
draft—December 6, 2017 J. Heinz

3.3 Input Strictly k-Local Transductions

Tracing the paths through a given deterministic finite-state automaton also helps us under-
stand how transductions can be learned. A string-to-string transduction is a function from
Σ∗ to ∆∗.

Each DFA describes a class of transductions as follows. Each transition δ(q, a) is associ-
ated with an output string θqa. Each state is also associated with an output string θq⋉, and
the initial state is also associated with an output string θ⋊. The strings associated with each
transitions and each state are the parameters of the model the DFA describes.

We define a function π which describes the computational “process” and “path” string
w ∈ Σ∗ takes from any state q ∈ Q with any initial string value v ∈ ∆∗. The operator (·)
refers to concatenation.

π(q, λ, v) = v · θq⋉

π(q, wa, v) = π(δ(q, a), w, v · θqa)

(6)

Then the function such a string-weighted DFA A describes is given by the equation below.

fA(w) = π(q0, w, θ⋊) (7)

Figure 4 shows two Input Strictly 2-Local functions with Σ = ∆ = {a, b, c}. The first
function describes “progressive b-assimilation.” As a rewrite rule, this process would be
expressed as c → b/b . The second function describes “regressive b-assimilation.” As a
rewrite rule, this process would be expressed as c → b/ b.

λ

a

b

c

a:a

b:b

c:c

a:a

b:b

c:c

a:a

b:b

c:b

a:a

b:b

c:c

λ

λ

λ

λ

λ

λ

a

b

c

a:a

b:b

c:λ

a:a

b:b

c:λ

a:a

b:b

c:λ

a:ca

b:bb

c:c

λ

λ

λ

λ

c

Figure 4: 2-ISL transducers for progressive b-assimilation (left) and regressive b-assimilation
(right).

The identification in the limit paradigm for positive data natrually yields a definitions
transduction learning. A positive presentation is now example transductions, which are
input-output pairs (w, f(w)).

10



draft—December 6, 2017 J. Heinz

More precisely, a positive presentation of a string-to-string function f is a function
ϕ : N → f such that ϕ is onto. This means for every input-output pair (w, f(w)) defined by
f , there is some n ∈ N such that ϕ(n) = (w, f(w)).

Definition 7 (Identification in the limit from positive data (function version)).

Algorithm A identifies in the limit from positive data a class of string-to-string functions
C provided

16

17

for all functions f ∈ C,18

for all positive presentations ϕ of f ,19

there is some number n ∈ N such that20

for all m > n,21

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

22

23

• the program output by A on ϕ〈m〉 which takes any string w ∈ Σ∗

for which f is defined as input and returns f(w) as output.
24

25

The algorithm SOSFIA (Structured Onward Subsequential Function Inference Algo-
rithm) (Jardine et al., 2014) provably identifies the k-ISL functions in the limit from positive
data.

Here is a summary of how SOSFIA works with illustrations by examples. Given a sample
S of input-output pairs, SOSFIA calculates the common output (common out) of every prefix
of any input string. The common output of an input prefix u is the longest prefix common to
all the output strings whose corresponding input strings have prefix u. This longest common
prefix is denoted lcp.

SOSFIA then uses these common outputs to calculate the minimal change (min change)
each letter introduces to the output string. These minimal changes are the parameter values
(the outputs associated with the transitions). Minimal change is calculated using “left
division.” This operation “strips away” a prefix of a string. Formally, whenever w = uv
then u−1w = v. We say “the left division of w by u equals v.”

Formal definitions of common out and min change from Jardine et al. (2014, p. 101).

Definition 8. The common output of an input prefix w in a sample S ⊂ Σ∗ × ∆∗ for t is
the lcp of all t(wv) that are in S: common outS(w) = lcp({u ∈ Σ∗ | ∃v s.t. (wv, u) ∈ S})

Definition 9. The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to wσ is:

min changeS(σ, w) =

{

common outS(σ) if w = λ
common outS(w)

−1common outS(wσ) otherwise

11



draft—December 6, 2017 J. Heinz

Consider progressive b-assimilation and let the sample S be as shown.

S = {(aa, aa), (ab, ab), (ac, ac), (ba, ba), (bb, bb), (bc, bb), (ca, ca), (cb, cb), (cc, cc)}

The input prefixes in this sample are Si = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}. So we
need to calculate the longest common prefix of all the outputs associated with each string.
Here they are.

common outS(λ) = lcp(f(Si)) = λ

common outS(a) = lcp(f(a), f(aa), f(ab), f(ac)) = a
common outS(b) = lcp(f(b), f(ba), f(bb), f(bc)) = b
common outS(c) = lcp(f(c), f(ca), f(cb), f(cc)) = c

common outS(aa) = lcp(f(aa)) = aa
common outS(ab) = lcp(f(ab)) = ab
common outS(ac) = lcp(f(ac)) = ac

common outS(ba) = lcp(f(ba)) = ba
common outS(bb) = lcp(f(bb)) = bb
common outS(bc) = lcp(f(bc)) = bb

common outS(ca) = lcp(f(ca)) = ca
common outS(cb) = lcp(f(cb)) = cb
common outS(cc) = lcp(f(cc)) = cc

With the common out values we can calculate the minimal changes.

min changeS(a, λ) = common outS(a) = a
min changeS(b, λ) = common outS(b) = b
min changeS(c, λ) = common outS(c) = c

min changeS(a, a) = common outS(a)
−1common outS(aa) = a−1aa = a

min changeS(b, a) = common outS(a)
−1common outS(ab) = a−1ab = b

min changeS(c, a) = common outS(a)
−1common outS(ac) = a−1ac = c

min changeS(a, b) = common outS(b)
−1common outS(ba) = b−1ba = a

min changeS(b, b) = common outS(b)
−1common outS(bb) = b−1bb = b

min changeS(c, b) = common outS(b)
−1common outS(bc) = b−1bb = b (!!)

min changeS(a, c) = common outS(c)
−1common outS(ca) = c−1ca = a

min changeS(b, c) = common outS(c)
−1common outS(cb) = c−1cb = b

min changeS(c, c) = common outS(c)
−1common outS(cc) = c−1cc = c

The minimal change letter σ with string w gives us the output string at the state suffk−1(w)
for the transition labeled σ. Above, we would have min changeS(σ, q) = θqσ.

12



draft—December 6, 2017 J. Heinz

Now consider regressive b-assimilation and let the sample S be as shown.

S =

{

(aa, aa), (ab, ab), (ac, ac), (ba, ba), (bb, bb), (bc, bc), (ca, ca), (cb, bb), (cc, cc),
(aca, aca), (acb, acb), (bca, bca), (bcb, bbb), (cca, cca), (ccb, cbb)

}

As before, the input prefixes in this sample are Si = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}.
So we need to calculate the longest common prefix of all the outputs associated with each
string. Here they are.

common outS(λ) = lcp(f(Si)) = λ

common outS(a) = lcp(f(a), f(aa), f(ab), . . .) = a
common outS(b) = lcp(f(b), f(ba), f(bb), . . .) = b
common outS(c) = lcp(f(c), f(ca), f(cb), . . .) = λ (!!)

common outS(aa) = lcp(f(aa)) = aa
common outS(ab) = lcp(f(ab)) = ab
common outS(ac) = lcp(f(ac), f(aca), f(acb)) = a (!!)

common outS(ba) = lcp(f(ba)) = ba
common outS(bb) = lcp(f(bb)) = bb
common outS(bc) = lcp(f(bc), f(bca), f(bcb)) = b (!!)

common outS(ca) = lcp(f(ca)) = ca
common outS(cb) = lcp(f(cb)) = bb
common outS(cc) = lcp(f(cc), f(cca), f(ccb)) = c (!!)

With the common out values we can calculate the minimal changes.

min changeS(a, λ) = common outS(a) = a
min changeS(b, λ) = common outS(b) = b
min changeS(c, λ) = common outS(c) = c

min changeS(a, a) = common outS(a)
−1common outS(aa) = a−1aa = a

min changeS(b, a) = common outS(a)
−1common outS(ab) = a−1ab = b

min changeS(c, a) = common outS(a)
−1common outS(ac) = a−1a = λ

min changeS(a, b) = common outS(b)
−1common outS(ba) = b−1ba = a

min changeS(b, b) = common outS(b)
−1common outS(bb) = b−1bb = b

min changeS(c, b) = common outS(b)
−1common outS(bc) = b−1b = λ

min changeS(a, c) = common outS(c)
−1common outS(ca) = λ−1ca = ca

min changeS(b, c) = common outS(c)
−1common outS(cb) = λ−1bb = bb

min changeS(c, c) = common outS(c)
−1common outS(cc) = λ−1c = c

Again, we see that min changeS(σ, q) = θqσ.
Readers are referred to the paper for full details on SOSFIA and that it provably identifies

in the limit the class of k-ISL functions.

13



draft—December 6, 2017 J. Heinz

3.4 Output Strictly k-Local Transductions

Chandlee et al. (2015) prove a similar algorithm for inferring k-OSL functions.

3.5 Generalizing to any DFA

The aforementioned strategies hold for any deterministic finite-state automata. In other
words, each deterministic finite state machine defines a class of stringsets, a class of stochastic
stringsets, and a class of transductions, and each class can be learned with the methods
described above.

Heinz and Rogers (2013) establish this for Boolean case. For stochastic stringsets, this re-
sult was known much earlier. Jardine et al. (2014) establish this for “Input” based transduc-
tions. For output-based transductions, the theorems Chandlee et al. (2015) do not address
this general case, but the same techniques apply there as well.

To my knowledge, these results have not yet been ported to tree automata.

References

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral dissertation, The
University of Delaware.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2014. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics 2:491–503.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2015. Output strictly local functions. In
Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), edited by
Marco Kuhlmann, Makoto Kanazawa, and Gregory M. Kobele, 112–125. Chicago, USA.

Chandlee, Jane, and Jeffrey Heinz. Forthcoming. Strictly local phonological processes. Lin-
guistic Inquiry .

Chandlee, Jane, Jeffrey Heinz, and Adam Jardine. To appear. Input strictly local opaque
maps. Phonology .

Heinz, Jeffrey, and James Rogers. 2013. Learning subregular classes of languages with fac-
tored deterministic automata. In Proceedings of the 13th Meeting on the Mathematics
of Language (MoL 13), edited by Andras Kornai and Marco Kuhlmann, 64–71. Sofia,
Bulgaria: Association for Computational Linguistics.

Jardine, Adam, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014. Very efficient learn-
ing of structured classes of subsequential functions from positive data. In Proceedings of
the Twelfth International Conference on Grammatical Inference (ICGI 2014), edited by
Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka, vol. 34, 94–108. JMLR: Work-
shop and Conference Proceedings.

14



draft—December 6, 2017 J. Heinz

Vidal, Enrique, Franck Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C.
Carrasco. 2005a. Probabilistic finite-state machines-part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27:1013–1025.

Vidal, Enrique, Frank Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C.
Carrasco. 2005b. Probabilistic finite-state machines-part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27:1026–1039.

15


