
draft—September 29, 2017 J. Heinz

0.1 Enumerating Σ
∗

The usual way to enumerate strings in Σ∗ is to order them first by their length and then
within strings of the same length to order them in dictionary order, as shown below.

0 λ 3 c 6 ac . . .
1 a 4 aa 7 ba
2 b 5 ab 8 bb

Figure 1: Enumerating Σ∗ with Σ = {a, b, c}.

A natural question that arises is what is the nth string in this enumeration? What
effective procedure yields the nth string?

One way to find the nth string is to build a tree of all the strings in a “breadth-first”
fashion. The first few steps are shown below.

0,λ 0,λ

1,a

0,λ

1,a 2,b

0,λ

1,a 2,b 3,c

0,λ

1,a 2,b 3,c

4,aa

1. 2. 3. 4. 5.

Figure 2: Enumerating Σ∗ with Σ = {a, b, c}.

The procedure for Σ could be stated as follows. Remember we know there are k elements
in Σ, and we can assume they are ordered. We are given as input a number n and we want
to output the nth string in the enumeration of Σ∗.

1. Set a counter variable c to 0.

2. BUILD a node labeled (0, λ).

3. If 0 = n then OUTPUT λ and STOP.

4. Otherwise, ADD (0, λ) to the QUEUE.

5. REMOVE the first element (m,w) from the QUEUE.

6. Set variable i to 1.

7. Let a be the ith symbol in Σ.

8. Increase c by 1.

9. BUILD a node labeled (c, w · a) as a daughter to (m,w).

10. If c = n then OUTPUT w · a and STOP.

11. Otherwise, ADD this daughter node to the end of the QUEUE.

12. Increase i by 1.

13. If i > k then go to step 5. Otherwise, go to step 7.

1



draft—September 29, 2017 J. Heinz

The general form of this algorithm is very useful. Recall that an enumeration of Σ∗ is
also an enumeration of all programs! This means we could try running some set of inputs X
on all the programs to find a program that gives a certain output. Basically, in steps 3 and
10 we would check to see how the program w behaves on the inputs in X . If the behavior is
what we like, we output this program and stop. Otherwise we continue to the next program!

0.2 Example: Learning from positive data

We consider an example very similar to the number guessing game. Instead of a set of
numbers, this time we are thinking of a set of strings. The a priori knowledge we have
is that the set contains all strings except one. Is there a winning guessing rule for these
stringsets? Formally, is there an algorithm the identifies this class of stringsets in the limit
from positive data?

Formally, we set up the problem this way. For all x ∈ Σ∗, let x = {w ∈ Σ∗ | w 6∈ x},
which also equals Σ∗ − {x}. Then we can define the class of stringsets we want to learn as
C = {x | x ∈ Σ∗}.

The basic idea for the learing algorithm is the same as it was for the winning guessing
rule when the game involved numbers. Informally, pick the first string x in the enumeration
that has not yet been observed and output a program for x. Since we can enumerate the
strings, we can always find the first one not yet seen.

More formally, we can adapt the algorithm above as follows. The algorithm below takes
as input a finite sequence of positive examples up to time t, denoted ϕ〈t〉, and outputs a
program which solves a membership problem. Call this algorithm A-BAR (since we will
show it solves the problem of learning the “bar” class C.)

1. Set a counter variable c to 0.

2. BUILD a node labeled (0, λ).

3. If ϕ〈t〉 does not contain λ then OUTPUT a program solving the membership

problem for λ and STOP.

4. Otherwise, ADD (0, λ) to the QUEUE.

5. REMOVE the first element (m,w) from the QUEUE.

6. Set variable i to 1.

7. Let a be the ith symbol in Σ.

8. Increase c by 1.

9. BUILD a node labeled (c, w · a) as a daughter to (m,w).

10. If ϕ〈t〉 does not contain w · a then OUTPUT a program solving the mem-

bership problem for w · a and STOP.

11. Otherwise, ADD this daughter node to the end of the QUEUE.

12. Increase i by 1.

13. If i > k then go to step 5. Otherwise, go to step 7.

2



draft—September 29, 2017 J. Heinz

Here are few important observations.

• The only difference between outputting the nth string and this this algorithm are in
the bold-faced steps 3 and 10.

• Checking whether a string x is contained in ϕ〈t〉 is straightforward. String x is com-
pared to each ϕ(i) for all i between 1 and t inclusive. If any equal x then ϕ〈t〉 contains
x. If none equal x then it does not.

• Outputting a program which solves the membership problem for x is also straightfor-
ward. For each x, here is such a program. It takes any string y as input and outputs
YES or NO as follows. If x = y output NO. Otherwise, output YES.

• This is not an efficient algorithm.

Next we prove the following theorem.

Theorem 1. A-BAR identifies C in the limit from positive data.

Proof Consider any stringset S ∈ C and any positive presentation ϕ of S. It is sufficient
to show there exists some time t such that for all m ≥ t, A-BAR(ϕ〈m〉)=A-BAR(ϕ〈t〉) and
A-BAR(ϕ〈m〉) is a program solving the membership problem for S.

By definition of C, there is exactly one string x not in S and S = x.
Let E : N → Σ∗ be the standard enumeration for Σ∗. It follows that there exists some

n ∈ N such that E(n) = x. It also follows that there are only finitely many strings prior to
x in the enumeration. In other words, the enumeration looks like this: E(0), E(1), E(2), . . .
E(n− 1), x, E(n+ 1) . . .

Note that for each i between 0 and n − 1 inclusive, the string E(i) belongs to x. Since
ϕ is a positive presentation for x, the string E(i) thus occurs at some point in ϕ. More
precisely, for each i, there is some point in time ti such that ϕ(ti) = E(i) and for all t < ti,
ϕ(ti) 6= E(i). In other words, ti is the first occurence of E(i) in the positive presentation.

Let tℓ be the largest number among these ti. Since there are finitely many ti, this largest
number exists.

We now show that for all m ≥ tℓ that A-BAR(ϕ〈m〉) outputs a program that solves the
membership problem for x. Then we show that tℓ is the convergence point for A-BAR on ϕ.

Consider any m ≥ tℓ and consider A-BAR(ϕ〈m〉). A-BAR only stops and outputs a
program when it encounters a string in the standard enumeration that is not contained in
ϕ〈m〉. Since m is greater than tℓ, it follows that E(0), E(1), E(2), . . . , E(n− 1) all occur in
ϕ〈m〉. However E(n) = x does not occur in ϕ as it is a positive presentation of x. Thus x is
the first string in the enumeration that is not contained in ϕ〈m〉. Hence A-BAR stops and
outputs a program solving the membership problem for x = S.

Finally, consider A-BAR(ϕ〈tℓ − 1〉). Recall that ℓ < n and for all t < tℓ, ϕ(t) 6= E(ℓ).
Thus E(ℓ) is not contained in the ϕ〈tℓ − 1〉. Furthermore, since ℓ < n A-BAR will stop and
output a program solving the membership problem for E(ℓ), which is incorrect.

It follows that tℓ is the convergence point at and after which A-BAR always outputs a
program solving the membership problem for S = x. ���

3



draft—September 29, 2017 J. Heinz

ϕ

t1 t0 tn−1 t2 . . . tℓ

E(0), E(1), E(2), . . . E(ℓ), . . . E(n− 1), x, . . .

Figure 3: Illustrating the the logic of the proof. The first occurence of string E(ℓ) occurs at
tℓ and is the last word prior to x in the enumeration to be observed.

There are many respects in which this learning algorithm is not like human-language
learning. For example, human languages are not like any S in C. And human language-
learning is not enumerative.

But there are some respects in which it is like human language-learning.

• Every stringset S belonging to C is of infinite size.

• There are infinitely many stringsets in C.

• Nonetheless, A-BAR only makes finitely many errors before it converges to a correct
grammar.

This is a very simple example that illustrates how one can write a learning algorithm that
provably solves a non-trivial learning problem. Language is very complicated and language-
learning more complicated yet. As with many fields, it is important to understand the simple
cases like the one here before tackling the more complex stuff.

4



Bibliography

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th Annual Meeting

of the Association for Computational Linguistics , 897–906. Uppsala, Sweden: Association
for Computational Linguistics.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science 457:111–127.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars .
Cambridge University Press.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Math-

ematics of Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol.
6149 of Lecture Notes in Artifical Intelligence, 255–265. Springer.

5


