Algorithms Unlocked

Algorithms Unlocked

Thomas H. Cormen

The MIT Press
Cambridge, Massachusetts London, England

(© 2013 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any
form by any electronic or mechanical means (including photocopying,
recording, or information storage and retrieval) without permission in
writing from the publisher.

MIT Press books may be purchased at special quantity discounts for
business or sales promotional use. For information, please email
special_sales@mitpress.mit.edu or write to Special Sales Department,
The MIT Press, 55 Hayward Street, Cambridge, MA 02142.

This book was set in Times Roman and Mathtime Pro 2 by the author
and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Cormen, Thomas H.
Algorithms Unlocked / Thomas H. Cormen.

p. cm
Includes bibliographical references and index.
ISBN 978-0-262-51880-2 (pbk. : alk. paper)
1. Computer algorithms. I. Title.
QA76.9.A43C685 2013
005.1—dc23

2012036810

10987654321

Contents

Preface ix

1 What Are Algorithms and Why Should You Care? 1
Correctness 2
Resource usage 4
Computer algorithms for non-computer people 6
Computer algorithms for computer people 6
Further reading &8

2 How to Describe and Evaluate Computer Algorithms
How to describe computer algorithms /0
How to characterize running times /7
Loop invariants 2/
Recursion 22
Further reading 24

3 Algorithms for Sorting and Searching 25
Binary search 28
Selection sort 32
Insertion sort 35
Merge sort 40
Quicksort 49
Recap 57
Further reading 59

4 A Lower Bound for Sorting and How to Beat It 60
Rules for sorting 60
The lower bound on comparison sorting 6/
Beating the lower bound with counting sort 62
Radix sort 68
Further reading 70

Vi

wn

Contents

Directed Acyclic Graphs 71
Directed acyclic graphs 74
Topological sorting 75
How to represent a directed graph 78
Running time of topological sorting 80
Critical path in a PERT chart 80
Shortest path in a directed acyclic graph 85
Further reading 89

Shortest Paths 90
Dijkstra’s algorithm 92
The Bellman-Ford algorithm /01
The Floyd-Warshall algorithm /06
Further reading 174

Algorithms on Strings 115
Longest common subsequence /115
Transforming one string to another /21
String matching 729
Further reading 136

Foundations of Cryptography 138
Simple substitution ciphers /39
Symmetric-key cryptography /40
Public-key cryptography 144
The RSA cryptosystem 146
Hybrid cryptosystems 155
Computing random numbers /56
Further reading 157

Data Compression 158
Huffman codes 160
Fax machines 167
LZW compression 168
Further reading 178

Contents

10 Hard? Problems 179
Brown trucks 179
The classes P and NP and NP-completeness
Decision problems and reductions /85
A Mother Problem /88
A sampler of NP-complete problems /90
General strategies 205
Perspective 208
Undecidable problems 270
Wrap-up 211
Further reading 212

183

vii

Bibliography 213
Index 215

In loving memory of my mother, Renee Cormen.

Preface

How do computers solve problems? How can your little GPS find, out of
the gazillions of possible routes, the fastest way to your destination, and
do so in mere seconds? When you purchase something on the Internet,
how is your credit-card number protected from someone who intercepts
it? The answer to these, and a ton of other questions, is algorithms. 1
wrote this book to unlock the mystery of algorithms for you.

I coauthored the textbook Introduction to Algorithms. It’s a wonder-
ful book (of course, I'm biased), but it gets pretty technical in spots.

This book is not Introduction to Algorithms. It’s not even a textbook.
It goes neither broadly nor deeply into the field of computer algorithms,
it doesn’t prescriptively teach techniques for designing computer algo-
rithms, and it contains nary a problem or exercise for the reader to solve.

So just what is this book? It’s a place for you to start, if

* you're interested in how computers solve problems,
* you want to know how to evaluate the quality of these solutions,

* you’d like to see how problems in computing and approaches to solv-
ing them relate to the non-computer world,

* you can handle a little mathematics, and

* you have not necessarily ever written a computer program (though it
doesn’t hurt to have programmed).

Some books about computer algorithms are conceptual, with little
technical detail. Some are chock full of technical precision. Some are
in between. Each type of book has its place. I'd place this book in the
in-between category. Yes, it has some math, and it gets rather precise in
some places, but I've avoided getting deep into details (except perhaps
toward the end of the book, where I just couldn’t control myself).

I think of this book as a bit like an antipasto. Suppose you go to
an Italian restaurant and order an antipasto, holding off on deciding
whether to order the rest of the meal until you’ve had the antipasto.
It arrives, and you eat it. Maybe you don’t like the antipasto, and you
decide to not order anything else. Maybe you like it, but it fills you up,

x Preface

so that you don’t need to order anything else. Or maybe you like the
antipasto, it does not fill you up, and you’re looking forward to the rest
of the meal. Thinking of this book as the antipasto, I'm hoping for one
of the latter two outcomes: either you read this book, you’re satisfied,
and you feel no need to delve deeper into the world of algorithms; or
you like what you read here so much that you want to learn more. Each
chapter ends with a section titled “Further reading,” which will guide
you to books and articles that go deeper into the topics.

What will you learn from this book?

I can’t tell you what you will learn from this book. Here’s what I intend
for you to learn from this book:

* What computer algorithms are, one way to describe them, and how
to evaluate them.

* Simple ways to search for information in a computer.

* Methods to rearrange information in a computer so that it’s in a pre-
scribed order. (We call this task “sorting.”)

* How to solve basic problems that we can model in a computer with
a mathematical structure known as a “graph.” Among many applica-
tions, graphs are great for modeling road networks (which intersec-
tions have direct roads to which other intersections, and how long are
these roads?), dependencies among tasks (which task must precede
which other tasks?), financial relationships (what are the exchange
rates among all world currencies?), or interactions among people
(who knows whom? who hates whom? which actor appeared in a
movie with which other actor?).

* How to solve problems that ask questions about strings of textual
characters. Some of these problems have applications in areas such
as biology, where the characters represent base molecules and the
strings of characters represent DNA structure.

* The basic principles behind cryptography. Even if you have never
encrypted a message yourself, your computer probably has (such as
when you purchase goods online).

* Fundamental ideas of data compression, going well beyond “f u cn
rd ths u cn gt a gd jb n gd pay.”

Preface Xi

* That some problems are hard to solve on a computer in any reason-
able amount of time, or at least that nobody has ever figured out how
to do so.

What do you already need to know to understand the material in
this book?

As I said earlier, there’s some math in this book. If math scares you,
then you can try skipping over it, or you can try a less technical book.
But I've done my best to make the math accessible.

I don’t assume that you’ve ever written or even read a computer pro-
gram. If you can follow instructions in outline format, you should be
able to understand how I express the steps that, together, form an al-
gorithm. If you get the following joke, you’re already part of the way
there:

Did you hear about the computer scientist who got stuck in the
shower? He! was washing his hair and following the instructions
on the shampoo bottle. They read “Lather. Rinse. Repeat.”

I’ve used a fairly informal writing style in this book, hoping that a
personal approach will help make the material accessible. Some chap-
ters depend on material in previous chapters, but such dependencies are
few. Some chapters start off in a nontechnical manner and become pro-
gressively more technical. Even if you find that you’re getting in over
your head in one chapter, you can probably benefit from reading at least
the beginning of the next chapter.

Reporting errors
If you find an error in this book, please let me know about it by sending
email to unlocked@mit.edu.

Acknowledgments

Much of the material in this book draws from Introduction to Algo-
rithms, and so I owe a great deal to my coauthors on that book, Charles
Leiserson, Ron Rivest, and Cliff Stein. You’ll find that throughout this

10r she. Given the unfortunate gender ratio in computer science, chances are it was he.

xii Preface

book, I shamelessly refer to (read: plug) Introduction to Algorithms,
known far and wide by the initials CLRS of the four authors. Writing
this book on my own makes me realize how much I miss collaborat-
ing with Charles, Ron, and Cliff. I also transitively thank everyone we
thanked in the preface of CLRS.

I also drew on material from courses that I've taught at Dartmouth,
especially Computer Science 1, 5, and 25. Thanks to my students for
letting me know, by their insightful questions, which pedagogical ap-
proaches worked and, by their stony silence, which did not.

This book came to be at the suggestion of Ada Brunstein, who was
our editor at the MIT Press when we prepared the third edition of CLRS.
Ada has since moved on, and Jim DeWolf took her place. Originally,
this book was slated to be part of the MIT Press “Essential Knowledge”
series, but the MIT Press deemed it too technical for the series. (Imagine
that—1I wrote a book too technical for MIT!) Jim handled this poten-
tially awkward situation smoothly, allowing me to write the book that
I wanted to write rather than the book that the MIT Press originally
thought I was writing. I also appreciate the support of Ellen Faran and
Gita Devi Manaktala of the MIT Press.

Julie Sussman, P.P.A., was our technical copyeditor for the second
and third editions of CLRS, and I am once again thrilled to have her
copyedit this book. Best. Technical. Copyeditor. Ever. She let me get
away with nothing. Here’s evidence, in the form of part of an email that
Julie sent me about an early draft of Chapter 5:

Dear Mr. Cormen,

Authorities have apprehended an escaped chapter, which has
been found hiding in your book. We are unable to determine
what book it has escaped from, but we cannot imagine how it
could have been lodging in your book for these many months
without your knowledge, so we have no option but to hold you
responsible. We hope that you will take on the task of reforming
this chapter and will give it an opportunity to become a produc-
tive citizen of your book. A report from the arresting officer,
Julie Sussman, is appended.

In case you’re wondering what “P.P.A” stands for, the first two letters
are for “Professional Pain.” You can probably guess what the “A” stands
for, but I want to point out that Julie takes pride in this title, and rightly
so. Thanks a googol, Julie!

Preface Xiii

I am no cryptographer, and the chapter on principles of cryptogra-
phy benefited tremendously from comments and suggestions by Ron
Rivest, Sean Smith, Rachel Miller, and Huijia Rachel Lin. That chapter
has a footnote on baseball signs, and I thank Bob Whalen, the base-
ball coach at Dartmouth, for patiently explaining to me some of the
signing systems in baseball. Ilana Arbisser verified that computational
biologists align DNA sequences in the way that I explain in Chapter 7.
Jim DeWolf and I went through several iterations of titles for this book,
but it was an undergraduate student at Dartmouth, Chander Ramesh,
who came up with Algorithms Unlocked.

The Dartmouth College Department of Computer Science is an awe-
some place to work. My colleagues are brilliant and collegial, and our
professional staff is second to none. If you’re looking for a computer
science program at the undergraduate or graduate level, or if you seek a
faculty position in computer science, I encourage you to apply to Dart-
mouth.

Finally, I thank my wife, Nicole Cormen; my parents, Renee and
Perry Cormen; my sister, Jane Maslin; and Nicole’s parents, Colette
and Paul Sage, for their love and support. My father is sure that the
figure on page 2 is a 5, not an S.

ToMm CORMEN Hanover, New Hampshire
November 2012

1 What Are Algorithms and Why
Should You Care?

Let’s start with the question that I’'m often asked: “What is an algo-
rithm?”’!

A broad answer would be “a set of steps to accomplish a task.” You
have algorithms that you run in your everyday life. You have an al-
gorithm to brush your teeth: open the toothpaste tube, pick up your
toothbrush, squeeze toothpaste onto the brush until you have applied
enough to the brush, close the tube, put the brush into one quadrant of
your mouth, move the brush up and down for N seconds, etc. If you
have to commute to a job, you have an algorithm for your commute.
And so on.

But this book is about algorithms that run on computers or, more
generally, computational devices. Just as algorithms that you run af-
fect your everyday life, so do algorithms that run on computers. Do
you use your GPS to find a route to travel? It runs what we call a
“shortest-path” algorithm to find the route. Do you buy products on
the Internet? Then you use (or should be using) a secure website that
runs an encryption algorithm. When you buy products on the Internet,
are they delivered by a private delivery service? It uses algorithms to
assign packages to individual trucks and then to determine the order in
which each driver should deliver packages. Algorithms run on comput-
ers all over the place—on your laptop, on servers, on your smartphone,
on embedded systems (such as in your car, your microwave oven, or
climate-control systems)—everywhere!

What distinguishes an algorithm that runs on a computer from an
algorithm that you run? You might be able to tolerate it when an algo-
rithm is imprecisely described, but a computer cannot. For example, if
you drive to work, your drive-to-work algorithm might say “if traffic is
bad, take an alternate route.” Although you might know what you mean
by “bad traffic,” a computer does not.

So a computer algorithm is a set of steps to accomplish a task that
is described precisely enough that a computer can run it. If you have

10r, as a fellow with whom I used to play hockey would ask, “What’s a nalgorithm?”

2 Chapter 1: What Are Algorithms and Why Should You Care?

done even a little computer programming in Java, C, C++, Python, For-
tran, Matlab, or the like, then you have some idea of what that level of
precision means. If you have never written a computer program, then
perhaps you will get a feel for that level of precision from seeing how I
describe algorithms in this book.

Let’s go to the next question: “What do we want from a computer algo-
rithm?”

Computer algorithms solve computational problems. We want two
things from a computer algorithm: given an input to a problem, it should
always produce a correct solution to the problem, and it should use com-
putational resources efficiently while doing so. Let’s examine these two
desiderata in turn.

Correctness

What does it mean to produce a correct solution to a problem? We can
usually specify precisely what a correct solution would entail. For ex-
ample, if your GPS produces a correct solution to finding the best route
to travel, it might be the route, out of all possible routes from where
you are to your desired destination, that will get you there soonest. Or
perhaps the route that has the shortest possible distance. Or the route
that will get you there soonest but also avoids tolls. Of course, the in-
formation that your GPS uses to determine a route might not match re-
ality. Unless your GPS can access real-time traffic information, it might
assume that the time to traverse a road equals the road’s distance di-
vided by the road’s speed limit. If the road is congested, however, the
GPS might give you bad advice if you’re looking for the fastest route.
We can still say that the routing algorithm that the GPS runs is correct,
however, even if the input to the algorithm is not; for the input given to
the routing algorithm, the algorithm produces the fastest route.

Now, for some problems, it might be difficult or even impossible to
say whether an algorithm produces a correct solution. Take optical char-
acter recognition for example. Is this 11 x 6 pixel image a 5 or an S?

Some people might call it a 5, whereas others might call it an S, so how
could we declare that a computer’s decision is either correct or incor-

Chapter 1: What Are Algorithms and Why Should You Care? 3

rect? We won’t. In this book, we will focus on computer algorithms
that have knowable solutions.

Sometimes, however, we can accept that a computer algorithm might
produce an incorrect answer, as long as we can control how often
it does so. Encryption provides a good example. The commonly
used RSA cryptosystem relies on determining whether large num-
bers—really large, as in hundreds of digits long—are prime. If you
have ever written a computer program, you could probably write one
that determines whether a number 7 is prime. It would test all candidate
divisors from 2 through n — 1, and if any of these candidates is indeed
a divisor of n, then n is composite. If no number between 2 and n — 1
is a divisor of n, then n is prime. But if n is hundreds of digits long,
that’s a lot of candidate divisors, more than even a really fast computer
could check in any reasonable amount of time. Of course, you could
make some optimizations, such as eliminating all even candidates once
you find that 2 is not a divisor, or stopping once you get to /7 (since if
d is greater than /n and d is a divisor of n, then n/d is less than /n
and is also a divisor of #n; therefore, if n has a divisor, you will find
it by the time you get to 4/n). If n is hundreds of digits long, then
although /n has only about half as many digits as n does, it’s still a
really large number. The good news is that we know of an algorithm
that tests quickly whether a number is prime. The bad news is that it
can make errors. In particular, if it declares that n is composite, then
n is definitely composite, but if it declares that n is prime, then there’s
a chance that »n is actually composite. But the bad news is not all that
bad: we can control the error rate to be really low, such as one error in
every 2°° times. That’s rare enough—one error in about every million
billion times—for most of us to be comfortable with using this method
to determine whether a number is prime for RSA.

Correctness is a tricky issue with another class of algorithms, called
approximation algorithms. Approximation algorithms apply to opti-
mization problems, in which we want to find the best solution according
to some quantitative measure. Finding the fastest route, as a GPS does,
is one example, where the quantitative measure is travel time. For some
problems, we have no algorithm that finds an optimal solution in any
reasonable amount of time, but we know of an approximation algorithm
that, in a reasonable amount of time, can find a solution that is almost
optimal. By “almost optimal,” we typically mean that the quantitative
measure of the solution found by the approximation algorithm is within

4 Chapter 1: What Are Algorithms and Why Should You Care?

some known factor of the optimal solution’s quantitative measure. As
long as we specify what the desired factor is, we can say that a correct
solution from an approximation algorithm is any solution that is within
that factor of the optimal solution.

Resource usage

What does it mean for an algorithm to use computational resources ef-
ficiently? We alluded to one measure of efficiency in the discussion
of approximation algorithms: time. An algorithm that gives a correct
solution but takes a long time to produce that correct solution might
be of little or no value. If your GPS took an hour to determine which
driving route it recommends, would you even bother to turn it on? In-
deed, time is the primary measure of efficiency that we use to evalu-
ate an algorithm, once we have shown that the algorithm gives a cor-
rect solution. But it is not the only measure. We might be concerned
with how much computer memory the algorithm requires (its “memory
footprint”), since an algorithm has to run within the available memory.
Other possible resources that an algorithm might use: network commu-
nication, random bits (because algorithms that make random choices
need a source of random numbers), or disk operations (for algorithms
that are designed to work with disk-resident data).

In this book, as in most of the algorithms literature, we will focus
on just one resource: time. How do we judge the time required by an
algorithm? Unlike correctness, which does not depend on the particular
computer that the algorithm runs on, the actual running time of an al-
gorithm depends on several factors extrinsic to the algorithm itself: the
speed of the computer, the programming language in which the algo-
rithm is implemented, the compiler or interpreter that translates the pro-
gram into code that runs on the computer, the skill of the programmer
who writes the program, and other activity taking place on the computer
concurrently with the running program. And that all assumes that the
algorithm runs on just one computer with all its data in memory.

If we were to evaluate the speed of an algorithm by implementing it in
a real programming language, running it on a particular computer with
a given input, and measuring the time the algorithm takes, we would
know nothing about how fast the algorithm ran on an input of a different
size, or possibly even on a different input of the same size. And if we
wanted to compare the relative speed of the algorithm with some other
algorithm for the same problem, we would have to implement them both

Chapter 1: What Are Algorithms and Why Should You Care? 5

and run both of them on various inputs of various sizes. How, then, can
we evaluate an algorithm’s speed?

The answer is that we do so by a combination of two ideas. First,
we determine how long the algorithm takes as a function of the size
of its input. In our route-finding example, the input would be some
representation of a roadmap, and its size would depend on the number
of intersections and the number of roads connecting intersections in the
map. (The physical size of the road network would not matter, since we
can characterize all distances by numbers and all numbers occupy the
same size in the input; the length of a road has no bearing on the input
size.) In a simpler example, searching a given list of items to determine
whether a particular item is present in the list, the size of the input would
be the number of items in the list.

Second, we focus on how fast the function that characterizes the run-
ning time grows with the input size—the rate of growth of the running
time. In Chapter 2, we’ll see the notations that we use to characterize
an algorithm’s running time, but what’s most interesting about our ap-
proach is that we look at only the dominant term in the running time,
and we don’t consider coefficients. That is, we focus on the order of
growth of the running time. For example, suppose we could determine
that a specific implementation of a particular algorithm to search a list
of n items takes 50n + 125 machine cycles. The 50n term dominates
the 125 term once n gets large enough, starting at n > 3 and increas-
ing in dominance for even larger list sizes. Thus, we don’t consider
the low-order term 125 when we describe the running time of this hy-
pothetical algorithm. What might surprise you is that we also drop the
coefficient 50, thereby characterizing the running time as growing lin-
early with the input size n. As another example, if an algorithm took
20n3 + 10012 4 3001 + 200 machine cycles, we would say that its
running time grows as n>. Again, the low-order terms— 10012, 300n,
and 200—become less and less significant as the input size n increases.

In practice, the coefficients that we ignore do matter. But they de-
pend so heavily on the extrinsic factors that it’s entirely possible that if
we were comparing two algorithms, A and B, that have the same order
of growth and are run on the same input, then A might run faster than B
with a particular combination of machine, programming language, com-
piler/interpreter, and programmer, while B runs faster than A with some
other combination. Of course, if algorithms A and B both produce cor-
rect solutions and A always runs twice as fast as B, then, all other things

6 Chapter 1: What Are Algorithms and Why Should You Care?

being equal, we prefer to always run A instead of B. From the point of
view of comparing algorithms in the abstract, however, we focus on the
order of growth, unadorned by coefficients or low-order terms.

The final question that we ask in this chapter: “Why should I care about
computer algorithms?” The answer to this question depends on who
you are.

Computer algorithms for non-computer people

Even if you don’t consider yourself a computer insider, computer algo-
rithms matter to you. After all, unless you’re on a wilderness expedition
without a GPS, you probably use them every day. Did you search for
something on the Internet today? The search engine you used — whether
it was Google, Bing, or any other search engine—employed sophis-
ticated algorithms to search the Web and to decide in which order to
present its results. Did you drive your car today? Unless you're driving
a classic vehicle, its on-board computers made millions of decisions, all
based on algorithms, during your trip. I could go on and on.

As an end user of algorithms, you owe it to yourself to learn a little bit
about how we design, characterize, and evaluate algorithms. I assume
that you have at least a mild interest, since you have picked up this book
and read this far. Good for you! Let’s see if we can get you up to speed
so that you can hold your own at your next cocktail party in which the
subject of algorithms comes up.?

Computer algorithms for computer people

If you’re a computer person, then you had better care about computer
algorithms! Not only are they at the heart of, well, everything that goes
on inside your computer, but algorithms are just as much a technology
as everything else that goes on inside your computer. You can pay a
premium for a computer with the latest and greatest processor, but you

2Yes, I realize that unless you live in Silicon Valley, the subject of algorithms rarely
comes up at cocktail parties that you attend, but for some reason, we computer science
professors think it important that our students not embarrass us at cocktail parties with
their lack of knowledge in particular areas of computer science.

Chapter 1: What Are Algorithms and Why Should You Care? 7

need to run implementations of good algorithms on that computer in
order for your money to be well spent.

Here’s an example that illustrates how algorithms are indeed a tech-
nology. In Chapter 3, we are going to see a few different algorithms
that sort a list of n values into ascending order. Some of these algo-
rithms will have running times that grow like n?, but some will have
running times that grow like only n Ign. What is Ign? It is the base-2
logarithm of n, or log, n. Computer scientists use base-2 logarithms
so frequently that just like mathematicians and scientists who use the
shorthand Inn for the natural logarithm—log, n —computer scientists
use their own shorthand for base-2 logarithms. Now, because the func-
tion lg n is the inverse of an exponential function, it grows very slowly
with n. If n = 2%, then x = lgn. For example, 2'® = 1024, and there-
fore 1g 1024 is only 10; similarly 22° = 1,048,576 and so lg 1,048,576
is only 20; and 23° = 1,073,741,824 means that 1g 1,073,741,824 is
only 30. So a growth of n1gn vs. n? trades a factor of n for a factor of
only lgn, and that’s a deal you should take any day.

Let’s make this example more concrete by pitting a faster computer
(computer A) running a sorting algorithm whose running time on n val-
ues grows like n? against a slower computer (computer B) running a
sorting algorithm whose running time grows like nlgn. They each
must sort an array of 10 million numbers. (Although 10 million num-
bers might seem like a lot, if the numbers are eight-byte integers, then
the input occupies about 80 megabytes, which fits in the memory of
even an inexpensive laptop computer many times over.) Suppose that
computer A executes 10 billion instructions per second (faster than any
single sequential computer at the time of this writing) and computer B
executes only 10 million instructions per second, so that computer A is
1000 times faster than computer B in raw computing power. To make
the difference even more dramatic, suppose that the world’s craftiest
programmer codes in machine language for computer A, and the result-
ing code requires 2n? instructions to sort n numbers. Suppose further
that just an average programmer writes for computer B, using a high-
level language with an inefficient compiler, with the resulting code tak-
ing 50n 1g n instructions. To sort 10 million numbers, computer A takes

2 - (107)? instructions

1019 instructions/second

= 20,000 seconds ,

which is more than 5.5 hours, while computer B takes

8 Chapter 1: What Are Algorithms and Why Should You Care?

50 - 107 Ig 107 instructions
107 instructions/second

~ 1163 seconds ,

which is under 20 minutes. By using an algorithm whose running time
grows more slowly, even with a poor compiler, computer B runs more
than 17 times faster than computer A! The advantage of the nlgn al-
gorithm is even more pronounced when we sort 100 million numbers:
where the n? algorithm on computer A takes more than 23 days, the
n lgn algorithm on computer B takes under four hours. In general, as
the problem size increases, so does the relative advantage of the nlgn
algorithm.

Even with the impressive advances we continually see in computer
hardware, total system performance depends on choosing efficient al-
gorithms as much as on choosing fast hardware or efficient operating
systems. Just as rapid advances are being made in other computer tech-
nologies, they are being made in algorithms as well.

Further reading

In my highly biased opinion, the clearest and most useful source on
computer algorithms is Introduction to Algorithms [CLRS09] by four
devilishly handsome fellows. The book is commonly called “CLRS,’
after the initials of the authors. I’ve drawn on it for much of the mate-
rial in this book. It’s far more complete than this book, but it assumes
that you’ve done at least a little computer programming, and it pulls no
punches on the math. If you find that you’re comfortable with the level
of mathematics in this book, and you’re ready to go deeper into the sub-
ject, then you can’t do better than CLRS. (In my humble opinion, of
course.)

John MacCormick’s book Nine Algorithms That Changed the Future
[Mac12] describes several algorithms and related aspects of computing
that affect our everyday lives. MacCormick’s treatment is less technical
than this book. If you find that my approach in this book is too math-
ematical, then I recommend that you try reading MacCormick’s book.
You should be able to follow much of it even if you have a meager
mathematical background.

In the unlikely event that you find CLRS too watered down, you can
try Donald Knuth’s multi-volume set The Art of Computer Program-
ming [Knu97,Knu98a, Knu98b, Knull]. Although the title of the series
makes it sound like it might focus on details of writing code, these books

Chapter 1: What Are Algorithms and Why Should You Care? 9

contain brilliant, in-depth analyses of algorithms. Be warned, however:
the material in TAOCP is intense. By the way, if you’re wondering
where the word “algorithm” comes from, Knuth says that it derives from
the name “al-Khowarizmi,” a ninth-century Persian mathematician.

In addition to CLRS, several other excellent texts on computer al-
gorithms have been published over the years. The chapter notes for
Chapter 1 of CLRS list many such texts. Rather than replicate that list
here, I refer you to CLRS.

2 How to Describe and Evaluate
Computer Algorithms

In the previous chapter, you got a taste of how we couch the running
time of a computer algorithm: by focusing on the running time as a
function of the input size, and specifically on the order of growth of the
running time. In this chapter, we’ll back up a bit and see how we de-
scribe computer algorithms. Then we’ll see the notations that we use to
characterize the running times of algorithms. We’ll wrap up this chap-
ter by examining some techniques that we use to design and understand
algorithms.

How to describe computer algorithms

We always have the option of describing a computer algorithm as a
runnable program in a commonly used programming language, such as
Java, C, C++, Python, or Fortran. Indeed, several algorithms textbooks
do just that. The problem with using real programming languages to
specify algorithms is that you can get bogged down in the details of the
language, obscuring the ideas behind the algorithms. Another approach,
which we took in Introduction to Algorithms, uses “pseudocode,” which
looks like a mashup of various programming languages with English
mixed in. If you’ve ever used a real programming language, you can
figure out pseudocode easily. But if you have not ever programmed,
then pseudocode might seem a bit mysterious.

The approach I'm taking in this book is that I'm not trying to de-
scribe algorithms to software or hardware, but to “wetware”: the gray
matter between your ears. I am also going to assume that you have
never written a computer program, and so I won’t express algorithms
using any real programming language or even pseudocode. Instead, I'll
describe them in English, using analogies to real-world scenarios when-
ever I can. In order to indicate what happens when (what we call “flow
of control” in programming), I’ll use lists and lists within lists. If you
want to implement an algorithm in a real programming language, I'll
give you credit for being able to translate my description into runnable
code.

Chapter 2: How to Describe and Evaluate Computer Algorithms 11

Although I will try to keep descriptions as nontechnical as possi-
ble, this book is about algorithms for computers, and so I will have to
use computing terminology. For example, computer programs contain
procedures (also known as functions or methods in real programming
languages), which specify how to do something. In order to actually
get the procedure to do what it’s supposed to do, we call it. When
we call a procedure, we supply it with inputs (usually at least one, but
some procedures take no inputs). We specify the inputs as parameters
within parentheses after the name of the procedure. For example, to
compute the square root of a number, we might define a procedure
SQUARE-ROOT(x); here, the input to the procedure is referred to by
the parameter x. The call of a procedure may or may not produce out-
put, depending on how we specified the procedure. If the procedure
produces output, we usually consider the output to be something passed
back to its caller. In computing parlance we say that the procedure
returns a value.

Many programs and algorithms work with arrays of data. An array
aggregates data of the same type into one entity. You can think of an
array as being like a table, where given the index of an entry, we can
talk about the array element at that index. For example, here is a table
of the first five U.S. presidents:

Index President

1 George Washington
John Adams
Thomas Jefferson
James Madison
James Monroe

[V, I SN I \)

For example, the element at index 4 in this table is James Madison. We
think of this table not as five separate entities, but as one table with five
entries. An array is similar. The indices into an array are consecutive
numbers that can start anywhere, but we will usually start them at 1.!
Given the name of an array and an index into the array, we combine
them with square brackets to indicate a particular array element. For
example, we denote the ith element of an array A by A[i].

11f you program in Java, C, or C++, you are used to arrays that start at 0. Starting arrays
at 0 is nice for computers, but for wetware it’s often more intuitive to start at 1.

12 Chapter 2: How to Describe and Evaluate Computer Algorithms

Arrays in computers have one other important characteristic: it takes
equally long to access any element of an array. Once you give the com-
puter an index i into an array, it can access the ith element as quickly
as it can access the first element, regardless of the value of 7.

Let’s see our first algorithm: searching an array for a particular value.
That is, we are given an array, and we want to know which entry in
the array, if any, holds a given value. To see how we can search an
array, let’s think of the array as a long bookshelf full of books, and
suppose that you want to know where on the shelf you can find a book by
Jonathan Swift. Now, the books on the shelf might be organized in some
way, perhaps alphabetically by author, alphabetically by title, or, in a
library, by call number. Or perhaps the bookshelf is like my bookshelf
at home, where I have not organized my books in any particular way.

If you couldn’t assume that the books were organized on the shelf,
how would you find a book by Jonathan Swift? Here’s the algorithm I
would follow. I would start at the left end of the shelf and look at the
leftmost book. If it’s by Swift, I have located the book. Otherwise, I
would look at the next book to the right, and if that book is by Swift, I
have located the book. If not, I would keep going to the right, examining
book after book, until either I find a book by Swift or I run off the right-
hand end of the shelf, in which case I can conclude that the bookshelf
does not contain any book by Jonathan Swift. (In Chapter 3, we’ll see
how to search for a book when the books are organized on the shelf.)

Here is how we can describe this searching problem in terms of com-
puting. Let’s think of the books on the bookshelf as an array of books.
The leftmost book is in position 1, the next book to its right is in posi-
tion 2, and so on. If we have n books on the shelf, then the rightmost
book is in position n. We want to find the position number on the shelf
of any book by Jonathan Swift.

As a general computing problem, we are given an array A (the en-
tire shelf full of books to search through) of n elements (the individual
books), and we want to find whether a value x (a book by Jonathan
Swift) is present in the array A4. If it is, then we want to determine an in-
dex i such that A[i] = x (the ith position on the shelf contains a book by
Jonathan Swift). We also need some way to indicate that array A does
not contain x (the bookshelf contains no books by Jonathan Swift). We
do not assume that x appears at most once in the array (perhaps you
have multiple copies of some book), and so if x is present in array 4,
it may appear multiple times. All we want from a searching algorithm

Chapter 2: How to Describe and Evaluate Computer Algorithms 13

is any index at which we’ll find x in the array. We’ll assume that the
indices of this array start at 1, so that its elements are A[1] through A[n].

If we search for a book by Jonathan Swift by starting at the left end of
the shelf, checking book by book as we move to the right, we call that
technique linear search. In terms of an array in a computer, we start
at the beginning of the array, examine each array element in turn (A[1],
then A[2], then A[3], and so on, up through A[n]) and record where we
find x, if we find it at all.

The following procedure, LINEAR-SEARCH, takes three parameters,
which we separate by commas in the specification.

Procedure LINEAR-SEARCH (A, n, x)

Inputs:

* A: an array.

* n: the number of elements in A to search through.
* x: the value being searched for.

Output: Either an index i for which A[i] = x, or the special value
NOT-FOUND, which could be any invalid index into the array, such as
0 or any negative integer.

1. Set answer to NOT-FOUND.
2. For each index i, going from 1 to n, in order:
A.If A[i] = x, then set answer to the value of i.

3. Return the value of answer as the output.

In addition to the parameters A4, n, and x, the LINEAR-SEARCH pro-
cedure uses a variable named answer. The procedure assigns an initial
value of NOT-FOUND to answer in step 1. Step 2 checks each array en-
try A[1] through A[n] to see if the entry contains the value x. Whenever
entry A[i] equals x, step 2A assigns the current value of i to answer.
If x appears in the array, then the output value returned in step 3 is the
last index in which x appeared. If x does not appear in the array, then
the equality test in step 2A never evaluates to true, and the output value
returned is NOT-FOUND, as assigned to answer back in step 1.

Before we continue discussing linear search, a word about how to
specify repeated actions, such as in step 2. It is quite common in al-
gorithms to perform some action for a variable taking values in some
range. When we perform repeated actions, we call that a loop, and we
call each time through the loop an iteration of the loop. For the loop of

14 Chapter 2: How to Describe and Evaluate Computer Algorithms

step 2, I wrote “For each index i, going from 1 to n, in order.” Instead,
from now on, I’ll write “For i = 1 to n,” which is shorter, yet conveys
the same structure. Notice that when I write a loop in this way, we have
to give the loop variable (here, i) an initial value (here, 1), and in each
iteration of the loop, we have to test the current value of the loop vari-
able against a limit (here, n). If the current value of the loop variable is
less than or equal to the limit, then we do everything in the loop’s body
(here, step 2A). After an iteration executes the loop body, we increment
the loop variable—adding 1 to it—and go back and compare the loop
variable, now with its new value, with the limit. We repeatedly test the
loop variable against the limit, execute the loop body, and increment
the loop variable, until the loop variable exceeds the limit. Execution
then continues from the step immediately following the loop body (here,
step 3). A loop of the form “For i = 1 to n” performs n iterations and
n + 1 tests against the limit (because the loop variable exceeds the limit
in the (n + 1)st test).

I hope that you find it obvious that the LINEAR-SEARCH procedure
always returns a correct answer. You might have noticed, however, that
this procedure is inefficient: it continues to search the array even after
it has found an index i for which A[i] = x. Normally, you wouldn’t
continue searching for a book once you have found it on your bookshelf,
would you? Instead, we can design our linear search procedure to stop
searching once it finds the value x in the array. We assume that when
we say to return a value, the procedure immediately returns the value to
its caller, which then takes control.

Procedure BETTER-LINEAR-SEARCH (4,71, x)
Inputs and Output: Same as LINEAR-SEARCH.

1. Fori = 1ton:
A.If A[i] = x, then return the value of i as the output.
2. Return NOT-FOUND as the output.

Believe it or not, we can make linear search even more efficient. Ob-
serve that each time through the loop of step 1, the BETTER-LINEAR-
SEARCH procedure makes two tests: a test in step 1 to determine
whether i < n (and if so, perform another iteration of the loop) and the
equality test in step 1A. In terms of searching a bookshelf, these tests
correspond to you having to check two things for each book: have you

Chapter 2: How to Describe and Evaluate Computer Algorithms 15

gone past the end of the shelf and, if not, is the next book by Jonathan
Swift? Of course, you don’t incur much of a penalty for going past the
end of the shelf (unless you keep your face really close to the books as
you examine them, there’s a wall at the end of the shelf, and you smack
your face into the wall), but in a computer program it’s usually very bad
to try to access array elements past the end of the array. Your program
could crash, or it could corrupt data.

You can make it so that you have to perform only one check for ev-
ery book you examine. What if you knew for sure that your bookshelf
contained a book by Jonathan Swift? Then you’d be assured of finding
it, and so you’d never have to check for running off the end of the shelf.
You could just check each book in turn to see whether it’s by Swift.

But perhaps you lent out all your books by Jonathan Swift, or maybe
you thought you had books by him but you never did, so you might not
be sure that your bookshelf contains any books by him. Here’s what
you can do. Take an empty box the size of a book and write on its
narrow side (where the spine of a book would be) “Gulliver’s Travels
by Jonathan Swift.” Replace the rightmost book with this box. Then, as
you search from left to right along the bookshelf, you need to check only
whether you’re looking at something that is by Swift; you can forget
about having to check whether you’re going past the end of the book-
shelf because you know that you’ll find something by Swift. The only
question is whether you really found a book by Swift, or did you find the
empty box that you had labeled as though it were by him? If you found
the empty box, then you didn’t really have a book by Swift. That’s easy
to check, however, and you need to do that only once, at the end of your
search, rather than once for every book on the shelf.

There’s one more detail you have to be aware of: what if the only
book by Jonathan Swift that you had on your bookshelf was the right-
most book? If you replace it by the empty box, your search will termi-
nate at the empty box, and you might conclude that you didn’t have the
book. So you have to perform one more check for that possibility, but
it’s just one check, rather than one check for every book on the shelf.

In terms of a computer algorithm, we’ll put the value x that we’re
searching for into the last position, A[n], after saving the contents of
A[n] into another variable. Once we find x, we test to see whether we
really found it. We call the value that we put into the array a sentinel,
but you can think of it as the empty box.

16 Chapter 2: How to Describe and Evaluate Computer Algorithms

Procedure SENTINEL-LINEAR-SEARCH (A4, n, x)
Inputs and Output: Same as LINEAR-SEARCH.
1. Save A[n] into last and then put x into A[n].

2. Seti to 1.
3. While A[i] # x, do the following:
A. Increment i .
4. Restore A[n] from last.
. Ifi <nor A[n] = x, then return the value of i as the output.
6. Otherwise, return NOT-FOUND as the output.

|91

Step 3 is a loop, but not one that counts through some loop variable.
Instead, the loop iterates as long as a condition holds; here, the condition
is that A[i] # x. The way to interpret such a loop is to perform the test
(here, A[i] # x), and if the test is true, then do everything in the loop’s
body (here, step 3A, which increments i). Then go back and perform the
test, and if the test is true, execute the body. Keep going, performing the
test then executing the body, until the test comes up false. Then continue
from the next step after the loop body (here, continue from step 4).

The SENTINEL-LINEAR-SEARCH procedure is a bit more compli-
cated than the first two linear search procedures. Because it places x
into A[n] in step 1, we are guaranteed that A[i] will equal x for some
test in step 3. Once that happens, we drop out of the step-3 loop, and
the index i won’t change thereafter. Before we do anything else, step 4
restores the original value in A[n]. (My mother taught me to put things
back when I was done with them.) Then we have to determine whether
we really found x in the array. Because we put x into the last element,
A[n], we know that if we found x in A[i] where i < n, then we re-
ally did find x and we want to return the index i. What if we found x
in A[n]? That means we didn’t find x before A[n], and so we need to
determine whether A[n] equals x. If it does, then we want to return the
index n, which equals 7 at this point, but if it does not, we want to return
NOT-FOUND. Step 5 does these tests and returns the correct index if x
was originally in the array. If x was found only because step 1 put it
into the array, then step 6 returns NOT-FOUND. Although SENTINEL-
LINEAR-SEARCH has to perform two tests after its loop terminates, it
performs only one test in each loop iteration, thereby making it more
efficient than either LINEAR-SEARCH or BETTER-LINEAR-SEARCH.

Chapter 2: How to Describe and Evaluate Computer Algorithms 17

How to characterize running times

Let’s return to the LINEAR-SEARCH procedure from page 13 and under-
stand its running time. Recall that we want to characterize the running
time as a function of the input size. Here, our input is an array 4 of n
elements, along with the number 7 and the value x that we’re searching
for. The sizes of n and x are insignificant as the array gets large—after
all, n is just a single integer and x is only as large as one of the n ar-
ray elements—and so we’ll say that the input size is 7, the number of
elements in 4.

We have to make some simple assumptions about how long things
take. We will assume that each individual operation—whether it’s an
arithmetic operation (such as addition, subtraction, multiplication, or
division), a comparison, assigning to a variable, indexing into an array,
or calling or returning from a procedure —takes some fixed amount of
time that is independent of the input size.> The time might vary from
operation to operation, so that division might take longer than addition,
but when a step comprises just simple operations, each individual ex-
ecution of that step takes some constant amount of time. Because the
operations executed differ from step to step, and because of the extrinsic
factors listed back on page 4, the time to execute a step might vary from
step to step. Let’s say that each execution of step i takes #; time, where
t; is some constant that does not depend on #n.

Of course, we have to take into account that some steps execute mul-
tiple times. Steps 1 and 3 execute just once, but what about step 2?7 We
have to test i against n a total of n + 1 times: n times in whichi < n,
and once when i equals n + 1 so that we drop out of the loop. Step 2A
executes exactly »n times, once for each value of i from 1 to n. We don’t
know in advance how many times we set answer to the value of 7; it
could be anywhere from O times (if x is not present in the array) to n
times (if every value in the array equals x). If we’re going to be precise
in our accounting—and we won’t normally be this precise—we need to

21f you know a bit about actual computer architecture, you might know that the time
to access a given variable or array element is not necessarily fixed, for it could depend
on whether the variable or array element is in the cache, in main memory, or out on
disk in a virtual-memory system. Some sophisticated models of computers take these
issues into account, but it’s often good enough to just assume that all variables and array
entries are in main memory and that they all take the same amount of time to access.

18 Chapter 2: How to Describe and Evaluate Computer Algorithms

recognize that step 2 does two different things that execute a different
number of times: the test of i against n happens n + 1 times, but in-
crementing i happens only » times. Let’s separate the time for line 2
into ¢, for the test and ¢, for incrementing. Similarly, we’ll separate
the time for step 2A into #;, for testing whether A[i] = x and ¢}, for
setting answer to i . Therefore, the running time of LINEAR-SEARCH is
somewhere between

h+t,-m+ 1)+t - n+t,-n+1,-0+1;

and

h+t,-m+)+t - n+t,-n+t),-n+ts.

Now we rewrite these bounds, collecting terms that multiply by »n to-
gether, and collecting the rest of the terms, and we see that the running
time is somewhere between the lower bound

(t+t +,) - n+t+1,+ 1)
and the upper bound
(ty+1 +h+6) n+ (+1, +13) .

Notice that both of these bounds are of the form ¢ -n +d , where ¢ and d
are constants that do not depend on n. That is, they are both linear
Junctions of n. The running time of LINEAR-SEARCH is bounded from
below by a linear function of », and it is bounded from above by a linear
function of n.

We use a special notation to indicate that a running time is bounded
from above by some linear function of n and from below by some (pos-
sibly different) linear function of n. We write that the running time
is ®(n). That’s the Greek letter theta, and we say “theta of n” or just
“theta n.” As promised in Chapter 1, this notation discards the low-
order term (¢, + t, + t3) and the coefficients of n (t;, + t; + t;, for the
lower bound and 1, 4t} + 1}, + 5, for the upper bound). Although we
lose precision by characterizing the running time as ®(n), we gain the
advantages of highlighting the order of growth of the running time and
suppressing tedious detail.

This ®-notation applies to functions in general, not just those that de-
scribe running times of algorithms, and it applies to functions other than
linear ones. The idea is that if we have two functions, f(n) and g(n),
we say that f(n) is ©(g(n)) if f(n) is within a constant factor of g(n)

Chapter 2: How to Describe and Evaluate Computer Algorithms 19

for sufficiently large n. So we can say that the running time of LINEAR-
SEARCH is within a constant factor of n once n gets large enough.

There’s an intimidating technical definition of ®-notation, but for-
tunately we rarely have to resort to it in order to use ®-notation. We
simply focus on the dominant term, dropping low-order terms and con-
stant factors. For example, the function n2/4 + 100n + 50 is O(n?);
here we drop the low-order terms 1007 and 50, and we drop the constant
factor 1/4. Although the low-order terms will dominate n2/4 for small
values of n, once n goes above 400, the n2/4 term exceeds 100n + 50.
When n = 1000, the dominant term n2/4 equals 250,000, while the
low-order terms 1001 4 50 amount to only 100,050; for n = 2000 the
difference becomes 1,000,000 vs. 200,050. In the world of algorithms,
we abuse notation a little bit and write f(n) = ®(g(n)), so that we can
write n2/4 + 100n + 50 = O(n?).

Now let’s look at the running time of BETTER-LINEAR-SEARCH
from page 14. This one is a little trickier than LINEAR-SEARCH be-
cause we don’t know in advance how many times the loop will iterate.
If A[1] equals x, then it will iterate just once. If x is not present in the
array, then the loop will iterate all » times, which is the maximum possi-
ble. Each loop iteration takes some constant amount of time, and so we
can say that in the worst case, BETTER-LINEAR-SEARCH takes ®(n)
time to search an array of n elements. Why “worst case”? Because we
want algorithms to have low running times, the worst case occurs when
an algorithm takes the maximum time over any possible input.

In the best case, when A[l] equals x, BETTER-LINEAR-SEARCH
takes just a constant amount of time: it sets 7 to 1, checks thati < n, the
test A[i] = x comes up true, and the procedure returns the value of i,
which is 1. This amount of time does not depend on . We write that
the best-case running time of BETTER-LINEAR-SEARCH is ©(1), be-
cause in the best case, its running time is within a constant factor of 1.
In other words, the best-case running time is a constant that does not
depend on 7.

So we see that we cannot use ®-notation for a blanket statement that
covers all cases of the running time of BETTER-LINEAR-SEARCH. We
cannot say that the running time is always ®(n), because in the best
case it’s ®(1). And we cannot say that the running time is always ®(1),
because in the worst case it’s ®(n). We can say that a linear function
of n is an upper bound in all cases, however, and we have a notation for
that: O(n). When we speak this notation, we say “big-oh of n” or just

20 Chapter 2: How to Describe and Evaluate Computer Algorithms

“oh of n.” A function f(n)is O(g(n)) if, once n becomes sufficiently
large, f(n) is bounded from above by some constant times g(rn). Again,
we abuse notation a little and write f(n) = O(g(n)). For BETTER-
LINEAR-SEARCH, we can make the blanket statement that its running
time in all cases is O(n); although the running time might be better than
a linear function of n, it’s never worse.

We use O-notation to indicate that a running time is never worse
than a constant times some function of n, but how about indicating
that a running time is never beffer than a constant times some func-
tion of n? That’s a lower bound, and we use $2-notation, which mirrors
O-notation: a function f(n)is Q(g(n)) if, once n becomes sufficiently
large, f(n) is bounded from below by some constant times g(n). We
say that “ f(n) is big-omega of g(n)” or just “ f(n) is omega of g(n),”
and we can write f(n) = Q(g(n)). Since O-notation gives an upper
bound, 2-notation gives a lower bound, and ®-notation gives both up-
per and lower bounds, we can conclude that a function f(n) is ©(g(n))
if and only if f(n) is both O(g(n)) and Q(g(n)).

We can make a blanket statement about a lower bound for the running
time of BETTER-LINEAR-SEARCH: in all cases it’s 2(1). Of course,
that’s a pathetically weak statement, since we’d expect any algorithm on
any input to take at least constant time. We won’t use $2-notation much,
but it will occasionally come in handy.

The catch-all term for ®-notation, O-notation, and 2-notation is
asymptotic notation. That’s because these notations capture the growth
of a function as its argument asymptotically approaches infinity. All
of these asymptotic notations give us the luxury of dropping low-order
terms and constant factors so that we can ignore tedious details and fo-
cus on what’s important: how the function grows with .

Now let’s turn to SENTINEL-LINEAR-SEARCH from page 16. Just
like BETTER-LINEAR-SEARCH, each iteration of its loop takes a con-
stant amount of time, and there may be anywhere from 1 to n itera-
tions. The key difference between SENTINEL-LINEAR-SEARCH and
BETTER-LINEAR-SEARCH is that the time per iteration of SENTINEL-
LINEAR-SEARCH is less than the time per iteration of BETTER-
LINEAR-SEARCH. Both take a linear amount of time in the worst case,
but the constant factor for SENTINEL-LINEAR-SEARCH is better. Al-
though we’d expect SENTINEL-LINEAR-SEARCH to be faster in prac-
tice, it would be by only a constant factor. When we express the running
times of BETTER-LINEAR-SEARCH and SENTINEL-LINEAR-SEARCH

Chapter 2: How to Describe and Evaluate Computer Algorithms 21

using asymptotic notation, they are equivalent: ®(n) in the worst case,
®(1) in the best case, and O(n) in all cases.

Loop invariants

For our three flavors of linear search, it was easy to see that each one
gives a correct answer. Sometimes it’s a bit harder. There’s a wide range
of techniques, more than I can cover here.

One common method of showing correctness uses a loop invariant.
an assertion that we demonstrate to be true each time we start a loop
iteration. For a loop invariant to help us argue correctness, we have to
show three things about it:

Initialization: It is true before the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true
before the next iteration.

Termination: The loop terminates, and when it does, the loop invari-
ant, along with the reason that the loop terminated, gives us a useful
property.

As an example, here’s a loop invariant for BETTER-LINEAR-SEARCH:

At the start of each iteration of step 1, if x is present in the ar-
ray A, then it is present in the subarray (a contiguous portion of
an array) from A[i] through A[n].

We don’t even need this loop invariant to show that if the procedure
returns an index other than NOT-FOUND, then the index returned is cor-
rect: the only way that the procedure can return an index i in step 1A
is because x equals A[i]. Instead, we will use this loop invariant to
show that if the procedure returns NOT-FOUND in step 2, then x is not
anywhere in the array:

Initialization: Initially, i = 1 so that the subarray in the loop invariant
is A[1] through A[n], which is the entire array.

Maintenance: Assume that at the start of an iteration for a value of i,
if x is present in the array A, then it is present in the subarray from
Ali] through A[n]. If we get through this iteration without returning,
we know what A[i] # x, and therefore we can safely say that if x is
present in the array A, then it is present in the subarray from A[i + 1]
through A[n]. Because i is incremented before the next iteration, the
loop invariant will hold before the next iteration.

22 Chapter 2: How to Describe and Evaluate Computer Algorithms

Termination: This loop must terminate, either because the procedure
returns in step 1A or because i > n. We have already handled
the case where the loop terminates because the procedure returns
in step 1A.

To handle the case where the loop terminates because i > n, we rely
on the contrapositive of the loop invariant. The contrapositive of the
statement “if A then B” is “if not B then not A.” The contrapositive
of a statement is true if and only if the statement is true. The con-
trapositive of the loop invariant is “if x is not present in the subarray
from A[i] through A[n], then it is not present in the array A.”

Now, when i > n, the subarray from A[i] through A[n] is empty,
and so this subarray cannot hold x. By the contrapositive of the loop
invariant, therefore, x is not present anywhere in the array A, and so
it is appropriate to return NOT-FOUND in step 2.

Wow, that’s a lot of reasoning for what’s really just a simple loop!
Do we have to go through all that every time we write a loop? I don’t,
but there are a few computer scientists who insist on such rigorous rea-
soning for every single loop. When I’m writing real code, I find that
most of the time that I write a loop, I have a loop invariant somewhere
in the back of my mind. It might be so far back in my mind that I don’t
even realize that I have it, but I could state it if I had to. Although most
of us would agree that a loop invariant is overkill for understanding the
simple loop in BETTER-LINEAR-SEARCH, loop invariants can be quite
handy when we want to understand why more complex loops do the
right thing.

Recursion

With the technique of recursion, we solve a problem by solving smaller
instances of the same problem. Here’s my favorite canonical example
of recursion: computing n! (“n-factorial””), which is defined for nonneg-
ative values of n asn! = 1if n = 0, and

nl=n-n—-1)-n—-2)-(n—3)---3-2-1
if n > 1. For example, 5! =5-4-3-2-.1 = 120. Observe that
m-NN=m-1))-n-2)-n—3)---3-2-1,

and so

Chapter 2: How to Describe and Evaluate Computer Algorithms 23

n'=n-(n-1)»

for n > 1. We have defined n! in terms of a “smaller” problem, namely
(n—1)!. We could write a recursive procedure to compute n! as follows:

Procedure FACTORIAL (n)
Input: An integer n > 0.
Output: The value of n!.

1. If n = 0, then return 1 as the output.

2. Otherwise, return » times the value returned by recursively calling
FACTORIAL(n — 1).

The way I wrote step 2 is pretty cumbersome. I could instead just write
“Otherwise, return n - FACTORIAL(n — 1), using the recursive call’s
return value within a larger arithmetic expression.

For recursion to work, two properties must hold. First, there must
be one or more base cases, where we compute the solution directly
without recursion. Second, each recursive call of the procedure must be
on a smaller instance of the same problem that will eventually reach a
base case. For the FACTORIAL procedure, the base case occurs when
n equals 0, and each recursive call is on an instance in which the value
of n is reduced by 1. As long as the original value of #n is nonnegative,
the recursive calls will eventually get down to the base case.

Arguing that a recursive algorithm works might feel overly simple at
first. The key is to believe that each recursive call produces the correct
result. As long as we are willing to believe that recursive calls do the
right thing, arguing correctness is often easy. Here is how we could ar-
gue that the FACTORIAL procedure returns the correct answer. Clearly,
when n = 0, the value returned, 1, equals n!. We assume that when
n > 1, the recursive call FACTORIAL(n — 1) does the right thing: it
returns the value of (n — 1)!. The procedure then multiplies this value
by n, thereby computing the value of n!, which it returns.

Here’s an example where the recursive calls are not on smaller in-
stances of the same problem, even though the mathematics is correct.
It is indeed true that if n > 0, then n! = (n + 1)!/(n + 1). But the
following recursive procedure, which takes advantage of this formula,
would fail to ever give an answer when n > 1:

24 Chapter 2: How to Describe and Evaluate Computer Algorithms

Procedure BAD-FACTORIAL (n)
Input and Output: Same as FACTORIAL.

1. If n = 0, then return 1 as the output.
2. Otherwise, return BAD-FACTORIAL(n + 1)/(n + 1).

If we were to call BAD-FACTORIAL(1), it would generate a recursive
call of BAD-FACTORIAL(2), which would generate a recursive call of
BAD-FACTORIAL(3), and so on, never getting down to the base case
when n equals 0. If you were to implement this procedure in a real
programming language and run it on an actual computer, you would
quickly see something like a “stack overflow error.”

We can often rewrite algorithms that use a loop in a recursive style.
Here is linear search, without a sentinel, written recursively:

Procedure RECURSIVE-LINEAR-SEARCH (A4, 7,1, x)
Inputs: Same as LINEAR-SEARCH, but with an added parameter i .

Output: The index of an element equaling x in the subarray from A[i]
through A[n], or NOT-FOUND if x does not appear in this subarray.

1. If i > n, then return NOT-FOUND.

2. Otherwise (i < n),if A[i] = x, then return i.

3. Otherwise (i < n and A[i] # x), return
RECURSIVE-LINEAR-SEARCH(A,n,i + 1, x).

Here, the subproblem is to search for x in the subarray going from A[i]
through A[n]. The base case occurs in step 1 when this subarray is
empty, that is, when i > n. Because the value of i increases in each of
step 3’s recursive calls, if no recursive call ever returns a value of 7 in
step 2, then eventually i becomes greater than n and we reach the base
case.

Further reading

Chapters 2 and 3 of CLRS [CLRS09] cover much of the material in
this chapter. An early algorithms textbook by Aho, Hopcroft, and Ull-
man [AHU74] influenced the field to use asymptotic notation to analyze
algorithms. There has been quite a bit of work in proving programs cor-
rect; if you would like to delve into this area, try the books by Gries
[Gri81] and Mitchell [Mit96].

