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Further reading 

Exercise 4.4 
Copy lpcana. c to lpcana2 . c. Amend lpcana2 . c so that it writes out 
lp rather than coeffs. Compare the lp files with some original audio 
recordings. 

Exercise 4.5 
Examine joe.dat (or another recorded signal) to determine the approximate 
location of each vowel, Write down the sample numbers of points approxi
mately 1/4 and 3/4 of the way through each vowel. Use lpc_spectrum to 
estimate the first three formants of each vowel. Compare them to published 
tables of vowel formants, such as those in Olive et al. 1993. 

Most of the topics covered in this chapter are described (without implementation in software) in Wakita 
1996. For more about Fourier analysis in C and the Fast Fourier Transform, see Press et al. 1992: 496-510 
and 537-53. For more on windowing, see Press et al. 1992: 553-8. Cepstral analysis is well described by 
Wakita 1996, autocorrelation pitch tracking by Johnson 1997: 33-6 and Linear Predictive Coding by Johnson 
1997: 40-4 and Schroeder 1985. The C implementation given in this chapter is closely based on Press et a!. 
1992: 564-72. 

Reading in preparation for the next chapter 
Chomsky 1957: 18-20. 

5 Finite-state 
machines 

The previous chapters concentrated on signal-oriented 

methods for speech processing. In this chapter, our 

attention turns to language processing, starting with finite

state machines. These are rather simple computational 

devices applicable to various kinds of language-processing 

tasks. We examine a variety of examples of their use. 



FIGURE 5.1 

5.1 Some simple examples 

A finite-state 1nachine is an abstract con1puting device. (You will some· 
times see the terms 'finite-state automaton' or 'finite-state transition 
network' instead, which mean the same thing as finite-state machine.) 
We will look at some concrete implementations of finite-state 111achines 
and the uses to which they are put in due course. In fact, it is reason
able to say that finite-state machines are nowadays the niost i1nportant 
co1np11tationaJ technique in language They are 
used in relating signals to word transcriptions, in morphological and 
syntactic processing, and even in 111achine translation. The uses of 
these abstract computing devices are many and varied, and the partic
ular purposes that we will put them to here are representative exam
ples, mainly applications involving speech and the structure of words. 
So I an1 going to begin by looking at some examples that are concerned 
with phonotactics, that is, the well-forn1edness of sequences of phono
logical symbols. So rather than working on signals, we are going to start 
off by looking at the use of these 1nachines for processing sequences of 
symbols. This is at a slightly higher level of abstraction than in the pre
vious chapters, but as we go on I shall try to make the link between 
symbolic representations and representations of signals. I shall show 
how the two levels can be integrated using a particular kind of finite
state inachine. That will lay the groundwork for some other work that 
comes up in chapter 7, on probabilistic finite-state machines and their 

use in n1odelling speech signals. 
Gazdar and Mellish (1989) give a little exa1nple of a finite-state 

machine: a laughing machine, that is, a machine that generates or rec
ognizes sequences of the letter 'h' followed by 'a', repeated any number 
of times and terminated by an exclamation mark (figure 5.1). This 
machine will generate or recognize sequences such as 'ha!', 'haha!', 
'hahaha!' and so on. It is not capable of recognizing any other strings, and 
so if we provide any other strings as the input to this machine they will 
not be accepted: the n1achine is incapable of dealing with them. 

{h} {a} {!} 

c:~~)G[p----0 
{h} 

A finite-state machine works rather like a board game in which you move 
a piece from one position to the next in order to get from one side of the 
board (the start) to the other (the end). There is a start state (state 1, 
marked by a dashed circle), and one or more end states (marked by a dou
ble-ringed circle): in figure 5.1 there is only one end state, state 4. The 
machine is allowed to n1ove fron1 one state to another according to the 

;nochrncs 

arrows, which are n1arked with labels (sets of syinbols). The machine is 
used to gt'nt•rate strings by writing out one of the symbols on the arrow 
as you pass from one state to the next. Alternatively, the machine can be 
used to accept (i.e. recognise) strings input to the machine by checking off 
a symbol from the beginning of the string if it is among the set of symbols 
with which the arrow is labelled. The set of strings you can generate or 
accept by moving fro1n the start to the end is the language defined by the 
machine. 

Jurafsky and Martin (2000: 34) give a similar simple example. They pres
ent a finite-state machine that defines a 'sheep language'. The words of 
their 'sheep language' start with a b and then have two or n1ore as and an 
exclan1ation mark. Thus, 'baa!', 'baaa!' and 'baaaaaaaaaaa!' 8.re sheepish 
words, but 'ba!', 'baba!' and 'micro-organism' are not. The sheeptalk 
n1achine is reproduced in figure 5.2. 

{a} 

{b} {a} {a} 

,---~ 
{ 1 ) 2 3 
\. __ ... ." 

So, a finite-state machine is an abstract computing device - an imaginary 
computing device, if you like, though we will see some concrete imple
mentations shortly- consisting of (1) a set of states, (2) one of which is dis
tinguished as the start state, (3) some of which are distinguished as end 
states, and (4) a set of labelled transitions between states. 

5.2.A······· •. m.· C'.Jre se. •.tious exam. P.1~ 
,,,, '' ' , ',, 

The previous exan1ples are instructive and easy to understand, but real 
spoken languages are much more complex, of course. Figure 5.3 gives an 
example of a machine that models (i.e. generates or recognizes) a set of 
monosyllabic words in a language rather like English. It is not complete
ly right for English, but it is similar to the sequences of consonants and 
vowels that can occur in English inonosyllables; it's an approximation to 
English. The labels on the transitions are sets of phone1ne sy1nbols, so 
this machine generates or recognizes phonemic transcriptions of mono
syllabic words. (A key to the transcription system is given in table 5.1, 
below.) 

I shall call this machine NFSA1, which stands for 'non-deterministic 
finite-state automaton 1 '. The set of states abstractly represents the set of 
separate conditions the n1achine can be in. There are 16 states in NFSA1. 
When we implement this abstraction as a real, working program, the com
puter will actually pass through a succession of states of the program dur
ing its execution. So state 1 represents the state that the n1achine is in 

FIGURE 5.2 
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when you start the program, the end states represent the actual states 
that the program can be in at its end, and the intermediate states repr~
sent the intermediate steps in the execution of the program. They don t 
necessarily correspond to lines or chunks of the program: they show the 
actual states that the n1achine is in as it is executing the program. The 
way in which the start state is shown with a dashed circl~ and the end 
states are shown with a double circle is just a bit of notation: yo~ could 
use whatever notation you want, and different authors do use different 
notations. The arcs (arrows) drawn between one state node and the next 
represent the transitions of the machine from one state to the next that 
are allowed by that machine. The arcs are labelled with sets of letters of 

the International Phonetic Alphabet in this case, although symbols fr~m 
any set of symbols could be used. Later on I shall _look at examples with 
labels in normal spelling, pairs of symbols fron1 different alphabets, and 

even vectors of LPC coefficients! . 
A5 I said, the way in which the machine works is a bit like a ga1ne in 

which you can 1nove from one state to the next if the first sy~bol of the 
string that Jou are looldng at is one of the labels of the trans1tlon arrow. 
so, for instance, starting at state 1 we can go to state 2 if the string we ~re 
looldng at begins with the phonemes, or we can go to state 3 ifthe string 

we are looking at begins with p. t, k. b, d, 9. f, 0 or J. The rule about how 
we move fron1 one state to another is: you can go from one state to another 
if the beginning of the string that you are processing starts with one of 
the symbols in the set of symbols with which the arrow is labelled. When 
you get to the end of the arrow, you move on past that symbol in the string. 
So for the next state you look at the first symbol of the rest of the string, 
after the one that we looked at in the previous transition. Let's consider 
the actions that this machine might go through in processing the string 
s, t, r, 1, !J. We start in state 1, looldng at the first symbol, s. There are two 
routes we can take: we can either go to state 2 because s is on the arrow 
from 1 to 2, or we can go to state 4 because s is included in the label on 
the arrow from 1 to 4. We inust decide which way to go - that is why the 
machine is called non-detertninislic. (If there were only one possible path 
to take at every node, it would be deter111in!stic.) For now, it doesn't mat
ter how we decide which way to path. We could follow then1 in nun1erical 
order, or we could choose randomly. Let's go to state 2. TI1e next letter of 
the input string is t. Well, that is 01{: we can move to state 3. Then we see 
an r; that's OK because there is a legal transition to state 4. TI1en we see an 
t and there are two ways in which we can 1nove: we can go to state 5 or to 
state 8. I'm going to take the path to state 8 because it is the one that will 
end up worldng out (though a computer would not be able to see that!). In 
state 8 we see an IJ next: that takes us to state 10. State 10 is, an end state, 
and the rule about end states is that you can finish ifthere is nothing left 
of the string by the time that you reach the end state. There are no more 
letters left in the input string, so we can stop there. We say that the 
machine accepts or recognizes the string s, t, r. 1, iJ. This particular · 
machine accepts almost all the monosyllabic words in Mitton 1992, a 
machine-readable English dictionary, apart fro1n a few very unusual 
words, nJostlyforeign words such as Gdansk, IChmer, Pjerm and schmaltz. It also 
accepts a very large number of words that are not actual, 1neaningful 
English words, but that are similar to existing words. Examples are spreJ]kst 
('sprenkst'), spbnd ('splawned'), stmlkt ('strolked'), trAl1 ll ('trultth') and blem. It 

also accepts and generates a large number of words that are quite un
English, such as tknmv. Whether or not a high degree of overgeneration is 
acceptable depends on the application. It is often preferable to design a sys
tem that accepts a wide range of unforeseen inputs than to constrain the 
input so 1nuch that even inputs that ought to be acceptable are rejected. 

Let's consider an input string that the machine will not accept: s, g, r, 
l, n, t. We can get to state 2 withs, but the next symbol, g, is not one of 
the symbols listed in any of the transitions out of that sy1nbol. Now what 
do we do? Well there are several things we could do. The first idea we shall 
consider is that at that point the machine just stops. It doesn't reach the 
end; it stops and says that you have failed. TI1e inachine doesn't recognize 
a string if at so1ne point the conditions for the next syn1bol to be accepted 
aren't met. The strings. g, r, 1, n, t - or any other string beginning with 
s, g - isn't acceptable by this n1achine. 

If you wanted NFSA1 to accept sgnnt or Jnocps (schnapps) or 9drensk 
(Gdansk) you would have to alter the n1achine i11 so1ne way. There is another 
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possibility, though, concerning what to do if the next symbol in the input 
isn't listed on any of the transition labels. Rather than just giving up and 
stopping, the machine can backtrack (go back) along the arrow that it just 
followed and see if there are any other routes out of the previous state 
that would also be acceptable. For exan1ple, when analysing s, t, r, J, lJ, if 
we had first decided to move from state 1 to state 4, we would not be able 
to go on from state 4 because the next symbol, t, is not on any of the tran
sitions out of state 4. But that does not mean thats, t, r, i, lJ, is an unac
ceptable string: it's just that we were pursuing the wrong route through 
the machine. If we backtrack to state 1 and try a different route through 
the network, we can eventually accept the string. If, when you have 
explored every possible route, you find that you still can't reach an end 
state with no symbols left, the string isn't acceptable by any route through 
the network. At that point we say, 'no, the string we are analysing is 
ungrammatical (or unacceptable)'. 

Student: But if you are at state 3 can you backtrack all the way to state 1? 
Yes, you can; if the input was p1t and you went from state 1 to state 3, 
you could backtrack from 3 to 1 in one go. You can backtrack as much 
as is necessary, but you 1nust backtrack one step at a time, and you 
must retrace the transition you took. You can't backtrack arbitrarily 
far in one go; you have to backtrack to the previous state, and then 
you try other routes forward. If they don't work out, you can back
track further back, and you could end up getting back to state 1, and 
be unable to proceed through the network any further. For example, 
if the input is spnme ('sprimth'), we can go from state 1 to 2, 3, 4, 8, 
and 10, but then we cannot go any further, as 0 is not on any of the 
labels of the transitions out of state 10. Backtracking to 8 is no help, 
though if we go back to 4 we can try 5 instead. But that's no good: m 
is not listed on the transition out of 5. So back to 4, and no other 
ways forwards. Back to 3, 2, still no good. Right back to 1: we could try 
going from 1 to 4 instead, but it is a fool's errand: we cannot get any 
further. spr1n19 is just no good. 

s,3.Deterlllinistfo and non-deterministic 
automata. 

We will make use of this backtracking n1ethod in the implementation of 
the machine below. Note that this method is only relevant to nond<:ter-
1ninistic FSAs: in detern1inistic FSAs, by definition, there is only ever one 
1nove you can make for each symbol in the input. In a deterministic finite
state machine, in each state there is only ever (at most) one transition that 
you can make fqr a given input symbol, there are never any cases like state 
1 ofNFSA1 where if the next symbol is s, p, t, k, b, d, g, !, 8 or J there are 
two ways you can go. Or at state 8 if the next symbol is 1, there are three 

1nachines 

ways you can go. This is a non-deterministic finite-state machine, because 
you sometimes can't detern1ine the right way to go forwards. You would 
have to toss a coin or so1nething, and choose one. In a deterministic finite
state machine there is no need for backtracking: at each step there is only 
one way you can go forward, for a given input string, so there is no need 
for backtracldng. 

Figure 5.4 shows a detern1inistic variant ofNFSA1 that accepts (or gen
erates) almost exactly the same set of strings. To make DFSA1, a few 
changes to NFSA1 had to be made. Some extra states had to be introduced 
(these are shaded) and so1ne extra transition arcs (those with broken 
lines). Also, the transition labels had to be altered. Additionally, we have 
allowed for the possibility of en1pty transitions: that is, moves forwards 
without reading a symbol from the input string (or, equivalently, reading 
the en1pty symbol, "). For exan1ple, to read the string sAn (sun), the fi_rst 
symbol is s, so the nJachine 1nust go from state 1 to state 2. Then, the next 
symbol is A. This is not in the transition label from state 2 to 3, nor in the 
transition label fron1 2 to 4. But the empty symbol 11 is in the transition 
label from 2 to 4, so we can go to state 4. Now A is still the first symbol of 
the re1nainder of the input string: from state 4 we can go to state Sb. Then, 

DFSAI 

{o] 

FIGURE 5.4 
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reading n, we can go to state 10. As 10 is an end state and there are no let

ters left, we can stop: sAn is acceptable. 
Non"deterministic FSAs are no more or less powerful than deterministic 

ones, in the sense that for any language that can be accepted by a non
deter1ninistic inachine, a deterministic machine can be constructed that 
accepts it, and vice versa. Furthermore, a non-deterministic machine can 
be automatically turned into an equivalent deterministic machine: 

Hopcroft et al. 2000 gives details. 
We only use backtracking in non-deterministic finite-state machines, 

where at some points there might be two or n1ore options to take. So if we 
take one route and it turns out not to have been right, we can backtrack 
and explore other possibilities. So backtracking enables us to implen1ent 
a kind of parallel processing. We can't actually do the processing in paral
lel, following different routes at the sa1ne time, but we can explore vari
ous possibilities one after the other until we have e:xl1austed all the possi
ble paths through the network, if necessary. If we reach an end state 
before exploring the whole graph, then fine, the string is acceptable, and 

we can stop there. 

An implementation of this example is given in listing 5.1. TI1is particu
lar implementation is in Prolog, a program1ning language that is quite 
easy to understand, but one that is very different from C. Some of the 
most salient differences are listed in the following text box, though you 
don't need to study this now in order to go on. A good Prolog interpreter, 
SWI-Prolog, is provided on the CD-ROM, and there is a helpful website 
that goes with it (see the companion website to this book for a link). 

Some differences between Prolog and C 

1. Prolog programs are not normally compiled: they are interpreted. 
That ineans that you start the Prolog interpreter, and then you can 
type in one definition or question at a time. Or you can put your 
definitions and questions in a file and run it, in which case the 
Prolog interpreter will go through them one at a time just as if you 

were typing them in. 
2. There is no 'main' procedure: if your progra1n defines various 

predicates (which are somewhat like C functions), you can tell the 
interpreter to call (i.e. run) any of them. This means that there are 
many ways of running a program. It depends on what you ask t11e 

interpreter to do. 
3. There is no 'pre-processor' {a feature peculiar to C). To incorporate 

one pro~ram file within another (as with the C #define filename 

pre-processor command), in Prolog we talk of 'consulting' that file, 
expressed either as 'consult (filename).' or' [filename].', 

finitf-:--s'tate rnochines 

depending on the implementation of Pro log you are using. (Note 
th~t Prolo~ clauses end with a full stop, whereas in C they are ter
minated with a semicolon. The punctuation is different in other 
respects too. Instead of C's { ... }, for instance, you can use { ... ) in 
Prolog, though it is usually not necessary.) 

4. The data type of a variable does not need to be declared in 

ad~ance {~ooray!). In fact, a variable can be used to hold objects of 
various kinds. However, there are fewer numeric types than in c, 
and they do not relate to the actual storage of different kinds of 
~um~er~ in the computer's memory. If you write anything to a 
file, it will be written as an ASCII description of the object: this is 
true even of integers and floating point numbers! The difference 
between variables and constants is shown typographically: vari
able names begin with a capital letter or the underscore symbol . 
Anyt~ing else is a constant. (To make a constant that begins with 
a capit~l letter, you can put it in single quotes. Anything in single 
quotes Is a constant.) Thus, John is a variable, john is a constant 
1John' is a constant and _constant is a variable (because it ' 
begins with an underscore). A, B, c, x, Xl, string, what, 

Result and Anything are typical variables. ASCII letters and 
numbers are constants, as are operator symbols like +, <, and the 
reserved words of the language such as consult, is and 
name. 

5. The content of a variable is only fixed within a clause (i.e. it is local 
~o each function). Thus, if I use the variable A in two clauses, there 
IS not necessarily any connection between them. 

6. Prolog is a logic programnring language. One clause calls another 
by a process of logical inference called theorem proving. This 
means that you do not need to tell the interpreter the order in 
which the clauses in a program should be executed. Also contra
dictory, inconsistent, illogical programs fail, whereas in ~ it is 
unfortunately easy to write illogical programs. 

There are several good textbooks on Prolog; some titles are recom
mended in the 'further reading' section at the end of this chapter. 

There are s~v~ral main ways to represent strings in Prolog that we could 
use. For this implementation, we shall write a string as a list of letters 
se_parated by commas and enclosed in square brackets. For example, w~ 
will encode pet as [p, e, t J. Non·roman IPA letters will need to be 
expressed using some kind of translation into ASCII symbols. I shall use 
th d' . . e enco 1ng rn table 5.1, which is based on that used in Mitton 1992 
with one 1nodification: 'C' and 'J' are used instead of Mitten's 'tS' a d 
'dZ'. This avoids an unnecessary co111plication with the machine: itnis 
not very important or necessary, though. Capital letters, like the capi
tal T, or the capital C, and so on, should be enclosed in single quotes in 
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p p 112 

116 

k k 107 

b b 98 

d d 100 

g g 103 

tJ 'C' 67 

d3 'J' 74 

102 

8 'T' 84 

s s 115 

J 'S' 83 

h h 104 

v v 118 

il 'D' 68 

z z 122 

3 'Z' 90 

m m 109 

n n 110 

u 'N' 78 

108 

r 114 

w w 119 

106 

pot, spot 'I' 73 pit 

tot, stock e e 101 pet, head 

cot, sock, & '&' 38 pat 

quay, key 

bet ,\ 'V' 86 putt, cut, blood 

debt D 0 48 pot 

get, guard u 'U' 85 put, foot, wolf 

church, etch a '@' 64 the, an 

judge 105 feet, heat 

fit, off, sphere Cl e, 111 101, 73 fate, raid, may 

thick ar a, ii' 97, 73 pie, my 

sit, kiss, psych OI o, ·r 111, 73 toy, quoit 

ship, quiche u u 117 food, blue 

hot ju j, u 106, 117 new, cue, you 

vet, give 0U '@',1U1 64,85 go, toe, toad 

this au a, 1u' 97, 85 cow, loud 

zoo, size ,, 'I','@' 73, 64 pier, peer, fear 

rouge ea e,'@' 1011 64 pair, pear, care 

met 3 3 51 verse; fur, fir 

net, knot UC TU\'@' 85,64 tour 

sing, think 3 'O' 79 or, law, taut 

let, tell a 'A' 65 tar 

rot, write 

wet 

yet 

Prolog if they are to be used as constants, because capitals in Prolog rep
resent variables. When we want to use capital letters as constants we 
have to put them in single quotes. Thus, .fgu is encoded as the list 

[
1S1

,
1@ 1

,
1U1

]. Note that O (zero), used to encode IPA n, and 3 (three), repre
senting IPA 3, do not need to be put in quotes, because numerals are 

constants anyway. 

/* NFSAl. PL 
/* 

A nondeterministic finite-state automaton to */ 
recognize English-like monosyllabic phoneme strings */ 

accept(String) :- rnove(sl,String) 

move(State,Syrnbol) :

transition(State,Syrnbol,end). 
move(StateA, [SymboljRest]) ,_ 

transition(Statel,Syrnbol,StateB), 
move(StateB,Rest). 

I* Enumerate all acceptable strings */ 

loop:- accept(A), write(A), nl, fail. 

transition(s1,s,s2). 
transition(s1,p,s3). 
transition(sl,t,s3). 
transition(sl,k,s3). 
transition(sl,b, s3). 
transition(sl,d,s3). 
transition(sl,g,s3). 
transition(sl,f,s3). 
transition(sl, 'T' ,s3) 
transition(sl, 'S' ,s3) 
transition(sl,p, s4). 
transition(sl, t, s4). 
transition(sl,k,s4}. 
transition(sl,b,s4). 
transition(s1,d,s4). 
transition(sl,g,s4). 
transition(s1,f,s4). 
transition(sl,v,s4). 
transition(sl,s,s4). 
transition(sl, 'T' ,s4) 
transition(sl, 'D' ,s4). 
transition(sl, 'S' ,s4). 
transition(sl,h,s4). 
transition(sl, 'C' ,s4). 
transition ( sl I t J t I s4) 
transition(s1,r,s4). 
transition(sl, 1, s4). 
transition(sl,w,s4). 
transition(s1,j,s4). 
transition(sl,m,s4). 
transition(s1,n,s4). 
transition(s2,p,s3). 
transition(s2,t,s3). 
transition(s2,k,s3). 
transition(s2,p,s4). 
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transition(s2,t,s4). 
transition(s2,k,s4). 
transition(s2,m,s4). 
transition(s2,n,s4). 
transition(s2,l,s4). 
transition(s2,w,s4). 
transition(s2,f,s4). 
transition(s3,r,s4). 
transition(s3,l,s4). 
transition(s3,w,s4). 
transition(s3,j,s6). 
transition(s4, 'I' ,s5) 
transition(s4,e,s5). 
transition(s4, '&' ,s5) 
transition(s4,o,s5). 
transition(s4, 'U' ,s5). 
transition(s4, '@' ,s7). 
transition(s4,a,s7). 
transition(s4, 'I' ,s8). 
transition(s4,e,s8). 
transition(s4, '&' ,s8) 
transition(s4, 'V' ,s8) 
transition(s4,0,s8). 
transition(s4, 'U' ,s8) 
transition(s4,3,s9). 
transition(s4, 1 A 1 ,s9) 
transition(s4, '0' ,s9) 
transition(s4,u,s9). 
transition(s4,i,s9). 
transition(s4, '@' ,s9). 
transition(sS, '@' ,s9). 
transition(sS, 'I' ,s9). 
transition(s6,u,s9). 
transition(s7, 'U' ,s9). 
transition(s8,l,s10). 
transition(s8,m,s10). 
transition(s8,n,s10). 
transition(s8, 'N' ,slO) 
transition(s8,b,sll). 
transition(s8,d,sll). 
transition(s8,g,sll). 
transition(s8, 'D', sll) 
transition(s8,v,sll). 
transition(s8,l,sll). 
transition(s8,b,s12). 
transition(s8, 'J' ,sl2). 
transition(s8,g,s12). 
transition ( s8, v, s12) . 
transition (s8, 'D', s12) 
transition (s8, z, s12) . 
transition(s8,p,s14). 
transition(s8,t,s14). 
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transition(s8,k,s14). 
transition(s8,f,s14). 
transition ( s8, d, s14) . 
transition ( s8, 1, s14) . 
transition(s8,n,s14). 
transition(s8, 1 C' ,s15) 
transition(s8,f,s15). 
transition(s8,s,s15). 
transition(s8, 'S' ,s15). 
transition(s8, 'T' ,s16). 

/* State 9 is an end state if there are no more letters left */ 
transition(s9, [],end). 
transition(s9,l,s10). 
transition(s9,m,s10). 
transition(s9,n,s10). 
transition(s9,b,sll). 
transition ( s9, d, sll) . 
transition(s9,g,sll). 
transition(s9,v,sll). 
transition ( s9, 'D' , sll) 
transition(s9,l,sll). 
transition(s9,b,s12). 
transition(s9, 'J' ,s12). 
transition(s9,g,s12). 
transition(s9,v,s12). 
transition(s9, 'D' ,s12). 
transition(s9,z,s12). 
transition{s9, 'Z' ,s12) 
transition(s9,p,s14). 
transition(s9,t,s14). 
transition(s9,k,s14). 
transition(s9,f,s14). 
transition(s9,m,s14). 
transition ( s9, p, slS) . 
transition(s9,k,s15). 
transition(s9,f,s15). 
transition(s9, 'C' ,slS). 
transition ( s9, s, s15) . 
transition(s9, 'S' ,s15). 
transition(s9, 'T' ,sl6). 

I* State 10 is an end state if there are no more letters left */ 
transition(slO, [],end). 
transition(slO,b,sll). 
transition(slO,d,sll). 
transition(slO,v,sll). 
transition(slO, 'J', s12) 
transition(s10,v,s12). 
transition(s10,z,s12). 
transition(s10,p,s14). 
transition(s10,t,s14). 
transition(s10,k,s14). 
transition(s10,f,s14). 
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transition(slO,p,slS). 
transition(s10,k,s15). 
transition(slO, 'C' ,slS). 
transition(slO, f, s15). 
transition(slO, s, s15). 
transition(slO, 'S' ,sl5). 
/* State 11 is an end state if there are no more letters left */ 
transition(sll, [],end). 
transition(s11,z,s12). 
/* State 12 is an end state if there are no more letters left */ 
transition ( s12, [] , end) . 
transition(s12,d,s13). 
/* State 13 is an end state if there are no more letters left */ 
transition ( s13, [] , end) . 
/* State 14 is an end state if there are no more letters left */ 
transition(s14, [],end). 
transition(s14, s, s15). 
transition(s14, 'T' ,s16). 
/* State 15 is an end state if there are no more letters left */ 
transition(s15, [],end). 
transition(s15,t,s16). 
transition(slS, 'T' ,sl6). 
/* State 16 is an end state if there are no more letters left */ 
transition(s16, [J,end). 
transition(s16,s,s13). 
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· The program is very simple, even though it is quite long. It has two parts: 
first, there are four statements or clauses, each of which has a left hand 
part and a right hand part separated by':-', which means if 'A :- B.' can 
be read as 'A ifB', or 'A is true ifB is true', or 'in order to prove A, prove B'. 
Note that each clause ends with a full stop. So the first statement, 
'accept(String) :- move(sl,String).', n1eans 'accept a string 
(held in the variable String) if there is a move from state 1 (sl) that 
takes you through the String'. So that is a definition of acceptance or 
acceptability. 

Then, there are two clauses in lines 6 to 10 that define a 1nove through 
the automaton. The first defines the special case of a final move; the sec
ond defines non-final 1noves. The definition of a final move is: 

move(State,Symbol) :- transition(State,Symbol,end). 

(Line breaks, such as those after the ': - ' in line 6 or 8 of listing 5.1, are 
ignored by the Prolog interpreter.) This clause can be read as 'there is a 
move from a State past a Symbol if there is a transition from State to 
the end via that Symbol'. The largest part of the program is a long list of 
state1nents about what kinds of transitions are permitted in this auto1na
ton: these statements define the entire content of the automaton NFSA1. 
States are represented sl ... s16, though any sixteen distinct symbols 
would do. 

Consider the transitions from state 9 to state 11. On figure 5.3 I drew a 
single transition arrow from node 9 to node 11 with a set of six letters 
( b d g v 0 1} on the one arrow. But in listing 5.1 there are six different tran
sitions fro1n state 9 to state 11, each mentioning a single symbol: 

transition ( s9, b, sll) . 
transition(s9,d,s11). 
transition(s9,g,sll). 
transition ( s9, v, sll) . 
transition(s9, 'D' ,sll). 
transition(s9,l,sll). 

So that is why there are six conditions, six state1nents in the group of 
rules for transitions from state 9 to 11, any one of which is a legal transi
tion. It is as if we interpret figure 5.5 {a) as (b), and similarly for all the 
o.ther transitions "With multiple labels. With only one symbol per transi
tion arrow, we can dispense with set braces. 

(a) Single arrow, multiple labels (b) Multiple arrows, single labels 

b 

0 
(bdgv51} 

Digression 

Alternatively, we could use the predicate member, which is built in to 
many versions of Pro log, to check whether the symbol is in the set of 
symbols on a h·ansition arrow. For example, instead of the following 
six lines: 

transition(s9,p,s15). 
transition(s9,k,s15). 
transition(s9,f,s15). 
transition(s9, 'C' ,slS). 
transition(s9,s,s15). 
transition(s9, 'S' ,s15). 

FIGURE 5.5 
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we could write just: 

transition(s9,X,s15) :- merober(X, [p,k,f, 'C' ,s, 'S')). 

If it is not built in to your version of Prolog, the following definition 

of member is standard: 

member (H, [H!_J I. 
member(X, l_ITJ) ,_ member(X,T). 

However, this approach makes the code run a little more slowly, and 
does not generalize as easily to other varieties of finite-state automata, 
such as those we will consider below. 

Referring to figure 5.3, the following are examples of possibly final tran
sitions: (1) from s6 to s9 via u, (2) from slO to s11 via b, and (3) from s8 to 
s15 via tJ. Iii the progra1n, however, these are treated like non-final tran
sitions, because whether a state is final or not depends not only on its 
own status, but also on the fact that there are no more symbols left in the 
string. The following clauses sanction the three transitions mentioned 

above: 

transition(s6,u,s9). 
transition(slO,b,sll). 
transition(s8, 'C' ,s15). 

The fact that states 9, 11and15 (to name but three) are final states if there 
are no more letters left is encoded by the following clauses: 

transition ( s9, [ J , end) . 
transition(sll, [],end). 
transition(s15, [],end). 

Effectively, it is as if we had defined an additional state, called end, as in 
figure 5.6. Transitions from s9, s11, s15 and others to state end are per
mitted if all that remains of the string is nothing. 

The second statement in the definition of move defines non-final 

moves: 

move(StateA, [Symbol!Rest]) :
transition(StateA,Symbol,StateB), 
move(StateB,Rest). 

It is a recursive definition, because it includes-move again. It can be read 
as follows: 'there is a move fron1 any state, StateA through a string that 
starts with a Symbol and continues with the Rest of the string if: 
(1) there is a transition fron1 StateA to some StateB via that Symbol, 
and (2) there is a move from Sta teB through the Rest of the string'. 
Briefly, that means you can go fro1n state A to the end, if you can go from 
state A to state B and then from state B to the end. Note that the second 
argument of the first mention of move is a list, [Symbol [Rest] . There 
are two notations for lists (of e.g. characters) in Prolog. We have already 

Finite-state rnnchines 

__ ,[") 
~--[") 

FIGURE 5.6 

TrecJtrnt.:11t of finai slates in the in1plernentnlicx1 of f\F"SA 1 

seen the notation in which you explicitly state the ite1ns in the list, 
separated by commas, for example [p, e, t J . We can also describe a list by 
its first element(s) (the head) and the rest (the tail). The tail of a list is a 
list containing all the items in the list apart from the head. Thus, the head 
of [p, e, t] isp (not [pJ, note) and its tail is [e, t] .Anotherwayofwrit
ing a list uses the symbol 'I' to separate the head from the tail. For exam
ple, instead of [p, e, t] we could write [p j [ e, t] ] . (We could also write 
it as [p,el [t]] or even [p,e,t! []].) 

The fourth clause is a loop to generate all the strings that the automa
ton accepts. I will discuss it further below. 

Student: Can I just ask about the brackets? I am not quite sure what is the 
significance of ordinary parentheses and square brackets. 
Parentheses are only used in this program to show the arguments of a 
predicate (i.e. function). Square brackets indicate a list of objects: in this 
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case we are using lists of letters to represent strings. The vertical bar is 
a notation that separates the beginning of a list from the rest of a list. 

Student: So in the second clause of 1nove, the first symbo1 of the list is salient, 
and the rest is sort of unspecified? 
Yes, the Rest is dealt with in later steps. In each state we are only 
concerned with the first symbol of the part of the string we are work
ing on. The rest of it is still to be processed. We can't look ahead and 
process letters in the string that are further on: we need to set them 
aside for processing by the later parts of the network. 

Student: I mean, at state 1, at the beginning, if the letter is for instance in 
~et's say the work is nu1k), at this state if in is accepted, the rest is going to be 
processed in state 4? 
And the Rest will be [ ' I ' , 1, k] , in state 4. Then when we look at 
the first symbol, ' I ' , we can go to state 5 or 8. Now the Rest is just 
[ 1, kl. Suppose we go to state 5 ... 

Student: It is illegal. 
Yes, it is illegal, because in state 5 there are no transitions that read 
the letter 1. The rest of the string must begin with ' @ ' or ' I ' . The 
machine will have to backtrack. But if the input string had been 
[m, 'I', '@' J ('mere'), the rest of the string from state 5 would be 
[ ' @' ] , and so in that case we could go to state 9, which is a possible 
end state. 

So as we go through the string we can read letters off the 
beginning of the list, one by one, and as we do so we move from 
one state to the next. TI1ere are several end states, and if in those 
states the string that is passed to this state has no more letters left, 
it is the empty list, that is, an acceptable final move. And because 
that is an acceptable final move that isn't conditional upon any 
other moves, the program will finish at that point: it will terminate 
successfully. 

Student: What does it actually do if you give it an illegal string. Suppose you 
get to state 9 and the first symbol in Rest is an 'I'? 
Since Prolog works non-deterministically and this is a non
detern1inistic auto1naton, it will backtrack and attempt to find 
other routes through the network. If it reaches a point at which 
every route has been tried that it can legally get to, but it can get no 
further than that, the program will fail at that point. Each time 
Prolog processes a clause, it actually returns the answer either 'yes' 
or 'no', meaning 'yes, that is provable', or 'no, I can't prove that 
with these rules'. If it gets to an end state with no letters left, it has 
proved that the input string is acceptable, so the result will be 'yes'. 
But if after thrashing around and backtracking here, there and 
everywhere, and exploring the network without finding any way 
through it, it will say 'no'. Those are the two possible r~sults of the 
predicate accept. 
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5.5 Prolog's processing strategy and 
the treatment of variables 

I've been talking about this 1nachine as an acceptor of strings: you put a 
string in, it follows son1e transitions through the machine and ends up 
with a decision about whether the string is acceptable or not. Interpreting 
the program as an acceptor, a recognizer, is actually only one view of the 
progra1n's behaviour. Given a string, the machine will behave as an accep
tor. But suppose we provide not a string but no information, just a vari
able, as the input to the 1nachine. What it will then do is work its way 
through the transition network, and since a variable will match any of the 
symbols on the transition network, it will be able to trace any path 
through the network that it chooses. In doing so it will have followed a 
particular choice of letters on the arrows. 

To understand this, let's think of an example in a different domain. In 
algebra you have symbols that stand in place of a whole set of other sym
bols that could have occurred in those places: we use x and y instead of 
actual numbers, for instance. In an expression like x + y = 10, x can be 1 

and y 9, or x can be 2 and y 8. Or x could be 1024 and y, -1014. x can be 
any number: it stands for a range of possibilities. We can do that for 
strings as well: you can have variables like x and y representing not 
nu1nbers but possible letters, without specifying which p<irticular letters. 
You can have variables for any kind of object, representing a lack of any 
more specific infor1nation about that kind of object. In listing 5.1, the def
inition of a nlove does not refer to any particular syinbol, but describes 
the string in question using the variables Symbol, to refer to the first let
ter of the string, and Rest. Within a clause, the value of a variable is the 
same on each mention, as illustrated by the lines in Figure 5.7. In this fig
ure, solid lines are used to indicate that two instances of a variable have 
the same value, and dashed lines are used to indicate that two variables 
with different nan1es but in the san1e position (e.g. the first and second 
arguments of the predicate move) have the same values, too. 

accept(String) :-

~ 
move{sl,String) 

/~ 
move[""~~~ 

transition(StateA,Symbol,StateB), move(StateB,Rest). 

Now, if we ask the Prolog interpreter to prove 'accept ( [ s, p, u, n] ) .', 
it will give the variable String the value [s, p, u, nJ: this value is passed 
on to the move predicate, and the interpreter next attempts to prove: 

move(sl, (s,p,u,n]). 

FIGURE 5.7 
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Recall that there are two clauses in the definition of move: the interpreter 
tries each one in turn. It tries the first clause first: 

move(State,Syrnbol) :- transition(State,Syrnbol,end). 

It can do this by assigning the constant sl to the variable State and the 
list [ s, p, u, nJ to Symbol, leading it next to attempt to prove: 

transition(State,Symbol,end). 

i.e. transition(sl, [s,p,u,n], end). 

The attempt will be fruitless, however, as nowhere in all the many defini
tions of the legal transitions of this machine is there one from sl to end. 
Nor are there any transitions listed with more than one letter as the sec
ond argun1ent. Thus, this clause cannot be proved, and the interpreter 

must backtrack. 
But there is a second clause to the definition of a move, and this is now 

tried out. To prove 'move{StateA, [Symbol[Rest] )'according to the 
second clause, t11e interpreter must first prove 'transition (StateA, 
Symbol,StateB)',andthenprove'move {State B, Rest).'Todothis, 
sl must be assigned to StateA, and [s,p,u,n] to [Symbol I Rest]. 
Bearing in mind what I said earlier about the structure of lists, that means 
that Symbol is instantiated to s and Rest is instantiated to [p, u, n]. So, 
the interpreter inust prove 'transition ( sl, s, StateB) '. Note that 
StateB is a variable, so it can in principle be set to anything (because 
Prolog variables are not limited to a specific data type, as C variables are). 
Among the many definitions of the transitions, there are two with sl as the 

first argument and s as the second argument: 

transition(sl,s,s2). 
transition{sl,s,s4). 

Once again, these are considered in turn. The first means that StateB 
must be set to s2. OK so far. That means that the interpreter must then 
attempt to prove 'move (StateB,Rest) ',that is, 'move (s2, [p, u,n]) '. 

If we repeat this logic over again, we will soon con1e round to attempting 
to prove that 'transition (s2, p, StateB) ', and thence 'move (s3, 
[u, n] ) '.However, the latter will not pan out, as there are no transitions out 
of s3 with u as the first symbol. So we backtrack to the second possibility for 
proving 'transition(s2,p,StateB)', which is 'transition{s2, 
p,s4)', which leads on to 'move(s4, [u,n] )'.This is more profitable, 
as the program contains the statement 'transition ( s4, u, s9) '.So, on 
we go with 'move ( s9, [n] ) ' as our new goal. Because of t11e definition 
'transition ( s9, n, slO) ',we next attempt the goal 'move (slO, [])'.We 
have now used up all the letters in t11e input string as we inoved from one 
state to the next. Fortunately, state 10 is an end state: the prograin contains 
the claus~ 'transition (slO, [] , end)', This matches the first clause of 
move, and does not ask for anything else to be proved. The search for a proof 
is now con1plete, as the following text box spells out. 

finite~stal'e rnochines 'illt 

Prolog's (eventual) proof of accept ( [s, p, u, nl ) , 

1. transition(slO, [],end}. 
2.Therefore,move(slO, [J). 

3. transition(s9,n,s10). 
4. Therefore, move ( s 9 , [ n] ) . 
5.transition(s4,u,s9). 
6. Therefore,move(s4, [u,n]). 
7. transition(s2,p, s4). 
8. Therefore,move(s2, [p,u,nJ). 
9. transition(s1,s,s2). 

10. TI1erefore, move ( sl, [ s, p, u, n] ) . 

11. Therefore,accept([s,p,u,n]). QE.D. 

Exercise 5. l. Trying it out 

If you have. SWl·Prolog installed on your computer, you should be able to start 
the Proia? 1~terpre~er _in Wi~dows and consult (i.e. load) nfsal. pl just by 
double-d~ck~ng on its icon, 1n whatever folder you have put it. (Otherwise 
~ouble-c!1c~1n? on the nfsa~ .pl file icon may cause Windows to prese~t the 
Open Wit~ dialogue box, which says: 'Click the program you want to use to 
open the frle "Nfsa I.pl" .... '. You'll have to respond by selecting your Pro log 
interpreter.) 

. Al_ternati~el~, you can launch your Pro!og Interpreter (for example, by doub)e
d1ck1ng on its JCon, or dicking on the ~ menu, selecting 'Programs .,_, and 
then your Proia? interpret~r's icon. If you don't see one, you p~bably hav~n't got. 
one, and you will need to install one before going any further. 

, If .you launch Pro log in this way, you'll need to consult nf sal , pl manually, by 
clrckrng on the Prolog window and typing: 

[nfsal] . 

after the Prolog prompt, '?~ '. If that doesn't work, you may have to give the full file 
name, e.g. 

['nfsal.pl']. 

or the full di_rectory name. (I~ SWl-Prolog, the Microsoft convention of using'\' in 
pathnames is not observed: instead, you must use'/'.) Thus, to load 
C:\SLP\nfsal .pl, you type: 

[ •c, /SLP/nfsal.pl ']. 

Or you may have to use the built-in predicate consult: 

consult('nfsal.pl'). 

Some versions .of Prolog for Windows (including SWl·Prolog) give you pull down 
menus for dealing with files. Whatever brand of Pro)og interpreter you have and 
however you consult the program file, you should then be able to try it out' Try the 
query: · 

accept ( [s, t, r, 'I', 'N']) . 
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Prolog should reply just: 

Yes 
?-

and is now ready for you to type in the next query. 

Exercise 5.2 

See if it will accept the pseudo-English words mentioned in section 5.2: sprcl]kst, 
spkind, strolkt, trAhEl and blen1. What about the un-Eng!ish word tloinrv? What 
about :sgnnt and sprrmfl? 
Hint: Remember to encode JJ, o, A, e, ll, and r using capita! letters in single quotes, 
i.e. 'N', 'O', 'V', 'T','U' and 'I' respectively (see table 5.1 ). 

In SWl-Prolog, you can recall earlier queries by using the 'up arrow' key. You 
can then modify an earlier query using the 'left arrow' and 'right arrow' keys, delete 
and backspace, and the other keys on the keyboard. Prolog will not process your 
query until you hit the Enter/Return key. 

Exercise 5.3 
If you forget to put the quotes round a capital letter, and type e.g. 

accept ( [s,p, 1,0,n,d]). 

instead of: 

accept( [s,p,l, 'O' ,n,d]). 

Prolog will take the 0 to be a variable name. What happens? After it gives its 
response, press the semicolon key. What happens? Press it 11 more times, or until 
Prolog responds No. What's going on? 

If we don't provide a string to the auto1naton, but just provide a variable, a 
variable will match any list of letters. So if we give a variable as the argun1ent 
of accept, the machll1e can take any path it likes through the network from 
beginning to end. Since all we have given it to work on is a variable, it will 
always be able to get fro1n any of the start states to any of the end states. 

Instead of invoking this program by entering 

accept ( [ s, t, r, 'I' , 'N' J ) • 

where we give a particular string and ask 'is this sequence of letters 
acceptable?', we can enter 

accept (X). 

which means 'What Xis acceptable?' Because Xis unspecified, the machine 
will be able to follow any path fro1n the start state to the end state as an 
instance of X. In following such a path, it will follow a particular set of tran
sitions, each labelled with a particular syn1bol. So when the machine gets 
to the e~d state it will have picked some list of letters, and that list will be 
assigned to X. The first string it will accept in this way is [s, p, r, 'I' , 

@],in fact. 111at is just the first path that it happens to follow through the 

network, because the first transition in the program out of s1 is to s2 via s, 
the first transition out of sZ is to s3 via p, the first transition out of s3 is to 
r via s4, and so on. In this way, the automaton can generate a string. 

Exercise 5.4 
Try it. 

However, getting one result in this way perhaps isn't very satisfactory. For 
instance, we nlight want to generate aH the strings acceptable to the 
automaton. So after the Prolog interpreter gives an answer, you can type ';', 
and that tells it to backtrack and consider another possible outcome. 
When it is forced to backtrack it goes back and generates another answer. 
First, the last transition will be reconsidered, which was the transition 
fron1 state 9 to the end: 

transition ( s9, [] , end) . 

The next transition out of state 9 in the program listing is: 

transition(s9, [1] ,slO). 

so the next solution it generates is: 

X = [s, p, r, 'I', @, l] 

Then if you enter ';' again it will go off and find another solution, and 
another. If you want to determine the full set of strings that an auton1aton 
generates you could be typing semi-colons all night, as in fact it generates 
564498 strings. (Yes, I have generated them all.) So I have also provided a 
little predicate called loop (see listing 5.1 for the definition). If you enter 

loop. 

that calls: 

accept(A), write(A), nl, fail. 

meaning, 'accept a variable, type the contents of that variable out, start a 
new line and then fail'. The enforced failure at t11e end makes Prolog back
track, and it will carry on looking for alternative solutions. There are no 
alternative solutions to write (A) or nl, but there are many, many alter
native solutions to accept (A). So Prologwill backtrack through the whole 
search space and it will generate all acceptable strings. (You may have to use 
Ctl-C to interrupt the program, or even close the Prolog window!) 

Consequently, the program nsfal .pl, like the abstract finite-state 
machine in figure 5.3, is con1pletely non-con1mittal about whether it is an 
accepting device or a generating device. It depends on what queries you 
give the interpreter to work on. 

You can concoct slightly more exotic queries (as in exercise 5.3) where 
you give an incompletely specified string, such as [ s, t, r, x, 'N' J and 
the solutions to that will provide various values ofX. You can get it to gen
erate either a single value ofX that is phonotactically acceptable, or if you 
were to keep typing semicolons or write a bit of code like the loop predi~ 

cate, you could get it to generate all possible values of X, insofar as the 
string is well forn1ed according to the machine. 
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1. Alliteration. Suppose we want to find words that begin with the same 
consonant cluster as 'scrunch'. The following query will do the trick: 

X c [s,k,r/_J, accept(X). 

The underscore symbol n1eans 'the anonyinous variable', that is, a vari
able whose contents we are uninterested in examining. (What happens if 
we just ask' accept ( [s, k, r/_J). '?) 

2. Rirning. This is a bit difficult. Suppose we want a rin1e for '1nunch'. 
The following will give so1ne results, but not all; 

X = [_, 'V' ,n, 'C'], accept(X). 

Repeatedly replying to each solution by typing semicolons will generate 
every solution with one letter before '-unch'. But it will not yield, say, 
'scrunch'. The best ways to get rimes with more than one letter before 
'-unch' is sin1ply to make two further queries: 

X == [_,_,'V',n,'C'], accept(X). 

and 

X = [_,_,_, 'V' ,n, 'C' J, accept(X). 

(There is an alternative that will generate all the rimes fron1 one query, 
but it is very inefficient and slow.) 

3. Pallndron1es. In the previous examples, a template list was constructed 
and sub1nitted to accept. Other templates are possible. For instance, we 
can exploit the fact that every 1nention of a variable shares a value with
in a clause to n1ake templates that are sym1netrical. Words with this 
structure are palindromes. (In this case, they are phonemic palindro1nes, 
because NFSAl cannot spell.) TI1e only patterns of palindromes found in 
1nonosyllabic words are: 

[C,V,C], 

[C,V,V,C], 
[C1,C2,V,C2,C1], [C1,C2,C3,V,C3,C2,C1], 

[C1,C2,V,V,C2,C1], and [C1,C2,C3,V,V,C3,C2,C1J. 

The first solution to 

X c [C1,C2,C3,V,C3,C2,C1J, accept(X). 

is 

X :::: [s, p, 1, 'I', 1, p, sJ 

All the solutions with two V's in the middle are uninteresting, as the only 
identical sequence of V's acceptable to NFSAl is 'Jl,'I', which is not really 
English. 

Finite<,'tote Inachincs· 

·tudent: Is X allowed to be zero? 

-~;p·0 you mean an empty symbol? Not in NFSAl, because there are no 
·~'.-empty symbols in the definitions of transitions, except in end states, 
r:.::fua all strings end in those empty strings. 

We have been talking about these machines on several different levels. I 
started off with pictures of networks with state nodes, arrows and labels. 
We should not confuse a picture of a network with the abstract n1achine 
that it depicts. The machine itself is not a network, but an abstract com
puting device. I shall not get into a discussion about it, but there is a huge 
literature on the algebraic structure and properties of abstract automata. 
(If you are really keen, see, e.g., Hopcroft et al. 2000.) For example, you n1ay 
come across definitions like this: 

A finite-state auto1naton A is a quintuple (Q, :i:'., q,
1
, F, a; vvherc (]is a 

finite set of states Cfo, Cfr,.' .. cr'i, I is a finite alphabet ofinpnt- sy1nbols, 
q0 is the start state, Fis the SC't of final sr-atcs, F C Q, and 8 ~:_:CJ>< 2'.. X CJ, 
the transition function. 

That definition should be taken outside and shot. 

So pictures and algebraic structures are two levels of representation. A 
third level of representation is that of particular co1nputer progran1s writ
ten in particular programming languages, the in1ple1nentations of a 
finite-state machine. TI1ere are n1anyways to in1plement a specific, abstract 
finite-state machine, and many programming languages in which you 
could do it. 

Table 5.2 gives a fourth representation of finiteMstate machine, a 
svn1hoJ-state table, or state transition table, as they are son1etimes 

l~own. A state transition table is a two-dimensional table with the list 
of the sy1nbols that n1ay occur in the alphabet that the machine is capaM 
ble of accepting listed along the top row, and the numbers of the states 
listed down the left-hand column. The entries in the table say what 
state to go to if the symbol at the head of a column occurs in the input. 
We start at the start state, state 1, which is the first line. If the first sym
bol in the string we are processing is a 'b', we look in the column of 
state numbers underneath 'b'. In row 1, in the 'b' column is the num
ber 3, which means we then go to state 3. If the first letter of the input 
was 'v', we would go to state 4, and so on. Suppose it is 'v' and we go to 
state 4. We now look at the entries in line 4. If the next symbol is 'i' we 
must go to state 9. If the next symbol is 'h', we look at row 9, colun1n 
'h'. That cell contains 0, meaning that that is an illegal transition: 'vih' 
is an illegal string! So the entries in the table encode the transitions 
fro1n one state to another state when viewing a particular symbol in the 
input. So the 'from' state number is the line number of the table, the 
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•next' state numbers are entries in the table, and each column corre
sponds to the symbol that must be read in order to make a transition 
from one state to the next. Also, note that I have indicated which states 
are final, by writing those state numbers in bold italics. As you will see, 
I haven't filled in all the numbers for the entire network. I leave that as 
an exercise for anyone who wants to implement DFSAl in this way for 
themselves. Although some lines are con1plete, note that line 6 actual
ly only has one legal state transition in it, which means 'if you see a "u", 
and you are in state 6, you can go to state 9'. So another approach to the 
implementation of finite-state machines is to have such a table in a 
con1puter file, and then all you need is a little progran1 that moves from 
one state to the next according to the entries in the table and the next 
symbol in the string. The program obviously would not care about what 
that table represents: it will work with any such table, so that is a· nice 
general*purpose implementation of finite-state machines. The machine 
follows the moves given to it by the table, and the table could be 
changed in order to model different languages, or to use different sym
bols. (To represent non-deterministic 1nachines in this way, it must be 
possible to have n1ore than one number in each cell. Then, a way of 
picking one of them must be added, as well as a way of keeping track of 
which one was selected, so that on backtracking the other choices 1nay 
be pursued.) 

Well, we could stop at this point because those are the main things to 
learn about finite-state machines. But for the rest of the chapter I shall 
cover some other possibilities and son1e particular ideas for extensions, 
applications and so on. 

5.9 Self-IOops 

In the automata we have looked at so far there aren't any self-loops. A self 
is a transition from a state to itself. In figure 5.2 there is a loop from 

state 4 to itself. If the machine is in state 4 and sees the letter a, instead of 
going to state S it stays in state 4. The letter a is acceptable at that state 
but it doesn't advance the state of the n1achine. You might ask 'what is the 
use of that?' In the context of the previous discussion it may not appear 
to be very useful, but there is a general purpose device called a searcher, 
a finite*state machine with just two states (figure 5.8). A searcher is a 
machine that looks for a particular symbol, or perhaps a particular short 
sequence of symbols. Suppose, for instance, we have a string and it is how
ever long it is, and want to look to see if it contains a '£' sign. We might 
even have a file of such strings: we might be searching through the files 
on your disk, looking for all of the files that have something to do with 
money. (A file is just a long string of characters.) What we need is a 
searcher. State 1 is labelled 'I-{£}': I is the alphabet of the inachine (the 
entire ASCII character set, for instance), and '-' means set difference, so 
'I-{£}' means 'all symbols apart from£'. In state 1, therefore, ifthe first 
symbol of the input isn't a £ sign, the machine stays in that state. It then 
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FIGURE 5.8 

i\ tT1achi11e trwt searches 
for 111011ey 

examines the next symbol in the input. It can go to the second state if the 
first symbol is what it is that you are looking for, the pound sign. After it 
has found a £ sign we don't care what else it sees, so that could be any~ 
thing: it inight contain the £sign, or it might not contain the £ sign, it 
could be any symbol in the alphabet, so state 2 is labelled'!'. (Since'!' is 
being used as the name of a set, rather than as a syn1bol that might occur 
in t11e machine's input, it is not enclosed in set braces, { ... } .) State 2 is an 
end state. 

L--{£} 

0 
\ 
' 

{£} 

The machine will only get to state 2 if the input contains the £ sign. 
Therefore, the 1nachine will only accept strings containing £. 

Exercise 5.5 
Think of an easy way to extend the machine in figure 5.8 in order to make it search 
for money in many currencies, e.g. dollars, yen or euros. What problem might arise 
in searching for prices in pence? 

grep 

Readers who are familiar with the Unix operating system are probably 
aware of grep, a program that searches through one or more files for a 
specific string or search pattern, using a finite-state method. It's like a 
more general version of the method presented here for searching for 
a currency symbol. MS-DOS has a similar but more restricted com
mand, called 'find'. In the MS-DOS prompt window (i.e. command 
prompt window, in more recent versions of Windows), typing FIND 
'string' filename causes the stated file(s) to be searched for all 
instances of the stated string. 

Searchers can also be used in finite-state machines that model the appli
cation of phonological rules. Wl1en you apply a phonological rule of the 
forn1 cad ----+ cbd (i.e. a ----+ b / c-d) to a string x you have to see whether the 
expression on the left-hand side of the rule, cad, matches the string x that 
you are applying the rule to. You can use a searcher for that (figure 5.9). 
Note that in state 2, if the next symbol is not a, you go back to the begin
ning of the search again. TI1at is, a c that is not followed by an a does not 
get you very far. Nor does ca if d does not immediately follow (state 3). 

So a searcher implements a pattern-n1atching operation. The larger 
machines th~t we looked at earlier on are also pattern-n1atching machines 
in that the set of strings that they will accept 1natches the patterns of 
well-formed syllable phonotactics of this English-like language. Weird and 

J;-{c} i; 

0 {c} {a} {d} 8 
···~~·· .. ~~~ 

j , 2 v \,,,'.'..) 
......... / l:-{a} 

l:-{d} 

wonderful strings that violate what is acceptable by NFSA1 or DFSA1 are 
not recognized or accepted: they fail to match the machine's patterns. 

~~ •. 1.oFinite'"'stat~~r .. lisdlicers {FSl"s). <'---------- '"" ' --- ________ , "" "'' ",_ ' ''"'' '"' --- '' 

There is an interesting and useful generalization of finite-state machines 
in which the transition labels consist not just of single syn1bols, but of 
pairs of symbols. A finite-state n1achine of this kind is called a finite-state 
transducer, and works with two strings at a time. A transition is acceptable 
if one element of the label is the first symbol of one string and the other 
element of the label is the first symbol of the other string. In this way, 
correspondences between the symbols of one string and symbols of the 
other string can be related to another in sequence. The two strings that 
are processed by a finite-state transducer could have various interpreta
tions or uses. For instance we might regard one of the strings as an input 
string, and the other as an output. Alternatively, we could regard two 
strings as the input, and the machine would then compute an alignn1ent 
or set of correspondences between the two strings. 

Let1s look at some specific examples of this to show the use. First, we wiU 
consider a machine that relates orthographic representations {i.e. words 
written in nor1nal spelling) to their phonemic transcriptions. It uses paired 
transition labels, joined by a colon, such as ph:f, th:8, th:O, sh:f, c:k, ck:k, 
oo:u, oo:u and x:ks. A symbol written by itself, for example s, abbreviates 
the same symbol on both sides of the relation, for example s:s. On either 
side of the semi-colon there may be single symbols or short sequences of 
sy:n1bols, to allow for the fact that two orthographic units can map onto 
one phoneme (e.g. sh:f), or one orthographic unit may map onto two 
phonemes (notably x:ks). Figure 5.10 illustrates such a transducer, NFSTl. It 
is based on NFSA1, and works with English-like monosyllables. 

A Prolog implementation of NFST1 is given in the file nfstl .pl. 
The beginning of that program is given in list_ing 5.2. There are a few 
differences between nfstl .pl and nfsal .pl. First, the definitions 
of accept, move and loop are altered so that they work with two 
strings simultaneously: an orthographic string and a phonemic string. 
Second, the representation of strings is different from that in listing 5.1. 
Instead of strings of constants, such as [ s, t, r, ' I ' , 'N 1 J , this progra1n 
represents a string as a list of ASCII character codes. For example, "S@U" 
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NFSTJ 

[ptc:kkbdggu; 

g f ph:fv s c:s ps:s 
z th:9 th:6 sh:J h ch 

:tf j:d3 g:d3 r wr:r I 
wwh:w y:j 111 nk 

n;n qu:kw "j 

{a;a: e i:i n:fl o:o u:u 

oo:u 

c'G / a:er ui;c y:et ar:o 
air:c;i ea:i cc.· ar:i:i 

eer:1:i cr:a ir:s u:Cr:s:0-"~'~"---~"4-
au:::i aw:o u oo:u o::iu oa:;iu 

(ptc:kbdg 

f ph:fth:9 sh:Jj 
ow;;iu ou;au ow:au our:uJ oy 

:01 oi:o1 ie:m y:a1 ew:ju) 

{ue:ju 

FIGURE 5.10 
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(i.e.Joo) is encoded as the list [ 83, 64, 85 J, not [ 's', '@', 'u' J. 
(This has several implementational advantages that I shall not discuss 
here.) Fortunately, this encoding is not as opaque as it may at first 
ap~ear, ~ecause Prolog provides two mechanisms that help us use it 
easily. First, there is a special notation for lists of ASCII characters: a 
string. of letters enclosed in double quotes is automatically represented 
as a hst of ASCII codes by Prolog. Thus, if we write "S@U", it will be 

au:om~,t~,c~lly translated by Prolog into [83, 64, 85J. The en1pty 
string, , is translated to the einpty list [ ]. Second, the built-in predi
cate name converts (either way) between Prolog constants and lists of 
ASCII codes. Thus, the query: 

?- name (X, [83, 64, 85]) 

yields the answer: 

x " 'S@U' 

and 

?- name ( 'sgrint' , X) . 

gives: 

x" [115, 103, 114, 105, 110, 116] 

------------------------------------ ----------

Ffnite-stofe rnochlnes 

This predicate is used to make the ASCII strings that 1nay be generated by 
the machine 1nore readable, so they can be printed out to the screen or to 
a file. (Note that name is now called atom-codes in the international 

standard definition of Prolog.) 

listing 5.2. Pilrt of a Prnlog implerne11tatio11 of NFST1 

/* NFSTl. PL 

/* 
A nondeterministic finite-state transducer */ 
to relate English-like phoneme strings to spellings*/ 

accept(OrthString,PhonString) :
move{sl,OrthString,PhonString, [], []), 
name(Orth,OrthString), name(Phon,PhonString), 
write(Orth), write(' 1

), write(Phon), nl. 

move(Statel,Orth,Phon, [], []) :
transition(Statel,Orth:Phon,end). 

move(Statel,Orth,Phon,OrthRem,PhonRem) :
transition(Statel,OrthSym:PhonSym,State2), 
append(OrthSym,OrthRest,Orth), 
append(PhonSym,PhonRest,Phon), 
move(State2,0rthRest,PhonRest,OrthRem,PhonRem). 

/* Enumerate all acceptable strings */ 

loop:- accept(A,B), fail. 

transition(sl, "s": "s", s2) 
transition(sl, "p": "p", s3) 
transition(sl, "t": "t", s3) 
transition{sl, "c": "k", s3) 
transition(sl, "b": "b" ,s3) 
transition(sl, "d": "d" ,s3) 
transition{sl, "g": "g" ,s3) 
transition(sl, "f": 11 f" ,s3). 
transition(sl, 11 ph 11

:
11 f'',s3) 

transition(sl, "th": "T" ,s3) 
transition(sl, "sh": "S'',s3) 

' The treat1nent of en1pty transitions is a little different, as there are two 
circumstances to consider. First there is the case in which the state is an 
end state, and there are no more letters left. For exan1ple: 

transition (s8, "":"",end). 

Second, there is the case of an empty transition to the next state, though 
there are more letters remaining (a mechanism that helps to keep the 
machine a bit simpler). For exan1ple: 

transition ( s8, "" : "", s9) . 
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Now suppose that you provide only one of the input strings to accep:, 
the one that corresponds to the syn1bols before the colon, a graphe1n1c 

input string. For example: 

?- accept ("squeak",_). 

The graphen1ic input string variable OrthString is ins~antiated with a 
particular sequence of symbols (in this case "squeak", i.e: [115, ~07, 
119, 105, 107] ),andPhonStringisjustanuninstant1atedva~1able. 

Provided that orthString is graphemically well for1ned (accord1ng to 
the definition of the machine), as the 111achine progresses through the 
network fron1 one state to the next, it will successfully read off the 
graphemic side of the transition labels. As it does so it also can generate a 
record of the correspondences between the graphen1es and the phonemes 
as it goes along. The sequence on the phonemic side is generated by the 
inachine at the end as the result Uust as was the case when we non
deterministically generated strings in section 5.6). The n1achine provides 
a method for 1napping fron1 orthography to phonemic transcriptions. 
Thus, Prolog's reply to the preceding query is to print out: 

squeak skwik 

that is, the paired orthographic and phonemic strings. (If you use a named 
variable, e.g. X, instead of the anonymous variable_, it will give the ASCII 

codes of each string too.) . . 
It works the other way round too: by providing just a phonemic string, 

by keeping track of the transitions that the machine. ~oes through and 
writing down the first syn1bol of each pair in the transition label, .y~u can 
get a possible graphemic string corresponding to a given phonemic.1~put. 
By responding to Prolog's output by entering a sen1icolon, add1t1onal 
solutions can be generated. For example: 

?- accept(X, "fOks"). 
focks f Oks 

x ~ [102, 111, 99, 107, 115] 

fox fOks 

x ~ [102, 111, 120] 

phocks f Oks 

x ~ [112, 104, 111, 99, 107, 115] 

phox fOks 

Well, it doesn't necessarily give the right answer first tin1e! But in 'that 

way we can find homophones. . . 
Once again the machine is completely nonconunittal as to whether It is 

mapping from graphemes to phonen1es, or phonemes to g~aph~mes. A 
third possibility, of course, is that you provide both a graphem1c string and 
a phonemic string. In that case you can only get through the network if the 

Finii't>st'ote mochines 

grapheme to phoneme correspondences encoded in the transition work 
are accepted. So that is a way of asking the machine to deter1nine whether 
the particular phonemic transcription is a valid phone1nic transcription of 
the graphemic transcription, and vice versa, whether the graphemic string 
is a valid spelling of the phonemic transcription. TI1e fourth possibility is 
when you specify neither of the two strings. You input a variable for both 
the graphemic string and the phonemic string. That will non-determinis
tically generate a correspondence between the spelling and pronunciation 
of a syllable. By backtracldng, you can generate all spelling-sound corre
spondences for all the syllables of the language. 

There is a caveat, though: the power of the machine is limited by how 
much of the string it can look at at each transition. The examples that we 
have had so far are correspondences between single symbols in one string 
and single syn1bols in the other, where a 'single symbol' might actually 
be ornate: it might be a digraph or a trigraph, but it is effectively inter
preted by the n1achine as a single symbol. TI1ere is no look-ahead mecha
nism in a finite-state machine, so you can't peek ahead to see whether or 
not there is some letter coming up later in the string. However, there is a 
way to encode a kind of look-ahead, which is to actually make the sym
bols on the transitions longer sequences of letters. For instance, in deal
ing with spelling to phoneme relations we 1nust consider the behaviour 
of 'magic e' (the letter e after a vowel and a consonant, that makes the 
vowel long) in the English orthography. For example: sit vs. sjtg, c~n vs. 
c~ng_, P5!St vs. p~StS'_, rQt vs. rQt.~. The pronunciation of a vowel letter 
depends on whether or not there is an 'e' after the next consonant, fur
ther along the string. NFST1 does not deal with most cases of 'magic e' 
(apart from -ce, -de, -se and -ze in state 7), though it does accept an 'e' 
after certain consonants (i.e. -dge, -ve, -ge, -gue and -the) that has noth
ing to do with vowel length. The only way in which you can build those 
ldnds of correspondences into a deterministic finite-state 1nachine with
out adding a new processing mechanism is to use transition labels that 
are three or four letters long at a tiine, and relate three- or four-letter 
sequences to three or four phoneme symbols at a tin1e, for exan1ple 
ast:/ast/, but aste:/erst/. So you overcome the fact that you can't compute 
non-local dependencies in a string by maldng them local, by using longer 
chunks. The bigger the chunks get, however, the greater the number of 
transitions you need to have, since there is a very large number of map
pings between sequences of three or four letters and sequences of three 
or four phone1ne symbols. 

Student: You can get into trouble with that kind of thing though can't you? 
The letters 'a, m, e' correspond phonemica1ly to /e1m/, but suppose you give the 
machine the string 'c, a, m, e, r, a'? How is it going to process that? Is it going 
to first map the c into a /k/? Then it might hit an 'a' and think it is /ref. But if 
it processes 'a, m, e' as a single unit, corresponding to /erm/, it will go wrong. 
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The trouble with orthography is that sometimes these doublets and triplets 
correspond to phonological units and sometimes they do not. 

You are right. It doesn't present any general co1nputational problems, 
but it does present problen1s for the implementation of that particu
lar task. By making the chunks of strings that are processed on 
each step larger, we introduce non-determinacy into the network, 
because the number of possible transitions to the next states 
becomes larger the more letters that you have on each transaction. 
There are various solutions about what to do with the sequence of 
letters a, m, e. We could just accept the non-determinis1n, and then 
there will be no need to use such long substrings as transition 
labels. Alternatively, you can attempt to prioritize the choice of 
which transition to follow next. TI1e usual scheme for doing that is 
to try to match the longest substrings first, on the theory that they 
are more specific, special cases. You niake the shorter substring 
matches of a lower priority. But that is actually adding an ordering 
sche1ne to the basic finite-state mechanism. We would stay within 
the bounds of finite-state languages, but that would be a new, non
standard variant of the finite-state architecture. I raised this exam
ple to show one of the lin1itations of finite-state machines. It is a 
limitation that can be overcome, but it is an intrinsic limitation, in 
as much as things become more complicated the more of the string 
you try to scan in any one chunk. 

5.1 l UsingJinite•state transduc:ers to. relate 
speech to phonemes 

The exa1nples in the previous section are about relations between one 
kind of alphabetic string and another kind of alphabetic string, grapheme 
strings and phoneme strings. Or instead of graphe1ne to phoneme map
pings, we could map graphemes to allophones directly if you wanted to, 
or from morphophone1nes to allophones, or from virtually any alphabetic 
representation to any other alphabetic representation that corresponds to 
the first in a certain way. (TI1e ldnds of correspondences that can be com
puted using finite-state transducers are lmown as Tegular relations.) But 
the syinbols in the transition labels do not have to be letters of the alpha
bet (any alphabet: Ro1nan, phonetic, Arabic, Thai, etc.). Any finite set of 
symbols will do. One instance of special interest in speech processing is 
that we can treat a set of acoustic paran1eters, such as a vector of LPC pre
dictor coefficients, taken together as one symbol. For example, frame 200 of 
j oe_coef fs. dat is a vector of 14 LPC coefficients for (part of) the vowel 
/a/ of 'father'. We could treat them as a single symbol, a set of features, if 
you like, as in phonology, and write: 

[a]~ 

a1: 2.693137 

a:i,: -3.15723 

a3: 2.153815 

a4: -0.46244 

as: -0.62918 

a5: 0,194162 

a7: 0.696667 

aa: -1.27494 

ag: 1.502201 

a10: -1.37626 

U11: 1.135756 

au: -0.52237 

U13: -0.11574 

a14: 0.135437 

The number of possible values and combinations of all the different coef
ficients is very large, so the alphabet of these complex symbols is cer
tainly enormous, but it is finite. So, consider a transducer in which the 
symbols on one side of the transition labels are LPC vectors and on the 
other side phoneme symbols. Each pairing of a phonen1e sy1nbol with an 
analysis vector represents a phonemic labelling of that analysis vector. For 
exa1nple: 

"A"' [2. 693137 -3. 15723 
0.194162 0.696667 
1.135756 -0.52237 

2.153815 
-1.27494 

-0.11574 

-0.46244 

1.502201 
0.135437] 

-0.62918 
-1.37626 

So how can we find out what the correspondences are? Well, the first step 
is to record a speech database and encode speech into the desired param
eters. Then, you segment the speech into phonemes, and provide phone
n1ic labels for each segment, as in the upper part of figure 5.11. (This is 
usually a painstaldng, long, manual task, possibly requiring many person
months of work.) 

Then for every 5 or 10 ms frame in every segment you associate that 
phone1ne label with that frame. (Tiris needs to be automated to be practi
cal.) This means that a stretch of speech in the database that is a complete 
vowel, say, will consist of a certain nun1ber of frames, say 30 frames, and 
each of those frames will have the sa1ne vowel label, as in the lower part 
of figure 5.11. TI1at part of the figure shows a segment of speech fron1 the 
204th 5 nis frame of j oe. da t (towards the end of the /a/ of 'father') to the 
212th frame, shortly after the start of the /6/. Below each frame number is 
a phoneme label for that 5 ms interval, and 14 LPC coefficients, a1 to a14• 

Time is in the horizontal din1ension, and analysis features are in the verti
cal dimension. 

From such a database, we can construct a set of transitions in which 
the alphabet on the speech side is an alphabet analysis of vectors, and the 
alphabet on the linguistic side is an alphabet of phoneme labels of the 
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FIGURE 5.11 
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speech He 

FIGURE 5.12 
Part of a fi11ite-state 
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phonerr1e labels to UJC 
vectors 
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Label: 

u u 
Frnmc: 
W4 '°' LPC 
vector: 
2.693137 2.610945 
-3.15723 -3.07347 
2.153815 2.379279 
0.46244 -0.9316 

--0.62918 --0.35334 
0.194!62 0.306683 
0.696667 0.268792 
-l.27494 -0.76344 
l.502201 1.145245 
-1.37626 -Ll3322 
135756 0.999281 
--0.52237 --0.65051 
--0.11574 0.121429 
0.135437 0.046852 

u: 
2.565878 
-2.91241 
2.108499 
-0.8136 
0.027484 
-0.43509 
1.037625 
-1.31662 
1.283225 
-1.15597 
1.134817 
--0.68714 
0.124007 
0.003265 

OU 

u u 

W6 '°' 
2.597558 2.565878 
-2.94453 -2.91241 
1.995438 2.108499 
. 0.35989 0.8136 
--0.83202 0.027484 
0.485961 --0.43509 
0.402462 1.037625 
-1.07576 -l.31662 
l.177903 1.283225 
-0.6209 -1.15597 
0.119541 1.134817 
0.4!8474 --0.68714 
--0.70822 0.124007 
0.305646 0.003265 

0: 

2.319291 
-2.11807 
1.147475 
-0.3249 
0.184156 
-0.80504 
0.898168 
--0.49597 
0.157776 
0.013327 
0.012791 
0.354996 
-0.60873 
0.24165 

u ' ' 
W8 W9 ''° 
2.319291 2.349247 2.321899 
-2.11807 -2.l 1037 -2.02477 
1.147475 0.910962 0.814372 

--0.3249 0.256971 0.287573 
0.184156 ---0.79563 --0.68009 
·-0.80504 0.373898 0.156924 
0.898168 . 0.0097 0.262798 
--0.49597 -0.10334 -0.3322 
0.157776 0.202759 0.226109 
0.013327 --0.37699 --0.28064 
0.012791 0.67750 I 0.512!!4 
0.354996 -0.35548 -0.15489 
-0.60873 -0.16315 -0.20147 
0.24165 0.!22075 0.072926 

" " 2.349247 2.321899 
-2.11037 -2.02477 
0.910962 0.814372 
0.256971 0.287573 
-0.79563 -0.68009 
0.373898 0.156924 
-0.0097 0.262798 
-0.10334 --0.3322 
0.202759 0.226109 
-0.37699 -0.28064 
0.677501 0.512114 
-0.35548 --0.15489 
-0.16315 -0.20147 
0.122075 0.072926 

' 
"' 
1.863409 
-0.63155 
--0.56747 
0.335704 
0.429717 
--0.89356 
0.252545 
0.661088 
-0.7357 
-0.03584 
0.689633 
··0.0299 
. 0.65855 
0.305114 

d 

m 

1.481066 
0.010306 
--0.66528 
0.133916 
0.126124 
--0.28647 
0.115398 
0.046145 
0.109533 
--0.32924 
0.540491 
-0.0326 
-0.46588 
0.200167 

" 1.863409 
-0.63155 
--0.56747 
0.335704 
0.429717 
-0.89356 
0.252545 
0.661088 
--0.7357 
--0.03584 
0.689633 
-0.0299 
--0.65855 
0.305114 

Finite-stotc rnachi11cs 

usual ldnd. TI1e transition labels are pairings of phoneme label with vectors 
of analysis features. We can disregard the frame nun1bers. For transitions 
from one vector to the next within a phone1ne, we use self-loops, but for 
transitions from one phoneme to the next, we employ two separate states, 
as in figure 5.12. So the sequences of state transitions that the machine 
will accept are sequences ofphone1ne-fra1ne correspondences. 

Now, suppose we want to use such a machine to produce transcrip
tions on the basis of the speech analysis vectors. The basic idea is the 
same as when we were discussing grapheme-to-phoneme conversion ear
lier on. Then, if we didn't specify the graphen1es but just provided the 
phone1nes, NFSTl could compute the graphemes for us as it goes 
through the transition network. The same applies here: if we don't spec
ify the phonen1e labels but the set of correspondences between 
phone1ne labels and frames is known and encoded in the machine, by 
presenting the machine with a sequence of analysis vectors we can 
recover the corresponding sequence of phoneme labels. Now consider a 
machine for transcribing vowel-consonant sequences that only recog
nizes one particular vowel-consonant sequence, /uOf. The machine might 
only have two states, as in figure 5.12, with a very large number of self
loops fron1 the state 1 to itself, each of which represents a possible vowel 
frame. In state 2, the consonant fra1nes Will be likewise represented by 
self-loops consisting of consonant symbols paired with acou~tic paran1e
ter vectors. TI1ere will also be son1e particular vectors that have been 
observed at the transition from a vowel to a consonant. Provided we have 
multiple different tokens of faiJf, there will be niore than one transition 
from state 1 to state 2, all representing the change from fa/ to /Of. For 
consistency let's give it the consonant label. There will be a great many 
self-loops in state 1, even if the machine only recognizes one vowel 
phoneme. And even ifit only recognizes one consonant in state 2, there 
will be an awful lot of self-loops there, one for each distinct observed 
frame. If we enlarge the set of vowels and consonants that this machine 
recognizes, there will be an even greater number of self-loops, so the 
number of transitions in the n1achine will be very large. But the struc
ture of the machine itself is extraordinarily simple: while the machine 
is seeing '/a/-type' frames it stays in state 1, and associates each vowel 
frame with the label /a/. Only if/when a '/ii/-type' frame is input can it 
make a transition from state 1 to state 2. Then if the fran1es after that 
continue to be of type /Of, it will continue to generate a sequence of /Of 
labels. If the device works in the way that it is intended to, when given 
a sequence of frames as the input it will generate the corresponding 
sequence of phone1ne symbols. A long sequence of identical symbols have 
to be contracted into a single label, so that the sequence of frame labels 
/oaaaaaaaiiiiiiiiiliiii/ will be abbreviated as /aii/. So given the acoustic 
para1neters of a speech signal, we could produce a hypothesis about 
what phonemes were input to the machine. It would be a rudimentary 
kind of speech recognition device; well, a ldnd of phonemic labelling 
device, at least. 
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FIGURE 5.13 
Schenv1 fer· a i"inite ~tcitz: 
trcr1sclucer for VCC 
sequences 

11 

{m:[a1 ... a14]} 

{n:[a1 ... a14]} 

Student: Would a two-state machine like this handle VCC sequences? 
No, but it would not take much to extend it to longer sequences. 
You'd have a state for vowels, a state for the consonants that can 
follow the vowel, and then a state for the second consonant in the 
sequence, as in figure 5.13. 
Student: So the number of states in the machine is not tied to the number of 
distinct phonemic symbols that it could output. 
That's right. I guess you could pursue that logic even further and say you 
only need one state. But the reason for having separate states is to ensure 
that only certain patterns of vowels and consonants are acceptable. 

Now the question is, does it work? Well, yes it does, and no it doesn't. It 
works after a fashion, but it doesn't work as well as we n1ight like it to. For 
the machine in figure 5.12 I picked a particular vowel and a particular con
sonant. But we are unlikely to want a machine that is so limited. We are 
n1ore likely to want a machine that can recognize different vowels and con
sonants. So in state n, as well as the /a/-to-frame correspondences, we are 
going to have some /e/-to-frame correspondences, and correspondences for 
other vowels. Likewise, in state n + 1 as well as /Of-to-frame correspondences 
we are going to have /pf-to-frame correspondences, and other consonants, 
like in figure 5.13. Now the problem is going to come that it may so happen 
that for some frame of the input that is spoken to the n1achine, that frame 
may actually be more like an /A/ than an /a/. That could be the case, for 
instance, at a vowel-to-consonant boundary where the spectrum of the 
vowel is changing. Or even if it is not, even if it is just coincidence, a partic
ular frame at a particular point in the input may happen to physically be 
inore like what had been stored away as an /A/ frame, than an /a/ frame. 
What are we going to do about that? It might only cause a glitch at one 
point, in which case the output might contain a sequence like /aaaaaAaaa/. 
That could be a remediable problem, because most of the syinbols in the 
output are /a/s and only one of the1n is an /A/, but the question is, how do 
you cope with that? What we need is some kind of confidence measure that 
tells us 'well,, it is mostly /af'. We could count the number of times a letter 
is continuously repeated in the output, and ifthere are more faf's than /A/'S 
we nright decide that it is an /a/. But what if a changing sound really was 

spoken? Maybe what the person said was 'eye', pronounced [aA<Ji]. The 
whole business becomes a lot inore tricky when we start talking about con
fidence measures, and asking what was the most likely input given a 
sequence of observations. Was it an /a/, a /t/, an /e/ or what? We have pushed 
this kind of machine to the limits of what it can achieve. In order to make 
this approach work, we need to add a dimension to the 
machine, so that we can make judgements such as 'well, it is probably an 
/a/, and this sequence offra1nes is probably such and such a phoneme.' That 
is a topic for chapter 7, but I thought that I would raise it here as an indica
tion that yes, the technique does work. It will slavishly compute sequences 
of symbols given sequences of frames in the input, but whether the 
sequences of symbols that it returns are quite what we are expecting or hop
ing to get is a different matter. 

Student: Can you say 'if the frame is less than 5 or 10 milliseconds, it is really 
too short, so it doesn't count'? 
Well, there are a variety of novel and imaginative ways in which we 
could try to resolve these problems, to try to get the device to perform 
how we want it to. These problems have taxed the minds of people work
ing in speech recognition for years and years and a large number of 
bright ideas have been tr·ied. Some improve the situation and some 
don't. But those considerations really take us beyond the s~ope of this 
chapter. 

Student: As it stands, could it cope with double articulation? For example, when 
someone says 'apt', there is a short interval when the lips are closed for the /pf 
and the tongue tip is raised for the /tj. Those two articulations actually overlap. 
Yes, provided that the correspondences between symbols and analysis 
frames that are encoded in the transitions of the machines were included 
in the speech database, there is absolutely no reason why not. The 
machine does not care about the linguistic plausibility of the sequence of 
frames that it accepts. All that finite-state transducers do is to compute 
correspondences between descriptions on two different levels. 

~'s.12 Finite~sti:)te phonology 
Because of that fact, a number of people have proposed that finite-state 
transducers can be used in phonological modelling, which brings us back 
to the topic I started this chapter with. We can use finite-state transducers 
to compute the transitions between lexical (morphophonen1ic) representa
tions and phonetic representations, as in standard generative phonology 
for instance. One of the attractive computational properties of finite-state 
machines is that you can cascade then1: you can take the output of one 
machine and put it into the input of another machine. That is exactly the 
kind of thing that linguists want to do in standard generative phonology, 
Where you compute the output of one rule, and take it as the input to 
another rule. So for each phonological rule you can build a little transducer, 
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and then to represent the cascade of rewriting rules you can combine the 
transducers together. To cascade two transducers you can't just take the 
end states of one n1achine and join them to the start states of the next 
machine: that is not applying the rules in order, that is simply processing 
the first part of a string with one machine, and the rest of the string with 
a second machine. In order to cascade transducers you have to merge them 
in a way that I am not going to go into. It involves combining the sets of 
states and adding or ren1oving transitions to collapse the two machines 
into one. There are some well-defined techniques for cascading two trans
ducers because of which you can take a set of generative phonological rules 
and the order in which they are applied, build a transducer for each rule, 
and then cascade the whole set of transducers into a single large trans
ducer, in which the effects of all of the rules have been worked out and 
combined together. 

Let's consider an exan1ple, based on the standard phonological analysis 
of the alternation between revise {[11va1zJ) and revision ([11v13onJ). According 
to a commonly repeated generative phonological analysis (Chomsky and 
Halle 1968; Halle and Mohanan 1985), the short [r] in the second syllable 
of revision is a shortened version of an underlying long /ii/, shortened 
because two inore vowels follow ('trisyllabic shortening'). The diphthong 
in the second syllable of revise is the default realization of underlying long 
/ii/. Conventional (but simplified) rewrite rules for these two relationships 
are given in (5.1). 

(5.1) a. Trisyllabic shortening 
b. Vowel shift 

V-> 0 /V-(C)V(C)V 
i->a/-i 

(5.1) uses a con1bination of the environment syn1bols '/' and '-' to abbre
viate the full forms in (5.2). 

(5.2) a. Trisyllabic shortening 
b. Vowel shift 

VV(C) V (C) V-> V (C) V (C) V 
ii-4ai 

According to this analysis, (5.Za) has to be applied to the underlying form 
before (5.Zb), because trisyllabic shortening bleeds vowel shift. Applied the 
other way round, the output would be wrong: 

(5.3) a. Correct rule ordering: 
Underlying form /riviiz/ /riviiz+ion/ 
Trisyllabic shortening Not applicable rivizign 
Vowel shift rivaiz Not applicable 
(Other rules) 
Surface forn1 [11varz] [1rvr3on] 

b. Incorrect rule ordering: 
Underlying for1n /riviiz/ /riviiz + ian/ 
Vowel shift rivaiz rivaiz+ian 
,Trisyllabic shortening Not applicable rivazign 
(Other rules) 
Surface form [nvarz] *[11va3an] 

finitt:-<slote rnachines, 

Let's reconstruct this analysis using finite-state transducers, and get rid of 
the need for rule ordering. Recall how we encoded in figure 5.9 a searcher 
for the left-hand side cad of rules of the form a -4 b / c-d. Figure 5.14 
extends this by encoding the rewrite part of the rule, a -4 b, as the 

l:-[ c:} i; 

0 {c:) [a:b) [d:) 8 
··~(;']~~ 
(1~ \_3_) 0 

l:-{d:) 

correspondence a:b. Note that the absence of a symbol on either side of 
the colon, for exan1ple c:, n1atches any symbol: we are not interested in 
what cord map onto. Figures 5.15 and 5.16 give specific instances of how 

l:-[i:) 

0 [i:a) 

.···~~ 
/ I '\ 2 

\ ......... / l:-[i:) 

[i:} 

this transducer n1ay be tailored to encode trisyllabic shortening and vowel 
shift. Note that, as in the conventional rule formalism, we use V to denote 
any vowel and C to denote any consonant. TI1at is, {V:"} abbreviates {i:", 
e:11

, a:", 0: 11
, u:", a:", A: 11

, n:" ... }. 

l:--[V:) 

.0.
. [V:) 
···.~ 

[V:} [V:) 

4 

l:--[C:, V:) 

The crucial difference between the two rule orders is that in the correct 
order, the two rules cannot both occur, whereas in the incorrect order, 
both rules incorrectly apply, to derive *[11va3Gn]. Thus the rules are in an 
exclusive or relationship: one or the other rule can apply, but not both. We 
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FIGURE 5.17 

{i;} 

{V;"} {V:} 

L:--{C:, V; 

l:-{C:, V:} 

therefore combine the two transducers into a single machine (figure 5.17) 
by establishing two separate paths from state 1 to state 5, such that either 
the state sequence of one machine or that of the other, but not both, may 
be followed, 

The idea that standard phonological rules can be expressed as finite
state transducers has been very influential in computational phonolo
gy. The theoretical potential of this approach was first noted by 
Johnson (1972) and pursued in detail by Kaplan and Kay (1994) (a paper 
known since 1981 from a conference presentation), Koskenniemi (1983) 
and Karttunen (1983). The latter describes I<i:rp_mo, a system for auto
matically compiling two-level rules into finite-state transducers. More 
recent implementations of 'finite-state toolboxes' include PC-KIMMO 
(Antworth 1990) and the more general-purpose FIRE Lite toolkit (Watson 
1999). 

This work de1nonstrates (given appropriate caveats about the manner of 
rule application) that we can dispense with intermediate levels of represen
tation and rule ordering. As a consequence, this approach to computation
al phonology is called 1\vo-Level Phonology: as the na1ne suggests, it 
employs only two levels of phonological representation, the lexical and sur
face levels. 

I introduced transducers as a generalization of the finite-state machines 
that work with pairs of syn1bols rather than single symbols. Once you take 
that step, the floodgates are open: as well as working with pairs of sym
bols, you could compute correspondences between any number of sym
bols. Down that path lies a method for the co1nputational implementa
tion of autosegmental phonology, where you have to keep track of several 
parallel tiers. This possibility was first informally proposed by Kay (1987), 
and was further explored by Kornai (1991) and Wiebe (1992). 

Kaplan and Kay (1994) acknowledge that cyclic rule application is a 
problem for finite-state approaches to phonology, because one of the con
ditions that have to be placed on SPE rules in order to imple1nent them 
as finite-state devices is that a rule cannot reapply to its own input 

Fii:•ite-st-ule rnachines 

Uohnson 1972). If that condition is not observed, SPE rules may have the 
power of context-sensitive gram1nars or even unrestricted rewriting 
systems. But if you impose the condition that a rule can't reapply to its 
own outcome at some later step in the derivation, the grammar is finite 
state. Kaplan and Kay argue that cyclicity is a contentious issue. There are 
certainly some unresolved issues as to whether or not cyclicity is dispen
sable. If it is always avoidable, then they are right, and most of phonolo
gy can be reduced to finite-state relations, but if they are wrong, that 
places a limitation on the circumstances in which finite-state methods 
are appropriate. 

The literature on finite-state approaches to computational phonology is 
now quite large, so I have been rather selective about the references I have 
given. Before finishing, though, I want to mention one other example. I 
have been talking about phonetics, phonology and orthography, but the 
first use of these n1achines was in syntax. Figure 5.18 is an example of a 
finite-state machine for a subset of English expressions that might be used 
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when booldng an airline ticket. It is a sin1ple kind of grammar that 
accepts certain sequences of words and not others. For certain kinds of 
applications that only use very simple languages, finite-state grammars 
are quite appropriate. In many circumstances where the range of mes
sages that you want to recognize or generate is rather restricted, a finite
state machine might be more appropriate than a complex type of compu
tational linguistic device, such as a full-blown linguistic parser of some 
sort. That is the case in inany speech technology applications, where we 
are usually not so concerned with including all of the wonderful and elab
orate sorts of linguistic constructions that one finds in generative gram
mar. You do not often find parasitic gaps in n1ost people's requests for 
infor1nation, so a query like 'which files did you discard without reading?' 
may cause problems for such systems. 

In chapter 2 of Syntactic Structures, Chon1sky {1957) discusses three mod· 
els of linguistic description. The first that he considers is a finite-state 
approach to syntax. He criticizes it, and shows a range of linguistic 
constructions that it can't handle. So it is ironic that in worldng linguis
tic systems in real life one finds finite-state methods being used more and 
n1ore connnonly, and often more successfully than 1nore sophisticated 
ldnds of linguistic parsers, which often just fall over, even though they are 
more theoretically respectable. 

Student: But in ail fairness what Chomsky was trying to say was that finite
state machines were not a general solution to syntactic problems. If you want 
to argue that they represent specific solutions to limited problems he might not 
argue with that. 
That is true, you are dead right. But I think it is interesting historically 
that the wheel has turned full circle. 
Student: Also the other argument he offered is that finite-state machines will pro
duce a lot of junk that is not grammatical. 
That is true too, but that is true of almost any linguistic theory. And 
if you over-constrain a grammar just a little too much, you can pre
vent a parser from accepting perfectly grammatical sentences. That is 
just as reprehensible as overgenerating, and can be far more annoying 
to a user, in practice! 

But there is another issue, too, which is that the ldnds of sentences with 
unbounded centre embedding that are widely cited as evidence that nat
ural languages cannot be analysed with finite-state machines is easily 
addressed: they do not occur! To illustrate the in1portance of this, consider 
the following sentences: 

(5.4) The malt lay in the house that Jack built. 

{5.5) The malt that the rat ate lay in the house that Jack built. 

Finiie~stotz"! rnachines 

the malt lay in the house that Jack built 

2 8 
that ate 

the rat 

that ate 

the cat 

that chased 

the dog 

that tossed 

the cow 

(5.6) The n1alt that the rat that the cat ate ate lay in the house that jack 
built. 

(5.7) The malt that the rat that the cat that the dog chased ate ate lay in 
the house that Jack built. 

(5.8) The malt that the rat that the cat that the dog that the cow tossed 
chased ate ate lay in the house that Jack built. 

The syntactic structure of {5.4) to (5.8) can be expressed using a state 
transition network of a kind similar to that used in finite-state auton1a
ta, as in figure 5.19. But if there is no limit to the depth of the centre 
einbedding, this network is not a finite-state machine, as we cannot set 
a finite limit to how many additional nodes lie below state 10. But is 
that actually a problem? TI1e degree of centre embedding exhibited in 
examples (5.6) to (5.8) is rare to non-existent. So a network with no fur
ther embedding below node 10 would actually be capable of accepting 
or generating (5.4) to (5.8) with a finite number of states. With this lin1-
itation, it would be a finite-state auton1aton. We shall return to this 
issue at the end of chapter 7. 
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Further reading 

In this chapter we examined a simple but very versatile computational 
device: finite-state machines. We saw how they could be used to gener
ate or accept strings of symbols (sequences of letters or words). The 
twin labels used in finite-state transducers allow a variety of mappings 
between levels of analysis to be modelled too, maldng them suitable 
for grapheme-phonen1e conversion, or for associating labels with 
speech signals. The theoretical presentations were illustrated with 
working co1nputational imple1nentations written in the Prolog 
programming language. 

Further exercises 
Exercise 5.6. 
Extend nfstl .pl to deal with 'magic e' in the fol!owing words: ape, ate, 
cake, babe, made, age, ace, haze, came, cane, pale, haste, eke, theme, pipe, 
site, pike, jibe, glide, ice, size, rime, fine, tile, hope, rote, coke, robe, code, 
doge, hose, home, tone, sole, dupe, jute, puke, cube, rude, luge, fume, tune, 
rule. 
Exercise 5.7. 
Adapt figure 5.19 into a finite-state transducer by labelling the transitions with 
part-of-speech categories. Implement the result as a Prolog program in the 
style of nfstl .pl. 

There are several good textbooks on Prolog: for example, Clocksin and Mellish 2003, Pereira and Shieber 
1987 or Sterling and Shapiro 1994 are all highly recommended. Many textbooks on formal language theory 
and the foundations of computer science have some discussion of finite-state machines. Few attain the gold 
standard set by Hopcroft et al. 2000; for clarity of presentation, however, Jurafsky and Martin 2000: 35-52 
deserves special commendation. For more on finite-state phonology, see the references in section 5. 12. For 
applications of finite-state methods to morphological analysis and syntactic parsing, see the papers in Kornai 
1999. 

Introduction 
to speech 
recognition 
techniques 

· 1n this chapter we examine a selection of techniques that 

have been used in speech recognition systems. We examine 
one important pattern-matching technique, dynamic time 
warping, in some depth. 
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