110 TR

pad

Exercise 4.4 ° : L
Copy lpcana.c 0 1pcanal . c. Ameﬂd lpcanaz & 50 that 1’[wiites out
1p rather than coeffs, Compare the ip ﬁles Wlth s0me orlganal audlo

: recordlngs TR BRI :

:-Exerczseé!«s IR : S = S
Bxaring e dat (or another recorded 5|gnal) o determme the apprOXEmate

- location of each vowel, Wite down the samiple numbers of points approxi- -

| mately Y arid % of the way through éach vowel, Use 1pc. spactium o’

. &stimate the first three formants of each vowel, ‘Compare. them o pub%lsheci
tables of Vowel formants such 5 those in Ollve etal. 1993 ' L

Further reading
Most of the topics covered in this chapter are described (without implementation in software) in Wakita

1996. Far more about Fourier analysis in C and the Fast Fourier Transform, see Press et al. 1952: 456-510
and 537-53. For more on windowing, see Press et al. 1992: 553-8. Cepstral analysis is well described by
Wakita 1956, autocorrelation pitch tracking by Johnscn 1897: 336 and Linear Predictive Coding by Johnson
1997: 40-4 and Schroeder 1985. The C implementation given in this chapter is closely based on Press et al.
1992: 564-72.

Reading in preparation for the next chapter
Chomsky 1957: 18-20.

Finite- state

The previous chapters concentrated on signal-oriented
methods for speech processing. In this chapter, our
attention turns to language processing, starting with finite-
state machines. These are rather simple computational
devices applicable to various kinds of language-processing
tasks. We examine a variety of examples of their use.

112

N TRODUC

FIGURE 5.1

& |agio
e ldi_i;g ;

fig machine

A finite-state machine is an abstract computing device. (You will some-
times see the terms ‘finite-state automaton’ or ‘finite-state transition
network’ instead, which mean the same thing as finite-state machine.)
We will look at some concrete implementations of finite-state machines
and the uses to which they are put in due course. In fact, it is reason-
able to say that finite-state machines are nowadays the most imporiant
computational technigue in spoken language processing. They are
used in relating signals to word transcriptions, in morphological and
syntactic processing, and even in machine translation. The uses of
these abstract computing devices are many and varied, and the partic-
ular purposes that we will put them to here are representative exam-
ples, mainly applications involving speech and the structure of words.
So 1 am going to begin by looking at some examples that are concerned
with phonotactics, that is, the well-formedness of sequences of phono-
logical symbols. So rather than working on signals, we are going to start
off by looking at the use of these machines for processing sequences of
symbols. This is at a slightly higher level of abstraction than in the pre-
vious chapters, but as we go on I shall try to make the link between
symbolic representations and representation's of signals. I shall show
how the two levels can be integrated using a particular kind of finite-
state machine. That will lay the groundwork for some other work that
comes up in chapter 7, on probabilistic finite-state machines and their
use in modelling speech signals.

Gazdar and Mellish {1989) give a little example of a finitestate
machine; a laughing machine, that is, a machine that generates or rec-
ognizes sequences of the letter ‘h’ followed by ‘a’, repeated any number
of times and terminated by an exclamation mark (figure 5.1). This
machine will generate or recognize sequences such as ‘hal’, ‘hahal,
‘hahahal’ and so on. It is not capable of recognizing any other strings, and
so if we provide any other strings as the input to this machine they will
not be accepted: the machine is incapable of dealing with them.

(a}

{h}

A finite-state machine works rather like a board game in which you move
a piece from one position to the next in order to get from one side of the
board (the start) to the other (the end). There is a start state (state 1,
marked by a dashed circle), and one or more end states (marked by a dou-
ble-ringed circle): in figure 5.1 there is only one end state, state 4. The
machine is allowed to move from one state to another according to the

Finfte-stofe machines

113

arrows, which are marked with labels (sets of symbols). The machine is
used to generate strings by writing out one of the symbols on the arrow
as you pass from one state to the next. Alternatively, the machine can be
used to accept (i.e. recognise) strings input to the machine by checlking off
a symbol from the beginning of the string if it is among the set of symbols
with which the arrow is labelled. The set of strings you can generate or
accept by moving from the start to the end is the language defined by the
machine,

Jurafsly and Mazrtin (2000: 34) give a similar simple example. They pres-
ent a finite-state machine that defines a ‘sheep language’. The words of
their ‘sheep language’ start with a b and then have two or more as and an
exclamation mark. Thus, ‘baal’, ‘baaal’ and ‘baaaaaaaaaaal’ are sheepish
words, but ‘bal’, ‘babal’ and ‘micro-organism’ are not. The sheeptalk
machine is reproduced in figure 5.2.

{a}

So, a finite-state machine is an abstract computing device - an imaginary
computing device, if you lile, though we will see some concrete imple-
mentations shortly - consisting of (1) a set of states, (2) one of which is dis-
tinguished as the start state, (3} some of which are distinguished as end
states, and (4) a set of labelled transitions between states.

The previous examples are instructive and easy to understand, but real
spolken languages are much more complex, of course. Figure 5.3 gives an
example of a machine that models (i.e. generates or recognizes) a set of
monosyllabic words in a language rather like English. It is not complete-
ly right for English, but it is similar to the sequences of consonants and
vowels that can occur in English monosyllables; it’s an approximation to
English. The labels on the transitions are sets of phoneme symbols, so
this machine generates or recognizes phonemic transcriptions of mono-
syllabic words. (A key to the transcription system is given in table 5.1,
below)

I shall call this machine NFSA1, which stands for ‘non-deterministic
finitestate automaton 1°. The set of states abstractly represents the set of
separate conditions the machine can be in, There are 16 states in NESAL.
When we implement this abstraction as a real, working program, the com-
puter will actually pass through a succession of states of the program dur-
ing its execution. So state 1 represents the state that the machine is in

114

PTRODLUCING

{(ptkbdg
fvszBd

{ptkbdg
61

{rexanu}

fpkftfs]}

FIGURE 5.3 S
NESAT 3 finlte-stale model of

when you start the program, the end states represent the actual states
that the program can be in at its end, and the intermediate states repre-

sent the intermediate steps in the execution of the program. They don’t

i : they show the
arily correspond to lines or chunks of the program
et sat g ting the program. The

that the machine is in as if is execu
:vc;:;miils:\?;?sh the start state is shown with a de%shed circlfa and the erircil1
states are shown with a double circle is just a bit of notation: ym.l cou
use whatever notation you want, and different authors do use different
notations. The arcs {arrows) drawn between one state node and the nlix’i
represent the transitions of the machine from one Stflte to the next t af
are allowed by that machine. The arcs are labelled with sets of letters o
the International Phonetic Alphabet inL this case, although symbols froril
any set of symbols could be used. Later on I shall '1001(at examples wit ;
labels in normal spelling, pairs of symbols from different alphabeis, an

even vectors of LPC coefficients!

As T said, the way in which the ma
which you can move from
string that you are looking
So, for instance, starting at state 1 we
Jooking at begins with the phoneme §, OF wWe Can g0

at is one of the labels of the {ransifion aTrow.
can go to state 2 if the string we are

chine worls is a bit like a game in
one state to the next if the first symbol of the .

to state 3 if the string

Firdto-state mociines

115

we are looking at begins with p, t, k, b, 4, g, f, # or [. The rule about how
we move from one state to another is: you can go from one state to another
if the beginning of the string that you are processing starts with one of
the symbols in the set of symbols with which the arrow is labelled. When
you get to the end of the arrow, you move on past that symbol in the string.
So for the next state you look at the first symbol of the rest of the string,
after the one that we looked at in the previous transition. Let’s consider
the actions that this machine might go through in processing the string
8, t. 1, 1, 5. We start in state 1, looking at the first symbol, 5. There are two
routes we can take: we can either go to state 2 because s is on the arrow
from 1 to 2, or we can go to state 4 because s is included in the label on
the arrow from 1 to 4. We must decide which way to go - that is why the
machine is called non-deterministic. (If there were only one possible path
to take at every node, it would be deterministic.) For now, it doesn’t mat-
ter how we decide which way to path. We could follow them in numerical
order, or we could choose randomly. Let’s go to state 2. The next letter of
the input string is +. Well, that is OK: we can move to state 3. Then we see
an r; that's OK because there is a legal transition to state 4. Then we see an
1 and there are two ways in which we can move: we can go to state 5 or to
state 8. I'm going to talke the path to state 8 because it is the one that will
end up working out (though a computer would not be able to see thatl). In
state 8 we see an 1 next: that takes us to state 10. State 10 is an end state,
and the rule about end states is that you can finish if there is nothing left
of the string by the time that you reach the end state, There are no more

letters left in the input string, so we can stop there. We say that the

machine accepts or recognizes the string s, 1, ¢ 1, p. This particular
machine accepts almost all the monosyllabic words in Mitton 1992, a
machine-readable English dictionary, apart from a few very unusual
words, mostly foreign words such as Gdansk, Khmer, Pjerm and schmaltz. 1t also
accepts a very large number of words that are not actual, meaningful
English words, but that are similar to existing words. Examples are spreglkst
(‘sprenkst’), spiond (‘splawned’), strolkt (‘strolked’), tralt (‘rultth’) and Glem. It
also accepts and generates a large number of words that are quite un-
English, such as tflermy. Whether or not a high degree of overgeneration is
acceptable depends on the application. It is often preferable to design a sys-
tem that accepts a wide range of unforeseen inputs than to constrain the
input so much that even inputs that ought to be acceptable are rejected.

Let’s consider an input string that the machine will not accept: s, g, r,
1, 1, t. We can get to state 2 with s, but the next symbol, g, is not one of
the symbols listed in any of the transitions out of that symbol. Now what
do we do? Well there are several things we could do. The first idea we shall
consider is that at that point the machine just stops. It doesn’t reach the
end; it stops and says that you have failed. The machine doesn’t recognize
a string if at some point the conditions for the next symbol to be accepted
aren’t met. The string s, g, r, 1, n, t — or any other string beginning with
%, g —isn’t acceptable by this machine.

If vou wanted NFSAT fo accept sgrini or [nmps {schnapps) or gdensk
(Gdansk) you would have to alter the machine in some way. There is another

116

TR

possibility, though, concerning what to do if the next symbol in the input
isn’t listed on any of the transition labels. Rather than just giving up and
stopping, the machine can backtrack (go back) along the arrow that it just
followed and see if there are any other routes out of the previous state
that would also be acceptable. For example, when analysing s, ¢, 1, 1, y, if
we had first decided to move from state 1 to state 4, we would not be able
to go on from state 4 because the next symbol, ¢, is not on any of the tran-
sitions out of state 4. But that does not mean that s, ¢, r, 1, 1, is an unac-
ceptable string: it’s just that we were pursuing the wrong route through
the machine. If we backtrack to state 1 and try a different route through
the network, we can eventually accept the string. If, when you have
explored every possible route, you find that you still can’t reach an end
state with no symbols left, the string isn’t acceptable by any route through
the network. At that point we say, ‘no, the string we are analysing is
ungrammatical (or unacceptable)’.

.' Student Biit if 3 you are at state 3 can you backtmck all the way fo state 17 :

'.Yes you cai; if the input was pr and you went from state.1.to state 3,

2 you could backtrack from 3 to'1 in one go You'can backtrack as much

asis necessary, bist you must backtrack one step at a time, and you .

; must retrace the’ trans1t10n you took. You can’t baci(track arbltrarlly
farin one go, you have to backtrack to: r_he prewous state, and then

* you try other rotites forward. If they don’t ka oty you can back~ :

Ctrack further back, and you could efid up getting back to state 1; and

. be unable to ‘proceed through the network any further, For example

. if the input is ?grim@ (spﬂmth) we cal go from staté 1 10.2, 3,4, 8,

~and 10, but then we cannot go any further, as g is not on any of the . .
labels of the, tran51t10ns out of state 10. Backnackmg t0 8 is no help, - -

though if we go back to 4 we can try 5 instead: But that s o good: m:

. is 1ot listed on'the transition otit of 5, $o back 104, and no other SIP

CWays forwards Back to 3, 2; still no good nght back to 1: we conld try:

. going from 1to4 mstead butitisa fool’s errand we cannot get any

: further Sp1 maﬁ is. Just jily) good L

We will make use of this backtracking method in the implementation of
the machine below. Note that this method is only relevant to nondeter-
minisiic FSAs: In deterministic FSAs, by definition, there is only ever one

' move you can make for each symbol in the input, In a deterministic finite-

state machine, in each state there is only ever (at most) one transition that
you can make for a given input symbol, there are never any cases like state
1 of NFSA1 where if the next symbolis s, p, ¢, k, b, 4, g, f, 8 or | there are
two ways you can go. Or at state 8 if the next symbol is §, there are three

Figfte-state machines

117

ways you can go. This is a non-deterministic finite-state machine, because
you sometimes can’t determine the right way to go forwards. You would
have to toss a coin or something, and choose one. In a deterministic finite-
state machine there is no need for backtracking: at each step there is only
one way you can go forward, for a given input string, so there is no need
for backtracking.

Figure 5.4 shows a deterministic variant of NFSAI1 that accepts (or gen-
erates) almost exactly the same set of strings. To make DFSAIL, a few
changes to NFSA1 had to be made. Some extra states had to be introduced
{these are shaded) and some extra transition arcs {those with broken
lines). Also, the transition labels had to be altered. Additionally, we have
allowed for the possibility of empty transitions: that is, moves forwards
without reading a symbaol from the input string {or, equivalently, reading
the empty symbol, "). For example, to read the string san (sun}, the first
symbol is s, so the machine must go from state 1 to state 2, Then, the next
symbol is . This is not in the transition label from state 2 to 3, nor in the
transition label from 2 to 4. But the empty symbol " is in the transition
label from 2 to 4, so we can go to state 4. Now a is still the first symbol of
the remainder of the input string: from state 4 we can go to state 8b. Then,

DFSAY

fvzohifds
riwimn"j

[ptkbdg
féhn

FIGURE 5.4
DFSAT a deterministic version of NFSAT

118

T e T e
JUESEING

INTROELICING 4 AND LARGL

Finite-state machines 119

| 3 There is o pre—processor {a feature pecuhar to C) To 1ncorporate

reading n, we can go to state 10. As 10 is an end state and there are no let-
ters left, we can stop: san is acceptable. o

Non-deterministic FSAs are no more or less powerful than deterministic
ones, in the sense that for any language that can be accepted by a non-
deterministic machine, a deterministic machine can be constructed that
accepts it, and vice versa. Furthermore, a non—deterministic rnachlne can
be automatically turned into an equivalent deterministic machine:
Hopcroft et al, 2000 gives details. '

We only use backtracking in non-deterministic finite-state rnachrnes,
where at some points there might be two or more options to take. So ifwe
take one route and it turns out not to have been right, we can backirack
and explore other possibilities. So backtracking enables us to irnplement _
a kind of parallel processing. We can’t actually do the processing in parat— -
lel, following different routes at the same time, but we can explore varr—
ous possibilities one after the other until we have exhausted all the possi-
ble paths through the network, if necessary. If we reach an end state
before exploring the whole graph, then fine, the string is acceptable, and
we can stop there.

.- depending on the implementation of Prolog you are using. (Note .
that Prolog clauses end with a full stop, whereas in C they are ter:
minated with a semicolon. The punctuation is different in other -

- ‘respects too. Instead of C's'{...}, for instance, you can use (.. }in .

- Prolog, though it is usually niot necessary.) o
" 4. The data type of 4 variable does not need to be declared in

.- advance {iooray!). In fact, a variable can be used to hold objects of
7 various kinds; However, there areé fewer nirmeric types thdn in C;
1 and they do not relate to the actual storage of different kinds of

- numbers in the computer’s memory. If you write anything toa.
o file) it W111 be Written as an ASCII description of the object: this is
“7 true even of integers and floating point numbers! The diffetence:
i+ between variables and constanits is shown typographically: vari-
“able nanes ‘begin with a capital letter or the underscore symbol .
_ Anythmg élse’is a constant (To make a constant that begins with.
Lo cap1ta1 letter, you can’ put 1t in smgle quotes: Anything in smgle
. quotes isa constant } Thus; John isa vauable, johnisa constant
2 1Jotin' is a constant and'_cons tant is a variable (because it -
G begms with an, underscore) A;B G X, XT, String, What,
' ‘Result and Anythlng are typical variables. ASCII letters and.

: numbers ; are constants as dre opérator symbols like +; <, and the

: reserved words of the Ianguage such as consult igand"

U Hame o ok .
5:Theé content ofa varlable is only ﬁxed mthm a elause (1 e: it is local
- to each functton) Thus if T use the variable a in two clauses, there
i3 not necessarily any connection between thern.

__'"Proiog Is a-logic programiving language, One clause calls another
- bya process of logrcal inférence called theorem proving. Thls :
“'means that you do not need to tell the interpreter the order in
'_’Whrch the clauses in a program should be executed. Also; contra—
dlctory, mconsmteut rilogical prograrns fail, whereas inC 1t is’

: : unfortunately easy to wr1te 1Ilog1cal prograrns

An implementation of this example is given in listing 5.1. This particu-
lar implementation. is in Prolog, a programming language that is quite
easy to understand, but one that is very different from C. Some of the
most salient differences are listed in the following text box, though you
don’t need to study this now in order to go on. A good Prolog interpreter,
SWI-Prolog, is provided on the CD-ROM, and there is a helpful .web51te
that goes with it (see the companion website to this book for a link).

:-'_Some dlfferences between Prolog and C

1 Prolog progla s are not normally compiled they are nterprete

B That means that you start the Prolog mterpreter, and then'you: can’

o itype ifi one definition or question at a time. Or you can put your
. definitions and (uestions iy a file and Tun it, in. WhICh case the-

o Prolog mterpreter will go through thern one at a trme Just as rf yo

:""r"_"were typmg ‘them in. _ : e : g

2. There is no; ‘nidin’ procedure 1f your program defmes varrous

predrcates (whmh are somewhat like C functlons) you can tell t

: 1nterpreter to call {1 e run) cmy of therm. This rneans that theré a

. many. ways of runnmg a program It depends on what you ask the

o interpreter to do.. > -

-_There are several good textbooks on Prolog, some t1t1es are recom-
;i:mended in the ‘further readrng ‘section at the end of thls chapter

There are several main ways to represent strings in Prolog that we could
use. For this implementation, we shall write a string as a list of letters,
separated by commas and enclosed in square brackets, For example, we
will encode pet as fp, e, t]. Nonroman IPA letters will need to be
expressed using some kind of translation into ASCII symbols. I shall use
the encoding in table 5.1, which is based on that used in Mitton 1992,
with one modification: ‘C" and ‘I are used instead of Mitton’s ‘tS° and
‘dZ’. This avoids an unnecessary complication with the machine: it is
not very important or necessary, though. Capital letters, like the capi-
tal T, or the capital C, and so on, should be enclosed in single quotes in

.- 'one program file within another {as w1th the C #def ine. fllenazae_:
: pre—processor cornrnand} in Prolog we ‘talk of consu}tzng that fil
B expressed elther as consult { fllename) or [f.llename] S

120

il
dz

s --._'1'0'_0_:
.lﬁ03}:ﬁ'-
e
o
02
o
"':i3§LT'F
Cos

i 1._.1:4"-
19T wet
1060

"'{”tét,S!Oﬁk_ﬁ L-_.::' _

' putt; cut, blood

'ffpuf PJ:.

" put ot il

thean

church,eteh

udge © feet heat -

| fit,off, sphere © et

 ship, quiche -

kot 7 new, cire, you'

: '._:: : Géf-,' 'gii,ré_ : ;'- : go; 't_qe’,:: to'a(i .

*cowloud

; "'p'iéi':,-:ﬁeer,; fear -

*pair, pear, care -

i verse; s fir

Prolog if they are to be used as constants, because capitals in Prolog rep-
resent variables. When we want to use capital letters as constants we
have to put them in single quotes. Thus, fou is encoded as the list
['S,'@','U']. Note that ¢ (zero), used to encode IPA p, and 3 (three), repre-
senting IPA sz, do not need to be put in quotes, because numerals are
constants anyway.

Finfte-stute machines

1217

Listing 5.1. A Prolog implementation of NFSA

/* NFSAl.PL A nondeterministic finite-state automaton to
/* recognize English-like monosyllabic phoneme strings

accept (8tring) : - move(gl, String) .

move (State, Symbol) : -

transition{State, Symbol, end} .

move (Statea, [Symbol |[Rest]) :~
transition(Statel, Symbol, StateR),
move (StateB, Rest) .

/* Enumerate all acceptable strings */

loop:~ accept(A), write(a),

transition{si,s,s2)

transgition({sl,p,=s3).
transition(sl, £, s3)

transition(sl,k,s3).
transition{sl,b,s3).
transition{sl,d,s3).
transition(sl,g,s3).
ftrangition(sl, f,s3).

transition{sl, 'T',s3).
transition{si,'S',s3).

transition(sl,p,s4).
transition(sl, t,s4).
trangition(sl,k,s4d)}.
transition{sl,b,s4).
transition{sl,d, s4).
transition(sl,g,sd).
transition(sl, f,s4).
transition(sl,wv,s4).
transition{si,s,sd).

transition(sl, 'T',s4) .
transition(sl, 'D',s4},
transition(gl,'S',s4) .

transition{sl,h,sd).

transition{sl, 'C',s4).
transition(sl, 'J',s4d).

transition(sl,r,s4).
transition(sl,l, s4)

transition{sl,w,s4).
transition(=l, J, s4)

transition(sl,m,s4d).
transition(sl,n,sd}.
transition{s2,p,s3).
transition{s2,t,s3).
transition(s2,k,s3).
transition(s2,p,s4).

*/
*/

il

21

40

)
o

40

o0

122 RO CENG

CHDAMDY TANGLIASG

transition({s2, t,sd)
transition(sz, k,s4)
transition(s2,m,s4).
transition{sZ,n, s4)
transition(sz, l,s4)
trangition(s2,w,s4d).
transition(s2, f,s4d}.
transition(s3,r,.s4).
transition(s3,1,s4}.
transition(s3,w,s4) .
transition(s3,3,s6).
transition(s4, 'I',s85).
transition({s4,e,s5).
transition{s4, '&",s5).
transition(s4,o0,s85).
transition{s4,'U',s5).
transition{s4,'@',s7).
transition{sd,a,a7).
trangition{sd,'I',s8).
trangition{s4,e,=s8).
transition{sd, '&',=88).
transition(s4,'V',s8).
transition(s4,0,s8).

transition(s4, 'U',s8).
transitioni(s4,3,s88).
transition(s4, "A',s9).
trangition(sd, '0',89).
transition(sd,u,s92).
transition(s4,1i,s9).
transition({s4, '@',89).

transition(s5, '@',s89}.
transition{s5, 'I',s9}.
transition(s6,u,s9).
transition(s7, 'U',s9}.
transition(s8,1,s10)}.
transition(s8,m,s10) .
transition(s8,n,sl10).

transition(s8, 'N',s10).

transition(s8,b,sll).
transition(s8,d,sll).
transition(s8,qg,s1l1).

transition{s8, 'D",s1l).

transition({s8,v,sll).
transition(=s8,1,s11).
transition{s8,b,sl2}.

transition{s8, 'J',g12}.

transition{s8,g,s12}.
transition(s8,v,sl12).

trangition{s8,'D',sl12).

trangition{s8,z,s81l2).
transition(s8,p,sld).
transition(s8,t,sl4).

60

G5

70

80

85

90.

Finte-state machines

123

transition(s8,k,s14).
transition(s8, £,s14).
trangition{s8,d,sl4).
transition{s8,1,sl4).
trangition(s8,n,sl14).
transition(s8, 'C',s15).
transition{s8, £, slb).
transition(s8,s,s15).
transicion{s8, 's',sl5).
transition{gg, 'T',sl6).

/* State 9 1s an end state if there are no more letters left */

transition(s9,[],end).
trangition(s9,1,s10}.
transgition{sg9,m,sl0).
transition(s9,n,s10).
trangition(s8,b,sl1l).
transition(sg,d,sll).
transition{s9,g,sl1l).
trangition(s9,v,sl11}.
transition(s9, 'D',sl1l).
transition(s9,1,s11).
transition(s9,b,s12).
transition{s8,'J',s12).
transition(s9,qg,s12).
transition{s9,v,sl2).
transition(s9,'D',s12}.
transition(s9,z,s12).
transition(s9, 'Z',s12).
trangition(s9,p,gl4d).
trangition(s9,t,sl4).
transition({s9,k,sl4).
transition{s9,f,sl4).
trangition(s9,m,sl4} .
transition(g9,p,slb}.
transition(s9,k,sl5).
transition(s9,f,sl5).
transition (g%, 'C',s15).
transition({s9,s,s15).
transition{s9,'S',s15).
transition(s9, 'T',sl6}.

/* State 10 is an end state if there are no more letters left */

trangition(sl0,{],end) .
trangition(sl0d,b,sl1l).
transition(s10,d,s11).
transition{sl10,v,s1l}.

transition{sl0, 'J',s12).

transition(si0,v,s12).
trangition(sl0,z,s12).

‘transition(sl0,p,s14).

transition(sl0,t,s14).

 transition(s10,k,s14).

ransition{s10, £,sl4}.

1o

120

140

150

124 INTRODUCEG SPEECH AN LAMGE

Finfte-siate mochinas 125

i
il

transition{sl0,p,s15). 13 Consider the transitions from state 9 to state 1. On figure 5.3 I drew a

{
trans::Lt%on (s10,%k,s15) . o : single transition arrow from node 9 to node 11 with a set of six letters
Eigﬁiitigﬁ Ezig , fCSiE:)LS). : (bdgv3l}onthe one arrow. But in listing 5.1 there are six different tran-
. £, . sitions from state 9 to st ioni i :
e s e ate 11, each mentioning a single symbol:
transition{sl0,'S',sl5). 160 transition({s9,b,s1l)

/* State 11 is an end state if there are no more letters left */
transition{gll, [],end).

transition(gll, =z, s12).

/* State 12 is an end state if there are no more letters left #*/
transition(sl2, [],end). 165
transition(sl2,d,sl3).

/* State 13 ig an end state 1f there are no more letters left */

transition(s9,d,s11}.
transition(s9,qg,s11).
trangition(s9,v,sl1l).
transition(s9,'D',s1l1).
transition(s9,1,s11}.

transition(s13,],end) . So that is why there are six conditions, six statements in the group of
/* State 14 is an end state if there are no more letters left */ - rules for transitions from state 9 to 11, any one of which is a legal transi-
transiticn{sl4d, []1,end). 170 . tion. It is as if we interpret figure 5.5 {a) as (b), and similarly for all the
trans:lt :101’1 (s14,8,815) . ¢ other transitions with multiple labels. With only one symbol per transi-
transition(sl4,'T',sl6). . tion arrow, we can dispense with set braces.

/* State 15 is an end state if there are no more letters left */
transition(sl5, [],end}.)
transition(sl5,t,sl6). 175
transition(slh, ''?',8l16) . :

/* State 16 is an end state if there are no more letters left */ b
transition(slé, [],end).

transition{sl6,s,sl3).

"The program is very simple, even though it is quite long. It has two parts:
first, there are four statements or ¢lauses, each of which has a left hand
part and a right hand part separated by -°, which means if. ‘A =~ B.” can

be read as ‘A if B’, or ‘A is true if B is true’, or ‘In order to prove A, prove B’ | (bdgval
Note that each clause ends with a full stop. So the first statement, gv
‘accept (String):- move(sl,String}.’, means ‘accept a string
(held in the variable String) if there is a move from state 1 (1) that
takes you through the String’. So that is a definition of acceptance or
acceptability. .

Then, there are two clauses in lines € to 10 that define a move through
the automaton. The first defines the special case of a final move; the sec- S o
ond defines non-final moves. The definition of a final move is: - Alternatively, we could use the 'predi'éa.te.:ﬁezhbér w.hii:.lﬁ is built i'n"t'('., :
many versions of Prolog, to check whethey the symbol is in'the set of
: syrnbols on a nansmon a1row For example mstead of the foilowmg
(Line breaks, such as those after the : -’ in line 6 or 8 of listing 5.1, are :; Losix hnes : : : Sk : S '
ignored by the Prolog interpreter.) This clause can be read as ‘there is a
move from a State past a Symbol if there is a transition from State to
the end via that Symbol’. The largest part of the program is a long list of
statements about what kinds of transitions are permitted in this automa-
ton: these statements define the entire content of the automaton NFSAT.
States are represented s1...s16, though any sixteen distinct symbols
would do.

(a} Single arrow, multiple labels (b} Multiple arrows, single labels

Digression’ -
move {State, Symbel) ;- transition(State, Symbol, end) .

tran51t10'h'(s'9 o, 315) 2
i tran51tlon(s9 k 515)
; trans:Ltlon(sQ Fi 515)
: tran51t10n{59 T slS) S S
-.'tran81tlon(s9 S,SlS} : .- i
; trans;tlon(SQ S' ,515) o ' e :

126

we could write just:

transition{s9,X,s15):— member (X, [p,k, £, °C’,s,'8"1) ;

If it is not built in to your version of Prolog, the following definition
of menber is standard: -

member (K, [H]_1). . _ _
member (X, [_|T]) ¢~ member (X,T).

However, this approach makes the code run a liftie_ﬁofe slowly, and. :

does not generalize as easily to other varieties of finite-state automata;
such as those we will consider below. : N o S

Referring to figure 5.3, the following are examples of possibly final tran-
sitions: (1) from s6 to 9 via u, (2) from 510 to s11 via b, and (3) from s8 to -

§15 via t{. In the program, however, these are treated like non-final tran- '

sitions, because whether a state is final or not depends not only on its
own status, but also on the fact that there are no more symbols left in the
string. The following clauses sanction the three transitions mentioned
above:

transition{s6,u,s9).
transition(sl0,b,sll).
transition{s8,'C',sl15}.

The fact that states 9, 11 and 15 (to name but three) are final states if there
are no more letters left is encoded by the following clauses:

transition(s9,[],end).
transition{sll, [1,end).
transition{sls, [],end).

Effectively, it is as if we had defined an additional state, called end, asin
figure 5.6. Transitions from §9, s11, s15 and others to state end are per-
mitted if all that remains of the string is nothing.

The second statement in the definition of move defines non-final
moves:

move (Stated, [Symbol|Rest]):-
transition(StateA, Symbol, StateB),
move (StateB,Rest} .

It is a recursive definition, because it includes move again. It can be read
as follows: “there is a move from any state, Statea through a string that
starts with a Symbol and continues with the Rest of the string if:
(1) there is a transition from States to some StateB via that Symbolk,
and (2) there is a move from StateR through the Rest of the string’.
Briefly, that means you can go from state A to the end, if you can go from
state A to state B and then from state B to the end. Note that the second
argument of the first mention of move is a list, [Symbol |Rest]. There
are two notations for lists (of e.g. characters) in Prolog. We have already

Finifte-stote machines

127

")

FIGURE 5.6
Treatmant of final states in the Prolog implementation of NFSAT

seen the notation in which you explicitly state the items in the list,
separated by commas, for example [p, e, t.]. We can also describe a list by
its first element(s) {the head) and the rest (the tai). The tail of a list is a
list containing all the items in the list apart from the head. Thus, the head
of [p, e, t] isp(not [p], note) and its tail is [e, t]1. Another way of writ-
ing a list uses the symbol *|” to separate the head from the tail. For exam-
ple, instead of [p, e, t] we could write [p] [e, t£]]. (We could also write
itas [p,el[t}]loreven [p,e, t|[1])

The fourth cdause is a loop to generate all the strings that the automa-
ton accepts. I will discuss it further below.

. _'Stéutiént_."an- I fust ii'sli'c:'abéu_tfhé. brackets? I ami niot' quite suve what is the o
“significance of ordinary parentheses and square brackets: . :

Parenitheses are only used in this progiam to show the ai‘gtiniéhﬁ;df A

pred_ic_e_tf[g {ie. function). Square brackets indicate a list of objects: in this -

end

Finfte-stote moachines

case we are using lists of letters to represent strings, The vertical bar is
anotation that separates the beginning of a list from the rest of a lst.

Student: So in the second clause of move, the first symbol of the list is salient,
and the rest is sort of unspecified?
Yes, the Rest is dealt with in later steps In each state we are only

concerned with the first symbol of the part of the string we are work-

ing on. The rest of it is still to be processed. We can’t look ahead and
process letters in the StI‘ng that are further on: we need to set them
asu{e for processmg by the later parts of the network

Student T mean, at state I at the begmmng, 1f the Ietrer is for mstcmce m
{let’s say the work is mak), at this state 1f m s accepted the rest is going to be
processed in state 47 -

. And the Rest will be [*I',1;k],in st1te'4' Then when we look at
the first symbol, ' I ', we can go to state 5 or 8, Now the Rest is just

' [1 k] Suppose We go to state 5, o

Smdent Itis Hlegal . : :

“Yes, it is 111ega1 because in state 5 there are no transitions that read
the letter 1. The rest of the string must begin with '@' or 'T'. The

* machine will have to backtrack. But if the input string had been
[m,'T7;:'@"] (‘mere’), the rest of the string from state 5 would be

[*8%], and so in that case we could go to state 9, which is a possible

end state. - _

So as we go through the string we can read letters off the
~ beginning of the list, one by one; and as we d¢ so we move from
ofie state to the next. There are several end states; and if in those

state$ the string that is passed to this state has no more letters left, -

it is the empty list, that is, an acceptable final move: And because
that is an acceptable final move that isn’t conditional upon any . -

other moves; the program will fmlsh at that pomt itwill termmate '

: successfully

'Student What does it actually do If you gwe 1t an 1llegal smng Suppose you .

" get to state 9 and the first symbol in Rest is an ‘7" o
Since Prolog works 1o1- determmlstrcally and this i is a non:..
deterministic autommaton, it will backtrack and attempt to find
other routes through the network. If it reaches a point at which

every rotite has beed tried that if can legally get to, but it can get no

further than that; the program will fail at that pomt Each time
" Prolog processes a'clause, it actually returns the answer eithier ¢ yes
or ‘ne’; meaning ‘yes, that is provable’; or ‘no, T can’t prove that

with these rules’. If it gets to an end state with no letters left, it has .

- proved that the input string is acceptable so-the resilt will be ¢ yes

" But if after thrashmg around and backtracking here, there and

. everywhere, and exploring the network withott fmdmg any way
-through it it will say no Those are the two p0551b1e results of the

- predicate accept: '

129

%

I've been talling about this machine as an acceptor of strings: you put a
string in, it follows some transitions through the machine and ends up
with a decision about whether the string is acceptable or not. Interpreting
the program as an acceptor, a recognizer, is actually only one view of the
program’s behaviour. Given a string, the machine will behave as an accep-
tor. But suppose we provide not a string but no information, just a vari-
able, as the input to the machine. What it will then do is work its way
through the transition network, and since a variable will match any of the
symhols on the transition network, it will be able to trace any path
through the network that it chooses. In doing so it will have followed a
particular choice of letters on the arrows.

To understand this, let’s think of an example in a different domain. In
algebra you have symbols that stand in place of a whole set of other Sym-
bols that could have occurred in those places: we use x and y instead of
actual numbers, for instance. In an expression like x + ¥ =10, x can be 1
and ¥ 9, or x can be 2 and y 8. Or x could be 1024 and ¥ —1014. ¥ can be
any number: it stands for a range of possibilities. We can do that for
strings as well: you can have varjables like x and y representing not
numbers but possible letters, without specifying which pdrticular letters.
You can have variables for any kind of object, representing a lack of any
niore specific information about that kind of object. In listing 5.1, the def:
inition of a move does not refer to any particular symbol, but describes
the string in question using the variables Symbol, to refer to the first let-
ter of the string, and Rest. Within a clause, the valie of a variable is the
same on each mention, as illustrated by the lines in Figure 5.7. In this fig-
ure, solid lines are used to indicate that two instances of a variable have
the same value, and dashed lines are used to indicate that two variables
with different names but in the same position (e.g. the first and second
arguments of the predicate move) have the same values, too.

acceptb{String):-

move(;l,string).

move (Statea, [Symbol |Rest]) :—

T T
transition (Stater, Symbol, StateR), move(StateR,Rest) .

_

Now, if we ask the Prolog interpreter to prove ‘accept({s,p,u,nl}.,
it will give the variable Stxring the value s, o, u, nj: this vaiue is passed
on to the move predicate, and the interpreter next attempts to prove:

move (81, (s,p,u,nl).

FIGURE 5.7

130

- AR LAMGLACE PROCESSIMNG

INTRODUCHG 5P

Recall that there are two clauses in the definition of move: the interpreter
tries each one in turn. It tries the first clause first:

move (State, Symbol) :~ transition{State, Symbol,end) .

It can do this by assigning the constant s1 to the variable State and the
list fs,p,u,n] to Symbel, leading it next to attempt (o prove:

transition(State, Symbol,end).
jie. transition(sil, [s,p,u,n],end}.

The attempt will be fruitless, however, as nowhere in all the many defini-
tions of the legal transitions of this machine is there one from st o end.
Nor are there any transitions listed with more than one letter as the sec-
ond argument. Thus, this clause cannot be proved, and the interpreter
must backtrack.

But there is a second clause to the definition of a move, and this is now
tried out. To prove ‘move{Stated, [Symbol |Rest]) according to the
second clause, the interpreter must first prove ‘transition (Stated,
gymbol, States)’, and then prove ‘move {State B, Rest). Todo this,
g1 must be assigned to Stated, and {s,.p.u,n] to [Symbol|Rest].
Bearing in mind what I said earlier about the structure of lists, that means
that Symbol is instantiated to s and Rest is instantiated to {p,u,nl. So,
the interpreter must prove ‘transition(sl, s,StateB)’. Note that
StateB is a variable, so it can in principle be set to anything (because
Prolog variables are not limited to a specific data type, as C varfables are).
Among the many definitions of the transitions, there are two with 1 as the
first argument and s as the second argument: :

transition(sl,s.s2).
transitien(gl,s,s4}.

Once again, these are considered in turn. The first means that StateB

must be set to s2. OK so far. That means that the interpreter must then

attempt to prove ‘move (StateB,Rest])’, thatis, ‘move (s2, [p,u.nl)’
If we repeat this logic over again, we will soon come round to attempting

to prove that ‘transition{s2,p,StateB)’, and thence ‘move(s3,’

[u,n])’. However, the latter will not pan out, as there are no transitions out.

of s3 with u as the first symbol, So we backtrack to the second possibility for.:
proving ‘transition(s2,p,StateB)’, which is ‘transition(s2,::
p,s4)’, which leads on to ‘move(s4, [u,n]}’. This is more profitable;
as the program contains the statement ‘transition (s4,u,s92)’. So, on
we go with ‘move (s9, [n])’ as our new goal. Because of the definition

“trangition(s9,n,s10)’, we next attempt the goal ‘move (10, []). We
have now used up all the letters in the input string as we moved from on

state to the next. Fortunately, state 10 is an end state: the program contains’,
the clause ‘transition(s10, [1,end}’. This matches the first clause of.

move, and does not ask for anything else to be proved. The search for a proo
is now complete, as the following text box spells out.

Finite-stale machines

131

Prolog's {eventual) proof of accept (1, p.u,ni),

1. transition(sl10, [} ,cend) .,
2. Therefore, move (210, [1) .
3. transition(s9,n,s10).
4 Therefore, move (s9, [n]) .
. B transition(s4,u,s9). "
- 6. Therefore, move (g4, [u,ni). ..
© 7 transition(s2,p,sd) .
-" 8. Thérefore, move (52, (g, u;n])'..
. '9._' transition{si,$,s2}.
10. Theréfore, move (s1, [, 5,u,nl) .
. 11. Therefore, accept ([s,p,u,nl) . QB D.

Exercise 5.1. Trving it out
If you have‘ SWI~Prolog installed on your computer, you should be able o start
the Profog njterprefer in Windows and consult (i.e. load) nfsal.pl just by
doublemcl!ck!ng on its icon, in whatever folder you have put it (Otherwise
,doubEe—c_llc!fmg on the nfsal.pl file icon may cause Windows to prese(wt the
Oper1ﬂ\1N|tff_1f d[ai?gue !fox, which says: ‘Click the program you want to use to
open the file "Nfsa1.pl” .., You'll have to respond b i
e p ¥ selectlng: your Prolog
.Al.ternati\t'ely./, you can'launch your Prolog interpreter (for example, by double-
clicking on its icon, or clicking on the ggEEm menu, selecting ‘Programs B and
then vour Pro!og interpreter's icon. f you don't see cne, you probably have'n’t got
ane, and you will need to install one before going any further. ‘

If you faunch Prolog in this way, you'll need ta cons
flei ' ultnfsal.pl m
dlicking cn the Prolog window and typing: p manualy, by

Infsail.

after the Prolog prompt, "7— . if that doesn't work i
bl ik, you may have to give the full file

['nfsal.pl'].

or the full df.rectory name. (In SWl-Prolog, the Microsoft convention of using '\ in
pathnames is not observed: instead, you must use /) Thus, to load
CASLPAnfsal.pl, you type: ,

['C:/8LP/nfsal.pl’)

Or you may have to use the builtin predicate congul t :

f consult{ 'nfsal.pl').

. Some versions of Prolog for Windows (includin i

. of Prolog g SWi-Prolog) give you pull down

: ?enus for dealing vlvlth files. Whatever brand of Prolog interpreter you have, and

- nowever you consult the program file, vou should ¢ i ’
Pl y hen be able to try it out. Try the

faccept{le,t,r, 'I", 'N'1}.

132

Finfte-state mochines

INTEODUCING SPELCH AND LA WORLLNG

133

rietworlk, because the first transition in the program out of s1 is to s2 via s,
the first transition out of s2 is to s3 via p, the first transition out of 83 is fo
Fvia s4, and so on. In this way, the automaton can generate a string.

Prolog should reply just:

Yas
P

and is now ready for you to type in the next query.

Exercise 5.2
See if it will accept the pseudo-English words mentioned in section 5.2: sprenkst,
splond, strolkt, traitd and blem. What ebout the un-English word tloim«? What
about sgrint and spromB?

;m Remernber to encode 5, o, 4, 8, 1, and 1 using capital letters in single quotes

NGOV T and T respectively (see table 5. T) :

hrJ In SWi-Prolog, you can recall earfier queries by using the ‘up arrow’ key. You
can then modify an earlier query using the ‘left arrow’ and 'right arrow’ keys, delete
and backspace, and the other keys on the keyboard. Prolog will not process your
query until you hit the Enter/Retum key,

However, getting one result in this way perhaps isn’t very satisfactory. For
instance, we might want to generate all the strings acceptable to the
‘automaton. So after the Prolog interpreter gives an answer, you can type *;,
and that tells it to backtrack and consider another possible outcome.
When it is forced to backtrack it goes back and generates another answer.
First, the last transition will be reconsidered, which was the transition
- from state 9 o the end:

-'.tranSJ_tlon 29, [1,end).

* The next transition out of state 9 in the program listing is:

Exercise 5.3

If you forget to put the quotes round a capital letter, and type e.g. L transitiem(s9, [11,s10}.

accept([s,p,1,0,n,d]). ‘ so the next solution it generates is:

instead of: = 1Is, p, ¥, 'I', @, 1]

Then if you enter ;’ again it will go off and find another sclution, and
another. If you want to determine the full set of strings that an automaton
generates you could be typing semi-colons all night, as in fact it generates
564498 strings. (Yes, I have generated them all.} So I have also provided a
little predicate called loop (see listing 5.1 for the definition). If you enter

accept(fs,p,1,70,n,d]).

Prolog will take the O to be a variable name. What happens? After it gives its
response, press the semicelon key. What happens? Press it 11 more times, or unil
Prolog responds No. What's going on?

loop.
that calls:

If we don't provide a string to the automaton, but just provide a variable, a accept (A}, write(a), nl, fail.

variable will match any Hst of letters. So if we give a variable as the argument

of accept, the machine can take any path it likes through the network from

beginning to end. Since all we have given it to work on is a variable, it will

always be able to get from any of the start states to any of the end states.
Instead of invoking this program by entering

meaning, ‘accept a variable, type the contents of that variable out, start a
new line and then fail'. The enforced failure at the end malkes Prolog back-
track, and it will cairy on looking for alternative solutions. There are no
alternative solutions to write (A} or nl, but there are many, many alter-
native solutions to accept (A). So Prolog will backtrack through the whote
search space and it will generate all acceptable strings. (You may have to use
Ctl-C to interrupt the program, or even close the Prolog windowl)

Consequently, the program nsfal.pl, like the abstract finite-state
machine in figure 5.3, is completely non-committal about whether it is an
accepting device or a generating device, It depends on what gqueries you
give the interpreter to work on.

You can concoct slightly more exotic queries (as in exercise 5.3} where
you give an incompletely specified string, such as [s,t,r,X, 'N'] and
the solutions to that will provide various values of X. You can get it to gen-
erate either a single value of X that is phonotactically acceptable, o1 if you
were to keep {yping semicolons or write a bit of code like the loop predi-
cate, you could get it to generate all possible values of X, insofar as the
string is well formed according to the machine,

accept (s, t,r,'I°,'N"'1).

where we give a particular string and ask ‘is this sequence of letters
acceptable?’, we can enter

accept (X) .

which means "What X is acceptable? Because X is unspecified, the machine
will be able to follow any path from the start state to the end state as an
instance of X. In following such a patl, it will follow a particular set of tran-
sitions, each labelled with a particular symbol. So when the machine gets
to the epd state it wili have picked some list of letters, and that list will be
assigned to X. The first string it will accept in thiswayis[s, p, r, 'I',
@], in fact. That is just the first path that it happens to follow through the

134 INTRODUCING SPEECH AND LANGUAGE PROCESSING Finfte-state machines

L

it Is X allowed to be zero? _
Do you mean an empty symbol? Not in NFSA1, because there are no
pty symbols in the definitions of transitions, except in end states,
1. Alliteration, Suppose we want to find words that begin with the sam-e -al; strings end in those empty strings. .

< 3 .

- The following query will do the trick:
X = Is,k,r|_1, accept (X) .

The underscore symbol 1neans ‘the anonymous variable’, that 18, a vy
able whose contents we are uninterested in examining, (What happens it

weJustask taccept (1s,k,r|_j). 2 e have been talking about these machines on several different levels. I

started off with pictures of networks with state nodes, arrows and labels.
We should not confuse a picture of a network with the abstract machine
that it depicts. The machine itself is not a network, but an abstract com-
puting device. I shall not get into a discussion about it, but there is a huge
literature on the algebraic structure and properties of abstract automata,

Ifyou are really keen, see, e.g., Hoperoft et al. 2000,) For example, you may
- come across definitions like this:

2. Riming. This is a bit difficult. Suppose we want a rime for ‘munch”
The following will give some results, but not all; '

—

CAfinfte-state automaton A s a quintuple {Q, X, g,, £, §) where (7 is a
“finite set of states Gor G-+ .G X s a finite alphabet of input symbols,
_"qn is the start state, £ is the set of final states, F C O and 6 O % ¥ w 0,

X = ['V',n, ¢, accept (X) .)
“the fransition function,

and
That definition should be taken outside and shot,

So pictures and algebraic structures are two levels of Tepresentation. A
third level of representation is that of particular computer programs writ-
ten in particular programming languages, the implementations of a
finite-state machine. There are many ways to implement a specific, abstract
. finite-state machine, and many programming languages in which you
- could do it.

Table 5.2 gives a fourth representation of finite-state machine, a
symbol-state table, or state transition table, as they are sometintes
known. A state transition table is a two-dimensional table with the list
of the symbols that may occur in the alphabet that the machine is capa-
ble of accepting listed along the top row, and the numbers of the states
listed down the left-hand column., The entries in the table say what
state to go to if the symbol at the head of a column occurs in the input.
We start at the srart state, state 1, which is the first line. If the first sym-
bol in the string we are processing is a ‘b’, we look in the column of
state numbers underneath ‘b°. In row 1, in the ‘b’ column is the num-
ber 3, which means we then 80 to state 3. If the first letter of the input
was v', we would go to state 4, and so oil. Suppose it is ‘v* and we go to
state 4. We now look at the entries i line 4. If the next symbol is ‘i’ we
must go to state 9. If the next symbol is ‘h’, we look at row 9, column
‘b’. That cell contains 0, meaning that that is an illegal transition: “vih’
is an illegal string! So the entries in the table encode the transitions
from one state to another state when viewing a particular symbol in the
input. So the “from’ state number is the line number of the table, the

X = L,_,_,'V',n,'C'J, accept (X},

{There is an alternative that will generate all the rimes from one query,
but it is very inefficient and slow.)

3. Palindromes, In the previous examples, 3 template list was constructed |
and submitted to accept, Other templates are possible, For instance, we.
can exploit the fact that évery mention of a variable shares a value with-
in a clause to make templates that are symmetrical. Words with this
structure are palindromes, (In this case, they are phoneinic palindromes,
because NFSA1 canpot spell.) The only Ppatterns of palindromes found in
monosyllabic words are:

[c,v, a1, [C1.c2,v, 2,017, [C:L,Cz,c_’-ﬁ,,\,:f,cg;,QQICl]r
tc,v,v,cy, [Cl,CZ,V,V,C2,C1], and [leC21C3,V,V,C3,C2,C1}.

The first solution to

X

[Cl,CZ,CB,V,C‘3,C2,C1J accept (X) .
is
X=1Is, p, 1, r1v, 1, p, s]

All the solutions with two V’s in the middle are uninteresting, as the only
identical sequence of Vs dcceptable to NFSAT is T4, which is not really
English.

9.

9

0 4 04095b538b7b7a99535c8b8b

4

4

4-0 0 o0

0

9

0

3 0 o0

0

0

0 0.0.0 9 5].9_56 Bb 7b 7a 9 ¢ 5a 5¢ 8b 8b o

4 0 0

53
5b

0 000 o o

0 0009

0.0

00 0 0 o

e

5¢

0000 o

00

o

00 0.0 0 g

0

0

7a |
7b

- 8a:

0

0. 0_3:0 o

000

100 0000 o

12 1_2' 10 10 o

1

Sl

noar :TT -_.]5-'.?2' T416 i5 ':]5 O

14

14 14

.9

0

0 o

g 0

0

0.

o

12.0. 0~

0

11

l4'-H_"IT_T 0 .]5.]2_14_-“]6 15]5 0

14-

1014

0-

L IF

00000 g

0 0

s rrachinnes

137

siext’ state numbers are entries in the table, and each column corre-
onds to the symbol that must be read in order to make a transition
om one state to the next. Also, note that [have indicated which states
ire finai, by writing those state numbers in bold italics. As you will see,
"haven’t filled in all the numbers for the entire network. I leave that as
in exercise for anyone who wants to implement DFSAT in this way for
hemselves. Although some lines are complete, note that line 6 actual-
yonly has one legal state transition in it, which means ‘if you see a “u”,
and you are in state 6, you can go to state 9°. So another approach to the
jinplementation of finite-state machines is to have such a table in a
computer file, and then all you need is a little program that moves from
'_'c')ne state to the next according to the entries in the table and the next
gymbol in the string. The program obviously would not care about what
hat table represents: it will work with any such table, so that is a nice
general-purpose implementation of finite-state machines. The machine
follows the moves given to it by the table, and the table could be
changed in order to model different languages, or to use different sym-
bols. (To represent non-deterministic machines in this way, it must be
possible to have more than one number in each cell. Then, a way of
. picking one of them must be added, as well as a way of keeping track of
which one was selected, so that on backtracking the other choices may
be pursued.) '

Well, we could stop at this point because those are the main things to
learn about finite-state machines. Buft for the rest of the chapter [shall
cover some other possibilities and some particular ideas for extensions,

applications and so on.

In the automata we have looked at so far there aren’t any selftoops. A self-
ipop is a transition from a state to itself. In figure 5.2 there is a Joop from
state 4 to itself. If the machine is in state 4 and sees the letter a, instead of
going to state 3 it stays in state 4. The letter a is acceptable at that state
but it doesn’t advance the state of the machine, You might ask ‘what is the
use of that?’ In the context of the previous discussion it may not appear
to be very useful, but there is a general purpose device called a searcher,
a finite-state machine with just two states (figure 5.8). A searcher is a
machine that looks for a particular symbol, or perhaps a particular short
sequence of symbols. Suppose, for instance, we have a string and it is how-
ever long it is, and want to look to see if it contains a ‘£ sign. We might
even have a file of such strings: we might be seafching through the files
on your disk, looking for all of the files that have something to do with
money. (A file is just a long string of characters.) What we need is a
searcher. State 1 is labelled ‘5-{£)" 3 is the alphabet of the machine {the
entire ASCII character set, for instance), and ‘=’ means set difference, so
‘*~{£}’ means ‘all symbols apart from £, In state 1, therefore, if the first
symbol of the input isn’t a £ sign, the machine stays in that state. It then

138 IMTRODUCING SPETCH AND LANGUAGE PROCESSING . Finite-state machines 139
examines the next symbol in the input. It can go to the second state if the - e} 5
first symbol is what it is that you are locking for, the pound sign. After it :
has found a £ sign we don’t care what else it sees, so that could be any- - Q e} la] 1} FIGURE 5.9
thing: it might contain the £ sign, or it might not contain the £ sign, it : e
could be any symbol in the alphabet, so state 2 is labelled *%". (Since °3 is . 1 @
being used as the name of a set, rather than as a symbol that might occur w~21a)
in the machine’s input, it is not enclosed in set braces, {...}.) State 2is an -
end state. -
Z-{d}
“rwonderful strings that violate what is acceptable by NFSA1 or DESAL are
“not recognized or accepted: they fail to match the machine’s patterns.
FIGURE 5.8 :

A machine that searches
for money

8 There is an interesting and useful generalization of finite-state machines
in which the transition labels consist not just of single symbols, but of
~ pairs of symbols. A finite-state machine of this kind is called a finite-state
' transducer, and works with two strings at a time. A transition is acceptable
if one element of the label is the first symbol of one string and the other
element of the label is the first symbol of the other string. In this way,
. correspondences between the symbols of one string and symbols of the
. other string can be related to another in sequence. The two strings that
¢ are processed by a finite-state transducer could have various interpreta-
_ tions or uses. For instance we might regard one of the strings as an input
string, and the other as an output. Alternatively, we could regard two

The machine will only get to state 2 if the input contains the £ sign. -
Therefore, the machine will only accept strings containing £.

Exercise 5.5

Think of an easy way to extend the machine in figure 5.8 in crder to make it search
for money in many currendies, e.g. dollars, yen or euros. What problem might arise
in searching for prices in pence? :

grep . : .

~Reéaders who are familiar with the Unix operating systeti are probably

+ aware of grep; a program that séarches throu gh one or more files for a
spec1f1c strmg or search pattern usulg a fmlte—state method; It's. hke a

- more general version of thie method presented here for- searchmg f01

. a’currency symbol. MS: -DOS has'a similar but more restricted com-

~mand, called ‘find’. In the MS- DOS prornpt window (i.€; comrnand

: prompt wmdow, in more recent versions of Wmdows) typmg FIND .

: strlng | filename causes, the stated fﬂe{s) to- be searched for ali

' mstances of the stated strmg SRR

or set of correspondences between the two strings.

Let's look at some specific examples of this to show the use. First, we will
consider a machine that relates orthographic representations (i.e. words
written in normal spelling) to their phonemic transcriptions. It uses paired
transition labels, joined by a colon, such as phif, th:6, th:d, sh:f, ck, ckk,
00:U, ooiu and x:ks. A symbol written by itself, for example s, abbreviates
the same symbol on both sides of the relation, for example s:s. On either
side of the semi-colon there may be single symbols or short sequences of
symbols, to allow for the fact that two orthographic units can map onto
one phoneme (e.g, sh:f), or one orthographic unit may map onto two
phonemes (notably x:ks). Figure 5.10 illustrates such a transducer, NEST1. It
is based on NFSA1, and works with English-like monosyilables.

A Prolog implementation of NFST1 is given in the file nfstl.pl.
The beginning of that program is given in listing 5.2. There are a few
differences between nfstl.pl and nfsal.pl. First, the definitions
of accept, move and loop are altered so that they work with two
strings simultanecusly: an orthographic string and a phonemic string,
Second, the representation of strings is different from that in listing 5.1.
Instead of strings of constants, such as fs,t,r, 'I', 'N'], this program
represents a string as a list of ASCIE character codes. For example, * 58U

Searchers can also be used in finite-state machines that model the appli- -
cation of phonological rules. When you apply a phonological rule of the
form cad — cbd {i.e. a — b f e—4d) to a string x you have to see whether the
expression on the lefthand side of the rule, cad, matches the string x that
you are applying the rule to. You can use a searcher for that {figure 5.9). -
Note that in state 2, if the next symbol is not a, you go back to the begin-
ning of the search again. That is, a ¢ that is not followed by an a does not
get you very far. Nor does ca if d does not imumnediately follow (state 3).

So a searcher implements a pattern-matching operation. The larger
machines that we looked at earlier on are also pattern-matching machines
in that the set of strings that they will accept matches the patterns of
well-formed syllable phonotactics of this English-like language. Weird and

strings as the input, and the machine would then compute an alignment

al

T e s e . . .

140 IMNTRODUCING SPERCH AND LANGHIAS

NESTI

[ptekkbdggu:
9 1 phif v s cis psis
7 th:§ thd shif k ch
tf judz gl ¢ wrer !
wwhiw yijmnk
i guekw)

{axz e in wa o uib

{ptekmnlwphf

eer1a er:a Ins uns ot

a0 aWi0 U 00U 030 oaau
[ptekbdg
£ phef B shif)

OW:aU OW;AU OW!E0 OUTIUS 0y
101 oitol exar yiar ew:ju}

fuesju)

FIGURE 5.10
NFSTI:

3

relations in Faglish me

ransducer ampting grapheme-nhane

(ie. [9u) is encoded as the list {83, 64, 85] , not ['s','@a*,'g'].
(This has several implementational advantages that I shall not discuss
here.) Fortunately, this encoding is not as opaque as it may at first
appear, because Prolog provides two mechanisms that help us use it
easily. First, there is a special notation for lists of ASCI characters: a
string of letters enclosed in double quotes is automatically represented
as a list of ASCII codes by Prolog. Thus, if we write s@U*, it will be
auFomaticalIy translated by Prolog inte [83, 64, 85]. The empty
string, ", is translated to the empty list [], Second, the built-in predi-
cate name converts (either way) between Prolog constants and lists of
ASCI codes. Thus, the query:

?— name (X, [83, 64, 85]).
yields the answer:

X o= 58U

and

7~ name ('sgrint',X).

gives:

X = [115, 103, 114, 105, 110, 116]

Finfte-state machines

141

This predicate is used to make the ASCII strings that may be generated by
the machine more readable, so they can be printed out to the screen or to
a file. (Note that name is now called atom-codes in the international
standard definition of Prolog.)

Listing 5.2. Part of a Prolog implementation of NFST1

/* NFST1.PL A nondeterminigtic finite-state transducer
/* to relate English-like phoneme strings tc spellings */

accept (OrthString, PhonString) : -
move (gl, orthString, PhonString, [1, [1}.
name (Orth, OrthString), name (Phon, PhonString),
write{Qrth}), write(' '}, write(Phon), nl.

move (Statel, Crth, Phon, [1,[]1}:~
transition(Statel,Orth:Phon, end) .

move (Statel, Orth, Phon, OrthRem, PhonRem) : —
transition{Statel, CrthSym: PhonSym, State2),
append (OrthSym, OrthRest, Orth) ,
append {PhonSym, PhonRest, Phon) ,
move {State2, OrthRest, PhonRest, OrthRem, PhonRem) .

/* Enumerate all acceptable strings */
loop:- accept(A,B), fail.

transition{sgl,"g":"gs",s2)
transition{sl, "p":"p",s3)
transition{sl,"t":"t",s3}.
transition{sl,"c":"k",s3)
transition{sl, "b":"b",s3)
transition{sl, "d":"d",s3)
transition(sl,"g":"g",s3).
transition{sl,"f":"£f",s3).
transition{sl, "ph":"f",83) .
transition(sl,"th":"T",s3).
transition{(sl, "sh":"38",s3}.

o

i

25

30

‘ The treatment of empty transitions is a little different, as there are two

circumstances to consider. First there is the case in which the state is an
end state, and there are no more letters left. For example:

transition(s8,"":"",end).

Second, there is the case of an empty transition to the next state, though
there are more letters remmaining (a mechanism that helps to keep the
machine a bit simpler), For example:

transiticn(s8,"":"",s89).

142

TRODGCING SPEECEH AMD LANGUATE FRO

Now suppose that you provide only one of the input strings to accep.t,
the one that corresponds to the symbols before the colon, a graphemic

input string. For example:
?- accept(*squeak”,_).

The graphemic input string variable CrthString is ills‘Fantiated with a
particular sequence of symbols (in this case "squeak", le. [115, '107 .
119, 105, 107]), and PhonString is just an uninstantiated variable.
Provided that OrthString is graphemically well formed (according to
the definition of the machine), as the machine progresses through the
network from one state to the next, it will successfully read off the
graphemic side of the transition labels. As it does so it also can generate a
record of the correspondences between the graphemes and the phonemes
as it goes along. The sequence on the phonemic side is generated by the
machine at the end as the result {just as was the case when we non-
deterministically generated strings in section 5.6). The machine prox.ddes
a method for mapping from orthography to phonemic transcriptions.
Thus, Prolog’s reply to the preceding query is to print out:

squeak skwik

that is, the paired orthographic and phonemic strings, (Tf you use a named
variable, e.g. X, instead of the anonymous variable _, it will give the ASCII
codes of each string too.) o ' .

It works the other way round too: by providing just a phonemic string,
by keeping track of the transitions that the machine goes through and

writing down the first symbol of each pair in the transition Iabel, you can

get a possible graphemic string corresponding to a given phonemic ir.lput.
By responding to Prolog’s output by entering a semicolon, additional
solutions can be generated. For example:

?- accept (X, "£0ks") .
focks £0ks

X = [102, 111, 99, 107, 1151 ;
fox fOks

X = [102, 111, 1207 :
phocks f0ks

X = [112, 2104, 111, 89, 107, 115} ;
phox f0ks

Well, it doesn’t necessarily give the right answer first time! Bat in that

way we can find homophones. N
Once again the machine is completely noncominittal as to whether it is

mapping from graphemes to phonemes, or phonemes to graphemes. A
third possibility, of course, is that you provide both a graphemic strlng and
a phonemic string, In that case you can only get through the network if the

Finite-state machines

grapheme to phoneme correspondences encoded in the transition work
are accepted. So that is a way of asking the machine to determine whether
the particular phonemic transcription is a valid phonemic transcription of
the graphemic transcription, and vice versa, whether the graphemic string
is a valid spelling of the phonemic transcription. The fourth possibility is
when you specify neither of the two strings. You input a variable for both
the graphetnic string and the phonemic string. That will non-determinis-
tically generate a correspondence between the spelling and pronunciation
of a syllable. By backtracking, you can generate all spelling-sound corre-
spondences for all the syllables of the language.

There is a caveat, though: the power of the machine is limited by how
much of the string it can look at at each transition. The examples that we
have had so far are correspondences between single symbols in one string
and single symbols in the other, where a ‘single symbol’ might actually
be ornate: it might be a digraph or a trigraph, but it is effectively inter-
preted by the machine as a single symbol. There is no lookahead mecha-
nism in a finite-state machine, so you can’t peek ahead to see whether or
not there is some letter coming up later in the string. However, there is a
way to encode a kind of look-ahead, which is to actually make the sym-
bols on the transitions longer sequences of letters. For instance, in deal-
ing with spelling to phoneme relations we must consider the behaviour
of ‘magic e (the letter e after a vowel and a consonant that makes the
vowel long) in the Fnglish orthography. For example: sit vs, site, can vs.
cane, past vs. paste, rot vs. rote. The pronunciation of a vowel letter
depends on whether or not there is an ‘e’ after the next consonant, fur-
ther along the string. NFST1 does not deal with most cases of ‘magic e’
(apart from —ce, ~de, -se and —ze in state 7), though it does accept an ‘e’
after certain consonants (i.e. -dge, ~ve, —ge, ~gue and —the) that has noth-
ing to do with vowel length, The only way in which you can build those
kinds of correspondences into a deterministic finite-state machine with-
out adding a new processing mechanism is to use transition labels that
are three or four letters long at a time, and relate three- or fourletter
sequences to three or four phoneme symbols at a time, for example
ast:fastf, but aste:feist/, So you overcome the fact that you can’t compute
non-local dependencies in a string by making them local, by using longer
chunks. The bigger the chunks get, however, the greater the number of
transitions you need to have, since there is a very large number of map-
pings between sequences of three or four letters and sequences of three
or four phoneme symbols.

- Student: You can get into trouble with that kind of thing though can’t youz.
- The Tetters 4, m, €’ correspond phonemically to fermy, but suppose you give the
“machine the string ‘c, a;m; ¢ v '? How is {t guing to process that? Is it going

“to first map the ¢ into'a [lef? Theti it ight hit an ‘e’ and think it is f/f, But if
it processes ‘a; m, € as a single unit; corresponding to fermy, it will go wrong.’

144 Fingte-siofe machines 145

The trouble with orthography is that sometimes these doublets and triplets o
correspond to phonological units and sometimes they do not. a0 2693137
You are right. It doesn’t present any general computational problems, | a0 —3.13723
but it does present problems for the implementation of that particu- az: 2.153815
lar task. By making the chunks of strings that are processed on g 046244
each step larger, we introduce non-determinacy into the network, a5 —0.62918
because the number of possible transitions to the next states. . ag: .194162
becomes larger the more letters that you have on each transaction, dy: 0.636667
Theré are various solutions about what to'do with the sequence of . ag: —1.27494

. letters a, m, e. We could just accept the non-detesministi, and then ag: 1.502201

- there will be no need to use such Iong substrings as transmon ; dyp: —1.37626

* labels. Alternanvely‘, you can attempt to prioritize the choice of o ay: 1135756

~‘which transition to follow next. The usual scheme for doing thatis ap: —0.52237
to try to match the longest substrmgs first, on the theory that they - an —0.11574
are more specific; special cases. You malke the shorter substring - . Gig0 0135437 |

matches of a Tower priority, Bul that is actuaHy addlng an ordering o
scheme to the basic finite-state mechanism, We would stay w1t111n
- the bounds of finite-state languages, but that would be a new, non-
: standard Var1ant of the finite-state architecture, I raised this exam- . :
ple to show one of the limitations of finite-state machines. It is a.
hrmtatmn that cat be overcome, but it is an mtrmsu: Innltanon, m-._:._
as, much as thmgs becomnie more comphcated the more of the strmg'
you try to scan 111 any one chunk : : o

The number of possible values and combinations of alt the different coef:
ficients is very large, so the alphabet of these complex symbols is cer-
tainly enormous, but it is finite. So, consider a transducer in which the
symbols on one side of the transition labels are LPC vectors and on the
other side phoneme symbols. Each pairing of a phoneme symbol with an
analysis vector represents a phonemic labelling of that analysis vector. For
¢ example: '

"AM:[2.693137 -3.15723 2.153815 -0.46244 -0.62918
0.184162 0.696667 -1.27494 1.502201 -1.37626"
1.135756 -0.52237 ~0.11574 0.135437]

50 how can we find cut what the correspondences are? Well, the first step
is to record a speech database and encode speech into the desired param-
eters. Then, you segment the speech into phonemes, and provide phone-

mic labels for each segment, as in the upper part of figure 5.11. {This is
- usually a painstaking, long, manual task, possibly requiring many person-
months of work.,)

Then for every 5 or 10 ms fraime in every segment you associate that
phoneme label with that frame. (This needs to be automated to be practi-
cal.) This means that a stretch of speech in the database that is a complete
vowel, say, will consist of a certain number of frames, say 30 frames, and
each of those frames will have the same vowel label, as in the lower part
of figure 5.11. That part of the figure shows a segment of speech froin the
. 204th 5 ms frame of joe . dat (towards the end of the [af of ‘father’) to the
212th frame, shortly after the start of the {3/, Below each frame number is
-a phoneme label for that 5 ms interval, and 14 LPC coefficients, a, to a4 '
Time is in the horizontal dimension, and analysis features are in the verti-
* cal dimension.

From such a database, we can construct a set of transitions in which
the alphabet on the speech side is an alphabet analysis of vectors, and the
alphabet on the linguistic side is an alphabet of phoneme labels of the

The examples in the previous section are about relations between one
kind of alphabetic string and another kind of alphabetic string, graphemeé
strings and phoneme strings. Or instead of grapheme to phoneme ma
pings, we could map graphemes to allophones directly if you wanted to;
or from morphophonemes to allophones, or from virtually any alphabetic
representation o any other alphabetic representation that corresponds to
the first in a certain way. (The kinds of correspondences that can be com-
puted using finite-state transducers are known as reguiar relations) Bat
the symbols in the transition labels do not have to be letters of the alph
bet {any alphabet: Roman, phonetic, Arabic, Thai, etc.). Any finite set of
syiubols will do. One instance of special interest in speech processing is
that we can treat a set of acoustic parameters, such as a vector of LPC pre:
dictor coefficients, taken together as one symbol. For example, frame 200 of
joe_coeffs.dat is a vector of 14 LPC coefficients for (part of) the vowel
faf of *father’. We could treat them as a single symbol, a set of features,:if:
you like, as in phonology, and write:

146 SO AN LS Finfte-state machines 147
usual kind. The transition labels are pairings of phoneme label with vectors |
of analysis features. We can disregard the frame numbers. For transitions % |
from one vector to the next within a phoneme, we use selflloops, but for !'
transitions from one phoneme to the next, we employ two separate states,
as in figure 5.12. So the sequences of state transitions that the machine
will accept are sequences of phoneme—{rame correspondences.
Now, suppose we want to use such a machine to produce transcrip-
tions on the basis of the speech analysis vectors. The basic idea is the
same as when we were discussing grapheme-to-phoneme conversion ear-
d E lier on. Then, if we didn't specify the graphemes but just provided the
phonemes, NEST1 could compute the graphemes for us as it goes
through the transition network. The same applies here: if we don’t spec-
TLabel: ify the phoneme labels but the set of correspondences between
a a a a o & 8 a 8 © phoneme labels and frames is known and encoded in the machine, by :
EH P 206 207 208 209 210 211 212 presenting the machine with a sequence of analysis vectors we can j_
et recover the corresponding sequence of phoneme Iabels, Now consider a |
2693137 | 2.610945 2,597558 2.565878 2.519291 2.349247 2.321899 1.56340% 1481066 . oy e ool
305723 | 3.07347 | 294453 | —2mi241 | 211807 | 2011037 | 202477 | -0.63155 | 0.010306 machine for transcribing vowel-consonant sequences that only recog- |l
anie |Goome | ot |betss | -bam |vosssn |omwms |omsw | olsmie | - nizes one particular vowel-consonant sequence, [ad. The machine might :
oioats | oovaem | oénsoe | odsos | -0s0ses |odramon |oiseod | oseass | -ozmesr | only have two states, as in figure 5.12, with a very large number of self :
| e | olome | "ot | o | Dot loops from the state 1 to itself, each of which represents a possible vowel ?
s | e e | s 3{,?;’4’1?, 3.32%33 902 éﬁégi 1?333224 201 23333) frame. In state 2, the consonant frames will be likewise represented by :
e, | S8 W E SR R S] o coieing o cmomnt s e i i e ’
spsech file 0135437 | coasssz | o30sees | 0003265 | e24l65 | 0022095 | 0072926 | o3esil4 | 0.200167 _ ter vectors. There will also be some particular vectors that have been |
observed at the transition from a vowel to a consonant. Provided we have
multiple different tokens of jad/, there will be more than one transition
from state 1 to state 2, all representing the change from [af to [d/. For
consistency let’s give it the consonant label. There will be a great many
@ o & 5 & selfloops in state 1, even if the machine only recognizes one vowel
2.565878 2319291 2.345247 2321899 1.863409 ; * phoneme. And even if it only recognizes one consonant in state 2, there
el PEpti oo alaar rpsies will be an awful lot of selfloops there, one for each distinct observed _:
_0.8136 _0,3249 0.256971 0.287573 0.335704 : . frame. If we enlarge the set of vowels and consonants that this machine ;
0.027484 0.184156 —0.79563 ~0.68009 0429717 - © recognizes, there will be an even greater number of selfloops, so the :
~0.43509 ~0.80504 0.373898 0.156924 —0.89356 _ L ; ; . !
1037625 0.898168 —0.0097 0.262798 0.252545 number of transitions in the machine will be very large. But the struc- %
—1.31662 —.49597 ~0.10334 —.3322 0.661088 ture of the machine itself is extraordinarily simple: while the machine |
iff%gg géﬂg;g Eiggzgg %ﬁgégz f}:ggg;‘ _ i is seeing ‘Jaf-type’ frames it stays in state 1, and associates each vowel
1.134817 0.012791 0.677501 0512414 0.689633 _ . frame with the label [qf. Only iffjwhen a ‘/d/-type’ frame is input can it
Bolgigé‘; ?0323232 :g?gg‘g :gégﬁg igggg?s : - make a transition from state 1 to state 2. Then if the frames after that
0.003263 0.24165 0.122075 0.0672926 0,305114 - continue to be of type [0/, it will continue to generate a sequence of {3/
labels, If the device works in the way that it is intended to, when given
a sequence of frames as the input it will generate the corresponding
SCURE 5.1 sequence of phoneme symbols. A long sequence of {dentical symbols have
Part of o finte ctate to be contracted into a single label, so that the sequence of frame labels
transducer that relates faaaaaaaadddodod) will be abbreviated as fad/. So given the acoustic
phoneme labels to LPC . parameters of a speech signal, we could produce a hypothesis about
VeLtors - what phonemes were input to the machine. It would be a rudimentary
kind of speech recognition device; well, a kind of phonemic labelling
. device, at least.

Fafle-stgie machines

149

148 PN TRODA HANDY LANGLACT PROCESS
(Clar...awlt {elarn..au]} {Elar..eu]} (n:lo...ael} {plan..ausl) {Ela...au])
{p:[ar...ais]}
FIGURE 5.13 0 “ H

:"_Smdent Would a two state machme hke this handle VCC sequences? N

“You d have a state for vowels, a state for {he consonants that can _
. -follow the vowel and then a state for the second consonant m the

spoken? Maybe what the person said was ‘eye’, pronounced [aasi]. The
whole business becomes a lot more tricky when we start talking ahout con-
fidence measures, and asking what was the most likely input given a
sequence of observations. Was it an fa/, a /tf, an Jef or what? We have pushed
this kind of machine to the limits of what it can achieve, In order to make
_ this approach work, we need to add a probabilistic dimension to the
: machine, so that we can make judgements such as ‘well, it js probably an
+ faf, and this sequence of frames is probably such and such a phoneme.’ That
- is a topic for chapter 7, but I thought that I would raise it here as an indica-
. tion that yes, the technique does work. It will slavishly compute sequences
‘of symbols given sequences of frames in the input, but whether the
- sequences of symbols that it returns are quite what we are expecting or hop-
- ing (o get is a different matter,

{m:[ar...qu]}

[n:[ar.. a1} {s:[e...a14]}

No, but 1t would not take much to extend it to 1onger sequences
tident: Can you say ‘if the frame is less than 5 or 10 mﬂhseconds it 15 f'eally

short; so'it doesn’t count’?
ell; there are a variety of novel and 1rnag1nat1ve ways in wh1ch we
ou_ld try to resolve these problems, to try to get the devicé to perform
W we want it to. These problems have taxed the minds of people work-
1ng in, speech recognition for vears and yedrs and a large number of
b _ght ideas have been tried. Some improve the srtuatlon and some
oni't, But those con31derat10ns really take us beyond the scope of thls
hapter e : :

Student: As it stcmds ‘could it cope w1th double amculatmn? For example when
somieote says ‘apt’, there is a short interval when the lips are closed for the /p/
ind the tongue tip is raised for the Jt/. Those two articulations actually overlap.
Ye provided that’ tlhe correspondences betiveen syrnbo}s and analysis
framies that are encoded in the transitions of the machines were inclitded:
in’ the speech database, there is “absolutely no reason why not, The
. achinie does not care abouf the Hnguistic plauﬂbzlity of the seqlience of
frames that it accepts, All that finitesstate transducers do is to compute

rrespondences between dESCI‘IpT_IOIlS on two chfferent levels..

sequence as in figure 5. 13 _ T :
. Studens: So the ﬂumber of states in the machme 15 not med to the number of :
:':dtstmct phonemzc symbols that it couid output RN
B That’s r1ght I guess you could pursue that loglc even further and say y 1
: on}y need one state But the réason for havmg sepal te states s o ensiire.
that only certam patterns of vowels and consonants are acceptabie :

Now the question is, does it work? Well, ves it does, and no it doesn’t. it*
works after a fashion, but it doesn’t work as well as we might like it to. For
the machine in figure 5.12 I picked a particular vowel and a particular con-
sonant, But we are unlikely to want a machine that is so limited. We are
more likely to want a machine that can recognize different vowels and con-
sonants. So in state #, as well as the jofto-frame correspondences, we are:
going to have some [efto-frame correspondences, and correspondences for
other vowels. Likewise, in state n+1 as well as /8j-toframe correspondences.
we are going to have [pj-to-frame correspondences, and other consonants
like in. figure 5,13, Now the problem is going to come that it may so happer;
that for some frame of the input that is spoken to the machine, that frame'
may actually be more like an [/ than an faf. That could be the case, for
instance, at a vowel-to-consonant boundary where the spectrum of the.
vowel is changing. Or even if it is not, even if it is just coincidence, a partic:
ular frame at a parficular point in the input may happen to physically be.
more like what had been stored away as an [af frame, than an [of frame.;
‘What are we going to do about that? It might only cause a glitch at one:
peint, in which case the output might contain a sequence like jagaaaaaqaf.
That could be a remediable problem, because most of the symbols in the:
ottput are jajs and only one of them is an [af, but the question is, how do,
you cope with that? What we need is some kind of confidence measure that:
tells us ‘well, it is mostly jaf’, We could count the number of times a letter:
is continuously repeated in the output, and if there are more faf’s than [af’s
we might decide that it is an Ja/. But what if a changing sound really was:

Because of that fact, a number of people have proposed that finite-state
transducers can be used in phonological modelling, which brings us back
-.fo the topic I started this chapter with. We can use finite-state transducers
“to compute the transitions between lexical (morphophonemic) representa-
tions and phonetic representations, as in standard generative phonology
for instance. One of the attractive computational properties of finite-state
machines is that you can cascade them: you can take the output of one
machine and put it into the input of another machine. That is exactly the
_. kind of thing that linguists want to do in standard generative phonology,
Wwhere you compute the output of one rule, and take it as the input to
“another rule. So for each phonological rule you can build a little transducer,

.

150

Finfte-stote machines 151

and then to represent the cascade of rewriting rules you can combine the
transducers together. To cascade two transducers you can't just take the
end states of one machine and join them to the start states of the next _
machine: that is not applying the rules in ordet, that is simply processing -
the first part of a string with one machine, and the rest of the string with
a second machine. In order to cascade transducers you have to merge them
in a way that I am not going to go into. It involves combining the sets of
states and adding or removing transitions to collapse the two machines
into one. There are some well-defined techniques for cascading two trans-
ducers because of which you can take a set of generative phonological rules
and the order in which they are applied, build a transducer for each rule,
and then cascade the whole set of transducers into a single large trans-
ducer, in which the effects of all of the rules have been worked out and.
combined together.

Let’s consider an example, based on the standard phonological analysis’
of the alternation between revise ([yrvarzj) and revision ([1rvizon]). According
to a commoniy repeated generative phonological analysis (Chomsky and.
Halle 1968; Halle and Mohanan 1985), the short [1] in the second syllable
of revision is a shortened version of an underlying long Jii/, shortened
because two more vowels follow (‘trisyllabic shortening’). The diplthon
in the second syllabie of revise is the default realization of underlying lon
fiif. Conventional (but simplified) rewrite rules for these two relationships:
are given in {(5.1).

Let’s reconstruct this analysis using finite-state transducers, and get rid of
the need for rule ordering. Recall how we encoded in figure 5.9 a searcher
for the left-hand side cad of rules of the form a — b | c—d. Figure 5.14
extends this by encoding the rewrite part of the rule, @ — b, as the

(b} (] ' FIGURE 514

correspondence a:b. Note that the absence of a symbol on either side of
the colon, for example ¢:, matches any symbol: we are not interested in
-what c or d map onto. Figures 5.15 and 5.16 give specific instances of how

FICURE 5.15
A transducer that

(5.1) a.Trisyllabic shortening V-8 |V-([OVIOV
b. Vowel shift i—aj—i

(5.1) uses a combination of the envircnment symbols 4/’ and ‘~' to abbre- i
viate the full forms in (5.2}. this transducer may be tailored to encode trisyllabic shortening and vowel
“shift. Note that, as in the conventional rule formalism, we Use V to denote
‘any vowel and C to denote any consonant. That is, {V:"} abbreviates {i:",

e, ar, o, ut, e, Al L L),

(5.2) a. Trisyllabic shortening VVOVIOV=SVvIOQVQV
b. Vowel shift ii—ai

According to this analysis, (5.2a) has to be applied to the underlying form
before (5.2b), because trisyllabic shortening bleeds vowel shift. Applied the
other way round, the output would be wrong:

-{V:}

(5.3) a. Correct rule ordering:

Underlying form friviiz/ friviiz+fon]
Trisyllabic shortening Not applicable rivizion

Vowel shift rivaiz Not applicable
(Other rules) o -

Surface form [uvarz) [arvizon]

b. Incorrect rule ordering:

Underlying form Jriviiz/ friviiz+ian/

Vowel shift rivaiz rivaiz+ian The crucial difference between the two rule orders is that in the correct
Trisyllabic shortening Not applicable rivazion order, the two rules cannot both occur, whereas in the incorrect order,
{(Other rules) e e both rules incorrectly apply, to derive *[arvazon], Thus the rules are in an
Surface form [varz] *[rvazen] exclusive or relationship: one or the other rule can apply, but not both. We

3

Finjte-stale machines

INTRODUCING SPEECH AND LANGUAGE PROX

153

FIGURE 5.17
Boeseitll oof e

ohnson 1972). If that condition is not observed, SPE rules may have the
Power of context-sensitive gramimars or even unrestricted rewriting
ystems. But if you impose the condition that a rule can’t reapply to its
wn oltcome at some later step in the derivation, the grammar is finite
ate, Kaplan and Kay argue that cyclicity is a contentious issue. There are
errainly some unresolved issues as to whether or not cyclicity is dispen-
sable, If it is always avoidable, then they are right, and most of phonolo-
:gy can be reduced to finite-state relations, but if they are wrong, that
places a limitation on the circumstances in which finitestate methods
e appropriate.

Z-{C., V)
e literature on finite-state approaches to computational phonology is

Row quite large, so I have been tather selective about the references I have
given. Before finishing, though, T want to mention one other example. I
hiave been falking about phonetics, phonology and orthography, but the
irst use of these machines was in syntax. Figure 5.18 is an example of a
finite-state machine for a subset of English expressions that might be used

therefore combine the two transducers into a single machine (figure 5.17)
by establishing two separate paths from state 1 to state 5, such that either’
the state sequence of one machine or that of the other, but not both, may
be followed. :
The idea that standard phonological rules can be expressed as finite
state transducers has been very influential in computational phonolo-
gy. The theoretical potential of this approach was first noted by
Johnson (1972) and pursued in detail by Kaplan and Kay (1994) (a pape
known since 1981 from a conference presentation), Koskenniemi (1983)
and Karttunen (1983). The latter describes Kimmo, a system for aufg-
matically compiling two-level rules into finite-state transducers. Mor
recent implementations of ‘finite-state toolboxes’ include PCKIMMO
{Antworth 1990} and the more general-purpose FIRE Lite toolkit (Watson
1999).
This work demonstrates (given appropriate caveats about the manner o
rule application) that we can dispense with intermediate fevels of represen:
tation and rule ordering. As a consequence, this appreach to computation
al phonology is called Two-Level Phonology: as the name suggests, if
employs only two levels of phonological representation, the lexical and sur
face levels. .
lintroduced transducers as a generalization of the finite-state machines
that worlc with pairs of symbols rather than single symbols. Once you take
that step, the floodgates are open: as well as working with pairs of sym:
bols, you could compute correspondences hetween any number of sym-
bols. Down that path lies a method for the computational implementa-
tion of autosegmental phonology, where you have to keep track of several
parallel tiers. This possibility was first informally proposed by Kay (1987)
and was further explored by Kornai {1991} and Wiebe (1992).
Kaplan and Kay (1994} acknowledge that cyclic rule application is. é_t
problem for finite-state approaches to phonology, because one of the co:
ditions that have to be placed' on SPE rules in order to implement them
as finite-state devices is that a rule cannot reapply to its own inpul

the
in e

moming

FIGURE 5.18

154

S PROCESSENG

INTRODUCHNG SPERCH AND LAMGUA

Findte-siate machines

155

when booking an airline ticket. It is a simple kind of graminar that
accepts certain sequences of words and not others. For certain kinds of
applications that only use very simple languages, finitestate grammars
are quite appropriate. In many circumstances where the range of mes-
sages that you want to recognize or generate is rather restricted, a finite--
state machine might be more appropriate than a complex type of compu
tational linguistic device, such as a full-blown linguistic parser of some:
sort. That is the case in many speech technology applications, where we..
are usually not so concerned with including all of the wonderful and elab
orate sorts of linguistic constructions that one finds in generative gram-
mar. You do not often find parasitic gaps in most people’s requests for-
information, so a query like ‘which files did you discard without reading?*:
may cause problems for such systems. :

In chapter 2 of Syntactic Structures, Chomslky {1957) discusses three mod
els of linguistic description. The first that he considers is a finitestate
approach to syntax. He criticizes it, and shows a range of linguistic |
constructions that it can’t handle. So it is ironic that in working linguis-
tic systems in real life one finds finite-state methods being used more and:
more commonly, and often more successfully than more sophisticate
kinds of linguistic parsers, which often just fall over, even though they are:
more theoretically respectable. '

the malt lay in the house that Jack built

ate
chased

tossed

~ Student: But in all faitness what Chomsky wis trying to say was that finite-
state mdchines were ot d gereral solution Id syntactic problems..If vou want:
to argue that they represent speafzc solutwns to hmtted pmblems he mtght not
argue “with that - :
.. That is true, you aré dead rlght But I thmk 1t 15 mterestmg hlstorlcally
that the wheel has turned full circle.. - .
- Student; Also the other argument he ojffered is that ﬁmre smte machmes wﬂl pri
- duce a Iot of Junk that is not grammattcal P AT R
That is true too, but that is true of almost any hngulsttc theory An :
+if you over-constram a grammar Just a 11tt1e too mitchi; you can pre- i
“vent a parser from accepting perfecﬂy grammancai sentences. That is
3ust as reprehens1b1e as overgeneratung and can be far more annoymg_
- to a user, in practlcel : :

(5.6) The malt that the rat that the cat ate ate lay in the house that Jack
built.

. (5.7) Themalt that the rat that the cat that the dog chased ate ate lay in
the house that Jack built.

. (5.8) The malt that the rat that the cat that the dog that the cow tossed
chased ate ate lay in the house that Jaclk built.

© The syntactic structure of (5.4} to (5.8) can be expressed using a state
. transition networlk of a kind similar to that used in finite-state automa-
ta, as in figure 5.19. But if there is no limit to the depth of the centre
- embedding, this networl is not a finite-state machine, as we cannot set
. a finite limit to how many additional nodes lie below state 10. But is
that actually a problem? The degree of centre embedding exhibited in
examples (5.6) to {5.8) is rare to non-existent. So a network with no fur-
ther embedding below node 10 would actually be capable of accepting
or generating (5.4) to (5.8) with a finite number of states. With this 1im-
itation, it would be a finite-state automaton. We shall return to this
issue at the end of chapter 7.

But there is another issue, too, which is that the kinds of sentences with:
unbounded centre embedding that are widely cited as evidence that nat-:
yral languages cannot be analysed with finite-state machines is easily:
addressed: they do not occur! To illustrate the importance of this, consider::
the following sentences:

(54) The malt lay in the house that Jack built.

(5.5) The malt that the rat ate lay in the house that Jack built.

FIGURE 5.15

156

In this chapter we examined a simple but very versatile computational
device: finite-state machines. We saw how they could be used to gener-
ate or accept strings of symbols (sequences of letters or words). The
twin labels used in finite-state transducers allow a variety of mappings
between levels of analysis to be modelled too, making them suitable
for grapheme-phoneme conversion, or for associating labels with
speech signals, The theoretical presentations were illustrated with
working computational implementations written in the Prolog
programming language.

Further exerc:ses

: Exemse’ia EE
“Extend nfatl: pl to deal WIth maglce il’l the foHowmg words ape ate :

" cake, babe, made, age, ace, haze, came, cne, pale haste; eke, theme, pipe,. :
site; pike, jibe; lide, ice, size, time; firte, tile,: hope rote; coke; robe, code;
doge, hose, home tone sole dupe, ute puke, cube' rude iuge fume tune, :

coruless . o : T _ b

" Exaicise 5.7, - e - : R
Adapt figure 5: 19 |nto a. flmte state transducer by labelling the transmtms wﬂh--_'-
part-of: -speech categorles Implemeni‘ the result asa Profog program in the:
.-styeofnfstl pl : S SRR

'In this chapter we examine a selection of techniques that
have been used in speech recognition systems. We examine
one important pattern-matching technique, dynamic time

Further reading warping, in some depth.
There are several good textbooks on Prolag: for example, Clacksin and Mellish 2003, Fereira and Shieber
1987 or Sterling and Shapiro 1594 are all highly recormmended. Many textbooks on formal language theory
and the foundations of computer science have some discussion of finite-state machines. Few attain the gold
standard set by Hopcroft et al. 2000; for clarity of presentation, however, Jurafsky and Martin 2000: 35-52
deserves special commendation. For more on finite-state phonology, see the references in section 5.12. For
applications of finite-state methods to morphological analysis and syntactic parsing, see the papers in Kornai

1999.

