress
is a hammock system: we need feet at both word edges (Vaux 1998b; Gordon 2002; DeLisi 2015, 2018).

(155) a. bàdasxán ‘answer’
bàdasxan-avór ‘responsible’
bàdasxan-avor-óv ‘responsible-INST’
(bàd.as)xa.na(vo.róv)

b.
>
tsév ‘shape, manner’
bàdasxan-a-

>
tsév ‘style of answering’

bàdasxan-a-
>
tsev-óv ‘style of answering (INST)’

(bàd.as)xa.na(
>
tse.vóv)

The feet required for secondary stress contradict the feet that we need from equating p with feet. For
example, the bisyllabic simplex words in (156) have initial secondary stress and final primary stress, and
thus have two feet. Secondary stress is weakly perceivable in the free-standing roots in (156a), but it is highly
perceivable for words with the negative prefix an- (Ġaragyowlyan 1974:133, T’oxmaxyan 1975:179). This
prefix can be category-changing (156b) or category-preserving (156c). All of these words are transparently
pluralized.

(156) a. àntám ‘member’ àndár ‘forest’ ànkám ‘time’
àntam-nér ‘members’ àndar-nér ‘forests’ ànkam-nér ‘time’

b. hám ‘taste’ váx ‘fear’ xélk ‘mind’
àn-hám ‘tasteless’ àn-váx ‘fearless’ àn-xélk ‘mindless’
àn-ham-nér ‘tasteless (PL)’ àn-vax-nér ‘fearless (PL)’ àn-xelk-nér ‘mindless (PL)’

23In compounds, there are conflicting impressionistic reports of secondary stress on the linking vowel (Margaryan 1997:76):
ot-à-nav-a-gaján ‘air-ship-station (=airport)’, or the first syllable of STEM2 (T’oxmaxyan 1971:63, 1983:74). These reports are
restricted to mostly tri-stem compounds, and are not acoustically supported (Toparlak 2019).
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c. géG
>
dz ‘false’ kój ‘existent’ hájd ‘evident’

àn-géG
>
dz ‘sincere’ àn-kój ‘non-existent’ àn-hájd ‘non-evident’

àn-geG
>
dz-nér ‘sincere (PL)’ àn-koj-nér ‘non-existent (PL)’ àn-hajd-nér ‘non-evident (PL)’

Prosodically, these bisyllabic words form two degenerate feet, one foot for each level of stress. If we
define the constituent p as the foot, then we incorrectly predict that these words should be paradoxically
pluralized with -er because they end in a monosyllabic degenerate foot, as shown below. This shows that p
cannot be a foot, and that p must be larger than a foot.24

(157) Foot structure and plural formation for bisyllabic non-compounds

‘member’ ‘sincere’ ‘tasteless’
antam an-geG

>
dz an-ham

Primary and Secondary Stress àntám àn-géG
>
dz àn-hám

Foot-structure for stress (àn)(tám) (àn)-(géG
>
dz) (àn)-(hám)

Predicted plural if p is foot *(àn)(tam-ér) *(àn)-(geG
>
dz-ér) *(àn)-(ham-ér)

Correct plural àntam-nér àn-geG
>
dz-nér àn-ham-nér

3.6.3.2 Recursive prosodic words as prosodic heads

Alternatively, we could treat p as a recursive minor PWord (Selkirk 1996; Peperkamp 1997; Ito and Mester
2009; Macak 2016). Exocentric compounds form a single PWord, while endocentric ones consist of two
PWord layers. Bisyllabic endocentric compounds optionally fuse to a single PWord. The plural counts the
number of syllables in the rightmost PWord. This analysis would work for the paradox, but it contradicts the
stratal phonology of Armenian. Stem-level rules like destressed high vowel reduction apply in derivation,
not inflection (158a). They also apply across the compound-boundary to STEM1. These rules apply in
endocentric compounds, both trisyllabic (158b) or bisyllabic (158c).

(158) a.
>
tSúr ‘water’ b. jerǵir + kúnt ‘earth + sphere’ c.

>
tSúr + hór ‘water + well’

>
tS@r-aj́in ‘aquatic’ jergr-a-kúnt ‘globe’

>
tS@r-hór ‘well

>
tSur-óv ‘water-INST’ jergr-a-kunt-er ‘globes’

>
tS@r-hor-ér ‘wells’
>
tS@r-hor-nér

By equating the compound-boundary with a PWord-boundary, it is surprising that stem-level rules can
apply in this context. Because endocentric compounds have an internal PWord-boundary, we incorrectly
predict that stem-level rules like reduction won’t apply to STEM1.

24Besides the empirical problem of secondary stress, there is relatively little positive evidence for feet in Armenian. Primary
stress in Armenian is final, cued by pitch (Athanasopoulou et al. 2017), non-iterative, and shows a hammock pattern with initial
secondary stress. Because of these properties, Armenian has been argued to be footless (DeLisi 2015); its prosody has been modeled
with just the metrical grid (Gordon 2002). French and Turkish have similar stress patterns, and they have also been argued to be
footless (Özçelik 2017).
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(159) Inconsistencies between strata and recursive PWords in endocentric compounds
Bisyllabic Trisyllabic
‘wells’ ‘globes’

UR /
>
tSur + hor + PL/ /jergir + kunt + PL/

Cycle 1 ...
Cycle 2 Concatenating stems

>
tSúr-hór jerǵir-a-kúnt

Determine h
>
tSúr-[hor]h jerǵir-a-[kúnt]h

Map PWords (
>
tSúr-(hor)w)w (jerǵir-a-(kúnt)w)w

Restructure PWords (
>
tSúr-(hor)w)w (

>
tSúr-hor)w

SLevel: stress∗ (
>
tSǔr-hór)w

SLevel: reduction∗ (
>
tS@r-hór)w

*blocked across PWords
Cycle 3 Spell-out PL

>
tSúr-hór-er,

>
tS@r-hór-ner jerǵir-a-kúnt-er

WLevel: stress
>
tSǔr-hor-ér,

>
tS@r-hor-nér jerǧir-a-kǔnt-ér

Output: 7
>
tSur-hor-ér 3

>
tS@r-hor-nér 7 jergir-a-kunt-ér

expect
>
tS@r-hor-ér jergr-a-kunt-ér

This stratal problem is aggravated by the lack of explicit consensus on the behavior of recursive prosodic
constituents. There is debate over whether recursive constituents can trigger categorically different processes
vs. gradiently different processes (Ladd 1986; Ito and Mester 2009, 2012, 2013; Wagner 2010; Frota and
Vigário 2013; Elfner 2015), whether they can block or trigger lexical processes (Szpyra 1989; Booij 1996;
Peperkamp 1997; Raffelsiefen 2005; Kabak and Revithiadou 2009; Bennett 2018), whether they are restricted
to the post-lexical phonology of clitics (Inkelas 1989; Booij 1996; Selkirk 1996; Zec 2005; Tyler 2019), and
whether they act as diacritics for behaviorally different constituents (Vogel 2009, 2012, 2016; Vigário 2010;
Guzzo 2018; Downing and Kadenge pear; Miller 2018, 2020).

3.6.3.3 Prosodic stems in as prosodic heads

Faced with these problems, I argue that p is actually a Prosodic Stem. The traditional prosodic hierarchy
assumes only three levels of morphosyntactically derived constituents: the prosodic word, the prosodic
phrase, and the intonational phrase (160a). However, there is cross-linguistic work on agglutinative and
polysynthetic languages which argues for a more enriched hierarchy that includes at least one constituent
below the PWord: the Prosodic Stem (160b).

(160) a. Intonational Phrase (ι)

Phonological Phrase (ϕ)

——-Prosodic Word (ω or PWord)—-

b. Intonational Phrase (ι)

Phonological Phrase (ϕ)

——-Prosodic Word (ω or PWord)—-

Prosodic Stem (PStem)

For Armenian, there is conceptual evidence for labelling p as the PStem. Cross-linguistically, there are
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correlations between 1) morphosemantic heads and the prosodic stem, 2) minimality and PStems, and 3)
morphological stems and prosodic stems. All three correlations are intermingled. To illustrate, Aronoff
(1988) analyzes reduplication in KiHehe as a head-operation which targets the head of the word (in italics).
Reduplication in KiHehe linearly occurs between prefixes and stems (161a) (Odden and Odden 1985). The
reduplicant (underlined) generally copies only stem segments but it semantically scopes over the entire
word. Furthermore, when the stem is V-initial, prefix-final consonants are overcopied with the stem because
of syllabification (161b).

(161) a. ku-haata ‘to ferment’
ku-haata∼haata ‘to start fermenting’

b. kw-iita ‘to pour’
kw-iita∼kw-iita ‘to start pouring’

Aronoff analyzes the reduplication as a head-operation which is attached to the morphological head of
the word: the stem. To explain prefix-copying in V-initial stems, he discusses reduplication as also targeting
a prosodic head but does not formalize this concept. Downing (1998b) reanalyzes KiHehe and formalizes
the prosodic head as the Prosodic Stem (PStem). The PStem is a prosodic constituent which is mapped
from the morphological stem, analogous to the mapping of prosodic words from morphological words. The
bulk of the evidence for the PStems comes from morphologically complex languages (Downing 1999a;
Czaykowska-Higgins 1997). In Chapter 2, I showed the role of the PStem as the domain of appendix
incorporation and for dialectal variation in vowel reduction (Dolatian 2019a,b).

As a constituent, the PStem can be the target of reduplication, tone, vowel harmony, minimality, and
other sublexical processes (Downing 1998a, 1999a,b). It shows misalignment from the MStem based on
syllabification. Further evidence for the PStem as a domain for phonological rules comes from cross-linguistic
work on reduplication (Fitzpatrick-Cole 1994; Inkelas and Zoll 2005; Shaw 2005), prefix-suffix asymmetries
(Hyman 2008), minimality (Downing 2005, 2006), strata (Inkelas 1989, 1993), and even bracketing paradoxes
in compounds (Han 1995). For more cross-linguistic evidence for the PStem, see Downing (2006, 2016),
Downing and Kadenge (to appear).

I argue that the constituent p is the PStem s. I illustrate a possible geometry below for singular compounds.
For completeness, I show the foot and PStem structure for a bisyllabic prefixed word àn-hám from (§3.6.3.1).

(162) Prosodic structure of different types of compounds and prefixed-words where p is the PStem

Exocentric Endocentric Endocentric Endocentric Prefixed
Trisyllabic Bisyllabic Bisyllabic Bisyllabic

Restructured

Singular

s

àzn@v -a- śird

s

pós

s

>
tS@r -a-

s

kár

s

xà
>
tS

s

xà
>
tS - kár

s

f

hám

f

àn

Plural (azn@v-a-sird)s-nér (jergr-a)s-(kunt)s-ér (x-a
>
tS)s-(kar)s-ér (xa

>
tS-kar)s-nér (àn-ham)s-nér

The semantic head of the compound is mapped to a PStem s (163a). In simplex words, the entire
input stem is the head and is mapped to a PStem. A sequence of two monosyllabic PStems is optionally
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restructured to form a single PStem (163b). The plural counts the number of syllables in the rightmost
PStem (163c).

(163) Prosodic mapping (Final Version)

a. Mapping the semantic head h to a Prosodic Stem s
[...]h → (...)s

b. Optional restructuring the Prosodic Stem s in a bisyllabic compound
#(σ)s ( σ )s→ ( σ σ )s

c. PL: counting syllables in the semantic head h and rightmost PStem s (Final Version)
PL→ -ig / [+IRREGULAR]h
PL→ -er / [( σ )s]h _
PL→ -ner / elsewhere

By using a PStem in our cyclic derivation, there is no inconsistency with secondary stress assignment for
feet, nor with the stem-level phonology. I don’t show secondary stress in the below examples because initial
schwas tend to be unstressed (Fairbanks 1948; Johnson 1954).

(164) Deriving optionality in the bracketing paradox with PStems in endocentric compounds

Bisyllabic Trisyllabic
‘wells’ ‘globes’

UR /
>
tSur + hor + PL/ /jergir + kunt + PL/

Cycle 1 ...
Cycle 2 Concatenating stems

>
tSúr-hór jerǵir-akúnt

Determine h
>
tSúr-[hor]h jerǵir-a-[kúnt]h

Map PStem
>
tSúr-(hor)s jerǵir-a-(kúnt)s

Restructure PStem (
>
tSúr-hor)s

SLevel: stress
>
tSǔr-(hór)s (

>
tSǔr-hór)s jerǧir-a-(kúnt)s

SLevel: reduction
>
tS@r-(hór)s (

>
tS@r-hór)s jergr-a-(kúnt)s

Cycle 3 Spell-out PL
>
tS@r-hór-er,

>
tS@r-hór-ner jergr-a-kúnt-er

WLevel: stress
>
tS@r-hor-ér,

>
tS@r-hor-nér jergr-a-kunt-ér

The above derivation is serial, however the prosodic mapping can be equivalently formalized with parallelist
constraints, such as by adapting constraints from MATCH theory (Selkirk 2011) and WRAP theory (Truckenbrodt
1999) for stems. We would need a specialized constraint MATCHENDO that requires that semantic heads
are parsed to PStems. The output constraint *(σ)s(σ)s bans a string of a monosyllabic PStems. Recursive
structures would be blocked by a constraint NONREC. I do not flesh out these constraints.

3.7 Conclusion

Linguistic theory posits that words have complex internal structure in terms of their morphology and
phonology. Bracketing paradoxes arise when the morphological structure of the word contradicts its phonological
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structure. This phonological structure is required by the domain of phonological processes or required by
the domain of affix allomorphy.

In Armenian, the morphological structure of a compound is isomorphic to its process-based phonological
structure, i.e., its stratal phonology. However, the plural form shows a bracketing paradox between its
morphological structure and its allomorphy-based phonological structure. The plural suffix has two allomorphs
based on syllable count: -er after monosyllabic bases, -ner after polysyllabic bases. Endocentric compounds
paradoxically surface with -er if the second stem is monosyllabic.

This bracketing paradox signals a type of head-marking inflection. I argue that the bracketing paradox
is resolved by using a combination of two cyclic tools: as Head-Operations and Prosodic Phonology. A
cyclic approach like Head-Operations can derive the paradoxical allomorphy-based phonological structure,
and it can also derive the non-paradoxical process-based phonological structure. Counter-cyclic approaches
like Morphological Merger cannot do both. I also argued that the existence of prosodically-conditioned
variation in some compounds means that Head-Operations are not enough. We also need sublexical prosodic
constituents such as the Prosodic Stem in order to fully capture the bracketing paradox. The end result is a
demonstration that bracketing paradoxes are cross-modular, and that different tools for bracketing paradoxes
can contradict different aspects of the larger phonological system.

89



3.A Counter-cyclicity with alternatives to stratal phonology

Setting aside prosodic variation, I showed that counter-cyclic approaches like Morphological Merger
are partially adequate for modeling the bracketing paradox but they contradict the stratal phonology of
Armenian. I instead argued that the bracketing paradox required a cyclic approach like head-operation which
did not contradict the stratal phonology. In this appendix, I sketch out two alternative analysis that combines
counter-cyclic approaches with two alternative to stratal phonology: phase-based phonology and Halle and
Vergnaud (1987a)’s free interleaving of cyclic and non-cyclic phonology. I argue that these alternatives have
problems in modelling the entirety of compound phonology and morphology.

3.A.1 Empirical problems with phase-based phonology

Phonological Derivation by Phase (PDb) is a conceptual offshoot of lexical phonology (Marvin 2002;
Newell 2008; Samuels 2011, 2012). While several theoretical assumptions of PDbP are still being debated
(Matushansky and Marantz 2013; Siddiqi and Harley 2016; Newell et al. 2017), the following discussion
refers to the more commonly held assumptions. I argue that when combined with Morphological Merger,
PDbP can model the bracketing paradox and the application of stem-level rules in endocentric compounds.
But it has problems in the application of stem-level rules in exocentric compounds.

PDbP assumes that words are cyclically derived where cycles are defined in terms of phase head n, v,
a (= derivational suffixes). Non-phase heads (= inflectional suffixes) cannot trigger spell-out and thus do
not trigger any cycles. They are not just post-cyclic, but they are part of the same cycle as derivation
(Embick 2010). PDbP generally assumes that there is only one cophonology (= no stem vs. word strata)
and that there are no prosodic constituents (Scheer 2011, 2012). Cyclic derivations generally respect the
phonological structure created on previous cycles, whether by the Phase Impenetrability Condition (Marvin
2002), Phonological Persistence (Newell and Piggott 2014), or phase-based faithfulness (McPherson and
Hayes 2016).

Recall that destressed high vowel reduction (DHR) applies in derivation, but not inflection. It applies in
both endocentric and exocentric compounds.

(165) a. i.
>
tSúr ‘water’
>
tS@r-aj́in ‘aquatic’
>
tSur-óv ‘water-INST’

ii. azńiv ‘sincere’
azn@v-utjún ‘sincerity’
azniv-óv ‘sincere-INST’

b. i. jerǵir + kúnt ‘earth + sphere’
jergr-a-kúnt ‘globe’
jergr-a-kunt-ér ‘globes’

ii. azńiv + śird ‘sincere + heart’
azn@v-a-śird ‘sincere-hearted’
azn@v-a-sird-nér ‘sincere-hearted (PL)’

First, without strata, PDbP cannot directly capture the fact that inflection can trigger some but not all
stem-level processes. The null hypothesis is that inflection cannot trigger its own cycle because inflection
is a non-phase head. Instead, inflection is incorporated into the same phase-cycle as the previous (covert
or overt) derivational suffix (Embick 2010). For simplex stems, this would allow inflection to trigger stress
shift but not DHR.
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(166) Phase-based derivation for vowel reduction
Base Derivation Inflection
‘water’ ‘aquatic’ ‘water-INST

n

n

∅

√

>
tSur

a

a

-ajin

n

n

-∅

√

>
tSur

INST

INST

-ov

n

n

-∅

√

>
tSur

Cycle 1 Spell-out
>
tSur - ∅ >

tSur - ∅ >
tSur - ∅ - ov

Stress
>
tSúr

>
tSúr

>
tSur-óv

Reduction
Cycle 2 Spell-out

>
tSúr - ajin

Stress
>
tSǔr-aj́in

Reduction
>
tS@r-ajin

Output
>
tSúr

>
tS@r-aj́in

>
tSur-óv

When combined with Morphological Merger, PDbP can model the bracketing paradox. Destressed high
vowel reduction correctly applies in endocentric compounds, but not in exocentric compounds. I assume the
following morphological structure for endocentric and exocentric compounds. These structures are adapted
from conventions in Distributed Morphology (Harley 2009; Harðarson 2016, 2017, 2018). Each stem is
made up of a root and covert category affix. In the endocentric compound, STEM1 is adjoined to STEM2, as
indicated by the different indexes for n. In exocentric compounds, STEM1 is also adjoined to STEM2. The
entire compound takes a covert adjectivizer a (Steddy 2019). As before, I assume that linking vowels are
generated in phonological spell-out in the PF component as dissociated morphemes (Embick 2015).

(167) DM-based morphology for compounds
Exocentric possessive Endocentric nominal Endocentric nominal (rebracketed)
‘sincere-hearted (people)’ ‘globes’

PL

PL

a

a

-∅

n

n

n

-∅

√

sird

a

a

-∅

√

azniv

PL

PL

n2

n2

n2

-∅

√

kunt

n2

n1

-∅

√

jergir

PL

PL

PL

n2

n2

-∅

√

kunt

n2

n1

-∅

√

jergir

I go through a derivation below. Following morphological rebracketing, the PL forms a constituent with
STEM2 in endocentric compounds. The PL is spelled-out as -er in the first cycle with STEM2. The two
stems are concatenated in Cycle 2 and reduction correction applies.
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(168) Deriving compounds with phases & Morphological Merger
Endocentric Exocentric
‘globe’ ‘water-colored (PL)’

Morphology Input [ [ [jergir -∅]n1 [kunt -∅]n2 ]n2 -PL]PL [ [ [ [azniv -∅]a [sird -∅]n]n -∅ ]a -PL]PL

Rebracketed [ [jergir -∅]n1 [ [kunt -∅]n2 -PL]PL ]PL

Cycle 1 Spell-out jergir - ∅ kunt - ∅ - er azniv - ∅ sird - ∅
Stress jerǵir kunt-ér azńiv śird
Reduction

Cycle 2 Spell-out jerǵir-a-kunt-ér azńiv-a-śird
Stress jerǧir-a-kunt-ér azňiv-a-śird
Reduction jergr-a-kunt-ér azn@v-a-śird

Cycle 3 Spell-out azn@v-a-śird - ∅ - ner
Stress azn@v-a-šird-nér
Reduction azn@v-a-s@rd-nér

Output 3 jergr-a-kunt-ér 7 azn@v-a-s@rd-nér
expect azn@v-a-sird-nér

But, reduction is incorrectly predicted to apply to STEM2 in exocentric compounds. In the first two cycles,
each stem is spelled-out and then concatenated. By the second cycle, the compound underwent stress shift to
STEM2 and reduction on STEM1: azn@v-a-sírd. At this stage, the singular compound is an endocentric noun,
but it must be reinterpreted as an exocentric possessive by taking a covert adjectivizer a (Steddy 2019). But
this causes a problem for the phonology. In Cycle 3, the a category-node for the compound is spelled-out
alongside the PL. Although the correct plural is generated, the monostratal phase-based phonology must
apply stress shift to PL and reduction on STEM2: *azn@v-a-s@rd-nér.

An additional conceptual problem is that the above PDbP system contradicts Phonological Persistence.
Phonological Persistence (Newell and Piggott 2014) predicts that structure-changing processes (reduction)
should be possible within the same phase. By being in the same phase-cycle as the root, inflection would
not be blocked from changing any structure: reduction would be incorrectly predicted to be preferred. In
contrast, derivation would be incorrectly predicted to only trigger structure-building processes (no reduction)
because it is in a separate phase.

In order to get the right reduction patterns, the simplest solution is to allow inflection to trigger its
own cycles (Bobaljik and Wurmbrand 2013).25 Phonological Persistence would then block inflection from
triggering DHR. However, this implies an informal stratification of phonological processes. Furthermore, we
still need a separate mechanism that allows derivation to trigger structure-changing processes like reduction.

To handle Armenian, PDbP can be tweaked to include strata via final vs. non-final phases (Lochbihler
2017), separation of phonological and morphosyntactic cycles (Embick 2014; d’Alessandro and Scheer
2015), and allowing inflection to trigger its own cycles (Bobaljik and Wurmbrand 2013; Shwayder 2015;
Kilborne-Ceron et al. 2016). Doing so reduces the differences between PDbP vs. Stratal/Lexical Phonology.
This brings us back into the original problem of how Morphological Merger contradicts stratal phonology.

25Morphological evidence for the separation of inflection from a root’s phase-cycle is that regular inflection does not trigger root
suppletion. The closest case of suppletion is irregular inflection which also triggers reduction (§2.7.2).
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3.A.2 Conceptual problems in the free interleaving of cyclic and non-cyclic phonology

Phase-based phonology assumes that it is morphosyntactically predictable if a given morpheme will
trigger a cycle or not. In contrast, the model of phonological cyclicity in Halle and Vergnaud (1987a,b)
removes this predictability. Whether an affix can trigger cyclic rules or not is also diacritically determined.
There are no constraints on the ordering of cyclic and non-cyclic affixes. Scheer (2011:9) calls this system
"selective spell-out". Furthermore, PDbP assumes a single cophonology or set of rules. In contrast, Halle and
Vergnaud (1987a,b) assume two cophonologies: cyclic vs. noncyclic rules. Whether a phonological process
is cyclic or not is diacritically determined. I show that this lack of constraints allow Halle and Vergnaud
(1987a) to model the Armenian data. But on the other hand, this model does not show independent evidence
elsewhere in Armenian.26

Consider again the application of destressed high vowel reduction in non-compounds. To make the
comparison easier, I decompose stress shift into two processes: rightmost stress assignment and destressing.
Rightmost Stress Assignment place stress on the rightmost full vowel; Destressing will remove stress from
a stressed vowel which is not the rightmost stressed vowel. I treat these as informal rules.

In my analysis, reduction is a stem-level rule which applies in derivation (the MStem) but not inflection
(the MWord). Stress-assignment and destressing are both stem-level and word-level rules. In Halle and
Vergnaud (1987a,b)’s system, stem-level rules are called cyclic rules while word-level rules are noncyclic.
All derivational and inflectional suffixes are diacritically marked as triggering cyclic (c) and noncyclic (nc)
rules respectively. The concept of MStems vs. MWords is not relevant.

(169) Deriving vowel reduction in simplex words with Halle and Vergnaud (1987a)’s system
Base Derivation Inflection
‘water’ ‘aquatic’ ‘water-INST

Nc

>
tSur

Ac

Ac

-ajin

Nc

>
tSur

INSTnc

INSTn

-ov

Nc

>
tSur

Cycle 1 Spell-out
>
tSurc

>
tSurc

>
tSurc

Rightmost Stress Assignment
>
tSúr

>
tSúr

>
tSúr

Destressing
Reduction

Cycle 2 Spell-out
>
tSúr - ajinc

>
tSúr - ovnc

Rightmost Stress Assignment
>
tSúr-aj́in

Destressing
>
tSǔr-aj́in

Reduction
>
tS@r-ajin

Noncyclic Cycle Rightmost Stress Assignment
>
tSúr

>
tS@r-aj́in

>
tSúr-óv

Destressing
>
tSǔr-óv

Output
>
tSúr

>
tS@r-aj́in

>
tSur-óv

26Halle and Vergnaud (1987a) assume a non-interactionist system whereby all morphological processes precede phonological
processes. This means that they have problems in defining phonologically-conditioned allomorphy (Hargus 1993), e.g., the
Armenian plural suffix. I set this problem aside for illustration.
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To match the representations used in Halle and Vergnaud (1987a), I do not assume covert category suffixes
on roots. In Cycle 1, the noun is spelled-out. Because the noun has a cyclic diacritic, it triggers the cyclic
rules of stress and (vacuous) reduction to form

>
tSúr. In Cycle 2, the derivational suffix -ajin is spelled out and

triggers the cyclic rules of stress and reduction:
>
tS@r-aj́in. But, in Cycle 2, we also spell-out the noncyclic

inflectional suffix -ov. Halle and Vergnaud (1987a,b) argue that non-cyclic affixes can’t trigger cyclic rules.
They also can’t trigger non-cyclic rules. Thus, no rules apply at all. Finally, all the words undergo a final
nonlcyclic cycle where only noncyclic rules apply. This gets us final stress in

>
tSur-óv.

For compounding, I assume that the compound’s category is not due to adjunction (Selkirk 1982). When
combined with Morphological Merger or any other rebracketing process, Halle and Vergnaud (1987a)’s
model can handle the bracketing paradox. It can also arguably trigger the right cyclic rules. The problem is
that they rely on the Strict Cyclicity Condition (Mascaró 1976), a debunked principle (Kiparsky 1993).

(170) Deriving compounds with Morphological Merger and Halle and Vergnaud (1987a)’s system
Endocentric Exocentric
‘globe’ ‘water-colored (PL)’

Morphology Input

PLnc

PLnc

N3,c

N2,c

kunt

N1,c

jergir

PLnc

PLnc

A2,c

Nc

sird

A1,c

azniv

Rebracketed

N3,c

PLnc

PLnc

N2,c

kunt

N1,c

jergir

Cycle 1 Spell-out jergirc kuntc aznivc sirdc
Rightmost Stress Assignment jerǵir kúnt azńiv śird
Destressing
Reduction

Cycle 2 Spell-out jerǵir kúnt-ernc azńiv-a-śird
Rightmost Stress Assignment azńiv-a-śird
Destressing azňiv-a-śird
Reduction azn@v-a-śird

Cycle 3 Spell-out {jerǵir-a-kúnt-er}c azn@v-a-śird - ner
Rightmost Stress Assignment
Destressing jerǧir-a-kúnt-er
Reduction jergr-a-kúnt-er

Noncyclic Cycle Rightmost Stress Assignment jergr-a-kúnt-ér azn@v-a-śird-nér
Destressing jergr-a-kǔnt-ér azn@v-a-šird-nér

Output jergr-a-kunt-ér azn@v-a-sird-nér

94



The exocentric plural has a straightforward derivation. In Cycle 1, the two stems undergo the cyclic rules
and get stressed. In Cycle 2, they are concatenated and undergo the cyclic rules of stress and reduction.
Note that Rightmost Stress Assignment does not remove primary stress from STEM1. Removal is done by
Destressing. In Cycle 3, the plural suffix is added. Because the suffix is non-cyclic, it does not trigger cyclic
stress shift and reduction. Without the SCC, the suffix would get rightmost stress, while STEM2 would
destressed and reduce. The word eventually undergoes the non-cyclic stratum and gets final stress.

For the endocentric plural, the first two cycles are straightforward. In Cycle 1, the stems are stressed. In
Cycle 2, the second stem gets the plural suffix -er. Because the suffix is non-cyclic, then no rules apply. In
Cycle 3, the stems are are concatenated. The suffix does not get any stress because of the Strict Cyclicity
Condition (SCC). SCC blocks rightmost stress assignment on the suffix -er because the substring er was
created in the previous cycle. We still get destressing and reduction on STEM1’s u because concatenation
made u no longer a final vowel. In the final noncyclic cycle, the compound undergoes the noncyclic rules to
get final stress.

As shown, Halle and Vergnaud (1987a)’s system would work for Armenian. However, it has three
conceptual problems. First, the derivation mainly worked because of the SCC. In Cycle 3, the input was
jergír-a-kúnt-er and the output was jergr-a-kúnt-er with reduction on STEM1. In this cycle, the SCC blocked
stress shift to the suffix -er, which itself blocked destressing and reduction in *jergr-a-k@nt-ér. Current
incarnations of Halle and Vergnaud (1987a)’s system still assume that the SCC plays some role (Halle and
Nevins 2009). However, the SCC is a dubious principle and has been debunked (Kiparsky 1993). An
alternative blocking systems like the Phrase Impenetrability Condition is likewise dubious (Embick 2014;
Newell 2017). 27

Second, Halle and Vergnaud (1987a)’s assumes it is arbitrary and unpredictable whether an affix is cyclic
or not. This misses the fact that in Armenian all cyclic and non-cyclic affixes are respectively derivational
and inflectional morphology. Third, Halle and Vergnaud (1987a)’s system allows cyclic and noncyclic
affixes to be linearly precede and follow each other, e.g., English patent-abl-ity where -able is Level 2,
while -ity is Level 1 (Halle and Kenstowicz 1991; also in Salishan: Czaykowska-Higgins 1993). It is then
surprising that these ordering paradoxes are not found in Armenian. All noncyclic affixes are inflectional,
and they follow all other derivational morphology.

27It is possible that the SCC could be replaced with Shwayder (2015)’s ‘phonocyclic buffer’. The phonocyclic buffer is a
diacritically determined linear span of morphemes for cyclic phonological processes. When combined with Morphological Merger,
the plural suffix would get counter-cyclically spelled-out but it would not enter the buffer. The plural would latter undergo the
post-cyclic rule of stress shift. In this way, the buffer lets us separate between the domain of cyclic processes and the domain of
allomorphy (cf. §3.2.2). I leave exploring the use of this phonocyclic buffer to future work.
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Part II

Computational locality of cyclic phonology
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Chapter 4

Logical notation and representations

Morphological and phonological transformations are functions from one representation or another. To
describe these functions, I use Model Theory with monadic second order (MSO) logic and logically-defined
graph-to-graph transductions. Doing so requires that we are explicit on the following questions:

• What does the input consist of?
• What does the output consist of?
• How are individual aspects of the output related to individual aspects of the input?

Model Theory is not a grammar formalization. It is a descriptive tool that I use to understand the
computational properties of different functions and structures. In this chapter, I explain the logical notation
via illustration. There are many formal and complete treatments of formal logic, model theory, and logical
transductions (Büchi 1960; Courcelle 1994, 1997; Engelfriet and Hoogeboom 2001; Enderton 2001; Courcelle
and Engelfriet 2012; Libkin 2013). This thesis acts as an accessible illustration and application to morphology
and phonology. For another accessible illustration, see Strother-Garcia (2019) on syllabification and Jardine
(2016c) on autosegmental structure.

I first provide a simple informal illustration of word models in §4.1. I then formalize this in §4.2 by
introducing the formal notions of domains, labels, and relations. In §4.3, I introduce other formal yet minor
notions through linguistic examples, specifically the tools of negation (§4.3.1), modifying binary relations
(§4.3.2), copy sets (§4.3.3), helper predicates (§4.3.4), and logical consistency (§4.3.5).

In §4.4, I discuss the generative capacity of logical transductions. I illustrate a simple hierarchy of possible
logical transductions, with a focus on Quantifier Free transductions (§4.4.1). In §4.4.2, I show how various
intuitively local processes can be formalized as Quantifier Free transductions.

In §4.5, I use the same notation to formalize the hierarchical structure present in morphology (§4.5.1) and
prosody (§4.5.2). As with simple linear strings, we can determine if the computation is local or not over
these hierarchical representations (§4.5.3).

Conclusions are in §4.6. Because later chapters add on to our word signature, I provide the entire word
signature or model signature in an appendix. I list all constants, unary labels, and binary relations with
references to where they were introduced or significantly used. I do not list any user-defined predicates.
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4.1 Informal illustration

Consider a process of intervocalic stop voicing: pata∼pada. In a traditional rule-based analysis, the
function is modeled by the rule in (171a) which changes the underlying [-voice] feature of a stop to [+voice]
between two vowels. The symbols T and D are underspecified segments representing voiceless and voiced
stops. In a parallelist constraint-based analysis (171b), the output constraint against intervocalic voiceless
stops *VTV outranks the faithfulness or identity constraint IDENT(voice) against changing underlying
voicing.

(171) a. T→D/ V_V b. *VTV » IDENT(voice)

The two formalizaitons in (171a) and (171b) are descriptively equivalent though they differ in their
architectural premises: Are transformations serialist or parallelist? Stepping back from this distinction,
however, the two treatments imply the same representation for the input and output:

(172) Informal representation for strings
1. a string of symbols
2. each with its own attributes (vowel, stop, voiced, etc.),
3. which are ordered from left to right,
4. the two strings are in correspondence with each other
5. there is a change from input to output

Given an input string x and output string y, the above five aspects are formalized with the following tools:

(173) Formal representation for strings
1. The domain of the input as a set of nodes
2. The set of unary labels that can be defined for nodes in the domain
3. The set of binary relations among nodes in the domain
4. The set of copies of the domain (= copy set)
5. There is a logical transduction which utilizes a set of output functions

For the input-output pair pata∼pada, the representation of the individual strings and the relationship
between them are graphically visualized either implicitly in (174a) or explicitly in (174b). The latter
explicitly encodes the binary relation of successor between any two segments via directed edges with
the label ‘C’.

(174) a. pInput: a t a

pOutput: a d a

b. pInput: a t a

pOutput: a d a

C C C

C C C

The representation can be made more explicit (175) by dissecting the input segments into individual
domain nodes marked by a pair of two indices: ‘0’ to denote that they’re part of the input and a natural
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number in 1-4 to denote which individual segment they index. A segment’s phonological attributes (its IPA
symbol) or unary labels are visualized as the node’s name; the index is a subscript. As for the output
segments, the ‘0’ index is replaced by ‘1’, signifying that they are part of a separate copy of the input
segments.

(175) p0.1Input: a0.2 t0.3 a0.4

p1.1Output: a1.2 d1.3 a1.4

C C C

C C C

The representation assumes that IPA symbols are atomic and part of the unary labels; but we can
exchange the IPA symbols with a set of phonetic features as in (176) where a node’s name is now its index.
The transformation involves changing the features or unary labels [-voice] to [+voice] in bold.

(176) 0.1+cons,...Input: 0.2+vowel,... 0.3+cons,-voice,... 0.4+vowel

1.1+cons,...Output: 1.2+vowel,... 1.3+cons,+voice,... 1.4+vowel

C C C

C C C

4.2 Formalization

We showed that the superficially simple idea of a word as ‘a string of segments’ encodes multiple distinct
facts about the relevant representation. These facts are summarized as a word signature or a template
on possible words. A word signature is a tuple 〈D,L,R〉 where D is the domain of a word, L is the set
of possible unary labels, and R is the set of possible binary relations. The word signature of the single
word pata is visualized as the graphs in (177). We don’t include an index ‘0’ because no transformation is
involved.

(177) a.
p a t a

C C C b.
p1 a2 t3 a4

C C C

The two graphs in (177) are descriptively equivalent. In this chapter, both the left and right types of graphs
will be used for maximal clarity and illustration. In later chapters, only the right type of graph will be used.
All the information encoded in these graphs can be written out as the set of logical statements in (178).

(178) For the word pata with word signature 〈D,L,R〉
a. Domain D: {1,2,3,4}
b. Unary labels L:

• a(x) = TRUE for {2,4}
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• p(x) = TRUE for {1}
• b(x) = TRUE for ∅
• t(x) = TRUE for {1}
• d(x) = TRUE for ∅
• k(x) = TRUE for ∅
• g(x) = TRUE for ∅

c. Binary relations R: succ:seg(x,y)=TRUE for (x,y) in the set:
• (1,2)
• (2,3)
• (3,4)

The domain (178a) gives a unique index to the existing segments in the word. The set of unary labels
(178b) includes the labels for existing phonemes in this language: a(x), p(x), b(x), t(x), d(x), k(x), g(x). A
label like p(x) is evaluated to TRUE for domain elements (= segments) which are interpreted as the voiceless
stop /p/. The set of unary labels can be replaced with labels for phonological features like syllabic(x), as in
Strother-Garcia (2019). Feature-based labels encode the fact that phonological features are the fundamental
units of phoneme representation. I use both feature-based and segment-based labels for easier illustration.

As for binary relations (178c), I only show the relation of successor which is true for any pair of domain
elements x, y which are interpreted as y immediately succeeding x. I often use the term precedence in
prose when referring to the successor relation succ:seg(x, y), e.g., b precedes c in the string abcd. In section
§4.4.1, I show how general long-distance precedence can be computed from successor. In the graphs, I mark
successor with C. I refine immediate successor to a specific type of immediate successor among segments
succ:seg(x). Later sections (§4.5.2) use other refined types of immediate successor for prosodic structures.

To formalize input-to-output transformations or input-to-output logical transductions, we include two
additional tools: the copy set and output functions. Consider the input-output pair pata∼pada in (179a).

(179) a. pInput: a t a

pOutput: a d a

C C C

C C C

b. p0.1Input: a0.2 t0.3 a0.4

p1.1Output: a1.2 d1.3 a1.4

C C C

C C C

The visualization of the input-output pair in (179) uses the same template or word signature 〈D,L,R〉
as that for a single word pata (177). The input string pata has the same domain, labels, and relations as the
string pata (178). When defined over the input, the domain, labels, and relations are represented in this font.

To denote the output string, we use a copy set of size 1. A copy set consists of some fixed number of
copies of the input. Because the output string has as many segments as the input, then we only need a copy
set of size 1. To denote the relationship between the input string in the domain and the output string in the
copy set, we use output functions and user-defined predicates. The change from input to output is called
a logical transduction, and it constitutes the entire set of output functions.

User-defined predicates are custom-made shorthand that summarize useful information about some input
item. They are represented in this font. To model intervocalic voicing, we use the following predicates
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(180). The predicate vowel(x) is TRUE of some input symbol x if and only if (iff) x has the label of /a/.
The predicate intervocalic(x) is TRUE of any input symbol x iff there are two segments w, y such that w
precedes x, x precedes y, and w, y are vowels.

(180) User-defined predicates for intervocalic voicing
• vowel(x)

def
= a(x)

• intervocalic(x)
def
= ∃w, y[succ:seg(w, x) ∧ succ:seg(x, y) ∧ vowel(w) ∧ vowel(y)]

These predicates are constructed using common logical operators (181). The symbol def
= is used to mean

‘this formula is defined as...’; the equality between any two items uses the normal equal symbol: x = y.

(181) Common logical operators
Operator ∧ ∨ ¬ def

= ∃ ∀
Meaning and or not defined as there exists for all

User-defined predicates can likewise be defined over the output by referencing output correspondents in
some copy: φvowel(x1). I explain this notation below. Defining predicates over the output makes certain
computations easier to read, especially for syllabification. However, since the output is defined in terms of
the input, predicates defined over the output are also ultimately defined over the input.

As for output functions, they have the template φlab(xc) for labels and φrel(xc, yd) for relations. For
the unary labels (182), the symbol φ denotes that the following formula is defined for an output symbol
in some copy. The index c denotes that we are changing the label lab on an item x in the cth copy. For
intervocalic voicing, there’s only one copy so all c’s are 1. We unpack each output function below.

(182) Output functions for unary labels for intervocalic voicing
a. For vowels

• φa(x1)
def
= a(x)

b. For voiceless stops
• φp(x1)

def
= p(x) ∧ ¬intervocalic(x)

• φt(x1)
def
= t(x) ∧ ¬intervocalic(x)

• φk(x1)
def
= k(x) ∧ ¬intervocalic(x)

c. For voiced stops
• φb(x1)

def
= b(x) ∨ [p(x) ∧ intervocalic(x)]

• φd(x1)
def
= d(x) ∨ [t(x) ∧ intervocalic(x)]

• φg(x1)
def
= g(x) ∨ [k(x) ∧ intervocalic(x)]

For the label a(x) in (182a), an output symbol is marked as an [a] if it is an /a/ in the input. Notice that
the formula is represented as φa(x1)

def
= a(x) where the difference in font shows the difference in status: a

in the output, a in the input. The output function is defined over the 1st copy of the input. The label a(x1) is
TRUE only for the output node ‘1.1’ in (179b), where xc is interpreted as the node c.x.1

1The notation implies that x1 is a different variable from x, but this is false. Here, x1 is the first copy of the x. We interpret the
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For the labels p-t-k (182b), matters are more complicated. Via φp(x1) , an output symbol x is marked as
a [p] in the output iff it is a /p/ in the input and it is not intervocalic in the input. x is not intervocalic if it
doesn’t satisfy the user predicate intervocalic(x).

User-defined predicates are optional. For an output functions like φp(x1) in (182), we could replace any
user-defined predicate like intervocalic(x) with its definition (183). However, the result is awkward to
use. These predicates have no consequence on the computation, but they make it easier to read and write.

(183) Illustrating utility of user-defined predicates
a. Formula with user-defined predicate

• φp(x1)
def
= p(x) ∧ ¬intervocalic(x)

b. Formula without the user-defined predicate intervocalic(x)

• φp(x1)
def
= p(x) ∧ ¬∃w, y[succ:seg(w, x) ∧ succ:seg(x, y) ∧ vowel(w) ∧ vowel(y)]

c. Formula without the user-defined predicate vowel(x)

• φp(x1)
def
= p(x) ∧ ¬∃w, y[succ:seg(w, x) ∧ succ:seg(x, y) ∧ a(w) ∧ a(y)]

As for the labels of voiced stops (182c), their interpretation is straightforward. Via φd(x1), an output
symbol is labeled as a [d] iff it is either a /d/ in the input or it is an underlying intervocalic /t/. For the
input-output pair pata∼pada, the 3rd domain item /t/ maps to [d] because it satisfies φd(x1) by being an
intervocalic /t/.

The transformation is almost complete. We also define output functions for the binary relation succ:seg(x, y).
Since intervocalic voicing does not change the ordering among segments, the output function is straightforward.
The only caveat is that, as a binary relation, the output function φsucc:seg(x1, y1) needs to specify that
the two variables x, y belong to some copy of the input. Here, both belong to the same 1st copy of the input.

(184) Output function for binary relations for intervocalic voicing
• φsucc:seg(x1, y1)

def
= succ:seg(x, y)

Like user-defined predicates, output functions over some output copy c can reference information from
another output copy d, or even from the same copy c as long as there is no circularity; that is, the two output
functions f, g do not reference each other.

4.3 Other minor aspects in logical formalization

Having illustrated the core aspects of the logical notation, I now go over some minor aspects. These are
explained through simple phonological illustrations.

superscript in xc not as a new variable, but as a composite identity that indicates the index c.x. This is different form other notations
where the index is a superscript and the label is a subscript on φ: φc

lab(x) (Engelfriet and Hoogeboom 2001). That notation is
standard and has been used in phonology (Jardine 2017b). Following Strother-Garcia (2019), I have chosen the alternative notation
for easier readability.
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(185) Minor aspects in the logical notation

a. negation word edges §4.3.1
b. modifying binary relations deletion §4.3.2
c. copy sets epenthesis §4.3.3
d. helper predicates metathesis §4.3.4
e. disjunction and consistency multiple processes §4.3.5

4.3.1 Negation and edge-position

Given some input segment x in a string vwx (xyz), there are many ways to encode the fact that x is final
(or initial). A brief list includes: x precedes a boundary symbol #, x precedes itself, or x precedes nothing.
I use the last encoding by using user-defined predicates (186).

(186) Encoding initial and final segments
• initial:seg(x)

def
= ¬∃w[succ:seg(w, x)]

• final:seg(x)
def
= ¬∃y[succ:seg(x, y)]

4.3.2 Deletion and modifying binary relations

In the previous examples, the output did not differ from its input in terms of its binary relations. Here, I
illustrate a case where the output does differ. Consider a hypothetical process of intervocalic glide j-deletion:
papa∼papa but paja∼pai. The input-output pair paja∼paa is represented in (187a).

(187) a. pInput: a j a

pOutput: a a

C C C

C

C

b. p0.1Input: a0.2 j0.3 a0.4

p1.1Output: a1.2 1.3 a1.4

C C C

C

C

Note that in the more explicit representation (187b), a copy of the j is generated as an index ‘1.3’. This
copied node is vacuous and doesn’t surface because it does not have any labels or relations with other nodes.
In the more explicit representation, this is visualized by the lack of any segment label.

Assume that we have a simple phoneme inventory of {p,a,j}. The set of unary labels is then just the
set: {p(x), a(x), j(x)}. To model the transformation, we need to delete the intervocalic /j/ and change the
successor relations around the /j/. The first part is modeled with the following output functions (188) which
are defined for the unary labels. Every label except for an intervocalic /j/ is faithfully outputted.

(188) Output functions for unary labels for glide deletion
• φa(x1)

def
= a(x)

• φp(x1)
def
= p(x)
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• φj(x1)
def
= j(x) ∧ ¬intervocalic(x)

To change the binary relations, we use the user-defined predicate to_be_deleted(x) in (189a) to pick
out the segments which will delete because they are an intervocalic /j/. With this predicate at hand, we
output the successor relations (189b) carefully so that we skip the intervocalic glide and make its flanking
segments be adjacent. The formula consists of two disjuncts. Given two input nodes x, y and their output
correspondents x1, y1, x1 will precede y1 if x, y satisfy either of the two disjuncts.

(189) a. User-defined predicates for glide deletion
• to_be_deleted(x)

def
= j(x) ∧ intervocalic(x)

b. Output functions for binary relations for glide deletion
• φsucc:seg(x1, y1)

def
= [succ:seg(x, y)∧¬to_be_deleted(x)∧¬to_be_deleted(y)]∨

∃w[succ:seg(x,w) ∧ succ:seg(w, y) ∧ to_be_deleted(w)]

For the first disjunct in φsucc:seg(x1, y1), the output node x1 precedes the output node y1 iff x
underlyingly precedes y and neither of them are deletable. For a different input-output pair like pajp∼pajp,
this disjunct is true for the symbols a,j because neither is an intervocalic glide.

For the second disjunct, the output node x1 precedes the output node y1 iff there exists another segment
w such that x underlyingly precedes w and w underlyingly precedes y as in the string xwv, and the input
segment w is an intervocalic glide that is supposed to delete. For the vowels a,a in paja∼paa, they satisfy
this disjunct and are thus adjacent in the output string.

4.3.3 Copy sets and epenthesis

In the previous illustrations, the transformations used only one copy of the input. This section illustrates
when more copies will be needed. A simple case is schwa epenthesis between any two consonants: apta∼ap@ta.

(190) a. aInput: p t a

aOutput: p t a

@

C C C

C C

C C

b. a0.1Input: p0.2 t0.3 a0.4

a1.1Output: p1.1 t1.2 a1.3

2.1 @2.2 2.3 2.4

C C C

C C

C C

The input consists of 4 segments. The output consists of 5 because of the epenthetic schwa. In order to
produce this many segments, we must include an additional copy of the input into our copy set: Copy 2 on
the third row in (190b). In the second copy, the ‘correspondent’ of the ‘p’ is a schwa and it surfaces at index
‘2.2’. The correspondents of the other input segments do not surface at all in the second copy (‘2.1’, ‘2.3’,
and ‘2.4’ are vacuous). The transformation involves the following steps which can be done in any order.

1. output the labels on the first copy apta
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2. order the segments on the first copy except for the bad *pt cluster
3. output the labels on the second copy’s schwa
4. order the schwa on the second copy with the bad *pt cluster on the first copy

We assume that the language has a simple phoneme inventory {p,t,a,@} with unary labels {p(x), t(x), a(x), @(x)}.
In the first copy, we faithfully output all segment labels (191). We use the shorthand lab ∈ L.

(191) Output functions for unary labels over Copy 1 for epenthesis
• for every label lab ∈ L:

φlab(x1)
def
= lab(x)

As for binary relations, we use a predicate bad_cluster(x, y) to pick out bad consonant clusters (192a),
i.e., any pair of two consonants x, y which are in a sequence. For the output function φsucc:seg(x1, y1)
(192b), consider any two input symbols x, y such that x precedes y. In their output in the first copy, x1

precedes y1 as long as x, y don’t form a bad cluster. Thus for the input-output pair apta∼ap@ta, only the
underlined substrings in the output ap@ta are in a successor relationship over Copy 1.

(192) a. User-defined predicates for epenthesis context
• consonant(x)

def
= p(x) ∨ t(x)

• bad_cluster(x, y)
def
= consonant(x) ∧ consonant(y) ∧ succ:seg(x, y)

b. Output functions for binary relations over Copy 1 for for epenthesis
• φsucc:seg(x1, y1)

def
= succ:seg(x, y) ∧ ¬bad_cluster(x, y)

As for Copy 2, a schwa is ‘added’ inside a consonant cluster, i.e., a schwa is ‘added’ after a consonant
which precedes another consonant. The user-defined predicate cluster_initial(x) (193a) captures this
context. It is satisfied if x is a consonant which precedes another consonant y.

(193) a. User-defined predicate for finding cluster-initial consonant in epenthesis
• cluster_initial(x)

def
= consonant(x) ∧ ∃y[succ:seg(x, y) ∧ consonant(y)]

b. Output functions for unary labels over Copy 2 for epenthesis
• φ@(x2)

def
= cluster_initial(x)

• For every other label lab ∈ L− {@(x)}:
φlab(x2)

def
= FALSE

c. Output functions for binary relations across Copy 1 and 2 for epenthesis
• φsucc:seg(x1, y2)

def
= (x = y) ∧ cluster_initial(x)

• φsucc:seg(x2, y1)
def
= cluster_initial(x) ∧ succ:seg(x, y)

With φ@(x2) (193b), a schwa surfaces in the second copy iff it ‘corresponds’ to a cluster-initial consonant
in the input. For the input-output pair apta∼ap@ta, the schwa is in correspondence with the underlined input
segment t in apta which is cluster-initial.

To order this schwa with the underlying cluster, it has to be ordered with both the cluster-initial and
cluster-final consonants via φsucc:seg(x1, y2) and φsucc:seg(x2, y1) respectively (193c). For the
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cluster-initial consonant via φsucc:seg(x1, y2), a schwa in the second copy y2 follows the consonant x1

in the first copy. Both segments correspond to the same input segment or domain element (= x = y). This
domain element x is underlyingly cluster-initial in the input. The above graphs from (190) are repeated
below to better illustrate this for the input-output pair apta∼ap@ta.

(194) a.
aInput: p t a

aOutput: p t a

@

C C C

C C

C C

b.
a0.1Input: p0.2 t0.3 a0.4

a1.1Output: p1.1 t1.2 a1.3

2.1 @2.2 2.3 2.4

C C C

C C

C C

Analogously for the cluster-final segment, the schwa must be ordered before it via φsucc:seg(x2, y1)
(193c). A schwa x2 from the second copy will precede a consonant y1 from the first copy iff x2 corresponds
to an underlying cluster-initial consonant x in the input, and the underlying correspondent x precedes the
underlying correspondent y in the input.

4.3.4 Helper predicates and metathesis

Deletion illustrates that certain transformations require modifying binary relations. This section illustrates
a case where the modification is affected by multiple separate conditions in the input. To facilitate writing
out these different factors, I introduce helper predicates as a shorthand. Consider metathesis whereby
post-CV intervocalic /r/ in a string CVr is metathesized to CrV as in uparit∼uprait (195).

(195) a. uInput: p a r i t

uOutput: p a r i t

C C C C C

C

C C

C
C

b. u0.1Input: p0.2 a0.3 r0.4 i0.5 t0.6

u1.1Output: p1.2 a1.3 r1.4 i1.4 t1.4

C C C C C

C

C C

C

C

As shown, the following changes occur because of metathesis:

(196) Changes created by metathesis
a. Create Cr: the onset p now precedes r
b. Create ra:the r now precedes the (underlyingly) pre-rhotic vowel a
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c. Create ai: the (underlyingly) pre-rhotic vowel a now precedes the (underlyingly) post-rhotic
vowel i

On the one hand, modeling metathesis involves changing the output’s successor relationship in much the
same way as for deletion. However, its context and change can look convoluted. To illustrate, assume the
language has a small phoneme inventory of {u,p,a,r,i,t} with labels {u(x), p(x), a(x), r(x), i(x), t(x)}. To
pick out the relevant segments involved in metathesis, we use the user-defined predicates in (197).

(197) User-defined predicates for metathesis

a. vowel(x)
def
= a(x) ∨ i(x)

b. consonant(x)
def
= ¬vowel(x)

c. bad_r(x)
def
= r(x) ∧ ∃v, w, y[succ:seg(v, w) ∧ succ:seg(w, x) ∧ succ:seg(x, y)∧

consonant(v) ∧ vowel(w) ∧ vowel(y)

d. post-rhotic_V(x)
def
= vowel(x) ∧ ∃z[succ:seg(z, x) ∧ bad_r(z)]

e. pre-rhotic_V(x)
def
= vowel(x) ∧ ∃z[succ:seg(x, z) ∧ bad_r(z)]

f. pre-rhotic_C(x)
def
= consonant(x) ∧ ∃y, z[succ:seg(x, y) ∧ succ:seg(y, z)∧

pre-rhotic_V(y) ∧ bad_r(z)]

g. metathesis_context(x)
def
= bad_r(x) ∨ pre-rhotic_C(x) ∨

pre-rhotic_V(x) ∨ post-rhotic_V(x)

The predicates vowel(x) and consonant(x) pick out vowels and consonants. The predicate bad_r(x)
picks out the /r/ which will metathesize based on its context. By using the variables v, w, y, the predicate
picks out an /r/ which is in some substring CvVwrVy: the variables v, w, x, y are linearly ordered via
successor and v, w, y are a consonant and two vowels respectively.

The predicates post-rhotic_V(x),pre-rhotic_V(x),pre-rhotic_C(x) pick out the neighboring segments
based on straightforward definitions. The predicate metathesis_context(x) picks out any segment that’s
part of the metathesis context, i.e. a symbol in the input substring CVrV.

The unary labels in the output stay the same. The only change is in the succ:seg(x, y) relation. There are
two ways to write out the relevant changes, either with a single large output function or with a relatively small
output function that uses helper predicates. A helper predicate is a type of user-defined predicate which
is used to categorize different conditions for binary relations. To illustrate, consider again the input-output
pair uparit∼uprait (198) where 3 of the 5 underlying successor relations are modified.

(198) a. uInput: p a r i t

uOutput: p a r i t

C C C C C

C

C C

C
C

Informally, any segment outside of the local context of metathesis maintains its underlying order: it
stays in the same position. This is formalized using the helper predicate should__succ__stay(x, y).
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Helper predicates have the template should__lab__cond(x) for labels and should__rel__cond(x, y)
for binary relations. They start with the word should__ in their name with two underscores. Their names
ends with mnemonic name __cond on the relevant condition.

(199) A helper predicate for metathesis
• should__succ__stay(x, y)

def
= succ:seg(x, y) ∧
¬[metathesis_context(x) ∧metathesis_context(y)]

The helper predicate should__succ__stay(x, y) picks out any underlying successor relation between a
pair of input segments x, y such that both segments are outside the metathesis context. For the input-output
pair uparit∼uprait, this predicate picks out the underlined successor relations in the input uparit.

The helper predicates in (200) pick out what should become the successor relations for the pre-rhotic
consonant and the rhotic (200a), the rhotic and the pre-rhotic vowel (200b), and the pre-rhotic vowel and the
post-rhotic vowel (200c). Their names match with the changes listed in (196).

(200) Other helper predicates for metathesis

a. should__succ__Cr(x, y)
def
= pre-rhotic_C(x) ∧ bad_r(y) ∧
∃w[succ:seg(x,w) ∧ succ:seg(w, y) ∧ pre-rhotic_V(w)]

b. should__succ__ra(x, y)
def
= bad_r(x) ∧ pre-rhotic_V(y) ∧ succ:seg(y, x)

c. should__succ__ai(x, y)
def
= pre-rhotic_V(x) ∧ post-rhotic_V(t) ∧
∃z[succ:seg(x, z) ∧ succ:seg(z, y) ∧ bad_r(z)]

With the above helper predicates, the actual output function for successor is the disjunction of all of them.

(201) Output function for binary relations for metathesis
• φsucc:seg(x1, y1)

def
= should__succ__stay(x, y) ∨ should__succ__Cr(x, y) ∨

should__succ__ra(x, y) ∨ should__succ__ai(x, y)

The table below summarizes the roles played by these different helper predicates.

(202) Division of labor across the helper predicates for metathesis for uparit→uprait
should__succ__stay(x, y) should__succ__Cr(x, y) should__succ__ra(x, y) should__succ__ai(x, y)
Keep underlying order Consonant precedes /r/ /r/ precedes the vowel Vowels are adjacent
uprait uprait uprait uprait

Without using these helper predicates, the output function φsucc:seg(x1, y1) would have been substantially
larger and harder to understand. The function would have each helper predicate be replaced by its definition.
Helper predicates will be used in this thesis to encode different contexts for different rules. The next section
shows their utility for encoding multiple processes that affect the same labels or relations.
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4.3.5 Consistency and disjunction

Using a computational formalism forces us to make all information be explicit. Lack of full explicitness
can cause our computational model to be inconsistent. However, full explicitness can make it harder for us
to understand the formalism. This happens when we have multiple processes affecting the same labels or
relations in the output. I explain this problem, and present one solution with disjunction.

Consider intervocalic voicing again in (203). The output function φb(x1) will change an underlying /p/
into an output [b] if the segment is intervocalic.

(203) Output functions for unary labels for intervocalic voicing

a. φb(x1)
def
= b(x) ∨ [p(x) ∧ intervocalic(x)]

A problem arises if the language has a separate process which also involves the same output function
φb(x1), e.g., consonants are voiced after nasals: anpa→anba. To encode just this process, we need an
output function which changes an underlying /p/ to [b] if the consonant is post-nasal. This context is encoded
in the user-defined predicate post-nasal(x) and utilized in the output function φb(x1).

(204) User-defined predicate and output function for post-nasal voicing

a. post-nasal(x)
def
= ∃y[nasal(y) ∧ succ:seg(y, x)]

b. φb(x1)
def
= b(x) ∨ [p(x) ∧ post-nasal(x)]

If the grammar contains both of these rules, then we have an inconsistent definition for the output function
φb(x1) (205a). There cannot be two output functions which have the same name. To fix this, we need to
redefine φb(x1) as the disjunction of the two original processes or output functions (205b).2

(205) a. Inconsistent grammar with two definitions for φb(x1)

• φb(x1)
def
= b(x) ∨ [p(x) ∧ intervocalic(x)]

• φb(x1)
def
= b(x) ∨ [p(x) ∧ post-nasal(x)]

b. Consistent grammar which uses disjunction for φb(x1)

• φb(x1)
def
= [b(x) ∨ [p(x) ∧ intervocalic(x)]]∨

[b(x) ∨ [p(x) ∧ post-nasal(x)]]

The problem with this solution is that it can affect readability. It masks the fact that there are two
conditions for voicing based on two separate processes. Another way to solve the inconsistency is to redefine
the two original output functions as two separate helper predicates (206a). The output function φb(x1) is
then defined as the disjunction of these two helper predicates (206b).

(206) a. Helper predicates for the two processes which generate [b]
• should__b__intervocalic(x)

def
= b(x) ∨ [p(x) ∧ intervocalic(x)]

• should__b__postnasal(x)
def
= b(x) ∨ [p(x) ∧ post-nasal(x)]

2The function can be simplified to φb(x1) def
= b(x) ∨ [p(x) ∧ [intervocalic(x) ∨ post-nasal(x)]].
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b. Consistent grammar which uses disjunction of helper predicates for φb(x1)

• φb(x1)
def
= should__b__intervocalic(x) ∨ should__b__postnasal(x)

Because the goal of this thesis is to design a formalization of the morphology-phonology interface, I have
run into the problem of consistency.3 For example, I treat prosodic mapping as a set of logical transductions,
each for different possible parses. Chapter 5 sets up one logical transduction which uses one definition of
the output function φPStem(x2). This function generates a PStem when given an unparsed MStem which
dominates an MRoot (207a-i); the formula of this function is explained in the corresponding chapter. But
in Chapter 6, I set up a separate transduction that uses an output function of the same name. This generates
a PStem when given an unparsed MStem which dominates an MStem (207a-ii). To unify these two logical
transductions, we need to unify their output functions. To improve readability, I do not do the unification in
this dissertation. However, their unification can be easily done with disjunction over helper predicates, as
demonstrated in (207b).

(207) a. Inconsistent grammar that use two output functions from Chapters 5 and 6
i. Output function for generating a PStem given a non-recursive MStem
• φPStem(x2)

def
= Parse:MStem:nonrecursive(SETTINGS) ∧MStem(x)

ii. Output function for generating a PStem given a recursive MStem
• φPStem(x2)

def
= Parse:MStem:recursive(SETTINGS)∧

MStem(x) ∧MTopmost(x)∧
¬∃y[PStem(y) ∧Match:stem(x, y)]

b. Consistent grammar that uses helper predicates
i. Helper predicates based on the original output functions
• should__PStem__nonrecursive(x)

def
= Parse:MStem:nonrecursive(SETTINGS)∧

MStem(x)

• should__PStem__recursive(x)
def
= Parse:MStem:recursive(SETTINGS)∧

MStem(x) ∧MTopmost(x)∧
¬∃y[PStem(y) ∧Match:stem(x, y)]

ii. Output function based on these helper predicates
• φPStem(x2)

def
= should__PStem__nonrecursive(x) ∨

should__PStem__recursive(x)

4.4 Generative capacity of logical formalization

Just as with rewrite grammars and finite-state machines, there are hierarchies of possible logical transductions.
I go over this hierarchy and show how it corresponds to how much local vs. non-local information is used.
I use this hierarchy to show that the bulk of the morphology-phonology interface uses local transductions.

3The consistency problem is not a major problem for computational implementations of logical programming. In Prolog at least,
if any two rules have the same name, they are interpreted with implicit disjunction.
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4.4.1 Locality and non-locality in logical transductions

Compared to finite-state transductions, there is relatively little work on setting up a hierarchy of subclasses
for logical transductions. One hierarchy is defined in terms of how quantifiers are used. Quantifier-Free (QF)
logic does not allow the use of quantifiers at all. First-Order (FO) logic allows the use of quantifiers over
variables. Monadic Second-Order (MSO) logic allows quantifiers over variables or sets.

(208) Hierarchy of logical transductions
Monadic Second Order (MSO)

First Order (FO)

Quantifier-Free (QF)

Quantifiers over variables ∃x and sets ∃X

Quantifiers over variables ∃x

No quantifiers

There are some correspondences between this hierarchy and our intuitions of what counts as a local
process. QF logic can only capture local dependencies. FO logic can compute long-distance dependencies
which do not reference direction. MSO logic can compute long-distance dependencies which depend on
direction. To illustrate, consider the process of frication of /t/ to [s]: t→s. This change can be triggered by
different phonological factors in the input. I list some logically possible triggers below.

(209) Rules of varying locality
1. Contextless: /t/ becomes a [s] anywhere in the word: t→s/ _
2. Distant: /t/ becomes a [s] if there is an /i/ in the word: t→s/ _...i or i..._
3. Directional: /t/ becomes a [s] if there is an /i/ anywhere after the /t/: t→s/ _...i

Assume that the langauges don’t have a phonemic /s/; i.e., no underlying form has an /s/. The application
of these rules is illustrated below. The rules correspond to QF, FO, and MSO functions.

(210) Application of rules with different locality
Rule Input Expressivity

tata itat atupi
Contextless t→s/ _ sasa isas asupi Quantifier Free (QF)
Distant t→s/ _...i or i..._ isas asupi First Order (FO)
Directional t→s/ _...i asupi Monadic Second Order (MSO)

With the Contextless rule, /t/ always becomes [s]: /tata/→[sasa]. This process is local and only looks at
the target input symbol. It is computed by the QF output function in (211) which doesn’t use any quantifiers.

(211) QF output function for the ‘contextless’ rule
• φs(x1)

def
= t(x)

With the Distant rule, /t/ becomes [s] if there is an /i/ anywhere in the word: /tati/→[sasi] but /tata/→[tata].
The /i/ and /t/ can be at any distance from each other. The /i/ is thus a non-local trigger. The rule is computed
by the FO function (212) which uses a quantifier to find this segment /i/.
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(212) FO output function for the ‘distant’ rule
• φs(x1)

def
= t(x) ∧ ∃y[i(y)]

With the Directional rule, /t/ becomes [s] if there is an /i/ which is at any distance after the /t/. We need
MSO logic to determine if the long-distance trigger /i/ is after /t/ instead of just being anywhere in the input.
Given the input string atupi, we can compute the fact that the /t/ non-immediately precedes the /i/ by using
the transitive closure of immediate successor. Let X be some set of segments. X is said to be closed under
immediate successor iff for any two segments x, y, if x is in X and x immediately precedes y, then y must
also be in X . Visually, the set X is a set of segments which form an unbroken line of immediate successor
from some point in the string all the way to the end, e.g. the underlined segments in atupi could form a set
X , but the underlined segments atupi cannot.

(213) MSO definition for the transitive closure of immediate successor
• closed:succ:seg(X)

def
= ∀x, y[(x ∈ X ∧ succ:seg(x, y))→ y ∈ X]

With X defined as the transitive closure of immediate successor, we can compute any long-distance or
general precedence in a string. Intuitively, the trick is to make x be the point where the line X starts.
Visually, for two segments x, y, x generally precedes y if we can draw an unbroken line from x to the end
of the string and this line passes through y. Formally, x generally precedes y if x, y are different points, and
if for any transitively closed set X , if x is in X (meaning x is part of a line), then y is also is part of X.

(214) MSO definition of general precedence from the transitive closure of immediate successor
• gen_prec:seg(x, y)

def
= ∀X[(x ∈ X ∧ closed:succ:seg(X))→ y ∈ X] ∧ x 6= y

To illustrate with atupi, if x is the input segment /a/, then X is the substring atupi. y can be any segment
in this substring. For the segment /t/, X is the substring atupi, and for /p/, X is the substring atupi. For /t/,
X includes at least the segment /i/.

The predicate gen_prec:seg(x, y) uses MSO logic because it uses a universal quantifier ∀ over a set X .
Any function which uses this predicate is also MSO. With this predicate, the MSO formula in (215) will
change /t/ to [s] if it non-immediately precedes an /i/.

(215) MSO output function for the ‘directional’ rule
• φs(x1)

def
= t(x) ∧ ∃y[i(y) ∧ gen_prec:seg(x, y)]

4.4.2 Reduction to Quantifier-Free logic

The previous section showed that a process is QF if it does not reference any non-local information by
using quantifiers. However, certain processes seem local at first but are not QF. This is because the use of
binary-relations themselves requires quantifiers. In this section, I show that certain types of binary relations
can be converted to unary functions. When local transformations are defined over these unary functions,
the computation is QF. However, not every binary relation can be converted into a unary function; this means
that processes which use these nonconvertible binary relations are necessarily non-local.
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Consider again the process of frication of /t/ to [s]: t→s. The table below now lists two additional
processes which intuitively look local at first but are not QF.

(216) Rules of varying locality
1. Contextless: /t/ becomes a [s] anywhere in the word: t→s/ _ k-ISL for k=1
2. Adjacent: /t/ becomes a [s] before an /i/: t→s/ _i k-ISL for k=2
3. Close: /t/ becomes a [s] before a segment+/i/: t→s/ _Σi k-ISL for k=3
4. Distant: /t/ becomes a [s] if there is an /i/ in the word: t→s/ _...i or i..._ Not k-ISL
5. Directional: /t/ becomes a [s] if there is an /i/ after the /t/: t→s/ _...i Not k-ISL

The Contextless, Adjacent, and Close rules are all computationally local. One formalization of locality are
k-Input-Strictly Local functions for some natural number k (Vaysse 1986; Chandlee 2014, 2017; Chandlee
et al. 2014, 2015, 2018; Chandlee and Heinz 2018). Informally, a rule is Input Strictly Local (ISL) for a
number k if we only need to examine a finite number of k-1 segments before and after the target of the rule.
The Contextless rule is ISL for a context size of k=1. The ‘1’ is reserved for checking that the target itself is
/t/. The Distant and Directional rules are not ISL for any k because they use long-distance information. In
contrast, the Adjacent and Close rules are local but with larger k values.

The Adjacent rule will change a /t/ to an [s] if it precedes an /i/: /tati/→[tasi]. It uses a local context of
size 2. The rule uses the output function below. The function checks that the target is /t/ and that there exists
some segment y which follows /t/ and is an /i/.4

(217) FO output function for the ‘adjacent’ rule
• φs(x1)

def
= t(x) ∧ ∃y[succ:seg(x, y) ∧ i(y)]

In the Close rule, a /t/ becomes an [s] if the second segment after the /t/ is /i/: /atpi/→[aspi]. This /i/ and
/t/ are not adjacent but they are within a finite window of each other. This window is of size k=3; thus the
rule is local. The rule is formalized by the output function below. The function checks that the /i/ precedes
some segment y, that y precedes a segment z, and that z is an /i/.

(218) FO output function for the ‘close’ rule
• φs(x1)

def
= t(x) ∧ ∃y, z[succ:seg(x, y) ∧ succ:seg(y, z) ∧ i(z)]

Intuitively, the Adjacent and Close rules are local because they examine the local context of the target /t/.
However, their output functions use quantifiers ∃y, z and this makes them not be QF. These output functions
can be converted to QF formulas by binding the variables y, z introduced by these quantifiers. Binding can
be accomplished if the binary relations can be turned to unary functions. By doing so, we can replace the
quantifier’s variables y, z with terms which can be derived from x. The conversion is possible because the
interpretation of the binary relation of immediate successor is a function: given some variable x, we can
deterministically find these bounded variables y, z.

Consider the Adjacent rule (217) and the input tati. The variable y introduced by ∃y picks out the segment
which follows the target x. The selection is done by the binary relation succ:seg(x, y) which conceptually

4An additional output function φt(x1) is needed in all these different rules in order to generate any faithful /t/s, not shown here.
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encodes a function. Any given node x will precede either one unique node y or no node at all. This binary
relation can be converted to two functions FL:succ:seg(x) and FR:succ:seg(y). The subscripts L,R tells
us if we’re searching from the left variable x vs. the right variable y. Thus, the function FL:succ:seg(x)
returns the node y which follows the left (L) variable x; the function FR:succ:seg(y) finds the node x which
precedes the right (R) variable y. I list below the values of these two functions for the input word tati.

(219) a. Immediate successors as a binary relation for tati or t1a2t3i4
• succ:seg(x, y) is TRUE for {(1,2), (2,3), (3,4)}

b. Immediate successors as two unary functions for tati or t1a2t3i4
• FL:succ:seg(x) is defined as

– FL:succ:seg(1) = 2
– FL:succ:seg(2) = 3
– FL:succ:seg(3) = 4

• FR:succ:seg(x) is defined as
– FR:succ:seg(2) = 1
– FR:succ:seg(3) = 2
– FR:succ:seg(4) = 3

I use the term unary function to refer to derived functions to distinguish them from output functions.

Initial and final segments are picked out by the user-defined predicates in (220a), repeated from (186).
These predicates negate an existential quantifier. To make these predicates QF, we replace the binary relation
succ:seg(x, y) with the unary functions FL:succ:seg(x) and FR:succ:seg(y) (220b). We check that the unary
function FL:succ:seg(x) (FR:succ:seg(x)) is undefined for the final (initial) segment.

(220) a. FO encoding initial and final segments
• initial:seg(x)

def
= ¬∃w[succ:seg(w, x)]

• final:seg(x)
def
= ¬∃y[succ:seg(x, y)]

b. QF encoding initial and final segments
• initial:seg(x)

def
= FR:succ:seg(x) = NULL

• final:seg(x)
def
= FL:succ:seg(x) = NULL

I use the term NULL such that any element which is not defined is equal to NULL. However, the logical
formalism doesn’t let us define undefined terms. Intuitively, I treat the term NULL as a constant in our
domain D; it acts similarly to a sink state in finite-state automata.5

When finding the successor of the successor of some node x, we need to use two layers of FL:succ:seg(x).
For readability, we can collapse these two layers with a superscript FL:succ:seg2(x).

(221) Finding the successor of a successor of x
a. FO: with binary relations

• ∃y, z[succ:seg(x, y) ∧ succ:seg(y, z)]
5An alternative formalization is to define initial:seg(x) as true when x precedes itself (Thomas 1982; Strother-Garcia 2019).

I did not use this approach because it can get problematic in certain morphological configurations like gemination or reduplication
where a node in the graph can precede itself (Raimy 2000; Papillon 2020).
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b. QF: with unary functions
• FL:succ:seg(FL:succ:seg(x))
• FL:succ:seg2(x)

Consider again the different types of local and non-local rules. Below, I replace the binary relation
succ:seg(x, y) with the unary functions FL:succ:seg(x) and FR:succ:seg(y) whenever possible. Using these
unary functions lets us replace some of the existential quantifiers, e.g., in the Adjacent and Close rules.

(222) Output functions with and without binary relations for the...

a. ‘contextless’ rule φs(x1)
def
= t(x) QF

b. ‘adjacent’ rule φs(x1)
def
= t(x) ∧ ∃y[succ:seg(x, y) ∧ i(y)] FO

φs(x1)
def
= t(x) ∧ i(FL:succ:seg(x)) QF

c. ‘close’ rule φs(x1)
def
= t(x) ∧ ∃y, z[succ:seg(x, y) ∧ succ:seg(y, z) ∧ i(z)] FO

φs(x1)
def
= t(x) ∧ i(FL:succ:seg(FL:succ:seg(x))) QF

φs(x1)
def
= t(x) ∧ i(FL:succ:seg2(x)) QF

d. ‘distant’ rule φs(x1)
def
= t(x) ∧ ∃y[i(y)] FO

e. ‘directional’ rule φs(x1)
def
= t(x) ∧ ∃y[i(y) ∧ gen_prec:seg(x, y)] MSO

In the Adjacent rule, the variable y is replaced by directly using the successor of x via the unary function
FL:succ:seg(x). In the Close rule, the variable z is replaced by the unary function FL:succ:seg(y). But
the variable y itself is also replaced by FL:succ:seg(x). Ultimately, this means that z is replaced by
FL:succ:seg2(x). No such replacements can be made in the Distant and Directional rules.

By replacing the binary relations with unary functions, the output functions for the Adjacent and Close
rules no longer use quantifiers. They are now QF output functions. When the input is a simple string of
segments, then its word-signature uses immediate successor as its only binary relation. This relation can
always be turned into two unary functions. Strother-Garcia (2018, 2019) is an extended illustration which
shows how QF treatments for successor can be used to show that syllabification is a local QF process.
However, not everything can be made QF. There’s no way to remove quantifiers from truly long-distant
processes like the Distant and Directional Rules.

4.5 Hierarchical representation in the morphology and prosody

Having defined a word signature for linear strings, I now add new labels and relations to this word
signature in order to formalize the hierarchical structures present in the morphology-phonology interface.
Beyond being a string of segments, a word consists of two separate but related representational hierarchies
or data structures (Booij and Lieber 1993): a morphological tree and a prosodic tree. These two trees meet at
the segments. I formalize these two separate representational systems and how they can locally computed.6

I define the unary labels and binary relations which create these tree structures for morphology (§4.5.1) and
prosody (§4.5.2). I show how unary functions can be created for some but not all of these binary relations
(§4.5.3). This shows that some but not all logically possible operations for morpho-prosodic trees are local.

6See Bird (1995); Coleman (1998) on previous formalizations of these trees as directed acyclic graphs.
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There are many different theories and types of representations for morphology (Hockett 1942; Aronoff
1976; Anderson 1992; Stump 2001; Embick 2015). For the sake of concreteness, I assume a simple
representation where words form morphological trees, e.g., in word-syntax (Lieber 1980; Selkirk 1982)
or Distributed Morphology (Halle and Marantz 1993). An alternative is to treat words as a bundle of
morphosyntactic features instead of a tree (Stump 2001). As I discuss in Chapter 7 (§7.2), there is little
computational difference among these different morphological theories (Roark and Sproat 2007:ch3). I
essentially adopt an item-and-arrangement approach to morphological representation, and an item-and-process
approach to morphological generation (cf. word-formation rules Aronoff 1976).

4.5.1 Representation of morphological structure

Morphologically, a simple analysis of ‘apple’ decomposes it into a morphological root (MRoot) or √

(223a). Explicitly, the segments are morphologically dominated (∼MDom or m) by the root node (223b).

(223) a.
MRoot

æp@l

b.

æ p @ l

MRoot

C C C

m m

m m

A more sophisticated analysis decomposes this word even further. In the morphological structure, specific
nodes in the graph are morphological nodes (MNode) of different ‘chunks’ (224). The smallest chunk
corresponds to a morph (Aronoff 1994; Wolf 2008; Haspelmath 2020). It dominates zero or more segments.
A morph is dominated by a morpheme which is marked by some number of morphosyntactic features (Halle
and Marantz 1993). For ‘apple’, the morpheme is a simple MRoot.

(224) a.
MRoot

morph

æp@l

b.

æ p @ l

morph

MRoot

C C C

m m

m m

m

A morpheme can be a morphological root or an affix. An affix is specified for its status (derivational vs.
inflectional). Derivational affixes are also called category suffixes with the features n,v,a; they form nouns,
verbs, and adjectives respectively. Inflectional affixes mark some morphosyntactic feature like plurality or
gerundive. To illustrate, consider the derivational suffix -ness and inflectional suffix -ing (225). Each is a
morpheme that dominates some morph which dominates some string of segments. The morpheme -ness has
the labels noun(x) and der(x), while -ing has gerund(x) and infl(x). I illustrate their feature label as their
main label; the feature labels are illustrated as single letters n or in glossing conventions GRND but they are
logically defined as the multicharacter symbols noun(x) and gerund(x).
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(225) a.

GRND

morph

Ing

n

morph

nIs

b.

n I s I n g

morph morph

n GRND

C C C C

m
m

m

m
m

m

m m

Higher types of morphological nodes are morphological stems (MStem) and morphological words
(MWord). These are called morphological constituents (MConc). In the case of the morpheme ‘apple’,
it is a free-standing root and forms an MStem with a covert derivational suffix of category n (Marantz
1997, 2007; Giegerich 1999). Explicitly, all of these morphological items are organized by morphological
dominance. Zero morphs do not dominate any segment.

(226) a.
MStem

n

morph

∅

MRoot

morph

æp@l

b.

æ p @ l

morph morph

MRoot n

MStem

C C C

m m

m m

m m

m

m

MStems are formed by adding more derivational suffixes, e.g., the overt suffix -ness on the adjective
dumb. MWords are formed by adding covert or overt inflectional suffixes like -ing on the verb love.

(227) a. dumbness

i.

MStem

n

morph

-nIs

MStem

a

morph

∅

MRoot

morph

d2m

ii.

d 2 m n I s

morph morph morph

MRoot a n

MStem

MStem

C C C C C

m
m

m

m
m

m

m m m

m

m

m

m
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b. loving

i.

MWord

grnd

morph

-INg

MStem

v

morph

∅

MRoot

morph

l2v

ii.

l 2 v I N g

morph morph morph

MRoot v grnd

MWord

MStem

C C C C C

m
m

m

m
m

m

m m m

m

m

m

m

In general, abstract morphological information is relatively stable cross-linguistically. For Armenian,
lexical items are similarly defined in terms of morphological nodes like morphs, morphemes, MRoots,
MStems, and MWords. To illustrate, consider the simplex stem amusin, its derivative amusn-agan, and its
inflected form amusin-ov below.

(228) a. i. amusin ‘husband’

MStem

n

morph

∅

MRoot

morph

amusin

ii.

a m u s i n

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

b. i. amusn-agan ‘marital’

MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amusn

ii.

a m u s í n a g a n

morph morph morph

MRoot n a

MStem

MStem

C C C C C C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m
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c. i. amusin-ov ‘husband-INST’ (WArm)

MWord

inst

morph

-ov

MStem

n

morph

∅

MRoot

morph

amusin

ii.

a m u s í n o v

morph morph morph

MRoot n a

MStem

MWord

C C C C C C C

m m m

m m m

m

m

m m m

m

m

m

m

For either English or Armenian, all this information is represented by a simple set of unary labels (229a).
To reiterate, a morphological node can be a MRoot, MStem, MWord, morpheme, or morph. A morpheme
is an MRoot or Affix. A morphological constituent is an MStem or MWord. The set of labels can be
enriched by marking the specific morphosyntactic features of the MNode (229b), such as the features of
an inflectional affix, the category of a derivational suffix, or class diacritics for larger MNodes. All these
MNodes are related via the binary relation of morphological dominance (229c).

(229) a. Basic unary labels for morphological nodes
• MNode(x): x is a morphological node (any morph, morpheme, MStem, or MWord)
• MConc(x): x is a morphological constituent (any MStem or MWord)
• morpheme(x): x is a morpheme (any root or affix)
• morph(x): x is a morph
• affix(x): x is an an affix
• der(x): x is an a derivational affix
• infl(x): x is an an inflectional affix
• MRoot(x): x is a morphological root
• MStem(x): x is a morphological stem
• MWord(x): x is a morphological word

b. Additional unary labels for the features of morphological nodes
• past(x), plural(x), gerund(x), inst(x), def(x), infinitival(x), irregular(x) . . .
• noun(x), verb(x), adj(x)
• Class:E(x),Class:A(x),Class:I(x) . . .

c. Basic binary relations for morphological nodes
• MDom(x, y): a morphological node xmorphologically dominates some other morphological

node or segment y

I assume that a morph can dominate any number of segments. In this thesis, a morpheme can dominate
only one morph. Cases of multiple exponence are not discussed. Morphological constituents (MStems,
MWords) can dominate only two other MNodes (MWords, MStems, MRoots, morphemes). This makes the
morphological dominance from MNodes to MNodes binary branching in general. To formalize compounds
with linking vowels, I introduce new types of morphological nodes in Chapter 6 (§6.2.2) and I use ternary
branching trees.
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I assume that morphological nodes are not linearly (horizontally) organized amongst themselves, i.e.,
morphemes don’t precede other morphemes (cf. Sproat 1985; Embick and Noyer 2001). Any apparent
linear ordering among morphemes or morphs is because of the linear ordering of their segments. I also
do not assume that affixes are labeled with the property of being a prefix or suffix. That property can be
derived from examining the linear order between the segments of the affix and the segments of the affix’s
morphological sister in the tree. For this thesis, there is no gain in computational expressivity if we assume
that morphemes are linearly ordered or are labeled as a prefix vs. suffix. Potential problems would come
from zero morphs and deeply-embedded morphological nodes (Chapter 7:§7.7.3).

A MNode of label x is said to recursively dominate another MNode of the same label x, e.g., an MStem
(MWord) recursively dominates another MStem (MWord). If the two MNodes have different labels, then
they are not in recursive dominance, e.g., an MStem (MWord) non-recursively dominates an MRoot (MStem).
This distinction plays a role in prosodic parsing (Chapter 5:§5.3.1).

As with segment successor and long-distance precedence (§4.4.1), we need MSO logic to determine if
some MNode x non-immediately dominates some other node y. The predicate closed:MDom(X) defines
a set X of nodes which form an unbroken chain of morphological dominance from some point x in the tree,
by traversing all branches from x, all the way down to one or more leaves in the tree. Long-distance or
general morphological dominance is then defined in gen_MDom(x, y) using this transitive closure. The
utility of this type of long-distance computation is needed in post-cyclic prosodic parsing (Chapter 8:§8.3.2),
but is generally avoided in cyclic prosody (Chapter 6:§6.5).

(230) MSO user-defined predicates for long-distance morphological dominance
• Defining transitive closure of morphological dominance

closed:MDom(X)
def
= ∀x, y[(x ∈ X ∧MDom(x, y))→ y ∈ X]

• Defining long-distance or general morphological dominance
gen_MDom(x, y)

def
= ∀X[(x ∈ X ∧ closed:MDom(X)→ y ∈ X] ∧ x 6= y

This concludes the basic labels and relations needed for morphology. Later in Chapters 5-3, I use logical
transductions to create larger morphological trees, similar to word-formation rules (cf. Aronoff 1976).

4.5.2 Representation of prosodic structure

As for the prosody of the word ‘apple’ [æp@l], the segments form syllables, which form feet, which form a
prosodic word: æ < σ < F < PWord . Explicitly, this prosodic organization is a data structure where nodes of
the same type are (horizontally) ordered by successor, while nodes of different types are (vertically) ordered
by prosodic dominance (∼ pdom or p).
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(231) a.

PWord

F

σ

p@l

σ

æ

b.

æ p @ l

σ σ

F

PWord

C C C

p
p

p
p

C

p

p

p

English prosody uses all unary labels in (232) except for prosodic stems (PStems). Armenian prosody
uses PStems but not feet.7 I use the unary label syll(x) for syllables but I designate it with the label σ in
trees. All these labels correspond to possible prosodic nodes (PNodes) in the language

(232) Basic unary labels for prosodic structure
• syll(x): x is a syllable
• foot(x): x is a foot
• PStem(x): x is a prosodic stem
• PWord(x): x is a prosodic word
• PNode(x): x is a prosodic node (syllable, foot, PStem, PWord)

Within a syllable, a segment can have different structural roles: onset, nucleus, coda. For syllable margins,
Armenian syllables are generally at most CVCC: complex onsets are banned and complex codas must have
falling sonority. Consider the words [sur] and [surp] (233). A coda is called an inner coda when it is either
a simplex coda as in [sur] or the first member of a complex coda as in [surp]. A coda is an external coda if
it is the second member of a complex coda: [surp].

(233) a. i. sur ‘sharp’
σ

sur

ii. surp ‘holy’
σ

surp

b. i.

s u r

σ

C C

p
p

p

ii.

s u r p

σ

C C C

p
p

p p

In order to formalize the structural roles within a syllable,8 I refine the relation of prosodic dominance
(PDom) into different subtypes for onset, nucleus, inner coda (coda1), and outer coda (coda2):

7See Özçelik (2017) on arguments for how feet are likely not present in every language. See Chapter 2:§2.2 on the lack of
evidence for feet in Armenian.

8This is one of many equivalent formalizations (cf. Strother-Garcia 2019).
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(234) Types of prosodic dominance from syllable to segment
a. PDom:syll_ons(x, y): a syllable x dominates a segment y as an onset
b. PDom:syll_nuc(x, y): a syllable x dominates a segment y as a nucleus
c. PDom:syll_coda1(x, y): a syllable x dominates a segment y as an inner coda
d. PDom:syll_coda2(x, y): a syllable x dominates a segment y as an outer coda

A user-defined predicate is defined for the prosodic dominance between a syllable and a segment, or
between a syllable and a coda.

(235) User-defined predicates for syllable-to-segment prosodic dominance
• PDom:syll_seg(x, y)

def
= PDom:syll_ons(x, y) ∨ PDom:syll_nuc(x, y) ∨

PDom:syll_coda1(x, y) ∨ PDom:syll_coda2(x, y)

• PDom:syll_coda(x, y)
def
= PDom:syll_coda1(x, y) ∨ PDom:syll_coda2(x, y)

Throughout this thesis, I will not visualize PDom edges with the relevant structural roles (234). I use a
generic label p as in (233); context makes the meaning of the label clear. I do this because explicitly showing
these PDom types is hard to read, e.g., (236).

(236) a. i.

s u r

σ

C C

PDom:syll_ons

PDom:syll_nuc PDom:syll_coda1

ii.

s u r p

σ

C C C

PDom:syll_ons

PDom:syll_nuc PDom:syll_coda1

PDom:syll_coda2

Going up higher in the word, Armenian lacks feet. Instead, syllables are organized into morphologically-derived
prosodic constituents: prosodic stems (PStems) and prosodic words (PWords). A free-standing root like
amusin (237a) forms its own PStem and PWord. When inflected with a C-initial inflectional suffix like -ner
in amusin-ner (237b), the inflectional suffix is outside the PStem but within the PWord.

(237) a. amuśin ‘husband’

i. PWord

PStem

σ

sin

σ

mu

σ

a

ii.

a m u s i n

σ σ σ

PStem

PWord

C C C C C

p
p

p
p

p
p

p p

p
p

p

p
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b. amusin-ner ‘husband-PL’

i. PWord

σ

-ner

PStem

σ

sin

σ

mu

σ

a

ii.

a m u s i n n e r

σ σ σ σ

PStem

PWord

C C C C C C C C

p
p

p
p

p
p

p
p

p

p p p

p
p

p

p p

Syllables are linearly ordered with a successor relation that is reserved for syllables: succ:syll(x, y). I
assume that PStems and PWords can succeed other constituents. For now, I only define a successor relation
among PStems because it will be useful for compounds: succ:PStem(x, y).

(238) Binary relations for immediate successor for prosodic structure
• succ:syll(x, y): x, y are syllables and x precedes y
• succ:PStem(x, y): x, y are PStems and x precedes y

Sometimes, it seems that a constituent of level x precedes a lower constituent of level x-1, e.g., the foot
in (hap.py)-ly precedes a syllable. Similarly in Armenian amusin-ner, the PStem precedes a syllable in
(amusin)s-ner. I do not formalize the adjacency of feet with syllables (or of PStems with syllables) as a
special type of immediate successor. The precedence between prosodic constituents of different levels can
be determined by examining the successor relations between their syllables, i.e., we know if a foot or PStem
precedes some syllable y if the final syllable x of the foot/PStem precedes y.

As with syllable-to-segment prosodic dominance, we are explicit about the type of prosodic dominance
among higher prosodic constituents. I use the additional subtypes of prosodic dominance in (239a), which
are generalized in (239b). Further subtypes can be introduced to capture appendixes and phrasal phonology.

(239) a. Types of prosodic dominance from higher prosodic constituents
i. PDom:PStem_syll(x, y): a PStem x dominates a syllable y

ii. PDom:PWord_PStem(x, y): a PWord x dominates a PStem y

iii. PDom:PWord_syll(x, y): a PWord x dominates a syllable y
b. User-defined predicate for general prosodic dominance

• PDom(x, y)
def
= PDom:syll_seg(x, y) ∨ PDom:PStem_syll(x, y) ∨

PDom:PWord_PStem(x, y) ∨ PDom:PWord_syll(x, y)

Some theories of prosodic phonology argue that prosodic dominance can be recursive, i.e., a PWord can
dominate another PWord (Selkirk 1996; Peperkamp 1997). Such relations are formalized below. I generally
do not use recursive prosody, yet it is still logically definable.
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(240) Types of prosodic dominance for prosodic recursion
a. PDom:PStem_PStem(x, y): a PStem x dominates a PStem y

b. PDom:PWord_PWord(x, y): a PWord x dominates a PWord y

The morphology and prosody act as a set of two trees which meet at the segments. Above syllables and
feet, higher prosodic constituents like the PStem or PWord are associated with (= mapped, parsed from)
MStems and MWords. I formalize this mapping as a Match relation (cf. Selkirk 2011), visualized as a
dashed line. This is a form of correspondence between morphological and prosodic constituents. I use an
English example for PWord matching and an Armenian example for PStem matching. I assume English
MStems map to PWords.

(241) a. i.

PWord

σ

p@l

σ

æ

MStem

n

morph

∅

MRoot

morph

æp@l

ii.

æ p @ l

σ σ

morph morph

MRoot n

MStem

PWord

C C C

C

m m

m m

m m

m

m

p
p

p
p

p p

MATCH

b. i. amusin ‘husband’

PStem

σ

sin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amusin

ii.

a m u s i n

σ σ σ

morph morph

MRoot n

MStem

PStem

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

Possible MATCH relations are listed below. I focus only on Armenian where MStems map to PStems,
not to PWords. Among morphological nodes, I assume that the only parsable MNodes are MStems and
MWords.
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(242) Binary relations for prosodic mapping or Matching
• Match:stem(x, y): the MStem x is matched with (mapped to) the PStem y
• Match:word(x, y): the MWord x is matched with (mapped to) the PWord y

A more specialized type of prosodic mapping between morphological and prosodic constituents is wrapping
(Truckenbrodt 1995, 1999). Assume you have two MNodes of the same label: MNode1 and MNode2.
Morphologically, let MNode2 dominate MNode1 (243b-i). Prosodically, let MNode2 get matched with its
own PNode2. MNode1 is either matched with its own unique PNode1 (243b-ii), or it is not matched with
any PNode (243b-iii). In the latter case, MNode1 is said to be wrapped into the PNode2 of its dominating
MNode2. Prosodic wrapping is illustrated in Chapter 6 where I formalize the prosody of derivatives (§6.5.1).

(243) a. Binary relations for prosodic wrapping
• Wrap:stem(x, y): the MStem x is wrapped into PStem y
• Wrap:word(x, y): the MWord x is wrapped into PWord y

b. i. Input morphology

MNode2

def

MNode1

abc

ii. MNode1 matches
with PNode1

PNode2

def

PNode1

abc

iii. MNode1 wrapped
into PNode2

PNode2

abc def

Match and Wrap are inspired from Match theory (Selkirk 2011) and Wrap theory (Truckenbrodt 1995,
1999). I also posit a new specialized type of prosodic association called subsuming. Prosodic subsumption
is utilized in compounding (Chapter 6:§6.5.3). In certain compounds, the two individual stems MStemL and
MStemR are matched with their own PStems. But the entire compound itself is its own compound MStem
or MStemC . This larger MStemC is not matched with any of the component PStems. Instead, the MStemC
is subsumed into the rightmost PStem (= the PStem of MStemR). As explained in Chapter 6, prosodic
subsumption is restricted to compound MStems in endocentric compounds. I adopt prosodic subsumption
alongside prosodic matching and wrapping so that every MStem/MWord will correspond to some prosodic
constituent.

(244) a. Binary relations for prosodic subsumption in compounds
• Subsume:stem(x, y): the MStem x is subsumed into PStem y
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b. Illustrating prosodic subsumption
Morphology Prosody Associations

MStemL matches with PStem1
MStemR matches with PStem2
MStemC subsumed into PStem2

MStemC

MStemR

def

MStemL

abc

PStem2

def

PStem1

abc

MStemC

MStemR

PStem2

def

MStemL

PStem1

abc

SUBSUME

MATCH MATCH

A MNode is said to be parsed if there exists some PNode such that the two are in some prosodic
association relation, such as matching, wrapping, or subsuming. An MNode is unparsed if it has no
associated PNode.

4.5.3 Local computations over hierarchical structures

Earlier in this chapter, the input and output representations were a simple string of segments. With that
linear representation, it was easy to determine if a process is computationally local or not. The process
is local if it can be computed without quantifiers, potentially by turning binary relations like immediate
successor into unary functions. The previous two sections introduced formal definitions for hierarchical
structure in the morphology and prosody. I use the same method to determine locality over hierarchical
representations. Recall from §4.4.2, that not all logically-possible binary relations can be converted to unary
functions. I illustrate this here. Over trees, some binary relations do not encode two unary functions. Briefly,
a relation can be turned into a unary function if finding the relevant nodes is deterministic by involving a
bounded number of mothers or daughters.

4.5.3.1 Problems in local computations over hierarchical structure

When working with hierarchical inputs, non-local computations arise from n-ary branching trees where
we cannot deterministically find the relevant daughter of some mother node. All daughter-to-mother dependencies
can be turned into a unary function because every daughter has at most one mother. But, not all types of
mother-to-daughter dependencies can be turned into a unary function. To illustrate, consider the morph
‘apple’ [æp@l] which dominates 4 segments.
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(245) Morphological structure of the morph ‘apple’ [æp@l]

a.

morph

æp@l

b.

æ1 p2 @3 l4

morph5

< < <

m m

m m

For the morph apple, the relation MDom(x, y) is true for the following pairs of nodes, i.e., it is true when
x is the morph at index ‘5’ and y is any of the segments at indexes ‘1’-‘4’.

(246) Values for the binary relation MDom(x, y) for the morph ‘apple’ [æp@l]

• MDom(x, y) is TRUE for {(5,1), (5,2), (5,3), (5,4)}

Over strings, the relation succ:seg(x, y) was broken down to two unary functions FL:succ:seg(x), FR:succ:seg(y)
where L,R tells us if we’re searching from the left variable x vs. the right variable y. Analogously for trees,
the task of the unary function is to start searching from the mother node x or the daughter node y. The
relation MDom(x, y) can be broken down into two relations: FM:MDom(x) = y finds the daughter node
y given the mother (M ) node x, while FD:MDom(y) = x looks for the mother node x given the daughter
(D) node y. The relation FD:MDom(y) = x is a unary function but FM:MDom(x) = y is not; the latter is
a one-to-many relation. In other words, for the relation MDom(x, y), going from the daughter variable y to
the mother variable x is predictable, but not from the mother x to daughter y. This is because every segment
y is dominated by only one morphological node (∼ has at most one mother), but the morph x dominates
multiple segments (∼ has many daughters).

(247) Breaking MDom(x, y) into two relations or functions
a. FM:MDom(x) is defined as a one-to-many relation

• FM:MDom(5) = {1, 2, 3, 4}
b. FD:MDom(x) is defined as a function

• FD:MDom(1) = 5
• FD:MDom(2) = 5
• FD:MDom(3) = 5
• FD:MDom(4) = 5

With this input and its converted relations, we can formulate both QF and non-QF processes. If a process
uses segment-to-morph dependencies, then it is QF and local. An example of a QF process is a process
like "give a segment [p] the label +F if it is part of a morph". The output function is shown in (248a-ii); it
can be adapted with unary functions instead of binary relations (248a-iii). We can deterministically find the
morph node from segment p. In contrast, if a process uses morph-to-segment dependencies, then it is not
QF or local. For example, a non-QF process is a process like "give a morph the label +G if it dominates a
[p] segment". We cannot deterministically find the segment node p from the morph node. A quantifier is
needed (248b-ii).
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(248) a. Computation over segment-to-morph dependencies

i. Prose: Give a segment [p] the label +F if it is part of a morph

ii. FO output function: φ+F(x1)
def
= p(x) ∧ ∃y[MDom(y, x) ∧morph(y)]

iii. QF output function: φ+F(x1)
def
= p(x) ∧morph(FM:MDom(x))

b. Computation over segment-to-morph dependencies
i. Prose: Give a morph the label +G if it dominates a [p] segment

ii. FO output function: φ+G(x1)
def
= morph(x) ∧ ∃y[MDom(x, y) ∧ p(y)]

Given this problem in determining locality over hierarchical structure, the next two sections sketch out
how we can set up unary functions for some but not all types of morpho-prosodic dominance.

4.5.3.2 Local computations over morphological structure

When computed over either morphological or prosodic structure, finding the mother of some node is QF
because a node can at have at most one mother. Finding the daughters however is not-QF unless we a priori
have limitations on how many daughters some node can have. Certain aspects of morpho-prosodic structure
does assume such limitations.

Consider first morphological structure. There is no bound on how many segments can be dominated by
a morph. Any process which references morph-to-segment morphological dominance cannot be QF. But
besides morphs, other types of MNodes have bounds on how many daughters they can have. A morpheme
can dominate only one morph. Affixed constituents like MStems and MWord can dominate at most two
MNodes (binary branching). Compounds can be ternary branching because of linking vowels.

Exploiting the above limitations on mother-to-daughter dependencies requires refining the types of MDom
relations. In this thesis, I use a generic binary relation MDom(x, y) which is true when x is a morph,
morpheme, or higher. To exploit how some morphological dominances are QF-definable, the relation
MDom(x, y) must be refined to the following types of atomic binary relations which must be in the input:

(249) Refined types of morphological dominance

a. MDom:nary(x, y)
def
= MDom(x, y) ∧morph(x) ∧ segment(y)

b. MDom:first(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the first daughter"

c. MDom:second(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the second daughter"

d. MDom:third(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the third daughter"

The relation MDom:nary(x, y) is defined when there is no bound on how many daughters some node x
can have, i.e., when x is a morph and y is a segment. In contrast, the other three relations are defined when
there is such a bound. The bound is 1 when the mother node is a morpheme, 2 for an MStem or MWord, and 3
when the mother node is a compound.9 The relations MDom:first(x, y), MDom:second(x, y), MDom:third(x, y)
pick out the first, second, or third daughter if it exists.

9Compound nodes are formalized as MStem:Comp(x) in Chapter 6 (§6.2.2).
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The binary relation MDom:nary(x, y) can be converted to a unary function to find the mother node x of
some node y. The other binary relations can be converted to a pair of unary functions to find the mother or
daughter nodes.

(250) Deriving unary functions from types of morphological dominance relations
a. Morphological dominance with unbounded number of daughters

• From the relation MDom:nary(x, y):
– FM:MDom:nary(x) is not definable
– FD:MDom:nary(y): return the mother node x from the daughter node y

b. Morphological dominance with bounded number of daughters
• From the relation MDom:first(x, y) where y is the first daughter of x:

– FM:MDom:first(x): return the daughter node y from the mother node x
– FD:MDom:first(y): return the mother node x from the daughter node y

• From the relation MDom:second(x, y) where y is the second daughter of x:
– FM:MDom:second(x): return the daughter node y from the mother node x
– FD:MDom:second(y): return the mother node x from the daughter node y

• From the relation MDom:third(x, y) where y is the third daughter of x:
– FM:MDom:third(x): return the daughter node y from the mother node x
– FD:MDom:third(y): return the mother node x from the daughter node y

The above unary functions are defined for mutually exclusive domains. They are summarized into the
two unary functions below.

(251) Unary functions for morphological dominance

a. FM:MDom(x)
def
= FM:MDom:first(x) ∪ FM:MDom:second(x) ∪ FM:MDom:third(x)

b. FD:MDom(y)
def
= FD:MDom:nary(y) ∪ FD:MDom:first(y)∪

FD:MDom:second(y) ∪ FD:MDom:third(y)

With these definitions for these unary functions, the rest of the dissertation will utilize simple morphological
dominance MDom(x, y). In order to show if some process is QF local or not, I replace the binary relation
MDom(x, y) with the two unary functions FM:MDom(x) and FD:MDom(y) if possible.

4.5.3.3 Local computations over prosodic structure

Like morphological structure, some but not all hierarchical relations in prosody are convertible to two
unary functions. As with the morphology, conversion depends on being able to deterministically find one
node y from another node x. Likewise, some but not all prosodic association relations are convertible.
Successor relations are convertible.

Given some daughter node, finding its mother node is local and deterministic via unary functions. But
among mother-to-daughter prosodic dependencies, some are convertible to unary functions, and some are
not. The conversion depends on if there is a bounded number of daughters. Briefly, syllable-to-segment and
foot-to-syllable dependencies are QF, but all other prosodic mother-to-daughter dependencies are not QF. I
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assume syllables dominate a bounded number of segments (for discusssion, see Strother-Garcia 2019). Thus
syllable-to-segment dependencies are convertible to a unary function. The same applies to foot-to-syllable
dependencies in a footed language like English. However, there is no bound on how many syllables or feet
are dominated by a PStem or PWord. In compounds, there is no bound on how many PStems/PWords are
dominated by a single PWord.

For this dissertation, I already use refined types of prosodic dominances for syllable-to-segment dependencies,
e.g., PDom:syll_ons(x, y), etc. I do not use feet. I use refined types of PDom for PStem-to-syllable,
PWord-to-PStem, PWord-to-syllable, PStem-to-PStem, and PWord-to-PWord dependencies.10 Finding the
mothers of these prosodic nodes is definable with a unary function. Finding the daughters of syllables is
likewise definable. All other mother-to-daughter dependencies are not definable with a unary function.

(252) Deriving unary functions from types of prosodic dominance relations
a. From the relation PDom:syll_ons(x, y):

• FM:PDom:syll_ons(x): return the onset y of syllable x
• FD:PDom:syll_ons(y): return the syllable x of onset y

b. From the relation PDom:syll_nuc(x, y):
• FM:PDom:syll_nuc(x): return the nucleus y of syllable x
• FD:PDom:syll_nuc(y): return the syllable x of nucleus y

c. From the relation PDom:syll_coda1(x, y):
• FM:PDom:syll_coda1(x): return the inner coda y of syllable x
• FD:PDom:syll_coda1(y): return the syllable x of inner coda y

d. From the relation PDom:syll_coda2(x, y),:
• FM:PDom:syll_coda2(x): return the outer coda y of syllable x
• FD:PDom:syll_coda2(y): return the syllable x of outer coda y

e. From the relation PDom:PStem_syll(x, y):
• FM:PDom:PStem_syll(x) is not definable
• FD:PDom:PStem_syll(y): return the PStem x of syllable y

f. From the relation PDom:PWord_PStem(x, y):
• FM:PDom:PWord_PStem(x) is not definable
• FD:PDom:PWord_PStem(y): return the PWord x of PStem y

g. From the relation PDom:PWord_syll(x, y):
• FM:PDom:PWord_syll(x) is not definable
• FD:PDom:PWord_syll(y): return the PWord x of syllable y

h. From the relation PDom:PStem_PStem(x, y):
• FM:PDom:PStem_PStem(x) is not definable
• FD:PDom:PStem_PStem(y): return the PStem x that dominates a PStem y

i. From the relation PDom:PWord_PWord(x, y):
• FM:PDom:PWord_PWord(x) is not definable
• FD:PDom:PWord_PWord(y): return the PWord x that dominates PWord y

Based on the predicate FD:PDom:syll_seg(x, y), I define a unary function which returns the syllable x of
a segment y.

10The Armenian data does not use prosodic recursion: PWords (PStems) do not dominate other PWords (PStems).
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(253) QF user-defined predicates for segment-to-syllable prosodic dominance
• FD:PDom:syll_seg(y)

def
= FD:PDom:syll_ons(y) = x ∪ FD:PDom:syll_nuc(y) = x∪

FD:PDom:syll_coda1(y) = x ∪ FD:PDom:syll_coda2(y) = x

As for prosodic association relations, Match relations are convertible to two unary functions. A given
MNode (the left variable) can only get matched with a single PNode (the right variable); likewise a given
PNode can only get matched with a single MNode. Wrap relations and Subsume relations however are not
convertible to two unary functions. An MNode can be wrapped or subsumed into a single PNode, however
a given PNode can have multiple MNodes be wrapped or subsumed into it.

(254) Deriving unary functions from types of prosodic association relations
a. From Match relations

i. From the relation Match:stem(x, y):
• FL:Match:stem(x): return the PStem y which is matched with an MStem x
• FR:Match:stem(y): return the MStem x which is matched with an PStem y

ii. From the relation Match:word(x, y):
• FL:Match:word(x): return the PWord y which is matched with an MWord x
• FR:Match:word(y): return the MWord x which is matched with an PWord y

b. From Wrap relations
i. From the relation Wrap:stem(x, y):
• FL:Wrap:stem(x): return the PStem y which is wrapped into by the MStem x
• FR:Wrap:stem(y) is not definable

ii. From the relation Wrap:word(x, y):
• FL:Wrap:word(x): return the PWord y which is wrapped into by the MStem x
• FR:Wrap:word(y) is not definable

c. From the Subsume relation Subsume:stem(x, y):
• FL:Subsume:stem(x): return the PStem y which is subsumed into by the MStem x
• FR:Subsume:stem(y) is not definable

Finally, the successor relations among syllables or PStems are convertible to two unary functions.

(255) Deriving unary functions from types of immediate successor relations in prosodic structure
a. From the relation succ:syll(x, y):

• FL:succ:syll(x): return the syllable y which follows a syllable x
• FR:succ:syll(y): return the syllable x which precedes a syllable y

b. From the relation succ:PStem(x, y):
• FL:succ:PStem(x): return the PStem y which follows a PStem x
• FR:succ:PStem(y): return the PStem x which precedes a PStem y

To summarize, finding the daughters of most prosodic constituents is not doable with a QF unary function.
The main exception is finding the bounded number of daughters of a syllable. As for morphology-prosody
correspondences, it depends on the type of association or binary relation. Given a morphological node x and
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a prosodic node y, we can use unary functions to locally find out if x, y are in a prosodic match relationship.
Given a morphological node x, we can use a unary function to locally find out if x is wrapped or subsumed
into some prosodic node y. However, given prosodic node y, we can’t use unary functions to locally find
the morphological nodes which are wrapped or subsumed into y.

4.6 Conclusion

In this chapter, I introduced and defined the logical notation and representations that I use to formalize
the morphology-phonology interface. After going over the basics of the notation, I introduced a hierarchy of
logical transductions. At the bottom of the hierarchy are Quantifier Free (QF) transductions which compute
local processes. I discussed how some binary relations can be replaced with unary functions in order to
expand the set of possible local or QF processes. I then defined the hierarchical structure of morphology
and prosody using the logical notation. I showed how we can determine if the computation over these
hierarchical structures is local or not. In general, finding the mother nodes of a node is locally-computible,
while finding the daughter nodes of a node might not be depending on if there is any bound on tree
branching. This means that some of our binary relations are functional in both directions, while some
are functional in one direction but not another. The next chapter will use the notational system to logically
define the morphology-phonology interface, the generation of morphological and prosodic structure, and the
formulation of phonological rule domains. A key finding is that the bulk of this interface is computationally
local and can be computed with QF transductions.
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4.A Word signature for the formalization

Recall from Chapter 4: §4.2, that a word signature is of the template 〈D,L,R〉 where D is the domain
(set of domain elements), L is the set of unary labels, and R is the set of binary relations. In the dissertation,
I used a single word signature which I first defined in §4.2, and to which I then subsequently added new
elements. Specifically, §4.5 added morphological and prosodic labels/relations. In Chapter 5, I added a
constant SETTINGS to the domain. In Chapter 9, I added labels and relations for Operation Nodes. This
appendix compiles all of these unary labels and binary relations. This can be skipped on the first reading.

4.A.1 Domain D

The domain D consists of a set of elements {1, 2, ..., n} where the n elements can represent segments,
morphological nodes, or prosodic nodes. The domain likewise has two constants: NULL and the SETTINGS.

The constant NULL was introduced in §4.4.2. Its role is to act as a ‘sink state’ when a unary function
F (x) is undefined for some input x.

The constant SETTINGS encodes certain global information about the morphological structure in a given
cycle. It was introduced in Chapter 5 in §5.3, utilized in §5.4.3 and §5.5, and further explained in §5.6. It
was further utilized in generating morphologically complex words in Chapter §6: §6.3-6.6. In Chapter §9,
the SETTINGS was used to connect the derivation with its derivational history.

4.A.2 Unary labels L

The set L of unary labels encodes relevant properties of individual nodes. This information can be
segmental, morphological, prosodic, or derivational.

4.A.2.1 Segmental labels

The set of segmental unary labels are a set of labels for segments {a, b, c, d, . . . , z} and segmental features
{vowel, consonant, . . .}. These were introduced in Chapter 4: §4.2 and used throughout the dissertation.
Sometimes for clarity, I used user-defined predicates to encode features instead of unary labels, e.g. vowel(x).
Chapter 5: §5.5 introduced labels for stress and destressing.

• stressed:vowel(x): x is a stressed vowel
• stressed:syll(x): x is a stressed syllable
• destressed:vowel(x): x is a destressed vowel
• destressed:syll(x): x is a destressed syllable

4.A.2.2 Morphological labels

The set of morphological unary labels are a set of labels for morphological nodes. The basic set of labels
was first introduced in Chapter 4: §4.5.1.
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• MNode(x): x is a morphological node (any morph, morpheme, MStem, or MWord)
• MConc(x): x is a morphological constituent (any MStem or MWord)
• morpheme(x): x is a morpheme (any root or affix)
• morph(x): x is a morph
• affix(x): x is an an affix
• der(x): x is an a derivational affix
• infl(x): x is an an inflectional affix
• MRoot(x): x is a morphological root
• MStem(x): x is a morphological stem
• MWord(x): x is a morphological word

Additional morphological features were likewise introduced in Chapter 4: §4.5.1, and were used especially
in Chapter 7.

• past(x), plural(x), gerund(x), inst(x), def(x), infinitival(x), irregular(x) . . .
• noun(x), verb(x), adj(x)
• Class:E(x),Class:A(x),Class:I(x), . . .

The set of labels for compounding was introduced in Chapter 6: §6.2.2.2.

• MConc(x): a morphological node x is the morphological concatenation of stems and a linking vowel
• LV_morpheme(x): a morpheme x is the linking vowel used in compounding
• MStem:Comp:Left(x): the MStem x is the left stem or MStemL of a compound
• MStem:Comp:Right(x): the MStem x is the right stem or MStemR of a compound
• MStem:Comp(x): the MStem x is a compound
• MStem:Comp:Endo(x): the MStem x is a hyponymic or endocentric compound
• MStem:Comp:Exo(x): the MStem x is a non-hyponymic or exocentric compound

4.A.2.3 Prosodic labels

The basic set of unary labels for prosodic structure was introduced in Chapter 4: §4.5.2.

• syll(x): x is a syllable
• foot(x): x is a foot
• PStem(x): x is a prosodic stem
• PWord(x): x is a prosodic word
• PNode(x): x is a prosodic node (syllable, foot, PStem, PWord)

4.A.2.4 Derivational labels

These labels were used to direct the derivation by specifying what to prosodically parse, what rules to
apply, what dialect to use, and what morphological operations to undertake.

Parse lables encode what should be prosodically parsed. They are determined by examining the morphological
and prosodic context of the morphologically topmost node. They were introduced in Chapter 5: §5.3.1.
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• Parse:MStem:nonrecursive(SETTINGS):
is TRUE for SETTINGS iff we need to parse a non-recursive MStem into a PStem
Introduced in Chapter 5: §5.3.1, used in §5.4.3

• Parse:MStem:recursive(SETTINGS):
is TRUE for SETTINGS iff we need to parse an unparsed MStem which dominates a
matched (parsed) MStem
Introduced in Chapter 6: §6.3.2.1, used in §6.5.1

• Parse:MWord:nonrecursive(SETTINGS):
is TRUE for SETTINGS iff we need to parse a non-recursive MWord into a PStem
Introduced in Chapter 6: §6.3.2.2, used in §6.5.2

• Parse:MStem:Comp:Endo(SETTINGS):
is TRUE for SETTINGS iff we need to parse an endocentric compound
Introduced in Chapter 6: §6.3.2.3, used in §6.5.3.4

• Parse:MStem:Comp:Exo(SETTINGS):
is TRUE for SETTINGS iff we need to parse an exocentric compound
Introduced in Chapter 6: §6.3.2.3, used in §6.5.3.5

Cophon labels are properties of certain constituents like MStems, MWords, PStems. These labels encode
the association of the constituent with a cophonology. These were introduced in Chapter §5: §5.3.2. The
PStem cophonology is redundant because all PStems have this label (cf. Chapter 6: §6.6.2).

• Cophon:SLevel(x): x triggers the stem-level cophonology
• Cophon:WLevel(x): x triggers the word-level cophonology
• Cophon:PStem(x): x triggers the PStem-level cophonology

Cophon labels are used to determine what cophonology to apply in a given cycle. This information on
active rule domains is encoded into Domain labels. These are properties of the SETTINGS constant (Chapter
§5: §5.3.2). They are used in triggering the stem-level (Chapter 5: §5.5, Chapter 6: §6.6.1), word-level
(Chapter 6: §6.6.3.2), and PStem-level cophonologies (Chapter 6: §6.6.2,6.6.3.3).

• Domain:Cophon:SLevel(SETTINGS): the SETTINGS has the domain of the SLevel cophonology
• Domain:Cophon:WLevel(SETTINGS): the SETTINGS has the domain of the WLevel cophonology
• Domain:Cophon:PStem(SETTINGS): the SETTINGS has the domain of the PStem cophonology

Because Armenian phonological processes vary by dialect, Chapter 6: §6.6.3.1 used labels for selecting
the right dialect. These labels were on the SETTINGS constant.

• Western(SETTINGS) or Eastern(SETTINGS)

In Chapter 9: §9.3.1, Operation Nodes were introduced which encode the input’s derivational history and
its future morphological operations. These nodes utilize their own unary labels.

• Oper(x): the node x is an operation
• Oper:Root(x): we must generate the input
• Oper:n_zero(x): we must generate the covert nominalizer
• Oper:Def(x): we must generate the definite suffix -@,-n
• Oper:CL_is(x): we must generate the clitic =e ‘is’
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4.A.3 Binary relations R

Binary relations encode the relationships between two nodes or elements in the domains. I defined binary
relations based on segmental, morphological, prosodic, and derivational relationships.

4.A.3.1 Segmental relations

Segments are ordered in terms of the binary relation of immediate successor succ:seg(x, y).

4.A.3.2 Prosodic relations

The basic set of prosodic binary relations was introduced in Chapter 4: §4.5.2. These relations concerned
the successor relationship among prosodic nodes, their dominance relations, and their association with
morphological nodes.

I used the following successor relations for prosodic nodes.

• succ:syll(x, y): x, y are syllables and x precedes y
• succ:PStem(x, y): x, y are PStems and x precedes y

Prosodic nodes form a tree-like hierarchy based on the binary relation of prosodic dominance, which is
divided into different types based on the identity of the mother and daughter nodes.

• PDom:syll_ons(x, y): a syllable x dominates a segment y as an onset
• PDom:syll_nuc(x, y): a syllable x dominates a segment y as a nucleus
• PDom:syll_coda1(x, y): a syllable x dominates a segment y as an inner coda
• PDom:syll_coda2(x, y): a syllable x dominates a segment y as an outer coda
• PDom:PStem_syll(x, y): a PStem x dominates a syllable y
• PDom:PWord_PStem(x, y): a PWord x dominates a PStem y
• PDom:PWord_syll(x, y): a PWord x dominates a syllable y
• PDom:PStem_PStem(x, y): a PStem x dominates a PStem y
• PDom:PWord_PWord(x, y): a PWord x dominates a PWord y

Prosodic nodes are associated with morphological nodes based on prosodic matching, prosodic wrapping,
and prosodic subsumption. These were all introduced in Chapter 4.5.2 and used in different places. I didn’t
use Wrap:word(x, y) because I didn’t formalize the prosody of words with multiple inflectional suffixes.
This is nevertheless straightforward and analogous to the use of Wrap:stem(x, y).

• Match:stem(x, y): the MStem x is matched with (mapped to) the PStem y
First used in Chapter 5: §5.4.3

• Match:word(x, y): the MWord x is matched with (mapped to) the PWord y
First used in Chapter 6.3.2: §6.5.2.2

• Wrap:stem(x, y): the MStem x is wrapped into PStem y
First used in Chapter 6.3.2: §6.5.1

• Wrap:word(x, y): the MWord x is wrapped into PWord y
Never used
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• Subsume:stem(x, y): the MStem x is subsumed into PStem y
First used in Chapter 6: §6.5.3.4

4.A.3.3 Morphological relations

Morphological nodes are primarily organized by morphological dominance MDom(x, y) which was
introduced in Chapter 4: §4.5.1. In Chapter 4: §4.5.3.2, I decomposed this binary relation into four mutually
exclusive types of morphological dominance based on the branching factor of the mother node.

• MDom(x, y): a morphological node x morphologically dominates some other morphological node or
segment y
• MDom:nary(x, y)

def
= MDom(x, y) ∧morph(x) ∧ segment(y)

• MDom:first(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the first daughter"

• MDom:second(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the second daughter"

• MDom:third(x, y)
def
= MDom(x, y) ∧ ¬morph(x)∧ "y is the third daughter"

4.A.3.4 Derivational relations

In Chapter 9: §9.3.1, I introduced Operation Nodes. These participate in the following binary relations.

• succ:Oper(x, y): the operation x immediately precedes the operation y
• operate_at(SETTINGS, y): the operation y is the current morphological operation that we must apply.

It is linked with the SETTINGS constant.
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Chapter 5

Components of cyclic phonology

5.1 Architecture of morphophonology

The previous chapter established the basics of the notational system that I use. In this chapter, I apply
the logical notation to formalize the basic aspects of an interactionist model for the morphology-phonology
interface. The takeaway is that the interface is not only definable but also largely computationally local.

A cyclic interactionist model assumes that the derivation consists of three explicit components: the
Morphology, Prosody, and Phonology. This chapter formalizes these three components. I likewise formalize
an implicit step in the derivation which occurs between the Morphology and Prosody. This more explicit
system is sketched out below.

(256) Sketch of an interactionist model with an explicit stage for the SETTINGS

Input
root

Morphology Settings Prosody Phonology
Output
root with
materialadd examine parse apply

trigger

produce

add

To illustrate, consider the Armenian simplex stem amusin ‘husband’ and its derivation table below. It
undergoes two cycles, one stem-level for the covert nominalizer -∅ and one word-level for the covert
nominative suffix -∅. First, given an input root √amusin, the Morphology adds or changes the input to
create a larger morphological structure: i.e., add a covert category suffix -∅ to turn the root into a noun. The
later Prosody and Phonology stages need to access certain information from the Morphology and derivation,
i.e., that the input consists of a unparsed morphological stem. To get this information, we examine the
settings of the derivation by examining the input’s morphology. This information tells us to apply the right
prosodic processes (parsing a stem) and the right phonological rule domains (stem-level stratum). With this
information, the Prosody parses this structure into well-formed prosodic constituents with syllables and
a prosodic stem (a.mu.sin)s. Lastly, the Phonology is applied in the form of phonological rule domains.
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Specifically, final stress is applied as part of the stem-level cophonology: amusín. These three components
vacuously repeat in a second cycle to add covert inflection, form a prosodic word, and apply the word-level
phonology.

(257) Derivation table for the stem amusin with explicit examination

Input /amusin -∅S -∅W /

Cycle 1 MORPHO Spell-out /amusin -∅/
EXAMINE What should we parse and apply?
PROSODY Syllabify amu.sin

Map PStem (amu.sin)s
PHONO SLevel

Stress (amu.śin)s
DHR

Cycle 2 MORPHO Spell-out (a.mu.śin)s - /-∅/
EXAMINE What should we parse and apply?
PROSODY Syllabify

Map PWord ((a.mu.śin)s)w
PHONO WLevel

Stress
Output amuśin

In this chapter, I formalize the three explicit components (Morphology, Prosody, Phonology). I show that
they are computationally local. However, the implicit Examination or Settings step is not computationally
local. Each of the four components is formalized as a logical transduction which feeds the next. Furthermore,
for a single component, the logical transduction can be the composition of smaller transductions, e.g., the
logical transduction for prosody consists of first syllabifying the input and then generating a PStem.

In §5.2, I first formalize the morphology and define how we can add a covert affix. In §5.3, I examine the
settings of the derivation and encapsulate the relevant information into a constant called the SETTINGS. This
constant is added into the domain D of our word signature from the previous chapter. With the SETTINGS

in place, I then define syllabification and prosodic mapping in §5.4. I define cophonologies or rule domains
in 5.5, and I use the SETTINGS to trigger final stress. In §5.6, I discuss the conceptual and computational
significance of the SETTINGS constant and how it affects the locality of the interface. I finally conclude in
§5.7.

Note that throughout this thesis, I illustrate the computation in an intuitively procedural or serial manner
but this is only for illustration. Within a single component or logical transduction such as the Morphology,
the output functions can apply in parallel or in any order as long as there is no circularity. I will use terms like
‘generate’ or ‘create’ often, but this is again just for illustration. Furthermore, within a single cycle, the four
components of Morphology, Examination, Prosody, and Phonology are serially ordered. Each component
is a logical transduction. Because of function composition, each component can be composed into a single
transduction. And, an entire cycle can be composed into a single transduction. In Chapter §9, I further
refine my interactionist model so that we can break down the recursive (potentially infinite) loop from the
Phonology to the Morphology into a finite sequence of cycles.
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5.2 Morphology: Adding a covert affix

When generating new morphological structure, there are three tasks involved. First, we enlarge the
input by processing ‘larger’ chunks of morphological constructions. Second, we pick allomorphs for
the morphemes in those chunks. Finally, we must linearize those chunks for the phonology. In this
section, I demonstrate only the first task of ‘enlarging’ and some aspects of linearization. Allomorphy
and linearization are further discussed in Chapter 6 where I illustrate the generation of overt affixes, and in
Chapter 7 where I discuss the computation of allomorphy and linearization.

For ease of demonstration, I model morphology as a set of morphological processes, i.e., as a set of
logical transductions which themselves are sets of output functions.1 For example, adding the suffix -agan is
a transduction, spelling out suppletive allomorphs for case is another transduction, and creating a compound
is a separate transduction. This is similar to word-formation rules (cf. Aronoff 1976). Unifying all these
possible morphological processes in the grammar requires some enrichment of the input (Chapter 9: §9.3).

For the simplex stem amusin ‘husband’, it consists of a free-standing root. It can form its own MStem by
taking a covert category suffix n. Adding this zero suffix is an actual morphological process, shown below.

(258) Desired output for creating an MStem over an MRoot in amusin
Input Output

MRoot

morph

amusin

MStem

n

morph

∅

MRoot

morph

amusin

a m u s i n

morph

MRoot

C C C C C

m m m

m m m

m

a m u s i n

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

To generate this output, we define a morphological process which is specific to adding a zero n-suffix. We
need to add three new morphological nodes (MNodes) for the morph, the morpheme n, and the MStem, each
with their own index. No segments are added. Therefore, adding a zero n-suffix is a logical transduction
that requires a copy set of size 4. In Copy 1, the input is faithfully outputted (259).

1I adopt an essentially item-and-process approach to morphological functions. However, this is only out of convenience. A fully
item-and-arrangement approach is also feasible and in some ways computationally equivalent (Roark and Sproat 2007). I discuss
the computability of these two approaches in Chapter 7: §7.2.
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(259) QF output functions for vacuous identity in Copy 1

• For every label lab ∈ L:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

The new nodes for the morph, morpheme,2 and MStem are generated in Copies 2-4. They are the output
correspondents of the input’s morphologically topmost node.3 Via the user-defined predicate MTopmost(x)
in (260a), some MNode x is the morphologically topmost node if it is an MNode and there is no other
MNode y which dominates it. The predicate MTompost(x) is QF-definable. With FD:MDom(y), we can
check that some MNode is topmost if it does not have a mother.

(260) a. FO user-defined predicate for finding the morphologically topmost MNode
• MTopmost(x)

def
= MNode(x) ∧ ¬∃y[MDom(y, x)]

b. QF user-defined predicate for finding the morphologically topmost MNode
• MTopmost(x)

def
= MNode(x) ∧ FD:MDom(x) = NULL

c. QF output functions for creating new morphological nodes for the n-suffix

• φmorph(x2)
def
= MTopmost(x)

• φnoun(x3)
def
= MTopmost(x)

• φMStem(x4)
def
= MTopmost(x)

I leave implicit the fact the new nodes have various redundantly defined labels, e.g. if x is a morph then it
is also an MNode.

(261) Predictable labeling when creating new nodes
• φmorph(x2)→ φMNode(x2)
• φnoun(x3)→ φmorpheme(x3)

...

I illustrate the output of the above functions below. The new nodes are all output correspondents for the
input MRoot0.8 because it is the morphologically topmost node in the input.

2Note that the category feature has the label noun(x) but it is illustrated as n in the trees.
3New MNodes are defined in terms of the topmost node in order to ensure order-preservation. This is discussed in Chapter 7:

§7.5.4.
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(262) Generating a zero suffix in amusin – generating morphology nodes
Input Output

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7

MRoot0.8

C C C C C

m m m

m m m

m

a1.1Copy 1

Copy 2

Copy 3

Copy 4

m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7

morph2.8

MRoot1.8

n3.8

MStem4.8

C C C C C

m m m

m m m

m

The figure above is equivalent to the one below where I have shuffled nodes into a visually more appealing
location.

(263) Generating a zero suffix in amusin – rearranged copies
Input Output (Copies 1-4)

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7

MRoot0.8

C C C C C

m m m

m m m

m

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7 morph2.8

MRoot1.8 n3.8

MStem4.8

C C C C C

m m m

m m m

m

The new morphological structure must now be internally linearized or organized. Any new segments
are internally linearized via immediate successor while morphological nodes are internally linearized via
morphological dominance. The new suffix is a zero-suffix so we only internally linearize morphological
nodes. This is done via the output functions below.

(264) QF output functions for internally linearizing the zero-suffix n in amusin

• φMDom(x4, y3)
def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x3, y2)
def
= MTopmost(x) ∧MTopmost(y)
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This is shown below. For example, the new MStem is MStem4.8, and the new morpheme n is n3.8. Via
the function φMDom(x4, y3), the new MStem x4 dominates the new morpheme n y3. These are selected by
this function because they are output correspondents of the morphologically topmost node in the input (the
MRoot).

(265) Generating a zero suffix in amusin – internal linearization
Input Output (Copies 1-4)

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7

MRoot0.8

C C C C C

m m m

m m m

m

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7 morph2.8

MRoot1.8 n3.8

MStem4.8

C C C C C

m m m

m m m

m m

m

The last step is to externally linearize the new morphology with the base. In the case of the zero suffix n,
we only need to make the new MStem dominate the output MRoot via the output function below.

(266) QF output function for externally linearizing the zero-suffix n in amusin

• φMDom(x8, y1)
def
= MTopmost(x) ∧MTopmost(y)

This is illustrated below. The new MStem4.8 x
4 dominates the output correspondent MRoot1.8 y1 because

both are output correspondents of the morphologically topmost node, MRoot0.8.

(267) Generating a zero suffix in amusin – external linearization
Input Output (Copies 1-4)

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7

MRoot0.8

C C C C C

m m m

m m m

m

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7 morph2.8

MRoot1.8 n3.8

MStem4.8

C C C C C

m m m

m m m

m m

m

m

The result is a complete new morphological item. All the output functions relied on only the predicate
MTopmost(x) which is QF. Adding a covert affix is thus QF and computationally local. To define other
possible morphological processes, the above functions must be slightly modified on a construction-by-construction
basis, i.e., changing the segments or morphological labels, changing the direction of linearization, etc. These
modifications are illustrated in Chapter 6: §6.2.1.
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5.3 Implicitness in the derivation: Examining the morphology

Having created a new morphological item, the item must now be prosodically parsed and subject to
phonological rules (a cophonology). However, in order to know what to parse and what rules to apply,
we need to examine the input’s morphophonological structure. The morphophonological structure is what
triggers the prosodic parse and rule domains. Analyzing the structure is implicit in a traditional derivation.
I make it into an explicit step in the table below. I only show the first cycle without covert inflection.

(268) Explicit derivation table for producing the first cycle of amuśin
MSn

n

-∅

√

/amusin

Input /amusin -∅S/

Cycle 1 MORPHO Spell-out /amusin -∅/
EXAMINE What should we parse and apply?
PROSODY Syllabify amu.sin

Map PStem (amu.sin)s
PHONO SLevel

Stress (amu.śin)s
DHR

Output amuśin

Specifically, in order to parse or map some MStem into a PStem, we need to know 1) that the input
contains an MStem, 2) if the input MStem has or has not been parsed before, and 3) what prosodic constituents
already exist in the input. Similarly, in order to apply the stem-level cophonology, we need to know the
topmost node in the morphological tree is an MStem. All of this information is implicitly calculated after
applying the morphological processes. I call this step ‘examining’ the settings of the derivation. This step
will determine the non-local morphological triggers for the prosody and phonology.

In this section, I explain this intermediate step. I define a constant called the SETTINGS. This constant
is added to the domain D of our word signature from the previous chapter. This constant encapsulates
the above global information about the morphophonological derivation which will be used for mapping
higher prosodic structure (§5.3.1) and for triggering phonological strata or rule domains (§5.3.2). Later
in this chapter (§5.6), I discuss the ontological status of the SETTINGS, its utility, and its computational
significance. Briefly, the SETTINGS encapsulates the non-local morphological information which triggers
the (otherwise local) prosodic and phonological processes.

5.3.1 Encapsulating global information for prosody

In the case of amusin, the input is an unsyllabified morphological tree rooted by an MStem. This MStem
non-recursively dominates an MRoot.4 The desired output contains both syllable structure and a prosodic

4Recall that an MNode of label x is said to recursively dominate another MNode of the same label x.
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stem (PStem); the PStem is mapped from and matched with the MStem. In this section, I omit indexes.

(269) Desired output for an unprosodified amusin
Input Output

a m u s i n

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

a m u s i n

σ σ σ

morph morph

MRoot n

MStem

PStem

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

Generating the syllables does not need any morphological information. But in order to generate the
PStem, we need to ‘know’ that the input contains an unparsed MStem. This information is encapsulated
into our derivation’s SETTINGS. I represent this constant as a floating box above the morphological tree.

(270) Desired output for an unprosodified amusin using the SETTINGS variable
Input Output

a m u s i n

morph morph

MRoot n

MStem

SETTINGS

C C C C C

m m m

m m m

m m

m

m

a m u s i n

σ σ σ

morph morph

MRoot n

MStem

PStem

SETTINGS

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

To generate the right prosody, we need to update the SETTINGS with morphological information on what
to parse. This information includes: 1) What is the topmost morphological node? and 2) Has this MNode
mapped to a prosodic node? Possible answers to these questions are:
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(271) Possible settings for parsing:
The topmost MNode is...

1. an unparsed MStem over a root
2. an unparsed MStem over a (parsed) MStem
3. an unparsed MWord over an MStem
4. an unparsed MWord over a (parsed) MWord
5. a compound

We can redundantly include information about the topmost prosodic node in the input. This information
is redundant because it is predictable from the morphology. For now, readers can ignore compounds.5

(272) Possible redundant settings for parsing:
The topmost MNode is... + The topmost PNode is...

1. an unparsed MStem over a root + a syllable
2. an unparsed MStem over a (parsed) MStem + a PStem
3. an unparsed MWord over an MStem + a PStem
4. an unparsed MWord over a (parsed) MWord + a PWord
5. a compound + a PStem

Determining the topmost morphological or prosodic node is done via the following user-defined predicates.
The predicate MTopmost(x) picks the node x which is a morphological node and which is on the top of
the tree, i.e., there is no other node that morphologically dominates it. As explained in §5.2, the predicate
MTopmost(x) is QF-definable.

(273) FO user-defined predicates for finding the topmost morphological and prosodic nodes
• MTopmost(x)

def
= MNode(x) ∧ ¬∃y[MDom(y, x)]

• PTopmost(x)
def
= PNode(x) ∧ ¬∃y[PDom(y, x)]

Finding the topmost PNode is similarly defined.6 Note how the relevant labels for PTopmost are all
user-defined predicates. I generally do not reference the prosodically topmost node in this thesis.

In the case of the unsyllabified input amusin, the topmost MNode is an unparsed MStem which dominates
an MRoot. This broken down into the following properties about the input:

1. The topmost MNode is an MStem
2. This MStem dominates an MRoot (= the MStem does not recursively dominate another MStem)
3. The MStem is unparsed (thus the topmost PNode is a syllable)

This information is what determines the prosodic parse. We encapsulate this information into the SETTINGS

via a new type of unary label: Parse labels. Their role is to determine what MNode will be parsed. For
amusin, the relevant Parse label is for parsing non-recursive MStems: Parse:MStem:nonrecursive(SETTINGS).

5This redundant information becomes useful if we no longer use a SETTINGS constant (Chapter 8; §8.3).
6Note that the prosodic ‘tree’ isn’t always tree-like in having some unique node. If the word amusin is mapped to a sequence of

syllables without a PStem a.mu.sin, then the ‘topmost’ PNode is a syllable even though there is no unique root for the tree.
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(274) Unary labels for parsing PStems via the SETTINGS constant
• Parse:MStem:nonrecursive(SETTINGS): is TRUE for SETTINGS iff we need to parse a non-recursive

MStem into a PStem

Updating the SETTINGS is a distinct stage in the derivation. It is after a new morphological constituent
is formed and before any prosody and rule application. This process is a logical transduction which uses a
copy set of size 1. Everything in the input stays the same except for the labels on the SETTINGS.

(275) QF output functions for vacuous changes in UPDATING THE SETTINGS

• For every label lab ∈ L except labels for SETTINGS labels:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

The Parse status of the SETTINGS constant is determined via the output function below. It is set to TRUE

for the SETTINGS iff the topmost morphological node in the tree is x, x is an MStem, it doesn’t dominate
another MStem y, and it is not matched with any PStem z. This output function is computationally non-local
because it uses FO logic; we cannot replace the quantified variable ∃x with unary functions. We need to do
a global search over the input to find the topmost MNode.

(276) FO output function for parsing PStems via the SETTINGS constant
• φParse:MStem:nonrecursive(SETTINGS1)

def
= ∃x[MTopmost(x) ∧MStem(x) ∧

¬∃y[MStem(y) ∧MDom(x, y)]
¬∃z[PStem(z)) ∧Match:stem(x, z)]]

For amusin, the output function above is true with the topmost node x as the MRoot0.8. Thus, the
SETTINGS constant is labelled TRUE for parsing a non-recursive MStem. This is shown below. I give
new indexes to the recently generated suffix nodes.

(277) Setting parse status for SETTINGS for parsing a non-recursive MStem in amusin
Input Output

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

SETTINGS

C C C C C

m m m

m m m

m m

m

m

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

SETTINGSParse:MStem:nonrecursive

C C C C C

m m m

m m m

m m

m

m
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With the SETTINGS updated, the right MNode will parsed in a separate PROSODY step. This prosodic
process is described in §5.4.3. I first formalize how the SETTINGS also determine the right cophonology.

5.3.2 Encapsulating global information for cophonologies and domains

Besides what to parse, the morphology tells us what set of phonological alternations to apply. These
alternations are part of a phonological rule domain, also called a cophonology or stratum. I define these
processes with logical output functions, but I use the term rule descriptively for easier illustration. In logical
statements, I use the more specialized term ‘cophonology’.

Rule domains are triggered by a certain morphological structure, whether the structure is a general
morphological construction (MStem vs. MWord) or a specific morpheme (morpheme-specific rules or
constraints (Inkelas 2008; Pater 2009)). In between, the domain can be a natural class of a small number
of constructions, e.g., place names in Turkish (Inkelas and Orgun 2003). A cophonology can also be
associated with a certain morphologically-derived prosodic constituent, e.g., the PStem (Downing 1999a)
which triggers stress and (in Eastern Armenian) vowel reduction.

To apply rule domains, we need to logically formalize how to encode and select cophonologies. In
order to encode the right stratum for a given derivation, two methods come to mind. The first is intuitively
elegant and common but computationally awkward to define. I do not use it. The second alternative is
computationally simple to define but (at first) counter-intuitive.

The first encoding mechanism is to bifurcate the set of rules or output functions into different subsets
(rule strata) and to specify that each subset can only apply if the input’s morphology is ‘associated’ with
that stratum. It is unclear how this can be implemented because the prosaic description implies that the
functions are being selected as variables for some meta-function for applying strata. The second approach
is to set up a set of unary labels for possible names of cophonologies, and to place these labels onto the
triggering MNodes/PNodes, as listed below. In the case of Armenian, MStems are labeled with the name of
the stem-level (SLevel) cophonology, while MWords with that of the word-level (WLevel) cophonology.7

PStems have the label of the PStem-level cophonology.

(278) Unary labels for cophonologies for MNodes and PNodes
• Cophon:SLevel(x): x triggers the stem-level cophonology
• Cophon:WLevel(x): x triggers the word-level cophonology
• Cophon:PStem(x): x triggers the PStem-level cophonology

I assume that MStems, MWords, and PStems are redundantly labeled with the right cophonology label.

(279) Predictably associate certain morphological and prosodic constructions with certain cophonologies
• MStem(x)→ Cophon:SLevel(x)
• MWord(x)→ Cophon:WLevel(x)
• PStem(x)→ Cophon:PStem(x)

7Individual morphemes can have their own label for a morpheme-specific cophonology (passive cophonology) which may
percolate higher in the tree. I set aside morpheme-specific phonology. Though in Chapter 8: §8.2.2, I sketch a morpheme-based
alternative to constituent-based cophonologies.
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In order to apply the right rules, we must examine the morphological structure in order to find the relevant
morphological triggers. Alternatively, the right cophonology is selected by ‘percolating’ the cophonology
label of the topmost MNode (or PNode) in the tree to the SETTINGS constant. Individual rules apply based
on the SETTINGS’s properties, specifically based on the following Domain labels.

(280) Unary labels for domains of cophonologies for SETTINGS

• Domain:Cophon:SLevel(SETTINGS): the SETTINGS has the domain of the SLevel cophonology
• Domain:Cophon:WLevel(SETTINGS): the SETTINGS has the domain of the WLevel cophonology
• Domain:Cophon:PStem(SETTINGS): the SETTINGS has the domain of the PStem cophonology

These labels are placed on the SETTINGS via the output functions below.8 As with the prosody, these
output functions require FO logic and are computationally non-local because of the quantifier ∃x. This
quantifier finds the morphologically topmost MNode which is not connected to the SETTINGS constant.

(281) FO output functions for updating the SETTINGS for the right cophonology
• φDomain:Cophon:SLevel(SETTINGS1)

def
= ∃x[MTopmost(x) ∧ Cophon:SLevel(x)]

• φDomain:Cophon:WLevel(SETTINGS1)
def
= ∃x[MTopmost(x) ∧ Cophon:WLevel(x)]

I illustrate this encapsulation or ‘percolation’ below. Note that the SETTINGS is simultaneously given
the label for the right parsing and the right cophonology before we apply the prosody. Via the function
φDomain:Cophon:SLevel(SETTINGS1), the SETTINGS constant gets the SLevel domain label because
the morphologically topmost MNode is an MStem x, and it has the SLevel cophonology label.

(282) Setting parse and domain status for SETTINGS for parsing a non-recursive MStem in amusin
Input Output

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

SETTINGS

C C C C C

m m m

m m m

m m

m

m

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

m m m

m m m

m m

m

m

In order to give the SETTINGS constant the right unary labels, we need to use computationally non-local
information via FO logic. However, once these right properties are encapsulated into the SETTINGS, we
can then apply the prosodic parse and phonological rule domains. The latter two are computationally local
because any potentially non-local trigger is encapsulated into the locally-accessible SETTINGS.

8For now, I set aside the PStem cophonology until Chapter 6: §6.6.2. The morphological cophonologies are determined after
the Morphology, but this prosodic PStem cophonology is determined after the Prosody and before the Phonology.
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5.4 Prosody: Syllabification and prosodic mapping

Having updated the SETTINGS, we now generate the prosodic structure. I formalize this step as a
transduction which consists of three smaller transductions: syllabification or the creation of new syllables
(§5.4.1), ordering these syllables (§5.4.2), and the prosodic mapping of the PStem (§5.4.3). As I explain
in Chapter 6: §6.5, I formalize prosodic mapping as a finite set of logical transductions, each for different
possible parses.

5.4.1 Syllabification of an unsyllabified input

The first step in the prosody is syllabification. Syllabification takes as input an unparsed string of
segments (and its morphological tree) and erects syllable structure. For example, the syllabification of
the word amusin takes as input an unsyllabified morphological tree and generates a syllabified prosodic
structure. The prosodic structure isn’t exactly a ‘tree’ because it doesn’t have a unique root node; it is instead
a directed acyclic graph (DAG). The morphology and prosody are two DAGs that meet at the segments.

(283) Desired output for adding a covert suffix to amusin to form an MStem
Input Output

MStem

n

morph

∅

MRoot

morph

amusin

σ

sin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amusin

a m u s i n

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

a m u s i n

σ σ σ

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

C C

Inside words, initial syllabification is the same regardless of morphological structure, so it does not use
any information from the SETTINGS of the derivation.9 The maximal syllable is CVCC. Informally, vowels
form the nucleus of some syllable. Any left-adjacent consonant is syllabified as the vowel’s onset. Any

9Post-lexical syllabification is often affected by morphological structure. I do not discuss such cases in this thesis.
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right-adjacent unsyllabified consonant is syllabified as a coda. If two unsyllabified consonants follow a
vowel, these consonants can form a complex coda if they have falling sonority.10 Below I formalize each of
these steps. I set aside schwa epenthesis and appendix consonants (Vaux 1998b:ch2).

Syllabification requires a copy set of size 2. Copy 1 outputs any underlying segments and morphology;
Copy 2 is where new syllable structure is created. In Copy 1, all relations surface faithfully except for any
type of prosodic dominance between a syllable and a segment (onset, nucleus, inner coda, outer coda).

(284) QF output functions for faithfully outputting labels and syllabification-independent relations in Copy
1
• For every label lab ∈ L:

φlab(x1)
def
= lab(x).

• For every relation rel ∈ R−{PDom:syll_ons,PDom:syll_nuc,PDom:syll_coda1,PDom:syll_coda2}:
φrel(x1, y1)

def
= rel(x, y)

For amusin, the above functions generate the following faithful copy in Copy 1. I omit the morphological
nodes and SETTINGS constant.

(285) Syllabification of amusin – outputting segments
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

C C C C C

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 i1.5 n1.6
C C C C C

Unparsed segments are syllabified into the new syllables in Copy 2. The user-defined predicate below
checks for any segments which are unsyllabified in the input or in Copy 1. An underlying segment x is
unsyllabified if there is no syllable y in the input such that segment x is dominated by the syllable y as an
onset, nucleus, or coda.

(286) a. FO user-defined predicate for finding unsyllabified segments in the input

• unsyllabified(x)
def
= ¬∃y[syll(y) ∧ [PDom:syll_ons(y, x)∨

PDom:syll_nuc(y, x)∧
PDom:syll_coda1(y, x) ∨ PDom:syll_coda2(y, x)]]

b. FO user-defined predicate for finding unsyllabified segments in Copy 1
• φunsyllabified(x1)

def
= ¬∃y[φsyll(y1) ∧ [φPDom:syll_ons(y1, x1) ∨

φPDom:syll_nuc(y1, x1)∨
φPDom:syll_coda1(y1, x1)∨φPDom:syll_coda2(y1, x1)]]

10My formalization is similar but not identical to Strother-Garcia (2019)’s. She provides multiple formalizations of syllable
structure, including syllables with tree structure (Strother-Garcia 2019:37). In her tree model, she formalized prosodic concepts
like onset and nucleus as individual nodes in the tree, whereas I formalize them as binary relations between segments and syllables.
We are notationally equivalent.
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The predicate φunsyllabified(x1) checks if some output correspondent x1 in Copy 1 is syllabified with
any syllables in Copy 1. The distinction between the predicates unsyllabified(x) and φunsyllabified(x1)
is unneeded for now but is useful in resyllabification in Chapter 6: §6.4:. The two predicates are QF-definable.
They use binary relations which can be converted to unary functions to find the syllable mother of some
segment.

(287) a. QF user-defined predicate for finding unsyllabified segments

• unsyllabified(x)
def
= FD:PDom:syll_ons(x) = NULL ∧FD:PDom:syll_nuc(x) = NULL ∧

FD:PDom:syll_coda1(x) = NULL ∧
FD:PDom:syll_coda2(x) = NULL

b. QF user-defined predicate for finding unsyllabified segments in Copy 1
• φunsyllabified(x1)

def
= φFD:PDom:syll_ons(x1) = NULL ∧
φFD:PDom:syll_nuc(x1) = NULL ∧
φFD:PDom:syll_coda1(x1) = NULL ∧
φFD:PDom:syll_coda2(x1) = NULL

Syllable creation and nucleus assignment proceeds as follows using the output functions below for Copy
2. Note that these output functions reference material generated in Copy 1.

Let x be an unparsed vowel in the input. It surfaces as an output vowel x1 in Copy 1 (also called y1 in
the relation below). Via φsyll(x2) in Copy 2, the output correspondent x2 is generated and labeled as a
syllable if the output vowel x1 is a vowel and it is unsyllabified. Via φPDom:syll_nuc(x2, y1), this new
syllable x2 prosodically dominates the output vowel x1 (=y1) as its nucleus because x2 is a syllable, y1 is a
vowel, y1 and x1 are the same vowel, and x1 = y1 is unsyllabified in Copy 1.

(288) a. QF output function for syllable creation in Copy 2
• φsyll(x2)

def
= φvowel(x1) ∧ φunsyllabified(x1)

b. QF output function for nuclei assignment across Copy 1 and 2

• φPDom:syll_nuc(x2, y1)
def
= φsyll(x2)∧φvowel(y1)∧x = y∧φunsyllabified(y1)

To illustrate, the first, second, and third vowel in amusin are [a,u,i] with a subscript index a0.1,u0.3,i0.5. In
Copy 2, they project output correspondents that are labelled as syllables: σ2.1,σ2.3,σ2.5.

(289) Syllabification of amusin – syllable creation and nucleus assignment
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

C C C C C

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 i1.5 n1.6

σ2.1 σ2.3 σ2.5

C C C C C

p p p

Any surrounding consonants are then assigned as margins to these new syllables via the predicates and
functions below. Let y be a consonant in the input. Let x be a vowel in the input which is newly parsed as
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the nucleus of some syllable x2 in Copy 2. In Copy 1, the output correspondent y1 surfaces faithfully as a
consonant. In Copy 2, the new syllable z2 will dominate these consonants either as onsets or codas.

For illustration, I assume that only simplex onsets are allowed. Via φPDom:syll_ons(x2, y1), a
consonant y1 is a onset for x2 if x2 is a syllable, y1 is a consonant, y1 is unsyllabified, and there exists
a vowel z1 which surfaces as a vowel in Copy 1 such that z1 immediately succeeds x1, and z1 is the nucleus
of the syllable x2.11 This output function is made QF by using unary functions.

(290) a. FO output function for onset assignment across Copy 1 and 2
• φPDom:syll_ons(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
∃z[φvowel(z1) ∧ φsucc:seg(y1, z1) ∧
φPDom:syll_nuc(x2, z1)]

b. QF output function for onset assignment across Copy 1 and 2
• φPDom:syll_ons(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
φvowel(φFL:succ:seg(y1))∧
φFL:succ:seg(y1) = φFM:PDom:syll_nuc(x2)

To illustrate in amusin, the consonants [m,s] are syllabified as the onset of the following vowel’s syllable.
For the consonant [m], x2 is σ2.3, y1 is m1.2, and z1 is u1.3. For the consonant [s], x2 is σ2.5, y1 is s1.3, and
z1 is i1.5. For both consonants, φunsyllabified(y1) is TRUE because there is no syllable in Copy 1 which
dominates these consonants.

(291) Syllabification of amusin – onset assignment
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

C C C C C

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 i1.5 n1.6

σ2.1 σ2.3 σ2.5

C C C C C

p
p

p
p

p

Coda assignment is similar. Via φPDom:syll_coda1(x2, y1), an outputted consonant y1 is parsed as
an inner coda for a syllable x2 if x2 is a syllable, y1 is a consonant, y1 is unsyllabified in Copy 1, and there
is a vowel z1 which precedes the consonant y1 and is a nucleus for x2. Additionally, there must not be any
new syllable u2 in Copy 2 such that u2 parses y1 as its onset. This last condition prevents syllables from
losing their onsets to preceding syllables. In serial terms, onset assignment precedes coda assignment. In
our logical framework, coda assignment is defined in terms of onset assignment.12 This output function can
be made QF.

11This formula is redundant because z is x because of the how syllables are defined.
12The distinction is subtle. An efficient compiler would implement onset assignment before coda assignment in order to to avoid

repetitive tasks. But coda assignment can be implemented before onset assignment; the catch is that coda assignment would analyze
its context while also looking for the context for onset assignment.
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(292) a. FO output function for inner coda assignment across Copy 1 and 2
• φPDom:syll_coda1(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
∃z[φvowel(z1) ∧ φsucc:seg(z1, y1)∧]∧
φPDom:syll_nuc(x2, z1)]∧
¬∃u[φsyll(u2) ∧ φPDom:syll_ons(u2, y1)]

b. QF output function for inner coda assignment across Copy 1 and 2
• φPDom:syll_coda1(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
φvowel(φFR:succ:seg(y1))∧
φFR:succ:seg(y1) = φFM:PDom:syll_nuc(x2)∧
φFD:PDom:syll_ons(y1) = NULL

To illustrate, in amusin, only the consonant [n] is parsed as an inner coda. Here, x2 is σ2.5, y is n0.6, y1

is n1.6, and z1 is i1.5. The condition φunsyllabified(y1) is satisfied because n1.6 is not syllabified in any
syllable that’s in Copy 1. The condition¬∃u[φsyll(u2)∧φPDom:syll_ons(u2, y1)] is satisfied because
it is not parsed as an onset for any syllable in Copy 2. For other consonants like s1.4, it is not parsed as a coda
because it is parsable as an onset for the new syllable σ2.5, thus violating φPDom:syll_ons(u2, y1).13

(293) Syllabification of amusin – inner coda assignment
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

C C C C C

a1.1Copy 1

Copy 2

Output m1.2 u1.3 s1.4 i1.5 n1.6

σ2.1 σ2.3 σ2.5

C C C C C

p
p

p
p

p
p

This completes the syllabification of amusin.

Note that amusin lacks any outer codas. To illustrate outer coda assignment, consider the base surp. For
parsing outer codas, we need to reference what are possible complex codas. For illustration, the user-defined
predicate good_CC(x, y) below lists all acceptable complex codas. They are defined over either the input
or Copy 1.14

(294) QF user-defined predicate for checking acceptable complex codas
• good_CC(x, y)

def
= [r(x) ∧ s(y)] ∨ [r(x) ∧ t(y)] ∨ . . .

• φgood_CC(x1, y1)
def
= [r(x1) ∧ s(y1)] ∨ [r(x1) ∧ t(y1)] ∨ . . .

A consonant y1 in Copy 1 is parsed as an outer coda for a syllable x2 in Copy 2 in much the same way
as an inner coda. x2 must be a syllable, y1 must be a consonant and specifically an unsyllabified consonant.
There must exist a consonant w1 in Copy 1 such that w1 precedes y1. w1 is the inner coda of syllable x2,
and w1, y1 must form an acceptable complex coda. Finally, y1 must not be parsed as some other syllable
u2’s onset. This function can be made QF.

13Note that I say parsable and not parsed because coda assignment is not temporarily ordered after onset assignment in its
abstract logical definition. If implemented, a compiler would have to do this ordering for efficiency.

14The predicate misses the generalization that the relevant property is sonority, but see Strother-Garcia (2018, 2019) on how to
formalize sonority in formal logic by using binary predicates. Adopting sonority does not significantly change the computation.
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(295) a. FO output function for outer coda assignment across Copy 1 and 2
• φPDom:syll_coda2(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
∃w[φconsonant(w1) ∧ φsucc:seg(w1, y1)∧
φPDom:syll_coda1(x2, w1)∧
φgood_CC(w1, y1)]∧
¬∃u[φsyll(u2) ∧ φPDom:syll_ons(u2, y1)]

b. QF output function for outer coda assignment across Copy 1 and 2
• φPDom:syll_coda2(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
φconsonant(φFR:succ:seg(y1))∧
x2 = φFD:PDom:syll_coda1(φFR:succ:seg(y1))
φgood_CC(φFR:succ:seg(y1), y1)
φFD:PDom:syll_ons(y1) = NULL

To illustrate, consider the word surp. Its final consonant s is parsed as an outer coda. Here x2 is σ2.1, y1

is p1.4, z1 is u1.2, and w1 is r1.3. The consonant s1.4 can form a complex coda with r1.3 because the pair (r,p)
have falling sonority and are in the list of acceptable complex codas in φgood_CC(w1, y1).

(296) Syllabification of surp – outer coda assignment
s0.1Input u0.2 r0.3 p0.4

C C C

s1.1Copy 1Output

Copy 2

u1.2 r1.3 p1.4

σ2.1

C C C

p
p

p p

In sum, syllabification is logically definable with QF logic and computationally local.

5.4.2 Syllable ordering and tier projection

Any newly created syllables must be ordered amongst themselves. For ease of illustration, I treat syllable
ordering as a separate step that follows syllabification. This factorization is trivial because syllabification and
ordering can be composed into a single logical transduction. The ordering between syllables is determined
by examining the distance between their nuclei. Doing so uses some long-distance computation in the form
of a tier projection. In the string amusin, the vowels a,u are not linearly adjacent; a does not immediately
precede u or vice-versa. The vowel a instead generally precedes u. But, the vowels are local on a tier
of vowels. Formalizing tiers is the brunt of the work in this section. I formalize how this long-distance
information can be extracted with transitive closure into a vowel tier. Doing so requires MSO logic. I then
explain some alternatives which are computationally local and use QF logic.

5.4.2.1 Tier projection: Projecting long-distance information via transitive closure and tiers

The ordering transduction uses a copy set of size 1. In Copy 1, all underlying labels are faithfully
outputted. All relations are faithfully outputted except for immediate successor among syllables. Note
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how the syllables have new indexes in the input and output because they were added in the previous stage
of the derivation. After a logical transduction has applied, i.e., after the Morphology or Syllabification has
applied, the newly generated nodes get new indexes.

(297) Unary labels for syllable ordering over Copy 1
• For every label lab ∈ L:

φlab(x1)
def
= lab(x).

• For every relation rel ∈ R− {succ:syll(x, y)}:
φrel(x1, y1)

def
= rel(x, y)

To illustrate, for the word amusin, the input is already syllabified but the syllables are unordered. The
intermediate output is the same as the input because the input lacked any ordered syllables.

(298) Ordering syllables for amusin - outputting segments and syllables
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

σ0.12 σ0.13 σ0.14

C C C C C

p
p

p
p

p
p

a1.1Copy 1

Copy 2

Output m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

C C C C C

p
p

p
p

p
p

In Chapter 4: §4.4.1, I defined the predicate gen_prec:seg(x, y) which computes if x non-immediately
precedes y. With this MSO predicate, we can check whether two vowels are relatively close to each other
not. That is, we can generate a tier of vowels and check whether some vowel y is the first vowel after some
other vowel x, i.e., if x, y are tier-local or x tier-precedes y. Given two vowels x, y, they are local on the
tier of vowels if x, y are vowels, x generally precedes y, but there is no other vowel z which comes between
them.

(299) MSO definition for tier-locality for vowels

• tier_local:vowel(x, y)
def
= vowel(x) ∧ vowel(y) ∧ gen_prec:seg(x, y)∧
¬∃w[vowel(w) ∧ gen_prec:seg(x,w) ∧ gen_prec:seg(w, y)]

To illustrate, a0.1 and u0.3 in amusin are tier-local vowels because u0.3 is part of the line X from a0.1 to
the end: amusin, and there is no other vowel between a0.1 and u0.3 on this line.

With this tier of vowels, we can now order syllables via φsucc:syll(x1, y1). We know if some syllable
is immediately before or after some other syllable by checking if their nuclei are tier-local or not. Given
two unordered syllables x, y and their output correspondents x1, y1, x1 immediately precedes y1 if x, y are
syllables, they have as nuclei the vowels u, v, and the vowel u tier-precedes v.
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(300) MSO output function for linearly ordering syllables
• φsucc:syll(x1, y1)

def
= syll(x) ∧ syll(y)∧
∃u, v[vowel(u) ∧ vowel(v)∧
PDom:syll_nuc(x, u)∧PDom:syll_nuc(y, v)∧tier_local:vowel(u, v)]

I illustrate this output function below.

(301) Ordering syllables for amusin - ordering syllables
a0.1Input m0.2 u0.3 s0.4 i0.5 n0.6

σ0.12 σ0.13 σ0.14

C C C C C

p
p

p
p

p
p

a1.1Copy 1

Copy 2

Output m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

C C C C C

C C

p
p

p
p

p
p

5.4.2.2 Local alternatives: precedence as a primitive and finite syllable size

The above formalization of syllable ordering utilizes a tier projection of vowels. Computing this projection
requires MSO logic and is computationally non-local. It uses global information because general precedence
gen_prec:seg(x, y) requires examining potentially unbounded portions of an input string. In this section,
I describe two possible alternatives: enriching the input with general precedence, or imposing a bound on
syllable size. The first reduces the computation to FO and the second to QF.

The first alternative formalization avoids the use of MSO logic by making the input directly encode
general precedence (Heinz 2010; Rogers et al. 2013). Assume that the input is a string of segments which
are ordered by general precedence. I illustrate this alternative representation for the word æp@l ‘apple’.

(302) Representing a string æp@l ‘apple’ in terms of general precedence instead of immediate successor

æ p @ l
< < <

<
<

<

If general precedence is a primitive in our input representation, then the computation is easier and
doesn’t use MSO logic. It instead uses FO logic. In the predicate tier_local:vowel(x, y), the formula
gen_prec:seg(x, y) is now an input binary relation gen_prec:seg(x, y).

(303) FO definition for tier-locality for vowels with general precedence as an input binary relation

• tier_local:vowel(x, y)
def
= vowel(x) ∧ vowel(y) ∧ gen_prec:seg(x, y) ∧
¬∃w[vowel(w) ∧ gen_prec:seg(x,w) ∧ gen_prec:seg(w, y)]
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The second alternative exploits the fact that syllables have bounded size. If we know that a syllable in
a specific language is at most CVCC, then any two tier-local vowels x, y must be separated by at most 3
consonants. Thus, we can check if some vowel x tier-precedes a vowel y by checking if x, y are separated
by 0, 1, 2, or 3 segments and none of them are vowels. This reduces the computation further down to
computationally local QF logic. The predicate tier_local:vowel(x, y) can be made QF by replacing the
relation succ:seg(x, y) by the unary functions FL:succ:seg(x) and FR:succ:seg(y).

(304) a. FO user-defined predicate for tier-locality of vowels without general precedence

• tier_local:vowel(x, y)
def
= vowel(x) ∧ vowel(y) ∧

[ [succ:seg(x, y)] ∨
∃u[succ:seg(x, u) ∧ succ:seg(u, y) ∧ ¬vowel(u)] ∨
∃u, v[succ:seg(x, u)∧succ:seg(u, v)∧succ:seg(v, y)∧¬vowel(u)∧
¬vowel(v)] ∨
∃u, v, w[succ:seg(x, u) ∧ succ:seg(u, v) ∧ succ:seg(v, w) ∧
succ:seg(w, y) ∧ ¬vowel(u) ∧ ¬vowel(v) ∧ ¬vowel(w)] ]

b. QF user-defined predicate for tier-locality of vowels without general precedence

• tier_local:vowel(x, y)
def
= vowel(x) ∧ vowel(y)∧

[y = FL:succ:seg(x)] ∨
[y = FL:succ:seg2(x) ∧ ¬vowel(FL:succ:seg(x))] ∨
[y = FL:succ:seg3(x) ∧ ¬vowel(FL:succ:seg(x))∧
¬vowel(FL:succ:seg2(x))] ∨
[y = FL:succ:seg4(x) ∧ ¬vowel(FL:succ:seg(x))∧
¬vowel(FL:succ:seg2(x)) ∧ ¬vowel(FL:succ:seg3(x))]

In sum, tier projection in general uses MSO logic and is computationally complex. But tier projection for
vowels requires the much less expressive QF logic because there are finite bounds on syllable size.

5.4.3 Prosodic mapping of a Prosodic Stem

In the previous section, the input amusin was partially prosodified by erecting the right syllable structure.
We now parse the MStem into its own PStem via prosodic mapping.

(305) Desired output for a partially prosodified amusin without a PStem
Input Output

σ

sin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amusin

PStem

σ

sin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amusin

158



Although not clear in the above simple graph, the more explicit representation shows that the MStem is
mapped to a PStem via a MATCH relation (cf. Selkirk 2011), represented by a dashed line. This PStem
dominates the MStem’s syllables.

(306) Explicit desired output for a partially prosodified amusin without a PStem
Input Output (Copies 1-2)

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

σ0.12 σ0.13 σ0.14

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

PStem2.11

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

The relevant unary labels and binary relations are those below.

(307) a. Unary labels involved in PStems formation
• PStem(x): x is a PStem
• MStem(x): x is an MStem

b. Binary relations involved in PStem formation
• Match:stem(x, y): the MStem x is matched with (mapped to) the PStem y
• PDom:PStem_syll(x, y): the PStem x prosodically dominates the syllable y

In order to generate the PStem, we need to ‘know’ that the input contains an unparsed non-recursive
MStem. This information is encapsulated into our derivation’s SETTINGS via the label Parse:MStem:nonrecursive.
The right label was determined earlier in §5.3.1. We use this label here to generate a PStem. The prosodic
transductions in this section are QF because any potential non-locality is encapsulated into the SETTINGS.

Parsing the MStem into a PStem is a transduction with a copy set of size 2. In Copy 1, the input is
faithfully outputted. Note that relevant output functions have a condition for the right parsing setting:
Parse:MStem:nonrecursive(SETTINGS).15

15As previewed in Chapter 4: §4.3.5, when other parse settings are defined, these output functions must be rewritten using helper
predicates to handle disjunctions of different possible parse settings, i.e., redefine φlab(x1) for parsing a non-recursive MStem,
recursive MStem, or MWord. This is further elaborated in §5.6.2 for the case of conflicting cophonologies.
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(308) QF output functions for the faithful output in Copy 1 when parsing a non-recursive MStem
• For every label lab ∈ L:

φlab(x1)
def
= Parse:MStem:nonrecursive(SETTINGS) ∧ lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= Parse:MStem:nonrecursive(SETTINGS) ∧ rel(x, y)

In Copy 2, a PStem is generated for the unparsed non-recursive MStem in amusin. Again, we know that
we are supposed to do this because of the labels on SETTINGS.

(309) QF output functions for parsing a non-recursive unparsed MStem
a. Generating a new PStem

• φPStem(x2)
def
= Parse:MStem:nonrecursive(SETTINGS) ∧MStem(x)

b. Matching the MStem with the new PStem
• φMatch:stem(x1, y2)

def
= Parse:MStem:nonrecursive(SETTINGS) ∧
φMStem(x1) ∧ φPStem(y2) ∧ x = y

(310) below illustrates. The MStem in amusin is mapped to a PStem in Copy 2. The input MStem x is
MStem0.11. It is mapped to a new PStem in Copy 2 via its output correspondent x2 which is PStem2.11. This
PStem x2 is created because the SETTINGS has the relevant label for parsing a non-recursive MStem and x
is an MStem.

(310) Parsing a non-recursive MStem in amusin into a PStem – mapping the PStem
Output

a1.1Copy 1 m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

PStem2.11Copy 2

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

MATCH
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Once mapped, the PStem in Copy 2 (now y2) is matched to the MStem in Copy 1 (x1) via φMatch:stem(x1, y2).
This output function is satisfied because x1 is an MStem, y2 is a PStem, and x1, y2 are output correspondents
of the same underlying node (x = y).

This PStem must now prosodically dominate the MStem’s syllables. This is illustrated below.

(311) Parsing a non-recursive MStem in amusin into a PStem – dominating the MStem syllables
Output

a1.1Copy 1 m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

PStem2.11Copy 2

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

The relevant syllables are found using the user-defined predicate syll_of_MStem(x, y). This predicate
is true for any x, y such that x is a syllable, y is an MStem, and the MStem y dominates the nucleus of
the syllable x. Defining this last condition can potentially use long-distance information. In the case of
a non-recursive MStem, no long-distance information is used because the MStem is separated from the
segmental tier by only the morph and morpheme levels. Thus, we know if the syllable is part of the MStem
if there exists a morpheme u, a morph v, and a segment w, such that the MStem y dominates the morpheme
u which dominates the morph v which dominates the segment w, and the segment w is the nucleus of the
syllable x.

(312) FO user-defined predicate for finding syllables of a non-recursive MStem

• syll_of_MStem(x, y)
def
= syll(x) ∧MStem(y) ∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

The above predicate is QF and uses local information. Given some syllable y, we find its unique
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nucleus w. We then find the nucleus’s MStem x via a finite line of daughter-to-mother dependencies in
the morphological structure.

(313) QF user-defined predicate for finding syllables of a non-recursive MStem

• syll_of_MStem(x, y)
def
= syll(x) ∧MStem(y)∧

seg(FM:PDom:syll_nuc(x))∧
morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
y = F:D:MDom3(FM:PDom:syll_nuc(x))

A more generalized predicate can check if a syllable is part of any type of MNode by using long-distance
information. The predicate gen_MDom(x) uses MSO logic to compute long-distance morphological
dominance (Chapter 4: §4.5.1). With this predicate, we know if a syllable x is part of some MNode y by
checking if the syllable’s nucleus is generally dominated by y, via the predicate syll_of_MNode(x, y).

(314) MSO user-defined predicates for finding the syllables of some MNode using long-distance information
• syll_of_MNode(x, y)

def
= syll(x) ∧MNode(y) ∧
∃v[seg(v) ∧
gen_MDom(y, v) ∧ PDom:syll_nuc(x, v)]

For cyclic prosody, I do not need the more powerful MSO predicate that uses long-distance information.
With the simpler QF predicate in (312), the PStem can prosodically dominate its MStem’s syllables via the
output function φPDom:PStem_syll(x2, y1). Again, the SETTINGS label must be added as a condition.
The output function φPStem(x2) causes some PStem x2 in Copy 2 to prosodically dominate a syllable y1 in
Copy 1 if there exists an MStem w1 in Copy 1 which is mapped to the PStem x2 and crucially the MStem’s
input correspondent w generally dominates the input correspondent of the syllable y. This function can be
made QF.16

(315) a. FO output function for creating prosodic dominance between a new PStem and its syllables

• φPDom:PStem_syll(x2, y1)
def
= Parse:MStem:nonrecursive(SETTINGS) ∧
φPStem(x2) ∧ φsyll(y1) ∧
∃w[φMStem(w1) ∧ φMatch:stem(w1, x2) ∧
syll_of_MStem(y, w)]

b. QF output function for creating prosodic dominance between a new PStem and its syllables

• φPDom:PStem_syll(x2, y1)
def
= Parse:MStem:nonrecursive(SETTINGS) ∧
φPStem(x2) ∧ φsyll(y1) ∧
φMStem(φFR:Match:stem(x2))∧
syll_of_MStem(y, φFR:Match:stem(x2)0)

This completes the prosodic mapping of an MStem to a PStem. The entire computation is QF. Any
potential non-locality from the morphology was factorized into the SETTINGS. In Chapter 6: §6.5, I show

16The unary function φFR:Match:stem(x
2) returns a node w1 in Copy 1. To retrieve its input correspondent w, I use the

superscript 0.
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how other areas of the prosodic phonology is likewise QF. in Chapter 8: §8.3, I show that the prosody is still
QF if we do not use the SETTINGS factorization. Non-local prosody arises from postcylic parsing.

5.5 Phonological rule domains: Stress assignment in the stem-level cophonology

For amusin, the PStem has been parsed. The next step is to apply the right cophonology. Because the
topmost MNode is an MStem, we should apply the stem-level cophonology. In Armenian, the relevant
stem-level rules are stress assignment and destressed high vowel reduction. Because the input amusin is
unstressed, vowel reduction vacuously applies. I only define stress assignment here: amusín. Reduction is
defined in Chapter 6: §6.6.1. I treat both stress and reduction as logical transductions such that stress feeds
reduction.

This simple process of final stress is complicated by the presence of both phonological and morphological
triggers for the input amusin. The phonological triggers are all local to the phonological target i. Specifically,
the vowel i must be the rightmost full vowel (316).

(316) a. amuśin ‘husband’
b. amuśin-@ ‘husband-DEF’

I illustrate the desired output below. The stressed vowel is enlarged and in bold.

(317) Applying stress in the stem-level cophonology for amusin
Input Output

PStem

σ

sin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amusin

PStem

σ

śin

σ

mu

σ

a

MStem

n

morph

∅

MRoot

morph

amuśin

In the more explicit representation, we see that the cophonology is determined by the SETTINGS of the
derivation.
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(318) Applying stress in the stem-level cophonology for amusin with explicit SETTINGS

Input Output (Copy 1)

a0.1 m0.2 u0.3 s0.4 i0.5 n0.6

σ0.12 σ0.13 σ0.14

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

PStem0.12

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9

MRoot1.8 n1.10

MStem1.11

PStem1.12

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

The morphological trigger for final stress is however long-distant. The trigger is the topmost MNode
which can be at any distance from the rightmost vowel i. Computationally, finding the local phonological
triggers is QF while finding the non-local morphological triggers is not QF. In order to factorize the computation,
the non-locality of the morphological trigger is encapsulated into the constant SETTINGS as a unary label
for the right SLevel cophonology.

With this in mind, stress assignment is a transduction with a copy set of size 1. The relevant unary labels
are below. The labels stressed(x) and destressed(x) are new; they are defined for either vowels or syllables.
Their interpretation is straightforward.

(319) Unary labels involved in stress assignment
• stressed:vowel(x): x is a stressed vowel
• stressed:syll(x): x is a stressed syllable
• destressed:vowel(x): x is a destressed vowel
• destressed:syll(x): x is a destressed syllable

In Armenian, stress assignment applies in multiple cophonologies: the stem-level, word-level, and PStem-level
cophonology. The relevant morphophonological domain for stress-assignment is encapsulated into the
user-defined predicate StressDomain(SETTINGS). This predicate is TRUE if the SETTINGS of the derivation
has the domain label of the SLevel, WLevel, or PStem cophonology. The right SETTINGS label was
determined earlier in the derivation in the SETTINGS step (§5.3.2).

(320) QF user-defined predicate for morphophonological domain of stress assignment
• StressDomain(SETTINGS)

def
= Domain:Cophon:SLevel(SETTINGS) ∨

Domain:Cophon:WLevel(SETTINGS) ∨
Domain:Cophon:PStem(SETTINGS)
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In stress assignment, all binary relations are faithfully outputted in Copy 1. As for the unary labels, all
labels are faithfully outputted except for stress-based labels. Note that these output functions check if the
current cophonology can trigger stress assignment via the SETTINGS constant.

(321) QF output functions for faithfully outputted binary relations in Copy 1 for stress assignment
• For every relation rel ∈ R:

φrel(x1, y1)
def
= StressDomain(SETTINGS) ∧ rel(x, y)

• For every label lab ∈ L− {stressed:vowel, stressed:syll, destressed:vowel, destressed:syll}:
φlab(x1)

def
= StressDomain(SETTINGS) ∧ lab(x)

Stress-assignment uses the set of user-defined predicates below to find the relevant positions and types
of syllables/vowels. The predicates in (322a-i) find the final and penultimate syllables. The predicates in
(322b-i) check if some vowel is a full vowel or not, if a syllable has a full-vowel nucleus, if a syllable has
a schwa nucleus, or if a syllable precedes another syllable which has a schwa nucleus. Their definitions are
straightforward. They can all be made QF.

(322) a. i. FO user-defined predicates for finding relevant positions for stress assignment
• final:syll(x)

def
= ¬∃y[succ:syll(x, y)]

• penultimate:syll(x)
def
= ∃y[succ:syll(x, y) ∧ final:syll(y)]

ii. QF user-defined predicates for finding relevant positions for stress assignment
• final:syll(x)

def
= FL:succ:syll(x) = NULL

• penultimate:syll(x)
def
= final:syll(FL:succ:syll(x))

b. i. FO user-defined predicates for finding syllables with full vowels vs. with schwas
• vowel:full(x)

def
= vowel(x) ∧ ¬schwa(x)

• syll:full(x)
def
= syll(x) ∧ ∃y[vowel:full(y) ∧ PDom:syll_nuc(x, y)]

• syll:schwa(x)
def
= syll(x) ∧ ∃y[schwa(y) ∧ PDom:syll_nuc(x, y)]

• syll:pre-schwa(x)
def
= syll(x) ∧ ∃y[succ:syll(x, y) ∧ syll:schwa(y)]

ii. QF user-defined predicates for finding syllables with full vowels vs. with schwas
• vowel:full(x)

def
= vowel(x) ∧ ¬schwa(x)

• syll:full(x)
def
= syll(x) ∧ vowel:full(FM:PDom:syll_nuc(x))

• syll:schwa(x)
def
= syll(x) ∧ schwa(FM:PDom:syll_nuc(x))

• syll:pre-schwa(x)
def
= syll(x) ∧ syll:schwa(FR:succ:syll(x))

With the above user-defined predicates, the predicates below pick which syllable and vowel should get
stress. They specifically pick the rightmost syllable with a full vowel. These predicates can be made QF.

(323) a. QF user-defined predicates for finding the rightmost full syllable
• rightmost_full_syll(x)

def
= syll(x) ∧ syll:full(x) ∧

[final:syll(x)∨[penultimate:syll(x)∧syll:pre-schwa(x)]]

b. FO user-defined predicates for finding the rightmost full vowel
• rightmost_full_vowel(x)

def
= vowel(x) ∧
∃y[PDom:syll_nuc(y, x) ∧ rightmost_full_syll(y)]
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c. QF user-defined predicates for finding the rightmost full vowel

• rightmost_full_vowel(x)
def
= vowel(x)∧rightmost_full_syll(FD:PDom:syll_nuc(x))

For amusin, the predicate rightmost_full_syll(x) picks out the input syllable σ0.5 headed by the vowel
i0.5. This is because σ0.5 is a syllable with a full vowel nucleus, and it is the final syllable.17 The predicate
rightmost_full_vowel(x) picks out the vowel i0.5 because it is a vowel and is the nucleus of the syllable
y = σ0.5 which is the rightmost full-headed syllable.

With the predicates in place, we can now define output functions that will stress the correct syllable
σ0.5 and vowel i0.5. In the case of syllables, the output function φstressed:syll(x1) will stress some
syllable x1 in Copy 1 iff we have the right cophonology for stress, the input correspondent of x1 is a syllable
x, and x is the rightmost full syllable. Vowels in turn get stressed via φstressed:vowel(x1) which is
analogously defined.

(324) QF output functions for assigning stress in Copy 1
• φstressed:syll(x1)

def
= StressDomain(SETTINGS) ∧

syll(x) ∧ rightmost_full_syll(x)

• φstressed:vowel(x1)
def
= StressDomain(SETTINGS) ∧

vowel(x) ∧ rightmost_full_vowel(x)

As a last step, the label for destresed vowels and syllables is updated by checking if some item is stressed
in the input but not in the output. Their interpretation is straightforward. For now, this label is unneeded. It
will be useful once we model destressed vowel reduction in Chapter 6: §6.6.1.

(325) QF output functions for destressing items in Copy 1
• φdestressed:syll(x1)

def
= stressed:syll(x) ∧ ¬φstressed:syll(x1)

• φdestressed:vowel(x1)
def
= stressed:vowel(x) ∧ ¬φstressed:vowel(x1)

Later in the derivation for a simplex word like amusin, covert word-level morphology must be added. The
larger MWord is then parsed as a PWord and the word-level cophonology applies with an extra round of
final stress. These three changes are all vacuous so I don’t formalize them here. I formalize them in Chapter
6: §6.2.1.2 in the context of overt inflection.

I emphasize that all the output functions above were QF except for the predicate StressDoman(SETTINGS).
In the ultimate definition of this predicate, we need to determine if the SETTINGS constant had the right
cophonology labels. Getting this information for the SETTINGS is not computationally local or QF. I explain
the significance of this difference next.

17If the word had a final schwa like amusín-@, then this predicate picks the penultimate syllable because it satisfies the disjunct
[penultimate:syll(x)∧ syll:pre-schwa(x)] by being the penultimate syllable which precedes the final schwa-headed syllable
.
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5.6 Significance and role of the SETTINGS

The previous section illustrated how I use the SETTINGS of the derivation to trigger the right prosodic
parses and right phonological rule domains. On the one hand, we can in principle encode any type of global
information into the SETTINGS. But on the other hand, in practice, we only ever encode the following types
of global information:

1. What is the topmost MNode (and its properties)?
2. What dialect are we in?
3. Is the input an exception to any specific process?

I used the first property to determine what to prosodically parse in the form of Parse labels, and what rules
to apply in the form of Domain labels. In Chapter 6: §6.6.3.1, I use the SETTINGS to encode if the input is
being processed by one dialectal grammar or another, i.e., if we apply Eastern Armenian rules or Western
Armenian rules. I do formalize any lexeme-specific variation or exceptions, but this can be done with the
SETTINGS.

In this section, I discuss how the SETTINGS constant allows us to factorize the computation into local and
non-local triggers. This has a practical utility in making grammar unification be easier to read.

5.6.1 Non-local triggers in rule domains

The utility of the SETTINGS constant comes from how it factorizes the triggers of prosodic and phonological
processes into their local and non-local triggers. I first explain this schematically, and then I illustrate with
logical formulas. The main idea is that the SETTINGS constant lets us factorize the derivation of a cycle into
smaller components. This decomposition reduces the amount of non-local information that each module
will need (cf. the role of factorization in computational syntax: Morawietz 2003).

This chapter divided a cycle into four components: Morphology, Examination/Settings, Prosody, and
Phonology. The Morphology computes transductions or functions which are mostly local (QF), though
some non-local functions exist depending on one’s analysis (Chapter 7). In this 4-way factorization, the
Examination or Settings step uses non-local computation (FO logic) in order to find the properties of the
topmost node in the tree. Furthermore, the Prosody and Phonology only use QF logic or local computation.
To apply a stem-level phonological process like final stress, we need to access morphological information
that we’re in the right stem-level cophonology. This information is potentially non-local and it is a property
of the topmost node in the morphological tree. However the Examination step created a SETTINGS constant
which already did the non-local computation of getting this information. Instead of getting this long-distance
information from the Morphology, the Prosody and Phonology can locally accessible this information by
examining the SETTINGS constant.

(326) Generative capacity of the different components with SETTINGS encapsulation
Input QF/FO Morphology FO Settings QF Prosody QF Phonology Output

In contrast, without an Examination or Settings step, a cycle consists of only three stages or modules. The
Morphology computes QF or FO transductions. But in this 3-way factorization, the Prosody and Phonology
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need to examine the properties of the topmost node in the morphological tree, which can be at any distance
from the relevant prosodic nodes and phonological segments. As I explain in this section, this simple 3-way
factorization makes the Phonology require at least FO logic.

(327) Generative capacity of the different components without SETTINGS encapsulation
Input QF/FO Morphology QF/FO Prosody FO Phonology Output

The Prosody is more nuanced. As I explain later in Chapter 8: §8.3, we can use certain strategies
in formalizing the Prosody so that the Prosody is still locally-computible with QF logic in this 3-way
factorization. For easier illustration, this section focuses on the Phonology. Specifically, consider applying
final stress in amusín. In the 4-way factorization, the SETTINGS allowed us to separate the non-local
morphological trigger of stress assignment from its local phonological triggers. I repeat below the relevant
output function.

(328) QF output function which places stress on the rightmost full vowel
• φstressed:vowel(x1)

def
= StressDomain(SETTINGS) ∧

vowel(x) ∧ rightmost_full_vowel(x)

This output function has two main conditions: StressDomain(SETTINGS) and rightmost_full_vowel(x).
The predicate rightmost_full_vowel(x) encodes the phonological trigger for stress and is computationally
local: Is the vowel the rightmost full vowel. In contrast, the predicate StressDomain(SETTINGS) encodes
the morphological trigger for stress, i.e., that the topmost MNode is an MStem and that we should apply
the stem-level cophonology. This predicate examines the SETTINGS and checks if the SETTINGS had the
relevant cophonology label, e.g. Domain:Cophon:SLevel(SETTINGS).

(329) QF user-defined predicate for morphophonological domain of stress assignment
• StressDomain(SETTINGS)

def
= Domain:Cophon:SLevel(SETTINGS) ∨

Domain:Cophon:WLevel(SETTINGS) ∨
Domain:Cophon:PStem(SETTINGS)

At this stage of the derivation, the predicate StressDomain(SETTINGS) can be locally computed because
the SETTINGS already has the relevant cophonology labels: Domain:Cophon:SLevel(SETTINGS). Because
the SETTINGS is a constant, we do not need a quantifier to access the SETTINGS’ properties.

However, the origins of this label Domain:Cophon:SLevel is non-local. It was generated earlier in the
SETTINGS examination stage (§5.3) via the output function below, repeated from (281). This specific output
function uses FO logic to do so. To generate this label on the SETTINGS, we examined the entire input and
determined that the topmost MNode was an MStem which could trigger the stem-level cophonology.

(330) FO output functions for updating the SETTINGS with the stem-level cophonology
• φDomain:Cophon:SLevel(SETTINGS1)

def
= ∃x[MTopmost(x) ∧ Cophon:SLevel(x)]

In contrast in the 3-way factorization, there is no SETTINGS constant. The predicate Domain:Cophon:SLevel(SETTINGS)
must be replaced by a predicate that uses an existential quantifier to compute this long-distance information.
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Stress assignment then uses this predicate and is now a non-local process, i.e., it is now FO and no longer
QF.

(331) Non-local computation in stress assignment
a. FO logical statement for the non-local trigger of stress assignment

• StressDomain
def
= ∃x[MTopmost(x)∧

[Cophon:SLevel(x) ∨ Cophon:WLevel(x) ∨ Cophon:PStem(x)]

b. FO output function which non-locally places stress on the rightmost full vowel
• φstressed:vowel(x1)

def
= StressDomain ∧

vowel(x) ∧ rightmost_full_vowel(x)

In sum, the SETTINGS constant serves to factorize the local and non-local triggers of phonological
processes in the morphology-phonology interface. Without the SETTINGS, entire phonological processes
are computationally non-local. In Chapter 8, I explain that is non-locally can be partially removed in
morpheme-based definitions for cophonologies. I likewise show that prosodic processes are still local and
QF without the SETTINGS; non-locality arises from post-cyclic parsing.

5.6.2 Utility of SETTINGS in grammar unification

In addition to helping with factorizing the triggers of prosodic/phonological processes, the SETTINGS

constant makes it easier to write logical formulas in a way that can be later unified together. Readers should
reread §4.3.5 before continuing here.

To illustrate, assume a simple version of Armenian called Armenian-Prime which has a simple version of
high vowel reduction: all high vowels reduce to schwa in the stem-level /amusin/→[am@s@n], but not in the
word-level: /amusin-ni/→//am@s@n//→[am@s@n-ni] where -ni is a word-level suffix. The table below omits
the prosody.

(332) Derivation table for Armenian-Prime words am@s@n and am@s@n-ni

Input /amusin -∅S / /amusin -∅S -niW /
Cycle 1 MORPHO Spell-out -∅ amusin-∅ amusin-∅

EXAMINE What should we parse and apply?
PHONO SLevel

reduction am@s@n am@s@n
Cycle 2 MORPHO Spell-out -ni am@s@n-ni

EXAMINE What should we parse and apply?
PHONO WLevel

No reduction
Output am@s@n am@s@n-ni

For the stem-level cophonolgy in am@s@n, the formula in (333a) assigns the stem-level cophonology to the
SETTINGS at the examination step. Later in the phonology step, the output function φschwa(x1) is defined
to change all high vowels and schwas to schwas as long as the stem-level cophonology is active.
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(333) Deriving schwas in stem-level phonology of Armenian-Prime

a. φDomain:Cophon:SLevel(SETTINGS1)
def
= ∃x[MTopmost(x) ∧ Cophon:SLevel(x)]

b. φschwa(x1)
def
= Domain:Cophon:SLevel(SETTINGS) ∧ [schwa(x) ∨ high(x)]

In contrast in the word-level phonology for am@s@n-ni, the formula in (334a) assigns the word-level
cophonology to the SETTINGS at the examination step. Later, the output function φschwa(x1) is now
defined to change only schwas to schwas as long as the word-level cophonology is active.

(334) Deriving schwas in word-level phonology of Armenian-Prime

a. φDomain:Cophon:WLevel(SETTINGS1)
def
= ∃x[MTopmost(x) ∧ Cophon:WLevel(x)]

b. φschwa(x1)
def
= Domain:Cophon:WLevel(SETTINGS) ∧ schwa(x)

In order to allow the same grammar to contain the two definitions of φschwa(x1), the two versions of
φschwa(x1) must be combined.

(335) Unified derivation of schwas in Armenian-Prime

a. φschwa(x1)
def
= [Domain:Cophon:SLevel(SETTINGS) ∧ [schwa(x) ∨ high(x)]]∨

[Domain:Cophon:WLevel(SETTINGS) ∧ schwa(x)]

The use of a SETTINGS constant allows us to better see that the unified function φschwa(x1) encodes two
different types of processes, one active in the stem-level cophonology and one in the word-level cophonology.

5.7 Conclusion

In this chapter, I formalized each of the four explicit and implicit steps in a cyclic interactionist derivation:
the morphology, SETTINGS examination, prosody, and phonological rule domains. The morphology, prosody,
and phonology were defined with respect to generating a simple stem amusín. These three processes were
shown to be computationally local with QF logic.

However, the intermediate step of examining the settings of the derivation is computationally complicated.
It requires using non-local information in the form of FO logic in order to find the right morphological
triggers for the prosody and phonology, specifically the properties of the topmost morphological node.
I encapsulated this non-local information into a constant called the SETTINGS. By storing the relevant
non-local information into one specific part of the computation, we can access this information whenever
needed and without recomputing the entire input. This encapsulation thus lets us separate the non-local
morphological triggers from the local phonological triggers. Besides factorization, the encapsulation helps
in creating a unified grammar later on.

In the next chapter, I go through a barrage of processes in the morphology-phonology interface in Armenian.
By using a cyclic and interactionist model with SETTINGS encapsulation, I show that these processes are
also computationally local and QF.

170



Chapter 6

Local generation of complex words

6.1 Overview

The previous chapter established the crux of formalization for the morphology-phonology interface, with
each step illustrated with the simplex free-standing root amusin (336a). This chapter further illustrates this
formalization by showing the logical computation of morphologically complex words, including derivatives,
inflected items, and compounds. Some examples are shown in (336) below.

(336) a. Simple root amuśin ‘husband’
b. Derivative amusn-agán ‘marital’
c. Inflected item V-initial amusn-óv ‘husband-INST’ (Eastern Arm.)
d. amusin-óv ‘husband-INST’ (Western Arm.)
e. C-initial amusin-nér ‘husband-PL’
f. Compound Endocentric

>
tSúr + pós ‘water + hole’
>
tS@r-a-pós ‘water-hole’

g. Exocentric
>
tSúr + kújn ‘water + color’
>
tS@r-a-kújn ‘water-colored’

In a cyclic interactionist model (Chapter 5), each of these complex items is derived from a simpler
base, e.g., amusín ‘husband’ or

>
tSúr ‘water’, through a recursive sequence of morphological, prosodic, and

phonological processes. The base has already undergone its own cycle of morphological, prosodic, and
phonological processes in order to surface as some stressed item. The output of the first cycle is fed to the
second cycle, where we generate generate new morphological, prosodic, and phonological structure. This
chapter formalizes these new structures.

In the Introduction chapter, I briefly explained how the above 5 items (336) are derived in a cyclic
framework. For example, for the derivative amusn-agan ‘marital’, it undergoes two cycles. The first cycle
generates the base amusín through a sequence of morphological, prosodic, and phonological processes. In
an intermediate stage in the first cycle, we examine the derivation’s settings in order to determine what to
parse and what rules to apply. In the second cycle, the Morphology adds an overt derivational suffix -agan.
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With this new suffix, we examine the settings and determine that we have to parse a larger morphological
stem and apply the stem-level cophonology. With this information in hand, the Prosody will resyllabify the
derivative and restructure the existing PStem. The Phonology stage will apply the stem-level rules of stress
and reduction.

(337) Cyclic generation of a derivative amusn-agan
MStema

a

/-agan/

MStemn

n

-∅

√

/amusin

Input /amusin -∅S -aganS/

Cycle 1 MORPHO Spell-out /amusin-/
EXAMINE What should we parse and apply?
PROSODY Syllabify amu.sin

Map PStem (amu.sin)s
PHONO SLevel

Stress (amu.śin)s
DHR

Cycle 2 MORPHO Spell-out (a.mu.śin)s /-agan/
EXAMINE What should we parse and apply?
PROSODY Resyllabify (a.mu.śi.n)s-a.gan

Restructure PStem (a.mu.śi.n-a.gan)s
PHONO SLevel

Stress (a.mu.ši.n-a.gán)s
DHR (a.mus.n-a.gán)s

Output amusn-agán

In this chapter, I formalize what morphological, prosodic, and phonological processes apply in complex
words. Two results from the formalization are that 1) all these processes are computationally definable,
and 2) the bulk of these processes require local computation, not global computation. Non-locality is
restricted to Examining the settings in order to find non-local morphological triggers for the Prosody and
Phonology. I first formalize the relevant morphological processes (§6.2), how to update the SETTINGS

(§6.3), resyllabification (§6.4), prosodic mappings and adjustment (§6.5), and cophonological rule domains
(§6.6). All of these morphological, prosodic, and phonological processes are computationally local if we
assume an interactionist model that encapsulates relevant information from the morphology into a constant
SETTINGS.

For clarity, note that I use double slashes //. . .// throughout this chapter in order to represent intermediate
representations or intermediate outputs. These are generated between any transductions within a cycle, e.g.,
as output of the Morphology, Examination, resyllabification, etc.
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6.2 Overt morphology and compounding

In Chapter 5: §5.2, I formalized the generation of morphological structure by using construction-specific
morphological transductions. The same is done for generating overt suffixes (§6.2.1). Compounding
(§6.2.2) is more intricate because it uses function currying.

6.2.1 Generating and linearizing overt morphological structure

Generating an overt suffix is not computationally more complex than generating a covert suffix. When
added to the base amusin, the derivational suffix -agan creates a larger MStem representation //amuśin-agan//;
the high vowel is later reduced during the stem-level phonology: amusn-agán. Similarly, the inflectional
suffix -ov forms an MWord: amusin-ov. Adding an overt suffix is computationally local with QF logic. I go
through the derivational suffix first and briefly discuss inflection.

6.2.1.1 Local computation in overt derivational morphology

The derivational suffix -agan is an overt adjectivizing suffix which creates a morphological stem. I show
the input and output below

(338) Input and output for adding an overt derivational suffix
Input Output

MStem

n

morph

∅

MRoot

morph

amuśin

MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amuśin

a m u s í n

morph morph

MRoot n

MStem

C C C C C

m m m

m m m

m m

m

m

a m u s í n a g a n

morph1.7 morph morph

MRoot n a

MStem

MStem

C C C C C C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

Adding this suffix can be thought of as occurring in the following steps.
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1. Generate the...
• 4 phonological segments: a,g,a,n
• 3 morphological nodes: morph, a, and MStem

2. Internally linearize the affix’s...
• segments via immediate successor
• morphology via morphological dominance
• segments with the affix’s morph via morphological dominance

3. Externally linearize the affix and base’s...
• segments via immediate successor: ...n<a...
• morphology via morphological dominance: MStem < MStem

As with adding a zero suffix, I formalize each step below. I show that the process of simple suffixation
is computationally local with QF logic. The above list is a basic template for constructing a morphological
transduction for any affix. The relevant labels and directionality must be changed on an affix-by-affix basis.
Since the number of morphological constructions (affixes) in a language is finite, this is feasible.

I repeat the input below. The input is the fully prosodified stem amusín. I show the indexes but omit the
prosodic nodes and SETTINGS.

(339) Input to generating the suffix -agan

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

C C C C C

m m m

m m m

m m

m

m

Because 7 new nodes must be generated, the transduction has a copy set of size 8. In Copy 1, the input is
faithfully outputted.

(340) QF output functions for vacuous identity in Copy 1

• For every lab ∈ L:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

Because this affix is a suffix, the affix’s segments are output correspondents of the final segment in the
input.1 The final segment is picked via the predicate final:seg(x). Recall from Chapter 4: §4.4.2, that this

1If the affix were a prefix, then the segments would be output correspondents of the first segment in the input. The rationale
of picking the input’s final (initial) segment as the input correspondent for the affix’s segment is to make affixation be an
order-preserving transduction, as explained in Chapter 7: §7.5.
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predicate can be made QF. Its meaning is straightforward. In Copies 2-5, the affix segments are generated
as output correspondents for the final segment n0.10.

(341) a. FO user-defined predicate for finding the final segment
• final:seg(x)

def
= seg(x) ∧ ¬∃y[succ:seg(x, y)]

b. QF user-defined predicate for finding the final segment
• final:seg(x)

def
= FL:succ:seg(x) = NULL

c. QF output functions for creating new segments for the suffix -agan

• φa(x2)
def
= final:seg(x)

• φg(x3)
def
= final:seg(x)

• φa(x4)
def
= final:seg(x)

• φn(x5)
def
= final:seg(x)

The new morphological nodes are defined in terms of the morphologically topmost node in the tree. The
predicate MTopmost(x) below picks this topmost node. Recall from Chapter 5: §5.2 that this predicate
can be made QF. In Copies 6-8, the new nodes are generated via the output functions below.

(342) a. FO user-defined predicate for finding the morphologically topmost MNode
• MTopmost(x)

def
= MNode(x) ∧ ¬∃y[MDom(y, x)]

b. QF user-defined predicate for finding the morphologically topmost MNode
• MTopmost(x)

def
= MNode(x) ∧ FD:MDom(x) = NULL

c. QF output functions for creating new morphological nodes for the suffix -agan

• φmorph(x6)
def
= MTopmost(x)

• φadj(x7)
def
= MTopmost(x)

• φMStem(x8)
def
= MTopmost(x)

This is shown below. Note how the affix’s segments and morphological nodes occupy different Copies. I
have visually shuffled them to make the graph easier to read. For a new node, its index marks what copy it
belongs to (2-8) and what is its input correspondent (the final segment n0.6 or the topmost node MStem0.11).
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(343) Generating an overt derivational suffix in /amusin-agan/ – shuffled nodes

a1.1Copy 1-8 m1.2 u1.3 s1.4 í1.5 n1.6 a2.6 g3.6 a4.6 n5.6

morph1.7 morph1.9 morph6.11

MRoot1.8 n1.10 a7.11

MStem1.11

MStem8.11

C C C C C

m m m

m m m

m m

m

m

The output functions below internally linearize the affix’s segments and the affix’s morphological nodes.

(344) a. QF output functions for internally linearizing the segments of the suffix -agan

• φsucc:seg(x2, y3)
def
= final:seg(x) ∧ final:seg(y)

• φsucc:seg(x3, y4)
def
= final:sg(x) ∧ final:seg(y)

• φsucc:seg(x4, y5)
def
= final:seg(x) ∧ final:seg(y)

b. QF output functions for internally linearizing the MNodes of the suffix -agan

• φMDom(x8, y7)
def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x7, y6)
def
= MTopmost(x) ∧MTopmost(y)

c. QF output functions for internally linearizing between the MNodes and segments of the suffix
-agan

• φMDom(x6, y2)
def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x6, y3)
def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x6, y4)
def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x6, y5)
def
= MTopmost(x) ∧ final:seg(y)

The affix is externally linearized with the base via the output functions below. The function φsucc:seg(x2, y1)
linearizes the affix’s first segment a2.6 with the base’s final segment n1.6 via immediate successor. They are
picked because they are both output correspondents for the input’s final segment n0.6. Similarly, the function
φMDom(x8, y1) linearizes the affix’s MStem8.11 with the base’s MStem1.11 via morphological dominance
because they are both output correspondents for the input’s topmost MNode, MStem0.11.

(345) a. QF output function for externally linearizing the suffix -agan with the base’s final segment

• φsucc:seg(x1, y2)
def
= final:seg(x) ∧ final:seg(y)

b. QF output function for externally linearizing the suffix -agan with the base’s MStem

• φMDom(x8, y1)
def
= MTopmost(x) ∧MTopmost(y)
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I illustrate linearization and the final output below. The main takeaway away is that all the output functions
references only the predicates MTopmost(x) and final:seg(x). Because these predicates are QF, then
the entire process is QF and computationally local.

(346) Output of generating an overt derivational suffix in //amuśin-agan//

a1.1Copy 1-8 m1.2 u1.3 s1.4 í1.5 n1.6 a2.6 g3.6 a4.6 n5.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph6.11

MRoot1.8 n1.10 a7.11

MStem1.11

MStem8.11

PStem1.15

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C C C C C

C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH

6.2.1.2 Local computation in overt inflectional morphology

Generating an inflectional suffix is just as complex, e.g., -ov in amusin-ov. Representationally, the main
difference from derivational morphology is notation and labels.

(347) Input and output for adding an overt inflectional suffix

a. Input Output

MStem

n

morph

∅

MRoot

morph

amuśin

MWord

INST

morph

-ov

MStem

n

morph

∅

MRoot

morph

amuśin
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b. Input Output

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6

σ0.12 σ0.13 σ0.14

morph0.7 morph0.9

MRoot0.8 n0.10

MStem0.11

PStem0.15

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C

C C

m m m

m m m

m m

m

m

p
p

p
p

p
p

p p p

MATCH

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o2.6 v3.6

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph4.11

MRoot1.8 n1.10 INST5.11

MStem1.11

MWord6.11

PStem1.15

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C C C

C C

m m m

m m m

m

m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH

One difference is that we use a copy set of size 6 instead of 8, because the suffix has 2 segments -ov
instead of 4 segments -agan. The labels of the segments and the morphological nodes are different, e.g.,
inflection generates an MWord, not an MStem.

(348) Different QF output functions for generating labels in an inflectional suffix -ov ‘INST’

1. Faithful output:
• For every label lab ∈ L:

φlab(x1)
def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

2. Output the segments:
• φo(x2)

def
= final:seg(x)

• φv(x3)
def
= final:seg(x)

3. Output the new morphological nodes
• φmorph(x4)

def
= MTopmost(x)

• φinst(x5)
def
= MTopmost(x)

• φMWord(x6)
def
= MTopmost(x)

With the smaller copy set, we have fewer nodes to linearize.

(349) Different QF output functions for linearizing the binary relations in an inflectional suffix -ov ‘INST’

1. Internal linearization of segments:
• φsucc:seg(x2, y3)

def
= final:seg(x) ∧ final:seg(y)

2. Internal linearization of morphology
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• φMDom(x4, y2)
def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x4, y3)
def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x5, y4)
def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x6, y5)
def
= MTopmost(x) ∧MTopmost(y)

3. External linearization of morphology
• φMDom(x6, y1)

def
= MTopmost(x) ∧MTopmost(y)

4. External linearization of segments
• φsucc:seg(x1, y2)

def
= final:seg(x) ∧ final:seg(y)

Interested readers can work out the individual steps of the generation themselves. They will find that the
computation works and is computationally local, just like for the larger derivational suffix -agan.

6.2.2 Generating the morphology of a compound

Formalizing compound morphology is complicated. I first describe the basic structure of compounds
(§6.2.2.1), and I introduce the relevant unary labels and binary relations (§6.2.2.2). I partition compound
formation into three steps, each of which is formalized in its own section: Linking (§6.2.2.3), Concatenation
(§6.2.2.4), and MStem formation (§6.2.2.5). The formalization focuses on endocentric compounds, but they
can be analogously defined for exocentric compounds (§6.2.2.6). Again, the entire computation is local.
The brunt of the work is done by the predicates final:seg(x) and MTopmost(x) which are QF-definable
(see Chapter 4: §4.4.2 and Chapter 5: §5.2).

6.2.2.1 Morphology of compounds

In this section, I discuss two possible constituencies for compound morphology. One is based on simple
concatenation, while the other on more abstract operations. I ultimately use the concatenation-based system.

In Armenian, the three most common types of compounds are nominal, possessive, and deverbal compounds.
Nominal compounds are endocentric; possessive and deverbal compounds are exocentric. Recall from
Chapter 1 that the plural suffix is -er for monosyllabic bases, -ner after polysyllabic bases. When the second
stem of the compound is monosyllabic, exocentric compounds are transparently pluralized as polysyllabic
bases with -ner, while endocentric compounds are paradoxically pluralized as monosyllabic bases with -er.
I explain this paradox in terms of prosodic structure in §6.5.3. The takeaway for now is that endocentricity
is an important property of compounds.

(350) Types of compounds

Endocentric Compound Exocentric Compound
NOMINAL COMPOUND POSSESSIVE COMPOUND DEVERBAL COMPOUND
>
tSúr + pós ‘water + hole’

>
tSúr + kújn ‘water + color’

>
tSúr + per-él ‘water + to bring’

>
tS@r-a-pós ‘water-hole’

>
tS@r-a-kújn ‘water-colored’

>
tS@r-a-pér ‘water-bearer’

>
tS@r-a-pos-ér ‘water-holes’

>
tS@r-a-kujn-nér ‘water-colored (PL)’

>
tS@r-a-per-nér ‘water-bearers’
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To model compound morphology, one approach is simple concatenation (Allen 1979; Selkirk 1982;
Ackema and Neeleman 2004; Ralli 2012). In this framework, a nominal compound is just two nouns which
are combined to form a larger noun: N + N→ N. Other compound types are similarly defined.

(351) Compound morphology as simple concatenation

Endocentric Compound Exocentric Compound
NOMINAL COMPOUND POSSESSIVE COMPOUND DEVERBAL COMPOUND

an
>
tsrev-a-

>
tSúr ‘rain-water’

>
tSar-a-śird ‘evil-hearted’ ha

>
ts-a-kór

>
dz ‘bread-maker’

N

N

pós

LV

-a-

N

>
tS@r

N

N

kújn

LV

-a-

A

>
tS@r

N

V

pér

LV

-a-

N

>
tS@r

Because I assume that parts-of-speech are separate into their own covert morpheme (Giegerich 1999;
Marantz 2007), I need to a more refined concatenation-based approach to compounds. Compounds consist
of two morphological stems MStemL and MStemR which are connected via a linking vowel LV. There’s
a special morphological node which is the concatenation of MStemL, MStemR, and the LV. This node is
called the morphological concatenation or the MConc. The MConc takes a covert category suffix and
forms a larger MStem called MStemC . This MStemC can be endocentirc En or exocentric Ex.

(352) Compound morphology as refined concatenation

Endocentric Compound Exocentric Compound
NOMINAL COMPOUND POSSESSIVE COMPOUND DEVERBAL COMPOUND

an
>
tsrev-a-

>
tSúr ‘rain-water’

>
tSar-a-śird ‘evil-hearted’ ha

>
ts-a-kór

>
dz ‘bread-maker’

MStemC,En

n

∅

MConc

MStemR

n

∅

MRoot

pós

LV

-a-

MStemL

n

∅

MRoot

>
tS@r

MStemC,Ex

a

∅

MConc

MStemR

n

∅

MRoot

kújn

LV

-a-

MStemL

n

∅

MRoot

>
tS@r

MStemC,Ex

n

∅

MConc

MStemR

v

∅

MRoot

pér

LV

-a-

MStemL

n

∅

MRoot

>
tS@r

MStemR and MStemC are nouns in nominal compounds. In deverbal compounds, MStemR is a verbal
root while MStemC is a noun or adjective; in possessive compounds, MStemR is a noun while MStemC is an
adjective. With this representation, the meaning of the compound is not predictable, nor is its endocentricity.
There are no covert nodes or geometric positions (complements, specifiers, etc.) that can encode the
semantic relationship between the stems.

A more nuanced analysis is that a compound contains covert morphosyntactic structure which encodes its
semantics (Ten Hacken 2009; Harley 2009). In this analysis, a nominal compound still consists of two stems
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each with its own category affix (353a). But, STEM1 is now adjoined to STEM2. Adjunction is represented
by making the label of STEM2 percolate up the tree (I use indexes on the n’s for disambiguation). The
linking vowel is later added as a zero morph (not shown). Possessive compounds have a similar internal
structure (353b). The difference is that an additional covert affix a is added on top of the tree.

(353) Compound morphology with articulated structure

Endocentric Compound Exocentric Compound
NOMINAL COMPOUND POSSESSIVE COMPOUND DEVERBAL COMPOUND

an
>
tsrev-a-

>
tSúr ‘rain-water’

>
tSar-a-śird ‘evil-hearted’ ha

>
ts-a-kór

>
dz ‘bread-maker’

a. b. c.i c.ii

n2

n2

n2

-∅

√

>
tSur

n2

n1

-∅

√

an
>
tsrev

a

a

-∅

n

n

n

-∅

√

sird

a

a

-∅

√

>
tSar

n

n

-∅

v

v

v

-∅

√

kor
>
dz

n

n

-∅

√

ha
>
ts

n

n

-∅

√

√

kor
>
dz

n

n

-∅

√

ha
>
ts

Modeling a deverbal compound is more complicated because of its argument structure. If we assume
that roots cannot select arguments, then a deverbal compound’s structure looks isomorphic to a possessive
compound (353c.i). The n node of STEM2 is replaced by v. The features on the node v can determine if
the deverbal compound should be interpreted as transitive, intransitive, or passive. In contrast, if we assume
that roots can select arguments (Harley 2014), then a deverbal compound can consist of a category-less root
selecting an argument (353c.ii). This constituent is then nominalized. At no point is a verbal v affix inserted.

In this chapter, I represent compounds using refined concatenation. I have not found positive evidence for
more enriched covert structure (cf. Padrosa Trias 2011). In any case, the analysis does not depend on the
choice of morphological formalization.

6.2.2.2 Logical formalization for compounding

Compound formation is complicated and requires the use of some new types of unary labels. I introduce
and define them all here. The labels MStem:Comp:Left is visualized by a subscript L, MStem:Comp:Right
by R, MStem:Comp by C , MStem:Comp:Endo by En, and MStem:Comp:Endo by Ex.

(354) Unary labels used in compounding
• MConc(x): a morphological node x is the morphological concatenation of stems and a linking

vowel
• LV_morpheme(x): a morpheme x is the linking vowel used in compounding
• MStem:Comp:Left(x): the MStem x is the left stem or MStemL of a compound
• MStem:Comp:Right(x): the MStem x is the right stem or MStemR of a compound
• MStem:Comp(x): the MStem x is a compound
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• MStem:Comp:Endo(x): the MStem x is a hyponymic or endocentric compound
• MStem:Comp:Exo(x): the MStem x is a non-hyponymic or exocentric compound

Here I formalize only the formation of endocentric nominal and exocentric possessive compounds. Extending
the formalization to other compound types is trivial.

Intuitively, compound formation is not like affixation. In affixation, the input is a single item (the base)
while the output is the same base but ‘larger’. In the case of compounds, the input is two separate items and
the output is their combination, as illustrated with the nominal compound tS@r-a-pos ‘water-hole’.

(355) Stems that make up a nominal endocentric compound
>
tS@r-a-pos ‘water-hole’

Input MStemL Input MStemR Output MStem
Morphology Prosody Morphology Prosody Morphology

MStem

n

morph

∅

MRoot

morph

>
tSúr

PStem

σ

>
tSúr

MStem

n

morph

∅

MRoot

morph

pós

PStem

σ

pós

MStemC,En

n

morph

∅

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

-a-

MStemL

n

morph

∅

MRoot

morph

>
tSúr

But in order to formalize the intuition that compound formation takes multiple inputs, we either need to 1)
enrich our logical formalism to capture multi-input functions2 or, 2) find some way to encode these multiple
‘inputs’ as distinct single-input functions. I pursue the second approach and it involves function currying.
Let the input be MStemL, e.g.,

>
tSúr ‘water’. Given this input, compound formation consists of the following

steps.

1. Linking: Concatenate MStemL with a linking vowel (LV) to form an MConc
2. Concatenation: Concatenate MStemL and the LV with MStemR

3. MStem formation: Generate an MStem over the concatenation and determine if the compound is
endocentric or not

Below, I formalize these 3 steps as separate transductions which apply in order.3 Each of these steps is
computationally local and uses QF logic. This because all the output functions reference only the simple
predicates MTopmost(x) and final:seg(x) which are locally-computed and QF-definable.

2The first approach could be done using multi-tape finite-state transducers (MT-FSTs) (Kay 1987; Kiraz 2001). But it is unclear
what the logical equivalent of MT-FSTs would be.

3I assume that the input stems are not compounds themselves. Without this assumption, many of the output functions here
would need to be rewritten in order to faithfully preserve the morphology and prosody of old underlying compounds. I specify
such reformulations when needed. Furthermore, the details of any of the three steps is lexeme specific. A given MStemL forms
compounds with only some MStemR’s. Some compounds don’t use linking vowels. Knowing whether the compound will be
interpreted as hyponymic or not (thus endocentric or exocentric) can be unpredictable. I abstract away from these idiosyncrasies
here.

182



6.2.2.3 Formalizing Linking

In the Linking step, a linking vowel is added to MStemL. Their concatenation is under the scope of a
morphological concatenation node or an MConc. I show a simplified input and output.

(356) Input and output for Linking
Input Output

Morphology Prosody Morphology Prosody

MStem

n

morph

∅

MRoot

morph

>
tSúr

PStem

σ

>
tSúr

MConc

LV

morph

-a

MStemL

n

morph

∅

MRoot

morph

>
tSúr <a>

PStem

σ

>
tSúr

I show the full input and output below.

(357) Input and output for Linking with the MStemL as
>
tSúr

Input Output

>
tS0.1 ú0.2 r0.3

σ0.9

morph0.4 morph0.6

MRoot0.5 n0.7

MStem0.8

PStem0.10

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C

m
m

m

m m

m

m

p
p

p

p

MATCH

>
tS1.1 ú1.2 r1.3 a2.3

σ1.9

morph1.4 morph1.6morph3.8

MRoot1.5 n1.7 LV4.8

MStemL 1.8

MConc5.8

PStem1.10

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C

m
m

m
m

m m m

m

m

m

m

p
p

p

p

MATCH
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Generating a linked MConc is a transduction with a copy set of size 5. Defining this transduction is
analogous to defining the previous other morphological processes. The only difference is in the label of
segments and MNodes. In Copy 1, all relations are faithfully outputted.

(358) QF output functions to faithfully output relations in MStemL in Copy 1

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

The morphologically topmost node in the input MStemL will become the left stem of a compound.
It will have the label MStem:Comp:Left(x). This is done with the output function below. Recall that
MTopmost(x) is QF-definable.4

(359) QF output function for labeling the input as the MStemL of a compound
• φMStem:Comp:Left(x1)

def
= MTopmost(x) ∨MStem:Comp:Left(x)

All other labels are faithfully outputted.

(360) QF output function for faithfully outputting other labels in Copy 1

• For every label lab ∈ L− {MStem:Comp:Left}:
φlab(x1)

def
= lab(x)

In Copies 2-5, the new material is generated. In Copy 2, the linking vowel a is generated as the output
correspondent of the final segment r. The final segment is picked by the predicate final:seg(x) which is
QF-definable.

(361) QF output function for generating the linking vowel’s segment in Copy 2
• φa(x2)

def
= final:seg(x)

In Copies 3-5, the morphological nodes are generated as output correspondents for the morphologically
topmost node, the MStem0.11. The morpheme node for the linking vowel at Copy 4 is labeled as a linking
vowel.

(362) QF output functions for generating morphological nodes in Copies 2-4

• φmorph(x3)
def
= MTopmost(x)

• φLV_morpheme(x4)
def
= MTopmost(x)

• φMConc(x5)
def
= MTopmost(x)

Linearization is formalized the same as in previous morphology sections. The new nodes are internally
linearized via MDom. Likewise, the new morphology is externally linearized with the base by making
the MConc dominate the base’s MStem. The linking vowel a is externally linearized with the base’s final
segment via immediate successor. This is done with the output functions below.

4The disjunct ∨MStem:Comp:Left(x) is to preserve any underlying left stems of compounds if the input MStemL itself is a
compound.
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(363) a. QF output functions for internally linearizing the new material in Linking
• φMDom(x3, y2)

def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x4, y3)
def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x5, y4)
def
= MTopmost(x) ∧MTopmost(y)

b. QF output functions for externally linearizing the base with the new morphology
• φMDom(x5, y1)

def
= MTopmost(x) ∧MTopmost(y)

• φsucc:seg(x1, y2)
def
= final:seg(x) ∧ final:seg(y)

6.2.2.4 Formalizing Concatenation

The input is now MStemL concatenated with the linking vowel. The entire construction is an MConc.
This section will concatenate this construction with MStemR. I show the input and output below. Note that
the subscript R on some stem means that it is the second stem of a compound. As before, the entire process
is computationally local. The main strategy is converting MStemR into a transduction.

(364) Input and output of Concatenation with MStemL
>
tSúr

Input Output
Morphology Prosody Morphology Prosody

MConc

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr <a>

PStem

σ

>
tSúr

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr

PStem

σ

pós<a>

PStem

σ

>
tSúr

The full structure of the input
>
tSúr-a is shown below. I discard the SETTINGS constant. I likewise show

the full structure of the second stem pós.
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(365) Input MConc
>
tSúr-a for Concatenation withe the second stem pós

Input MConc MStemR

>
tS0.1 ú0.2 r0.3 a0.11

σ0.9

morph0.4 morph0.6 morph0.12

MRoot0.5 n0.7 LV0.13

MStemL 0.8

MConc0.14

PStem0.10

C C C

m
m

m
m

m m m

m

m

m

m

p
p

p

p

MATCH

p1 ó2 s3

σ9

morph4 morph6

MRoot5 n7

MStem8

PStem10

C C

m
m

m

m m

m

m

p
p

p

p

MATCH

The above structure for MStemR encodes the fact that the MStemR pos is a set of nodes (the domain D),
their labels L, and the relations R between them. This information is made explicit in the list of logical
statements below.

(366) For the word pós with word signature 〈D,L,R〉
a. Domain D: {1,2,3,4,5,6,7,8,9,10}
b. Unary labels L:

1. for segments
• p(x)=TRUE for {1}
• o(x)=TRUE for {2}
• s(x)=TRUE for {3}
• a(x)=TRUE for ∅
• b(x)=TRUE for ∅
. . .

2. for prosodic nodes
• syll(x)=TRUE for {9}
• PStem(x)=TRUE for {10}
. . .

3. for morphological nodes
• morph(x)=TRUE for {4,6}
• MRoot(x)=TRUE for {5}
• noun(x)=TRUE for {7}
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• MStem(x)=TRUE for {8}
. . .

c. Binary relations R:
• succ:seg(x, y)=TRUE for {(1,2),(2,3)}
• MDom(x, y)=TRUE for {(4,1),(4,2),(4,3),(5,4),(7,6),(8,5),(8,7)}
• PDom:syll_ons(x, y)=TRUE for {(9,1)}
• PDom:syll_nuc(x, y)=TRUE for {(9,2)}
• PDom:syll_coda1(x, y)=TRUE for {(9,3)}
• PDom:PStem_syll(x, y)=TRUE for {(10,9)}
• Match:stem(x, y)=TRUE for {(8,10)}
. . .

Any possible stem can be represented as a set of such statements. For any given MStemR, it consists of
s number of segments, p number of prosodic nodes, and m number of morphological nodes. This set of
statements can be used to simulate a transduction for adding a stem to a compound. This transduction has a
copy set of size 1 + s+ p+m.

In the case of adding the stem pos, s is 3, p is 2, and m is 5. Thus we use a transduction of size 11. I show
the full desired output below.

(367) Output of Concatenation the MStemL
>
tSúr-a with the MStemR pós

>
tS1.1 ú1.2 r1.3 a1.11 p2.11 ó3.11 s4.11

σ1.9 σ5.11

morph1.4 morph1.6 morph1.12 morph7.14 morph9.14

MRoot1.5 n1.7 LV1.13 MRoot8.14 n10.14

MStemL 1.8 MStemR 11.14

MConc1.14

PStem1.10 PStem6.11

SETTINGS Parse:MStem:nonrecursive

Domain:Cophon:SLevel

C C C C C C

m
m

m
m

m
m

m

m m m m m

m

m

m

m

m

m

m

p
p

p

p
p

p

p

p

MATCH
MATCH

In Copy 1, the input MConc is faithfully outputted.
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(368) QF output function for generating a faithful copy of the base in Copy 1
• For every label lab ∈ L:

φlab(x1)
def
= lab(x) for every label in input

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y) for every binary relation in input

In Copies 2 to 1 + s + p + m, new material is added. Lining up the domain of nodes of MStemR to
individual Copies is done via a 1-to-1 homomorphism. Each of the segments of MStemR gets its own copy
from Copies 2 to 1 + s. Each of the prosodic nodes of MStemR gets its own copy from Copies 1 + s+ 1 to
1 + s + p, and each of the morphological nodes of MStemR gets its own copy from Copies 1 + s + p + 1
to 1 + s+ p+m. Two caveats for the homomorphism are that the initial segment of MStemR gets Copy 2,
while the morphologically topmost node in MStemR gets Copy 1 + s+ p+m.

An example homomorphism for pós is shown below. Let this homomorphism function be called h.

(369) Mapping domain nodes to Copies
1. Segment node to Copy (2 to 1 + s)

• Index 1→ Copy 2 for the segment p
• Index 2→ Copy 3 for the segment o
• Index 3→ Copy 4 for the segment s

2. Prosodic node to Copy (1 + s+ 1 to 1 + s+ p)
• Index 9→ Copy 5 for the syllable .pos.
• Index 10→ Copy 6 for the PStem (.pos.)

3. Morphological node to Copy (1+s+p+1 to 1+s+p+m)
• Index 4→ Copy 7 for the root morph pos
• Index 5→ Copy 8 for the MRoot pos
• Index 6→ Copy 9 for the covert morph ∅
• Index 7→ Copy 10 for the nominalizer morpheme n
• Index 8→ Copy 11 for the MStem pos-∅

In order to generate the segments in Copies 2 to 1 + s, the segments are defined as output correspondents
of the final segment in the input. In Copies 1 + s+ 1 to 1 + s+ p, the prosodic nodes are defined as output
correspondents of the final segment in the input.5 And for the morphological nodes in Copies 1 + s+ p+ 1
to 1 + s + p + m, they are defined as output correspondents of the morphologically topmost node in the
input.

(370) a. Template of QF output functions for generating the segments of MStemR in Copies c∈ [2, . . . , 1+
s]

• φlab(xc)
def
= final:seg(x)

5The generated PNodes are defined in terms of the final segment in the input instead of the ‘topmost’ prosodic node in the input
because it is unclear what would count as the ‘topmost’ node in prosodic structure. The input could contain a string of syllables
without any PStem, thus the input lacks a root in the prosodic tree. The input could also contain a string of syllables such that all
but that last syllable is dominated by a PStem. In this scenario, it is unclear if the PStem or the final syllable is any more ‘topmost’
than the other.
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b. Template of QF output functions for generating the prosodic nodes of MStemR in Copies c
∈ [1 + s+ 1, . . . , 1 + s+ p]

• φlab(xc)
def
= final:seg(x)

c. Template of QF output functions for generating the morphological nodes of MStemR in Copies
c ∈ [1 + s+ p+ 1, . . . , 1 + s+ p+m]

• φlab(xc)
def
= MTopmost(x)

The topmost node of MStemR is the MStem in Copy 1 + s + p + m. It is labeled as the second stem in
the compound via the label MStem:Comp:Right. This is marked by a subscript R on the graph.

(371) QF output function for labeling the MStem in Copy c = 1 + s + p + m as the right stem of a
compound
• φMStem:Comp:Right(xc)

def
= MTopmost(x)

All underlying relations are faithfully outputted thanks to the homomorphism. Let a,b be any two nodes
in MStemR, let c and d be the Copies which are assigned to these nodes.

(372) Template of QF output functions for faithfully outputting any underlying relations in MStemR for
any two node
• For every relation rel ∈ R:

φrel(xc, yd) is TRUE iff the nodes a,b satisfy the relation rel in MStemR

The new MStemR is linearized with the input by the two functions below. The first segment of MStemR

at Copy 2 immediately succeeds the final segment of the input at Copy 1. The topmost morphological node
of MStemR at Copy 1 + s+ p+m is morphologically dominated by the input’s MConc at Copy 1.

(373) QF output functions for externally linearizing MStemR with the base
• For Copy c = [2]

φsucc:seg(x1, yc)
def
= final:seg(x) ∧ final:seg(y)

• For Copy c = 1 + s+ p+m

φMDom(x1, yc)
def
= MTopmost(x) ∧MTopmost(y)

For a MStemR pós, the output of all these functions is shown in (367). Interested readers are encouraged
to work out the individual steps of the generation themselves.

6.2.2.5 Formalizing MStem formation

The final step in generating a compound consists of 1) adding a new MStem layer over the MConc, 2)
adding a covert category suffix, and 3) determining if the compound is endocentric or not. The first two
steps are analogous to generating a covert category suffix for a simplex root (Chapter 5: §5.2). The last one
is compound-specific. As before, all steps are computationally local.

The input and output for this section are shown below. Note that the subscript C marks that an MStem is
a compound. The subscript En marks that a compound MStem is endocentric.
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(374) Input and output for MStem formation

Input Output
Morphology

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr

MStemC,En

n

morph

∅

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr

Prosody

PStem

σ

pós<a>

PStem

σ

>
tSúr

PStem

σ

pós<a>

PStem

σ

>
tSúr

These steps require a transduction with a copy set of size 4. I show the full input and output below,
without the SETTINGS node.

(375) a. Input to MStem formation

>
tS0.1 ú1.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18

morph0.4 morph0.6 morph0.12 morph0.20 morph0.22

MRoot0.5 n0.7 LV0.13 MRoot0.21 n0.23

MStemL 0.8 MStemR 0.24

MConc0.14

PStem0.10 PStem0.19

C C C C C C

m
m

m
m

m
m

m

m m m m m

m

m

m

m

m

m

m

p
p

p

p
p

p

p

p

MATCH
MATCH
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b. Output of MStem formation for an endocentric compound

>
tS1.1 ú1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

σ1.9 σ1.18

morph1.4 morph1.6 morph1.12 morph1.20 morph1.22 morph2.14

MRoot1.5 n1.7 LV1.13 MRoot1.21 n1.23 n3.14

MStemL 1.8 MStemR 1.24

MConc1.14

PStem1.10 PStem1.19

MStemC,En 4.14

C C C C C C

m
m

m
m

m
m

m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p

p
p

p

p

p

MATCH
MATCH

In Copy 1, the input is faithfully outputted.

(376) QF output functions for faithfully outputting the input in Copy 1
• For every label lab ∈ L:

φlab(x1)
def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

In Copies 2-4, the new morphological nodes are generated as output correspondents of the morphologically
topmost node in the input, the MConc at ‘0.14’.

(377) QF output functions for generating the morphological nodes in MStem formation
• φmorph(x2)

def
= MTopmost(x)

• φnoun(x3)
def
= MTopmost(x)

• φMStem(x4)
def
= MTopmost(x)

Note the new MStem in Copy 4 must be specified as a compound via the label MStem:Comp. I visualize
this as a subscript C .

(378) QF output function for labeling the new MStem as a compound MStem
• φMStem:Comp(x4)

def
= MTopmost(x)
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The new morphological nodes are internally linearized with themselves and externally linearized with the
input via morphological dominance.

(379) a. QF output functions for internally linearizing the new morphology
• φMDom(x4, y3)

def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x3, y2)
def
= MTopmost(x) ∧MTopmost(y)

b. QF output functions for externally linearizing the new morphology
• φMDom(x4, y1)

def
= MTopmost(x) ∧MTopmost(y)

For the third step, it is a lexeme-specific property whether the compound will be interpreted as hyponymic
and thus endocentric or non-hyponymic and thus exocentric. I abstract from this arbitrariness by using the
output functions below. One of the two functions will be arbitrarily chosen. I visualize endocentric and
exocentric compounds with the subscripts En and Ex.

(380) Output functions for labeling the compound as endocentric or exocentric

• φMStem:Comp:Endo(x4)
def
= MTopmost(x) and the compound is interpreted as hyponymic

• φMStem:Comp:Exo(x4)
def
= MTopmost(x) and the compound is interpreted as non-hyponymic

6.2.2.6 Excursus: Exocentric compounds

An exocentric compound like //
>
tSúr-a-kújn//→>

tS@r-a-kújn ‘water-colored’ is constructed in essentially the
same way except that a) MStemR has more segments, b) the outer MStem is labeled as exocentric, and c)
its part of speech is an adjective. I show the input and output of the three stages of compound formation
for an exocentric compound. I omit the morph level. Interested readers can work through the derivation for
themselves using the previous illustrations for endocentric compounds as a guide. The computation is still
local.
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(381) Generating an exocentric compound
>
tSúr-a-kújn→>

tS@r-a-kújn
Morphology Prosody

Input
MStem

n

∅

MRoot

>
tSúr

PStem

σ

>
tSúr

Output of Linking
MConc

LV

a

MStem

n

∅

MRoot

>
tSúr

PStem

σ

>
tSúr

Output of Concatenation
MConc

MStemR

n

∅

MRoot

kújn

LV

a

MStemL

n

∅

MRoot

>
tSúr

PStem

σ

kújn<a>

PStem

σ

>
tSúr

Output for MStem formation
MStemC,Ex

a

∅

MConc

MStemR

n

∅

MRoot

kújn

LV

a

MStemL

n

∅

MRoot

>
tSúr

PStem

σ

kújn<a>

PStem

σ

>
tSúr

6.3 Examining the Settings of complex words

With the new morphology in place, the SETTINGS is updated in order to encode 1) what to parse, and 2)
what cophonology to apply. In this section, I show what information is examined for a derivative, inflected
item, and a compound. This information is non-local because it references the morphologically topmost
MNode. As explained before in §6.2.1.1, given a node x, we can locally determine if it is topmost or not,
i.e., MTopmost(x) is a QF predicate. But, finding this node x is not QF definable because we need to
search through the tree in order to find the topmost node, i.e., ∃x[MTopmost(x)] is not QF.
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The transduction must use a copy set of size 1. In Copy 1, all the input items, labels, and relations
are faithfully outputted except for any parse or domain labels on SETTINGS. The only changes are in the
SETTINGS constant. I first go over updates over what phonological rule domains to apply (§6.3.1) and what
to prosodically parse (§6.3.2).

6.3.1 Phonological Rule Domains

In terms of phonological rule domains, the derivative and compound should trigger the stem-level cophonology
because they form an MStem. In contrast, an inflected item should trigger the word-level cophonology
because it forms an MWord. I show below the intermediate and simple representation of these three items,
after the morphology has applied.

(382) Morphological structure of complex items
Derivative Inflected Compound

MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amuśin

MWord

INST

morph

-ov

MStem

n

morph

∅

MRoot

morph

amuśin

MStemC,En

n

morph

∅

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

-a-

MStemL

n

morph

∅

MRoot

morph

>
tSúr

The functions below will update the SETTINGS with the right cophonology label. They examine the
topmost MNode and check its cophonology label. These are the topmost MStem and its Cophon:SLevel
property for the derivative and compound, while they’re the topmost MWord and its Cophon:WLevel property
for the inflected item.

(383) FO output functions for updating the SETTINGS for the right cophonology
• φDomain:Cophon:SLevel(SETTINGS1)

def
= ∃x[MTopmost(x) ∧ Cophon:SLevel(x)]

• φDomain:Cophon:WLevel(SETTINGS1)
def
= ∃x[MTopmost(x) ∧ Cophon:WLevel(x)]

I show below the output for the derivative and inflected item; I omit the compounds for brevity. For the
derivative //amuśin-agan// and compound //

>
tSúr-a-pós//, the SETTINGS has the label Domain:Cophon:SLevel.

For the inflected item //amuśin-ov//, the SETTINGS has the label Domain:Cophon:WLevel.
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(384) Updating the SETTINGS for the cophonology domain
a. In a derivative //amuśin-agan//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

PStem1.15

SETTINGS Domain:Cophon:SLevel

C C C C C C C C C

C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH

b. In an inflected item //amuśin-ov//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o1.16 v1.17

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph1.18

MRoot1.8 n1.10 INST1.19

MStem1.11

MWord1.20

PStem1.15

SETTINGS Domain:Cophon:WLevel

C C C C C C C

C C

m m m

m m m

m

m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH
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6.3.2 Instructions for Prosody

With the right cophonology determined, we now determine the right prosodic parse. This is more
complicated than determining the cophonology; I go through each item individually. I do not show their
more explicit input form. In every case, we examine the morphologically topmost MNode, what it immediately
dominates, and what is the prosodic status of its dominee. In order to find the topmost MNode, we need to
access global information which is not computationally local (not QF) but requires FO logic.

6.3.2.1 Derivation

For the derivative //amuśin-agan//, I show the input morphology and prosody below.

(385) Morphology and prosody of an unparsed derivative //amuśin-agan//
Morphology Prosody

MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amuśin

PStem

σ

sin

σ

mu

σ

a

Prosodically, the base has a matched MStem and the derivative now has an unparsed recursive MStem.
It is recursive because the affix’s MStem dominates another MStem. We encode this configuration into the
new parse label below that is only defined for SETTINGS.

(386) Unary label for parsing a recursive MStem into a PStem via the SETTINGS constant
• Parse:MStem:recursive(SETTINGS): is TRUE for SETTINGS iff we need to parse an unparsed

MStem which dominates a matched (parsed) MStem

The output function below generates this new label on the SETTINGS. It is true because the morphologically
topmost node is an MStem0.22 (x) which dominates a matched MStem0.15 (y), but it itself is not matched to
a PStem (w).

(387) FO output function for parsing a recursive MStem via the SETTINGS constant
• φParse:MStem:recursive(SETTINGS1)

def
=

∃x[MTopmost(x) ∧MStem(x)∧
∃y, z[MStem(y)∧MDom(x, y)∧PStem(z)∧Match:stem(y, z)]]∧
¬∃w[PStem(w) ∧Match:stem(x,w)]]
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I apply this function below. I mark the changed parse label in bold.

(388) Updating the SETTINGS for the parse label in //amuśin-agan//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

PStem1.15

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C C

C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH

6.3.2.2 Inflection

With the right SETTINGS determined for the derivative, we now update the SETTINGS to prosodify an
inflected item //amuśin-ov//. The input morphology and prosody is shown below.

(389) Morphology and prosody of an unparsed inflected item //amuśin-ov//
Morphology Prosody

MWord

INST

morph

-ov

MStem

n

morph

∅

MRoot

morph

amuśin

PStem

σ

sin

σ

mu

σ

a

The cophonology SETTINGS will be updated to Domain:Cophon:WLevel. As for the prosody, we need
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to encode the fact that the input contains an unparsed MWord which is topmost and dominates a matched
(parsed) MStem.6 The MWord must be mapped to a PWord.

(390) Unary label for parsing a non-recursive MWord via the SETTINGS constant
• Parse:MWord:nonrecursive(SETTINGS): is TRUE for SETTINGS iff we need to parse a non-recursive

MWord into a PStem

This parsing fact is encoded into the SETTINGS. The SETTINGS get the label Parse:MWord:nonrecursive
because there exists an MWord0.20 (x) which is topmost, dominates an MStem0.11 (y) which is matched into
a PStem0.15 (z), while x itself is unparsed, i.e., not matched into a PWord w.

(391) FO output function to update the SETTINGS with the parsing instructions to parse a non-recursive
MWord
• φParse:MWord:nonrecursive(SETTINGS1)

def
=

∃x[MTopmost(x) ∧MWord(x)∧
∃y, z[MStem(y)∧MDom(x, y)∧PStem(z)∧Match:stem(y, z)]∧
¬∃w[PWord(w) ∧Match:word(x,w)]]

I show the output below.

(392) Output of updating the SETTINGS for an inflected item with the suffix -ov

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o1.16 v1.17

σ1.12 σ1.13 σ1.14

morph1.7 morph1.9 morph1.18

MRoot1.8 n1.10 INST1.19

MStem1.11

MWord1.20

PStem1.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C

C C

m m m

m m m

m

m

m m m

m

m

m

m

p
p

p
p

p
p

p p p

MATCH

6I do not formalize words with multiple inflectional suffixes. If we assume that inflection is added and parsed cyclically, this
would require incrementally enlarging the size of a PWord as we add a suffix. This was done for multiple overt or covert derivational
suffixes in §6.5.1.1.
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6.3.2.3 Compounds

For compounds, endocentric and exocentric compounds have different prosodic parses. Consider their
input morphology below.

(393) Morphological structure of different compounds

Endocentric nominal Exocentric possessive
MStemC,En

n

morph

∅

MConc

MStemR

n

morph

∅

MRoot

morph

pós

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr

MStemC,Ex

a

morph

∅

MConc

MStemR

n

morph

∅

MRoot

morph

kújn

LV

morph

a

MStemL

n

morph

∅

MRoot

morph

>
tSúr

As explained in the Chapter 1: §1.1.4, endocentric compounds are parsed into two PStems, while exocentric
compounds are parsed into one PStem. These different representations are discussed later in §6.5.3 where we
generate the right prosody. For now, the main task is to update the SETTINGS with the relevant information.
These instructions are modeled with two new types of parse labels. They merely remember if the input’s
topmost node is an endocentric vs. exocentric compound.

(394) Unary label for parsing compounding via the SETTINGS constant
• Parse:MStem:Comp:Endo(SETTINGS): is TRUE for SETTINGS iff we need to parse an

endocentric compound
• Parse:MStem:Comp:Exo(SETTINGS): is TRUE for SETTINGS iff we need to parse an

exocentric compound

The SETTINGS is updated with the right parse label via the output functions below.

(395) FO output functions for updating the SETTINGS with the right parse label for compounds
• φParse:MStem:Comp:Endo(SETTINGS1)

def
= ∃x[MTopmost(x)∧MStem:Comp:Endo(x)]

• φParse:MStem:Comp:Exo(SETTINGS1)
def
= ∃x[MTopmost(x)∧MStem:Comp:Exo(x)]

For the endocentric compound tSúr-a-pós and exocentric compound tSúr-a-kújn, the input and output are
largely the same. I show the output below for both endocentric and exocentric compounds. Note the
difference in subscripts for the large MStem in both, and the difference in parse labels in bold. I omit
the prosodic nodes.
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(396) a. Updating the SETTINGS on the prosodic parse for endocentric

>
tS1.1 ú1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

morph1.4 morph1.6 morph1.12 morph1.20 morph1.22 morph1.25

MRoot1.5 n1.7 LV1.13 MRoot1.21 n1.23 n1.26

MStemL 1.8 MStemR 1.24

MConc1.14

MStemC,En 1.27

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

m
m

m
m

m
m

m

m m m m m m

m

m

m

m

m

m

m

m

m

b. Updating the SETTINGS on the prosodic parse for exocentric compound

>
tS1.1 ú1.2 r1.3 a1.11 k1.15 ú1.16 j1.17 n1.18

morph1.4 morph1.6 morph1.12 morph1.21 morph1.23 morph1.26

MRoot1.5 n1.7 LV1.13 MRoot1.22 n1.24 a1.27

MStemL 1.8 MStemR 1.25

MConc1.14

MStemC,Ex 1.28

SETTINGS Parse:MStem:Comp:Exo

Domain:Cophon:SLevel

C C C C C C C

m
m

m
m

m m

m m

m m m m m m

m

m

m

m

m

m

m

m

m
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6.4 Locality in resyllabification

Having updated the SETTINGS, the five items can be prosodically parsed. I first formalize resyllabification,
and then generate higher prosodic structure. For better organization, I treat prosodic mapping in a separate
section §6.5. Syllabification is a cornerstone of computational formalizations of phonology (Scobbie 1993a;
Bird 1995; Coleman 1996, 1998). A less discussed topic is resyllabification because of its inherently
derivational or trans-derivational nature which cannot be faithfully expressed by one-level formalisms.
However, just as locality is a property of syllabification (Strother-Garcia 2019), this section shows that
resyllabification is likewise computationally local.

6.4.1 Resyllabification patterns in Armenian

The five main examples of this chapter undergo similar resyllabification patterns. The table below shows
the intermediate output of resyllabification, before higher prosodic structure (PStems, PWords) is readjusted
or generated. I omit the exocentric compound //

>
tSúr-<a>-kújn//.

(397) Resyllabification of complex items in Armenian
Derivation V-initial Inflection C-initial Inflection Endocentric compound

Input

-<-agan>

PStem

σ

śin

σ

mu

σ

a -<-ov>

PStem

σ

śin

σ

mu

σ

a -<-ner>

PStem

σ

śin

σ

mu

σ

a

PStem

σ

pós<a>

PStem

σ

>
tSúr

Output

σ

gan

σ

n-a

PStem

σ

śi

σ

mu

σ

a

σ

n-ov

PStem

σ

śi

σ

mu

σ

a

σ

ner

PStem

σ

śin

σ

mu

σ

a

PStem

σ

pós

σ

r-a

PStem

σ

>
tSú

Before formalizing resyllabification, I go over the range of resyllabification patterns which exist in
Armenian. Most resyllabification effects are coda loss and onset creation wherein input codas become
onsets. Relevant contexts are summarized below. The brackets <> represent unsyllabified material, and
double slashes //...// represent an intermediate representation before suffixes, clitics, and compounding
have triggered resyllabification. Base-final codas become onsets before suffixes and enclitics: [.kar.] but
[.ka.r-er.], [.ka.r=al.]. In compounding, a linking vowel (LV) -a- is often added and this triggers coda loss:
[.ka.r-a-dun.]. If the second stem of a compound is V-initial, then no linking vowel is used and coda loss
applies in the first stem: [.ka.r-a.

>
dzux.].

201



(398) Resyllabification contexts for coda loss and onset creation in Armenian

Morphology Input Resyllabification
syllabification

Base kar /<kar>/ [<kar>] ‘rock’
Base + suffix kar-er //.kar. <er>// [.ka.rér] ‘rocks’
Base + clitic kar=al //.kar. <al>// [.ká.ral] ‘rock also’
Compound with LV kar <a> dun //.kar. <a> .dun.// [.ka.ra.dún.] ‘stone-house’
Compound without LV kar a

>
dzux //.kar. .a.

>
dzux.// [.ka.ra.

>
dzúx.] ‘pit-coal’

Some morphological contexts can trigger coda creation. Among suffixes, consider a lone-consonant
suffix like the nominalizer -k or possessive suffix -s,-t. When added to a V-final base, they become a
coda: [.da.ri.] and [.da.ri-k.], [.da.ri-s.], [.da.ri-t.]. If -k is added after a consonant with higher sonority,
it forms a complex coda: [.kir-k.]; otherwise it forms an appendix marked by parentheses: [.ba.han

>
tS-(k).].

The possessive suffixes never form complex codas but instead trigger schwa epenthesis after consonants:
[.ki.r-@s.], [.ki.r-@t.] and [.ba.han.

>
tS-@s.], [.ba.han.

>
tS-@t.].7 Prefixes never resyllabify a base-initial onset into

a coda.8

(399) Resyllabification of new codas

Base-final segment Nominalizer -k Possessive -s Possessive t
V dari-k ‘age’ dari-s ‘my year’ dari-t ‘your year’

//.da.ri. <-k>// //.da.ri. <-s>/ //.da.ri. <-t>//
[.da.rik.] [.da.ris.] [.da.rit.]

Higher-sonority C kir-k ‘book’ kir-s ‘my writing’ kir-t ‘your writing’
//.kir. <-k>// //.kir. <-s>// //.kir. <-t>//
[.kirk.] [.ki.r@s.] [.ki.r@t.]

Equal- or lower-sonority C bahan
>
tS-k ‘credit’ bahan

>
tS-s ‘my demand’ bahan

>
tS ‘your demand’

//.ba.han
>
tS. <-k>// //.ba.han

>
tS. <-s>// //.ba.han

>
tS. <-t>//

[.ba.han
>
tS(k)] [.ba.han.

>
tS@s.] [.ba.han.

>
tS@t.]

There is no case of onset loss whereby some syllable loses its underlying onset. This is because Armenian
lacks infixes. There is no case of complex onset creation because Armenian is generally a CVCC language.

6.4.2 Resyllabification of base syllables

Having described the existing resyllabification patterns in Armenian, I formalize those patterns here. In
the following two sections, I illustrate the formalization with //a.mu.śin-<agan>//. The formulas also

7I do not formalize the behavior of possessive suffixes, but they behave similarly to clitic formation in Romance. Their behavior
is likely due to a prosodic constraint against parsing the possessive suffix as part of subconstituent in a syllable (cf. Bonet and Lloret
2005), or restrictions on forming phrase-level syllables in the post-lexical phrasal phonology (cf. Cardinaletti and Repetti 2009).
This behavior is likely morpheme- or construction-specific (Baronian 2017).

8Except for linking vowels after learned prefixes like ham-a-
>
tsajn ‘same-voice (as in unanimous)’, there are no V-final prefixes.

The closest case involves root-initial sibilant-stop clusters like /steG
>
dz-/ or /sk-/ which generally surface with a prothetic schwa

when word- or stem-initial: @steG
>
dz-el ‘to create’ or @sk-al ‘to feel’, even after prefixes an-@sk-a ‘unconscious’. The schwa is lost in

some exocentric compounds, pan-a-steG
>
dz [..nas.teG...] ‘poet’. I set these cases aside because data on these compounds is limited.
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work for the words discussed in the previous section. In Chapter 5: §5.4.1, I formalized the basic formula
for initial syllabification. Those formula were carefully defined so that they can also handle resyllabification.
The main idea is that we first output all underlyingly syllabified material which will survive resyllabification,
e.g., for the input //a.mu.śin.-<agan>//, we form the intermediate output //a.mu.si.<n-agan>// with coda
loss.

Syllabification is a transduction with a copy set of size 2. In Copy 1, all input nodes and labels surface
faithfully. All relations surface faithfully except for any type of prosodic dominance between a syllable and
a segment (onset, nucleus, inner coda, outer coda). The reason is because of possible resyllabification.

(400) QF output functions for faithfully outputting labels and syllabification-independent relations in Copy
1
• For every label lab ∈ L:

φlab(x1)
def
= lab(x).

• For every relation rel ∈ R−{PDom:syll_ons,PDom:syll_nuc,PDom:syll_coda1,PDom:syll_coda2}:
φrel(x1, y1)

def
= rel(x, y)

I illustrate this ‘intermediate’ output below. I omit the morphological nodes, PStem, and the SETTINGS.

(401) Resyllabifying a derivative //amuśin-agan// – outputting underlying syllables in Copy 1
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

As said, the main strategy is that in Copy 1 we faithfully output only those prosodic dominances which
will survive resyllabification. Recall from Chapter 5: §5.4.1, I use the following user-defined predicate to
find unsyllabified segments in the input. This predicate is QF-definable and locally computed.

(402) a. QF user-defined predicate for finding unsyllabified segments

• φunsyllabified(x1)
def
= φFD:PDom:syll_ons(x1) = NULL ∧
φFD:PDom:syll_nuc(x1) = NULL ∧
φFD:PDom:syll_coda1(x1) = NULL ∧
φFD:PDom:syll_coda2(x1) = NULL

Underlying syllable-to-nucleus dominances are faithfully outputted because it does not get changed during
resyllabification.9 This is done via the output function below.

9The exception is when vowel deletion is used as a vowel hiatus repair rule. I do not formalize those rules here. For efficiency,
we could treat vowel hiatus repair as a post-syllabification transduction.
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(403) QF output function for faithfully outputting underlying nuclei
• φPDom:syll_nuc(x1, y1)

def
= PDom:syll_nuc(x, y)

This is illustrated below.

(404) Resyllabifying a derivative //amuśin-agan// – outputting underlying nuclei in Copy 1
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

p p p

Onsets in the output come from two sources in the input: old input onsets vs. old input codas that are
resyllabified. This distinction is formalized by two helper predicates for PDom:syll_ons. First, input onsets
survive in resyllabification because an input onset is never changed into a coda. This ‘default’ behavior is
formalized in the helper predicate should__PDom:onset__old(x, y).10

(405) QF helper predicate for faithfully outputting underlying onsets

• should__PDom:onset__old(x, y)
def
= PDom:syll_ons(x, y)

However, in certain cases, an input syllable can acquire a new onset. This occurs in compounds without a
linking vowel where the second stem is V-initial: //.kar. .a.

>
dzux.//→ [.ka.ra.

>
dzúx.] ‘pit-coal’. This condition

is formalized in the helper predicate should__PDom:onset__new(x, y). Some input consonant y should
be parsed as an onset for an input syllable x iff y is underlyingly some syllable’s coda, y is not x’s onset,
but the nucleus of x is a vowel z which follows y. I don’t illustrate this formula. It is QF-definable.

(406) a. FO helper predicate for outputting new onsets for underlying syllables

• should__PDom:onset__new(x, y)
def
= syll(x) ∧ consonant(y) ∧

∃w[PDom:syll_coda1(w, y)∨PDom:syll_coda2(w, y)]∧
¬PDom:syll_ons(x, y) ∧
∃z[vowel(z)∧PDom:syll_nuc(x, z)∧ succ:seg(y, z)]

b. QF helper predicate for outputting new onsets for underlying syllables

• should__PDom:onset__new(x, y)
def
= syll(x) ∧ consonant(y) ∧

[FD:PDom:syll_coda1(y) 6= NULL∨FD:PDom:syll_coda2(y) 6= NULL]∧
FD:PDom:syll_ons(x) 6= y ∧
[vowel(FM:PDom_nuc(x)) ∧ FM:PDom_nuc(x) = FL:succ:seg(y)]

10Even though the predicate uses a binary relation PDom:syll_ons(x, y), this predicate is QF because no quantifiers are used to
find new variables. The unary function-version of this predicate would use FM:PDom:syll_ons(x) = y.
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Together, the two helper predicates are used to license onsets for syllables in Copy 1 via the output
function φPDom:syll_ons(x1, y1).

(407) QF output function for outputting onsets for underlying syllables
• φPDom:syll_ons(x, y)

def
= should__PDom:onset__old(x, y)∨

should__PDom:onset__new(x, y)

This is illustrated below. Note how all underlying onsets surface because they satisfy the helper predicate
should__PDom:onset__old(x, y).

(408) Resyllabifying a derivative //amuśin-agan// – outputting onsets for underlying syllables in Copy 1
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

p
p

p
p

p

Output codas likewise come from two input sources: old input codas which are not resyllabified vs.
unsyllabified segments which become codas. This distinction is captured with two sets of old vs. new helper
predicates. First for the old codas, input inner and outer codas should be outputted faithfully in Copy 1 iff
the underlying coda consonant y is not followed by a vowel z. This is formalized with the helper predicates
below, which are QF-definable.

(409) a. FO helper predicates for faithfully outputting underlying codas

• should__PDom:coda1__old(x, y)
def
= PDom:syll_coda1(x, y)∧¬∃z[vowel(z)∧succ:seg(y, z)]

• should__PDom:coda2__old(x, y)
def
= PDom:syll_coda2(x, y)∧¬∃z[vowel(z)∧succ:seg(y, z)]

b. QF helper predicates for faithfully outputting underlying codas

• should__PDom:coda1__old(x, y)
def
= PDom:syll_coda1(x, y)∧¬vowel(FL:succ:seg(y))

• should__PDom:coda2__old(x, y)
def
= PDom:syll_coda2(x, y)∧¬vowel(FL:succ:seg(y))

As for new codas, an input unsyllabified consonant y should become the new inner coda of an input
syllable x in Copy 1 only when that consonant follows the syllable’s nucleus z: //.pa.ri. -<k>// →
[.pa.rik.]. The helper predicate should__PDom:coda1__new(x, y) defines this context in Copy 1.
Forming a new outer coda is similar but requires checking if y is preceded by a consonant z, such that
z precedes y, z is inner coda,and zy can form an acceptable complex coda: //.kir.<k>//→ [.kirk.].

(410) a. FO helper predicates for outputting codas for underlying syllables
• should__PDom:coda1__new(x, y)

def
= consonant(y) ∧ unsyllabified(y)∧
∃z[vowel(z)∧succ:seg(z, y)∧PDom:syll_nuc(x, z)]
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• should__PDom:coda2__new(x, y)
def
= consonant(y) ∧ unsyllabified(y)∧
∃z[consonant(z) ∧ succ:seg(z, y)∧
PDom:syll_coda1(x, z) ∧ good_CC(z, y)]

b. QF helper predicates for outputting codas for underlying syllables
• should__PDom:coda1__new(x, y)

def
= consonant(y) ∧ unsyllabified(y)∧

vowel(FR:succ:seg(y))∧FR:succ:seg(y) = FM:PDom:syll_nuc(x)

• should__PDom:coda2__new(x, y)
def
= consonant(y)∧
consonant(FR:succ:seg(y))∧
FR:succ:seg(y) = FM:PDom:syll_coda1(x)∧
good_CC(FR:succ:seg(y), y)

All these helper predicates for codas are used for the output functions below.

(411) QF output function for outputting old and new codas for underlying syllables

• φPDom:syll_coda1(x1, y1)
def
= PDom:coda1__old(x, y)∨PDom:coda1__new(x, y)

• φPDom:syll_coda2(x1, y1)
def
= PDom:coda2__old(x, y)∨PDom:coda2__new(x, y)

In the case of //.a.mu.śin.- <agan>//, the only underlying coda n does not surface as a coda because it
precedes a vowel; it does not satisfy should__PDom:coda1__old(x, y). These output functions produce
the same result as in (408) above.

6.4.3 Syllabification of new material

The previous step in resyllabification was concerned in altering the structure of existing syllables from the
input to Copy 1. With the right underlying syllable structure outputted, we can now syllabify new material.
All formulas in this section are repeated from Chapter 5: §5.4.1 and are QF-definable. I do not repeat their
QF versions.

Copy 1 includes all the prosodic dominances which will surface in the output. We use the user-defined
predicate below to pick out any remaining unsyllabified material in Copy 1.

(412) a. FO user-defined predicate for finding unsyllabified segments in Copy 1
• φunsyllabified(x1)

def
= ¬∃y[φsyll(y1) ∧ [φPDom:syll_ons(y1, x1) ∨

φPDom:syll_nuc(y1, x1)∨
φPDom:syll_coda1(y1, x1)∨φPDom:syll_coda2(y1, x1)]]

b. QF user-defined predicate for finding unsyllabified segments in Copy 1
• φunsyllabified(x1)

def
= φFD:PDom:syll_ons(x1) = NULL ∧
φFD:PDom:syll_nuc(x1) = NULL ∧
φFD:PDom:syll_coda1(x1) = NULL ∧
φFD:PDom:syll_coda2(x1) = NULL

In Copy 2, new syllables are created for the suffix using the exact same functions as from Chapter 5:
§5.4.1, repeated below. The suffix vowels erect syllables because they lack underlying syllables, while the
base’s vowels do not erect new syllables because they are syllabified in Copy 1.
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(413) a. QF output function for syllable creation in Copy 2
• φsyll(x2)

def
= φvowel(x1) ∧ φunsyllabified(x1)

b. QF output function for nuclei assignment across Copy 1 and 2
• φPDom:syll_nuc(x2, x1)

def
= φsyll(x2) ∧ φvowel(x1) ∧ φunsyllabified(x1)

This is illustrated below.

(414) Resyllabifying a derivative //amuśin-agan// – creating new syllables and nuclei in Copy 2
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ2.16 σ2.18

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

p
p

p
p

p

p p

New syllables in Copy 2 take the right consonants as onsets by using the same formula from Chapter 5:
§5.4.1, repeated below.

(415) FO output function for onset assignment across Copy 1 and 2
• φPDom:syll_ons(x2, y1)

def
= φsyll(x2) ∧ φconsonant(y1) ∧ φunsyllabified(y1) ∧

∃z[φvowel(z1) ∧ φsucc:seg(y1, z1) ∧
φPDom:syll_nuc(x2, z1)]

This is illustrated below. The input coda n of the root a.mu.sin is now an onset for the vowel a in
a.mu.si.n-a.gan. The relevant nodes and indexes are n1.6 (=y1), a1.6 (=z1), and σ2.16 (=x2). This is because
the consonant n1.6 is unsyllabified in Copy 1, i.e., it is not part of a syllable in Copy 1, and it is followed by
a vowel a1.6.

(416) Resyllabifying a derivative //amuśin-agan// – creating new onsets for the new syllables in Copy 2
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ2.16 σ2.18

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

p
p

p
p

p

p
p

p
p
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For codas, the only relevant consonant is g. It is syllabified as a coda with the same coda-assigning
functions from Chapter 5: §5.4.1.

(417) a. QF user-defined predicate for checking acceptable complex codas
• good_CC(x, y)

def
= [r(x) ∧ s(y)] ∨ [r(x) ∧ t(y)] ∨ . . .

• φgood_CC(x1, y1)
def
= [r(x1) ∧ s(y1)] ∨ [r(x1) ∧ t(y1)] ∨ . . .

b. FO output function for inner coda assignment across Copy 1 and 2
• φPDom:syll_coda1(x2, y1)

def
= φsyll(x2)∧φconsonant(y1)∧φunsyllabified(y1)∧
∃z[φvowel(z1) ∧ φsucc:seg(z1, y1)∧]∧
φPDom:syll_nuc(x2, z1)]∧
¬∃u[φsyll(u2) ∧ φPDom:syll_ons(u2, y1)]

This is illustrated below. I do not go into detail about why the above output functions generate the right
prosody. This was done in Chapter 5: §5.4.1 where I also showed that φPDom:syll_coda1(x2, y1) is
QF-definable. Interested readers are encouraged to review Chapter 5: §5.4.1 and work out the correctness
for themselves.

(418) Resyllabifying a derivative //amuśin-agan// – creating new codas for the new syllables in Copy 2
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14

C C C C C C C C C

C C

p
p

p
p

p
p

a1.1Copy 1Output

Copy 2

m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ2.16 σ2.18

σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C

p
p

p
p

p

p
p

p
p

p

The final step is ordering all the syllables via succ:syll(x, y). The syllable-ordering transduction was
defined and illustrated in Chapter 5: §5.4.2. I do not repeat the formula and explanation here. I show below
the formalized input-output pair.

(419) Ordering syllables in a resyllabified derivative //amuśin-agan//
a0.1Input m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

C C C C C C C C C

C C

p
p

p
p

p
p

p
p

p
p

a1.1Copy 1Output m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.23 σ1.24σ1.12 σ1.13 σ1.14

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

The take-away is that both syllabification and resyllabification are computationally local processes.
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6.5 Locality in prosodic mapping

The previous section formalized the resyllabification of complex items, and established the computational
locality of resyllabification. This section describes the range of possible prosodic parses for complex items,
the formalization of such prosodic parses, and their computational locality.

I discuss the following types of prosodic parses. These concern the mapping and behavior of morphologically-derived
prosodic constituents which are above the level of the syllable or foot. These different types of prosodic
parses are manifest in the prosodification of derivational, inflectional, and compound morphology

(420) Aspects of prosodic mapping in complex words

a. Prosody of derivation
1. Prosodic Restructuring: a prosodic constituent expands and incorporates more syllables
2. Prosodic Recursion: a prosodic constituent of level x dominates another constituent with

the same label x
3. Prosodic Flattening: a pair of recursive prosodic constituents of the same label x are

flattened into a single constituent
b. Prosody of inflection

1. Prosodic Misalignment: a prosodic constituent is associated with a morphological constituent,
but the two do not dominate the same set of segments

2. Prosodic Layering: a prosodic constituent of level x dominates constituents of lower levels
x− 1 and/or x− 2

c. Prosody of compounding
1. Prosodic Linearization: multiple prosodic constituents of the same label x are ordered

together via immediate succession
2. Prosodic Subsumption: a morphological constituent is not matched or wrapped into a

prosodic constituent, but is subsumed (= broken up) into one.
3. Prosodic Fusion: a sequence of multiple prosodic constituents of the same label x are

fused into a single constituent of the same label x

I formalize prosodic mapping as a set of logical transductions. Each transduction formalizes one type of
prosodic mapping, e.g., one transduction for PStem restructuring, another for PWord generation, etc. Some
of these transductions feed other ones, i.e., prosodic recursion can feed prosodic flattening.

The morphological trigger for these prosodic parses is the properties of the topmost morphological node.
The SETTINGS encapsulates such potentially global information that is relevant for the prosodic parse. By
using both the SETTINGS and cyclic interactionist model, all the above are locally computed. As I explain
later in Chapter 8: §8.3, without the SETTINGS, the prosody is still local; but post-cyclic non-interactionist
prosody is not local.

6.5.1 Prosody of derivation

Derivational morphology triggers prosodic restructuring (§6.5.1.1) and the possibility of recursive prosody
(§6.5.1.2). I show that these mappings are logically-definable and computationally local.
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6.5.1.1 Prosodic restructuring

In prosodic restructuring, a prosodic constituent expands and incorporates more syllables. This is illustrated
in the derivative //amuśin-agan//. The input PStem is associated with root’s MStem: //(amuśi)sn-agan//.
The input’s morphology contains an additional MStem layer. This MStem contains the suffix -agan, dominates
the root’s MStem, and is prosodically unparsed. In the output, the PStem should expand into the suffix
and dominate its syllables: //(amuśin-agan)s//. I show that this process is computationally local and
QF-definable.

(421) Prosodic restructuring in a derivative //amuśin-agan//
Input Morphology Input Prosody Desired output

MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amusin

σ

gan

σ

n-a

PStem

σ

si

σ

mu

σ

a

PStem

σ

gan

σ

n-a

σ

si

σ

mu

σ

a

In the more explicit representation of the input, the PStem is matched with the root’s MStem0.11. The
SETTINGS has the label Parse:MStem:recursive. This encodes the fact that the topmost node is an MStem0.22

which is unparsed and recursively dominates a parsed MStem0.11.

(422) Input to prosodic restructuring or the prosodic parsing of a recursive MStem into large PStem

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

morph0.7 morph0.9 morph0.20

MRoot0.8 n0.10 a0.21

MStem0.11

MStem0.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem0.15

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp

MATCH
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Prosodic restructuring is a transduction with a copy set of size 1. For brevity, I show the final output
of restructuring below. The smaller MStem1.11 is wrapped into the PStem1.15, while the larger MStem1.22

is matched with the PStem1.15. These two types of prosodic binary relations were described in Chapter 4:
§4.5.2.

(423) Output of prosodic restructuring: //(amuśin-agan)s//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14 σ1.23 σ1.24

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem1.15

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp p p

WRAP

MATCH

The following predicates pick out the topmost MStem and the PStem. The first predicate MStem:unparsed(x)
picks the topmost unparsed MStem0.22 (x) which dominates a parsed MStem0.11 (u). The second predicate
PStem:expanding(x) finds the ‘expanding’ PStem0.15 (x) whose MStem0.11 (y) is dominated by an
unparsed topmost MStem0.22 (z).11 These predicates are computationally local and QF-definable.

(424) a. FO user-defined predicates for finding the new larger MStem and the target expanding PStem

• MStem:unparsed(x)
def
= MStem(x)∧MTopmost(x)∧¬∃y[PStem(y)∧Match:stem(x, y)]
∃u, v[MStem(u)∧MDom(x, u)∧PStem(v)∧Match:stem(u, v)]

• PStem:expanding(x)
def
= PStem(x)∧
∃y, z[Match:stem(y, x) ∧MStem:unparsed(z)∧
MDom(z, y)]∧
¬∃y[PStem(y) ∧ succ:PStem(x, y)]

b. QF user-defined predicates for finding the new larger MStem and the target expanding PStem

• MStem:unparsed(x)
def
= MStem(x) ∧MTopmost(x) ∧ FL:Match:stem(x) = NULL

MStem(FM:MDom(x))∧
FL:Match:stem(FM:MDom(x)) 6= NULL

11PStem restructuring or expansion is largely due to suffixation; I assume an extra condition that a PStem is expanding if it is the
rightmost PStem (= does not precede a PStem): ¬∃y[PStem(y)∧ succ:PStem(x, y)]. This condition is redundant here but may be
useful if a future formalization looks at compounds before derivational suffixes.
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• PStem:expanding(x)
def
= PStem(x)∧

MStem:unparsed(FD:MDom(FR:Match:stem(x)))
FL:succ:PStem(x) = NULL

Generating the right output requires multiple steps. First, all node labels are faithfully outputted in Copy
1. All relations are likewise faithfully outputted except for any relations involving PStems. Throughout
this section, we check that we have the right Parse label; this is locally accessed, thanks to the constant
SETTINGS.

(425) QF output functions to faithfully outputting labels and relations except for those involving PStems

• For every label lab ∈ L:
φlab(x1)

def
= Parse:MStem:recursive(SETTINGS) ∧ lab(x)

• For every relation rel ∈ R− {Match:stem,Wrap:stem, PDom:PStem_syll,
PDom:PStem_PStem,PDom:PWord_PStem}:

φrel(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧ rel(x, y)

In Copy 1, the expanding PStem y1 (y is ‘0.15’) should be matched with the larger unparsed MStem x1

(x is ‘0.22’). This is encoded in the following output function.12

(426) QF output function for matching the expanding PStem with the larger unparsed MStem
• φMatch:stem(x1, y1)

def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧

MStem:unparsed(x) ∧PStem:expanding(y)

The smaller MStem x1 (x is ‘0.11’) is associated with the expanding PStem y1 (y is ‘0.15’) via a wrapping
relationship. Intuitively, the MStem is part of the larger PStem.13

12If the input contains multiple PStems, such that one PStem was expanding but the others were not, then we need
a different version of the output function φMatch:stem(x1, y1) to make sure that they should get associated with their
MStems. This definition is useful if want to formalize cases where endocentric compounds undergo derivational morphology:
(abc)s+(def)s-ghi→(abc)s(def-ghi)s.

(1) QF output function for matching a non-expanding PStem with its underlying MStem

• φMatch:stem(x, y)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧

Match:stem(x, y) ∧ ¬PStem:expanding(y)

To make a unified grammar, the two definitions of φMatch:stem(x1, y1) must be replaced with helper predicates:
should__Match:stem__new(x, y) and should__Match:stem__old(x, y), and then unified with disjunction:

(2) QF output function for matching the expanding PStem with the larger unparsed MStem

• φMatch:stem(x1, y1)
def
= should__Match:stem__old(x, y) ∨ should__Match:stem__new(x, y)

13If the input contains a wrapped MStem, then this should faithfully surface as wrapped. This is the case for words with multiple
derivational suffixes: (abc-def)s-ghi→(abc-def-ghi)s where each morpheme is separated by dashes and introduces a new MStem
layer. This is formalized with the helper predicate below.

(1) QF helper predicate for faithfully outputting underlying wrap relations

• should__Wrap:stem__old(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧

Wrap:stem(x, y)
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(427) QF output function for wrapping the smaller MStem into the expanding PStem
• φWrap:stem(x1, y1)

def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧
PStem:expanding(y) ∧Match:stem(x, y)

The expanding PStem must incorporate its old input syllables and newly incorporate the suffix’s syllables.
The following predicate finds the ‘closest’ syllables of a given MStem. This predicate is computationally
local and QF-definable; see Chapter 5: §5.4.3 for the QF version of syll_of_MStem(x, y).14

(428) FO user-defined predicates for finding an MStem’s closest syllables
• syll_of_MStem(x, y)

def
= syll(x) ∧MStem(y) ∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

As for syllable incorporation, this is facilitated by the use of helper predicates. The first predicate finds the
syllables y which are underlyingly dominated by a PStem x; these prosodic dominances should be faithfully
outputted. This helper predicates picks out the syllables σ0.12, σ0.13, σ0.14. The second predicate finds the
syllables y of the larger unparsed MStem z and it should give these syllables to the expanding PStem x.
This helper predicates picks out the syllables σ0.23, σ0.24; it is QF-definable.

(429) a. QF helper predicate for letting a PStem dominates its underlying syllables

• should__PDom:PStem_syll__old(x, y)
def
= Parse:MStem:recursive(SETTINGS)∧

PStem(x) ∧ syll(y) ∧ PDom:PStem_syll(x, y)

b. FO helper predicate for letting the expanding PStem dominate the syllables of the new larger
MStem’s suffixes

• should__PDom:PStem_syll__new(x, y)
def
= Parse:MStem:recursive(SETTINGS)∧

PStem(x) ∧ syll(y) ∧PStem:expanding(x)∧
∃z[MStem:unparsed(z) ∧ syll_of_MStem(y, z)]

c. QF helper predicate for letting the expanding PStem dominate the syllables of the new larger
MStem’s suffixes

• should__PDom:PStem_syll__new(x, y)
def
=

Parse:MStem:recursive(SETTINGS) ∧ PStem(x) ∧ syll(y)∧
PStem:expanding(x)∧
MStem:unparsed(FD:MDom(FR:Match:stem(x)))∧
syll_of_MStem(y,FD:MDom(FR:Match:stem(x)))

The above definition of φWrap:stem(x1, y1) should be reformulated as a helper predicate
should__Wrap:stem__new(x, y). The work of these two helper predicates is summarized in the output function below.

(2) QF output function for wrapping the right MStems into PStems

• φWrap:stem(x1, y1)
def
= should__Wrap:stem__old(x, y) ∨ should__Wrap:stem__new(x, y)

14Intuitively, the MStem consists of a base MStem amusin and a suffixal morpheme -agan. The predicate
syll_of_MStem(x, y) does not do a global examination of the larger MStem to find all of its syllables. It only picks the syllables
whose nuclei are introduced by the MStem’s principal morpheme, the suffix -agan. These suffixes are locally close to the larger
MStem node; the base MStem node’s syllables are too ‘far away’ from the topmost MStem node.
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These helper predicates are used for the output function below which outputs all correct prosodic dominances
from PStems to syllables.

(430) QF output function to make the larger PStem dominate the syllables of its two MStems
• φPDom:PStem_syll(x1, y1)

def
= should__PDom:PStem_syll__old(x, y)∨

should__PDom:PStem_syll__new(x, y)

This completes the local generation of a larger PStem from a recursive MStem via prosodic restructuring.

6.5.1.2 Prosodic recursion and flattening

When given multiple layers of recursive MNodes, this layering is prosodifed via prosodic restructuring in
Armenian. The output contains a single PStem for multiple MStems. In contrast, some languages display
prosodic recursion whereby multiple layers of recursive MNode are mapped to multiple recursive layers of
PNodes (Ito and Mester 2009, 2012, 2013). For example in ChiChewa, multiple layers of MStems map to
multiple recursive PStems (Downing 2016). However, Armenian does not display evidence for the prosodic
recursion of PStems. Instead, PStems are flat and non-recursive.

(431) Parsing complex derivatives as prosodically flat, not prosodically recursive
Input Morphology Ungrammatical output Desired output

with recursion without recursion
MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amusin

PStem

σ

gan

σ

n-a

PStem

σ

si

σ

mu

σ

a

PStem

σ

gan

σ

n-a

σ

si

σ

mu

σ

a

Computationally, recursive prosody is not necessarily more complex than non-recursive prosody. In fact,
as an alternative to the previous section’s formalization of prosodic restructuring, we can derive the output
of prosodic restructuring from two steps: generating a recursive PStem, and flattening a recursive PStem.
Each step is its own logical transduction.
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(432) Recursion+Flattening approach for prosodic restructuring in //amuśin-agan//
Input Generate recursion Flatten recursion

Input Morphology Input Prosody
MStem

a

morph

-agan

MStem

n

morph

∅

MRoot

morph

amusin

σ

gan

σ

n-a

PStem

σ

si

σ

mu

σ

a

PStem

σ

gan

σ

n-a

PStem

σ

si

σ

mu

σ

a

PStem

σ

gan

σ

n-a

σ

si

σ

mu

σ

a

The composition of these two steps is prosodic restructuring. Each of these two steps is computationally
local and QF-definable.15 I define them separately. Both processes reference the prosodic parse label
Parse:MStem:recursive(SETTINGS) which is true when the input contains a topmost recursive MStem.

6.5.1.2.1 Generating a recursive PStem

To generate a recursive PStem, we use a transduction with a copy set of size 2. I illustrate the input below.

(433) Input for prosodic parsing of a recursive MStem into large PStem

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

morph0.7 morph0.9 morph0.20

MRoot0.8 n0.10 a0.21

MStem0.11

MStem0.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem0.15

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp

MATCH

15Non-locality can arise when flattening potentially unbounded number of prosodic nodes in a compound, see Chapter 8:
§8.3.2.2.
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I show the output of prosodic recursion below. In the output, the topmost MStem1.22 is matched with a
new PStem2.22. This PStem2.22 dominates the old PStem1.15 and the suffix’s syllables σ1.23, σ1.24. I show
that generating prosodic recursion is computationally local and QF-definable.

(434) Output of generating a recursive PStem in //((amuśin)s-agan)s//

a1.1Copy 1

Copy 2

Copy 1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14 σ1.23 σ1.24

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem1.15

PStem2.22

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp

p

p

MATCH

MATCH

p

In Copy 1, all labels and relations are faithfully outputted. As before, all the functions here explicitly
require that the derivation’s SETTINGS has the right parse label: Parse:MStem:recursive(SETTINGS).

(435) QF output functions for vacuous identity in Copy 1
• For every label lab ∈ L:

φlab(x1)
def
= Parse:MStem:recursive(SETTINGS) ∧ lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= Parse:MStem:recursive(SETTINGS) ∧ lab(x)

In Copy 2, a new PStem2.22 is generated as an output correspondent for the topmost MStem0.22 in
the input. This is done via the output function below which selects the underlying MStem0.22 which is
morphologically topmost node; it is QF-definable. I redundantly specify that the relevant MStem must be
underlyingly unparsed; this is redundant because that is implied from the SETTINGS’s parse label.

(436) a. FO output function for generating a new PStem in Copy 2
• φPStem(x2)

def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧MTopmost(x)∧
¬∃y[PStem(y) ∧Match:stem(x, y)]
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b. QF output function for generating a new PStem in Copy 2
• φPStem(x2)

def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧MTopmost(x)∧

FL:Match:stem = NULL

The large MStem and the new PStem must become associated via a MATCH relation. The relevant nodes
are the larger input MStem0.22 (x), its output correspondent MStem1.22 in Copy 1 (x1), and its output
correspondent PStem2.22 in Copy 2 (x2 = y2). We prosodically match the output MStem1.22 if it is an
underlying MStem. It is matched with the PStem2.22 in Copy 2, as long as they’re both output correspondents
of the same underlying MStem0.22 (x = y).

(437) QF output function for associating the new PStem in Copy 2 with the unparsed MStem
• φMatch:stem(x1, y2)

def
= Parse:MStem:recursive(SETTINGS)∧

MStem(x) ∧ φPStem(y2) ∧ x = y

The larger PStem in Copy 2 prosodically dominates the syllables of the larger MStem’s suffix in Copy 1
via the function below. These syllables σ0.23, σ0.24 are selected by using the predicate syll_of_MStem(x, y).
I described this predicate in Chapter 5: §5.4.3 and I showed that it is QF-definable.

(438) a. FO user-defined predicate for finding syllables of a non-recursive MStem

• syll_of_MStem(x, y)
def
= syll(x) ∧MStem(y) ∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

b. QF output function for making the larger PStem prosodically dominate the syllables of its
MStem’s suffix
• φPDom:PStem_syll(x2, y1)

def
= Parse:MStem:recursive(SETTINGS) ∧
φPStem(x2) ∧ φsyll(y1) ∧ syll_of_MStem(y, x)

The larger PStem2.22 recursively dominates the smaller PStem1.15. This requires a type of binary relation
for recursive prosody: PDom:PStem_PStem(x, y) (cf. Chapter 4: §4.5.2). Recursive dominance is generated
via the output function below. I assume that the two PStems are ‘close’ to each other, in that the larger
PStem2.22 (x2) is associated with an MStem1.22 (u1) which immediately morphologically dominates the
MStem1.11 (v1) of the smaller PStem1.15 (y1). Because of this assumption, the output function is QF-definable.16

(439) a. FO output function for making the larger PStem in Copy 2 prosodically dominate the smaller
PStem in Copy 1

• φPDom:PStem_PStem(x2, y1)
def
= Parse:MStem:recursive(SETTINGS)∧
φPStem(x2) ∧ φPStem(y1)∧
∃u, v[φMStem(u1)∧φMStem(v1)∧φMDom(u1, v1)∧
φMatch:stem(u1, x2) ∧ φMatch:stem(v1, y1)]

16If there is no guarantee of this relative proximity between the PStems and their associated MStems, then we may need to use
global information in the morphological and prosodic tree in order to find the topmost MStem/PStem in the input (cf. Chapter 8:
§8.3.2.2).
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b. QF output function for making the larger PStem in Copy 2 prosodically dominate the smaller
PStem in Copy 1

• φPDom:PStem_PStem(x2, y1)
def
= Parse:MStem:recursive(SETTINGS)∧

φPStem(x2) ∧ φPStem(y1)∧
φFD:MDom(φFR:Match:stem(y1)) = φFR:Match:stem(x2)

The recursive structure is now properly generated, and it is locally generated. The next step is to flatten
the pair of recursive PStems into a single PStem.

6.5.1.2.2 Flattening a recursive PStem

Flattening is a transduction with a copy set of size 1. The input is shown below. It is the recursive output
of the previous section, but with updated indexes. Throughout this section, I assume that there are at most 2
layers of recursive PStems: *(((abc)s1def)s2ghi)s3.17 This ensures the locality of prosodic flattening.

(440) Input to flattening recursive PStems

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

morph0.7 morph0.9 morph0.20

MRoot0.8 n0.10 a0.21

MStem0.11

MStem0.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem0.15

PStem0.25

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp

p

p

MATCH

MATCH

p

The output of flattening is shown below. The desired output has the smaller PStem0.15 disappear. Its
syllables (σ1.12, σ1.13, σ1.14) and MStem0.11 are re-associated with the larger PStem1.25.

17If there are multiple layers of recursive PStems that we want to flatten, then the predicate
PStem:topmost_dominator_of(x, y) must be redefined to find the topmost undominated PStem, s3. Doing so requires
long-distance information. It specifically requires defining a transitive closure for prosodic dominance among PStems
PDom:PStem_PStem(x, y). This is discussed in Chapter 8: §8.3.2.2.
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(441) Flattening a recursive PStem in //(amuśin-agan)s//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14 σ1.23 σ1.24

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

PStem1.25

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp p p

WRAP
MATCH

The relevant PStem nodes are picked out with the user-defined predicates below.18 These predicates
are locally-computed and QF-definable. The predicate PStem:dominated(x) picks out PStems which
recursively dominated by other PStems: PStem0.15. The predicate PStem:undominated(x) picks out a
PStem which is not recursively dominated, e.g., PStem0.25. The predicate PStem:topmost_dominator(x, y)
checks if two PStems x, y are in recursive dominance such that x is undominated.

(442) a. FO user-defined predicates to finding a recursively dominated PStem
• PStem:dominated(x)

def
= PStem ∧ ∃y[PStem(y) ∧ PDom:PStem_PStem(y, x)

b. QF user-defined predicates to finding a recursively dominated PStem
• PStem:dominated(x)

def
= PStem ∧ FD:PDom:PStem_PStem(x) 6= NULL

c. QF user-defined predicates to finding the dominator x of a recursively undominated PStem y

• PStem:topmost_dominator_of(x, y)
def
= PStem:undominated(x)∧

PStem:dominated(y) ∧
PDom:PStem_PStem(x, y)

d. QF user-defined predicates to finding any undominated PStems
• PStem:undominated(x)

def
= PStem ∧ ¬PStem:dominated(x)

In Copy 1, all labels and relations are faithfully outputted except for those which involve PStems.19 Note
that again we specify that we have the right parse condition throughout the derivation.

18The predicates and functions have been carefully designed to also work when the input contains multiple non-recursive PStems,
e.g., with endocentric compounds (abc)s(def)s, §6.5.3. However, I have not worked on any data or formalizations where compounds
undergo further derivational morphology. This section would need to be tweaked if such data were to be found and formalized.

19For easier illustration, I ignore WRAP relations in PStems, prosodic dominances between PStems and segments, and prosodic
dominances between PWords and PStems.

219



(443) QF output functions for faithfully outputting labels and relations except for those involving PStems

• For every label lab ∈ L− {PStem}:
φlab(x1)

def
= Parse:MStem:recursive(SETTINGS) ∧ lab(x)

• For every relation rel ∈ R− {Match:stem,Wrap:stem,PDom:PStem_syll,
PDom:PStem_PStem,PDom:PWord_PStem}:

φrel(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧ rel(x, y)

Undominated PStems like PStem1.25 are faithfully outputted via the output function below. The small
PStem1.15 is not outputted because it is recursively dominated in the input by PStem0.25.

(444) QF output function for outputting undominated PStems in Copy 1
• φPStem(x1)

def
= Parse:MStem:recursive(SETTINGS) ∧PStem:undominated(x)

An undominated PStem1.25 is matched with its underlying MStem1.22 via the output function below.

(445) QF output function for matching undominated PStems with their MStems in Copy 1
• φMatch:stem(x1, y1)

def
= Parse:MStem:recursive(SETTINGS)∧

PStem:undominated(y) ∧Match:stem(x, y)

Given some dominated PStem0.15, its MStem1.11 is ‘taken’ by the dominator PStem1.25 via wrapping the
MStem into this dominator PStem. This function is locally-computed and QF-definable.20

(446) a. FO output function for wrapping a dominated PStem’s MStems into the dominating PStem

• φWrap:stem(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧
∃z[PStem:dominated(z)∧PStem:topmost_dominator_of(y, z)∧
[Match:stem(x, z) ∨Wrap:stem(x, z)]]

b. QF output function for wrapping a dominated PStem’s MStems into the dominating PStem

• φWrap:stem(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧

[[PStem:dominated(FL:Match:stem(x))∧
PStem:topmost_dominator_of(FL:Match:stem(x))]∨

[PStem:dominated(FL:Wrap:stem(x))∧
PStem:topmost_dominator_of(FL:Wrap:stem(x))]]

An undominated PStem1.25 will dominate its own syllables (σ1.23, σ1.24) and the syllables of its dominated
PStem (σ1.12, σ1.13, σ1.14). The different conditions for incorporation are facilitated by using the following
helper predicates. The first predicate finds the syllables y dominated by the undominated PStem x; these
prosodic dominances should be faithfully outputted. The second predicate finds the syllables y of a dominated
PStem z and it should give them to z’s dominating PStem x. This predicate is locally-computed and
QF-definable.

20In the input, these input MStems can either be matched or wrapped into the dominated PStem. That is why we have the disjunct
Wrap:stem(x, z).
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(447) a. QF helper predicates for letting undominated PStems dominate their own syllables

• should__PDom:PStem_syll__old(x, y)
def
=

Parse:MStem:recursive(SETTINGS) ∧ PStem(x) ∧ syll(y)∧
PStem:undominated(x) ∧ PDom:PStem_syll(x, y)

b. FO helper predicates for letting undominated PStems dominate the syllables of their dominated
PStems
• should__PDom:PStem_syll__new(x, y)

def
=

Parse:MStem:recursive(SETTINGS) ∧ PStem(x) ∧ syll(y)∧
PStem:undominated(x)∧
∃z[PStem:dominated(z) ∧ PDom:PStem_syll(z, y)
PStem:topmost_dominator_of(x, z)]

c. QF helper predicates for letting undominated PStems dominate the syllables of their dominated
PStems
• should__PDom:PStem_syll__new(x, y)

def
=

Parse:MStem:recursive(SETTINGS) ∧ PStem(x) ∧ syll(y)∧
PStem:undominated(x)∧
PStem:dominated(FD:PDom:PStem_syll(y))∧
PStem:topmost_dominator_of(x,FD:PDom:PStem_syll(y))

These helper predicates are used for the output function below which outputs all correct prosodic dominances
from PStems to syllables. This completes the flattening process.

(448) QF output function to make the larger PStem dominate the syllables of its two MStems
• φPDom:PStem_syll(x1, y1)

def
= should__PDom:PStem_syll__old(x, y)∨

should__PDom:PStem_syll__new(x, y)

This completes prosodic flattening of two layers of recursive PStems. The computation was local.

6.5.2 Prosody of inflection

The previous sections looked at prosodic expansion and recursion, as they would appear in derivational
morphology. But before inflectional morphology, we see prosodic misalignment and the generation of new
prosodic constituents. I formalize both of these processes and show they are locally-computed.

6.5.2.1 Prosodic misalignment and overparsing

Prosodic misalignment is when a pair of matched prosodic and morphological constituents are non-isomorphic,
i.e., the two constituents dominate different sets of segments (Nespor and Vogel 1986; Selkirk 1986, 1996,
2011; McCarthy and Prince 1993; Truckenbrodt 1995, 1999). I formalize prosodic alignment as it appears
in Armenian. I show the morphological tree, and the prosodic stem is shown in parentheses.
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(449) Illustrating different PStem-MStem alignments in inflection

a. b.
Suffix type: V-initial inflection C-initial inflection
Suffixation: (amusín)-〈ov〉 (amusín)-〈ner〉
Syllabification:

MWord

INST

-ov

MStem

n

morph

MRoot

morph

(a.mu.śi).n

MWord

PL

-ner

MStem

n

morph

MRoot

morph

(a.mu.śin.)

PStem Misalignment:
MWord

INST

-ov)

MStem

n

morph

MRoot

morph

(a.mu.śi.n

Misalignment is triggered by the need to keep prosodic constituents well-aligned with syllable boundaries.
Before C-initial inflection (449b), the PStem and MStem are well-aligned: //(amuśin)s-ner//. One case
of misalignment is prosodic underparsing (cf. prosodic undermatch in Guekguezian 2017a), whereby the
PStem does not contain all the segments of its MStem. Before V-initial inflectional morphology (449a), the
PStem is at first misaligned from its MStem and underparses it: //(amuśi)sn-ov//. The final segment n of
the MStem is resyllabified into the subsequent PStem-external syllable. The underparsed input is repaired
by prosodic overparsing whereby the PStem expands into the inflectional suffix: //(amuśin-ov)s//. The
PStem overparses the MStem by containing segments -ov which aren’t in its MStem.

I focus on the misalignment case in V-initial inflection //(amuśi)ns-ov//. The input is explicitly shown
below with all the relevant morphological and prosodic information. Because prosodic overparsing occurs
at the juncture between derivation and inflection, it is limited to cases where the input contains a topmost
MWord (inflection) which dominates an MStem (derivation). This context is encapsulated into the SETTINGS

as the Parse label: Parse:MWord:nonrecursive.
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(450) Underparsed input to PStem overparsing before V-initial inflection: //(amusi)sn-ov//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 o0.16 v0.17

σ0.12 σ0.13 σ0.14 σ0.21

morph0.7 morph0.9 morph0.18

MRoot0.8 n0.10 INST0.19

MStem0.11

MWord0.20

PStem0.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C

C C C

m m m

m m m

m

m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p p p

MATCH

For easier illustration, I use the following predicates to pick out the relevant MStem and PStem which
are involved in PStem misalignment: the rightmost PStem0.15 and its MStem0.11.21 These predicates are
computationally local and QF-definable.

(451) a. FO user-defined predicate to select the target PStem and target MStem
• TargetPStem(x)

def
= PStem ∧ ¬∃y[succ:PStem(x, y)]

• TargetMStem(x)
def
= MStem ∧ ∃y[TargetPStem(y) ∧Match:stem(x, y)]

b. QF user-defined predicate to select the target PStem and target MStem
• TargetPStem(x)

def
= PStem ∧ FL:succ:PStem(x) = NULL

• TargetMStem(x)
def
= MStem ∧TargetPStem(FL:Match:stem(x))

PStem overparsing is a transduction with a copy set of size 1. I show the output below. The only change
is that the target PStem1.15 dominates the syllables of its MStem1.11 and the syllable σ1.21 of the suffix -ov.

21The condition on ‘rightmost’ is because of endocentric or hyponymic compounds which contains two PStems. Only the
rightmost PStem is affected in inflection. In the case of non-compound words, there is always only one PStem.
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(452) Output of PStem overparsing in V-initial inflection //(amuśin-ov)s//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o1.16 v1.17

σ1.12 σ1.13 σ1.14 σ1.21

morph1.7 morph1.9 morph1.18

MRoot1.8 n1.10 INST1.19

MStem1.11

MWord1.20

PStem1.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C

C C C

m m m

m m m

m

m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p p
p

p

MATCH

In Copy 1, all labels are faithfully outputted. In Copy 1, all relations are faithfully outputted except for
the prosodic dominance between PStems and syllables. We need to check that we have the right parse
SETTINGS, i.e., parsing a non-recursive MWord.

(453) a. QF output function to faithfully output every label during PStem misalignment
• For every label lab ∈ L:
φlab(x1)

def
= lab(x) ∧ Parse:MWord:nonrecursive(SETTINGS)

b. QF output function to faithfully output every relation except for the prosodic dominance of
PStems to syllables
• For every relation rel ∈ R− {PDom:PStem_syll}:
φrel(x1, y1)

def
= rel(x, y) ∧ Parse:MWord:nonrecursive(SETTINGS)

In the input, the syllable of the pre-inflectional segment is outside the PStem in V-initial inflection
//(amusi.)sn-ov//, and inside the PStem in C-initial inflection //(amusin)s-ner//. But in the output, the
PStem dominates the syllable of the pre-inflectional segment regardless if the segment is underlyingly
outside the PStem (in V-initial inflection) or underlyingly inside the PStem (in C-initial inflection): (amusi.n-ov)s,
(amusin)s-ner. The basic generalization in prosodic overparsing is that the PStem must contain its MStem’s
final segment n0.6. There are two ways to find this segment. One requires global computation by referencing
the target MStem and PStem; another uses local information because it references the morpheme boundary
between derivation and inflection. I illustrate both approaches and use the latter.

The most intuitive way to find this segment requires global computation. Given some segment n0.6 (x), the
predicate seg_in_TargetMStem(x) checks if n0.6 is in the target MStem0.11 (y). It does so by checking
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if the MStem generally morphologically-dominates x. General morphological dominance was defined in
Chapter 4: §4.5.1. There can be an unbounded number of MNodes which separate the segment x and the
target MStem y.22 The predicate final_seg_in_TargetMStem(x) then checks if x is the final segment
of the target MStem0.11.

(454) a. MSO user-defined predicate for non-locally checking if a segment is in the target MStem
• seg_in_TargetMStem(x)

def
= seg(x) ∧ ∃y[TargetMStem(y) ∧ gen_MDom(y, x)

b. MSO user-defined predicate for non-locally checking if a segment is the final segment in the
target MStem
• final_seg_in_TargetMStem(x)

def
= seg(x) ∧ seg_in_TargetMStem(x)∧

¬∃y[seg(y) ∧ succ:seg(x, y) ∧ seg_in_TargetMStem(y)]

The above two predicates are computationally non-local because they reference long-distance morphological
dominance. Any formulas which reference these predicates are likewise non-local. An alternative local
definition for final_seg_in_MStem(x) is to exploit the fact that MStems are always inside MWords, and
that the target MStem is the rightmost MStem. A priori, a segment n0.6 (x) is the rightmost segment in the
target MStem if:

1. x is part of an MStem
2. x precedes an inflectional suffix y which is part of an MWord

I will redefine the predicate final_seg_in_TargetMStem(x) using this information. These conditions

22This definition uses general dominance because it is possible that the input has multiple layers of MNodes separating the
MStem-final segment from the topmost MStem. These layers could be triggered by zero suffixes or by prefixes. In this case, global
information is needed. Consider a nonce word with multiple nonce prefixes un- and zero suffixes -∅: un*-(amusi)s-n-∅*-ov. The
target MStem is MStemz . The target MStemz and its final segment n are underlined. The PStem is in parentheses.

(1) Tree with unbounded number of nodes between the target MStem and its final segment
MWord

INST

-ov

MStemz

n

morph

-∅

...

...

morph

-∅*

MStemj

...

MStem1

n

morph

∅

MRoot

morph

(amuśi)n

...

morph

un-*

n

morph

un-

The deeply embedded MStem is MStem1 and it has the root and PStem. This MStem is preceded by a sequence of prefixes.
These prefixes form MStem2 to MStemj and they dominate the root. The root is followed by a sequence of zero suffixes from
MStemj+1 to MStemz . These MStem dominate MStemj . Thus, the zero suffixes scope over the prefixes.

In order to detect check that the segment n is dominated by MStemz , we need to traverse all the MStem nodes from MStem2 to
MStemz . This requires some form of long-distance computation such as with gen_MDom(x, y).
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are formalized with the following predicates. The predicate seg_in_MStem(x) is satisfied by the root
segments a0.1–n0.6. The predicate seg_in_MWord(x) is satisfied by the suffix segments o0.16,v0.17.
Similar to the QF predicate syll_of_MStem(x, y) These two predicates check for the ‘closest’ MNode
which dominates the segments, i.e., the MNode of the segment’s morpheme. The predicate seg_pre_infl(x)
is satisfied by the MStem-final segment n0.6 because it precedes an inflectional segment o0.16.

(455) a. FO user-defined predicate for checking if a segment is part of an MStem
• seg_in_MStem(x)

def
= seg(x) ∧ ∃u, v, w[MStem(u) ∧morpheme(v) ∧morph(w) ∧

MDom(u, v) ∧MDom(v, w) ∧MDom(w, x)]

b. FO user-defined predicate for checking if a segment is part of an inflectional morpheme in an
MWord
• seg_in_MWord(x)

def
= seg(x) ∧ ∃u, v, w[MWord(u) ∧morpheme(v) ∧morph(w) ∧

MDom(u, v) ∧MDom(v, w) ∧MDom(w, x)]

c. FO user-defined predicate for checking if a segment is pre-inflectional

• seg_pre_infl(x)
def
= seg_in_MStem(x)∧∃y[seg(y)∧succ:seg(x, y)∧seg_in_MWord(y)]

All of these predicates can be locally computed and are QF-definable.

(456) a. QF user-defined predicate for checking if a segment is part of an MStem
• seg_in_MStem(x)

def
= seg(x) ∧morph(FD:MDom(x)) ∧morpheme(FD:MDom2(x))∧

MStem(FD:MDom3(x))

b. QF user-defined predicate for checking if a segment is part of an inflectional morpheme in an
MWord
• seg_in_MWord(x)

def
= seg(x) ∧morph(FD:MDom(x)) ∧morpheme(FD:MDom2(x))∧

MWord(FD:MDom3(x))

c. QF user-defined predicate for checking if a segment is pre-inflectional

• seg_pre_infl(x)
def
= seg_in_MStem(x) ∧ seg_in_MWord(FL:succ:seg(x))

The PStem must dominate whatever syllable σ0.21 contains this pre-inflectional segment n0.6. The predicate
syll_of_pre_infl_seg(x) picks out this syllable x which dominates some pre-inflectional segment y. It
checks if the syllable x dominates some segment y, such that y is pre-inflectional. The predicate is locally
computable.

(457) a. FO user-defined predicate for picking syllable of the pre-inflectional segment
• syll_of_pre_infl_seg(x)

def
= syll(x) ∧ ∃y[seg(y) ∧ seg_pre_infl(y)∧

[PDom:syll_ons(x, y) ∨ PDom:syll_nuc(x, y)∨
PDom:syll_coda1(x, y) ∨ PDom:syll_coda2(x, y)]

b. QF user-defined predicate for picking syllable of the pre-inflectional segment
• syll_of_pre_infl_seg(x)

def
= syll(x) ∧ [seg_pre_infl(FM:PDom:syll_ons(x))∨

seg_pre_infl(FM:PDom:syll_nuc(x))∨
seg_pre_infl(FM:PDom:syll_coda1(x))∨
seg_pre_infl(FM:PDom:syll_coda2(x))]
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In terms of syllable incorporation, there are two sources for the PStem’s syllables. In one condition, the
PStem dominates all (old) syllables which it did dominate in the input. In the other condition, the PStem
dominates the (new) syllable of the suffix. These conditions are encoded via two helper predicates. For the
first condition, the PStem should faithfully dominate all of its underlying syllables.

(458) QF helper predicate for letting PStems faithfully dominate their underlying syllables
• should_PDom:PStem_syll__old(x, y)

def
= Parse:MWord:nonrecursive(SETTINGS)∧

PDom:PStem_syll(x, y)

For the second condition, the target PStem0.15 (x) must dominate the syllable σ0.21 (y) of the pre-inflectional
segment n0.6.

(459) QF helper predicate for making the target PStem dominate the syllable of the pre-inflectional
segment

• should_PDom:PStem_syll__new(x, y)
def
= Parse:MWord:nonrecursive(SETTINGS)∧

TargetPStem(x) ∧ syll_of_pre_infl_seg(y)

The work of these two helper predicates is summarized in the output function below.

(460) QF helper predicate to summarize what the PStem should dominate
• φPDom:PStem_syll(x, y)

def
= should__PDom:PStem_syll__old(x, y)∨

should__PDom:PStem_syll__new(x, y)

This is visualized below. I omit the morphological nodes and SETTINGS for easier illustration.

(461) PStem overparsing – PStem dominates its underlying syllables
a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o1.16 v1.17

σ1.12 σ1.13 σ1.14 σ1.21

PStem1.15

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

In sum, prosodic misalignment and prosodic overparsing is computationally local.

6.5.2.2 Prosodic layering and generation of a prosodic word

All the previous sections concerned the generation of prosodic stems. Prosodic layering is when different
types of prosodic constituents are present in the same word. Above PStems, prosodic structure can contain
multiple types of distinct morphosyntactically-derived constituents, such as prosodic words or PWords.
Here, I formalize the generation of prosodic words and how they dominate smaller prosodic constituents.
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All words in Armenian contain a PWord. The PWord overlaps with the PStem when the word is uninflected
((amusin)s)w (462a) or has V-initial inflection ((amusin-ov)s)w (462b). If the word has C-initial inflection,
the PWord is larger than the PStem because C-initial inflection is PStem-external: ((amusin)s-ner)w (462c).
I illustrate PWord generation in ((amusin)s-ner)w, and I show that it is a computationally local process.

(462) Input and output of PWord generation

Input Morphology Input Prosody Output Prosody
a. Uninflected ‘husband’

MWord

NOM

−∅

MStem

n

morph

∅

MRoot

morph

amuśin

PStem

σ

śin

σ

mu

σ

a

PWord

PStem

σ

śin

σ

mu

σ

a

b. V-initial inflection ‘husband-INST’
MWord

INST

-ov

MStem

n

morph

∅

MRoot

morph

amuśin

PStem

σ

śi

σ

mu

σ

a

σ

n-ov

PWord

PStem

σ

n-ov

σ

śi

σ

mu

σ

a

c. C-initial inflection ‘husband-PL
MWord

INST

-ner

MStem

n

morph

∅

MRoot

morph

amuśin

PStem

σ

śin

σ

mu

σ

a

σ

ner

PWord

σ

ner

PStem

σ

śin

σ

mu

σ

a

I am agnostic over whether PWord generation occurs simultaneously or right after PStem overparsing. For
illustration, I assume PWord generation happens after PStem overparsing. PWords are first generated when
the input contains an MWord. The main trigger for PWord generation is the SETTINGS label Parse:MWord:nonrecursive.
A PWord is generated if the topmost MNode in the input is a (recently added) MWord which dominates an
MStem. I show the explicit input and output for the C-inflected word amusin-ner.
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(463) a. Input of PWord generation: //(amuśin)s-ner//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 n0.16 e0.17 r0.18

σ0.12 σ0.13 σ0.14 σ0.22

morph0.7 morph0.9 morph0.19

MRoot0.8 n0.10 PL0.20

MStem0.11

MWord0.21

PStem0.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C C

C C C

m m m

m m m

m
m

m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p

p p p

MATCH

b. Output of PWord generation: //((amuśin)s-ner)w//

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6 n1.16 é1.17 r1.18

σ1.12 σ1.13 σ1.14 σ1.22

PWord2.21

morph1.7 morph1.9 morph1.19

MRoot1.8 n1.10 PL1.20

MStem1.11

MWord1.21

PStem1.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C C

C C C

m m m

m m m

m
m

m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p

p p p

p

p

MATCH

MATCH

Erecting the PWord is a transduction with a copy set of size 2. The main task is mapping the MWord0.21

into a PWord2.21, matching them, and letting this PWord dominate the right prosodic constituents. The
predicates and formula used to erect a PWord are analogous to the ones used for PStems (Chapter 5: §5.4.3).
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Only the name ‘PStem’ and ‘MStem’ are replaced with ‘PWord’ and ‘MWord’.

In Copy 1, all labels and relations are faithfully outputted. We need to check the SETTINGS to make sure
that we are parsing a non-recursive MWord.

(464) QF output functions for faithfully outputting node labels and relations in Copy 1

• For every label lab ∈ L:
φlab(x1)

def
= Parse:MWord:nonrecursive(SETTINGS) ∧ lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= Parse:MWord:nonrecursive(SETTINGS) ∧ rel(x, y)

In Copy 2, a PWord2.21 is generated as an output correspondent for the input MWord0.21. Redundantly,
this MWord should be unparsed in the input. This is redundant because the parse label on the SETTINGS

ensures that. This is all locally computible.

(465) a. FO output function for generating a PWord in Copy 1

• φPWord(x2)
def
= Parse:MWord:nonrecursive(SETTINGS)∧

MWord(x) ∧ ¬∃y[PWord(y) ∧Match:word(x, y)]

b. QF output function for generating a PWord in Copy 1

• φPWord(x2)
def
= Parse:MWord:nonrecursive(SETTINGS)∧

MWord(x) ∧ FL:Match:word(x) = NULL

The output MWord1.21 and PWord2.21 are associated via the Match:word(x, y) relation, which is locally
computible.

(466) a. FO output function for associating the output PWord and MWord via a MATCH relation
• φMatch:word(x1, y2)

def
= Parse:MWord:nonrecursive(SETTINGS)∧
φMWord(x1) ∧ φPWord(y2) ∧ x = y∧
¬∃z[PWord(z) ∧Match:word(x, z)]

b. QF output function for associating the output PWord and MWord via a MATCH relation
• φMatch:word(x1, y2)

def
= Parse:MWord:nonrecursive(SETTINGS)∧
φMWord(x1) ∧ φPWord(y2) ∧ x = y∧
FL:Match:word(x) = NULL

The PWord2.21 must dominate any PStems (PStem1.15) which are part of its MWord. For simplicity, let us
assume that the derivation is word-bounded; meaning that the input is never something larger like a phrase.
Thus, any input PStems are part of the MWord.

(467) QF output function for letting the PWord dominate the PStem

• φPDom:PWord_PStem(x2, y1)
def
= Parse:MWord:nonrecursive(SETTINGS)∧
φPWord(x2) ∧ φPStem(y1)
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Some syllables are dominated by the PStem (σ1.12, σ1.13, σ1.14) while some syllables are dominated by
the PWord (σ1.22). The new PWord2.21 must dominate the syllables of the MWord if these syllables are
not already parsed into the PStem, i.e., the syllable of the inflectional suffix -ner. This is facilitated by the
predicates below. The predicate syll_of_MWord(x,y) picks out the syllables x whose nuclei w are part
of an MWord y. Similar predicates were used to find syllables in an MStem (Chapter 5: §5.4.3). As with
MStems, the predicate below will pick out the syllables which are the ‘closest’ to the MWord, i.e., separated
by only a morpheme, morph, and nucleus segment. This predicate is locally computed and QF-definable.

(468) a. FO user-defined predicate for selecting the syllables introduced by an MWord
• syll_of_MWord(x, y)

def
= syll(x) ∧MWord(y)∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

b. QF user-defined predicate for selecting the syllables introduced by an MWord
• syll_of_MWord(x, y)

def
= syll(x) ∧MWord(y)∧

seg(FM:PDom:syll_nuc(x))∧
morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
y = F:D:MDom3(FM:PDom:syll_nuc(x))

The predicate below picks out syllables which are not dominated by a PStem. It is QF-definable.

(469) a. FO user-defined predicate for selecting syllables which are not dominated by a PStem

• LoneSyll(x)
def
= syll(x) ∧ ¬∃y[PDom:PStem_syll(y, x)]

b. QF user-defined predicate for selecting syllables which are not dominated by a PStem

• LoneSyll(x)
def
= syll(x) ∧ FD:PDom:PStem_syll(x) = NULL

The new PWord will prosodically dominate any syllables which 1) are lone syllables that not already
dominated by a PStem, and 2) which belong to the MWord which is associated with the new PWord. This
is all locally computible and QF-definable.23

(470) a. FO output function to let the PWord dominate the inflectional suffix’s syllable

• φPDom:PWord_syll(x2, y1)
def
= Parse:MWord:nonrecursive(SETTINGS)∧
φPWord(x2) ∧ φsyll(y1) ∧ LoneSyll(y)
∃w[φMWord(w1) ∧ φMatch:word(w1, x2)∧
syll_of_MWord(y, w)]

b. QF output function to let the PWord dominate the inflectional suffix’s syllable

• φPDom:PWord_syll(x2, y1)
def
= Parse:MWord:nonrecursive(SETTINGS)∧
φPWord(x2) ∧ φsyll(y1) ∧ LoneSyll(y)
φMWord(φFR:Match:word(x2))∧
syll_of_MWord(y, φFR:Match:word(x2)0)

23The unary function φFR:Match:word(x
2) returns a node w1 in Copy 1. To retrieve its input correspondent w, I use the

superscript 0.
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This completes the generation of the PWord. All the above output functions were computationally local
and used QF logic. Any non-locality was factorized into the SETTINGS as a locally-accessible label.

6.5.3 Prosody of compounding

Compound prosody is more complicated than the prosody of derivation and inflection. In a two-member
compound, each stem or item first forms its own prosodic constituent. These two prosodic constituents can
get restructured, linearized, and fused. Some of these processes differ between endocentric and exocentric
compounds. Specifically, endocentric compounds like ‘water-hole’ (471a) form two PStems while exocentric
compounds like ‘water-colored’ (471b) form one PStem. The evidence is their different plural forms.

(471) a.
>
tSúr + pós ‘water + hole’
>
tS@r-a-pós ‘water-hole’
(
>
tS@r-a)s-(pós)s>

tS@r-a-pos-ér ‘water-holes’
(
>
tS@r-a)s-(pos)s-ér 24

b.
>
tSúr + kújn ‘water + color’
>
tS@r-a-kújn ‘water-colored’
(
>
tS@r-a-kújn)s>

tS@r-a-kujn-nér ‘water-colored (objects)’
(
>
tS@r-a-kujn)s-nér

In simplex words, the plural suffix is -er after a monosyllabic base, -ner after a polysyllabic base. But in
compounds, the suffix counts the number of syllables in the rightmost PStem. The endocentric compound
is paradoxically pluralized as a monosyllabic base

>
tS@r-a-pos-er with -er because its rightmost PStem is

monosyllabic (pós)s. The exocentric compound is transparently pluralized as polysyllabic with -ner because
it forms a single PStem: (

>
tS@r-a-kujn)s-ner. Pluralization thus shows distinct prosodic constituencies.

I focus on generating the singular forms. A fragment of their derivation is in (472). Consider an
endocentric compound like

>
tS@r-a-pós ‘water-hole’. Before this final output, the intermediate output of the

morphology is //
>
tSúr-a-pós// where the two component MStems (MStemL and MStemR) form two stressed

PStems (PStemL and PStemR). The compound eventually undergoes the stem-level phonology of reduction
to form

>
tS@r-a-pós. But before that step, the prosodic structure is modified. Resyllabification applies:

//(
>
tSú)sr-a-(pós)//. The first PStemL expands to incorporate the linking vowel -a-: //(

>
tSúr-a-)s-(pós)s//

(472i.a). The two PStems are linearized or ordered (472i.b, not explicit in the table). Finally, because
the compound is endocentric, then the two component PStems are not fused together. Instead, the entire
compound’s MStemC is prosodically subsumed into the second PStem (472i.c, not explicit in the table).

Contrast this with an exocentric compound like
>
tS@r-a-kújn ‘water-colored’. The output of compounding

is also two stressed PStems: //
>
tSúr-a-kújn//. The first PStemL is restructured to incorporate the linking

vowel (472ii.a), and the two PStems are linearized. However, the two PStems are then fused into a single
PStemC : //(

>
tSúr-a-kújn)s//. This larger PStemC is matched with the entire compound MStemC .

24Technically, the suffix -er is later incorporated into the rightmost PStem. I do not show this for clearer illustration.
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(472) Stages in the prosodic parse of compounds
i. Endocentric ii. Exocentric
‘water-hole’ ‘water-colored’

Input Morphology
MStemC,En

n

∅

MConc

MStemR

pós

LV

a

MStemL

>
tSúr

MStemC,Ex

a

∅

MConc

MStemR

kújn

LV

a

MStemL

>
tSúr

Input Prosody before resyllabification
PStemL

σ

>
tSúr <a>

PStemR

σ

pós

PStemL

σ

>
tSúr <a>

PStemR

σ

kújn

Input Prosody after resyllabification
PStemL

σ

>
tSú

σ

r-a

PStemR

σ

pós

PStemL

σ

>
tSú

σ

r-a

PStemR

σ

kújn

a. Prosodic restructuring
PStemL

σ

r-a

σ

>
tSú

PStemR

σ

pós

PStemL

σ

r-a

σ

>
tSú

PStemR

σ

kújn

b. Prosodic linearization
c. Prosodic subsumption
d. Prosodic fusion

PStemC

σ

kújn

σ

r-a

σ

>
tSú

Eventual output from vowel reduction
>
tS@r-a-pós

>
tS@r-a-kújn

I formalize the four prosodic steps which apply after resyllabification. I formalize each of them as a
logical transduction. Each is shown to be computationally local.25 I first go over some preliminary notation.

25Interestingly in Chapter 8: §8.3, I show that the locality is due to the cyclicity of our model; a post-cyclic parse of compounds
is not computationally local.
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6.5.3.1 Preliminary notation

Throughout the formalization, I regularly reference the same morphological and prosodic nodes. I first
show the explicit input to parsing an endocentric compound //(

>
tSú)sr-a-(pós)s//.

(473) Input to prosodically parsing an endocentric compound //
>
tSúr-a-pós//

>
tS0.1 ú0.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18σ0.28

morph0.4 morph0.6 morph0.12 morph0.20 morph0.22 morph0.25

MRoot0.5 n0.7 LV0.13 MRoot0.21 n0.23 n0.26

MStemL 0.8 MStemR 0.24

MConc0.14

PStemL 0.10 PStemR 0.19

MStemC,En 0.27

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

m
m

m
m

m
m

m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p
p

p
p

p

p

p

MATCH
MATCH

The following predicates pick commonly-used morpho-prosodic constituents in the following order: the
current compound or MStemC as MStem0.27, MConc0.14, the linking vowel’s segment as a0.11, the left
MStem or MStemL as MStem0.8, and the right MStem or MStemR as MStem0.24.

(474) FO user-defined predicates for picking out the MStems and segments involved in compound prosody
1. The compound MStem

CurrentComp(x)
def
= MStem:Comp(x) ∧MTopmost(x)

2. The compound’s MConc
CurrentConc(x)

def
= MConc(x) ∧ ∃y[CurrentComp(y) ∧MDom(y, x)]

3. The compound’s linking vowel -a-

LV_segment(x)
def
= vowel(x) ∧ ∃u, v, w[CurrentConc(u) ∧ LV_morpheme(v)∧

morph(w) ∧MDom(u, v) ∧MDom(v, w) ∧MDom(w, x)]
4. The compound’s left MStem or MStemL

LeftMStem(x)
def
= MStem:Comp:Left(x) ∧ ∃y[CurrentConc(y) ∧MDom(y, x)]
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5. The compound’s right MStem or MStemR

RightMStem(x)
def
= MStem:Comp:Right(x) ∧ ∃y[CurrentConc(y) ∧MDom(y, x)]

These predicates compute local information and are thus QF-definable.

(475) QF user-defined predicates for picking out the MStems and segments involved in compound prosody
1. CurrentComp(x)

def
= MStem:Comp(x) ∧MTopmost(x)

2. CurrentConc(x)
def
= MConc(x) ∧CurrentComp(FD:MDom(x))

3. LV_segment(x)
def
= vowel(x) ∧morph(FD:MDom(x))∧

LV_morpheme(FD:MDom2(x)) ∧CurrentConc(FD:MDom3(x))

4. LeftMStem(x)
def
= MStem:Comp:Left(x) ∧CurrentConc(FD:MDom(x))

5. RightMStem(x)
def
= MStem:Comp:Right(x) ∧CurrentConc(FD:MDom(x))

Prosodically, each component MStem contains at least one PStem: //(
>
tSú)sr-a-(pós)//. One PStemL

precedes the linking vowel , and one PStemR follows the linking vowel. These two PStems match with
MStemL and MStemR respectively. The helper predicates below pick out these PStems.26 For the endocentric
compound, the left PStemL is PStem0.10, the right PStemR is PStem0.19. These predicates are locally-computible.

(476) a. FO user-defined predicates for picking out the PStems involved in compound prosody
1. The left PStemL of the compound’s left MStem or MStemL

LeftPStem(x)
def
= PStem(x) ∧ ∃y[LeftMStem(y) ∧Match:stem(y, x)]

2. The right PStemR of the compound’s right MStem or MStemR

RightPStem(x)
def
= PStem(x) ∧ ∃y[RightMStem(y) ∧Match:stem(y, x)]

b. QF user-defined predicates for picking out the PStems involved in compound prosody
1. The left PStemL of the compound’s left MStem or MStemL

LeftPStem(x)
def
= PStem(x) ∧ LeftMStem(FR:Match:stem(x))

2. The right PStemR of the compound’s right MStem or MStemR

RightPStem(x)
def
= PStem(x) ∧RightMStem(FR:Match:stem(x))

Some of the prosodic processes in compounds are the same for both endocentric and exocentric compounds.
The predicate below checks if the parsing instruction is that of a compound, either endocentric or exocentric.

(477) QF user-defined predicate for checking that the input is a compound

• Parse:MStem:Comp(SETTINGS)
def
= Parse:MStem:Comp:Endo(SETTINGS)∧

Parse:MStem:Comp:Exo(SETTINGS)

With all the basic locally-computed predicates set up, we can now parse the compounds. The computation
will be local because it references simple local predicates such as the ones above.

26If the component MStems are actually compounds themselves, then picking out the right PStems is more complicated. MStemR

could be its own endocentric compounds with multiple PStems.
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6.5.3.2 Prosodic restructuring and incorporation of linking vowels

The first step in parsing a compound is restructuring the left PStemL in order to incorporate the linking
vowel. Like PStem restructuring in derivation, restructuring in compounding is computationally local.

(478) Prosodic restructuring in compounds
i. Endocentric ii. Exocentric
‘water-hole’ ‘water-colored’

Input Prosody
PStemL

σ

>
tSú

σ

r-a

PStemR

σ

pós

PStemL

σ

>
tSú

σ

r-a

PStemR

σ

kújn

a. Prosodic restructuring
PStemL

σ

r-a

σ

>
tSú

PStemR

σ

pós

PStemL

σ

r-a

σ

>
tSú

PStemR

σ

kújn

Eventual output
>
tS@r-a-pós

>
tS@r-a-kújn

The input to this step was shown before in §6.5.3.1. For illustration, I repeat a simplified version of the
input without any morphological nodes.

(479) Input to prosodic restructuring and linking vowel incorporation in an endocentric compound //(
>
tSú)sr-a-(pós)s//

>
tS0.1 ú0.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18σ0.28

PStemL 0.10 PStemR 0.19

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

p
p

p
p

p
p

p

p p

Expansion of the left PStemL into the linking vowel is a transduction with a copy set of size 1. I show the
output below. The necessary change is that PStem1.10 now dominates the linking vowel’s syllable σ1.28
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(480) Output of incorporating the linking vowel’s syllable

>
tS1.1 ú1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

σ1.9 σ1.18σ1.28

PStemL 1.10 PStemR 1.19

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

p
p

p
p

p
p

p

p
p

p

In Copy 1, all labels and nodes are faithfully outputted. Note that we check the SETTINGS to make sure
that we are supposed to parse a compound. All relations are faithfully outputted except for the prosodic
dominance between PStems and syllables.

(481) a. QF output function for faithfully outputting labels in Copy 1
• For every label lab ∈ L
φlab(x1)

def
= lab(x) ∧Parse:MStem:Comp(SETTINGS)

b. QF output function for faithfully outputting relations in Copy 1 except for PStem-to-syllable
dominance
• For every relation rel ∈ R− {PDom:PStem_syll}:
φrel(x1, y1)

def
= rel(x, y) ∧Parse:MStem:Comp(SETTINGS)

Restructuring affects the prosodic dominance between PStems and syllables. This relation is affected
in two separate ways which I encode with helper predicates. In one case, the left PStem1.10 (x) should
incorporate the syllable σ1.28 (y) of the linking vowel a1.11 (u) via the helper predicate below. This predicate
is QF-definable.

(482) a. FO helper predicate for making the left PStem dominate the linking vowel’s syllable
• should__PDom:PStem_syll__new(x, y)

def
= Parse:MStem:Comp(SETTINGS)∧

LeftPStem(x) ∧ syll(y)∧
∃u[LV_segment(u) ∧ PDom:syll_nuc(y, u)]

b. QF helper predicate for making the left PStem dominate the linking vowel’s syllable
• should__PDom:PStem_syll__new(x, y)

def
= Parse:MStem:Comp(SETTINGS)∧

LeftPStem(x) ∧ syll(y)∧
LV_segment(FM:PDom:syll_nuc(y))

All other underlying prosodic dominance between PStems and syllables should be faithfully outputted by
the helper predicate below. I.e., PStem1.10 should dominate σ1.9, and PStem1.19 should dominate σ1.18.

237



(483) QF helper predicate for faithfully outputting underlying prosodic dominances of PStems and syllables

• should__PDom:PStem_syll__old(x1, y1)
def
= Parse:MStem:Comp(SETTINGS)∧
PDom:PStem_syll(x, y)

The work of the two helper predicates is summarized by the output function below.

(484) QF output function for prosodic dominance of PStem and syllables

• φPDom:PStem_syll(x1, y1)
def
= should__PDom:PStem_syll__old(x, y)∨

should__PDom:PStem_syll__new(x, y)

All the above output functions reference QF user-defined predicates. Thus, the computation is local.

6.5.3.3 Prosodic linearization and ordering

The second step in parsing a compound is to linearize the two PStems in a successor relationship. This is
only visible in the more explicit input and output representation for compounds. I omit the morphological
nodes. The PStems of the input must be linearized as adjacent because the final syllable of the left PStem0.10

now precedes the initial syllable of the right PStem0.19. This process is local.

(485) a. Input of linearizing PStems in an endocentric compound //(
>
tSúr-a)s-(pós)s//

>
tS0.1 ú0.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18σ0.28

PStemL 0.10 PStemR 0.19

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

p
p

p
p

p
p

p

p
p

p

b. Output of linearizing PStems in an endocentric compound //(
>
tSúr-a)s-(pós)s//

>
tS1.1 ú1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

σ1.9 σ1.18σ1.28

PStemL 1.10 PStemR 1.19

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

C

p
p

p
p

p
p

p

p
p

p
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Linearization is a transduction with a copy set of size 1. In Copy 1, all labels are faithfully outputted.

(486) QF output function for faithfully outputting the labels of the input
• For every label lab ∈ L:

φlab(x1)
def
= lab(x) ∧Parse:MStem:Comp(SETTINGS)

The two PStems are ordered together via a new type of immediate precedence that is specialized for
PStems: succ:PStem(x, y). I assume all relations are faithfully outputted except for succ:PStem(x, y).

(487) QF output function for faithfully outputting the relations of the input
• For every label lab ∈ R− {succ:PStem}:

φrel(x1, y1)
def
= rel(x, y) ∧Parse:MStem:Comp(SETTINGS)

Compounds are generally made of two component stems, each with their own PStem: the left PStem0.9

(x) and the right PStem0.19 (y). If we assume that the input only has two PStems, then we can linearize the
output PStems via the output function below.27

(488) QF output function for ordering PStems

• φsucc:PStem(x1, y1)
def
= Parse:MStem:Comp(SETTINGS)∧LeftPStem(x)∧RightPStem(y)

In sum, PStem linearization is also local because it only uses local information, i.e., QF-definable predicates.
27The above technique does not work when a compound has more than two PStems. A more general way to order any two

or more PStems requires some non-local information by referencing the final and initial syllables of a PStem. The predicate
initial_syll_in_PStem(x, y) finds the first syllable x of a PStem y, while the analogous predicate final_syll_in_Pstem(x, y)
finds the last syllable. Both of these predicates are locally-computible with QF logic (not shown).

(1) a. FO user-defined predicates to find the initial syllable of a PStem

• initial_syll_in_PStem(x, y)
def
= syll(x) ∧ PStem(y) ∧ PDom:PStem_syll(y, x)∧
¬∃z[syll(x) ∧ succ:syll(z, x) ∧ PDom:PStem_syll(y, z)]

b. FO user-defined predicates to find the final syllable of a PStem

• final_syll_in_PStem(x, y)
def
= syll(x) ∧ PStem(y) ∧ PDom:PStem_syll(y, x)∧
¬∃z[syll(x) ∧ succ:syll(x, z) ∧ PDom:PStem_syll(y, z)]

Two PStems x, y are then ordered if the final syllable of one PStem x precedes the initial syllable of the other PStem y.

(2) FO output function for ordering PStems based on the initial and final syllables

• φsucc:PStem(x, y)
def
= PStem(x) ∧ PStem(y) ∧ ∃u, v[syll(u) ∧ syll(v)∧

final_syll_in_PStem(u, x) ∧ initial_syll_in_PStem(v, y) ∧ succ:syll(u, v)]

The above function works but it requires non-local information. Given a PStem, finding its daughter syllables is not local or
QF-definable because a PStem can have an unbounded number of daughters. The same non-locality problem occurs for ordering
higher levels of prosodic structure (PWords) because PWords dominate an unbounded number of syllables.

To make this process be local, we would need to enrich the set of successor relations to let PStems precede syllables
succ:PStem_syll(x, y) or succeed syllables succ:syll_PStem(x, y). Thus, the left PStem0.10 would precede the initial syllable
σ0.18 of the right PStem0.19, and the right PStem0.19 would succeed the final syllable σ0.28 of the left PStem0.10.
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6.5.3.4 Prosodic subsumption in endocentric compounds

Having linearized the PStems, the next step is to determine if the two PStems will be fused or not. In
the case of an endocentric compound like ‘water-hole’ (489a), the two PStems stay intact. The evidence for
intact PStem is that the plural suffix counts the number of syllables in MStemR, i.e., PStemR:

>
tS@r-a-(pos)s-er.

(489) a.
>
tSúr + pós ‘water + hole’
>
tS@r-a-pós ‘water-hole’
>
tS@r-a-pos-ér ‘water-holes’
(
>
tS@r-a)s-(pos)s-ér

b.
>
tSúr + kújn ‘water + color’
>
tS@r-a-kújn ‘water-colored’
>
tS@r-a-kujn-nér ‘water-colored (objects)’
(
>
tS@r-a-kujn)s-nér

The entire endocentric compound MStemC is neither matched with either PStem nor mapped to a separate
PStem; it instead is subsumed into the right PStem of MStemR. I draw a simplified sketch of this below.

(490) Sketch of input and output prosodic associations in prosodic subsumption of an endocentric compound
Input Output

Morphology Prosody Morphology & Prosody
MStemL matches with PStemL MStemC subsumed into PStem2
MStemL matches with PStemR

MStemC,En

n

∅

MConc

MStemR

pós

LV

-a-

MStemL

>
tSúr

PStemR

pós

PStemL

>
tSúr-a

MStemC,En

n

MConc

MStemR

PStemR

pós

MATCH

LVMStemL

PStemL

tSúr-a-

MATCH

SUBSUME

As explained in Chapter 4: §4.5.2, prosodic subsuming is a special type of prosodic association. Prosodic
subsuming is restricted to compound MStems in endocentric compounds. I formalize the relation as Subsume:stem(x, y).

(491) Binary relations for specialized prosodic mappings like Subsuming
• Subsume:stem(x, y): the MStem x is subsumed into PStem y

Explicitly, the endocentric compound contains the two PStems: PStemL is PStem0.10, and PStemR is
PStem0.19. They are each matched with some component MStem: MStemL is MStem0.8, and MStemR is
MStem0.24. In the input, the compound MStemC is MStem0.27 and it is not prosodically associated with any
PStem. In the output, the only change is that the MStemC is prosodically subsumed into the right PStem1.19.
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(492) a. Input to PStem subsumption in an endocentric //(
>
tSúr-a)s-(pós)s//

>
tS0.1 ú0.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18σ0.28

morph0.4 morph0.6 morph0.12 morph0.20 morph0.22 morph0.25

MRoot0.5 n0.7 LV0.13 MRoot0.21 n0.23 n0.26

MStemL 0.8 MStemR 0.24

MConc0.14

PStemL 0.10 PStemR 0.19

MStemC,En 0.27

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

C

m
m

m
m

m
m

m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p
p

p
p

p

p p

p

MATCH
MATCH

b. Output of PStem subsumption in an endocentric compound //(
>
tSúr-a)s-(pós)s//

>
tS1.1 ú1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

σ1.9 σ1.18σ1.28

morph1.4 morph1.6 morph1.12 morph1.20 morph1.22 morph1.25

MRoot1.5 n1.7 LV1.13 MRoot1.21 n1.23 n1.26

MStemL 1.8 MStemR 1.24

MConc1.14

PStemL 1.10 PStemR 1.19

MStemC,En 1.27

SETTINGS Parse:MStem:Comp:Endo

Domain:Cophon:SLevel

C C C C C C

C C

C

m
m

m
m

m
m

m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p
p

p
p

p

p p

p

MATCH MATCH

SUBSUME

Generating prosodic subsumption is a transduction with a copy set of size 1. The main morphological
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trigger is encapsulated into the SETTINGS as the parse label Parse:MStem:Comp:Endo. This process is
computationally local. In Copy 1, all nodes and labels are faithfully outputted.

(493) QF output function for faithfully outputting the input in Copy 1 for an endocentric compound
• φlab(x)

def
= lab(x) ∧ Parse:MStem:Comp:Endo(SETTINGS)

All relations are the same in the input and the output except for the prosodic relationship between the
compound MStemC,1.27 and the right PStem1.19. The output function below faithfully outputs all underlying
relations except for prosodic subsumption.

(494) QF output function for faithfully outputting underlying relations of an endocentric compound except
for prosodic subsuming
• For every relation rel ∈ R− {Subsume:stem}

φrel(x, y)
def
= rel(x, y) ∧ Parse:MStem:Comp:Endo(SETTINGS)

In Copy 1, the compound MStemC,1.27 (x) should be prosodically subsumed into the right PStem1.19 (y)
via the output function below.28

(495) QF output function for prosodically subsuming the compound MStem into the right PStem in an
endocentric compound
• Subsume:stem(x, y)

def
= Parse:MStem:Comp:Endo(SETTINGS)∧
CurrentComp(x) ∧RightPStem(y)

This completes the prosodic parsing of an endocentric compound. All formula were QF-definable, thus
the computation is local.

6.5.3.5 Prosodic fusion in exocentric compounds

In contrast to an endocentric compound, exocentric compounds like ‘water-colored’ (496b) are prosodically
parsed into a single large PStem. The evidence for fused PStems is that the plural suffix counts the number
of syllables in entire compound MStemC : (

>
tS@r-a-kujn)s-ner.

28If the grammar allows endocentric compounds made out of other endocentric compounds, then φSubsume:stem(x1, y1)
must be reformulated as a helper predicate should__Subsume:stem__new(x, y). In large compounds, any underlying
prosodic subsumption relations should be faithfully outputted via the helper predicate below.

(1) QF helper predicate for faithfully outputting underlying prosodic subsuming relations in an endocentric compound

• should__Subsume:stem__old(x, y)
def
= Subsume:stem(x, y) ∧ Parse:MStem:Comp:Endo(SETTINGS)

These two helper predicates are summarized into a single output function for endocentric compounds.

(2) QF output function for outputting prosodic subsumption in an endocentric compound

• φSubsume:stem(x1, y1)
def
= should__Subsume:stem__old(x, y)∨should__Subsume:stem__new(x, y)
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(496) a.
>
tSúr + pós ‘water + hole’
>
tS@r-a-pós ‘water-hole’
>
tS@r-a-pos-ér ‘water-holes’
(
>
tS@r-a)s-(pos)s-ér

b.
>
tSúr + kújn ‘water + color’
>
tS@r-a-kújn ‘water-colored’
>
tS@r-a-kujn-nér ‘water-colored (objects)’
(
>
tS@r-a-kujn)s-nér

The two input PStems are merged into a single PStemC which dominates the syllables of the two original
PStems. The entire compound MStemC is matched with this larger PStemC . The component MStems
(MStemL, MStemR) are wrapped into PStemC .

(497) Sketch of input and output prosodic associations in prosodic fusion of an exocentric compound
Input Output

Morphology Prosody Morphology & Prosody
MStemL matches with PStemL MStemC matches with PStemC

MStemR matches with PStemR MStemL and MStem@ wrapped into PStemC

MStemC,Ex

n

∅

MConc

MStemR

kújn

LV

-a-

MStemL

>
tSúr

PStemR

kújn

PStemL

>
tSúr-a

MStemC,Ex

n

MConc

MStemRLV

PStemC

tSúr-a-kújn

MStemL SUBSUME

WRAPWRAP

As with endocentric compounds, the explicit representation for exocentric compounds shows all of these
abstract associations. In the input, MStemL is MStem0.8 and it is mapped to PStemL which is PStem0.10;
in contrast, MStemR is MStem0.25 and it is parsed to PStemR which is PStem0.20. In the input, MStemC

is MStem0.29 and it is not parsed into any PStem. In the output, we generate a new PStemC as PStem2.28. All
the MStems are re-associated with this PStem via WRAP and MATCH relations. This process is computationally
local.
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(498) a. Input to PStem fusion in an exocentric //(
>
tSúr-a)s-(kújn)s//

>
tS0.1 ú0.2 r0.3 a0.11 k0.15 ú0.16 j0.17 n0.18

σ0.9 σ0.19σ0.29

morph0.4 morph0.6 morph0.12 morph0.21 morph0.23 morph0.26

MRoot0.5 n0.7 LV0.13 MRoot0.22 n0.24 n0.27

MStemL 0.8 MStemR 0.25

MConc0.14

PStemL 0.10 PStem0.20

MStemC,Ex 0.28

SETTINGS Parse:MStem:Comp:Exo

Domain:Cophon:SLevel

C C C C C C C

C C

C

m
m

m
m

m m

m m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p
p

p
p

p p

p p

p

MATCH
MATCH

b. Output of PStem fusion in an exocentric //(
>
tSúr-a-kújn)s//

>
tS1.1 ú1.2 r1.3 a1.11 k1.15 ú1.16 j1.17 n1.18

σ1.9 σ1.19σ1.29

morph1.4 morph1.6 morph1.12 morph1.21 morph1.23 morph1.26

MRoot1.5 n1.7 LV1.13 MRoot1.22 n1.24 n1.27

MStemL 1.8 MStemR 1.25

MConc1.14

PStemC 2.28

MStemC,Ex 1.28

SETTINGS Parse:MStem:Comp:Exo

Domain:Cophon:SLevel

C C C C C C C

C C

m
m

m
m

m m

m m

m m m m m m

m

m

m

m

m

m

m

m

m

p
p

p
p

p
p

p p

p p
p

WRAP

WRAP

MATCH
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Generating PStem fusion is a transduction with a copy set of size 2. The main morphological trigger
is encapsulated into the SETTINGS as the parse label Parse:MStem:Comp:Exo. In Copy 1, all underlying
labels should be faithfully outputted except for PStems. Similarly for relations in Copy 1, all relations are
faithfully outputted except for those involving PStems.29

(499) a. QF output function for faithfully outputting the input in Copy 1 for an exocentric compound
except for PStems
• For every label lab ∈ L− {PStem}:
φlab(x)

def
= lab(x) ∧ Parse:MStem:Comp:Exo(SETTINGS)

b. QF output function for faithfully outputting the input in Copy 1 for an exocentric compound
except for those involving PStems
• For every relation rel ∈ R− {Match:stem,Wrap:stem,PDom:PStem_syll, . . .}:
φrel(x, y)

def
= rel(x, y) ∧ Parse:MStem:Comp:Exo(SETTINGS)

In Copy 2, a PStem2.28 (x2) is generated as an output correspondent for the compound MStemC,0.28 (x).

(500) QF output function for generating a PStem in Copy 2 for an exocentric compound

• φPStem(x2)
def
= CurrentComp(x) ∧ Parse:MStem:Comp:Exo(SETTINGS)

This new PStem2.28 (x2) in Copy 2 dominates the syllables (y1) of the input left and right PStems (u) in
Copy 1. The output function which does this is locally-computed and QF-definable.

(501) a. FO output function for assigning the syllables of the underlying left/right PStem to the new
PStem
• φPDom:PStem_syll(x2, y1)

def
= Parse:MStem:Comp:Exo(SETTINGS)∧
PStem(x2) ∧ syll(y)∧
∃u[PStem(u) ∧ PDom:PStem_syll(u, y)∧
[LeftPStem(u) ∨RightPStem(u)]]

29Exocentric compounds with three or more members show are more complicated to parse. In Copy 1, any PStems which are not
the left and right PStems of the compound are faithfully outputted. All PStem-relations that don’t involve the left and right PStem
are faithfully outputted.

(1) a. QF output function for faithfully outputting PStems outside outside of the compound’s left and right PStems
• For every label lab ∈ {PStem}:
φlab(x)

def
= lab(x) ∧ Parse:MStem:Comp:Exo(SETTINGS) ∧ ¬[LeftPStem(x) ∨RightPStem(x)]

b. QF output function for faithfully outputting relations that involve PStems outside of the compound’s left and right
PStems
• For every relation rel ∈ {Match:stem,Wrap:stem,PDom:PStem_syll, . . .}:
φrel(x, y)

def
= rel(x, y) ∧ Parse:MStem:Comp:Exo(SETTINGS)∧
¬[LeftPStem(x) ∨RightPStem(x)]
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b. QF output function for assigning the syllables of the underlying left/right PStem to the new
PStem
• φPDom:PStem_syll(x2, y1)

def
= Parse:MStem:Comp:Exo(SETTINGS)∧
PStem(x2) ∧ syll(y)∧
[LeftPStem(FD:PDom:PStem_syll(y))∨
RightPStem(FD:PDom:PStem_syll(y))]

The compound MStemC,1.28 (x1) from Copy 1 is matched with the new PStem2.28 (y2).

(502) QF output function to make the new PStem match with the compound MStem
• φMatch:stem(x1, y2)

def
= Parse:MStem:Comp:Exo(SETTINGS)∧

CurrentComp(x) ∧ φPStem(y2)

Any underlying MStems (x1) which were prosodically associated with the underlying PStems (z) are now
associated with the new PStemC (y2). This means that MStemL and MStemR (MStem1.8 and MStem1.25)
are now wrapped into the new PStem2.28. In fact, if any underlying MStems were even wrapped or matched
with the old PStems, they are now wrapped into the new PStem.30 This reassocation is locally-computed.

(503) a. FO output function for transferring any wrapped or matched MStem of the underlying left-right
PStems to the new compound PStem
• φWrap:stem(x1, y2)

def
= Parse:MStem:Comp:Exo(SETTINGS)∧

MStem(x) ∧ φPStem(y2)∧
∃z[PStem(z) ∧ [LeftPStem(z) ∨RightPStem(z)]∧
[Wrap:stem(x, z) ∨Match:stem(x, z)]]

b. QF output function for transferring any wrapped or matched MStem of the underlying left-right
PStems to the new compound PStem
• φWrap:stem(x1, y2)

def
= Parse:MStem:Comp:Exo(SETTINGS)∧

MStem(x) ∧ φPStem(y2)∧
[LeftPStem(FL:Match:stem(x))∨
RightPStem(FL:Match:stem(x))∨
LeftPStem(FL:Wrap:stem(x))∨
RightPStem(FL:Wrap:stem(x))]

This completes the generation of a fused PStem in an exocentric compound. The computation was local
because quantifiers were not needed. k

30In exocentric compounds made with three or more members, there may be MStems which are subsumed into some PStem in
the input. They should now be subsumed into the new PStem.

(1) FO output function for transferring any wrapped or matched MStem of the underlying left-right PStems to the new
compound PStem

• φSubsume:stem(x1, y2)
def
= Parse:MStem:Comp:Exo(SETTINGS) ∧MStem(x) ∧ φPStem(y2)∧
∃z[PStem(z) ∧ [LeftPStem(z) ∨RightPStem(z)] ∧ Subsume:stem(x, z)]
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6.6 Locality in stratal phonological rules

Having parsed the relevant prosodic structure, the right phonological rule domains must apply. These
rules differ between derivation and inflection, V-initial and C-initial inflection, and between dialects.

For the derivative //amuśin-agan//, the stem-level phonology applies with stress shift and reduction:
amusn-agán. The word-level phonology is later vacuously applied in a vacuous third cycle. For the inflected
items, we see different cophonologies apply. C-initial inflection like //amuśin-ner// triggers the word-level
cophonology, where we have stress but no reduction: amusin-nér. V-initial inflection like //(amuśin-ov)s//
has more complications. It triggers PStem misalignment which iteslf triggers the PStem-level cophonology.
Reduction is active in the PStem-level cophonology for Eastern Armenian amusn-óv but not Western Armenian
amusin-óv. The word-level cophonology then vacuously applies.

I formalize the selection of these cophonologies, specifically how to formalize

1. structure-changing processes like reduction,
2. prosodically triggered cophonologies or rule-domains,
3. encoding of dialectal variation
4. application of the PStem-level vs. word-level cophonology

6.6.1 Stem-level cophonology: Locality of reduction

Overt derivational morphology in //amuśin-agan// triggers the stem-level cophonology or phonological
rule domain, including stress shift and reduction. I treat stress and reduction as two logical transductions
which apply in a sequence. In Chapter 5: §5.5, I formalized stress assignment. The main task of this section
is to formalize vowel reduction, a complicated process which references strata, syllabification, past stress,
local contexts, and different possible repairs. Helper predicates will be heavily used in this section.31

(504) Partial stratal derivation of the derivative amusn-agan
MStem

n

/-agan/

MStem

n

-∅

MRoot

/amusin/

Input /amusin -∅ -agan/

Cycle 1 a.mu.śin
Cycle 2 ...

PHONO SLevel
Stress a.mu.šin-a.gán
DHR (reduction) a.mus.n-a.gán

Output amusn-agán

31I do not discuss how the stem-level phonology applies in compounds. An intermediate input like
>
tSúr-a-pós ‘water-hole’ will

undergo the stem-level phonology of stress shift and reduction
>
tS@r-a-pós, just like a derivative. The formulas in this section are

illustrated with derivatives but they also handle compounds.
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Throughout this section, the formulas reference the SETTINGS constant. The constant has the relevant
Domain label to trigger the stem-level cophonology: Domain:Cophon:SLevel(SETTINGS). I show the
explicit input below; I omit the morphological nodes and PStem.

(505) Input for applying the stem-level phonology for a derivative //amuśin-agan//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

I first go quickly go through stress shift and destressing (§6.6.1.1). I then describe and formalize some
preliminaries on reduction, i.e., predicates which pick out the relevant context and domain for reduction
(§6.6.1.2). I formalize reduction in a piecemeal fashion because it sensitive to multiple conditions on
the input. This requires the use of helper predicates to streamline the formalization. I formalize how to
faithfully output segments and nodes which are outside of the context of reduction (§6.6.1.3). I formalize
the resyllabification factors in §6.6.1.4. I then formalize how to reduce vowels to schwas (§6.6.1.5) and
how to delete a vowel and trigger resyllabification (§6.6.1.6). I emphasize that the phonological process is
computationally local, and it is definable with QF logic. This section is essentially an extended exercise in
using helper predicates for a complex process (see Chapter 4: §4.3.4, §4.3.5).

6.6.1.1 Locality of stress shift and destressing

Given an input form like //amuśin-agan//, the first step in the stem-level cophonology is to apply stress
shift: //amušin-agán//. The logical definition for stress assignment in complex words is the same as in
simplex words. However, only in complex words do we find destressed vowels like ǐ where the diacritic
marks the loss of stress. I show the input and output below.

(506) a. Input for applying stress shift in the derivative //amuśin-agan//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p
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b. Output of applying stress shift in the derivative //amušin-agán//

a1.1 m1.2 u1.3 s1.4 ǐ1.5 n1.6 a1.16 g1.17 á1.18 n1.19

σ1.12 σ1.13 σ1.14 σ1.23 σ1.24

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

Stress assignment is a transduction with a copy set of size 1. As said, I formalized stress assignment in
Chapter 5: §5.5. The main output functions are repeated below. These output functions will shift stress from
the input stressed vowel i0.5 (and its syllable σ0.14) to the rightmost full vowel a1.18 (and its syllable σ1.24).

(507) QF output functions for assigning stress in Copy 1
• φstressed:syll(x1)

def
= StressDomain(SETTINGS)∧syll(x)∧rightmost_full_syll(x)

• φstressed:vowel(x1)
def
= StressDomain(SETTINGS)∧vowel(x)∧rightmost_full_vowel(x)

Importantly, the vowel ǐ1.5 is now a destressed vowel along with its destressed syllable σ1.14.

(508) QF output functions for destressing items in Copy 1
• φdestressed:syll(x1)

def
= stressed:syll(x) ∧ ¬φstressed:syll(x1)

• φdestressed:vowel(x1)
def
= stressed:vowel(x) ∧ ¬φstressed:vowel(x1)

I do not explain again how these functions will generate the right output. What’s important is that stress
shift is equivalent to stress assignment. It is a local process once we factor out its morphological triggers in
the form of SETTINGS labels. Interested readers are encouraged to reread Chapter 5: §5.5 and work out for
themselves why the functions will work.

6.6.1.2 Preliminaries

The output of stress shift feeds destressed high vowel reduction or DHR. Reduction is a separate transduction
which uses a copy set of size 1. I show the input and output below, without any morphological or PStem
nodes.
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(509) a. Input of vowel reduction in //amušin-agán//

a0.1 m0.2 u0.3 s0.4 ǐ0.5 n0.6 a0.16 g0.17 á0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

b. Output of vowel reduction in //amušin-agán//→amusn-agán

a1.1 m1.2 u1.3 s1.4 n1.6 a1.16 g1.17 á1.18 n1.19

σ1.12 σ1.13 σ1.23 σ1.24

SETTINGS Parse:MStem:recursive

Domain:Cophon:SLevel

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

First, I formalize whether reduction should apply by checking that that we are in the right stratum, either
the stem-level cophonology or the Eastern Armenian PStem cophonology. The helper predicate below
checks if the SETTINGS has the domain label of the the right stratum.32

(510) QF user-defined predicate for checking that we are in the cophonology domain for vowel reduction
• ReductionDomain(SETTINGS)

def
= Domain:Cophon:SLevel(SETTINGS)∨

[Domain:Cophon:PStem(SETTINGS) ∧ Eastern(SETTINGS)]

As for the nodes affected by vowel reduction, the user-defined predicates below select them: high vowels,
a destressed high vowel ǐ0.5, its syllable sì at σ0.14, its onset s0.4, the segment after the destressed high
vowel n0.6, the previous syllable mu at σ0.13, and following syllable na at σ0.23. These predicates are
locally-computed.

(511) a. FO user-defined predicates for finding nodes involved in vowel reduction

• high(x)
def
= u(x) ∨ i(x)

• destressed_high_vowel(x)
def
= destressed:vowel(x) ∧ high(x)

• destressed_syll(x)
def
= syll(x)∧∃y[destressed_high_vowel(y)∧PDom:syll_nuc(x, y)]

• destressed_ons(x)
def
= consonant(x)∧∃y[destressed_high_vowel(y)∧succ:seg(x, y)]

• following_seg(x)
def
= seg(x) ∧ ∃y[destressed_high_vowel(y) ∧ succ:seg(y, x)]

• previous_syll(x)
def
= syll(x) ∧ ∃y[destressed_syll(y) ∧ succ:syll(x, y)

• following_syll(x)
def
= syll(x) ∧ ∃y[destressed_syll(y) ∧ succ:syll(y, x)

b. QF user-defined predicates for finding nodes involved in vowel reduction

• high(x)
def
= u(x) ∨ i(x)

32Dialect labels are explained in §6.6.3.1 in the context of inflection.
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• destressed_high_vowel(x)
def
= destressed:vowel(x) ∧ high(x)

• destressed_syll(x)
def
= syll(x) ∧ destressed_high_vowel(FM:PDom:syll_nuc(x))

• destressed_ons(x)
def
= consonant(x) ∧ destressed_high_vowel(FL:succ:seg(x))

• following_seg(x)
def
= seg(x) ∧ destressed_high_vowel(FR:succ:seg(x))

• previous_syll(x)
def
= syll(x) ∧ destressed_syll(FL:succ:syll(x))

• following_syll(x)
def
= syll(x) ∧ destressed_syll(FR:succ:syll(x))

All these nodes are part of the context of vowel reduction. The predicate below picks out all of these
nodes. All these predicates are computationally local.

(512) QF user-defined predicate for selecting nodes in the context of vowel reduction

• ReductionContext(x)
def
= destressed_high_vowel(x) ∨ destressed_syll(x)∨

destressed_ons(x) ∨ previous_syll(x)∨
following_syll(x) ∨ following_seg(x)

Given the domain and relevant nodes for reduction, there are different possible scenarios for any given
node during vowel reduction. I list below different base-derivative pairs. The high vowel is deleted in some
pairs, or reduced to a schwa in others.

(513) Different derivatives and outcomes in vowel reduction

Base Input to reduction Output derivative
Delete

a. amusín ‘husband’ amusǐn-agán amusn-agán ‘marital’
b. barsíg ‘Persian’ barsǐg-astán barsg-astán ‘Persia’

Reduce to schwa
c. kír ‘writing’ kǐr-óG k@r-óG ‘writer’
d. aGmúg ‘noise’ aGmǔg-él aGm@g-él ‘to make noise’
e. barísp ‘fortress’ barǐsp-él bar@sp-él ‘to fortify’

Either a segment is part of the reduction context or it is not (it is unaffected). Among nodes which are
affected and part of the reduction context, the high vowel is generally deleted amusn-agán unless deletion
would cause an unsyllabifiable consonant cluster: //ǩir-óG//→k@r-óG, *kr-óG.

For the running example //amušin-agán//, the underlined segments are far from the destressed high
vowel. They are unaffected segments which are faithfully outputted . For //amušin-agán//, the underlined
segments undergo the deletion scenario whereby the high vowel must delete and trigger resyllabification:
amus.n-agán. For a different input like //ǩir-óG//, the high vowel should reduce to a schwa: k@r-óG.

I summarize these scenarios below.

(514) Scenarios involved in vowel reduction
a. Unaffected Scenario: vowel reduction does not apply to this segment because it is not part of

the context for vowel reduction (not a destressed high vowel or adjacent to one).
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b. Schwa Scenario: vowel reduction applies does apply to this segment because it is a destressed
high vowel or part of its context. The destressed high vowel is turned into a schwa.

c. Deletion Scenario: vowel reduction does apply to this segment because it is a destressed high
vowel or part of its context. The destressed high vowel is deleted.

The division of labor across these scenarios is shown below for different base-derivative pairs. I underline
the relevant segments. I don’t show the relevant syllables.

(515) Division of labor across the scenarios in reduction
Input Scenarios Output

Unaffected Schwa Deletion
amusǐn-agán amusǐn-agán amusǐg-agán amusn-agán
barsǐg-astán barsǐn-astán barsǐg-astán barsg-astán
kǐr-óG kǐr-óG kǐr-óG k@r-óG
aGmǔg-él aGmǔg-él aGmǔg-él aGm@g-él
barǐsp-él barǐsp-él barǐsp-él bar@sp-él

In the rest of this section, I formalize helper predicates which handle these different scenarios.

6.6.1.3 Unaffected scenario: Faithfully outputting irrelevant nodes

For nodes in the the Unaffected Scenario, vowel reduction does not affect them. We should output all
nodes and relations which don’t involve the nodes in the context of reduction. This is formalized by the
helper predicates below.

(516) QF helper predicates for faithfully outputting nodes which aren’t part of the context of reduction
• should__lab:unaffected(x)

def
= ReductionDomain(SETTINGS) ∧ lab(x)∧
[¬ReductionContext(x)]

• should__rel:unaffected(x, y)
def
= ReductionDomain(SETTINGS) ∧ rel(x, y)∧
[¬ReductionContext(x)∧¬ReductionContext(y)]

In the case of //amušin-agán//, these helper predicates output all the morphological nodes, PStems, the
underlined segments //amušin-agán//, and the underlined syllable nodes //a.mu.ši.n-a.gán//. I show the
eventual output of these predicates below for amusin-agan. The other segments will be generated by helper
predicate which I will later introduce. Note that the output is not generated yet until the above helper
predicates are used in an output function.
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(517) Applying vowel reduction in //amušin-agán//→amusn-agán – eventually outputting unaffected nodes
a0.1Input m0.2 u0.3 s0.4 ǐ0.5 n0.6 a0.16 g0.17 á0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

a1.1Output m1.2 u1.3 a1.16 g1.17 á1.18 n1.19

σ1.12 σ1.24

C C C C C

p
p

p
p

6.6.1.4 Formalizing resyllabification contexts for reduction

The other two scenarios of Schwa Scenario and Deletion Scenario involve more work. Given a destressed
high vowel, we check if its deletion would create a resyllabifiable consonant cluster. In this section, I define
relevant predicates for locally checking if resyllabification (and thus deletion) should apply.

First, we check that the high vowel’s onset could resyllabify with the previous syllable: the onset s
in //a.mu.ši.n-a.gán// can resyllabify as a coda in a.mus.n-a.gán. This information is formalized by the
predicate can_left_resyllabify(x). The onset x is resyllabifiable if it is a consonant which either i)
follows a vowel, or ii) follows a vowel-consonant sequence such that the onset and the preceding consonant
could form a falling sonority complex coda. This predicate is locally-computed.

(518) a. FO user-defined predicate for checking if an onset can resyllabify into its left context as a coda
• can_left_resyllabify(x) = consonant(x)∧

[∃v[vowel(v) ∧ succ:seg(v, x)]∨
[∃u, v[vowel(u)∧consonant(v)∧succ:seg(u, v)∧good_CC(v, x)]]

b. QF user-defined predicate for checking if an onset can resyllabify into its left context as a coda
• can_left_resyllabify(x) = consonant(x)∧

[vowel(FR:succ:seg(x))∨
[consonant(FR:succ:seg(x)) ∧ vowel(FR:succ:seg2(x))∧
good_CC(consonant(FR:succ:seg(x))]]

For example, the underlined onset in //amušin-agán// and //baršig-astán// are resyllabifiable in their
output form: the following input-output pairs are resyllabifiable: amusn-agán, barsg-astán. The onsets here
satisfy the predicate can_left_resyllabify(x) by either following a vowel or a VC with falling sonority.
In contrast, the onsets in //ǩir-óG// and //aGmǔg-él// are not resyllabifiable: k@r-óG, *kr-óG and aGm@g-el,
*aGmg-él. These onsets do not satisfy the predicate can_left_resyllabify(x) because they are word-initial
or follow a VC sequence where the C has lower sonority.

A second condition on deletion is that the destressed high vowel must not have a complex coda in the base
barísp, thus a coda in the intermediate representation //bařis.p-él// (discussed by Ġaragyowlyan 1979).
The output is reduction to schwa instead of deletion: bar@sp-él, *barsp-él. The predicate below checks if
some syllable x is an open syllable or not, by checking if it has an inner coda y. The predicate is locally
computible.
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(519) a. FO user-defined predicate to check if a syllable is an open syllable
• open_syll(x)

def
= syll(x) ∧ ¬∃y[PDom:syll_coda1(x, y)]

b. QF user-defined predicate to check if a syllable is an open syllable
• open_syll(x)

def
= syll(x) ∧ FM:PDom:syll_coda1(x)

Thus a destressed high vowel is deletable based on whether its onset is resyllabifiable, and whether it is
an open syllable. These two conditions are summarized into the user-predicate below. For some segment
vowel x, this predicate is TRUE if i) x is a destressed high vowel, ii) its syllable z has a resyllabifiable onset
y, and iii) its syllable z is an open syllable. This predicate is locally-computed.

(520) a. FO user-defined predicate for checking if a destressed high vowel can be deleted
• deletable_destressed_vowel(x)

def
= destressed_high_vowel(x)∧
∃y, z[destressed_ons(y)∧destressed_syll(z)∧
can_left_resyllabify(y) ∧ open_syll(z)

b. QF user-defined predicate for checking if a destressed high vowel can be deleted
• deletable_destressed_vowel(x)

def
= destressed_high_vowel(x)∧

destressed_ons(FR:succ:seg(x))∧
can_left_resyllabify(FR:succ:seg(x))∧
open_syll(FD:PDom:syll_nuc(x))

In the case of the input //amušin-agán//, this predicate is TRUE of the vowel i0.5 (x) because the vowel
is a destressed high vowel, ii) its syllable σ0.14 (z) has the consonant s0.4 (y) as its onset and this consonant
s can be resyllabified to the preceding segments, and iii) the destressed high vowel’s syllable σ0.14 (z) is an
open syllable.

It is useful to know if some node x is in the reduction context and if the reduction context contains a
deletable destressed vowel y. The user-defined predicate DeletionContext does this. The underlined
segments in //amušin-agán// satisfy this predicate because we have a deletable destressed vowel i; in
contrast, the underlined segments //ǩir-óG// do not satisfy this predicate.

(521) FO user-defined predicate for selecting nodes in the reduction context when have a deletable destressed
vowel
• DeletionContext(x)

def
= ReductionContext(x)∧∃y[deletable_destressed_vowel(y)]

This predicate is locally computible. The existential quantifier y finds a deletable destressed vowel.
However, because x is part of the reduction context, then y is within the local context of x. We need to find
y by checking where x is in the reduction context. For example, if x is a destressed syllable, then y must be
its nucleus.

(522) QF user-defined predicate for selecting nodes in the reduction context when have a deletable destressed
vowel
• DeletionContext(x)

def
= ReductionContext(x)∧

[ [destressed_high_vowl(x)∧
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deletable_destressed_vowel(x)]∨
[destressed_syll(x)∧

deletable_destressed_vowel(FM:PDom:syll_nuc(x))]∨
[destressed_ons(x)∧

deletable_destressed_vowel(FL:succ:seg(x))]∨
[following_seg(x)∧

deletable_destressed_vowel(FR:succ:seg(x))]∨
[previous_syll(x)∧

deletable_destressed_vowel(FM:PDom:syll_nuc(FL:succ:syll(x)))]∨
[following_syll(x)∧

deletable_destressed_vowel(FM:PDom:syll_nuc(FR:succ:syll(x)))] ]

The above local predicates do the brunt of work in predicting when we should trigger reduction to schwa
vs. deletion and the ensuing resyllabification. The next two sections use these predicates to generate the
right outputs.

6.6.1.5 Schwa scenario: Formalizing reduction to schwa

I first formalize the Schwa Scenario for a possible input-output pair like //ǩir-óG//→k@r-óG. Here, the
destressed high vowel is reduced to a schwa instead of deleting because deletion would form an unsyllabifiable
consonant cluster.

(523) a. Input of vowel reduction in //ǩir-óG//

k0.1 ǐ0.2 r0.3 ó0.4 G0.5

σ0.6 σ0.7

C C C C

C

p
p

p
p

p

b. Input of vowel reduction in //ǩir-óG//→k@r-óG with reduction to schwa
k1.1 @1.2 r1.3 ó1.4 G1.5

σ1.6 σ1.7

C C C C

C

p
p

p
p

p

The high vowel i0.2 (x) does not satisfy the predicate deletable_destressed_vowel(x) because its
onset k0.1 (y) is not resyllabifiable. The word-initial onset does not satisfy the predicate can_left_resyllabify(x)
because it does not follow a vowel or a VC sequence that it could syllabify with.

For the Schwa Scenario, different segments are processed differently. The destressed high vowel ǐ0.2
should reduce to a schwa, while all other nodes in the reduction context (k0.1,r0.3,σ0.6, σ0.7) should be
faithfully outputted. The following helper predicates will distinguish the high vowel from the rest of the
reduction context. The high vowel in kǐr-óG should output as a schwa iff i) we are in the context of vowel
reduction, ii) the high vowel is a destressed high vowel, and iii) this destressed vowel is not deletable.
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(524) QF helper predicate for outputting a destressed high vowel as a schwa if it can’t be deleted

• should__schwa__schwa:vowel(x1)
def
= ReductionDomain(SETTINGS)∧

destressed_high_vowel(x)∧¬deletable_destressed_vowel(x)

All other underlying labels for this destressed high vowel should output faithfully, e.g., that it is a segment
or a vowel. This is formalized with the helper predicate below.

(525) QF helper predicate for outputting other labels of a destressed high vowel in the Schwa Scenario
• For every lab ∈ L− {schwa}:

should__lab__schwa:vowel(x1)
def
= ReductionDomain(SETTINGS) ∧ lab(x)∧

destressed_high_vowel(x)∧¬deletable_destressed_vowel(x)

For all other nodes in the reduction context (k0.1,r0.3,σ0.6, σ0.7), their labels and relations should be
faithfully outputted via the predicate below. We need to specify that in this scenario that i) we have the
right cophonology domain for reduction, ii) the relevant node is part of the context of vowel reduction, iii)
it is not the destressed high vowel, and iv) we are not in the deletion context, i.e., there is no deletable
destressed high vowel.

(526) QF helper predicate for outputting labels of other nodes in the context of reduction in the Schwa
Scenario
• should__lab__schwa:other(x1)

def
= ReductionDomain(SETTINGS) ∧ lab(x)∧

ReductionContext(x) ∧ ¬destressed_high_vowel(x)∧
¬DeletionContext(x)

In the Schwa Scenario, all these potential changes in labels are summarized in the helper predicates
below: one for the schwa label, and one for any other label.

(527) QF helper predicate for summarizing what labels should be outputted in the Schwa Scenario
• For the label schwa

should__schwa__schwa(x)
def
= should__schwa__schwa:vowel(x)∨

should__schwa__schwa:other(x)
• For other labels lab ∈ L− {schwa}

should__lab__schwa(x)
def
= should__lab__schwa:vowel(x)∨

should__lab__schwa:other(x)

In the Schwa Scenario, all relations involving the reduction context should be faithfully outputted. The
helper predicate below again checks that i) we have the right cophonology domain, and ii) that the relevant
relation involves a node which is in the reduction context, and iii) we are not in the deletion context, i.e.,
there is no deletable destressed vowel.

(528) QF helper predicate for faithfully outputting relations in the Schwa Scenario
• should__rel__schwa(x1, y1)

def
= ReductionDomain(SETTINGS) ∧ rel(x, y)∧

[ReductionContext(x) ∨ReductionContext(y)]∧
¬DeletionContext(x) ∧ ¬DeletionContext(x)∧
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No quantifiers were used in definition the helper predicates, thus they are computationally local.

6.6.1.6 Deletion scenario: Formalizing deletion

Vowel deletion in the Deletion Scenario is more complicated because it involves resyllabification. I repeat
the input-output of vowel reduction for amusn-agan. I omit the SETTINGS, morphological, and PStem nodes.

(529) a. Input of vowel reduction in //amušin-agán//

a0.1 m0.2 u0.3 s0.4 ǐ0.5 n0.6 a0.16 g0.17 á0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

C C C C C C C C C

C C C C

p
p

p
p

p
p

p
p

p
p

b. Output of vowel reduction in //amušin-agán//→amusn-agán
a1.1 m1.2 u1.3 s1.4 n1.6 a1.16 g1.17 á1.18 n1.19

σ1.12 σ1.13 σ1.23 σ1.24

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

In the case of the input //amušin-agán//, the underlined segments within the reduction context satisfy the
deletion context, i.e., the high vowel i is deletable. Within the deletion context, all nodes should be faithfully
outputted except for the destressed high vowel ǐ0.5 and its destressed syllable σ0.14. This is formalized with
the helper predicate below. As before, we check that the right cophonology domain for reduction is active
via the SETTINGS.

(530) QF helper predicate for outputting the labels of all nodes in the reduction context except for the
deleting high vowel and its syllable in the Deletion Scenario
• should__lab__deleted(x)

def
= ReductionDomain(SETTINGS) ∧ lab(x)∧
DeletionContext(x)∧
¬destressed_high_vowel(x) ∧ ¬destressed_syll(x)

To handle resyllabification from //a.mu.ši.n-a.gán// to a.mus.n-a.gán, we need to change certain relations
in the input:

1. Inner Coda Creation: The onset s0.4 must resyllabify as an inner coda to the preceding syllable σ0.13

or .mus., if the syllable is an open syllable
2. Syllable Adjacency: The syllables before (σ0.13) and after (σ0.23) the destressed syllable .mus.<i>.na

must be made adjacent via immediate precedence
3. Segment Adjacency: The segments before (s0.4) and after (n0.5) the destressed high vowel s<i>n

must be made adjacent via immediate precedence

These 3 potential changes are formalized with the helper predicates below. They all check that we are in
the right cophonology domain, that the relevant nodes are part of the deletion context, and that they single
out the nodes described in the above list.
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(531) QF helper predicates used in the Deletion scenario in order to formalize...

• Inner Coda Creation
should__PDom:coda1__deleted:new(x, y)

def
=

ReductionDomain(SETTINGS) ∧DeletionContext(x)∧
destressed_ons(y) ∧ previous_syll(x) ∧ open_syll(x)

• Syllable Adjacency
should__succ:syll__deleted:new(x, y)

def
=

ReductionDomain(SETTINGS) ∧DeletionContext(x)∧
previous_syll(x) ∧ following_syll(x)

• Segment Adjacency
should__succ:seg__deleted:new(x, y)

def
=

ReductionDomain(SETTINGS) ∧DeletionContext(x)∧
destressed_ons(x) ∧ following_seg(x)

If the destressed high vowel was deletable but its onset followed a VC sequence, i.e., a closed syllable,
then the onset should resyllabify as an outer coda: //bar.ši.g-a.gán//→bars.g-agán. This is formalized by
the helper predicate below. Note that we need to check that the previous syllable is not an open syllable.

(532) QF helper predicates used in the Deletion scenario in order to formalize Outer Coda Creation

• should__PDom:coda2__deleted:new(x, y)
def
=

ReductionDomain(SETTINGS) ∧DeletionContext(x)∧
destressed_ons(y) ∧ previous_syll(x) ∧ ¬open_syll(x)

The above 4 helper predicates for resyllabification should create new binary relations in the output, i.e.,
new prosodic dominances for codas and new immediate precedences for syllables and segments. Within
the deletion context, some of the old underlying prosodic dominances or immediate precedences should be
faithfully outputted, e.g., the syllable preceding the high vowel in //amušin-agán// should still follow the
syllable a: amusn-agán . These ‘old’ relations should be faithfully outputted via the helper predicates below.

(533) QF helper predicate for faithfully outputting underlying prosodic dominances in the deletion context
in the Deletion Scenario
• For every relation rel ∈ {PDom:coda1, prec:syll, prec:seg,PDom:coda2}

should__rel__deleted:old(x, y)
def
= ReductionDomain(SETTINGS) ∧ rel(x, y)∧

[DeletionContext(x) ∨DeletionContext(y)]∧
¬[destressed_high_vowel(x)∨destressed_high_vowel(y)∨
destressed_syll(x) ∨ destressed_syll(y)]

The helper predicate checks that we are in the right reduction domain, that one of the nodes is in the
deletion context, and that none of the nodes are the destressed high vowel or the destressed syllable.

All other relations within the deletion context should be outputted faithfully as well. This is formalized
via the helper predicate below. Again, we output the relations involving any nodes except for the destressed
high vowel or its syllables.
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(534) QF helper predicate for faithfully outputting other relations in the deletion context in the Deletion
Scenario
• For every relation rel ∈ R− {PDom:coda1, prec:syll, prec:seg,PDom:coda2}

should__rel__deleted:other(x, y)
def
=

ReductionDomain(SETTINGS) ∧ rel(x, y)∧
[DeletionContext(x) ∨DeletionContext(y)]∧
¬[destressed_high_vowel(x)∨destressed_high_vowel(y)∨
destressed_syll(x) ∨ destressed_syll(y)]

Together, the above relations for the reduction context in the Deletion Scenario are summarized in the
helper predicates below.

(535) QF helper predicates for outputting prosodic relations in the Deletion Scenario
• For every relation rel ∈ {PDom:coda1, prec:syll, prec:seg,PDom:coda2

should__rel__deleted(x, y)
def
= should__rel__deleted:old(x, y)∧should__rel__deleted:new(x, y)

• For every relation rel ∈ R− {PDom:coda1, prec:syll, prec:seg,PDom:coda2

should__rel__deleted(x, y)
def
= should_rel__deleted:other(x, y)

All of the above helper predicates across the three scenarios (Unaffected, Schwa, Deletion) are used in
the two output functions below. The above helper predicates kept track of various changes which should
apply: deletion, resyllabification, etc. The output functions below implement these changes.

(536) QF output functions for vowel reduction
• For every lab ∈ L:

φlab(x1)
def
= should__lab__unaffected(x)∨should__lab__schwa(x)∨should__lab__deleted(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= should__rel__unaffected(x, y)∨

should__rel__schwa(x, y) ∨ should__rel__deleted(x, y)

This completes the formalization of vowel reduction. All predicates were locally defined. However, to
ensure consistency and readability of these predicates, we made extensive use of helper predicates.

6.6.2 Prosodic cophonologies: Non-locality of cophonology selection

In the previous section, the main examples were derivatives like amusn-agan ‘marital’ from amusín
‘husband’. Because these words contained a derivational suffix, they underwent the stem-level cophonology,
a cophonology or rule domain which is triggered by morphological structure. Armenian likewise has
cophonologies which are triggered by prosodic structure. As explained in the Introduction chapter (§1.1.3),
when PStems are misaligned via overparsing, they trigger the PStem-level cophonology. I formalize how
this cophonology is triggered.

Unlike derivational suffixes, C-initial inflectional suffixes trigger the word-level cophonology of just stress
shift without reduction: amusin-nér, *amus@n-nér ‘husband-PL’. But when the inflectional suffix is V-initial,
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this suffix can trigger vowel reduction in some dialects like Eastern Armenian amusn-óv, but not Western
Armenian amusin-óv. The word-level phonology then vacuously applies.

(537) Reduction across types of inflection and dialect
V-initial C-initial

Dialect Eastern Western Both
Base amusín amusín amusín
Inflected amusn-óv amusin-óv amusin-nér

As explained in Chapter 1: §1.1.3, I analyze this fact as the existence of the prosodic cophonology
which is triggered when a V-initial suffix is added to a stem and causes the prosodic misalignment of the
prosodic stem (PStem). The prosodic analysis was formalized in §6.5.2.1. Once the prosody is in place
by misaligning the PStem, the PStem-level cophonology applies. In Eastern Armenian, the PStem-level
cophonology triggers stress shift and reduction; but in Western Armenian, the PStem-cophonology only
triggers stress shift.

(538) PStem cophonologies across dialects and inflection-shape

Morphology V-initial inflection in... C-initial inflection in...
Dialect Eastern Western Both
Prosody

PWord

PStem

σ

n-ov

σ

śi

σ

mu

σ

a

PWord

PStem

σ

n-ov

σ

śi

σ

mu

σ

a

PWord

σ

-ner

PStem

σ

śin

σ

mu

σ

a

Does PStem apply? 3 3 7

PStem-level processes stress stress
reduction

Output amusn-óv amusin-óv amusin-nér

I formalize the selection of the PStem-cophonology based on PStem overparsing. To check if the PStem
has overparsed, we check that the PStem contains an inflectional suffix. I am agnostic if this step happens
after all the prosody is over, i.e., after a PWord is generated, or if it occurs right after the PStem has
misaligned. Regardless, this step precedes the application of phonological rules. I show the input and output
for when inflection is V-initial. The PStem dominates the syllables of the V-initial inflectional suffix -ov. I
omit morphological nodes. The relevant change to the SETTINGS is adding the label Domain:Cophon:PStem
in bold.
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(539) a. V-initial: Input to setting the PStem-level cophonology in //(amuśin-ov)s//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 o0.16 v0.17

σ0.12 σ0.13 σ0.14 σ0.21

PStem0.15

PWord0.22

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

p

b. V-initial: Output of setting the PStem-level cophonology in //(amuśin-ov)s//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 o1.16 v1.17

σ1.12 σ1.13 σ1.14 σ1.21

PStem1.15

PWord1.22

SETTINGS
Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Domain:Cophon:PStem

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

p

This process must update the SETTINGS with the right PStem-level cophonology label. This is a transduction
with a copy set of size 1. I assume it happens after the prosody, but before phonological rule application. In
Copy 1, all labels and relations are faithfully outputted except for domain labels for prosodic cophonologies.

(540) QF output functions for vacuous changes in updating the SETTINGS

• For every label lab ∈ L− {Domain:Cophon:PStem}:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

On the surface, we know if a PStem is misaligned or overparsed if the PStem contains any segments from
an inflectional suffix. This information is broken down into the following predicates.
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(541) a. FO user-defined predicate for checking if a segment is part of an inflectional morpheme in an
MWord
• seg_in_MWord(x)

def
= seg(x) ∧ ∃u, v, w[MWord(u) ∧morpheme(v) ∧morph(w) ∧

MDom(u, v) ∧MDom(v, w) ∧MDom(w, x)]

b. FO user-defined predicate for checking if the PStem has some segment
• seg_in_PStem(x, y)

def
= seg(x) ∧ PStem(y)∃z[syll(z) ∧ PDom:PStem_syll(y, z)∧

[PDom:syll_ons(z, x) ∨ PDom:syll_nuc(z, x)∨
PDom:syll_coda1(z, x) ∨ PDom:syll_coda2(z, x)]

c. FO user-defined predicate for checking if a PStem has inflectional segments
• infl_in_PStem(x)

def
= PStem(x)∧∃y[seg(y)∧seg_in_PStem(y, x)∧seg_in_MWord(y)]

The predicate seg_in_MWord(x) checks if some segment x is part of an MWord, i.e., it it is part of an
inflectional suffix. This predicate was introduced in §6.5.2.1. The predicate seg_in_PStem(x, y) checks
if a segment x is dominated by the PStem y by checking if there is some syllable z which is between the
PStem y and the segment x (whether x acts as z’s onset, nucleus, or coda). In (amusin)s-ner, this predicate
is satisfied by the PStem and the segments a,m,u,s,i,n. But in (amusin-ov)s, the predicate picks the suffix
segments -ov as well. The predicate infl_in_PStem(x) checks if the PStem x contains an inflectional
segment y. The predicate is true for the PStem in (amusin-ov)s but not in (amusin)s-ner.

Of these predicates, the first two are locally-computed and QF definable. However, the third predicate
infl_in_PStem(x) is not locally-computible. This predicate involves giving a property to the PStem x
based on examining the properties of its granddaughter y. But, a PStem can have an unbounded number of
daughter syllables (and thus granddaughter segments) because of n-ary branching (cf. Chapter 4: §4.5.3).
Thus given a PStem x, an existential quantifier is needed to search through the space of segments y and to
check if any of these segments are part of the PStem.

(542) a. QF user-defined predicate for checking if a segment is part of an inflectional morpheme in an
MWord
• seg_in_MWord(x)

def
= seg(x) ∧morph(FD:MDom(x)) ∧morpheme(FD:MDom2(x))∧

MWord(FD:MDom3(x))

b. QF user-defined predicate for checking if the PStem has some segment
• seg_in_PStem(x, y)

def
= seg(x) ∧ PStem(y)∧

FD:PDom:PStem_syll(FD:PDom:syll_ons(x)) = y∨
FD:PDom:PStem_syll(FD:PDom:syll_nuc(x)) = y∨
FD:PDom:PStem_syll(FD:PDom:syll_coda1(x)) = y∨
FD:PDom:PStem_syll(FD:PDom:syll_coda2(x)) = y

With these predicates, we know some PStem x overparses its MStem if it satisfies the predicate infl_in_PStem(x).
This information is encoded into the SETTINGS via the label and output function below. I redundantly check
that the misaligned PStem has the right cophonology label.

(543) a. Unary label for the domain of the PStem cophonology
• Domain:Cophon:PStem(SETTINGS): the SETTINGS has the domain of the PStem

cophonology because the PStem expanded
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b. FO output function for updating the SETTINGS with the PStem cophonology label
• φDomain:Cophon:PStem(SETTINGS1)

def
= Parse:MWord:nonrecursive(SETTINGS)∧

∃x[PStem(x)∧Cophon:PStem(x)∧infl_in_PStem(x)]

For the input (amusín-ov)s with V-initial inflection, the SETTINGS now has labels for two separate cophonologies
to apply: the word-level cophonology and PStem-level cophonology. The competition and ordering of these
two domains is handled in §6.6.3.3. Contrast this with the word (amusin)s-ner which has C-initial inflection.
The input and output are shown below and are identical. Here, the PStem does not dominate any inflectional
segment. Thus, the output will not contain a label for the PStem-level cophonology.

(544) a. C-initial: Input to trying to set the PStem-level cophonology in //(amuśin)s-ner//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 n0.16 e0.17 r0.18

σ0.12 σ0.13 σ0.14 σ0.22

PWord0.23

PStem0.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

p p
p

p

p

b. C-initial: Output of trying to set the PStem-level cophonology in //(amuśin)s-ner//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 n1.16 e1.17 r1.18

σ1.12 σ1.13 σ1.14 σ1.22

PWord1.23

PStem1.15

SETTINGS Parse:MWord:nonrecursive

Domain:Cophon:WLevel

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

p p
p

p

p
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6.6.3 Word-level cophonology: Varied application of the right cophonology

Having formalized the main processes (reduction and stress shift), the stem-level cophonology, and the
PStem-level cophonology, I now turn to the word-level cophonology. Depending on dialect, on the shape
of the suffix, and on the size of PStem, different cophonologies and rules may apply before inflectional
morphology. This is summarized in the table below.

(545) Illustrating the application of different cophonologies in inflection
V-initial inflection in... C-initial inflection in...

Eastern Western Both
Generating PWord

PWord

PStem

σ

n-ov

σ

śi

σ

mu

σ

a

PWord

PStem

σ

n-ov

σ

śi

σ

mu

σ

a

PWord

σ

-ner

PStem

σ

śin

σ

mu

σ

a

Applying cophonology of...
EArm PStem-level
Stress amušin-óv
Reduction amusn-óv
WArm PStem-level
Stress amušin-óv
Word-level
Stress amusn-óv amusin-óv amusin-nér

Output amusn-óv amuson-óv amusin-nér

Before V-initial inflection, the PStem-level cophonology applies. In Eastern Armenian, this cophonology
includes stress shift and vowel reduction. In Western Armenian, this cophonology includes only stress shift.
The PStem-level cophonology does not apply before C-initial inflection. At the end, all types of inflected
items undergo the word-level cophonology which only includes stress shift.

The illustration above has the PStem-level cophonology apply before the word-level cophonology. However,
in the formalization, I assume that the PStem-level and word-level cophonologies simultaneously apply. In
C-initial inflection amusin-nér, the word-level process of stress shift applies. In V-initial inflection, the
PStem-level and word-level processes of stress shift apply. In Western Armenian, reduction does not apply
because reduction is not part of the word-level or WArm PStem-level: amusin-óv. In Eastern Armenian,
reduction applies because it is part of the EArm PStem-level: amusn-óv.

I first go over the basic notation and predicates for formalizing dialects and rule domains (§6.6.3.1). I
show how the word-level phonology applies in C-initial inflection (§6.6.3.2). I then finally show how both
the PStem- and word-level cophonologies apply in V-initial inflection (§6.6.3.3).

264



6.6.3.1 Computing dialects and domains

Throughout the previous two chapters, the SETTINGS constant encoded only two types of information:
Domain labels for cophonologies, and Parse labels for prosody. The Domain and Prosody labels were
determined by examining the properties of the morphologically topmost tree (its label, what it dominates),
and by checking if there existed a misaligned PStem. In this section, I further enrich the SETTINGS by letting
it encode the relevant dialect of the derivation..

(546) Unary labels for dialect SETTINGS

• Western(SETTINGS) or Eastern(SETTINGS)

The individual rules for stress and reduction were formalized in previous chapters or sections: Chapter 5:
§5.5 for stress, this chapter at §6.6.1 for reduction. Each rule was specified to occur in some domain based on
the SETTINGS of the derivation. For stress shift, it applies whenever we are in the stem-level, PStem-level,
or word-level cophonologies. This was encoded in the user-predicate (547a), repeated from Chapter 5: §5.5.
For reduction, it applies in the stem-level cophonology and the EArm PStem-level cophonology. This was
encoded in the predicate (547b), repeated from §6.6.1. This predicates are all we need to understand how
cophonologies compete and apply in inflection.

(547) a. QF user-defined predicate for morphophonological domain of stress assignment
• StressDomain(SETTINGS)

def
= Domain:Cophon:SLevel(SETTINGS) ∨

Domain:Cophon:WLevel(SETTINGS) ∨
Domain:Cophon:PStem(SETTINGS)

b. QF user-defined predicate for checking that we are in the cophonology domain for vowel reduction
• ReductionDomain(SETTINGS)

def
=

Domain:Cophon:SLevel(SETTINGS)∨
[Domain:Cophon:PStem(SETTINGS) ∧ Eastern(SETTINGS)]

6.6.3.2 Activation of the word-level phonology

I formalize how the word-level phonology applies. In C-initial inflection, only stress shift applies:
amusin-nér. The SETTINGS has the domain label of the word-level cophonology, as explained in §6.3.1.
I show the input below. I omit morphological nodes. The stressed vowel is in bold. The SETTINGS can have
the dialectal label of either Western or Eastern.
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(548) Input to cophonology application – C-initial inflection in amusin-ner

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 n0.16 e0.17 r0.18

σ0.12 σ0.13 σ0.14 σ0.22

PWord0.23

PStem0.15

SETTINGS
Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Western or Eastern

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

p p
p

p

p

The predicate StressDomain(SETTINGS) is TRUE because the SETTINGS contains the label for the
word-level cophonology Domain:Cophon:WLevel. The rule of stress shift will apply using the same formula
as in Chapter 5: §5.5. I do not repeat the formalization here, but interested readers are encouraged to work
this out for themselves. Reduction does not apply because the input does not satisfy the ReductionDomain(SETTINGS).
I show the output below.

(549) Output of cophonology application – C-initial inflection in amusin-ner

a1.1 m1.2 u1.3 s1.4 i1.5 n1.6 n1.16 é1.17 r1.18

σ1.12 σ1.13 σ1.14 σ1.22

PWord1.23

PStem1.15

SETTINGS
Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Western or Eastern

C C C C C C C C

C C C

p
p

p
p

p
p

p
p

p

p p
p

p

p

6.6.3.3 Simultaneous activation of the PStem-level and word-level phonology

Applying rules before V-initial inflection is slightly more complicated. I first explain with Western
Armenian amuson-óv. Here, we have stress shift but no reduction. The input and output are shown below.
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(550) a. Input to cophonology application – V-initial inflection in Western Armenian //amus̀in-ov//

a0.1

PWord0.22

m0.2 u0.3 s0.4 í0.5 n0.6 o0.16 v0.17

σ0.12 σ0.13 σ0.14 σ0.21

PStem0.15

SETTINGS

Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Domain:Cophon:PStem

Western

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

p

b. Output of cophonology application – V-initial inflection in Western Armenian amusin-óv

a1.1

PWord1.22

m1.2 u1.3 s1.4 i1.5 n1.6 ó1.16 v1.17

σ1.12 σ1.13 σ1.14 σ1.21

PStem1.15

SETTINGS

Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Domain:Cophon:PStem

Western

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

p

The SETTINGS has two domain labels for the word-level and PStem-level cophonologies. These are
Domain:Cophon:WLevel and Domain:Cophon:PStem. Intuitively, the two cophonologies compete over
which will apply: stress shift in the PStem-level: (amusin-óv)s or stress shift in the word-level: amusin-óv.
But for the formalization, this competition doesn’t exist. The input satisfies the domain for stress shift
StressDomain(SETTINGS) because the SETTINGS has at least one of the right domain labels: either
Domain:Cophon:PStem or Domain:Cophon:Word.

Reduction does not apply because the input does not satisfy the predicate ReductionDomain(SETTINGS).
The SETTINGS has the label for the PStem cophonology, but the input is from Western Armenian, not Eastern
Armenian.

Moving on to V-initial inflection in Eastern Armenian, the input is shown below. The SETTINGS has the
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domain labels of the PStem-level and word-level cophonologies. It also encodes the right dialect as Eastern
Armenian.

(551) Input to cophonology application – V-initial inflection in Eastern Armenian amusn-ov

a0.1

PWord0.22

m0.2 u0.3 s0.4 í0.5 n0.6 o0.16 v0.17

σ0.12 σ0.13 σ0.14 σ0.21

PStem0.15

SETTINGS

Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Domain:Cophon:PStem

Eastern

C C C C C C C

C C C

p
p

p
p

p
p

p
p

p p
p

p

p

Stress-shift applies because the predicate StressDomain(SETTINGS) is satisfied, just as in Western
Armenian above. But unlike the previous examples, the predicate ReductionDomin(SETTINGS) is also
satisfied. The SETTINGS has the label of the PStem cophonology and the label for Eastern Armenian. Thus
reduction applies. The output is shown below. I do not repeat the relevant output functions which cause
vowel reduction. Readers are encouraged to look back at the formula for reduction in §6.6.1 and see how
reduction applies.

(552) Output of cophonology application – V-initial inflection in Eastern Armenian amusn-ov

a1.1

PWord1.22

m1.2 u1.3 s1.4 n1.6 ó1.16 v1.17

σ1.12 σ1.13 σ1.21

PStem1.15

SETTINGS

Parse:MWord:nonrecursive

Domain:Cophon:WLevel

Domain:Cophon:PStem

Eastern

C C C C C C

C C

p
p

p
p

p
p

p

p p

p

p
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The current formalization does not capture the intuition that the word-level cophonology is post-cyclic
(Booij and Rubach 1987). A cophonology is post-cyclic if it applies after all morphological operations have
applied. Formalizing this intuition is not straightforward. I sketch out a possible formalization in Chapter
9 which would need to make use of a novel mechanism to determine that there are no more morphological
operations to apply.

6.7 Conclusion and ubiquity of locality

This section formalized a substantial chunk of the morphology-phonology interface of Armenian, with a
focus on general aspects of the interactionist or cyclic model. The take-away is that most morphophonological
processes are computationally local.

The formalization used a small set of 6 words as case studies: one simplex from Chapter 5, and 5
complex from the current chapter. The latter 5 case studies were spread across morphological derivation,
inflection, and compounding. For Morphology, the generation of morphological structure was shown to
be computationally local, including overt affixation and compounding. For the prosody and phonological
rule domains, all the described processes were computationally local once we factorized the SETTINGS

of the derivation. In the SETTINGS stage, we used non-local information to find the properties of the
morphologically-topmost node and existing prosodic structure. This information was then encapsulated
into a constant called the SETTINGS. With this constant, the rest of the interface was local.

In terms of the Prosody, once we factor out the SETTINGS, we only need local computation to generate,
restructure, fuse, or misalign prosodic nodes. These nodes include prosodic stems, prosodic words, their
recursive forms, and their alternations in compounds. Likewise for the Phonology, we only need local
information to apply morphologically-triggered rules like stress and reduction once we know that we are
supposed to trigger those rules (based on examining the SETTINGS).
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Part III

Other computational aspects of the
morphology-phonology interface
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Chapter 7

Computational aspects of affixation

7.1 Constraints on morphological structure: Overview

The previous chapters formalized the derivation of simplex and complex words. Their derivation included
a set of morphological transductions to generate a covert or overt affix: ∅, -agan, -ov, -a-. In the previous
chapters, the added morpheme was a suffix and non-alternating (it had no allomorphs). This chapter
examines the computation of morphological processes. In morphological theory, there is a dichotomy
between Item-and-Arrangement and Item-and-Process models. In §7.2, I discuss how these models do
not generally have significant computational differences (cf. Roark and Sproat 2007:ch3). I then move on to
two aspects of morphology: affix order (linearization) and allomorphy. Computationally, I show that affix
order tends to be order-preserving, and that allomorphy tends to be computationally local. Below, I state
when these computational properties hold. Both order-preservation and computational locality act as formal
computational constraints for morphology. The results in this chapter support Chandlee (2017) who finds
that various affixation processes are Input-Strictly Local.

For illustration, I discuss these results over relatively simple representations (§7.3). The first set of results
concern the linearization of prefixes vs. suffixes. I introduce the formal concept of order-preservation
as a constraint on possible input-output correspondences (§7.4). I illustrate with reduplication. I then
apply this concept to the affix order (§7.5). I show how suffixation, prefixation, and mobile affixation
are order-preserving, while reduplication is not. Briefly, a suffix (prefix) must be defined as the output
correspondent of the final (initial) segment in order to make affixation be order-preserving.

I then move on to allomorphy and show how it tends to be computationally local. In phonologically-conditioned
allomorphy (§7.6) , the trigger of the allomorph is a phonological property of the input. To make it
computationally local, the allomorphy must reference a property which is within a bounded distance from
the affix’s edge (i.e., the final segment for a suffix). In Armenian, this property can be whether the final
segment is a vowel or consonant (§7.6.1) or whether the final segment is part of a monosyllabic word
(§7.6.2). Non-locality does occur though in mobile affixation (§7.5.3).

Similarly for morphologically-conditioned allomorphy (§7.7), computationally locality requires that the
morphological trigger is within a finite bound from the affix’s edge (i.e., the final segment for a suffix). This
trigger can either be on the morphological node which dominates the edge (§7.7.1) or is within a finite bound
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from the edge (§7.7.2). I illustrate this locality from Armenian declension and conjugation classes. However,
not all types of morphologically-conditioned allomorphy are computationally local. Non-locality is derived
if the trigger and target are on opposite sides of the input, i.e., prefix-suffix dependencies (§7.7.3.1), or if the
allomorphy references the topmost morphological node via feature percolation (§7.7.3.2).

7.2 Dichotomies in morphological theory

Before analyzing affixation, I briefly discuss how computational morphology has dealt with controversies
in theoretical morphology. In theoretical morphology, there is debate over how morphological structure
should be formalized. Two rough extremes are item-and-arrangement (IA) and item-and-process (IP)
(Hockett 1942). These two approaches have been formalized and contrasted with at least four similar
mechanisms (553).

(553) Summary of some different morphological formalizations

Item-and-Process Item-and-Arrangement
System: Roark and This thesis Beesley and Ellison (1993)

Sproat (2007) Karttunen (2003)
Function? 3 3 3 7

Input catn cat
√

CAT PL cat#Σ∗

Mechanism: Plural FST Plural logical transduction Spell-out FST FSA intersection
∅ →-s/_n cf. Armenian -agan (§6.2.1.1) PL→-s union with Σ∗#-s

Output cat-s cat-s cats cats

In IP, morphological operations are functions. Consider English pluralization. Given an input cat, the
plural is function which generates an output cats. To formalize these functions in this dissertation, I used
affix-specific logical transductions. Another mechanism is finite-state transducers and their composition
(Roark and Sproat 2007). Given an input ocatn, an FST for plural formation adds -s at the end n of the
input.

In contrast, in IA approaches, the input is not a base or root like cat. The input is instead a concatenated
sequence of morphological items (morphemes, feature bundles, etc.):

√
cat+PL. These morphological items

are spelled out or given phonological form: cat-s. An IA model is used in many finite-state applications of
morphology, e.g., Beesley and Karttunen (2003)’s XFST system. Like IA, these finite-state systems can
model non-concatenative morphology, but with some unwieldiness (Sproat 1992b; Roark and Sproat 2007).

IA models have also been formalized with finite-state intersection. In the general framework of One-Level
Declarative Phonology (Scobbie et al. 1996), Ellison (1993) formalizes morphological operations as the
intersection of different FSA formalizations.1 An English root like cat is modeled as the regular expression
cat#Σ∗ where # is a special boundary symbol which can precede any number of segments in Σ∗. The English
plural is a regular expression Σ∗#s. The intersection of these two regular expressions is the word cats. Such
an approach formalizes the language of morphologically-well formed words, but it does not formalize the
transformation that generates them.

1Ellison (1993)’s FSA-based formalization for allomorphy is conceptually similar to many theoretical accounts of allomorphy
(cf. Hudson 1986; Scheer 2016; Papillon 2020).
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In this dissertation, I formalized morphological operations with logical transductions that were more
similar to IP models than to IA models. This was not because I argue that IP models are in any way
more ‘correct’ than IA models. In fact, it was because it was subjectively easier to define morphology as
a set of logical transductions or functions (item-and-process) instead of as some set of logical statements
(item-and-arrangement). Outside of subjective utility, the difference between IA vs. IP models is computationally
unclear at worst and nonexistent at best. There are different theoretical incarnations for both IA (Lieber
1980; Selkirk 1982; Halle and Marantz 1993) and IP models (Aronoff 1976; Anderson 1992; Stump 2001).
The differences between these two models are largely theoretical (Aronoff 1976; Halle and Marantz 1993;
Embick 2013; Trommer 2012). There is arguably little to no computational difference between them. Roark
and Sproat (2007:ch3) detail how one can translate a finite-state system from one model to the other, making
both models computationally inter-translatable. In fact, my formalization blurs the line between IA and IP
because I treat my representations as individual items (trees), but I generate them via functions. In Chapter
9, I sketch an approach to modeling outwards-sensitive allomorphy which further blurs the line between IA
and IP.

7.3 Simpler representation

The previous chapters used an enriched system of representation in order to highlight a word’s morphology
and prosody. For example, consider the free-standing stem dun ‘house’. In the more explicit representation
in (554c), various labels and relations are used to encode prosodic nodes, morphological nodes, prosodic
relations, and morphological relations.

(554) a. dun ‘house’

b. Tree structures for dun

Morphology Prosody
MStem

n

morph

∅

MRoot

morph

dun

PStem

σ

dun

c. Explicit representation of a word dun

d u n

σ

morph morph

MRoot n

MStem

PStem

C C

m
m

m

m m

m

m

p
p

p

p

MATCH

For parts of this chapter, I use a much simpler representation. I show only the segments, without any
notation for the morphology or prosody. This is only for illustrative purposes. In §7.6.2, some prosodic
structure is needed to formalize syllable-counting allomorphy.
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(555) Explicit representation of a word dun in terms of only its segments
d u n

C C

Throughout this chapter, I regularly refer to the initial and final segments of the input via the following
predicates. Checking that some segment is initial or final is locally-computible and QF-definable.

(556) a. User-defined predicates for finding the initial and final segment
• initial:seg(x)

def
= seg(x) ∧ ¬∃y[succ:seg(y, x)]

• final:seg(x)
def
= seg(x) ∧ ¬∃y[succ:seg(x, y)]

b. QF user-defined predicates for finding the initial and final segment
• initial:seg(x)

def
= seg(x) ∧ FR:succ:seg(x) = NULL

• final:seg(x)
def
= seg(x) ∧ FL:succ:seg(x) = NULL

7.4 Formal concept of order-preservation

I previously discussed how morphological processes have computational properties which are not affected
by differences in morphological theories. For example, in previous chapters, I illustrated how morphology
has the tendency of being computationally local. In this section, I introduce an additional computational
tendency: order-preservation. Order-preservation is a constraint on possible input-output correspondences
in terms of how output correspondents are ordered across different copies. Order-preserving transductions
are easier to compute than non-order-preserving ones; they can be converted to 1-way FSTs. Most but not
all types of morphological processes are order-preserving. I first informally introduce this concept with a
case study from reduplication (§7.4.1). I formalize it (§7.4.2), and discuss its significance (§7.4.3).

7.4.1 Iconic vs. non-iconic representations in reduplication

Consider a hypothetical partial reduplication process that copies a word-initial CV substring: pati∼papati.
The relationship between the two strings can be represented in (at least) two ways: iconically (557a) vs.
non-iconically (557b). These representations 1) encode different segment alignments and 2) assign certain
copies to certain segments. The term order-preserving is explained later.

(557) a. Iconic and Non-order-preserving
p0.1Input: a0.2 t0.3 i0.4

p1.1Output: a1.2

p2.1 a2.2 t2.3 i2.4

< < <

<

<

<
< <

b. Non-iconic and Order-preserving
p0.1Input: a0.2 t0.3 i0.4

p1.1Output:

a2.1

p3.1 a3.2 t3.3 i3.4

< < <

<

<

< < <
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The iconic representation uses two copies of the input, while the non-iconic one uses three. For the iconic
representation, the two copies of pa (the reduplicant and base) each correspond to the underlying segments
pa. They are spread across the Copy 1 and 2. This correspondence relation is linguistically intuitive and
matches the correspondence relations posited in the theoretical literature (McCarthy and Prince 1995). In
contrast, in the non-iconic representation, all of the reduplicant’s segments correspond to the first segment
p. Copies 1-2 are reserved for the reduplicant while Copy 3 is reserved for the base.

The iconic and non-iconic outputs are generated by two intensionally different processes or transductions.
For an input pati below, assume a simple phoneme inventory {p,t,a,i}. The predicates in (558a) reference
the first and second in the input. Assume that all inputs start with a CVC substring. These predicates are
locally-definable

(558) a. FO user-defined predicates for reduplication
• first(x)

def
= ¬∃w[succ:seg(w, x]

• second(x)
def
= ∃w[succ:seg(w, x) ∧ first(w)]

b. QF user-defined predicates for reduplication
• first(x)

def
= FR:succ:seg(x) = NULL

• second(x)
def
= FR:succ:seg2(x) = NULL

To generate the iconic output, we need a logical transduction that uses a copy set of size 2 and the
following output functions (559). In Copy 2, the underlying labels and relations are faithfully outputted
for the base (559a). In Copy 1, the reduplicant is created by outputting and ordering the first and second
segments (559b). To link the two copies, the second segment of Copy 1 immediately precedes the first
segment of Copy 2 (559c). This process is computationally local.

(559) QF logical transduction for iconic reduplication

a. QF output functions for unary labels and binary relations on Copy 2 for the base
• For every label lab ∈ L:
φlab(x2)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x2, y2)

def
= rel(x, y)

b. QF output functions for unary labels and binary relations over Copy 1 for the reduplicant
• For every label lab ∈ L:
φlab(x1)

def
= lab(x) ∧ [first(x) ∨ second(x)]

• φsucc:seg(x1, y1)
def
= succ:seg(x, y) ∧ first(x) ∧ second(y)

c. QF output functions for linking the two copies
• φsucc:seg(x1, y2)

def
= second(x) ∧ first(y)

As for the non-iconic process, we use a transduction with a copy set of size 3, and we use the output
functions in (560). In Copy 3, the base is faithfully outputted with all of its labels and relations (560a). In
Copy 1, the first segment is outputted faithfully as the reduplicant consonant p1.1. Labeling the reduplicant’s
vowel is superficially more complicated (560b). In Copy 2, the first segment’s correspondent a2.1 gets the
same labels as the underlying second segment a0.2 in the input. Ordering these reduplicated segments is
straightforward (560c). These functions are likewise all computationally local.
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(560) QF logical transduction for non-iconic reduplication

a. QF output functions for unary labels on Copy 3 for the base
• For every label lab ∈ L:
φlab(x3)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x3, y3)

def
= rel(x, y)

b. QF output functions for unary labels in Copies 1-2 for the reduplicant
• For all every label lab ∈ L:
φlab(x1)

def
= first(x) ∧ lab(x)

• For all every label lab ∈ L:
φlab(x2)

def
= first(x) ∧ lab(FR:succ:seg(x))

c. QF output functions for binary relations between copies 1,2, and 3
• φsucc:seg(x1, y2)

def
= first(x) ∧ first(y)

• φsucc:seg(x2, y3)
def
= first(x) ∧ first(y)

These completes the formalization of the two partial reduplicative processes as two separate transductions.
Both formalizations are computationally local. The next section looks at their computational differences.

7.4.2 Criteria for order-preserving functions

The two transductions above generate the same output pa∼pati for the input pati. They are thus extensionally
equivalent in what they output. However, the two transductions are not intensionally equivalent because they
generate difference correspondence structures for the output. I repeat the relevant structures below. This
correspondence or alignment difference relates to order-preservation (Filiot and Reynier 2016).

(561) a. Iconic and non-order preserving

p0.1Input: a0.2 t0.3 i0.4

p1.1Output: a1.2

p2.1 a2.2 t2.3 i2.4

< < <

<

<

<
< <

b. Non-iconic and order-preserving
p0.1Input: a0.2 t0.3 i0.4

p1.1Output:

a2.1

p3.1 a3.2 t3.3 i3.4

< < <

<

<

< < <

Given an input pati, a transduction which generates the iconic representation is not order-preserving,
while a transduction which generates the non-iconic representation is order-preserving. Order-preservation
is based on two criteria: Inter-Copy Precedence and Intra-Copy Precedence. Each criterion has a formal
and informal definition. Both criteria must be satisfied so that a transduction or function is order-preserving.

The first criterion for order-preservation is Inter-Copy Precedence. If a segment x generally precedes
y in the input, then all of x’s output correspondents must generally precede y’s output correspondents.
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Visually, a transduction must not create any right-to-left arcs. Formally, a transduction is order-preserving
only if there are no distinct input segments x, y such that x generally precedes y but the output correspondent
yd in some Copy d generally precedes the output correspondent xc in some Copy d. c, d can be the same
Copy.

For the iconic output (557a), x, y, xc, yd are p0.1, a0.2, p2.1, a1.2. The transduction is not order-preserving
because: 1) in the input, /p0.1/ precedes /a0.2/; 2) but in the output, [a1.2] precedes [p2.1]. Thus, we have the
ordering ‘1.2’ < ‘2.1’. The second slot in the index gets smaller. In contrast, the non-iconic output (557b)
satisfies this criterion: there are no pairs of underlying segments x, y such that x generally precedes y while
the output correspondent yc generally precedes xd. The underlying /p0.1/ has three output correspondents:
[p1.1], [a2.1], [p3.1]. However, these precede each other in a sequence and they precede the output vowel
[a3.2]: ‘1.1’ < ‘2.1’ < ‘3.1’ < ‘3.2’. The second slot in the indexes does not get smaller.

The second criterion for order-preservation is Intra-Copy Precedence. For a given input segment x,
its multiple output correspondents are ordered from the lowest Copy to the highest. Visually, there are no
vertical upwards-going edges. Formally, let x be an input segment which has two output correspondents
xc and xd in Copies c, d. If c is less than d, then xc must generally precede yd. Both the iconic and
non-iconic representations satisfy this criterion. In the iconic representation, the consonant p0.1 has two
output correspondents p1.1 and p2.1. It is not the case that p2.1 generally precedes p1.1: ‘1.1’ < ‘2.1’
Similarly for the non-iconic representation, the underlying consonant p0.1 has three output correspondents
p1.1,a2.1,p3.1; these are consecutively ordered as ‘1.1’ < ‘2.1’ < ‘3.1’. The first slot in the indexes gets bigger
while the second slot stays the same. We don’t have the order ‘2.1’ < ‘1.1’ or ‘3.1’ < ‘2.1’ < ‘1.1’.

7.4.3 Significance of order-preservation and finite-state technology

To summarize, partial reduplication can be modeled either with an order-preserving or non-order preserving
transduction. The question now is why this property of ‘order-preserving’ matters. The motivation is that
any string-to-string MSO transduction can be converted to 1-way finite-state transducers (FST) as long as the
transduction is order-preserving (Filiot and Reynier 2016). On a larger scale, the role of order-preservation
is about asking what are the desired intensional descriptions of our grammars, i.e., their strong generative
capacity.

On the one hand, the iconic representation captures a linguistic insight on the nature of reduplication as
actively copying segments; while the non-iconic representation does not. But on the other hand, order-preserving
transductions are easier to compute and can be converted to 1-way FSTs. In fact, all partial reduplication
processes can be modeled as order-preserving transductions and thus computed by a 1-way FST (Roark and
Sproat 2007; Chandlee and Heinz 2012; Chandlee 2017). A non-iconic yet order-preserving transduction is
possible because the size of the reduplicant is fixed. By being fixed, we know beforehand the required size
of the copy set. In the case of initial-CV copying, we only need a copy set of size 3: Copy 1-2 to output the
reduplicant, Copy 3 for the base. To model a larger partial reduplicative process like initial-CVC copying,
we would need an additional Copy 4: Copy 1-3 for the reduplicant, Copy 4 for the base.

In contrast, total reduplication cannot be modeled by an order-preserving transduction at all because
there is no fixed bound on the size of the reduplicant. Thus, there is no fixed size on the copy set for
an order-preserving total reduplication transduction. Because total reduplication can’t be computed by a
order-preserving MSO transduction, it also cannot be computed by a 1-way FST (Culy 1985). It needs
more expressive classes of finite-state calculus, e.g., 2-way FSTs which can go back and forth on the input
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(Dolatian and Heinz 2018b, forthcoming).

The logical concept of order-preservation is related to the finite-state concept of origin semantics (Bojańczyk
2014). Consider some string-to-string function f(x) = y and an FST T which computes f , the origin
semantics of f is the origin information of each of its output symbols yj . For an output symbol yj , its
origin information is the input symbol xi that was used by T to generate yj . For example, consider a simple
function fab which maps the string ab to itself. This function can be implemented with two different 1-way
FSTs. These FSTs differ in when they output the symbols a,b. I show these FSTs below. In the bottom
row, I visualize the origin information that these FSTs create for the mapping ab 7→ ab. I use a type of
correspondence graph that’s called an origin graph (Bojanczyk et al. 2017).

(562) FSTs with different origin semantics for ab 7→ ab

1-way FST
q0start q1 q2

a:λ b:ab q0start q1 q2
a:a b:b

Origin information
a b

a b

a b

a b

Given the same input, the two FSTs generate the same output. They are thus equivalent in their extensional
description or in their weak generative capacity. But, the two FSTs create different origin information. This
makes them differ in their origin semantics. Thus, they differ in their intensional description and in their
strong generative capacity (cf. the role of strong generative capacity in syntax: Miller 1999).

Typing back to order-preservation, partial reduplication can be formalized with either order-preserving or
non-order-preserving transductions. When converted to finite-state implementations, these transductions
differ in the origin information that they create. The order-preserving non-iconic transduction can be
implemented with a 1-way FST, while the iconic but non-ordering-preserving transduction cannot. The
latter needs the power of 2-way FSTs in order to generate the same origin information (Dolatian and Heinz
2018b, forthcoming), This connection between order-preserving and 1-way FSTs comes up in the logical
formalization of affix linearization and allomorphy, which I turn to next.

7.5 Order-preservation in affix order

In previous chapters, all morphological functions generated suffixes. I defined the suffix segments as
output correspondents of the final input segment. In this section, I explain why I did this. Briefly, this choice
made the morphological transductions be order-preserving. The desideratum of order-preservation goes
beyond extensional equivalence, but it constrains the set of possible hidden structures. Not all morphological
processes are order-preserving, but it is a striking fact that most are or can be.

The previous section showed that reduplication is not order-preserving. In this section, I show that
suffixation, prefixation, and mobile affixation are order-preserving. I first discuss two possible formalizations
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for affixation based on input-to-affix correspondences (§7.5.1). If a suffix segment is defined as the output
correspondent of a final segment, then this formalization is Edge-Matching and order-preserving. Otherwise,
if a suffix segment is defined as the output correspondent of an initial segment, then the formalization is
Edge-Mismatching and non-order-preserving. I show a similar dichotomy for prefixation (§7.5.2). Mobile
affixation is a special case where a transduction can’t be both local and order-preserving (§7.5.3). Generating
morphological nodes is also order-preserving (§7.5.4).

7.5.1 Order-preservation in suffix linearization

In the previous chapters, morphological operations such as suffixation were formalized using unique
transductions for every existing suffix. For example, the ablative is marked by the suffix -e. The suffix
displays no productive allomorphy. The representation of the ablative word dun-e is shown below.

(563) a. dun ‘house’ d u n
C C

b. dun-e ‘house-ABL’ d u n e
C C C

Ignoring the underlying morphological and prosodic structure, generating the suffix -e is a straightforward
transduction with a copy set of size 2. I first show a formalization of suffixation in the Edge-Matching
Formalization. The input and output are shown below.

(564) Input and output of an edge-matching suffix – dun-e

d0.1 u0.2 n0.3InputInput
C C

d1.1 u1.2 n1.3

e2.3

Copy 1Output

Copy 2

C C

C

In the edge-matching formalization, Copy 1 is dedicated to outputting the base (565a). In Copy 2, the
suffix segment e2.3 is generated as an output correspondent of the base-final segment n0.3 (565a). The suffix
e2.3 is externally linearized with the base-final segment n1.3 via immediate successor (565c).

(565) Generating an edge-matching suffix
a. QF output functions for faithfully outputting the base

• For every label lab ∈ L:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

b. QF output functions for outputting the suffix segment -e

• φe(x2)
def
= final:seg(x)
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c. QF output function for externally linearizing the suffix with the base
• φsucc:seg(x1, y2)

def
= final:seg(x) ∧ final:seg(y)

Next consider the Edge-Mismatching Formalization of suffixation. Here, the suffix’s segment e2.1 is
defined as an output correspondent of the initial segment n0.3. I show the input-output below.

(566) Generating an edge-mismatching prefix – the suffix in Copy 2 is based on the ‘initial’ segment

d0.1 u0.2 n0.3InputInput
C C

d1.1 u1.2 n1.3

e2.1

Copy 1Output

Copy 2

C C

C

The suffix e2.1 is generated (567a) and linearized with the base (567b).

(567) Generating an edge-mismatching suffix
a. QF output functions for generating the suffix segment

• φe(x2)
def
= initial:seg(x)

b. QF output function for externally linearizing the suffix with the base
• φsucc:seg(x1, y2)

def
= final:seg(x) ∧ initial:seg(y)

Both the Edge-Matching and Edge-Mismatching formalizations work and produce the same output
string of segments. Both are likewise computationally local. I repeat their input-output structures below.
However, the two formalizations are not intensionally equivalent: they use different hidden structures in
terms of input-output correspondence. They differ in order-preservation.

(568) Generating a suffix with Edge-Matching vs. Edge-Mismatching

Edge-Matching Edge-Mismatching
and order-preserving and not order-preserving

Input
d0.1 u0.2 n0.3Input

C C
d0.1 u0.2 n0.3

C C

Generating Suffix
d1.1 u1.2 n1.3

e2.3

Copy 1

Copy 2

C C

C

d1.1 u1.2 n1.3

e2.1

C C

C

First off, both formalizations respect Intra-Copy Precedence. The suffix in Copy 2 is in a later copy than
the base in Copy 1. In the edge-matching formalization, the suffix e2.3 succeeds the base-final segment n1.3:
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‘1.3’ < ‘2.3’. We do not have a sequence like ‘2.3’ < ‘1.3’. Visually, there were no vertical upwards-going
arcs. The same holds in the edge-mismatching formalization. The input segment d0.1 has two output
correspondents d1.1 and e2.1. The base segment d1.1 generally precedes the suffix segment e2.1: ‘1.1’ <
12.’ Visually, there were no vertical upwards-going edges like from e2.1 to d1.1.

However, the two transductions differ with respect to Inter-Copy Precedence. The edge-matching
formalization satisfies it while the edge-mismatching formalization violates it. Consider first the edge-matching
formalization. The base vowel u0.2 underlyingly precedes the base-final segment n0.3. None of the output
correspondents of u0.2 (=u1.2) succeed the output correspondents of n0.3 (=n1.3,e2.3). That is, we didn’t have
a sequence like ‘2.3’ < ‘1.2’. Visually, there were no right-to-left curves. In contrast, the edge-mismatching
formalization violates Inter-Copy Precedence. In the input, the initial segment d0.1 generally precedes the
final segment n0.3: ‘0.1’ < ‘0.3’. It has two output correspondents: d1.1 in the base, e2.1 in the suffix. d1.1

generally precedes the base-final segment, but n1.3 precedes e2.1: ‘1.1’ < ‘1.3’ < ‘2.1’. Visually, we have a
‘right-to-left’ curve from n1.3 to e2.1. The transduction is not order-preserving.

To summarize, the edge-mismatching formalization is not order-preserving. Thus, it cannot be implemented
by 1-way finite-state transducer, a commonly used computational implementation in computational phonology.
There is thus no visible benefit in treating simple suffixation with a non order-preserving transduction. In
fact, order-preservation is found in other affixation processes as well.

7.5.2 Order-preservation in prefix linearization

Like suffixation, prefixation can defined with an order-preserving (edge-matching) or a non-order-preserving
(edge-mismatching) transduction. For example, the indicative in Armenian is the prefix /g-/. A later rule of
schwa epenthesis applies in word-initial consonant clusters.

(569) a. /g-ude/ [g-ude] ‘he eats’
b. /g-kale/ [g@-kale] ‘he walks’

Prefixation is a transduction with copy set of size 2. To be order-preserving, the prefix segments are
defined in terms of the initial segment of the base; otherwise, the prefix is defined in terms of the final
segment. I show the input and output for both formalizations below.

(570) Generating a prefix with Edge-Matching vs. Edge-Mismatching

Edge-Matching Edge-Mismatching
and order-preserving and not order-preserving

Input
u0.1 d0.2 e0.3Input

C C
u0.1 d0.2 e0.3

C C

Generating Prefix

u2.1 d2.2 e2.3

g1.1Copy 1

Copy 2

C

C C
u2.1 d2.2 e2.3

g1.3

C

C C
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I focus on the edge-matching transduction first. In Copy 2, the base is faithfully outputted (571a). The
prefix g1.1 is generated in Copy 1 as an output correspondent of the initial segment a0.1 (571b). The prefix
and base are linearized (571c).

(571) Generating an edge-matching prefix
a. QF output functions for faithfully outputting the base

• For every label lab ∈ L:
φlab(x3)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x3, y3)

def
= rel(x, y)

b. QF output functions for generating the prefix segment

• φg(x1)
def
= initial:seg(x)

c. QF output functions for externalizing linearizing the prefix with the base

• φsucc:seg(x1, y2)
def
= initial:seg(x) ∧ initial:seg(y)

This transduction is order-preserving because it respects Intra-Copy Precedence and Inter-Copy Precedence.
The prefix segment g1.1 precedes the base-initial segment u2.1: ‘1.1’ < ‘2.1’. None of the output correspondents
of other segments like d0.2 (= d2.2) precede the output correspondents of g0.1 (= g1.1, u2.1). We don’t have a
sequence like ‘2.2’ < ‘1.1’.

The edge-mismatching version is similarly defined. The difference is that the prefix is generated as an
output segment g1.3 of the input-final segment e0.3 (572a). The base and prefix are then linearized (572b).

(572) Generating an edge-mismatching prefix
a. QF output functions for generating the prefix segment

• φg(x1)
def
= final:seg(x)

b. QF output functions for externalizing linearizing the prefix with the base

• φsucc:seg(x1, y2)
def
= final:seg(x) ∧ initial:seg(y)

The edge-mismatching transduction is not order-preserving because it violates Inter-Copy Precedence.
The initial input segment u0.1 precedes the final segment e0.3. But the output correspondent of u0.1 is u2.1,
and it succeeds the output correspondent g1.3 of e0.3: ‘1.3’ < ‘2.1’. There’s a right-to-left curve.

7.5.3 Mobile affixes and conflicts between locality, order-preservation, and representations

In general, affix order is stable: an affix’s allomorphs are placed in the same location. However, there
are rare cases of mobile affixes (Noyer 1994; Fulmer 1991, 1997; Kim 2010, 2015) which some argue
are theoretically impossible (Paster 2006, 2009). For example, in the Hamshen dialect of Armenian, the
indicative is the prefix g- for V-initial words and the suffix -gu for C-initial words.

(573) a. g-arne ‘he takes’
b. kale-gu ‘he walks’
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Mobile affixation is computationally more complex than stable affixation. It can be formalized in many
different ways, each with its own computational consequence. For example, the edge-matching formalization
is order-preserving but not computationally local, while the edge-mismatching formalization is computationally
local but not order-preserving. Both transductions use a copy set of size 4. I illustrate the edge-matching
formalization first. The prefix g- is generated in Copy 1 as the output correspondent of the initial segment,
while the suffix -gu is generated in Copes 3-4 as output correspondents of the final segment. The input-output
are shown below.

(574) Input and output for edge-matching mobile affix

V-initial input: arne→g-arne C-initial input: kale→kale-gu

a0.1 r0.2 n0.3 e0.4InputInput
C C C

k0.1 a0.2 l0.3 e0.4
C C C

a2.1 r2.2 n2.3 e2.4

g1.1

Copy 2

Copy 1Output

Copy 3

Copy 4

C C C

C

k2.1 a2.2 l2.3 e2.4

g3.4

u4.4

C C C

C

C

In Copy 2, the base is faithfully outputted (not formalized). The choice of affix depends on if the first
segment is a vowel (575a). The prefix and suffix are respectively generated as output correspondents of
the initial and final segment (575b). When generating the suffix -gu, an existential quantifier must be
used to check if the initial segment is a consonant or not: ∃z[initial_C:seg(z)]. When linearizing the
allomorphs, we check that we have the right C/V-initial contexts for each allomorph. The allomorph -gu is
internally linearized (575c). External linearization is the crucial step. The prefix g is defined as the output
correspondent of the initial segment a0.1, and it is linearized before the initial segment a2.1 (575d). For the
suffix -gu, it is defined as the output correspondent of the final segment e0.4; and it is linearized after the
final segment e1.4 (575e).

(575) Generating an edge-matching mobile affix
a. QF user-defined predicates for checking if the initial segment is a vowel or consonant

• initial_V:seg(x)
def
= initial:seg(x) ∧ vowel(x)

• initial_C:seg(x)
def
= initial:seg(x) ∧ consonant(x)

b. FO output functions for generating the mobile allomorphs
i. Outputting the prefix g- in Copy 1
• φg(x1)

def
= initial_V:seg(x)
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ii. Outputting the suffix -gu in Copies 3-4
• φg(x3)

def
= final:seg(x) ∧ ∃z[initial_C:seg(z)]

• φu(x4)
def
= final:seg(x) ∧ ∃z[initial_C:seg(z)]

c. FO output functions for internally linearizing the -gu allomorph

• φsucc:seg(x3, y4)
def
= final:seg(x) ∧ final:seg(y) ∧ ∃z[initial_C:seg(z)]

d. QF output functions for externalizing linearizing the prefix allomorph g- with the base

• φsucc:seg(x1, y2)
def
= initial_V:seg(x) ∧ initial_V:seg(y)

e. FO output functions for externally linearizing the -gu allomorph

• φsucc:seg(x2, y3)
def
= final:seg(x) ∧ final:seg(y) ∧ ∃z[initial_C:seg(z)]

In the edge-matching formalization, generating and linearizing the suffix is order-preserving and can be
implemented by a 1-way FST. Because the suffix’s segments are defined as output correspondents of the
final segment e0.4, they can follow the base in Copy 1 without violating order-preservation. But in return,
the transduction is not local. An existential quantifier is needed to check that the initial segment is a vowel.2

Unlike all the previous morphological processes, mobile affixation is our first case of computational
non-locality in morphology. It is not my goal to make all morphological processes be computationally
local, but to determine 1) what factors cause non-locality, and 2) what alternative analyses can remove
non-locality. For the latter point, if we want to make mobile affixation be local, then we must either use a
non-order-preserving formalization or use an alternative representation. I discuss both.

An alternative formalization is an edge-mismatching formalization. Here, both the prefix and suffix are
defined as output correspondents of the initial segment. I illustrate below.

(576) Input and output for generating an edge-mismatching mobile affix

V-initial input: arne→g-arne C-initial input: kale→kale-gu

a0.1 r0.2 n0.3 e0.4InputInput
C C C

k0.1 a0.2 l0.3 e0.4
C C C

a2.1 r2.2 n2.3 e2.4

g1.1

Copy 2

Copy 1Output

Copy 3

Copy 4

C C C

C

k2.1 a2.2 l2.3 e2.4

g3.1

u4.1

C C C

C

C

2This result is in the same vein as Chandlee (2017) who shows that prefix-suffix alternations are subsequential, not Input-Strictly
Local. Subsequential functions are computed by 1-way FSTs.
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Both the prefix and suffix are generated as output correspondents of the initial segment (577a). External
and internal linearization keeps track of these different allomorphy contexts. For the suffix -gu, it is defined
as the output correspondent of the initial segment k0.1; and it is linearized after the final segment e1.4 (577c).

(577) Generating an edge-mismatching mobile affix
a. QF output functions for generating the affix segments

i. Outputting the prefix g- in Copy 1
• φg(x1)

def
= initial_V:seg(x)

ii. Outputting the suffix -gu in Copies 3-4
• φg(x3)

def
= initial_C:seg(x)

• φu(x4)
def
= initial_C:seg(x)

b. QF output functions for internally linearizing the suffix allomorph
• φsucc:seg(x3, y4)

def
= initial_C:seg(x) ∧ initial_C:seg(y)

c. QF output functions for externalizing linearizing the suffix allomorph -gu with the base

• φsucc:seg(x2, y3)
def
= final:seg(x) ∧ initial_C:seg(y)

This transduction is local because no quantifiers were used to find the initial or final segment. However,
the transduction is not order-preserving when it generates the suffix -gu. The underlying initial segment k0.1

has two output correspondents: k1.1,g3.1. k2.1 precedes the base-final vowel e2.4, but e2.4 precedes g3.1: ‘2.1’
< ‘2.4’ < ‘3.1’. The second slot in the index gets smaller. This creates a right-to-left edge from e2.4 to g3.1.
With this exact intensional description, this transduction cannot be modeled by a 1-way FST. While there
are 1-way FSTs which are extensionally equivalent to this transduction, none of them have the same origin
semantics because the origins semantics of 1-way FSTs is always order-preserving

The above discussion shows that, with our simple input representations, we can’t treat mobile affixation
as both computationally local and computationally order-preserving. Another alternative formalization is to
change our input representation. Hypothetically, we can define the prefix and suffix as output correspondents
of the initial and final segments respectively. To capture the role of the input-initial segment in determining
the allomorphy, we could use a constant INITIAL that refers or points back to the input-initial segment. With
this constant, we can compute the allomorphy without using any quantifiers, and by still being order-preserving.

(578) Generating mobile allomorphs with a constant INITIAL

a. Outputting the prefix g- in Copy 1
• φg(x1)

def
= initial:seg(x) ∧ initial_V:seg(INITIAL)

b. Outputting the suffix -gu in Copies 3-4
• φg(x3)

def
= final:seg(x) ∧ initial_C:seg(INITIAL)

• φu(x4)
def
= final:seg(x) ∧ initial_C:seg(INITIAL)

All three of the above formalizations work and are extensionally equivalent. However, they each sacrifice
one computational desideratum, whether its locality, order-preservation, or simple representations. This
makes them intensionally different, with different strong generative capacity. For this dissertation, I will use
the first formalization, and I will treat mobile affixation as order-preserving but not computationally local.
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7.5.4 Order-preservation and morphological dominance

Up until now, order-preservation was discussed in terms of the binary relation of immediate successor
among segments. A transduction is order-preserving as long as suffix (prefix) segments are defined in terms
of the final (initial) segment. The result and condition also extend to the binary relation of morphological
dominance among morphological nodes. When formalizing all the morphological processes in this thesis,
morphological nodes were generated as output correspondents of the morphologically topmost node. Because
of this, generating and linearizing new morphological nodes is order-preserving in terms of morphological
dominance. To illustrate, consider simple suffixation of -e to form the word dun-e ‘house-ABL’. The input
and output are shown below with the full morphological structure.

(579) Input and output for generating a suffix -e including the morphology

Input Output

MStem

n

morph

-∅

MRoot

morph

dun

MWord

ABL

morph

-e

MStem

n

morph

-∅

MRoot

morph

dun

The above structure is made explicit below. I omit any prosodic nodes.

(580) Explicit input and output for generating a suffix -e

Input Output

d0.1 u0.2 n0.3

morph0.4 morph0.6

MRoot0.5 n0.7

MStem0.8

C C

m
m

m

m m

m

m

d1.1 u1.2 n1.3 e2.3

morph1.4 morph1.6 morph3.8

MRoot1.5 n1.7 INST4.8

MStem1.8

MWord5.8

C C C

m
m

m
m

m m m

m

m

m

m
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The output is generated by a morphological transduction with a copy set of size 5. In Copy 1, the base
is faithfully outputted. In Copy 2, the suffix segment e is generated as an output correspondent of the final
segment n and linearized. I omit the functions for Copy 1 and Copy 2. Crucially in Copies 3-4, the new
morphological nodes are generated as output correspondents of the input’s morphologically topmost node,
the MRoot (581a-ii). The new nodes are internally linearized via morphological dominance (581b-i). For
external linearization, the affix’s MStem dominates the base’s MRoot (581b-ii).

(581) Predicates and output functions for generating an inflectional suffix -e ‘ABL’

a. Outputting labels
i. Relevant user-defined predicates:
• MTopmost(x)

def
= MNode(x) ∧ ¬∃y[MDom(y, x)]

ii. Output the new morphological nodes
• φmorph(x3)

def
= MTopmost(x)

• φabl(x4)
def
= MTopmost(x)

• φMWord(x5)
def
= MTopmost(x)

b. Linearization – Outputting relations
i. Internal linearization of the suffix
• φMDom(x3, y2)

def
= MTopmost(x) ∧ final:seg(y)

• φMDom(x4, y3)
def
= MTopmost(x) ∧MTopmost(y)

• φMDom(x5, y4)
def
= MTopmost(x) ∧MTopmost(y)

ii. External linearization of morphology

• φMDom(x6, y1)
def
= MTopmost(x) ∧MTopmost(y)

Readers can verify for themselves that generating the suffix segment e2.3 is order-preserving. I focus
on the morphological nodes. The suffix’s MNodes are defined as output correspondents of the input’s
morphologically topmost node MStem0.8 (581a-ii). The suffix’s MWord5.8 then dominates the base’s MStem1.8

(581b-ii). The transduction is order-preserving because the input’s topmost node is dominated by its own
output correspondent: ‘1.8’ < ‘5.8’. It is not the case that the output MStem1.8 is now dominated by the
output correspondent of a lower item like the MRoot0.5: *‘1.8’ < ‘5.5’.

To summarize, order-preservation requires that we carefully define a new affix’s segments and morphological
nodes. The morphological nodes must always be defined in terms of morphologically topmost node.

7.6 Locality of phonologically-conditioned allomorphy

In the previous sections, the morphological processes were non-alternating and involved a single allomorph.
In contrast, allomorphy is when the affix has different shapes in different contexts. There are roughly two
types of allomorphy: phonologically-conditioned allomorphy and morphologically-conditioned allomorphy.
I discuss the first type of allomorphy in this section, and the second type in the next.

Over the next two sections, I show that affix allomorphy is not necessarily more complex than non-alternating
affixation. In fact, the typology of phonologically-conditioned allomorphy has a strong tendency to be
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local (Paster 2005, 2006, 2009; Nevins 2011). I formalize a simple case of phonologically-conditioned
allomorphy and show that it is computationally local (§7.6.1). I present a special case of syllable-counting
allomorphy, and show that it is also local (§7.6.2). Crucially however, not all cases of phonologically-conditioned
allomorphy are local. As previously shown, mobile affixation is not computationally local (§7.5.3).

7.6.1 Allomorphy based on the final segment

An example of phonologically-conditioned allomorphy is found in Armenian. The definite suffix is -n
after V-final bases, -@ after C-final bases.

(582) a. agra ‘tooth’
agra-n ‘tooth-DEF’

(583) a. park ‘glory’
park-@ ‘glory-DEF’

Generating the definite suffix is a simple transduction with a copy set of size 2. I show the input-output
below for both a V-final and C-final base.

(584) Generating suffix allomorphy in the definite

V-final input: agra→agra-n C-final input: dun→dun-@

a0.1 g0.2 r0.3 a0.4InputInput
C C C

p0.1 a0.2 r0.3 k0.4C C C

a1.1 g1.2 r1.3 a1.4

n2.4

Copy 1

Copy 2

Output
C C C

C

p1.1 a1.2 r1.3 k1.4

@2.4

C C C

C

In Copy 1, the input is faithfully outputted as the base. The choice of allomorph depends on if the
final segment is a vowel or consonant (585a). In Copy 2, the suffix is generated as n2.4 if it is an output
correspondent of a final vowel a0.4, and as -@2.4 if it is an output correspondent of a final consonant k0.4

(585b). The suffix’s segment is externally linearized with the base via immediate successor. It is doesn’t
matter which allomorph is picked.

(585) Generating phonologically-conditioned allomorphs for the definite suffix
a. QF user-defined predicate for checking if the final segment is a vowel or consonant

• final_V:seg(x)
def
= seg(x) ∧ final:seg(x) ∧ vowel(x)

• final_C:seg(x)
def
= seg(x) ∧ final:seg(x) ∧ consonant(x)

b. QF output functions for generating the segments of the right suffix allomorph

• φn(x2)
def
= final_V:seg(x)

• φ@(x2)
def
= final_C:seg(x)

c. QF output function for externally linearizing the suffix allomorphs with the base’s final segment

• φsucc:seg(x1, y2)
def
= final:seg(x) ∧ final:seg(y)
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Despite showing allomorphy, generating the definite suffix is still computationally local because no
existential quantifiers are needed to access any long-distant information. I now turn to a more complex
example.

7.6.2 Allomorphy based on syllable-counting

As shown above, allomorphy is not itself more complex than non-alternating affixation. What is important
is how we formalize the allomorph’s segments as output correspondents of the input. As another case study,
I formalize the Armenian plural suffix. The plural displays allomorphy conditioned by syllable count: -er
after monosyllabic bases, and -ner after polysyllabic bases.

(586) a. dar ‘character’
dar-er ‘character-PL’

b. andar ‘forest’
andar-ner ‘forest-PL’

In compounds, the plural is involved in a bracketing paradox. If the second stem is monosyllabic,
exocentric compounds are transparently pluralized as polysyllabic bases with -ner (587a), but endocentric
compounds are paradoxically pluralized as monosyllabic bases with -er (587b).

(587) a.
>
tSúr ‘water’
pós ‘hole’
>
tS@r-a-pós ‘water-hole’
>
tS@r-a-pos-ér ‘water-holes’
*
>
tS@r-a-pos-nér

b.
>
tSúr ‘water’
kújn ‘color’
>
tS@r-a-kújn ‘water-colored’
*
>
tS@r-a-kújn-ér ‘water-colored (objects)’

>
tS@r-a-kujn-nér

The plural paradox is triggered by compound prosodic structure. As formalized in Chapter 6: 6.5.3,
endocentric compounds are parsed into two separate PStems, while exocentric compounds are a single
PStem. In contrast, simple roots form a single PStem. The plural counts the number of syllables in the
rightmost PStem.

(588) Different internal PStem structures for compounds and roots
Compound Root

Endocentric Exocentric Monosyllabic Polysyllabic

σ

-er

PStem

σ

-pos

PStem

σ

r-a

σ

>
tS@

σ

-ner

PStem

σ

-kujn

σ

r-a

σ

>
tS@

σ

-er

PStem

σ

dar

σ

-ner

PStem

σ

dar

σ

an

Generating the plural allomorphy thus requires more enriched prosodic structure than a simple string of
segments. To that end, I explicitly show prosodic nodes in this section, but not morphological nodes. In the
case of the singular simple roots, their representation is below.
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(589) Input representation of simplex roots for plural formation

Monosyllabic: dar→dar-er Polysyllabic: andar→andar-ner

d0.1 a0.2 r0.3InputInput

σ0.4

PStem0.5

C C

p
p

p

p

a0.1 n0.2 d0.3 a0.4 r0.5

σ0.6 σ0.7

PStem0.8

C C C C

C

p
p

p
p

p

p

p

I show the final output below. For the monosyllabic input dar, the suffix segments e2.3, r3.3 are defined as
output correspondents of the final segment r0.3. Similarly for the polysyllabic input andar, the final segment
is r0.5. The suffix segments are n2.5, e3.5, and r4.5.

(590) Output representation of simplex roots for plural formation
Monosyllabic: dar→dar-er Polysyllabic: andar→andar-ner

d1.1 a1.2 r1.3InputOutput

σ1.4

PStem1.5Copy 1

Copy 2

Copy 3

Copy 4

e2.3

r3.3

C C

C

C

p
p

p

p

a1.1 n1.2 d1.3 a1.4 r1.5

σ1.6 σ1.7

n2.5

e3.5

r4.5

PStem1.8

C C C C

C

C

C

C

p
p

p
p

p

p

p

Generating the plural for simplex roots is a transduction with a copy set of size 4. In Copy 1, the input is
faithfully outputted as the base. I don’t show the relevant functions. The suffix allomorphs are chosen based
on the number of syllables in the input. Suffixes are defined in terms of the final segment of the input in
order to ensure order-preservation. We thus need to check for the monosyllabicity requirement in terms of
the final segment. Specifically, we know that we should use the monosyllabic-selecting suffix -er if:
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1. The final segment x is part of a syllable y
2. The syllable y is part of a PStem z
3. There is no syllable w which precedes the syllable y and is in the same PStem z

The user-defined predicate allomorph_er(x) checks that the final segment x fits this context for choosing
the -er allomorph. It is locally-computed and QF-definable (591b).

(591) a. FO User-defined predicates for checking if the input ends in a monosyllabic PStem
• allomorph_er(x)

def
= final:seg(x) ∧ ∃y[syll(y) ∧PDom:syll_seg(y, x)∧
∃z[PStem(z) ∧ PDom:PStem_syll(z, y)∧
¬∃w[syll(w) ∧ succ:syll(w, y) ∧ PDom:PStem_syll(z, w)]]]

b. QF user-defined predicates for checking if the input ends in a monosyllabic PStem
• allomorph_er(x)

def
= final:seg(x)∧

FD:PDom:PStem_syll(FD:PDom:syll_seg(x)) 6= NULL∧
FD:PDom:PStem_syll(FR:succ:syll(FD:PDom:syll_seg(x))) 6=

FD:PDom:PStem_syll(FD:PDom:syll_seg(x))

If the predicate allomorph_er(x) is true, then we generate the suffix -er in Copies 2-3 (592a); otherwise,
we generate the suffix -ner in Copies 2-4 (592b).

(592) QF output functions for generating the plural allomorphs
a. Generating the allomorph -er

• φe(x2)
def
= final:seg(x) ∧ allomorph_er(x)

• φr(x3)
def
= final:seg(x) ∧ allomorph_er(x)

b. Generating the allomorph -ner

• φn(x2)
def
= final:seg(x) ∧ ¬allomorph_er(x)

• φe(x3)
def
= final:seg(x) ∧ ¬allomorph_er(x)

• φr(x4)
def
= final:seg(x) ∧ ¬allomorph_er(x)

The allomorphs are internally (593a) and externally linearized (593b) via the functions below. Note that
we do not need to specify which allomorph is being linearized between Copies 1,2,3. Thus, we do not
check for the allomorphy condition for them. But we do need to check the allomorphy condition in order to
linearize Copy 3 with Copy 4: if -er is used, then there is nothing in Copy 4 to linearize.

(593) a. QF output functions for internally linearizing the allomorphs
• φsucc:seg(x2, y3)

def
= final:seg(x) ∧ final:seg(y)

• φsucc:seg(x3, y4)
def
= final:seg(x) ∧ final:seg(y) ∧ ¬allomorph_er(x)

b. QF output function for externally linearizing the plural with the base
• φsucc:seg(x1, y2)

def
= final:seg(x) ∧ final:seg(y)

These functions will generate the right plural allomorph for compounds. Readers can work out the
derivation for themselves to verify. I show the input and output for endocentric and exocentric compounds
below. The indexing keeps track of the morphological nodes from Chapter 6: §6.3.2.3.
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(594) a. Input and output to pluralizing an endocentric compound :
>
tS@r-a-pós→>

tS@r-a-pós-er ‘water-holes’
>
tS0.1InputInput @0.2 r0.3 a0.11 p0.15 ó0.16 s0.17

σ0.9 σ0.18σ0.28

PStem0.10 PStem0.19

C C C C C C

C C

C

p
p

p
p

p
p

p

p
p

p

>
tS1.1Copy 1Output

Copy 2

Copy 3

Copy 4

@1.2 r1.3 a1.11 p1.15 ó1.16 s1.17

σ1.9 σ1.18σ1.28

PStem1.10 PStem1.19

e2.17

r3.17

C C C C C C

C

C

C C

C

p
p

p
p

p
p

p

p
p

p

b. Input and output to pluralizing an exocentric compound :
>
tS@r-a-kújn→>

tS@r-a-kújn-ner ‘water-colored
(objects)’

>
tS0.1Input ú0.2 r0.3 a0.11 k0.15 ú0.16 j0.17 n0.18

σ0.9 σ0.19σ0.29

PStem0.30

C C C C C C C

C C

p
p

p
p

p
p

p p

p
p

p

>
tS1.1Copy 1Output

Copy 2

Copy 3

Copy 4

ú1.2 r1.3 a1.11 k1.15 ú1.16 j1.17 n1.18

σ1.9 σ1.19σ1.29

n2.17

e3.17

r4.17

PStem1.30

C C C C C C C

C

C

C

C C

p
p

p
p

p
p

p p

p
p

p
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7.7 Locality of morphologically-conditioned allomorphy

The previous allomorphy processes were all phonologically-conditioned. Allomorphy can likewise be
morphologically-conditioned, meaning that the choice depends on non-phonological, morphological, and
arbitrary properties of the input. As with phonologically-conditioned allomorphy, morphologically-conditioned
allomorphy tends to be a local process (Embick 2010, 2013; Bobaljik 2012; Gribanova 2010, 2015; Merchant
2015; Moskal 2015b,a; Gribanova and Shih 2017; Gribanova and Harizanov 2017).

In this section, I illustrate how such allomorphy is computationally local in Armenian inflection, specifically
declension classes and case-marking (§7.7.1). Although computational locality can involve strict adjacency
between triggers and targets, I show a process can be local even if it violates strict adjacency, e.g., in
Armenian conjugation classes and theme vowels (§7.7.2). I show what factors can create non-local allomorphy
(§7.7.3), whether from prefix-suffix dependencies (7.7.3.1) or from feature percolation (§7.7.3.2).

7.7.1 Locality in Armenian inflection

As an example of morphologically-conditioned allomorphy, consider the Western Armenian dative. It is
is the suffix -i for regular nouns (595a) but the suffix -u for plural nouns after the plural suffix (595b), for
some arbitrary irregular nouns (595c), and for nominalized infinitivals (595d). There are also a few other
irregular contexts for -u, and a few other unproductive irregular allomorphs of the dative.

(595) a. kam ‘nail’
kam-i ‘nail-DAT

b. kam-er ‘nail-PL’
kam-er-u ‘nail-PL-DAT

c. Zam ‘time’
Zam-u ‘time-DAT

d. kerel ‘to scratch’
kerel-u ‘scratching-DAT’

In the table below, I show the morphological structure of these different Armenian words. I underline
the trigger morpheme: the node which contains the relevant morphological feature which triggers the
allomorphy. It is either a root (MRootIRREG) or an affix (PL, INF).

In itself, morphologically-conditioned allomorphy is not more complex than phonologically-conditioned
allomorphy. What matters is where the trigger morpheme lies in the input. If the allomorphs are all suffixes
(prefixes), then the formalization is computationally local if the trigger morpheme is a bounded distance
away from the final (initial) segment. In the cases above, the allomorphy is computationally local because
the trigger morpheme dominates a morph which dominates the final segment: kam-er, Zam, ker-e-l.
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(596) Input and output for the Armenian dative

Regular suffix Irregular suffix
Regular root Plural word Irregular root Infinitival

Base

MStem

n

morph

∅

MRoot

morph

kam

MWord

PL

morph

-er

MStem

n

morph

∅

MRoot

morph

kam

MStem

n

morph

∅

MRootIRREG

morph

Zam

MStem

INF

morph

-l

MStem

v

morph

-e

MRoot

morph

ker

Dative

MWord

DAT

morph

-i

MStem

n

morph

∅

MRoot

morph

kam

MWord

DAT

morph

-u

MWord

PL

morph

-er

MStem

n

morph

∅

MRoot

morph

kam

MWord

DAT

morph

-u

MStem

n

morph

∅

MRootIRREG

morph

Zam

MWord

DAT

morph

-u

MStem

INF

morph

-l

MStem

v

morph

-e

MRoot

morph

ker

To illustrate, consider the regular and irregular roots kam, Zam below. I show the input without prosodic
nodes. I show a partial output which doesn’t show the suffix’s MNodes.

(597) a. Input to regular and irregular dative formation – /kam, Zam/

Regular /kam/ Irregular /Zam/

k0.1 a0.2 m0.3

morph0.4 morph0.6

MRoot0.5 n0.7

MStem0.8

C C

m
m

m

m m

m

m

Z0.1 a0.2 m0.3

morph0.4 morph0.6

MRootIRREG 0.5 n0.7

MStem0.8

C C

m
m

m

m m

m

m
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b. Output of regular and irregular dative formation – kam-i, Zam-u

Regular kam-i Irregular Zam-u

k1.1 a1.2 m1.3 i2.3

morph1.4 morph1.6

MRoot1.5 n1.7

MStem1.8

C C C

m
m

m

m m

m

m

Z1.1 a1.2 m1.3 u2.3

morph1.4 morph1.6

MRootIRREG 1.5 n1.7

MStem1.8

C C C

m
m

m

m m

m

m

The user-defined predicate below finds a segment’s morpheme. This predicate is satisfied for the final
segment m0.3 and its morpheme the MRoot0.5. For convenience, I define a unary function which returns a
segment’s morpheme, with some conditions on when this function is defined.

(598) Finding a segment’s morpheme via...
a. FO user-defined predicate

• morpheme_of_seg(x, y)
def
= morpheme(x) ∧ seg(y)∧
∃z[morph(z) ∧MDom(x, z) ∧MDom(z, y)]

b. QF user-defined unary function
• FR:morpheme_of_seg(y)

def
= FD:MDom2(y)

The function is defined provided that x satisfies....
seg(y) ∧morph(FD:MDom(y)) ∧morpheme(FD:MDom2(y))

The function is otherwise undefined

The user-defined predicate below checks if some morpheme is the trigger morpheme for the Armenian
irregular dative -u, i.e., if the morpheme carries a the label of a plural, irregular root, or infinitival morpheme.
These labels are primitive unary labels in the input. This predicate picks out the irregular MRoot in Zam but
not the regular MRoot in kam.

(599) QF user-defined predicate to check if a morpheme is the trigger morpheme for the irregular dative
• trigger_morpheme(x)

def
= morpheme(x) ∧ [plural(x) ∨ irregular(x) ∨ infinitival(x)]

The output functions below will generate the right suffixes. In Copy 2, we generate the irregular suffix
-u2.3 as an output correspondent of the final segment m0.3 (x) if i) the final segment x is part of the morpheme
MRoot0.5 (y) and ii) the morpheme y is the trigger morpheme which has the right labels (plural, irregular,
or infinitival). Otherwise, the regular suffix -i is generated because the final segment is not part of a trigger
morpheme. These functions are locally-computed and QF-definable (600b). I don’t show the functions
which involve the base, i.e., how the base is faithfully outputted in Copy 1 and linearized with the suffix.
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(600) a. FO output functions for generating the irregular dative -u and regular dative -i

• φu(x2)
def
= final:seg(x) ∧ ∃y[morpheme_of_seg(y, x) ∧ trigger_morpheme(y)]

• φi(x2)
def
= final:seg(x) ∧ ∃y[morpheme_of_seg(y, x) ∧ ¬trigger_morpheme(y)]

b. QF output functions for generating the irregular dative -u and regular dative -i

• φu(x2)
def
= final:seg(x) ∧ trigger_morpheme(FR:morpheme_of_seg(x))

• φi(x2)
def
= final:seg(x) ∧ ¬trigger_morpheme(FR:morpheme_of_seg(x))

Thus, generating these allomorphs is computationally local. The computation simply references the
morphological nodes which are ‘close’ to the final segment.

7.7.2 Apparent non-locality in conjugation classes

A common thought in linguistic theory is that a process is local if and only if the trigger and target of the
process are adjacent (Odden 1994). Strict adjacency is also argued for in morphological allomorphy (Allen
1979; Embick 2010), i.e., that the trigger morpheme is the closest morpheme to the allomorph. However,
computational locality is a looser form of linear locality or adjacency. A process is computationally local as
long as the trigger and target are within a fixed bound. It does not matter whether this distance is zero, one
(Božič 2019), or larger.

To illustrate, consider Armenian verb conjugation. Verbs can surface with one of three theme vowels e,i,a.
These theme vowels are semantically content-less (cf. Aronoff 1994). The choice tends to correlate with
transitivity but not always (Donabédian 1997). Roots which take these vowels form separate conjugation
classes: Class E, Class I, and Class A (Kogian 1949; Boyacioglu 2010). Infinitivals surface with the suffix
-l after the theme vowel. The 1SG, 2SG, and 3SG present surface with the suffix -m, -s, and zero -∅ after the
theme vowel.

(601) Paradigm of infinitivals and present singular verbs
Root Infinitival Present

1SG 2SG 3SG

Features √ -TH-INF
√ -TH-1SG

√ -TH-2SG
√ -TH-3SG

Fixed morphs √ -TH-l √ -TH-m √ -TH-s √ -TH-∅
a. Class E

√
ker- ker-e-l ‘to scratch’ ker-e-m ker-e-s ker-e-

b. Class I
√

xos- xos-i-l ‘to speak’ xos-i-m xos-i-s xos-i-
c. Class A

√
gart- gart-a-l ‘to read’ gart-a-m gart-a-s gart-a-

I focus on the theme vowels. I assume that roots have a diacritic which triggers the right theme vowel:
CLASS:E, CLASS:I, CLASS:A which I represent below as a subscript. I assume that the theme vowel is
generated as a suffix that is adjoined to a covert verbalizer v suffix (Oltra-Massuet 1999a,b). The trigger
morpheme for the right theme vowel is the underlined root. I omit the morph nodes.
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(602) Morphological structure of simple infinitivals

Class E Class I Class A
MWord

INF

-l

MStem

v

TH

-e

v

-∅

MRootE

ker-

MWord

INF

-l

MStem

v

TH

-i

v

-∅

MRootI

xos-

MWord

INF

-l

MStem

v

TH

-a

v

-∅

MRootA

gart-

Given a Class-E root ker- or Class-I root xos- as the input, the trigger morpheme for the theme vowel is
the MRoot. The root is local to the input-final segment. I show an illustrative input and output below. The v
and TH are added simultaneously in the same cycle, while the infinitival is added in a later cycle.

(603) Input and output to adding theme vowels
Class E Class I

Input Output Input Output

MRootE

morph

ker-

MStem

v

TH

morph

-e

v

morph

-∅

MRootE

morph

ker-

MRootI

morph

xos-

MStem

v

TH

morph

-i

v

morph

-∅

MRootI

morph

xos-

I show the more explicit input and output below. I only show the segments, and omit the morphological
nodes of the suffix. The covert v suffix has no segment intervening between the base and theme vowel.

(604) a. Explicit input to generating theme vowels

Class E ker- Class I xos-

k0.1 e0.2 r0.3

morph0.4

MRootE 0.5

C C

m
m

m

m

x0.1 o0.2 s0.3

morph0.4

MRootI 0.5

C C

m
m

m

m
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b. Intermediate output of generating theme vowels

Class E ker- Class I xos-

k1.1 e1.2 r1.3 e2.3

morph1.4

MRootE 1.5

C C C

m
m

m

m

x1.1 o1.2 s1.3 i2.3

morph1.4

MRootI 1.5

C C C

m
m

m

m

The output is partially generated via the output functions below. I assume the input has unary labels for
the different classes of verbs. The function φe(x2) will generate the -e2.3 theme vowel in Copy 2 if i) it is the
output correspondent of the final segment r0.3 (x), ii) the final segment x belongs to a morpheme MRoot0.5
(y), iii) and y has the right CLASS:E feature. The other output functions φi(x2),a(x2) are analogously
defined. They are all locally-computible (605b). I do not show the output functions needed to generate the
base or the morphological nodes of the suffix.

(605) a. FO output functions to generate the right theme vowel based on the root

• φe(x2)
def
= final:seg(x) ∧ ∃y[morpheme_of_seg(y, x) ∧ Class:E(y)]

• φi(x2)
def
= final:seg(x) ∧ ∃y[morpheme_of_seg(y, x) ∧ Class:I(y)]

• φa(x2)
def
= final:seg(x) ∧ ∃y[morpheme_of_seg(y, x) ∧ Class:A(y)]

b. QF output functions to generate the right theme vowel based on the root
• φe(x2)

def
= final:seg(x) ∧ Class:E(FR:morpheme_of_seg(x))

• φi(x2)
def
= final:seg(x) ∧ Class:I(FR:morpheme_of_seg(x))

• φa(x2)
def
= final:seg(x) ∧ Class:A(FR:morpheme_of_seg(x))

The computation so far is local. However, Armenian conjugation does show signs of non-locality in the
past perfect. In the past perfect, we replace the infinitival suffix -l with two suffixes: the aorist or perfective
suffix -

>
ts- and an agreement suffix: ker-e-l ∼ ker-e-

>
ts-i ‘I scratched’. The theme vowel -i- of Class-I verbs

is replaced by the theme vowel -e- in bold: xos-i-l ∼ xos-e-
>
ts-a ‘I spoke’. The change in theme vowels is

a case of outwards-sensitive allomorphy (cf. Bobaljik 2000). It is difficult to formalize in a purely cyclic
model. I discuss possible solutions in Chapter 9. But the crucial point is the agreement suffixes which differ
across classes. The agreement suffixes are -i, -ir, -∅ for Class E and A, but -a, -ar, -av for Class I. These are
in bold.
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(606) Paradigm of infinitivals and past perfect singular verbs

Root Infinitival Past Perfect
1SG 2SG 3SG

Features √ -TH-INF
√ -TH-PRF-1SG

√ -TH-PRF-2SG
√ -TH-PRF-3SG

Fixed morphs √ -TH-l √ -TH-
>
ts-i/a √ -TH-

>
ts-ir/ar √ -TH--

>
ts-∅/av

a. Class E
√

ker- ker-e-l ‘to scratch’ ker-e-
>
ts-i ker-e-

>
ts-ir ker-e-

>
ts

b. Class I
√

xos- xos-i-l ‘to speak’ xos-e-
>
ts-a xos-e-

>
ts-ar xos-e-

>
ts-av

c. Class A
√

gart- gart-a-l ‘to read’ gart-a-
>
ts-i gart-a-

>
ts-ir gart-a-

>
ts

The agreement suffixes are chosen based on the class features of the root. However, if the input to
generating the person suffixes includes both the theme vowel and the perfective suffix ker-e-

>
ts-, then the

input-final segment is not part of the root. The trees below illustrate. I underline the trigger morpheme, and
I put in bold the morph nodes and segments which separate the MRoot from the final segment.

(607) a. Input to adding the agreement suffixes in the past perfect

Class E Class I
MStem

PERF

morph

-
>
ts

MStem

v

TH

morph

-e

v

morph

-∅

MRootE

morph

ker-

MStem

PERF

morph

-
>
ts

MStem

v

TH

morph

-i

v

morph

-∅

MRootI

morph

xos-

b. Output of adding the agreement suffixes in the past perfect

Class E Class I
MWord

1SG

morph

-i

MStem

PERF

morph

-
>
ts

MStem

v

TH

morph

-e

v

morph

-∅

MRootE

morph

ker-

MWord

1SG

morph

-a

MStem

PERF

morph

-
>
ts

MStem

v

TH

morph

-e

v

morph

-∅

MRootI

morph

xos-
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On the surface, the allomorphy in agreement appears long-distance. However, this is incorrect because
Armenian morphology does not recursively add morphemes to verbs. The MRoot is always at a fixed
maximal distance from the perfective suffix -

>
ts. Specifically, in simple regular verbs, the perfective -

>
ts is

always at most 2 segments away from the root’s final segment: ker-e-�ts-, xos-i-�ts-. Thus, generating the
right agreement suffix is still computationally local. I show below the explicit input and partial output for a
Class-E and Class-I past perfect verb. I omit the MStem nodes.

(608) a. Explicit input to generating agreement suffixes in the past perfect

Class E ker- Class I xos-

k0.1 e0.2 r0.3 e0.6
>
ts0.11

morph0.4 morph0.7 morph0.8 morph0.12

MRootE 0.5 v0.9 TH0.10 PERF0.13

C C C C

m
m

m
m m

m m m m

x0.1 o0.2 s0.3 i0.6
>
ts0.11

morph0.4 morph0.7 morph0.8 morph0.12

MRootI 0.5 v0.9 TH0.10 PERF0.13

C C C C

m
m

m
m m

m m m m

b. Partial output of generating agreement suffixes in the past perfect

Class E ker- Class I xos-

k1.1 e1.2 r1.3 e1.6
>
ts1.11 i2.11

morph1.4 morph1.7 morph1.8 morph1.12

MRootE 1.5 v1.9 TH1.10 PERF1.13

C C C C C

m
m

m
m m

m m m m

x1.1 o1.2 s1.3 i1.6
>
ts1.11

a2.11

morph1.4 morph1.7 morph1.8 morph1.12

MRootI 1.5 v1.9 TH1.10 PERF1.13

C C C C C

m
m

m
m m

m m m m

I focus on generating the agreement suffix’s segment. I assume the other nodes are handled by other
output functions. Given an MRoot x and segment y, the predicate MRoot_pre_perf_seg(x, y) below
checks if some MRoot0.5 (x) precedes a segment

>
ts (y) such that i) y is part of the perfective suffix, ii) y

follows two segments v (r0.3 or s0.3) and w (e0.6 or i0.6), and iii) v belongs to the MRoot. The predicate
can be replaced by a user-defined unary function (609b) which returns this MRoot x if given the perfective
segment y. It locally-computed and QF-definable.

(609) a. FO user-defined predicate for finding the MRoot given the perfective segment
• MRoot_pre_perf_seg(x, y)

def
= MRoot(x) ∧ seg(y)∧
∃z[morpheme(z) ∧ perfect(z) ∧MDom(z, y)]∧
∃v, w[seg(v)∧seg(w)∧succ:seg(v, w)∧succ:seg(w, y)∧
MDom(x, v)]

b. QF user-defined unary function for finding the MRoot given the perfective segment
• FR:MRoot_pre_perf_seg(y)

def
= FD:MDom(FR:succ:seg2(y))

The function is defined provided that x satisfies....
seg(y) ∧ perfective(FR:morpheme_of_seg(y))
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The function is otherwise undefined

With these formulas, the output function below then generates the right 1SG suffixes by checking if the
MRoot has the right class labels. They are locally-computible (610b).

(610) a. FO output function for generating the 1SG past perfect agreement suffixes
• φi(x2)

def
= final:seg(x) ∧ ∃y[MRoot_pre_perf_seg(y, x)∧

[Class:E(y) ∨ Class:A(y)]]

• φa(x2)
def
= final:seg(x) ∧ ∃y[MRoot_pre_perf_seg(y, x) ∧ Class:I(y)]

b. QF output function for generating the 1SG past perfect agreement suffixes
• φi(x2)

def
= final:seg(x) ∧ [Class:E(FR:MRoot_pre_perf_seg(x))∨

Class:A(FR:MRoot_pre_perf_seg(x))]]

• φa(x2)
def
= final:seg(x) ∧ Class:I(FR:MRoot_pre_perf_seg(x))]

Thus, generating the agreement suffix is still computationally local even though the trigger morpheme
is not adjacent to the input-final segment. As long as the trigger morpheme is still a predictable finitely
bounded distance away from the final segment, the computation is local.

7.7.3 When allomorphy is non-local

The above results may imply that morphologically-conditioned allomorphy is always local. In this
section, I show two cases where this is not so. First, suffix (prefix) allomorphy is computationally non-local
if the trigger morpheme is an unbounded distance away from the final (initial) segment (§7.7.3.1). Second,
allomorphy is non-local if it references feature percolation to the topmost morphological node (§7.7.3.2).

7.7.3.1 Non-locality from opposite-sided triggers

Computational locality requires that the trigger and target are within a finite bound. For allomorphy,
computational locality is violated when the affix is a suffix (prefix) but the morphological trigger is on the
other side of the input. This problem is analogous to phonologically-conditioned mobile affixation (§7.5.3).
In fact, prefix-suffix dependencies are a common issue in claiming morphology as computationally local
or even finite-state (Langendoen 1981; Carden 1983; Hammond 1992, 1993; Bjorkman and Dunbar 2016;
Aksënova and De Santo 2018).

Armenian does not have morphologically-conditioned allomorphy which references prefix-suffix dependencies.
I instead illustrate a hypothetical example with a constructed language that has two plural allomorphs:
regular -s and irregular -ren. The irregular suffix -ren is used when the input starts with an irregular prefix
non-, such that this prefix takes scope over the rest of the input. For example, the root dog takes a regular
plural dog-s.3 But, when the irregular prefix non- is added, then the plural form is non-dog-ren. I illustrate
their tree structures below.4 The trigger morpheme is underlined; the intervening segments are in bold.

3I omit using a covert category suffix to turn the root dog to a free-standing noun MStem.
4A similar case study is found in Russian verbs where we have prefix-suffix dependencies based on the telicity of affixes

(Aksënova and De Santo 2018).
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(611) Non-locality from prefix-suffix dependencies when computed over segments

Regular plural Prefixed irregular plural
Singular Plural Singular Plural

MRoot

morph

dog

MWord

PL

morph

-s

MRoot

morph

dog

MStem

MRoot

morph

dog

nIRREG

morph

non-

MWord

PL

morph

-ren

MStem

MRoot

morph

dog

nIRREG

morph

non-

Because of order-preservation, the suffix is generated as an output correspondent of the final segment.
The computation of the allomorph is non-local because the final segment g can be an unbounded distance
away from the prefix non-. In terms of segments, there can be an unbounded number of segments between
the prefix and final segment because there is no bound on the size of roots.

Interestingly, over morphological nodes, the computation is still non-local and not QF. The generalization
is that the input must start with the irregular prefix. There could be an unbounded number of intervening
morphological nodes between the final segment and the irregular prefix. To illustrate, assume that the noun
dog can take the regular prefix pre- to form a regular noun pre-dog. This word is regularly pluralized as
pre-dog-s. But if this derivative takes the irregular prefix non-, then the doubly-prefixed derivative takes the
irregular plural non-pre-dog-ren. I show the intervening morphological nodes in bold.

(612) Non-locality in prefix-suffix dependencies when computed over morphological nodes

Regular & Prefixed Irregular & Doubly-prefixed
Singular Plural Singular Plural

MStem

MRoot

morph

dog

n

morph

pre-

MWord

PL

morph

-s

MStem

MRoot

morph

dog

n

morph

pre-

MStem

MStem

MRoot

morph

dog

n

morph

pre-

nIRREG

morph

non-

MWord

PL

morph

-ren

MStem

MStem

MRoot

morph

dog

n

morph

pre-

nIRREG

morph

non-

Thus, given our simple tree-based representations for morphology, prefix-suffix dependencies are not
computationally local. To make these processes local, we need to enrich our input’s representation, e.g., by
formally encoding the derivational history of the input (cf. Aksënova and De Santo 2018). I discuss one
possible formalization in Chapter 9 in the context of outwards-looking allomorphy.
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7.7.3.2 Non-locality because of feature percolation

Another way that morphologically-conditioned allmorphy is non-local is if it references a trigger morpheme
which is deeply embedded in the input. In these cases, most analyses assume an operation of feature
percolation (Lieber 1980, 1989) such that the triggering morphological feature is part of the topmost morphological
node (cf. Williams 1981).

To illustrate, consider the English word tooth. Its irregular plural is teeth. Assume the irregular plural
allomorph is a floating feature [+F] for [+FRONT]. The trigger morpheme for the irregular plural is an
irregular label on the root.

(613) Irregular plurals in English tooth
Singular Plural

MStem

n

morph

-∅

MRootIRREG

morph

tooth

MWord

PL

morph

[+F]

MStem

n

morph

-∅

MRootIRREG

morph

teeth

Problems arise in compounding. When the word forms an endocentric compound, the compound inherits
the irregular plural: milk-teeth. But if the word forms an exocentric compound, then the compound is
regularly pluralized: saber-tooth-s. A traditional analysis is that somehow tooth in milk-teeth forms the
head of the compound and percolates its irregular features up the tree to the topmost MNode. In contrast in
the head-less saber-tooth-s, the irregular feature does not percolate all the way up to the topmost node.5

I illustrate below using the compound structures from §6.2.2. The stems are concatenated to form a
morphological concatenation MConc. For easier illustration, I omit the MStemC which dominates the entire
compound and which takes its own zero-suffix. The irregular label IRREG percolates up the endocentric
compound in bold, but not all the way up to the exocentric compound.

5Irregular inflection is likewise inflected in Armenian endocentric compounds, see Chapter 3.
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(614) Irregular plurals in English compounds

a. Input

Endocentric Compound Exocentric Compound
MConcIRREG

MStemR IRREG

n

morph

-∅

MRootIRREG

morph

tooth

MStem

n

morph

-∅

MRoot

morph

milk

MConc

MStem

n

morph

-∅

MRootIRREG

morph

tooth

MStem

n

morph

-∅

MRoot

morph

saber

b. Output

Endocentric Compound Exocentric Compound
MWord

PL

morph

[+F]

MConcIRREG

MStemR IRREG

n

morph

-∅

MRootIRREG

morph

teeth

MStem

n

morph

-∅

MRoot

morph

milk

MWord

PL

morph

-s

MConc

MStem

n

morph

-∅

MRootIRREG

morph

tooth

MStem

n

morph

-∅

MRoot

morph

saber

To generate the right plural in a compound, we need to check that 1) the final segment th belongs to
an irregular root tooth, and that 2) the irregular features of the root percolated all the way up the tree.
The problem is that the plural allomorphs are suffixes (or suffixal features) and must be defined as output
correspondents of the final segment. If there is no bound on the distance between the final segment and the
topmost node, then determining the second factor on feature percolation is not computationally local.

Thus, contra linguistic intuitions, feature percolation does not always make long-distant allomorphy into
local allomorphy. Superficially, feature percolation seems to require quantification. Furthermore, depending
on the specific theory, feature percolation can itself be computationally difficult to implement (Ritchie et al.
1992:ch4).

7.8 Conclusion

This chapter examined computational aspects of affixation and allomorphy. After first discussing the
computational insignificance of certain morphological controversies, I introduced and formalized the concept
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of order-preservation. As a constraint on possible input-output correspondences, order-preservation was
found to be prevalent in affix order and linearization. Although reduplication is not generally order-preserving,
simple affixation (suffixation, prefixation, mobile affixes) are order-preserving transductions. As order-preserving
transductions, these morphological processes can be implemented with 1-way FSTs which share the same
intensional description or strong generative capacity of our logical formalization. As a caveat though, this
conclusion depends on what representations we use. If we used more enriched representations, e.g., using
constants to refer to the initial segment, then we can describe more processes as being computationally and
order-preserving. Whether this richer representation is empirically warranted is open question which I did
not pursue.

Moving on to allomorphy, I showed how certain types of allomorphy can or can’t be computationally
local. There is a tendency for phonologically- and morphologically-conditioned to be local. This tendency
was found in Armenian. Computational locality is found regardless whether the allomorphy is computed
over phonological segments or over morphological nodes. Non-locality is limited to certain problem areas,
including mobile affixation, prefix-suffix dependencies, and feature percolation.

305



Chapter 8

Locality with and without cyclicity

8.1 Global information and locality in a cyclic interface

The formalization in this thesis is cyclic and it utilized SETTINGS encapsulation as a way to encode
long-distance morphological information. In this chapter, I relax these two assumptions and I show how
much of the interface is still computationally local. I first clarify these two assumptions.

First, my formalization is cyclic because of how morphology and phonology are interleaved. Given some
input, we first applied a morphological transduction. We examined the morphology and encapsulated
some global information about the input into the constant SETTINGS. With this information, prosodic
and phonological processes then applied. The sum of the morphological, encapsulation, prosodic, and
cophonological processes constitutes a single cycle. The output of this cycle is then submitted as the input
for another morphological transduction. This triggered another round of phonological transductions.

Second, I encapsulated different types of information into the SETTINGS. The SETTINGS has general
information such as what dialect the derivation is in. I also encoded different types of long-distance
information which was derived by examining the morphological and prosodic structure of the input. However,
I only encapsulated information about the properties of the morphologically topmost node: what cophonology
label it had, what types of morphological nodes it dominated, and what prosodic constituents were associated
with the topmost node’s daughters. Doing so lets us separate the (often local) segmental aspects of a
phonological rule from its (possibly global) morphological triggers.

With this architecture, the bulk of the interface was shown to be computationally local. In this chapter, I
illustrate how non-locality was minimized by using both cyclicity and this constant SETTINGS. I reformulate
some prosodic and phonological processes but without the constant SETTINGS. Thus, we can no longer
encapsulate any potentially global information into one accessible constant. This makes computing the right
cophonology (§8.2) and prosody (§8.3) potentially non-local.

These are the results. In the case of cophonologies, constituent-based definitions for cophonologies were
earlier shown to be non-local (Chapter 5:§5.6). In contrast, an alternative morpheme-based definition can
sometimes be computationally local (§8.2). For the prosody, a cyclic prosody parse is computationally local
with or without the SETTINGS (§8.3). Interestingly, post-cyclic or non-cyclic prosody is computationally
local for non-compounds (§8.3.2.1), but it is non-local for compounds (§8.3.2.2).
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8.2 Locality and non-locality in cophonology domains

Informally, a cophonology is a set of rules which apply in some domain. The phonological environment
triggering the change can be local but its cophonological trigger can be non-local. However, the non-locality
depends on how we analyze the location of this cophonological trigger. Throughout this dissertation, I used a
constituent-based definition of cophonologies where the trigger is the topmost MNode. As explained earlier
in Chapter 5: §5.6, this requires non-local computation. For this reason, I encapsulated this non-local trigger
into the SETTINGS constant. In this section, I decompose the above argument and analysis (§8.2.1). I show
that an alternative morpheme-based definition for cophonologies can be computationally local (§8.2.2).1

8.2.1 Components of rule domains

To illustrate a cophonology, the rule of final stress applies in amusín because we’re in the stem-level
cophonology.

(615) Application of final stress

/amusin/ [amuśin] ‘husband’
MStemSLevel

n

morph

∅

MRoot

morph

/amusin/

MStemSLevel

n

morph

∅

MRoot

morph

amuśin

In this dissertation, I factorized a rule domain into its:

1. morphological trigger, e.g., stress applies because the topmost node is an MStem.
2. cophonology label, e.g., the MStemSLevel has the label for the stem-level cophonology.
3. phonological target, e.g., a full vowel i.
4. phonological context, e.g., the full vowel is the rightmost one in#.

The phonological target and context can be formalized into a single SPE-rule, set of constraints, or an
FST. The phonological target and context are often within a bounded distance from each other, i.e., rules
have a local phonological context (Odden 1994; Chandlee and Heinz 2018).

This dissertation focused on formalizing and evaluating the morphological triggers and their cophonology
labels. Throughout chapters §5-6, I defined the trigger in terms of morphological constituents, specifically
the topmost MNode. The cophonology label was on these constituents. However, as explained in Chapter
5: §5.6, this constituent-based definition of triggers is computationally non-local. A priori, there can be an
unbounded distance between the trigger and target, i.e. for stress, the topmost MStem node could be an
unbounded distance away from the rightmost full vowel. The unboundedness can come from recursively
adding covert affixes or prefixes.

1Throughout this section on cophonologies, I assume the derivation is cyclic.
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The issue of non-locality is clearer when we look at vowel reduction. Reduction applies in the stem-level
but not word-level The destressed vowel reduces in amusn-agán (616b) but not amusin-nér (616c). The
former has a topmost MStem node, while the latter has a topmost MWord node. Because of zero affixation,
there could be no bound on the number of intervening morphological nodes between the target vowel and
the topmost trigger.

(616) Application of reduction with constituent-based cophonologies
a. Root b. Derivative c. Inflected form
amusín ‘husband’ amusn-agan ‘marital’ amusin-ov ‘husband-PL’

MStemSLevel

n

morph

∅

MRoot

morph

amuśin

MStemSLevel

a

morph

-agán

MStemSLevel

n

morph

∅

MRoot

morph

amusn

MWordWLevel

INST

morph

-nér

MStemSLevel

n

morph

∅

MRoot

morph

amusin

I encapsulated the potentially non-local trigger into a constant SETTINGS. This made the derivation
simpler to understand by separating the non-local trigger from the rest of the local morphophonology.

8.2.2 Morpheme-based rule domains

Interestingly, some of the non-locality is resolved in morpheme-based definitions for cophonologies. As
said, this dissertation assumed a constituent-based definition for cophonologies: the trigger was the topmost
MNode and that it carried the label. In contrast, in a morpheme-based definition, the cophonology is
triggered by morphemes which carry these cophonology labels. That is, we apply final stress when the
target vowel is part of an MRoot (617a) or suffix (617b,c). And, we apply reduction if the target destressed
vowel is before a final suffix which is derivational (-agan 617b), not inflectional (-ov 617c). I assume that
roots carry the stem-level label. I use the smaller subscripts SL,WL for space.

(617) Application of reduction with morpheme-based cophonologies
a. Root b. Derivative c. Inflected form
amusín ‘husband’ amusn-agan ‘marital’ amusin-ov ‘husband-PL’

MStem

nSL

morph

∅

MRootSL

morph

amuśin

MStem

aSL

morph

-agán

MStem

nSL

morph

∅

MRootSL

morph

amusn

MWord

INSTWL

morph

-nér

MStem

nSL

morph

∅

MRootSL

morph

amusin
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To illustrate with reduction, I show an explicit input and output for /amušin-agán/ below. I omit any
morphological nodes above morphemes. I omit the PStem.

(618) a. Input for morpheme-based application of stem-level reduction //amušin-agán//

a0.1 m0.2 u0.3 s0.4 ǐ0.5 n0.6 a0.16 g0.17 á0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

morph0.7 morph0.9 morph0.20

MRoot0.8 SLevel n0.10 SLevel a0.21 SLevel

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

p
p

p
p

p
p

p
p

p
p

b. Output of morpheme-based application of stem-level reduction amusn-agán

a1.1 m1.2 u1.3 s1.4 n1.6 a1.16 g1.17 á1.18 n1.19

σ1.12 σ1.13 σ1.23 σ1.24

morph1.7 morph1.9 morph1.20

MRoot1.8 SLevel n1.10 SLevel a1.21 SLevel

C C C C C C C C

C C C

m m m

m m

m m

m m

m m m

p
p

p
p

p
p

p
p

p

For this input-output pair, the target of reduction is the destressed high vowel i0.5, while the trigger is the
derivational suffix -agan or a0.20. Specifically, the trigger is the morpheme, not the MStem. This morpheme
carries the stem-level cophonology label SLevel or Cophon:SLevel(x)

To compute this morpheme-based process of reduction, we need to find the trigger given the target. This
is facilitated by using several predicates. Given two vowels x, y, the predicate next_vowel(x, y) checks if
y comes after x, i.e., they are adjacent on the tier of vowels. We determine this by checking if the syllable
u of x precedes the syllable v of y. In the case of //a.mu.ši.n-a.gán//, the predicate is satisfied by the pair
i0.5, a0.9 because the syllable σ0.14 precedes σ0.23. This predicate is locally computed; we can define a QF
unary function to find the subsequent vowel y of some vowel x.

(619) Finding the next vowel via a...
a. FO user-defined predicate

• next_vowel(x, y)
def
= vowel(x) ∧ vowel(y) ∧ ∃u, v[syll(u) ∧ syll(v)∧

PDom:syll_nuc(u) ∧ PDom:syll_nuc(v) ∧ succ:syll(u, v)]

b. QF user-defined unary function
• FL:next_vowel(x)

def
= FM:PDom:syll_nuc(FL:succ:syll(FD:PDom:syll_nuc(x)))

The function is defined provided that x satisfies....
vowel(x)∧ vowel(FM:PDom:syll_nuc(FL:succ:syll(FD:PDom:syll_nuc(x))))
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The function is otherwise undefined

The predicate morpheme_of_seg(x, y) checks if a segment y is part of a morpheme x. For example,
the morpheme -agan or a0.21 is the morpheme of the suffix vowel a0.16. The predicate can be converted to a
QF unary function to find the morpheme x of a segment y.

(620) Finding a segment’s morpheme via...
a. FO user-defined predicate

• morpheme_of_seg(x, y)
def
= morpheme(x) ∧ seg(y)∧
∃z[morph(z) ∧MDom(x, z) ∧MDom(z, y)]

b. QF user-defined unary function
• FR:morpheme_of_seg(y)

def
= FD:MDom2(x)

The function is defined provided that x satisfies....
seg(y) ∧morph(FD:MDom(y)) ∧morpheme(FD:MDom2(y))

The function is otherwise undefined

With all these predicates in place, we can now determine if some vowel should undergo destressed
reduction or not. The predicates target:destressed_high_vowel(x) and trigger:der_suffix(x) pick
the target and trigger of vowel reduction: a destressed high vowel and a derivational suffix. These predicates
are straightforward. The derivational suffix must have the right cophonology label.

(621) QF user-defined predicates for checking if a node is...
a. The target – a destressed high vowel

• target:destressed_high_vowel(x)
def
= [i(x) ∨ u(x)] ∧ destressed:vowel(x)

b. The trigger – a derivational suffix
• trigger:der_suffix(x)

def
= morpheme(x) ∧ der(x) ∧ Cophon:SLevel(x)

We apply reduction if both the target and trigger are found together in the input. The predicate reducible(x)
is satisfied if i) x is a a destressed high vowel (the target), ii) the subsequent or next vowel y exists, iii)
this vowel is part of a morpheme z, and iv) this morpheme z is a derivational suffix (the trigger). For
//amušin-agán//, the target x is i0.5, the next vowel y is a0.16, and the trigger z is the suffix morpheme
-agan, i.e., a0.21. This predicate is locally computible using our user-defined QF unary functions.

(622) a. FO user-defined predicates for checking if a destressed high vowel is reducible
• reducible(x)

def
= target:destressed_high_vowel∧
∃y, z[vowel(y) ∧morpheme(z) ∧ next_vowel(x, y)∧
morpheme_of_seg(z, y) ∧ trigger:der_suffix(z)]

b. QF user-defined predicates for checking if a destressed high vowel is reducible
• reducible(x)

def
= target:destressed_high_vowel∧

trigger:der_suffix(FR:morpheme_of_seg(FL:next_vowel(x)))

With this predicate in place, the various output functions in Chapter 6: §6.6.1 can be reformulated to
reference this predicate and then apply reduction. The predicate reducible(x) is not satisfied when the
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destressed high vowel precedes an inflectional suffix as in amusin-ov. Here, the high vowel precedes a
morpheme PL0.20 (= w). This morpheme is not stem-level because it is inflectional.

(623) Input to blocking vowel reduction in the inflected word amušin-nér

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 n0.16 e0.17 r0.18

σ0.12 σ0.13 σ0.14 σ0.22

morph0.7 morph0.9 morph0.19

MRoot0.8 n0.10 PL0.20

C C C C C C C C

C C C

m m m

m m m

m
m

m

m m m

p
p

p
p

p
p

p
p

p

This entire formalization is local because it only references the morphemes and syllables which are
adjacent to the destressed high vowel via MDom(x, y),PDom:syll_nuc(x, y), succ:syll(x, y). This strategy
reduces constituency-effects in cophonologies to morpheme-specific rules (Pater 2007, 2009; Finley 2010).
In this analysis, we no longer need the SETTINGS encapsulation to factorize the long-distance trigger from
the target. However, without an adequate cross-linguistic typology of stratal or cyclic phonological rules, it
is unclear if this strategy would always work or always be local (cf. Inkelas and Zoll 2007; Inkelas 2008).

8.3 Locality and non-locality in prosodic parsing

The above discussion showed that non-local information can sometimes be avoided in defining the morphological
trigger for phonological rule domains. Similar problems and solutions arise in prosody. I focus on prosodic
mappings, not syllabification.2

In Chapters §5-6, I showed that a host of prosodic processes are computationally local. I list below
all the different prosodic processes, the properties of the topmost morphological node (MNode) (= the
trigger), the prosodic change (= the target), and where I formalized the process. All of these processes are
computationally local given the analytical assumptions that I made. These assumptions were that i) the
derivation was cyclic, and ii) we had a constant SETTINGS which encapsulated the properties of the topmost
MNode.

2Syllabification is local regardless of cyclicity or SETTINGS encapsulation. In the formalizations of syllabification (Chapter 5:
§5.4.1) and resyllabification (Chapter 6: §6.4), no reference was made to morphological constituents like MStems or MWords.
Syllabification around prefixation is sensitive to the left-boundary of roots. I did not discuss those. However, they only need to
reference morpheme boundaries.
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(624) Prosodic processes which are local with cyclicity and the SETTINGS

Prosodic processes in... Trigger: Topmost MNode is... Target or Prosodic Change Section
Simplex Stem

Prosodic Generation Unparsed MStem which MStem matched to new PStem Chapter 5: §5.4.3
dominates an MRoot

Derivation
Prosodic Restructuring Unparsed MStem which MStem matched with old PStem Chapter 6: §6.5.1.1

dominates a parsed MStem Old MStem wrapped into new PStem
Prosodic Recursion Unparsed MStem which MStem matched with new PStem Chapter 6: §6.5.1.2.1

dominates a parsed MStem
Prosodic Flattening Parsed MStem which PStems merge Chapter 6: §6.5.1.2.2

dominates a parsed MStem
Inflection

Prosodic Misalignment Unparsed MWord which PStem is expanded Chapter 6: §6.5.2.1
dominates a parsed MStem which
is a contracted PStem

Prosodic Layering Unparsed MWord which MWord matched with new MStem Chapter 6: §6.5.2.2
dominates a parsed MStem PWord dominates PStem

Compounding
PStem linearization Unparsed compound MStemC which Two PStems are linearized Chapter 6: §6.5.3.3

dominates two parsed MStems
Prosodic Subsumption Unparsed endocentric compound MStemC MStemC subsumed into Chapter 6: §6.5.3.4

which dominates two parsed MStems rightmost PStem
Prosodic Fusion Unparsed exocentric compound MStemC MStemC matched with new PStem Chapter 6: §6.5.3.5

which dominates two parsed MStems Old PStems fused into new PStem

In this section I show that these prosodic processes are still computationally local if we use cyclicity
without SETTINGS encapsulation (§8.3.1). Furthermore, if we used neither cyclicity nor encapsulation, then
most of these processes are still local (§8.3.2). Specifically, the post-cyclic prosodic parse of non-compounds
is computationally local (§8.3.2.1), while the post-cyclic parse of compounds is not local (§8.3.2.2).

8.3.1 Locality of cyclic prosody without the SETTINGS

If the derivation is still cyclic but we don’t use SETTINGS encapsulation, then prosodic mapping is still
local. This is because of the following. The SETTINGS encapsulated information about the topmost MNode.
However, the prosodic change involves either creating a prosodic node (PNode) as the output correspondent
of the topmost MNode, or modifying a PNode which is matched with an immediate dominee of the topmost
MNode. Thus, the properties of the topmost Node are still accessible to the relevant PNode.

I illustrate the above alternative analysis by reformulating Prosodic Restructuring as in a derivative
//(amusi)s-agan// (Chapter 6: §6.5.1.1). In this process, the PStem expands because the morphology added
an overt derivational suffix: //(amusi-agan)s//. In the simple input-output representations below, the height
of the PStem shows which MStem it is matched with.
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(625) Input and output for prosodic restructuring in //(amusi)n-agan//
Input Output

Morphology Prosody Prosody
MStem

a

-agan

MStem

n

-∅

MRoot

amusin

σ

gan

σ

n-a

PStem

σ

si

σ

mu

σ

a

PStem

σ

gan

σ

n-a

σ

si

σ

mu

σ

a

In terms of its input, the morphology contains an unparsed MStem which dominates a parsed MStem.
Because they are both MStems, the higher MStem recursively dominates the lower MStem. Prosodically,
the lower MStem is matched with a PStem. As for the output, the lower MStem’s PStem will expand and
incorporate the higher MStems’ segments. The higher MStem is matched with this PStem, while the lower
MStem is wrapped into it.

I show the explicit input. There is no SETTINGS constant. The high unparsed MStem is MStem0.22; it
dominates the lower MStem0.11 which is matched with the PStem0.15.

(626) Input to prosodic restructuring without the settings: //(amusi)sn-agan//

a0.1 m0.2 u0.3 s0.4 í0.5 n0.6 a0.16 g0.17 a0.18 n0.19

σ0.12 σ0.13 σ0.14 σ0.23 σ0.24

morph0.7 morph0.9 morph0.20

MRoot0.8 n0.10 a0.21

MStem0.11

MStem0.22

PStem0.15

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp

MATCH

In the output, the only changes are that i) PStem1.15 is now matched with the high MStem1.22, ii)
PStem1.15 has the low MStem1.11 wrapped into it, and iii) PStem1.15 dominates the high MStem1.22’s
syllables
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(627) Output of prosodic restructuring without the settings: //(amuśin-agan)s//

a1.1 m1.2 u1.3 s1.4 í1.5 n1.6 a1.16 g1.17 a1.18 n1.19

σ1.12 σ1.13 σ1.14 σ1.23 σ1.24

morph1.7 morph1.9 morph1.20

MRoot1.8 n1.10 a1.21

MStem1.11

MStem1.22

PStem1.15

C C C C C C C C C

C C C C

m m m

m m m

m m

m m

m m m

m

m

m

m

p
p

p
p

p
p

p
p

p
p

p pp p p

WRAP

MATCH

As explained in Chapter 6: §6.5.1.1, the following predicates pick out the unparsed higher MStem0.22

and the expanding PStem0.15. I add the predicate MStem:parsed to pick the lower parsed MStem0.11.
Their interpretation is based on their local context, i.e., what they dominate and/or match with. In fact, the
3 predicates all reference the same 3 nodes: MStem0.11, MStem0.22, and PStem0.15. All these predicates are
locally-computible.

(628) a. FO user-defined predicates for finding the higher MStem, expanding PStem, and lower MStem

• MStem:unparsed(x)
def
= MStem(x)∧MTopmost(x)∧¬∃y[PStem(y)∧Match:stem(x, y)]
∃u, v[MStem(u)∧MDom(x, u)∧PStem(v)∧Match:stem(u, v)]

• PStem:expanding(x)
def
= PStem(x)∧
∃y, z[Match:stem(y, x) ∧MStem:unparsed(z)∧
MDom(z, y)]∧
¬∃y[PStem(y) ∧ succ:PStem(x, y)]

• MStem:parsed(x)
def
= MStem(x) ∧ ∃y[PStem(y) ∧Match:stem(x, y)]∧
∃z[MStem(z) ∧MDom(z, x) ∧MStem:unparsed]

b. QF user-defined predicates for finding the higher MStem, expanding PStem, and lower MStem

• MStem:unparsed(x)
def
= MStem(x) ∧MTopmost(x) ∧ FL:Match:stem(x) = NULL

MStem(FM:MDom(x))∧
FL:Match:stem(FM:MDom(x)) 6= NULL

• PStem:expanding(x)
def
= PStem(x)∧

MStem:unparsed(FD:MDom(FR:Match:stem(x)))
FL:succ:PStem(x) = NULL

• MStem:parsed(x)
def
= MStem(x) ∧ FL:Match:stem(x) 6= NULL∧

MStem:unparsed(FD:MDom(x))

In the original formulation from Chapter 6: §6.5.1.1, these steps reference the SETTINGS label Parse:MStem:recursive.
For example, in Copy 1, we faithfully output all nodes and all relations except for those involving PStems.
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The original formulation referenced Parse:MStem:recursive. In the reformulation, this statement is removed.

(629) Faithfully outputting labels and relations except for those involving PStems

a. For every label lab ∈ L:
• Original
φlab(x1)

def
= Parse:MStem:recursive(SETTINGS) ∧ lab(x)

• Reformulated
φlab(x1)

def
= lab(x)

b. For every relation rel ∈ R− {Match:stem,Wrap:stem, PDom:PStem_syll,
PDom:PStem_PStem,PDom:PWord_PStem}:

• Original
φrel(x1, y1)

def
= Parse:MStem:recursive(SETTINGS) ∧ rel(x, y)

• Reformulated
φrel(x1, y1)

def
= rel(x, y)

In Copy 1, the expanding PStem y1 (y is ‘0.15’) should be matched with the higher unparsed MStem x1

(x is ‘0.22’). This is encoded in the original output function. In the reformulated version, we simply remove
the statement Parse:MStem:recursive(...). The predicate MStem:unparsed(x) already picks out the
MStem0.22 as a topmost unparsed MStem which dominates a parsed MStem, while PStem:expanding(y)
picks out that PStem.

(630) QF output function for matching the expanding PStem with the higher unparsed MStem
• Original

φMatch:stem(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧

MStem:unparsed(x) ∧PStem:expanding(y)
• Reformulated

φMatch:stem(x1, y1)
def
= MStem(x) ∧ PStem(y)∧

MStem:unparsed(x) ∧PStem:expanding(y)

The lower MStem x1 (x is ‘0.11’) is associated with the expanding PStem y1 (y is ‘0.15’) via a wrapping
relationship. The original function references the SETTINGS. The reformulated version does not. The
predicate PStem:expanding(y) picks a PStem0.15 which was underlyingly matched with a dominated
MStem0.11 (x).

(631) QF output function for wrapping the lower MStem into the expanding PStem
• Original

φWrap:stem(x1, y1)
def
= Parse:MStem:recursive(SETTINGS) ∧MStem(x) ∧ PStem(y)∧
PStem:expanding(y) ∧Match:stem(x, y)

• Reformulated
φWrap:stem(x1, y1)

def
= MStem(x)∧PStem(y)∧PStem:expanding(y)∧Match:stem(x, y)

The expanding PStem must incorporate its old input syllables and newly incorporate the suffix’s syllables.
The predicate syll_of_MStem finds the local syllables of an MStem, i.e., the suffix syllables for the higher
MStem0.22. This predicate is locally computed.
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(632) a. FO user-defined predicates for finding an MStem’s closest syllables
• syll_of_MStem(x, y)

def
= syll(x) ∧MStem(y) ∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

b. QF user-defined predicates for finding an MStem’s closest syllables
• syll_of_MStem(x, y)

def
= syll(x) ∧MStem(y)∧

seg(FM:PDom:syll_nuc(x))∧
morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
y = F:D:MDom3(FM:PDom:syll_nuc(x))

Syllable incorporation was formalized with two helper predicates. The first predicate allows the expanding
PStem to faithfully dominate the syllables which it had in the input: σ0.12, σ0.13, σ0.14. The reformulated
version removes the reference to the SETTINGS; instead we check that the PStem x is the expanding PStem.

(633) QF helper predicates for letting a PStem dominates its underlying syllables

• Original
should__PDom:PStem_syll__old(x, y)

def
= Parse:MStem:recursive(SETTINGS)∧

PStem(x) ∧ syll(y) ∧ PDom:PStem_syll(x, y)
• Reformulated

should__PDom:PStem_syll__old(x, y)
def
= PStem(x) ∧ syll(y)∧

PStem:expanding(x) ∧ PDom:PStem_syll(x, y)

The second helper predicate will let the expanding PStem incorporate the suffix’s syllables σ0.23, σ0.24.
The reformulated version simply removes reference to the SETTINGS. The formula already picks out an
expanding PStem x. This predicate is QF-definable.

(634) a. FO helper predicates for letting the expanding PStem dominate the syllables of the new higher
MStem’s suffixes
• Original

should__PDom:PStem_syll__new(x, y)
def
= Parse:MStem:recursive(SETTINGS)∧

PStem(x) ∧ syll(y) ∧PStem:expanding(x)∧
∃z[MStem:unparsed(z) ∧ syll_of_MStem(y, z)

• Reformulated
should__PDom:PStem_syll__new(x, y)

def
=

PStem(x) ∧ syll(y) ∧PStem:expanding(x)∧
∃z[MStem:unparsed(z) ∧ syll_of_MStem(y, z)

b. QF helper predicate for letting the expanding PStem dominate the syllables of the new higher
MStem’s suffixes
• should__PDom:PStem_syll__new(x, y)

def
=

PStem(x) ∧ syll(y) ∧PStem:expanding(x)∧
MStem:unparsed(FD:MDom(FR:Match:stem(x)))∧
syll_of_MStem(y,FD:MDom(FR:Match:stem(x)))
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These helper predicates are used for the output function below which outputs all correct prosodic dominances
from PStems to syllables.

(635) QF output function to make higher PStem dominate the syllables of its two MStems
• φPDom:PStem_syll(x1, y1)

def
= should__PDom:PStem_syll__old(x, y)∨

should__PDom:PStem_syll__new(x, y)

This completes the local generation of a larger PStem from a recursive MStem via prosodic restructuring.
I emphasize that reformulated version of prosodic restructuring was still local. This is all because the
prosodic changes referenced the same MStems and PStem which were in a local relationship with each
other. I do not formalize the other prosodic processes. They are likewise local without the SETTINGS

because of the local relationships between the morphological triggers and the prosodic targets.

Thus, prosodic parsing is local when cyclic. The SETTINGS does not help improve locality. It does
however make it easier to organize formulas in prosodic parsing.

8.3.2 Locality and non-locality is post-cyclic prosodic parses

Because of how cyclicity generates only one new MStem/MWord at a time, the prosodic parse is local.
But if the derivation were non-cyclic, then the prosodic parse could be non-local. A non-cyclic derivation
means that the entire morphological structure is given as an input without any prosodic constituents. All
PNodes are generated at once. However, non-locality depends on whether the output could contain more
than one PStem or PWord. For simplicity, I assume that the input is already syllabified. I show that the
post-cyclic parse of non-compounds is local (§8.3.2.1), while it is non-local for compounds (§8.3.2.2).

8.3.2.1 Post-cyclic parsing is local in non-compounds

If the input is a non-compound word, parsing this item without cyclicity is surprisingly still local. It is
computationally local because the prosody will create only a single PStem and PWord. I illustrate with the
word kor

>
dz-avor-ner-ov which contains a root, overt derivational suffix, and two overt inflectional suffixes.

(636) a. kor
>
dz ‘work’

b. kor
>
dz-avor ‘worker’

c. kor
>
dz-avor-ner ‘workers’

d. kor
>
dz-avor-ner-ov ‘with workers’

Morphologically, the word contains two layers of MStems. These MStems are under two layers of
MWords. The higher MStem is parsed to (matched with) a PStem, while the higher MWord is parsed
to (matched with) a PWord. The lower MStem and lower MWord are wrapped into the corresponding
PStem and PWord. The trees below illustrate this. I visualize these types of prosodic relations below with
subscripts.
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(637) Post-cyclic prosodic mapping of a non-compound word ((kordz-avor)s-ner-óv)w

Input Morphology Output Prosody
MWordmatched

INST

morph

-óv

MWordwrapped

PL

morph

-ner

MStemmatched

n

morph

-avor

MStemwrapped

n

morph

∅

MRoot

morph

kor
>
dz

PWord

σ

r-ov

σ

-ne

PStem

σ

vor

σ

>
dz-a

σ

kor

In a post-cyclic prosodic parse, we do not need global information to parse a non-compound. In the
output, we always have exactly one PStem and one PWord. For the morphology, exactly one MStem is
recursively undominated; meaning that it isn’t dominated by a MStem. This MStem is matched with the
output’s PStem. Every other MStem in the input is recursively dominated by an MStem; in the output, it is
wrapped into the output’s PStem. The same match-wrap distinctions occur for the MWord layers.

The transduction for post-cyclic parsing requires a copy set of size 2. I show that this transduction is
computationally local. I do not show the explicit input and output. Because of their size, they’re not easily
readable. The compact representations below are sufficient. I assume that the input is already syllabified. In
the output, the morphology, segments, and syllables are generated in Copy 1, while the prosodic constituents
are generated in Copy 2. I show indexes for the relevant nodes; the subscripts mark prosodic associations.

(638) a. Partially-explicit input for post-cyclic prosody parse of a non-compound word //kordz-avor-ner-ov//

Input Morphology Prosody
MWord0.27

INST

morph

-óv

MWord0.22

PL

morph

-ner

MStem0.16

n

morph

-avor

MStem0.9

n

morph

∅

MRoot

morph

kor
>
dz

σ0.32

r-ov

σ0.31

-ne

σ0.30

vor

σ0.29

>
dz-a

σ0.28

kor
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b. Partially-explicit output for post-cyclic prosody parse of a non-compound word ((kordz-avor)s-ner-ov)w

Output Morphology Prosody
MWord1.27,matched

INST

morph

-óv

MWord1.22,wrapped

PL

morph

-ner

MStem1.16,matched

n

morph

-avor

MStem1.9,wrapped

n

morph

∅

MRoot

morph

kor
>
dz

PWord2.27

σ1.32

r-ov

σ1.31

-ne

PStem2.16

σ1.30

vor

σ1.29

>
dz-a

σ1.28

kor

In Copy 1, all segments, syllables, and MNodes are faithfully outputted. There are no underlying PStems
or PWords.

(639) QF output functions for faithfully outputting labels and relations in Copy 1

• For every label lab ∈ L:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

The predicates below check if some MStem or MWord is recursively dominated or not. They are locally-computed
and QF-definable. An MStem (MWord) is recursively dominated if it is morphologically dominated by
another MStem (MWord). It is recursively undominated otherwise. For kor

>
dz-avor-ner-ov, MStem0.9 and

MWord0.22 are recursively dominated. These introduce the zero n-suffix and the inflectional suffix -ner.
MStem0.16 and MWord0.27 are recursively undominated; they introduce the derivational suffix -avor and
inflectional suffix -ner. These two are the rightmost derivational and inflectional suffix respectively.

(640) a. FO user-defined predicates for finding a recursively dominated MStem/MWord

• MStem:rec_dominated(x)
def
= MStem ∧ ∃y[MStem(y) ∧MDom(y, x)

• MWord:rec_dominated(x)
def
= MWord ∧ ∃y[MWord(y) ∧MDom(y, x)

b. QF user-defined predicates for finding a recursively dominated MStem/MWord

• MStem:rec_dominated(x)
def
= MStem ∧MStem(FD:MDom(x))

• MWord:rec_dominated(x)
def
= MWord ∧MWord(FD:MDom(x))

c. QF user-defined predicates for finding a recursively undominated MStem/MWord

• MStem:rec_undominated(x)
def
= MStem ∧ ¬MStem:rec_dominated(x)

• MWord:rec_undominated(x)
def
= MWord ∧ ¬MWord:rec_dominated(x)
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In Copy 2, we generate PStem2.16 and PWord2.27 as output correspondents of the recursively undominated
MStem0.16 and MWord0.27. If the input is a non-compound, there will be exactly one recursively undominated
MStem or MWord.

(641) QF output function to post-cyclically generate a PStem (PWord) for a recursively undominated
MStem (MWord)
• φPStem(x2)

def
= MStem(x) ∧MStem:rec_undominated(x)

• φPWord(x2)
def
= MWord(x) ∧MWord:rec_undominated(x)

The undominated MStem1.16 and MWord1.27 will be matched with their own PStem2.16 and PWord2.27.
The nodes x (for the undominated MNode) and y (its generated PNode) must both be underlyingly the same
MNode (x = y).

(642) QF output functions to match undominated MStem (MWord) with the output PStem (PWord)
• φMatch:stem(x1, y2)

def
= MStem(x) ∧MStem:rec_undominated(x) ∧ x = y

• φMatch:word(x1, y2)
def
= MWord(x) ∧MWord:rec_undominated(x) ∧ x = y

In the output, there is only a single PStem2.16 and PWord2.27. The dominated MStem1.9 and MWord1.24

(x) will be wrapped into this PStem and PWord. In the input, all we need to check is if the surface PStem
(PWord) was generated from the recursively undominated MStem (PWord) y.

(643) QF output functions to wrap dominated MStems (MWord) in the PStem (PWord) of the recursively
undominated MStem (MWord)
• φWrap:stem(x1, y2)

def
= MStem(x) ∧MStem:rec_dominated(x)∧

MStem(y) ∧MStem:rec_undominated(y)

• φWrap:word(x1, y2)
def
= MWord(x) ∧MWord:rec_dominated(x)∧

MWord(y) ∧MWord:rec_undominated(y)

The generated PStem (PWord) must dominate the syllables of all MStems (MWords). These syllables
are found by the predicates below. They check if a syllable x is close to some MStem or MWord node t,
i.e., syllables whose nuclei belong to morphemes which are immediately dominated by the MStem/MWord.
These predicates are locally-computible.

(644) a. FO user-defined predicates for finding syllables which are part of an MStem or MWord
• syll_of_any_MStem(x)

def
= syll(x) ∧
∃t, u, v, w[MStem(t)∧morpheme(u)∧morph(v)∧ seg(w)∧
MDom(t, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

• syll_of_any_MWord(x)
def
= syll(x) ∧
∃t, u, v, w[MWord(t)∧morpheme(u)∧morph(v)∧ seg(w)∧
MDom(t, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

b. QF user-defined predicates for finding syllables which are part of an MStem or MWord
• syll_of_any_MStem(x)

def
= syll(x)∧
seg(FM:PDom:syll_nuc(x))∧
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morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
MStem(F:D:MDom3(FM:PDom:syll_nuc(x)))

• syll_of_any_MWord(x)
def
= syll(x)∧

seg(FM:PDom:syll_nuc(x))∧
morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
MWord(F:D:MDom3(FM:PDom:syll_nuc(x)))

For example, the syllables of the lower MStem0.9 are σ0.28 .kor.. The syllables of the higher MStem0.16

are σ0.29 .
>
dza., σ0.30 .vor.. The syllables of the lower MWord0.22 are σ0.31 .ne.. And the syllables of the

higher MWord0.27 are σ0.32 .rov.

The output contains only one PStem and PWord. The PStem (PWord) will dominate all the syllables
which belong to any MStem (MWord).3 The computation is local; the syllables are within a finite bound
from their MStems.

(645) QF output function to let the PStem (PWord) dominate the syllables of MStems (MWords)
• φPDom:PStem_syll(x2, y1)

def
= φPStem(x2) ∧ syll(y) ∧ syll_of_any_MStem(y)

equivalent to
φPDom:PStem_syll(x2, y1)

def
= MStem:rec_undominated(x) ∧ syll(y)∧

syll_of_any_MStem(y)

• φPDom:PWord_syll(x2, y1)
def
= φPWord(x2) ∧ syll(y) ∧ syll_of_any_MWord(y)

equivalent to
φPDom:PWord_syll(x2, y1)

def
= NWord:rec_undominated(x) ∧ syll(y)∧

syll_of_any_MWord(y)

Lastly, the PWord must dominate the PStem. We do not need to check that the PWord’s MWord generally
dominates the PStem’s MStem. That requires long-distance computation and is unneeded. The output only
has one PStem and PWord which were generated from the recursively undominated MStem and MWord.

(646) QF output function to let the PWord dominate the PStem
• φPDom:PWord_PStem(x2, y2)

def
= φPWord(x2) ∧ φPStem(y2)

equivalent to
φPDom:PWord_PStem(x2, y2)

def
= MWord:rec_undominated(x)∧

MStem:rec_undominated(y)

I emphasize that this entire computation was local. This is because the input contained only one recursively
undominated MStem and only one recursively undominated MWord. Thus, the output would only have one
PStem and one PWord. This uniqueness lets the post-cyclic parsing be local.

3These functions must be modified in order to trigger PStem expansion before V-initial inflection. One possibility is to define a
separate PStem expansion transduction which follows post-cyclic parsing.
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8.3.2.2 Post-cyclic parsing is non-local in compounds

In contrast to non-compound words, if the output does contain more than one PWord or PWord, then
post-cyclic parsing is not local. This is because in compounds, we need to reference long-distance information
like general morphological dominance in order to know if some MStem and its syllables are generally
dominated by the left vs. right stem in the compound.

Consider the nonce word below. It is an endocentric compound. I set aside the linking vowel. The topmost
node is an MStemC . It is made up of a morphological concatenation node or MConc. This MConc consists
of two internally complex or recursive MStems: MStemL and MStemR. These two higher MStems map to
two PNodes. The MStems dominate a long chain of MStems. Specifically, MStemL (MStemR) generally
dominates a chain of MStems from MStemA (MStemD) to MStemL (MStemR), including MStemB (MStemE).
These lower MStems are wrapped into the compound’s two PNodes. I show the prosodic associations via
subscripts.

(647) Post-cyclic parsing of a large endocentric compound into two PWords

Morphology Prosody
MStemC

MConc

MStemR,matched

n

F

...

MStemE,wrapped

n

...E...

...

MStemD,wrapped

D...

MStemL,matched

n

C

...

MStemB,wrapped

n

...B...

...

MStemA,wrapped

A

PNodeR

D...E...F

PNodeL

A...B...C

Such complex compounds are rare in Armenian, but they can be found in English: origin-al-ity sens-itiv-ity
(= being sensitive to originality). English compounds can freely combine any two nouns, even if the
two nouns are internally complex and have multiple derivational suffixes. For English, the compound
origin-al-ity sens-itiv-ity would be parsed into two separate PWords (origin-al-ity)w (sens-itiv-ity)w.
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(648) a. Partially explicit input and output for post-cyclically parsing a compound origin-al-ity sens-itiv-ity
Morphology Prosody

Input
MStemC

MConc

MStemR

n

-ity

MStemE

a

-itiv

MStemD

sens

MStemL

n

-ity

MStemB

a

-al

MStemA

origin

σ

ty

σ

v-i

σ

ti

σ

s-i

σ

sen

σ

ty

σ

l-i

σ

n-a

σ

gi

σ

ri

σ

o

Output
MStemC

MConc

MStemR,matched

n

-ity

MStemE,wrapped

a

-itiv

MStemD,wrapped

sens

MStemL,matched

n

-ity

MStemB,wrapped

a

-al

MStemA,wrapped

origin

PWordR

σ

ty

σ

v-i

σ

ti

σ

s-i

σ

sen

PWordL

σ

ty

σ

l-i

σ

n-a

σ

gi

σ

ri

σ

o

The post-cyclic parsing of a compound is a transduction with a copy set of size 2. I illustrate this with the
English example.

In Copy 2, MStemL and MStemR must be parsed into PWordL and PWordR. These two MStems are
marked as recursively undominated. They are not immediately dominated by an MStemC . They must be
matched with their own PWord. All the lower MStems are recursively dominated. The output functions
below reference the predicate MStem:rec_undominated(x) from the previous section.

(649) a. QF output function to generate PWords from recursively undominated MStems
• φPWord(x2)

def
= MStem(x) ∧MSem:rec_undominated

b. QF output function to match undominated MStems with PWords
• φMatch:stem(x1, y2)

def
= MStem(x) ∧MSem:rec_undominated ∧ (x = y)

The problem is syllable incorporation. The predicate syll_of_MStem(x, y) selects the syllables x
whose nuclei are dominated by an MStem y’s morpheme. For example, the syllables of MStemL are the
syllables .li.ty, while the syllables of MStemR are .vi.ty. These syllables are local to the undominated
MStems; .li.ty and .vi.ty are dominated by the suffixes -ity and -ity which are immediately dominated by
MStemL and MStemR. This predicate is locally-computed and QF-definable.
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(650) a. FO user-defined predicate for finding syllables of an MStem

• syll_of_MStem(x, y)
def
= syll(x) ∧MStem(y) ∧
∃u, v, w[morpheme(u) ∧morph(v) ∧ seg(w) ∧
MDom(y, u)∧MDom(u, v)∧MDom(v, w)∧PDom:syll_nuc(x,w)]

b. QF user-defined predicate for finding syllables of an MStem

• syll_of_MStem(x, y)
def
= syll(x) ∧MStem(y)∧

seg(FM:PDom:syll_nuc(x))∧
morph(FD:MDom(FM:PDom:syll_nuc(x))) ∧
morpheme(FD:MDom2(FM:PDom:syll_nuc(x))) ∧
y = F:D:MDom3(FM:PDom:syll_nuc(x))

Using this predicate, the output function φPDom:PWord_syll(x, y) will cause PWordL and PWordR
to dominate the syllables which are local to MStemL and MStemR, i.e. syllables .li.ty. and .vi.ty.

(651) QF output function to let PWordsL and PWordR dominate the syllables of MStemL and MStemR

• φPDom:PWord_syll(x2, y1)
def
= φPWord(x2) ∧ φsyll(y1)∧

MStem:rec_undominated(x)∧syll_of_MStem(y, x)

However, syllable incorporation is incomplete. The syllables of MStemA are .o.ri.gi. These syllables
must incorporate into PWordL because MStemA is under MStemL. But this information is non-local to
MStemA. We cannot use immediate morphological dominance to know if the syllables of MStemA should
incorporate to PWordL vs. PWordR. We need long-distance or general morphological dominance: we need
to check if MStemA is generally or non-immediately dominated by MStemL.

This non-local information is formalized below in the predicate MStem:dominator_of(x, y). Given
two MStems x, y, this predicate checks if x is the closest recursively undominated MStem which dominates
y. That is, the predicate is satisfied by MStemL with MStemA, but not MStemR or MStemC with MStemA.
The predicate references general or long-distance morphological dominance gen_MDom(x, y) which was
defined in Chapter 4: §4.5.1 as an MSO predicate. The predicate below essentially creates a tier of MStems
based on non-local information.

(652) MSO user-defined predicate to find the topmost dominating MStem of a recursively dominated
MStem

• MStem:dominator_of(x, y)
def
= MStem(x) ∧MStem(y)∧

MStem:rec_undominated(x) ∧MStem:rec_dominated(y)∧
gen_MDom(x, y)∧
¬∃z[MStem:rec_undominated(z)∧
gen_MDom(x, z) ∧ gen_MDom(z, y)]

For the English compound, the predicate MStem:dominator_of(x, y) is satisfied by MStemL as x,
and MStemA as y. This is because 1) MStemL is recursively undominated while MStemA is recursively
dominated, 2) MStemL generally dominates MStemA, and 3) there is no other recursively undominated
MStem z which comes between MStemL and MStemA. This last condition ensures that MStemC is not
considered the dominator of MStemA. This condition essentially creates multiple tiers of MStems based on
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morphological dominance similar to how tiers have been constructed for syntax in subregular syntax (Vu
et al. 2019; Graf and Shafiei 2019b).

Using this non-local information, the function φPDom:PWord_syll(x, y) must be redefined in order
to let PWordL dominate the syllables .o.ri.gi.na., and let PWordR dominate syllables .sen.si.ti.

(653) MSO output function to let PWordL and PWordR dominate the syllables of its undominated and
dominated MStems
• φPDom:PWord_syll(x2, y1)

def
= φPWord(x2) ∧ φsyll(y1)∧

MStem:rec_undominated(x)∧
[syll_of_MStem(y, x)∨
∃z[MStem:rec_dominated(z)∧syll_of_MStem(y, z)∧
MStem:dominator_of(x, z)]]

The disjunct syll_of_MStem(y, x) makes sure that the syllables .li.ty. (y) are still dominated by
PWordL (x). The new disjunct ∃z[...MStem:dominator_of(x, z)] ensures that the syllables .o.ri.gi. (y)
are also dominated by PWordL (x). This function will cause PWordL (x2) to dominate the syllables .o.ri.gi.
(y) because PWordL is defined as an output correspondent for an underlying recursively undominated
MStemL as x, the syllables .o.ri.gi. belongs to a recursively dominated MStemA as z, and MStemL is
the closest dominator of MStemA.

For completeness, I provide below the output functions which will cause the dominated MStems to get
wrapped into PWordL and PWordR. A recursively dominated MStemA (x1) is wrapped into PWordL (y2)
because PWordL is defined as an output correspondent of a recursively undominated MStemL (y). MStemL

y is the closest dominator of MStemA. This function references long-distance information, analogous to the
above formalization of syllable incorporation.

(654) MSO output function to let dominated MStems get wrapped into PWords
• φWrap:stem(x1, y2)

def
= φMStem(x1) ∧ φPWord(y2)∧

MStem:rec_dominated(x)∧MStem:rec_undominated(y)∧
∧MStem:dominator_of(y, x)

To summarize, the post-cyclic parsing of compounds is non-local. We need to reference long-distance
information like general morphological dominance in order to know if some MStem and its syllables are
generally dominated by the left vs. right stem in the compound. The same problem of non-locality pops
up if we want to compute higher levels of prosodic constituents and the syntax-phonology interface, e.g.,
mapping flat prosodic phrases from recursive syntactic phrases.4

4The non-locality problem cannot be solved by 1) parsing the entire compound into recursive PWords for every MStem and then
2) flattening the recursive PWords into a single PWord. With this strategy, we still need non-local or long-distance information to
see if any two PWords should be flattened into the same new PWord or not. Intuitively, generating recursive PWords just involves
replacing the node label of MStems for PWords. The problem of just outputting the two correct PWords still remains.
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8.4 Conclusion

The main goal of this chapter was to examine the ubiquity of computational locality in the morphology-phonology
interface. The result is that, even with fewer restrictions on how the interface is organized, the bulk of the
interface is still computationally local.

Chapters 5-6 used two architectural assumptions and formalizations: cyclicity and the SETTINGS constant.
With these two concepts, I factorized cophonologies and prosody into their morphophonological trigger
and their morphophonological target. Although the trigger could be far from the target, the rest of the
process was shown to be computationally local. In this chapter, I showed that morpheme-based definitions
of cophonologies can be computationally local. Much more interesting was the prosody. Even without the
SETTINGS constant, prosodic mapping is computationally local as long as the derivation is cyclic. If the
derivation is non-cyclic, parsing a non-compound is local, but parsing a compound is non-local. This is
surprising, and it is due to how many unique PNodes we have to generate.

(1) Post-cyclic parsing of a large endocentric compound into two PWords by first creating recursive PWords

Morphology Recursive Prosody Flattened Prosody
MStemC

MConc

MStemR

n

-ity

MStemE

a

-itiv

MStemD

sens

MStemL

n

-ity

MStemB

a

-al

MStemA

origin

PWordR

.v-it.y

PWordE

.s-i.ti.

PWordD

.sen.

PWordL

l-i.ty

PWordB

.n-a.

PWordA

.o.ri.gi.

PWordR

σ

ty

σ

v-i

σ

ti

σ

s-i

σ

sen

PWordL

σ

ty

σ

l-i

σ

n-a

σ

gi

σ

ri

σ

o
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Chapter 9

Computation of cyclicity

9.1 Formal aspects of cyclicity: Overview

This dissertation utilized a cyclic architecture of the morphology-phonology interface. Thanks to cyclicity,
a significant chunk of the interface was shown to be computationally local. In this chapter, I show problems
inherent to cyclicity. I sketch a plausible solution for them.

In §9.2, I go over problems in cyclicity, both computational and empirical. Computationally, cyclicity
is a difficult concept to formalize because it involves potentially unbounded number of interactions or
cycles between phonology and morphology. Even if these individual processes are computationally local
or simple, applying these processes an unbounded number of times can be computationally more complex
or take exponential time (Johnson 1972; Ristad 1990; Coleman 1995a). Empirically, the main problem
behind cyclicity are cases where a linguistic process acts counter-cyclically by accessing information from
future cycles. Two common examples of this problem are post-cyclic phonology and outwards-sensitive
allomorphy.

But despite the computational and empirical conundrums, cyclicity is an empirically real phenomenon
(Bermúdez-Otero 2011), even though its analytical details can be controversial (Cole 1995a). Cyclic phenomena
in real natural language patterns do not show computational blowup, implying there may be other constraints
which restrict the problem in ways we need to discover. This is similar to the problem of how two-level FST
formalizations of morphology, two-level morphology (Koskenniemi 1983b,a, 1984), can be computationally
complex and NP-hard in theory (Barton 1986; Barton et al. 1987; Wareham 1999) but not in practice
(Koskenniemi and Church 1988; Ritchie et al. 1992; Kornai 2009).1

Thus in practice, cyclicity seem manageable. I argue that phonological cyclicity is manageable because
many factors control how often morphological processes can apply, which limits the impact of ’unboundedness’.
Specifically, a given derivation utilizes a predictable number of cycles based on how many morphological
processes must apply. These morphological processes are themselves predictable from what operations we
choose to do. Informally, the input to the entire derivation should encode the full sequence of these desired
operations in order to make cyclicity become computationally feasible.

1The potential NP-hardness of two-level morphology is independent of the generative capacity of two-level morphology which
is still computationally simple and less expressive than rational relations (Ritchie 1989, 1992).
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I flesh out the above idea by using an Operation List (§9.3). An Operation List is a formalization of
the derivational history of a given lexical item. This list provides a way to encode derivational look-ahead
and planning. Informally, the Operation List is a linear representation for the morphotactics of a word (cf.
Beesley and Karttunen 2003). It acts as a linear approximation for morphosyntactic features (Stump 2001)
and for tree-based bottom-up spell-out (Halle and Marantz 1993). I formalize and illustrate the use of the
Operation List in planning morphological processes and in accessing derivational look-ahead. I discuss the
significance of the Operation List in allowing us to compose the number of cycles (§9.4). I conclude in §9.5.

9.2 Problems in cyclicity

Cyclicity is a cornerstone of phonological theory (Chomsky et al. 1956; Chomsky and Halle 1968;
Kiparsky 1982b; Bermúdez-Otero 2011). However, cyclicity has both computational (§9.2.1) and empirical
(§9.2.2) shortcomings. The computational problem is about how cyclicity affects the generative capacity
or computational complexity of linguistic processes. The empirical problem is about how certain linguistic
processes appear counter-cyclic or access information from future morphological operations.

9.2.1 Computational problem of cyclicity

Although cyclicity is a common theoretical concept, there are little to no computational results or implementations
of cyclicity (Sproat 1992b:108). Cyclicity is computationally problematic because it requires that there is
no a priori bound on how often a rule will apply. However, the lack of a bound means that even though the
individual components of a cyclic analysis (the rules) may be computationally simple, the sum total of the
composition of these components can be computationally more complex.

A groundbreaking result in computational phonology is that SPE rewrite rules can be converted to 1-way
finite-state transducers (Kaplan and Kay 1994). These transducers compute rational functions and have wide
utility in Natural Language Processing (Roche and Schabes 1997). Because of this result, the composition of
multiple finite number of rules is finite-state definable. However, for an SPE rule to be finite-state definable,
Johnson (1972) showed that the rule cannot take its own output as its input. Intuitively, this means that
the same rules cannot apply for an unbounded number of cycles. Otherwise, the rules would no longer
be finite-state definable, but would get closer to needing a Turing Machine (Coleman 1995a, 1998:77ff) or
being computationally undecidable (Ristad 1990). Kaplan and Kay (1994:365) put it nicely as:

In the worst case, in fact, we know that the computations of an arbitrary Turing machine can be
simulated by a rewriting grammar with unrestricted rule reapplication

To illustrate, consider a rule of epenthesis: ∅ → ab/a_b (cf. Kaplan and Kay 1994). This rule will add the
string ab between an a and a b. This rule is definable with FSTs and with FO logic. But given an input string
ab, if this rule applied an unbounded number of times on its own output, it would generate the context-free
language anbn. The same problem can be illustrated with unbounded circumfixation (cf. Aksënova et al.
2016). Given an input X, adding a circumsuffix a–b once is FST-definable and FO-definable. But adding the
circumfix an unbounded number of times will generate the context-free language anXbn.
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In response to this problem, there are two intuitive solutions. One is to abandon the use of the cycle
altogether. The other is to place a bound on the number of cycles (Peters and Ritchie 1973; Kaplan and
Kay 1994). The first alternative was used in earlier work in One-Level Declarative Phonology (Cole 1990,
1995b; Coleman 1995a; Cole and Coleman 1992). Cyclic rule domains can be replaced with inviolable
monostratal constraints in a context-free grammar. These constraints do not generate an output form an
input, but they state what is a well-formed word. They have the benefit of being computationally definable
and implementable, but they do not faithfully formalize the transformation or function behind cycles and
strata.

To my knowledge, the second alternative has not be seriously developed because no a priori bound is
clear. I instead take a practical intermediate approach. I assume that there is no bound k on the number
of cycles for all words w. Instead, I assume that, for a given word w, there is a bound k in run-time or
in practice. In section §9.3, I enrich the input representation in order to encode all future morphological
operations. By doing this encoding for derivational look-ahead, we impose a bound on how many cycles we
will ultimately use in run-time.

9.2.2 Empirical problems in cyclicity

Alongside its computational problems, cyclicity likewise has empirical problems. I discuss two of them:
post-cyclic phonology (§9.2.2.1) and outwards-sensitive allomorphy (§9.2.2.2).

9.2.2.1 Post-cyclic phonology

In this thesis, the phonological processes that I described were cyclic, not postcyclic. A process is
post-cyclic if it must apply after all morphological processes have applied. For example, devoicing is a
common postcyclic process. In Dutch, syllable-final codas are devoiced (Booij and Rubach 1987). Devoicing
is a postcyclic rule that applies after all word-level morphology is completed.

(655) a. /hEld/ ‘hero’
*[.hEld.]
[.hElt.]

b. /hEld-in/ ‘heroine’
[hEl.d-in] *[hEl.t-in]

To apply final devoicing, we must know that the output will not undergo any more morphological operations.
This requires a form of derivational look-ahead in order to see if there are any more morphological operations.

9.2.2.2 Outwards-sensitive allomorphy

Besides postcyclic phonology, another empirical problem for cyclicity is outwards-sensitive allomorphy.
This is when the choice of allomorph is dependent on properties of later morphological operations, not on the
current input.2 This outwards-sensitive allomorphy can be phonologically- or morphologically-conditioned.

2Some processes can be both inwards- and outwards-sensitive, e.g., the Armenian plural possessive (Arregi et al. 2013; Wolf
2013).
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Phonologically-conditioned outwards-sensitive allomorphy is empirically rare (Paster 2006), but attested
(Wolf 2008, 2013; Deal and Wolf 2017). For example, the Western Armenian definite suffix displays
allomorphy which is conditioned by mostly just the input: -n if the base ends in a vowel: agra-n, -@ if
the base ends in a consonant: kar-@. However, the vowel-selecting -n is also used before V-initial clitics:
kar-n=e. These clitics are structurally higher than the suffix and are added later.

(656) a. i. agra ‘tooth’
ii. agra-n ‘tooth-DEF’
iii. agra-n=e ‘tooth-DEF-is’

= is the tooth
agra-n=al ‘tooth-DEF-also’

= also the tooth

b. i. kar ‘rock’
ii. kar-@ ‘rock-DEF’
iii. kar-n=e ‘rock-DEF-is’

= is the rock
kar-n=al ‘rock-DEF-also’

= also the rock

The above allomorphy is thus outwards-sensitive and phonologically conditioned.3 Outwards-sensitive
allomorphy can likewise be morphologically-conditioned, which is empirically much more common (Bobaljik
2000). As previewed in Chapter 7: §7.7.2, Armenian regular verbs form three conjugation classes based on
three theme vowels: e,i,a. The -i- theme vowel shows outwards-sensitive allomorphy in certain morphological
contexts. When an infinitival with -i- is nominalized with the definite suffix, the theme vowel stays the same:
xos-i-l-@. But if the nominalized infinitival takes a case marker, then the -i- theme vowel is ‘replaced’ by the
e theme vowel: xos-e-l-ov. The changed theme vowel is underlined and in bold.

(657) Simple paradigm of infinitivals and their nominalizations

Root Infinitival Nominalization
definite genitive ablative instrumental

Features √-TH-INF
√-TH-INF-DEF

√-TH-INF-GEN
√-TH-INF-ABL

√-TH-INF-INST

Fixed morphs √-TH-l √-TH-l-@ √-TH-l-u √-TH-l-e √-TH-l-ov

a. Class E
√

ker- ker-e-l ker-e-l-@ ker-e-l-u ker-e-l-e ker-e-l-ov
b. Class I

√
xos- xos-i-l xos-i-l-@ xos-e-l-u xos-e-l-e xos-e-l-ov

a. Class A
√

gart- gart-a-l gart-a-l-@ gart-a-l-u gart-a-l-e gart-a-l-ov

The Armenian cases of allomorphy are intuitively local because there is a finite bound between the
alternating suffix (the definite, the theme vowel) and the trigger morpheme (the case marker, the clitic). This
bound is 1 and 2 respectively. However, cases of non-local or long-distant outwards-sensitive allomorphy
are argued to exist (cf. Bobaljik 2000).

Formalizing outwards-sensitive allomorphy is difficult in a purely cyclic model like the one I used in this
thesis. In the next section, I sketch a solution to this problem.

3The allomorphy is more extreme in Eastern Armenian where it is subject to phrase-level prosodic phonology. The definite
allomorph -n is used if the following word is V-initial and not separated by a prosodic break (Dum-Tragut 2009:108). There is
little extensive work on what pragmatic and intonational factors affect this allomorphy (Gulakian 1965; Ġaragyowlyan 1974:156;
Xačatryan 1988:58; Mkrtčyan 2015).
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9.3 Derivational history and look-ahead

In this thesis, the derivation was cyclic and the input was a piece of morphological structure (root, stem,
word) which was incrementally enlarged. On the one hand, the computational problem of cyclicity is the lack
of a bound on the number of cycles. On the other hand, the empirical problem is that morphophonological
processes can show derivational look-ahead. I handle both problems by enriching the input to encode the
word’s derivational history and future. I formalize this with Operation Lists (§9.3.1) which are cyclically
adjusted during the derivation (§9.3.2). With this list, I trigger the right morphological processes (§9.3.3) and
provide derivational look-ahead for outwards-sensitive allomorphy (§9.3.4). In short, this list is a globally
accessible resource that can be used by local computations.

As I explain below, an Operation List is similar to a flattened version of a morphological tree (cf.
Bjorkman and Dunbar 2016). The concept of an operation list is inspired from finite-state treatments of
morphotactics (Koskenniemi 1983b, 1984; Beesley and Karttunen 2003) and from Aksënova and De Santo
(2018) analysis of derivational locality. I use a string-like list instead of trees or sets because strings are
computationally simpler.

9.3.1 Operation Nodes and Operation Lists

The empirical challenges against cyclicity require a type of derivational look-ahead. To illustrate, consider
the Armenian definite suffix again. The suffix shows look-ahead in that it surfaces as -n if the a V-initial
clitic is later added. Generating this entire output requires 3 cycles: one for the covert nominalizer, one for
the definite suffix, and one for the clitic. I assume that clitics form a novel type of morphological nodes
called cliticized words (CLWord).

(658) Deriving outwards-sensitive allomorphy with vs. without lookahead

a. Input without look-ahead b. Input with look-ahead

MRoot

kar

CLWord

CL

MWord

DEF

MStem

nMRoot

kar

Input /kar/ /kar - n - DEF - CL /
Cycle 1 kar-∅ kar-∅
Cycle 2 kar-∅-@ kar-∅-n
Cycle 3 *kar-∅-@ e kar-∅-n e

In the current formalization (658a), this allomorphy cannot be computed because the input only contains
the abstract root. An alternative is to let the input include the root and information on what are the
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future morphological operations (658)b. This alternative representation is commonly used in contemporary
morphological theories, whether in the form of a tree of morphological features with bottom-up spell-out
(Halle and Marantz 1993) or an unordered set of morphosyntactic features (Stump 2001).

Trees are conceptually simple, but they are a richer data structure than strings. In contrast, unordered sets
in themselves do not encode enough explicit information on what sequence of rules to apply. I develop a
practical, intermediate approach between trees and sets: operation list. An Operation List is a sequence of
nodes called operation nodes. I visualize this concept below for the input root kar.

(659) Input to updating the operation list – kar

k0.1 a0.2 r0.3

morph0.4

MRoot0.5

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m

o

The operation nodes which are visualized as rectangles. The interpretation of each node is that it encodes
past, current, and future morphological operations. Their label encodes what morphological process they
are associated with: an input root, a covert nominalizer, definite formation, and cliticizing a copula. The
current operation is linked to the SETTINGS constant via a dashed line labeled o.

Formally, this representation uses the following set of input labels and relations. Operation nodes have
the label Oper(x). Each of these operation nodes is ordered via a type of successor relation succ:Oper(x, y).
Each has some label which encodes its morphological process: Oper:Root(x) Oper:n_zero(x), Oper:Def(x),
Oper:CL_is(x). In the graphs, I show these labels without the substring Oper:. The list of operations must
start with a node with the label Oper:Root(x). The SETTINGS constant is associated with exactly one of
the operation nodes via the relation operate_at(x, y); this relation means that we have just applied that
operation node’s morphological process.

(660) a. Unary labels for operations
• Oper(x): the node x is an operation
• Oper:Root(x): we must generate the input
• Oper:n_zero(x): we must generate the covert nominalizer
• Oper:Def(x): we must generate the definite suffix -@,-n
• Oper:CL_is(x): we must generate the clitic =e ‘is’

b. Binary labels for operations
• succ:Oper(x, y): the operation x immediately precedes the operation y
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• operate_at(x, y): the operation y is the current morphological operation that we must
apply. It is linked with the SETTINGS constant as x.

The relation operate_at(x, y), specifically operate_at(SETTINGS, y), can be replaced by two unary functions.
Likewise, the relation succ:Oper(x, y) can be replaced by two unary functions.

(661) a. Unary functions from the relation operate_at(x, y):
• FL:operate_at(x): return the operation node y which is connected with the SETTINGS

constant x
• FR:operate_at(y): return the SETTINGS constant x which is connected with the operation

node y
b. Unary functions from the relation succ:Oper(x, y):

• FL:succ:Oper(x): return the operation node y which follows the operation node x
• FR:succ:Oper(y): return the operation node x which precedes the operation node y

The operation list tells us what morphological process to apply. This is referenced during the Morphology
stage of a cycle, which I turn to next.

9.3.2 Progressing in the Operation List

Throughout this dissertation, I decomposed a cycle into four components: Morphology, Settings, Prosody,
and Phonology. In this chapter, I further refine this architecture by introducing an additional Operation
stage before the Morphology (662). In this stage, we examine the Operation List and proceed onto the next
operation. The Operation stage occurs at the beginning of every cycle.

(662) Sketch of an interaction model with an Operation stage

Input
root

Operation Morphology Settings Prosody Phonology
Output
root with materialproceed add examine parse apply

trigger

produce

proceed

Every derivation starts with the SETTINGS connected to the first operation node: the Root node. We
progress the operation list by making the SETTINGS re-associate with the subsequent operation node. I
show the input and output below.
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(663) Input and output of proceeding on the operation list for the root kar
Input Output

k0.1 a0.2 r0.3

morph0.4

MRoot0.5

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m

o

k1.1 a1.2 r1.3

morph1.4

MRoot1.5

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m

o

Proceeding on the Operation List is a transduction with a copy set of size 1. The input nodes are faithfully
outputted (664). All relations are faithfully outputted except for the relation operate_at(x, y). What is
changed is the association between the SETTINGS and the operation nodes.

(664) QF output functions to faithfully output the base when updating the operation list, except for operate_at(x, y)

• For every label lab ∈ L:
φlab(x1)

def
= lab(x)

• For every relation rel ∈ R− {operate_at}:
φre(x1, y1)

def
= re(x, y)

We find the current operation node Oper:Root and the subsequent operation node Oper:n_zero. We do
so by checking what operation node is associated with the SETTINGS constant via operate_at(x, y). This
choice is formalized by the user-predicate Oper_current(x). The subsequent operation node is what node
follows the current operation node. It is found by the predicate Oper:subsequent(x).

(665) a. QF user-defined predicate to find the current operation node
• Oper:current(x)

def
= Oper(x) ∧ operate_at(SETTINGS, x)

b. FO user-defined predicate to find the subsequent operation node
• Oper:subsequent(x)

def
= Oper(x)∧∃y[Oper(y)∧Oper:current(y)∧succ:Oper(y, x)]

In the output, the SETTINGS is no longer associated with the current node Oper:Root. The SETTINGS is
instead associated with the subsequent operation node Oper:n_zero. This is done by the following output
function. It is locally computible by only using QF unary functions.

(666) a. FO output function to shift the SETTINGS to the subsequent operation node
• φoperate_at(SETTINGS1, y1)

def
= Oper(y) ∧Oper:subsequent(y)
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b. QF output function to shift the SETTINGS to the subsequent operation node
• φoperate_at(SETTINGS1, y1)

def
= Oper(y) ∧ FL:succ:Oper(FL:operate_at(SETTINGS))

Progressing on the Operation List is a computationally local process. I next turn to the Morphology.

9.3.3 Morpheme-specific morphology

A language consists of a finite number of possible morphological processes which can be applied in some
order. In previous chapters, I defined morphological processes in terms of logical transductions which just
applied. Given some input, I did not specify what controlled the choice of morphological processes and their
corresponding logical transduction. In this section, I redefine morphological transductions and make them
reference the operation list. Specifically, we examine the label of the current operation node. We apply the
type of morphological process which this node is labeled for.

To illustrate, I use operation lists to trigger covert nominalization for the root kar. I show the input and
output below. The transduction uses a copy set of size 4.

(667) Input and output for adding a covert nominalizer kar-∅

Input Output

k0.1 a0.2 r0.3

morph0.4

MRoot0.5

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m

o

k1.1 a1.2 r1.3

morph1.4 morph2.5

MRoot1.5 n3.5

MStem4.5

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m m

m

m

o

Intuitively, we add the zero suffix −∅ if the current operation node tells us to. This is formulated by the
logical statement below which doesn’t take any input variables (668a). The statement is locally-computed
and QF-definable because the current operation node can be locally found from the SETTINGS constant.

(668) Checking that the current Operation Node triggers covert nonimalizer via...
a. FO logical statement

CurrentOper:n_zero
def
= ∃y[Oper(y) ∧Oper:current(y) ∧ Oper:CL_is(y)]
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b. QF logical statement
CurrentOper:n_zero

def
= Oper:n_zero(FL:operate_at(SETTINGS))

In the original formulation in Chapter 5: §5.2, the zero suffix −∅ was generated without an Operation
List. I reformulate its generation. We simply add the condition CurrentOper:n_zero to all of the output
functions for this process. For example, in Copy 1, all segments and nodes are outputted faithfully. In the
reformulated version, we add the condition CurrentOper:n_zero.

(669) QF output functions for outputting the base...
i. without Operation List ii. with Operation List

For every label lab ∈ L:
φlab(x1)

def
= lab(x)

def
= lab(x) ∧CurrentOper:n_zero

For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y)

def
= rel(x, y) ∧CurrentOper:n_zero

As for the zero suffix itself, the original functions below generate the suffix’s morphological nodes (670a),
internally linearizes them (670b), and externally linearizes them with the base (670c). Their reformulation
simply adds the condition CurrentOper:n_zero.

(670) QF output functions for generating the covert suffix
a. Outputting the morphological nodes

i. without Operation List ii. with Operation List
φmorph(x2)

def
= MTopmost(x)

def
= MTopmost(x) ∧CurrentOper:n_zero

φnoun(x3)
def
= MTopmost(x)

def
= MTopmost(x) ∧CurrentOper:n_zero

φMStem(x4)
def
= MTopmost(x)

def
= MTopmost(x) ∧CurrentOper:n_zero

b. Internally linearizing the suffix

i. without Operation List ii. with Operation List
φMDom(x4, y3)

def
= MTopmost(x) ∧MTopmost(y)

def
= MTopmost(x) ∧ . . . ∧CurrentOper:n_zero

φMDom(x3, y2)
def
= MTopmost(x) ∧MTopmost(y)

def
= MTopmost(x) ∧ . . . ∧CurrentOper:n_zero

c. Externally linearizing the suffix with the base

i. without Operation List ii. with Operation List
φMDom(x8, y1)

def
= MTopmost(x) ∧MTopmost(y)

def
= MTopmost(x) ∧ . . . ∧CurrentOper:n_zero

The output of the morphological transduction is then fed to the transductions for updating the SETTINGS,
generating a prosodic parse, and applying the stem-level cophonological rules. For illustrative purposes, I
put aside prosody and phonological rule application.

9.3.4 Derivational look-ahead for outwards-sensitive allomorphy

The previous section established how to use the Operation List to select morphological processes and their
corresponding transductions. I now use the list to trigger outwards-sensitive allomorphy. After generating
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the covert suffix, we move to the next cycle. We update the operation list by shifting the SETTINGS to the
next operation node Oper:Def. The input and output are shown below. I omit prosodic nodes.

(671) Input and output of proceedings on the operation list for the noun kar-∅
Input Output

k0.1 a0.2 r0.3

morph0.4 morph0.6

MRoot0.5 n0.7

MStem0.8

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m m

m

m

o

k1.1 a1.2 r1.3

morph1.4 morph1.6

MRoot1.5 n1.7

MStem1.8

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m m

m

m

o

The output of the above Operations stage is then fed to the Morphology. The morphology will add the
definite suffix allomorph. Although the base is C-final, the subsequent (future) morphological operation is
cliticization. This outwards-sensitive allomorphy triggers the allomorph -n.

(672) Input and output for adding the definite suffix kar-n

Input Output

k0.1 a0.2 r0.3

morph0.4 morph0.6

MRoot0.5 n0.7

MStem0.8

SETTINGS

Root n_zero Def CL_is

C C

C C C

m
m

m

m m

m

m

o

k1.1 a1.2 r1.3 n2.3

morph1.4 morph1.6morph3.8

MRoot1.5 n DEF4.8

MStem1.8

MWord5.8

SETTINGS

Root n_zero Def CL_is

C C C

C C C

m
m

m
m

m m

m

m

m

m

m

m

o
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The current operation node is an instruction to generate the definite suffix. This information is encapsulated
into the logical statement below (673a). It is locally-computed from the SETTINGS constant (673b).

(673) Checking that the current Operation Node triggers the definite suffix via...
a. FO logical statement

CurrentOper:Def
def
= ∃y[Oper(y) ∧Oper:current(y) ∧ Oper:Def(y)]

b. QF logical statement
CurrentOper:Def

def
= Oper:Def(FL:operate_at(SETTINGS))

Using this statement, we apply the morphological transduction that generates the definite suffix. It uses a
copy set of size 5. In Copy 1, the base is faithfully outputted.

(674) QF output functions for vacuous identity in Copy 1

• For every label lab ∈ L:
φlab(x1)

def
= lab(x) ∧CurrentOper:Def

• For every relation rel ∈ R:
φrel(x1, y1)

def
= rel(x, y) ∧CurrentOper:Def

Outside of cliticized words, the definite suffix shows inwards-sensitive allomorphy. The suffix -n after a
V-final base, -@ elsewhere after a C-final base. These contexts are formalized by the local predicates below.

(675) QF user-defined predicates to check for inwards-sensitive contexts for definite allomorphy
• Check if base-final segment is a vowel:

final_V:seg(x)
def
= vowel(x) ∧ final:seg(x)

• Check if base-final segment is a consonant:
final_C:seg(x)

def
= consonant(x) ∧ final:seg(x)

But in cliticized words, the suffix shows outwards-sensitive allomorphy. It surfaces as -n after a V-final
base or before a V-initial clitic. It is -@ elsewhere (after a consonant, not before a V-initial clitic). With the
operation list, we can predict if a vowel-initial clitic will be added by examining the labels of the subsequent
operation node. That is, the suffix allomorph -n is used if the base ends in a vowel or if the subsequent
operation node has the label Oper:CL_is. This information is locally-computed from the SETTINGS constant.

(676) Check if subsequent operation is adding a V-initial clitic via...

• FO logical statement
SubseqOper:CL_is

def
= Oper(x) ∧Oper:subsequent(x) ∧ Oper:CL_is(x)

• QF logical statement
SubseqOper:CL_is

def
= Oper:CL_is(FL:succ:Oper(FL:operate_at(SETTINGS)))

In Copy 2, we generate the affix allomorphs as output correspondents for the base final segment r0.3. We
add the suffix allomorph -n if the base ends in a vowel or if the subsequent operation is cliticization (677a).
The allomorph -@ is generated if the base ends in a consonant and if the subsequent operation is not the clitic
‘is’ (677b). To generate either allomorph, we make sure that the current operation is definite formation.
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(677) QF output functions for generating the suffix segments
a. Generating the allomorph -n

• φn(x2)
def
= final:seg∧ [final_V:seg(x)∨SubseqOper:CL_is]∧CurrentOper:Def

b. Generating the allomorph -@

• φn(x2)
def
= final:seg∧[final_C:seg(x)∧¬SubseqOper:CL_is]∧CurrentOper:Def

Both of these functions are locally-computed because the Operation List is local to every segment in
the input via the SETTINGS constant. For the input kar, the suffix is generated as an -n. Even though the
base is C-final, we know that a vowel-initial clitic e will be later added. The rest of the computation is
straightforward and uses the output functions to generate the morphological nodes and the linearization.4

The derivation will continue onto the next cycle to generate the clitic: kar-n-e.

(678) QF output functions to generate and linearize the definite suffix
1. QF output functions to generate the new morphological nodes

• φmorph(x3)
def
= MTopmost(x) ∧CurrentOper:Def

• φdef(x4)
def
= MTopmost(x) ∧CurrentOper:Def

• φMWord(x5)
def
= MTopmost(x) ∧CurrentOper:Def

2. QF output functions to internally linearize the suffix
• φMDom(x3, y2)

def
= MTopmost(x) ∧ final:seg(y) ∧CurrentOper:Def

• φMDom(x4, y3)
def
= MTopmost(x) ∧MTopmost(y) ∧CurrentOper:Def

• φMDom(x5, y4)
def
= MTopmost(x) ∧MTopmost(y) ∧CurrentOper:Def

3. QF output function to externally linearize the suffix’s segments and morphology
• φMDom(x5, y1)

def
= MTopmost(x) ∧MTopmost(y) ∧CurrentOper:Def

• φsucc:seg(x1, y2)
def
= final:seg(x) ∧ final:seg(y) ∧CurrentOper:Def

The above strategy with operation lists works, but it is more intuitive for cases where the outwards-sensitive
allomorphy is morphologically-conditioned rather than phonologically-conditioned. It can model outwards-sensitive
phonologically-conditioned allomorphy like with the definite suffix, but only if we can predict the future
form of the clitic based on morphological context. We know a future clitic will be vowel-initial if the
subsequent operation node tells us which clitic will be added. In this case, the subsequent node says the
‘is’ clitic will be added. If we know that ‘is’ can only be the vowel-initial =e, then we can generate the
correct definite suffix -n. But this approach reduces phonologically-conditioned allomorphy to some type
of morphologically-conditioned allomorphy: use -n if the definite precedes the ‘is’ clitic or other specific
clitics which happen to all be V-initial.

9.4 Function composition of ‘unbounded’ cyclicity

As explained in §9.2.1, the main computational problem behind cyclicity is its unboundedness. Even
though a single function be computationally simple and only need QF or FO logic, the composition of an

4A small problem in this formalization is preventing prosodic processes from referencing the outwards-sensitive allomorph -n.
Given an input kar and output kar-n, we incorrectly predict that the output will be syllabified as *kar-@n with schwa epenthesis. We
would need to either block schwa epenthesis from applying here, or have a rule that deletes this epenthetic schwa once the V-initial
clitic is added to form kar-n-e instead of *kar-@n-e.
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infinite number of these functions is not necessarily QF or FO. This is a common and early criticism against
the role of cycles in generative linguistics and transformational grammars (Peters and Ritchie 1973; Levelt
1974), which has been subsequently applied to cyclic phonology (Cole and Coleman 1992; Cole 1995b).

However, in practice, speakers make a conscious choice to apply some morphological process to generate
a new derivative, inflected item, or compound. Thus, upon forming a new word, speakers plan the number
of cycles they need. I formalized this intuitive planning of morphological processes with Operation Lists.
This means that we can compose entire cyclic derivations into a single set of functions. I illustrate below.

In the beginning of the derivation, the input is an entire list of planned operations. Once an individual
operation is selected, the morphological and phonological transductions apply in a single cycle. Each cycle
consists of a finite sequence of 5 components: Operation, Morphology, Settings, Prosody, and Phonology.
Each component is formalized as a QF or FO logical transduction, which itself can consist of smaller
transductions. The entire sequence of components forms a chain of logical transductions that are in feed-forward
relationship (679aa). This finite sequence can composed into a single FO transduction (679ab). Thus, every
cycle is at most FO.

(679) a. Interactionist model with 5 components and recursive cyclicity

Input Operation Morphology Settings Prosody Phonology Output

proceed

b. Composing the 5 components in a single cycle

Input Composition of a single cycle of
Operation, ..., Phonology

proceed k times

But what about for the entire sequence of cycles? Recall that the Operation List is finite, e.g., of size k.
Thus, a given derivation will involve only a predictable finite number of cycles (680aa). As long as these
cycles are logically definable with FO or MSO logic (which they are in thesis), then they can be composed
into a single FO or MSO function or transduction (680ab).

(680) a. Cyclic computation with exactly k cycles

Input Composition of a single cycle of
Operation, ..., Phonology

proceed k times

This is equivalent to...

Input Cycle 1 Cycle 2 . . . Cycle k
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b. Composition of the interactionist with k-bounded cyclicity

Input Composition of k cycles of
(Operation, ..., Phonology)k

The composition of the entire sequence of cycles can only apply in run-time.5 It cannot apply in compilation.
Because of unbounded cyclicity, there is no number k such that all words w will use at most k cycles or
morphological operations. This bound is impossible because of recursive morphological processes like
recursive affixation, recursive compounding, etc. Schematically, I am not arguing for ∃k,∀w [apply at most
k cycles]. However, for every word w, there exists a number k of cycles which is specific to that word w,
i.e., I conceptualize this as ∀w,∃k [apply exactly k cycles].

9.5 Conclusion

This section focused on problems in cyclic architectures. Computationally, cyclicity is difficult to formalize
or restrain because there are no a priori bounds on the number of cycles. Empirically, cyclic architectures can
get unwieldy in the case of outwards-sensitive allomorphy. I tackle both of these problems by developing a
formalization for derivational look-ahead.

The empirical problem was tackled with Operation Lists. An operation list is a finite list of instructions
over what morphological processes must apply in the entire derivation. This list encodes the set of morphosyntactic
features of the lexical item (cf. Stump 2001) which are linearly organized. The linear organization resembles
traditional Item-and-Arrangement models for morphotactics (Hockett 1942; Beesley and Karttunen 2003),
and are a computationally simpler representation than trees (cf. Halle and Marantz 1993; Embick and Noyer
2001; Embick 2010, 2015). This list is accessible throughout the derivation by being connected with the
SETTINGS constant. With this list, we can locally determine what will be the subsequent morphological
operations. This solves the empirical problem of outwards-sensitive allomorphy. A similar solution can be
sketched for post-cyclic phonology.6

As for the computational problem, the Operation List intuitively asserts a finite bound on the number of
cycles. This bound is not universal, i.e., there is no bound k such that all words will undergo at most k cycles.
However, for every individual word, there is such a bound. Thus, we can compose a single word’s derivation
in run-time in order to generate a single set of FO logical transductions for the morphology-phonology
interface.

5This is similar to Walther (2000)’s strategy for modeling total reduplication. He develops a system whereby complex FSTs
are generated for every word w in run-time. Each FST computes total reduplication for a single word w. Given a finite lexicon,
the union of all these finite-number of FSTs generates a finite language. However, he suggests that these FSTs are not stored or
compiled. They are generated at run-time so that we could (in practice) have an infinite number of FSTs which can reduplicate an
infinite number of words.

6Using an Operation List, we can apply the post-cyclic cophonology if the current Operation Node is the final Operation Node.
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Chapter 10

Conclusion

In this dissertation, we asked the following fundamental question:

Q1) What principles control the alternation in the pronunciation of morphemes?

Using Armenian as a case study, we found that three core principles are the three separate modules of:

1. Morphology: What is the internal morphological composition of words
2. Prosody: What is the internal prosodic composition of words
3. Phonological Rule Domains: In what types of domains do phonological rules (∼ cophonologies)

apply

With this empirical background, question Q1 was followed up by two questions:

Q2) How are these principles combined or organized?
Q3) How are these organizations computed?

In this chapter, I review all these questions. For questions Q1 and Q2, the results required a model of
the interface which was interactionist and cyclic whereby the three modules feed each other in a potentially
unbounded number of ways, much like classical lexical phonology (Kiparsky 1982b).

Question Q3 then asks how such a model can be formally defined and computed. I answered this question
using graph-to-graph logical transductions with Monadic Second Order (MSO) logic. Besides making the
interface be computationally definable, the logical formalism likewise showed that the bulk of the interface
is computationally simple or local because most of the formulas can be expressed in Quantifier-Free logic.
This reinforced the often-assumed hypothesis that morphophonological processes show locality restrictions.
The formalism likewise identified those aspects of the interface that are computationally non-local.

The computational model that I developed was inspired from early work in level-ordered phonology
(Siegel 1974; Allen 1979) and classical lexical phonology (Kiparsky 1982b). I did not consider the various
theoretical devices that were added to the simple interactionist model, e.g., the Strict Cyclicity Condition
(Kean 1974), Morphological Level-Ordering (Siegel 1974), Structure Preservation (Kiparsky 1985; Myers
1991), or Bracket Erasure (Pesetsky 1979). Many of these additional principles are problematic (Cole 1995a;
Bermúdez-Otero 2008), e.g., the SCC was disproven (Kiparsky 1993), Level-Ordering is not adequate (Fabb
1988), and Structure Preservation is not a strict principle (Harris 1987; Kaisse and Hargus 1994). Bracket
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Erasure is one of the few classical principles which is mostly robust (Orgun 2002); the main modification
is that stem/root boundaries tend to evade bracket erasure (Hargus 1985; Shaw 2009; Inkelas 2014) and that
affixation can reference the most recently added morpheme, i.e., potentiation (Hammond 1992).

The computational formalism is agnostic about any potential limits on the number of possible strata or
cophonologies in the language (cf. Inkelas and Orgun 1995; Lemus 1996; Vogel 2016:27). It is likewise
agnostic over the possibility that only some but not all morphological constructions can arbitrarily trigger
cyclic phonology (cf. Halle and Vergnaud 1987a; Szpyra 1989). But regardless, the computational results
apply to any interactionist model. The simple interactionist model has had many incarnations over the
decades (cf. Scheer 2011). But regardless, our computational results apply to many of these incarnations,
including:

• Lexical Phonology (Booij 1980, 1987, 1988a,b, 1994, 2000; Kiparsky 1982b,a, 1983, 1985; Booij
and Rubach 1984, 1987; Rubach 1985, 2008; Hargus 1985; Kaisse and Shaw 1985; Mohanan 1986;
Hargus and Kaisse 1993; Wiese 1994; Giegerich 1999; Kaisse and McMahon 2011)
• Prosodic Lexical Phonology (Booij 1985; Inkelas 1989, 1993; Fitzpatrick-Cole 1994; Han 1995;

Mansfield 2017)
• Stratal OT (Booij 1997; Rubach 1997, 2003; Bermúdez-Otero 1999, 2011, 2012, 2016, 2018, prep;

Kiparsky 2000, 2015; Trommer 2013)
• Transderivational OT (Kenstowicz 1996; Benua 1997; Burzio 1998; Raffelsiefen 1999, 2005; Steriade

2000, 2008b; Downing et al. 2005)
• Cophonology Theory (Orgun 1994, 1996, 1998; Inkelas and Orgun 1995, 2003; Inkelas et al. 1996,

1997; Anttila 2002; Inkelas and Zoll 2007; Inkelas 1998, 2008, 2014; Sande 2017; Sande et al. 2020)
• Phase-based Phonology (Marvin 2002; Newell 2008; Samuels 2011; Embick 2010, 2014; Scheer

2011, 2012; Newell and Piggott 2014; d’Alessandro and Scheer 2015; McPherson and Hayes 2016;
Newell et al. 2017; Guekguezian 2017a; Sande et al. 2020)

There are many more interactionist models which don’t fall in the above categories (cf. Scheer 2011;
Elordieta 2014), but which still abide by our computational results (Wolf 2008; Hanson and Inkelas 2009;
Inkelas 2014; Shwayder 2015). The results likewise apply to non-interactionist but cyclic approaches
to the morphology-phonology interface (Chomsky et al. 1956; Chomsky and Halle 1968; Brame 1974;
Mascaró 1976; Halle and Vergnaud 1987a,b; Halle and Kenstowicz 1991). They likewise apply to theoretical
frameworks which combine prosodic structure with phonological rule domains (cophonologies, phase boundaries)
without necessarily assuming cyclicity or interleaving (Selkirk 1980, 1986, 1996, 2011; Nespor and Vogel
1986; Vogel 1989, 2008, 2016; Rice 1992, 1993; Peperkamp 1997; Kager et al. 1999; Hall and Kleinhenz
1999; Grijzenhout and Kabak 2009; Miller 2018, 2020).

10.1 Q1 & Q2: Cyclic phonology of Armenian

In terms of the empirical contributions of the dissertation, we showed that Armenian phonological processes
are sensitive to various morphological, prosodic, cophonological, and organizational structures. Chapter 2
looked at these processes in detail and I argued for the existence of three rule domains: the stem-level,
word-level, and PStem-level rule-domains or cophonologies. Each cophonology is triggered by its own
morphological or prosodic constituent, and each is associated with separate set of phonological processes in
the two Armenian dialects. I recapitulate each cophonology below.
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(681) Distribution of processes and domains across cophonologies

Cophonology Stem-level PStem-level Word-level
Morphological domain Derivation V-initial Inflection Inflection
Relevant constituent MStems Misaligned PStems MWords

Process
Dialect

Both EArm WArm Both

Destressed Diphthong uj Reduction 3 7 7 7

Destressed High Vowel Reduction 3 3 7 7

Stress Shift 3 3 3 3

In Western Armenian, stress shift applies before both derivational and inflectional morphology. In contrast,
other processes such as destreseed high vowel reduction (DHR) are sensitive to the type of morphemes which
are added in the course of the derivation. DHR applies before derivational morphology (682a.ii), but not
inflectional morphology (682a.iii,iv). Other phonological processes showed the same restriction, including
destressed diphthong reduction (DDR, 682b) and numerous vowel hiatus repair rules such as vowel deletion
(682c). It doesn’t matter if the inflectional suffix is vowel-initial (V-Infl) or consonant-initial (C-Infl).

(682) Different processes in Western Armenian and their domains

a. DHR b. DDR c. Vowel Hiatus
i. Root amuśin ‘husband’ z@rúj

>
ts ‘conversation’ t@Snamí ‘enemy’

ii. Der amusn-utjún ‘marriage’ z@ru
>
ts-él ‘to converse’ t@Snam-agán ‘hostile’

iii. V-Infl amusin-óv ‘husband-INST’ z@ruj
>
ts-óv ‘conversation-INST’ t@Snamij-óv ‘enemy-INST’

iv. C-Infl amusin-nér ‘husband-PL’ z@ruj
>
ts-nér ‘conversation-PL’ t@Snami-nér ‘enemy-PL’

These processes are organized into different strata or rule domains: derivational morphology triggers
the stem-level cophonology which includes DHR, while inflectional morphology triggers the word-level
cophonology which excludes DHR.

Cross-dialectal data from Eastern Armenian likewise showed the need for prosodic structure. Eastern
Armenian minimally differs from Western Armenian in that DHR applies in derivation (683b) and in
vowel-initial inflection (683c), but not consonant-initial inflection (683e).

(683) a. Base amuśin ‘husband’
b. Der amusn-utjún ‘marriage’
c. V-Infl amusn-óv ‘husband-INST’ Eastern
d. amusin-óv ‘husband-INST’ Western
e. C-Infl amusin-nér ‘husband-PL’ Eastern & Western

However, it is not the case that all stem-level rules overapply in V-initial inflection; DDR is still limited
to derivational morphology (684b), not inflectional morphology (684c,684d).

(684) a. Western Eastern
z@rúj

>
ts z@rúj

>
tsh ‘conversation’
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b. z@ru
>
ts-él z@ru

>
tsh-él ‘to converse’

c. z@ruj
>
ts-óv z@ruj

>
tsh-óv ‘conversation-INST’

d. z@ruj
>
ts-nér z@ruj

>
tsh-nér ‘conversation-PL’

To capture the overapplication of DHR in Eastern Armenian, I argued that there is a prosodic constituent
which straddles the boundary between the morphological stem and vowel-initial inflection. This constituent
is the Prosodic Stem (PStem, Downing 1999a). It is isomorphic to the morphological stem (MStem) in
derivation (685b) and C-initial inflection (685d). It expands before V-initial inflection due to resyllabification
(685c) and becomes non-isomorphic from the MStem. Once the PStem expands, it triggers its own set
of phonological rules, i.e., its own cophonology. In Eastern Armenian, the PStem arbitrarily triggers the
application of DHR but not other processes. In Western Armenian, the PStem cophonology is identical
to the word-level cophonology. The emergence of this PStem cophonology was explained in terms of the
diachronic history of Armenian vowel reduction and inflection.

(685) Different PStem structures in the two Armenian dialects

a. Base
PWord

PStem

amuśin

b. Derivative
PWord

PStem

amusn-utjún

c. V-Infl
PWord

PStem

amus(i)n-óv

d. C-Infl
PWord

σ

-nér

PStem

amusin

The sum total of the analysis from Chapter 2 was the existence of these multiple cophonologies, their
activation within a cyclic and interactionist model, and the existence of an intermediate prosodic constituent
such as the PStem. Later in Chapter 3, I showed that these three aspects of Armenian were crucial to
understanding a bracketing paradox in compounds. In simplex words, the plural suffix has two allomorphs:
-er after monosyllabic bases (686a-i) and -ner after polysyllabic bases (686a-ii). In compounds, we find a
paradox when the second stem is monosyllabic. While exocentric compounds are transparently pluralized
as polysyllabic bases with -ner (686b-ii), endocentric compounds which are paradoxically pluralized as
monosyllabic bases with -er (686b-i).

(686) a. i. pág ‘yard, lot’
pag-ér ‘yards, lots’

ii. panág ‘army’
panag-nér ‘armies’

b. i. an
>
tsrév +

>
tSúr ‘rain + water’

an
>
tsrev-a-

>
tSúr ‘rain-water’

an
>
tsrev-a-

>
tSur-ér ‘rain-waters’

ii.
>
tSár + śird ‘evil + heart’
>
tSar-a-śird ‘evil-hearted’
>
tSar-a-sird-nér ‘evil-hearted people’

In the paradoxical case, the plural was found to count the number of syllables in the second stem, i.e., the
semantic head of the compound: an

>
tsrev-a-

>
tSur-er ‘rain-water-s’. This paradoxical behavior was analyzed

in terms of a cyclic head operation whereby the plural targets the head of the compound. I showed that
counter-cyclic alternatives (e.g., Marantz 1988; Sproat 1985; Newell 2005) are problematic because they
could not explain the internal phonology of compounds. Similar to derivational morphology, both exocentric
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(687a-ii) and endocentric (687b-ii) compounds are phonologically alike because they undergo the same
cyclic stem-level rules, e.g., high vowel reduction. On the one hand, the two stems in an endocentric
compound are phonologically coherent towards each other and form one unit for the stem-level cophonology:
>
tS@r-a-pos ‘water-hole’. But on the other hand, they take paradoxical plurals whereby the plural ignores the
first stem:

>
tS@r-a-pos-ér ‘water-holes’.

(687) a. i. azńiv ‘sincere’
azn@v-utjún ‘sincerity’
azniv-ov ‘sincere-INST’

ii. azńiv + śird ‘sincere + heart’
azn@v-a-śird ‘sincere-hearted’
azn@v-a-sird-nér ‘sincere-hearted (people)’

b. i.
>
tSúr ‘water’
>
tS@r-aj́in ‘aquatic’
>
tSur-ov ‘water-INST’

ii.
>
tSúr + pós ‘water + hole’
>
tS@r-a-pós ‘water-hole’
>
tS@r-a-pos-ér ‘water-holes’

As a last piece to the piece, I also showed that internal prosodic constituents such as the PStem are likewise
active in compound phonology. Exocentric bisyllabic compounds are always pluralized transparently with
-ner (688a). But endocentric bisyllabic compounds can pluralize either transparently with -ner or paradoxically
with -er (688b).

(688) a. kár + daS-el ‘stone + to carve’
kar-dáS ‘stone carver, mason’
*kar-daS-ér ‘stone carvers, masons’
kar-daS-nér

b. xá
>
tS + kár ‘cross + stone’

xa
>
tS-kár ‘cross-stone’

xa
>
tS-kar-ér ‘cross-stones’

xa
>
tS-kar-nér

The variation was analyzed in terms of prosodic mapping. The semantic head h is mapped to a prosodic
head p. This p can optionally expand in bisyllabic words. The plural suffix then counts the number of
syllables in p. I showed that p cannot be a foot or PWord but must be a PStem as a last resort.

(689) a. xa
>
tS-kár ‘cross-stone’

xa
>
tS-kar-ér ‘cross-stones’

PStem

xá
>
tS

PStem

kár -er

b. xa
>
tS-kár ‘cross-stone’

xa
>
tS-kar-nér ‘cross-stones’

PStem

xá
>
tS - kár -ner

In sum, the above fragment of Armenian encompasses a large chunk of the morphology and phonology
of the language. The fragment shows that Armenian is clearly sensitive to separate strata or cophonologies
which act as different phonological rule domains. These domains are triggered by abstract morphological
and prosodic structures. These different factors interact cyclically within a simple interactionist model, and
their interaction can create bracketing paradoxes.
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10.2 Q3: Computational locality of cyclic phonology

With the data and interactionist model set up, the next step was to determine how this model can be
computed. Using MSO graph-to-graph transductions in Chapter 5, we defined each individual component
of the morphology-phonology interface and defined how one component can be processed into the next.

(690) Sketch of an interactionist model

Input
root

Morphology Prosody Phonology
Output
root with materialadd parse apply produce

add

The three core benefits or results are listed below. I go through each of them. All of these benefits arise
from the fact that our computational system is couched within Model Theory. By using logic, we develop a
unified framework where we compare different types of intensional descriptions (representations) in order
to understand their computational properties.

1. Faithfulness: The bulk of the interface was computationally and faithfully defined
2. Explicitness: The interface was made computationally explicit
3. Locality: The bulk of the interface is computationally local

The first benefit is faithfulness. As a computational tool, I used logic in order to faithfully replicate the
multiple hierarchical structures which are present in linguistic theory (and in the empirical data). Alternative
common formalisms such as finite-state calculus would sacrifice this hierarchical structure. In a sense,
the present formalism generalizes the work of one-level, monostratal Declarative Phonology (Bird 1995;
Coleman 1998) into a Two-Level perspective.

The second benefit is that the formalism explicitly shows how an interactionist model works. The
formalism allowed us to uncover implicit factors in the derivation. The most important implicit factor is the
SETTINGS of the derivation. This is the stage where the linguist analyzes the morphological structure and
implicitly knows what to prosodically parse and what rules to apply. Using the SETTINGS as a descriptive
tool, we factorized the morphological, prosodic, and phonological processes into their targets and triggers.

(691) Sketch of an interactionist model with an explicit stage for the SETTINGS

Input
root

Morphology Settings Prosody Phonology
Output
root with
materialadd examine parse apply

trigger

produce

add

The third major benefit of the formalism is that it allows us to understand the generative capacity or
computational tendencies of the morphology-phonology interface. Our logical formalization was written
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in MSO logic, a rich and flexible type of logical formalism. However, we did not need the full power
of MSO logic. In Chapters 5-7, using the above factorization, I showed that the brunt of the interface
consists of computationally simple or local processes. The locality of this information can be defined with
Quantifier-Free (QF) logic. In fact, by assuming interactionism and the SETTINGS factorization, nearly the
entire interface is QF. Non-locality is restricted to the generation of tiers, different types of allomorphy, the
need for settings examination for cophonology selection, and post-cyclic prosody.

(692) Aspects of the morphology-phonology interface which are defined
Morphology Local? Prosody Local?
Affixation Syllabification

Covert affix §5.2 3 Generating syllables §5.4.1 3

Overt affix §6.2.1 3 Ordering syllables §5.4.2 3

Compound Morphology §6.2.2 3 Resyllabification §6.4 3

Tiers over dominance §8.3.2.2 7 Tier over syllables §5.4.2.1 3

Affix order and linearization Prosodic mapping
Reduplication §7.4.1 3 Generating prosodic stem §5.4.3 3

Suffixation §7.5.1 3 Restructuring prosodic stem §6.5.1.1 3

Prefixation §7.5.2 3 Recursive prosody §6.5.1.2.1 3

Mobile affixation §7.5.3 7 Flattening recursive prosody §6.5.1.2.2 3

Morphological layering §7.5.4 3 Prosodic misalignment §6.5.2.1 3

Allomorphy Prosodic layering §6.5.2.2 3

Phonologically-conditioned §7.6 3/7 Compound prosody §6.5.3 3

Morphologically-conditioned §7.7 3/7 Post-cyclic prosody §8.3.2 3/7
Outwards-sensitive §9.2.2.2 3/7

Examination of the SETTINGS Phonology
Cophonologies triggered by Processes in Armenian

Morphological constituents §5.3.2 7 Stress §5.5 3

§6.3.1 7 §6.6.1.1 3

Prosodic constituents §6.6.2 7 Reduction §6.6.1 3

Morphemes §8.2.2 3/7 Cross-linguistic processes
Parsing instructions §5.3.1 7 Aspiration, metathesis, etc §4.3 3

§6.3.2 7

The goal of this dissertation was not to make everything in morphology-phonology become computationally
local. Rather the goal is to understand which representations and analytical choices can create locality or
non-locality. For example, by peeling away some of our assumptions of the interface, we still find that
a significant chunk of the interface is local in Chapter 8. If we assume interactionism but no SETTINGS

factorization, almost everything is still local. The only new area of non-locality is defining phonological rule
domains. These domain rules affect the target segment but they can be triggered by abstract morphological
nodes which can be at any distance from the target segment.

Going further, we likewise saw that interactionism itself affects the locality of certain processes. If we
assume a non-interactionist model for prosody, i.e., postcyclic prosodic parsing, the bulk of word-level
prosody is locally computed. The only traces of non-locality are a) parsing compounds into multiple
prosodic nodes, and b) flattening potentially unbounded number of recursive prosodic nodes into one.

Lastly in Chapter 9, we showed that an additional implicit factor in an interactionist or cyclic architecture
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is the knowledge of what future morphological operation to apply. When this knowledge is made explicit,
we can handle phenomena such as outwards-sensitive allomorphy. This knowledge is made explicit in the
form of an Operation List which acts a formalization for derivational histories and morphotactics.

(693) Sketch of an interaction model with an Operation stage

Input
root

Operation Morphology Settings Prosody Phonology
Output
root with
materialproceed add examine parse apply

trigger

produce

proceed

In sum, the takeaway is the unification of concepts present in theoretical and computational linguistics.
On the one hand, linguistic theory posits multiple hidden structures, including morphological, prosodic, and
phonological rule domains. These structures interact in a system of representations and rules (Anderson
1985). An often-assumed assertion in linguistics is that these structures or representations are somehow
‘easy’ or ‘simple’ to define and use: if the representations are right, then the rules will follow (McCarthy
1988:84). On the other hand, the dissertation shows that these assertion is computationally true. We
showed that the hidden structure (representations) and the rules which operate over these representations
are computationally simple and local.

10.3 Open questions

This dissertation tried to answer the three core questions Q1-Q3. Although we made significant strides in
answering these questions, some aspects are still unanswered. On the empirical side, there are more areas in
Armenian where we see morphophonological interactions, including problems in language contact, verbal
conjugation classes, schwa epenthesis, and reduplication. These topics were hinted at in different parts of
the dissertation. They are left for future work.

On the theoretical side, the computational formalism gives precise definitions for what counts as a local
vs. non-local process. It likewise shows that the interactionist model which is assumed in much current
work in morphophonology is empirically viable and computational definable. The next step is analyzing
how much cross-linguistic variation we find in morphological, prosodic, and phonological domains. Given
an adequate typology of hidden structures, we can then determine how much of it is still a) definable within
the interactionist system, and b) computationally local. I did not formalize some areas such as moras and
feet because I could not find enough evidence for them in Armenian.

On the computational side, defining the problem space of morphophonology is the first step to developing
a software implementation and learning algorithm for morphophonology. For implementation, a possible
initial step is to develop a package which can process graph-to-graph logical transductions using Prolog or
Python. Prolog was previously used to define a working implementation for Lexical Phonology (Williams
1993), while Python has ample resources (Aksënova 2020b). This can be used to fact-check the analyses.
As for learning, there is work on developing provably correct learning algorithms for simpler types of
phonological structure which are couched within formal logic (Strother-Garcia et al. 2017; Vu et al. 2018;
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Chandlee et al. 2019). The next step is to see how they scale up to learning the type of hierarchical structures
and processes present in morphophonology. As repeatedly shown, most of these processes over these
structures are computational local. The computational locality of the interface makes the task of learning
easier (cf. Heinz et al. 2015).

Finally, this dissertation looked at the morphology-phonology interface and asked different descriptive,
theoretical, and computational questions. We can also look at the syntax-phonology interface in the same
way. The answers found in this dissertation on the morphology-phonology interface are a stepping stone
to answering questions on the syntax-phonology interface. Many of the problems found in formalizing
the morphology-phonology interface are also found in the syntax-phonology interface. These problems
include the use of morphosyntactic trees, the generation of prosodic structures, and problems in cyclicity and
look-ahead (Selkirk 1986, 2011; Inkelas and Zec 1990; Elordieta 1997, 2008; Seidl 2000; Pak 2008; Cheng
and Downing 2016; Kalivoda 2018; Miller 2018; Bennett and Elfner 2019). I speculate that the logical
formalism for the syntax-phonology interface will need minimal adjustments. Some routes to modeling
all of these issues are using Minimalist Grammars which include information on prosodic boundaries (Yu
and Stabler 2017; Yu 2019) and then defining a logical transformation from syntactic trees to prosodic
trees (Ashton 2012). The former approach has the benefit of providing an interface for computational
implementations of other linguistic modules, especially when using tree transducers (Morawietz 2003). The
latter approach has the benefit of combining results in the computational formalization of syntactic trees
(Rogers 1998) and prosodic trees (Bird 1995).
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Güneş, G. (2015). Deriving prosodic structures. Ph. D. thesis, University of Groningen.

Guzzo, N. B. (2018). The prosodic representation of composite structures in Brazilian Portuguese. Journal
of Linguistics 54(4), 683–720.

Hacopian, N. (2003). A three-way vot contrast in final position: Data from Armenian. Journal of the
International Phonetic Association 33(1), 51–80.

Haghverdi, V. (2016). Armenian schwa: A phonetic and phonological analysis. Master’s thesis, Rutgers
University, New Brunswick, NJ.

Hagopian, G. (2005). Armenian for everyone: Western and Eastern Armenian in parallel lessons. Ann
Arbor, MI: Caravan Books.

Haig, H. A. (1980). Temporal adverbial clauses in Modern Western Armenian. Master’s thesis, University
of California, Los Angeles.

Hall, T. A. (1999). The phonological word: A review. See Hall and Kleinhenz (1999), pp. 1–22.

Hall, T. A. and U. Kleinhenz (Eds.) (1999). Studies on the phonological word, Volume 174.
Amsterdam/Philadelphia: John Benjamins Publishing.

Halle, M. and M. Kenstowicz (1991). The free element condition and cyclic versus noncyclic stress.
Linguistic inquiry 22(3), 457–501.

368



Halle, M. and A. Marantz (1993). Distributed morphology and the pieces of inflection. In K. Hale and S. J.
Keyser (Eds.), The view from Building 20: Studies in linguistics in honor of Sylvaln Bromberger, pp.
111–176. Cambridge, MA: MIT Press.

Halle, M. and A. Nevins (2009). Rule application in phonology. See Raimy and Cairns (2009), pp. 355–383.

Halle, M. and B. Vaux (1998). Theoretical aspects of Indo-European nominal morphology: The nominal
declensions of Latin and Armenian. In J. Jasanoff, H. C. Melchert, and L. Oliver (Eds.), Mír
Curad: Studies in honor of Calvert Watkins, pp. 223–240. Innsbruk, Austria: Innsbrucker Beiträge zur
Sprachsissenschaft.

Halle, M., B. Vaux, and A. Wolfe (2000). On feature spreading and the representation of place of articulation.
Linguistic Inquiry 31(3), 387–444.

Halle, M. and J.-R. Vergnaud (1987a). An essay on stress. Cambridge, MA: MIT Press.

Halle, M. and J.-R. Vergnaud (1987b). Stress and the cycle. Linguistic Inquiry 18(1), 45–84.

Hammalian, S. J. (1984). A generative phonology of Old Armenian. Ph. D. thesis, New York University,
New York City.

Hammond, M. (1992). Morphemic circumscription. In G. Booij and J. van Marle (Eds.), Yearbook of
Morphology 1991, pp. 195–209. Springer.

Hammond, M. (1993). On the absence of category-changing prefixes in English. Linguistic Inquiry 24(3),
562–567.

Hammond, M. (2009). One-level finite-state phonology. In W. D. Lewis, S. Karimi, H. Harley, and S. O.
Farrar (Eds.), Time and Again: Theoretical Perspectives on Formal Linguistics: In Honor of D. Terence
Langendoen, Volume 135, pp. 209–226. John Benjamins Publishing.

Han, E. (1995). Prosodic structure in compounds. Ph. D. thesis, Stanford University, Stanford, CA.

Hanson, K. and S. Inkelas (Eds.) (2009). The Nature of the Word: Studies in Honor of Paul Kiparsky.
Current Studies in Linguistics. Cambridge, MA: The MIT Press.

Hao, Y. (2020). Metrical grids and generalized tier projection. In Proceedings of the Society for Computation
in Linguistics, Volume 3.

Hao, Y. and S. Andersson (2019). Unbounded stress in subregular phonology. In Proceedings of the 16th
Workshop on Computational Research in Phonetics, Phonology, and Morphology, Florence, Italy, pp.
135–143. Association for Computational Linguistics.

Hao, Y. and D. Bowers (2019). Action-sensitive phonological dependencies. In Proceedings of the 16th
Workshop on Computational Research in Phonetics, Phonology, and Morphology, Florence, Italy, pp.
218–228. Association for Computational Linguistics.

Harðarson, G. R. (2016). Peeling away the layers of the onion: On layers, inflection and domains in icelandic
compounds. The Journal of Comparative Germanic Linguistics 19(1), 1–47.

Harðarson, G. R. (2017). Cycling through grammar: On compounds, noun phrases and domains. Ph. D.
thesis, University of Connecticut.

369



Harðarson, G. R. (2018). Forming a compound and spelling it out. In University of Pennsylvania Working
Papers in Linguistics, Volume 24, pp. 11.

Hargus, S. (1985). The lexical phonology of Sekani. Ph. D. thesis, UCLA.

Hargus, S. (1993). Modeling the phonology–morphology interface. See Hargus and Kaisse (1993), pp.
45–74.

Hargus, S. and E. M. Kaisse (Eds.) (1993). Studies in lexical phonology, Volume 4 of Phonetics and
Phonology. San Diego: Academic Press.

Harley, H. (2009). Compounding in distributed morphology. In R. Lieber and P. Štekauer (Eds.), The Oxford
handbook of compounding, pp. 129–143. Oxford/New York: Oxford University Press.

Harley, H. (2014). On the identity of roots. Theoretical linguistics 40(3/4), 225–276.

Haroutyunian, S. (2011). An analysis of Dante’s tenses in the Armenian translations of the Divina
Commedia. Ph. D. thesis, Università Ca’Foscari Venezia.

Harris, J. (1987). Non-structure-preserving rules in lexical phonology: Southeastern Bantu harmony.
Lingua 72(4), 255–292.

Haspelmath, M. (2020). The morph as a minimal linguistic form. Morphology 30(2), 117–134.

Haugen, J. D. (2016). Readjustment: Rejected. See Siddiqi and Harley (2016), pp. 303–342.

Haugen, J. D. and H. Harley (2013). Head-marking inflection and the architecture of grammatical theory.
In S. T. Bischoff, D. Cole, A. V. Fountain, and M. Miyashita (Eds.), The Persistence of Language:
Constructing and confronting the past and present in the voices of Jane H. Hill, Volume 8, pp. 133.
Amsterdam/Philadelphia: John Benjamins Publishing.

Heinz, J. (2007). The Inductive Learning of Phonotactic Patterns. Ph. D. thesis, University of California,
Los Angeles.

Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology 26(2), 303–351.

Heinz, J. (2010). Learning long-distance phonotactics. Linguistic Inquiry 41(4), 623–661.

Heinz, J. (2014). Culminativity times harmony equals unbounded stress. In H. van der Hulst (Ed.), Word
stress: Theoretical and typological issues, Volume 8, pp. 255–275. Cambridge: Cambridge University
Press.

Heinz, J. (2018). The computational nature of phonological generalizations. In L. Hyman and F. Plank
(Eds.), Phonological Typology, Phonetics and Phonology, Chapter 5, pp. 126–195. De Gruyter Mouton.

Heinz, J. (Ed.) (in prep). Doing Computational Phonology. Oxford: Oxford University Press.

Heinz, J., C. de la Higuera, and M. van Zaanen (2015). Grammatical Inference for Computational
Linguistics. Synthesis Lectures on Human Language Technologies. Morgan and Claypool.

Heinz, J. and W. Idsardi (2013). What complexity differences reveal about domains in language. Topics in
Cognitive Science 5(1), 111–131.

370



Heinz, J. and C. Koirala (2010). Maximum likelihood estimation of feature-based distributions. In
Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology, pp. 28–37.

Heinz, J. and R. Lai (2013). Vowel harmony and subsequentiality. In A. Kornai and M. Kuhlmann (Eds.),
Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), Sofia, Bulgaria, pp. 52–63.
Association for Computational Linguistics.

Heinz, J., C. Rawal, and H. G. Tanner (2011). Tier-based strictly local constraints for phonology. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: Short papers-Volume 2, pp. 58–64. Association for Computational Linguistics.

Hockett, C. F. (1942). A system of descriptive phonology. Language 18, 3–21.

Hodgson, K. (2019). Relative clauses in colloquial Armenian: Syntax and typology. Ph. D. thesis, Université
Sorbonne Paris.

Hoeksema, J. (1984). Categorial morphology. van Denderen: Groningen.

Hoeksema, J. (1987). Relating word structure and logical form. Linguistic inquiry 18(1), 119–126.

Hoeksema, J. (1988). Head-types in morpho-syntax. Yearbook of morphology 1, 123–137.

Hoeksema, J. (1992). The head parameter in morphology and syntax. Language and cognition 2, 119–132.

Hoeksema, J. and R. D. Janda (1988). Implications of process-morphology for categorial grammar. In
R. T. Oehrle, E. Bach, and D. Wheeler (Eds.), Categorial grammars and natural language structures, pp.
199–247. Springer.

Hovakimyan, K. (2016). Eastern Armenian consonant clusters. Bachelor’s thesis, Reed College, Portland,
OR.

Hudson, G. (1986). Arabic root and pattern morphology without tiers. Journal of Linguistics 22(1), 85–122.

Hulden, M. (2006). Finite-state syllabification. In A. Yli-Jyrä, L. Karttunen, and J. Karhumäki (Eds.),
Finite-State Methods and Natural Language Processing. FSMNLP 2005. Lecture Notes in Computer
Science, Volume 4002. Berlin/Heidelberg: Springer.

Hulden, M. (2009a). Finite-state machine construction methods and algorithms for phonology and
morphology. Ph. D. thesis, The University of Arizona, Tucson, AZ.

Hulden, M. (2009b). Regular expressions and predicate logic in finite-state language processing.
In J. Piskorski, B. Watson, and A. Yli-Jyrä (Eds.), Finite-State Methods and Natural Language
Processing. Post-Proceedings of the 7th International Workshop (FSMNLP) 2008, Volume 191, pp.
82–97. Amsterdam, the Netherlands: IOS Press.

Hulden, M. (2009c). Revisiting multi-tape automata for Semitic morphological analysis and generation.
In Proceedings of the EACL 2009 Workshop on Computational Approaches to Semitic Languages, pp.
19–26. Association for Computational Linguistics.

Hulden, M. (2017). Formal and computational verification of phonological analyses. Phonology 34(2),
407–435.

371



Hulden, M. and S. T. Bischoff (2009). A simple formalism for capturing reduplication in finite-state
morphology. In J. Piskorski, B. Watson, and A. Yli-Jyrä (Eds.), Proceedings of the 2009 conference
on Finite-State Methods and Natural Language Processing: Post-proceedings of the 7th International
Workshop FSMNLP 2008, Amsterdam, pp. 207–214. IOS Press.

Hurch, B. (Ed.) (2005). Studies on reduplication. Number 28 in Empirical Approaches to Language
Typology. Berlin: Walter de Gruyter.

Hwangbo, H. (2015). Learnability of two vowel harmony patterns with neutral vowels. In Proceedings of
the The third Annual Meeting on Phonology (AMP 2015).

Hyde, B. (2002). A restrictive theory of metrical stress. Phonology 19(3), 313–359.

Hyman, L. M. (2008). Directional asymmetries in the morphology and phonology of words, with special
reference to Bantu. Linguistics 46(2), 309–350.

Idsardi, W. J. (2009). Calculating metrical structure. See Raimy and Cairns (2009), pp. 191–211.

Ikawa, S., A. Ohtaka, and A. Jardine (2020). Quantifier-free tree transductions. In Proceedings of the
Society for Computation in Linguistics, Volume 3, pp. 145–153.

Inkelas, S. (1989). Prosodic constituency in the lexicon. Ph. D. thesis, Stanford University, Stanford,
California.

Inkelas, S. (1993). Deriving cyclicity. See Hargus and Kaisse (1993), pp. 75–100.

Inkelas, S. (1998). The theoretical status of morphologically conditioned phonology: A case study of
dominance effects. In G. Booij and J. van Marle (Eds.), Yearbook of Morphology 1997, pp. 121–155.
Dordrecht: Kluwer Academic Publishers.

Inkelas, S. (2008). The morphology-phonology connection. In S. Berson, A. Bratkievich, D. Bruhn,
A. Campbell, R. Escamilla, A. Giovine, L. Newbold, M. Perez, M. Piqueras-Brunet, and R. Rhomieux
(Eds.), Proceedings of the 34th meeting of the Berkeley Linguistics Society, Berkeley, CA, pp. 145–162.
Berkeley Linguistics Society.

Inkelas, S. (2014). The interplay of morphology and phonology. Oxford: Oxford University Press.

Inkelas, S. and C. O. Orgun (1995). Level ordering and economy in the lexical phonology of Turkish.
Language 71(4), 763–793.

Inkelas, S. and C. O. Orgun (2003). Turkish stress: A review. Phonology 20(1), 139–161.

Inkelas, S., C. O. Orgun, and C. Zoll (1996). Exceptions and static phonological patterns: Cophonologies
vs. prespecification. ROA-124, Rutgers Optimality Archive, http://roa.rutgers.edu/.

Inkelas, S., O. Orgun, and C. Zoll (1997). The implications of lexical exceptions for the nature of grammar.
See Roca (1997), pp. 393–417.

Inkelas, S. and D. Zec (1990). The phonology-syntax connection. University of Chicago Press.

Inkelas, S. and C. Zoll (2005). Reduplication: Doubling in Morphology. Cambridge: Cambridge University
Press.

372



Inkelas, S. and C. Zoll (2007). Is grammar dependence real? A comparison between cophonological and
indexed constraint approaches to morphologically conditioned phonology. Linguistics 45, 133–171.

Itô, J. and A. Mester (1999). The phonological lexicon. In N. Tsujimura (Ed.), The handbook of Japanese
linguistics, pp. 62–100. Oxford: Blackwell.

Ito, J. and A. Mester (2009). The extended prosodic word. See Grijzenhout and Kabak (2009), pp. 135–194.

Ito, J. and A. Mester (2012). Recursive prosodic phrasing in Japanese. In T. Borowsky, S. Kawahara,
S. Takahito, and M. Sugahara (Eds.), Prosody matters: Essays in honor of Elisabeth Selkirk, pp. 280–303.
London: Equinox Publishing.

Ito, J. and A. Mester (2013). Prosodic subcategories in Japanese. Lingua 124, 20–40.

Jäger, G. and J. Rogers (2012). Formal language theory: Refining the Chomsky hierarchy. Philosophical
Transactions of the Royal Society B: Biological Sciences 367(1598), 1956–1970.

Jardine, A. (2014). Logic and the generative power of autosegmental phonology. In Proceedings of the
Annual Meetings on Phonology, Volume 1.

Jardine, A. (2016a). Computationally, tone is different. Phonology 33(2), 247–283.

Jardine, A. (2016b). Learning tiers for long-distance phonotactics. In Proceedings of the 6th Conference on
Generative Approaches to Language Acquisition North America (GALANA 2015), pp. 60–72.

Jardine, A. (2016c). Locality and non-linear representations in tonal phonology. Ph. D. thesis, University
of Delaware, Newark, DE.

Jardine, A. (2017a). The local nature of tone-association patterns. Phonology 34(2), 363–384.

Jardine, A. (2017b). On the logical complexity of autosegmental representations. In Proceedings of the 15th

Meeting on the Mathematics of Language, pp. 22–35.

Jardine, A. (2019). The expressivity of autosegmental grammars. Journal of Logic, Language and
Information 28(1), 9–54.

Jardine, A. (2020). Melody learning and long-distance phonotactics in tone. Natural Language & Linguistic
Theory, 1–51.

Jardine, A., J. Chandlee, R. Eyraud, and J. Heinz (2014). Very efficient learning of structured classes of
subsequential functions from positive data. In International Conference on Grammatical Inference, pp.
94–108.

Jardine, A., N. Danis, and L. Iacoponi (to appear). A formal investigation of Q-theory in comparison to
autosegmental representations. Linguistic Inquiry.

Jardine, A. and J. Heinz (2016a). Learning tier-based strictly 2-local languages. Transactions of the
Association for Computational Linguistics 4, 87–98.

Jardine, A. and J. Heinz (2016b). Markedness constraints are negative: An autosegmental constraint
definition language. In Proceedings of the 51st Annual Meeting of the Chicago Linguistics Society (CLS
2015).

373



Jardine, A. and K. McMullin (2017). Efficient learning of tier-based strictly k-local languages. In
International Conference on Language and Automata Theory and Applications, pp. 64–76. Springer.

Ji, J. and J. Heinz (2020). Input strictly local tree transducers. In A. Leporati, C. Martín-Vide, D. Shapira,
and C. Zandron (Eds.), Language and Automata Theory and Applications, Cham, pp. 369–381. Springer
International Publishing.

Johnson, C. D. (1972). Formal aspects of phonological description. The Hague: Mouton.

Johnson, E. W. (1954). Studies in East Armenian Grammar. Ph. D. thesis, University of California, Berkeley,
Berkeley, CA.

Kabak, B. and A. Revithiadou (2009). An interface approach to prosodic word recursion. See Grijzenhout
and Kabak (2009), pp. 105–133.

Kager, R. (1996). On affix allomorphy and syllable counting. In U. Kleinhenz (Ed.), Interfaces in Phonology,
pp. 155–171. Berlin: Akademie-Verlag.

Kager, R., H. van der Hulst, and W. Zonneveld (Eds.) (1999). The prosody-morphology interface.
Cambridge: Cambridge University Press.

Kahnemuyipour, A. and K. Megerdoomian (2011). Second-position clitics in the vP phase: The case of the
Armenian auxiliary. Linguistic Inquiry 42(1), 152–162.

Kahnemuyipour, A. and K. Megerdoomian (2017). On the positional distribution of an Armenian auxiliary:
Second-position clisis, focus, and phases. Syntax 20(1), 77–97.

Kaisse, E. M. and S. Hargus (1993). Introduction. See Hargus and Kaisse (1993), pp. 1–19.

Kaisse, E. M. and S. Hargus (1994). When do linked structures evade structure preservation. See Wiese
(1994), pp. 185–204.

Kaisse, E. M. and A. McMahon (2011). Lexical phonology and the lexical syndrome. See van Oostendorp
et al. (2011), pp. 2236–2257.

Kaisse, E. M. and P. A. Shaw (1985). On the theory of lexical phonology. Phonology 2(1), 1–30.

Kalivoda, N. (2018). Syntax-prosody mismatches in Optimality Theory. Ph. D. thesis.

Kang, B.-m. (1993). Unhappier is really a "bracketing paradox". Linguistic inquiry 24(4), 788–794.

Kaplan, R. M. and M. Kay (1994). Regular models of phonological rule systems. Computational
linguistics 20(3), 331–378.
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374



Karst, J. (1901). Historische Grammatik des Kilikisch-Armenischen [Grammar of Cilician Armenian].
Strassburg: Verlag von Karl Trübner.

Karttunen, L. (1993). Finite-state constraints. In J. Goldsmith (Ed.), The last phonological rule: Reflections
on constraints and derivations, pp. 173–194. University of Chicago Press.

Karttunen, L. (2003). Computing with realizational morphology. In International Conference on Intelligent
Text Processing and Computational Linguistics, pp. 203–214. Springer.

Karttunen, L. (2006a). A finite-state approximation of optimality theory: The case of Finnish prosody. In
Advances in Natural Language Processing, pp. 4–15. Springer.

Karttunen, L. (2006b). The insufficiency of paper-and-pencil linguistics: The case of Finnish prosody. In
M. Butt, M. Dalrymple, , and T. H. King (Eds.), Intelligent linguistic architectures: Variations on themes
by Ronald M. Kaplan, Number 179 in CSLI Lecture Notes, pp. 287–300. Stanford, CA: CSLI.

Kassabian, H. (1971). A contrastive analysis of stress in colloquial west Armenian and American English.
Master’s thesis, Department of Education, AUB.
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