Input Strictly Local Opaque Maps

Chandlee, Heinz, and Jardine (to appear in *Phonology*)

1. Introduction

- Extension: opaque generalizations provided by Bakovic (2007)
- Proposal: opaque generalizations have the property of being Input Strictly Local (ISL).
 - computational nature of opacity is as simple as single processes.
 - by transformation (relating underlying representations to surface representations; input-out map)

2. Background

- 2.1 Intensional and extensional descriptions
- 2.2 Input Strictly Local (ISL) functions

2.3 Finite-state characterization of ISL functions

- Finite-state transducer (FST): start state, transitions, final state (e.g., final deletion)
 - e.g., FST mapping *tat* to *tat* (5) and *tata* to *tat* (6): five states needed (λ , t, a, \rtimes , \ltimes) in Fig. 3
 - If *a* is read, it is not written right away because it is unknown whether that *a* is word-final.
 - The ability to write λ allows the ISL FST to deterministically decide whether to write a V.

2.4 Properties of ISL functions

2.5 Relevance to phonological theory

• Restrictive class of maps--subclasses of both the regular and subsequential classes of maps

3. Opaque ISL maps

• 4 categories of opaque maps can be modeled with ISL functions (direct input/output map).

3-ISL

- Different *k*-values to account for the data
 - Cross-derivational feeding in Lithuanian: 2-ISL
 - Counterbleeding in Yowlumne:
 - Non-gratuitous feeding in Classical Arabic: 3-ISL
 - Fed Counterfeeding in Tundra Nenets: 3-ISL

3.1 Input/output tables

- Weakness of FST: as the number of states and transitions \uparrow , FST harder to read graphically
- Instead, an input/output table (list of the transitions of the ISL FST) used with same purpose

	1-suffix	Input	Output		1-suffix	Input	Output		1-suffix	Input	Output
a.	λ	×	×	e.	t	×	×	i.	a	t	at
b.	×	\ltimes	\ltimes	f.	t	t	t	j.	a	a	a
с.	×	t	t	g.	t	а	λ				
d.	×	a	λ	h.	а	×	×				

Table 1: Full input/output table for the ISL FST in Figure 3.

\rtimes	t	a	t	×	×	t	a	t	\ltimes	×	t	a	t	\ltimes	>	×	t	a	t	\ltimes
\rtimes	t				×	t	λ			×	\mathbf{t}	λ	at		>	×	t	λ	at	×
		(1c))			((1g))				(1i)					(1e)	

Table 2: Example derivation using an input/output table (the first step is omitted)

• Abbreviated input/output table: only shows cases where inputs do not match the outputs

(7) Danish lowering: $\varepsilon \to \varpi/r _; e \to \varepsilon/r _; i \to e/r _$

	1-suff	Input	Output
a.	r	i	е
b.	r	е	3
с.	r	3	æ

Table 4: Abbreviated input/output table for Danish lowering

\rtimes	i	r	i	\ltimes	\rtimes	i	r	i	×	\Join	i	r	i	\ltimes	>	A	i	r	i	\ltimes
×	i				×	i	r			×	i	r	е		>	A	i	r	е	\ltimes
												(4a	.)							

Table 5: Example derivation using Table 4

3.2 Cross-derivational feeding in Lithuanian (2-ISL: scanning a window of size 2)

- Opacity in which one process applies in order to avoid a derivation in which another process would create a marked structure
 - (8a) [i]-epenthesis occurs between identical obstruents.
 - (9a) Voiceless obstruents assimilate to following voiced obstruents.
 - (8) a. Epenthesis in Lithuanian (Baković, 2007) $\emptyset \rightarrow i / K_1 K_2$, where $K_1 = K_2$
 - b. $/at-taiki:ti/\rightarrow [atitaiki:ti]^9$, 'to make fit well'
 - (9) a. Voicing assimilation in Lithuanian (Baković, 2007; Odden, 2005) K \rightarrow [+voice] / _ D
 - b. /ap-gauti/ \mapsto [abgauti], 'to deceive'
 - (10) Cross-derivational feeding in Lithuanian (Baković, 2005; Odden, 2005) /ap-berti/ \mapsto [apiberti], 'to strew all over'; *[abberti],*[abiberti]

 \rightarrow The application of epenthesis and not assimilation: overapplication to avoid *DD

- Solution to the interaction of epenthesis and assimilation: a single 2-ISL map
 - When K appears in the input, its output is delayed until it is determined for voicing assimilation (i.e., depends on the following segment). (6a, 6b, 6e, 6f)
 - If following segment is D of a *diff*. place: output as D & no epenthesis (6l, 6p) (i.e., voicing assimilation in heterorganic segments)
 - If following segment is obs. of the *same* place: both K and [i] are output (6q, 6s) (i.e., V-epenthesis of identical segments)
 - When a K is followed by a homorganic D: output as KiD (6r, 6t)

	1-suff	Input	Output		1-suff	Input	Output		1-suff	Input	Output
a.	×	t	λ	h.	V	b	b	о.	р	t	р
b.	\rtimes	р	λ	i.	t	V	tV	р.	р	d	bd
с.	\rtimes	d	d	j.	t	×	tκ	q.	t	t	ti
d.	\rtimes	b	b	k.	t	р	t	r.	t	d	tid
е.	V	t	λ	l.	t	b	db	s.	р	р	pi
f.	V	р	λ	m.	р	V	$_{\rm pV}$	t.	р	b	pib
g.	V	d	d	n.	р	×	рĸ				

Table 6: Abbreviated input/output table for Lithuanian cross-derivational feeding

3.3 Counterbleeding in Yowlumne (3-ISL: scanning a window of size 3)

- (11a) All long Vs become [-high]; (11b) Vs in closed syllables shorten (i.e., (11b) bleeds (11a).)
 - (11) a. $[+long] \rightarrow [-high]$
 - b. $V \rightarrow [-long] / _C \{C, \ltimes\}$
- (12) Overapplication of (11a) because application of (11b) removes the triggering long V.
 - (12) Yowlumne (McCarthy, 1999) /mi:k-hin/ \mapsto [mekhin], 'swallowed'
- Solution to the interaction of lowering and shortening: a single 3-ISL map
 - When a high long V is read, the output is delayed (8a-h) until it is determined whether the following input is:
 - C: output still cannot be determined (81-n)
 - C^k or CC: both lower and shorten the V (8p, 8q); output as [eC]
 - something else (not a shortening environment): output as [e:] (lowering only) (8i-k)
 - /V/ following /i:C/ (not a shortening environment): output as [e:CV] (80)
 (i.e., the output [e:C] of /i:C/ 2-suff. concatenated to the output [V] for the new input)
 - Non-high long Vs (i.e., /V:/) are shortened without lowering (8r-8y).

	2-suff	Input	Output		2-suff	Input	Output		2-suff	Input	Output
a.	×С	i:	λ	j.	Ci:	V	e:V	s.	CV	V:	λ
b.	CC	i:	λ	k.	Vi:	V	e:V	t.	VC	V:	λ
с.	VC	i:	λ	1.	≫i:	\mathbf{C}	λ	u.	VC	V:	λ
d.	i:C	i:	λ	m.	Ci:	\mathbf{C}	λ	v.	CV:	\mathbf{C}	λ
e.	×V	i:	λ	n.	Vi:	С	λ	w.	VV:	\mathbf{C}	λ
f.	CV	i:	λ	о.	i:C	V	e:CV	x.	V:C	\mathbf{C}	VCC
g.	VV	i:	λ	p.	i:C	С	eCC	y.	V:C	×	VC
h.	i:V	i:	λ	q.	i:C	\ltimes	$\mathrm{eC}\ltimes$				
i.	≫i:	V	e:V	r.	$\mathbf{C}\mathbf{C}$	V:	λ				

Table 8: Abbreviated input/output table for Yowlumne counterbleeding

- **3.4 Non-gratuitous feeding in Classical Arabic (CA)** (3-ISL: scanning a window of size 3)
- Structural description of one process is obscured by a second process that is fed by the first.
- In CA, (14a) vowel epenthesis before an initial CC.
 - (14b) glottal stop epenthesis before initial vowels ((14a) feeds (14b).)
 - (13) Classical Arabic (McCarthy, 2007) /ktub/ \mapsto [?uktub], 'write.MASCSG!'
 - (14) a. $\emptyset \rightarrow V / \# _CC$

b.
$$\emptyset \rightarrow ? / \# V$$

- Solution to the interaction of V-epenthesis and ?-epenthesis: a single 3-ISL map
 - If the suffix is \rtimes : input /V/ is output as [?V] (environment for ?-epenthesis) (10a) input /C/ is output as λ (delayed) (10b)

• If the suffix is \rtimes C: if /V/ follows, [CV] (V-epenthesis not applied) (10c)

if /C/ follows,	both V	and ? epenth	esis [?VCC]	(10d)
-----------------	--------	--------------	-------------	-------

	2-suff	Input	Output		2-suff	Input	Output
a.	×	V	$^{2}\mathrm{V}$	c.	×С	V	CV
b.	×	\mathbf{C}	λ	d.	×С	\mathbf{C}	?VCC

Table 10: Abbreviated input/output table for Classical Arabic epenthesis

3.5 Fed Counterfeeding in Tundra Nenets (3-ISL: scanning a window of size 3)

- (16a) Debuccalization (loss of original POA and becomes [?]); (16b) vowel deletion
 - (15) Tundra Nenets (Kavitskaya and Staroverov, 2010)

a.
$$/tasn/ \mapsto [tas]$$
, 'whole

b. $/t^{j}imjAS/ \mapsto [t^{j}imj?]$, 'it rotted'

(16) a.
$$\{t, d, s, n, \eta\} \rightarrow ? / _ #$$

b. $\Lambda \rightarrow \emptyset / _ (?) #$

- The same two rules can exhibit both feeding ((16a) feeds (16b) for (15b)) and counterfeeding ((16b) counterfeeds (16a) for (15a) *ta?), depending on the input form.
- Solution to the interaction of V-epenthesis and ?-epenthesis: a single 3-ISL map
- If the input is $T = \{t, d, s, n, \eta\}$, output delayed (uncertain whether word-final) (12f-12i)
 - \circ If the input is Λ , output delayed (uncertain whether word-final) (12k)
 - If the 2-suffix ends in T, and the input is T: output as T (because non-final) (12j)

the input is Λ : also output as T (because non-final) (12e)

- V-deletion applied when in word-final position (12t-12w) or before final ? (12s)
- Both deletion and debuccalization (12n) (like the feeding relation between (16a) and (16b))
- Only debuccalization (120-12r): 2-suffixes CT, VT, TT, ?T followed by \ltimes (like (16a))
- Only deletion (12s): because V deletes before the final ? (like (16b))

	2-suff	Input	Output		2-suff	Input	Output		2-suff	Input	Output
a.	XC	Λ	λ	i.	Хл	Т	λ	q.	TT	×	?⊾
b.	XV	Λ	λ	j.	XT	Т	Т	r.	2T	×	2ĸ
с.	X?	Λ	λ	k.	Хл	?	λ	s.	л?	×	2ĸ
d.	Хл	Λ	Λ	l.	Хл	С	лC	t.	C_{Λ}	\ltimes	\ltimes
е.	XT	Λ	Т	m.	Хл	V	лV	u	Vл	×	\ltimes
f.	XC	Т	λ	n.	лT	×	2ĸ	v.	Τл	×	\ltimes
g.	XV	Т	λ	о.	CT	×	2ĸ	w.	24	\ltimes	×
h.	X?	Т	λ	р.	VT	×	?×				

Table 12: Abbreviated input/output table for Tundra Nenets fed counterfeeding

3.6 Discussion

- Two important questions
 - What will the *k*-value of the map that describes their interaction be? Can we predict the *k*-value of the interaction of two ISL processes?
 - No, the composition of two ISL processes is not simply the largest of their respective *k*-values, nor their sum.

§	Opacity Type	Language	Pro A	cess B	Interaction
3.2	cross-derivational feeding	Lithuanian	k=2	k = 2	k = 2
3.3	counterbleeding	Yowlumne	k = 1	k = 3	k = 3
3.4	non-gratuitous feeding	Classical Arabic	k = 3	k = 2	k = 3
3.5	fed counterfeeding	Tundra Nenets	k=2	k = 3	k = 3
5.1	counterfeeding on environment	Bedouin Arabic	k = 3	k = 3	k = 3
5.2	counterfeeding on focus	Bedouin Arabic	k = 3	k = 3	k = 3
5.3	self-destructive feeding	Turkish	k = 3	k = 4	k = 5

Table 14: The $k\mbox{-values}$ for the ISL maps analyzed in $\S3$

- Is the class of ISL functions closed under composition? (= Is the composition of any two ISL functions guaranteed to also be ISL?)
 - No, subsets of ISL class may be...

4. Comparison to other theories of phonology

4.1 Points of comparison: generation and recognition, learnability, typology

4.2 Generation and recognition

- Whether the correct output is generated from a given input, and vice versa.
- Rule-based: have solutions (evidence: all maps for phonology can be expressed as a list of ordered SPE-style rewrite rules.)
- OT: have solutions provided some conditions are met.; lack a comprehensive solution

4.3. Learnability

- Rule-based: some results but not strong; more phonology-specific information needed
- OT: despite variants of the core OT theory, no results for the diversity of opaque maps

4.4 Typology

- Predictions for the kinds of maps that should and should not occur
- Rule-based: do not undergenerate; regular; describe with an ordered list of rules
- OT: undergenerate many opaque maps \rightarrow many adjustment to OT made
- ISL undergenerates: Iterative spreading and unbounded C and V harmony (solution: Output SL) LD phonotactic phenomena (solution: SP, TSL) ... and combination
 - Compared to OT: no special modification needed; subregular properties such as input strict locality speak directly to the computational nature of phonology