
Chapter 1

Definitions of Learning

A definition of a learning problem requires specifying the instances of the problem and
specifying what counts as correct answers for these instances. This means thinking carefully
about an interaction between three items: the learning targets, the learning algorithm, and
the input to the learning algorithm, which can be thought of as the available evidence.

This is difficult because we have to confront the question “Which inputs is it reasonable
to expect the learning algorithm to succeed on?” For example, if we are trying to identify a
stringset S which is of infinite size but the evidence for S contains only a single string s ∈ S

then we may feel this places an unreasonable burden on the learning algorithm. What is at
stake here was expressed by Charles Babbage:

On two occasions I have been asked [by members of Parliament], “Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers come
out?” I am not able rightly to apprehend the kind of confusion of ideas that
could provoke such a question. as quoted in de la Higuera (2010, p. 391)

It’s unfair to expect a summation algorithm to succeed if the input is wrong. More generally,
how do we define learning in such a way so that the input to the algorithm is not “wrong”.
What does it mean to have input of sufficient quality in learning? We want to only consider
instances of the learning problem that are reasonable or fair. But nailing that down precisely
is hard! In fact, what we will see is that this is an ongoing issue and there are many attempts
to address it. The issue is a live one today.

1.1 Identification in the limit

Gold (1967) provided some influential definitions of learning. He called his approach identi-

fication in the limit. He provided not one, but several definitions, and he compared what
kinds of stringsets were learnable in these paradigms.

No one I know knows what happened to Gold. He seems to have disappeared from
academia in the 1980s.

5

draft—September 19, 2017 J. Heinz

Gold conceptualized learning as a never-ending process unfolding in time. Evidence is
presented piece by piece in time to the learning algorithm. The learning algorithm outputs
a program with each piece of evidence it receives based on its experience up to the present
moment. As time goes on, the programs the learning algorithm outputs must be identical
and must solve the membership problem for the target stringset.

Time t 1 2 3 4 . . . n . . .

Evidence at time t e(1) e(2) e(3) e(4) . . . e(n) . . .

Input to Algorithm at time t e〈1〉 e〈2〉 e〈3〉 e〈4〉 . . . e〈n〉 . . .

Output of Algorithm at time t G(1) G(2) G(3) G(4) . . . G(n) . . .

Figure 1.1: A schema of the Identification in the Limit learning paradigm

Let us explain the notation in the figure. The notation “e(n)” means the evidence pre-
sented at time n. This notation is functional which means evidence can be understood as a
function with domain N.

The notation “e〈n〉” refers to the sequence of evidence up to the nth one. For exam-
ple, e(3) means the finite sequence “e(1), e(2), e(3).” In mathematics, angle brackets are
sometimes used to denote sequences so some mathematicians would write this sequence as
〈 e(1), e(2), e(3) 〉.

The notation “G(n)” refers to the program output by the algorithm with input e〈n〉. If
A is the algorithm, and we wish to use functional notation so that A(i) = o means “on input
i, algorithm A outputs o” then G(n)=A(e〈n〉).

There are two important ideas in this paradigm. First, a successful learning algorithm is
one that converges over time to a correct generalization. At some time point n, the algorithm
must output the same program and this program must solve the membership problem for S.
This means the algorithm can make mistakes, but only finitely many times.

Second, which infinite sequences of evidence learners must succeed on? Which are the
ones of sufficient quality? Gold defined required these sequences to be representative of the
target stringsets. Each possible piece of evidence occurs at some point in the unfolding
sequence of evidence. Lest we think this is too good to be true, recall that the input to the
learner at any given point n in time is the finite sequence e〈n〉, and that to succeed, it is
only allowed to make finitely many mistakes.

1.1.1 Identification in the limit from positive data

The box below precisely defines the paradigm when learning from positive data. Let us define
the “evidence” when learning from positive data more precisely. A positive presentation

of a stringset S is a function ϕ : N → S such that ϕ is onto. Recall that a function f is
onto provided for every element y in its co-domain there is some element x in its domain
such that f(x) = y. Here, this means for every string s ∈ S, there is some n ∈ N such that
ϕ(n) = s.

6

draft—September 19, 2017 J. Heinz

Definition 1 (Identification in the limit from positive data).

Algorithm A identifies in the limit from positive data a class of stringsets C provided
1

for all stringsets S ∈ C,2

for all positive presentations ϕ of S,3

there is some number n ∈ N such that4

for all m > n,5

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

6

7

• the program output by A on ϕ〈m〉 solves the membership problem
for S.

8

9

Here is breakdown of what these lines mean.

Line 1 Establishes the name of the relationship between an algorithm A and a collection of
stringsets C provided the definition holds.

Line 2 The algorithm must succeed for all S ∈ C.

Line 3 The algorithm must succeed for all positive presentations ϕ of S.

Line 4 It succeeds on ϕ for S if there is a point in time n

Line 5 such that for all future points in time m,

Lines 6-7 the output of A converges to the same program, and

Lines 8-9 the output of A correctly solves the membership problem for S.

This paradigm is also called learning from text.

Example 1. Here we present an algorithm and prove that it identifies the Strictly k-
Piecewise (SPk) stringsets in the limit from positive data. SP stringsets were proposed
to model aspects of long-distance phonotactics Heinz (2010a), motivated on typological and
learnability grounds. The learning scheme discussed here exemplifies more general ideas
Heinz (2010b); Heinz et al. (2012).

The notion of subsequence is integral to SP stringsets. Informally, a string u is subse-
quence of string v if one is left with u after erasing zero or more letters in v. For example,
ab is a subsequence of ccccccacccccccccbccccccc. Formally, u = σ1σ2 · · ·σn is a subsequence
of v (u ⊑ v) if u ∈ Σ∗σ1Σ

∗σ2Σ
∗ · · ·Σ∗σnΣ

∗.
A stringset S is Strictly Piecewise if and only if it is closed under subsequence. In other

words, if s ∈ S then every subsequence of s is also in S.
A theorem shows that every SP stringset S has a basis in a finite set of strings (Rogers

et al., 2010). These strings can be understood as forbidden subsequences. That is any string

7

draft—September 19, 2017 J. Heinz

s ∈ Σ∗ containing any one of the forbidden subsequences is not in S. Conversely, any string
s which does not contain any forbidden subsequence belongs to S.

The same theorem shows that a SP stringset S can be defined in terms of a finite set
of permissible subsequences. Because the set is finite, there is a longest string in this set.
Let its length be k. In this case, any s ∈ Σ∗ belongs to S if and only if every one of its
subsequences of length k or less is permissible.

In other words we can define SPk stringsets as follows. Let a grammar G be a finite subset
of Σ∗ and let k be the length of a longest string in G. Let subseq

k
(s) = {u | u ⊑ s, |u| ≤ k}.

The “language of the grammar” L(G) is defined as the stringset {s | subseq
k
(s) ⊆ G}.

We are going to be interested in the collection of stringsets SPk, defined as those stringsets
generated from grammars G with a longest string k. Formally,

SPk

def
= {S | G ⊆ Σ≤k, L(G) = S} .

This is the collection C of learning targets.

For all S ∈ SPk, all presentations ϕ of S, and all time points t ∈ N define A as follows:

A
(

ϕ〈t〉
)

=

{

subseq
k
(ϕ(t)) if t = 1

A(ϕ〈t− 1〉) ∪ subseq
k
(ϕ(t)) otherwise

One can prove that algorithm A identifies in the limit from positive data the collection
of stringsets SPk.

Exercise 1. Prove algorithm A identifies in the limit from positive data the collection of
stringsets SPk.

1.1.2 Identification in the limit from positive and negative data

A positive and negative presentation of a stringset S provides example strings not in S

in addition to example strings in S. This can be formalized using the characteristic function
of S. Every set S has a characteristic function with domain Σ∗ defined as follows.

fS(s) =

{

1 iff s ∈ S

0 otherwise

Characteristic functions are total functions, which means defined for all s ∈ Σ∗. Also recall,
that we write (x, y) ∈ f whenever f(x) = y. So we can think of fS as a set of points where
(s, 0) means s 6∈ S and (s, 1) means s ∈ S.

Then a positive and negative presentation of a stringset S is a function ϕ : N → fS
such that ϕ is onto. Here, this means for every string s ∈ Σ∗, there is some n ∈ N such that
ϕ(n) = (s, fs(s)).

Definition 2 (Identification in the limit from positive and negative data).

8

draft—September 19, 2017 J. Heinz

Algorithm A identifies in the limit from positive and negative data a class of stringsets
C provided

10

11

for all stringsets S ∈ C,12

for all positive and negative presentations ϕ of S,13

there is some number n ∈ N such that14

for all m > n,15

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

16

17

• the program output by A on ϕ〈m〉 solves the membership problem
for S.

18

19

The only difference in the definitions is in line 3. This paradigm is also called learning

from an informant.

1.1.3 Variations on a theme

Exercise 2. Suppose we want to learn a transformation from strings to strings? In other
words a relation from Σ∗ to ∆∗? How could the definitions above be changed?

Exercise 3. Suppose we want to learn a probability distribution over Σ∗. How could the
definitions above be changed?

9

Bibliography

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics , 897–906. Uppsala, Sweden: Association
for Computational Linguistics.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science 457:111–127.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars .
Cambridge University Press.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Math-
ematics of Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol.
6149 of Lecture Notes in Artifical Intelligence, 255–265. Springer.

11

