
Theoretical Computational Linguistics:

Learning Theory

Jeffrey Heinz

December 19, 2017

draft—December 19, 2017 J. Heinz

2

Contents

1 Analyzing Learning Computationally 5

1.1 Strings and stringsets . 5
1.2 The membership problem . 5
1.3 Learning problems . 7
1.4 Generalizing a little bit . 7
1.5 Classifying membership problems . 8

Appendices 11

1.A Enumerating Σ∗ . 11
1.B Non-enumerable stringsets . 12

2 Identification in the Limit from Positive Data 13

2.1 Identification in the limit . 13
2.1.1 Definition of identification in the limit from positive data 14
2.1.2 The Strictly k-Piecewise Stringsets 15
2.1.3 The Strictly k-Local Stringsets . 17
2.1.4 Strictly k-Local Treesets . 19

3 Identification in the Limit: General Results 23

3.1 Identification in the limit from positive data 23
3.2 Identification in the limit from positive and negative data 25
3.3 Identification in the limit from primitive recursive texts 27
3.4 Gold’s interpretation of these results . 28
3.5 Criticisms . 29

4 Automata Methods 31

4.1 Finite-state automata . 31
4.1.1 Exercises . 32

4.2 Generalizing Strictly Locality with Weighted Automata 33
4.2.1 Strictly k-Local stringsets . 33
4.2.2 Stochastic Strictly k-Local stringsets 34
4.2.3 Input Strictly k-Local Transductions 40
4.2.4 Output Strictly k-Local Transductions 43

3

draft—December 19, 2017 J. Heinz

4.3 Generalizing to any DFA . 44

5 Summary of Part 1 45

5.1 Computational characterizations of linguistic generalizations 45
5.2 Algorithms . 45
5.3 Defining Learning . 46
5.4 Learning Definitions . 46
5.5 Important results in learning theory . 47
5.6 String extension learning and automata learning 47
5.7 Open Questions . 48

4

Chapter 1

Analyzing Learning Computationally

1.1 Strings and stringsets

A string is a finite sequence of symbols from some set of symbols Σ. The set of all possible
strings is often noted Σ∗. The asterisk is a symbol due to Kleene, who is one of the great
computer scientists of the twentieth century. It is often called the ‘Kleene star.’ Generally,
the presence of the Kleene star on a set denotes the free monoid of a set, which is the set
of all finite sequences of length zero or more from that set. The unique string of length zero
is often denoted λ or ǫ.

...
aaa, aab, aba, abb, baa, bab, bba, bbb

aa, ab, ba, bb
a, b
λ

Figure 1.1: Strings of increasing length with Σ = {a, b}.

Here are some examples of sets of strings, also called formal languages, or stringsets.
1. Let Σ = {a, b, c, ..., z, .}. Then there is a subset of Σ∗ which includes all and

only the grammatical sentences of English (modulo capitalization).
2. Let Σ = {Advance-1cm, Turn-R-5◦}. Then there is a subset of Σ∗ which includes all

and only the ways to get from point A to point B.

Exercise 1. Provide some more examples of stringsets relevant to linguistics.

1.2 The membership problem

The membership problem is the problem of deciding whether a string belongs to a set.
The problem can be stated thusly: Given a set of strings S and any string s ∈ Σ∗, output
whether s ∈ S. Is there an algorithm that solves this problem for a given S?

5

draft—December 19, 2017 J. Heinz

M

S yes no

s ∈ S s 6∈ S

s ∈ Σ∗

Figure 1.2: The membership problem

Example 1. A string belongs to S if it does not contain aa as a substring.

s ∈ S s 6∈ S

abba baab
abccba aaccbb

babababa ccaaccaacc
.

a

b
c

b
c

a

a
b
c

Example 2. A string belongs to S if it does not contain aa as a subsequence.

s ∈ S s 6∈ S

cabb baab
babccbc babccba
bbbbbb bbaccccccccccaccc
.

a

b
c

b
c

a

a
b
c

Exercise 2. These finite-state machines are not the only algorithmic solutions to these mem-
bership problems? Provide other algorithms which solve these two membership problems.

6

draft—December 19, 2017 J. Heinz

1.3 Learning problems

There are many ways to define the problem of learning a stringset. Here are two informal
ones just to get started.

1. For any set S from some given collection of sets: Drawing finitely many examples from
S, output a program solving the membership problem for S.

A

algorithm
learning

M

yes no
S

D

s ∈ S s 6∈ S

s ∈ Σ∗

Figure 1.3: A Learning Problem with Only Positive Evidence

2. For any set S from some given collection of sets: Draw finitely many strings labeled as
to whether they belong to S or not, output a program solving the membership problem
for S.

These definitions are too informal. What does it mean to draw finitely many examples?
Do I want the algorithm to succeed for any finite sample of strings providing information
about the language? Why or why not?

Exercise 3. Improve the above definitions by making clearer what ‘drawing’ and ‘output’
mean. Try to write it formally if you can.

Exercise 4. Recall Osherson et al. (1986):
“Of special interest are the circumstances under which these hypotheses stabilize to an

accurate representation of the environment from which the evidence is drawn. Such stability
and accuracy are conceived as the hallmarks of learning. Within learning theory, the concepts
‘evidence,’ ‘stabilization,’ ‘accuracy,’ and so on, give way to precise definitions.”

How do your improved definitions address these concepts?

1.4 Generalizing a little bit

The functional perspective lets us generalize the foregoing a little bit. From a functional
perspective a stringset S is associated with a function f : Σ∗ → {0, 1}. But we may be

7

draft—December 19, 2017 J. Heinz

AD+

algorithm
learning

M

yes no
S

D−

s ∈ S s 6∈ S

s ∈ Σ∗

Figure 1.4: Learning Problem with Positive and Negative Evidence

interested in other types of functions which have Σ∗ for a domain.

function Notes

f : Σ∗ → {0, 1} Binary classification
f : Σ∗ → N Maps strings to numbers
f : Σ∗ → [0, 1] Maps strings to real values
f : Σ∗ → ∆∗ Maps strings to strings
f : Σ∗ → ℘(∆∗) Maps strings to sets of strings

Exercise 5. Provide some specific examples of functions like the ones above relevant to
linguistics.

Exercise 6. Try to write another definition of learning. It can be for any of the types of
functions shown.

1.5 Classifying membership problems

A basic question to ask is whether every stringset has a solution to the membership problem.
Perhaps it is surprising to learn that the answer is No. In fact, as a consequence of work on
computability in the mid-twentieth century it is known that most stringsets have no solution
to the membership problem.

1. Enumerations of Σ∗.
2. No enumeration of ℘(Σ∗).

8

draft—December 19, 2017 J. Heinz

3. Programs are of finite length so programs can be represented as strings of finite length.
4. This means every program is an element of Σ∗.
5. Consequenty there are at most countably many stringsets S which have programs which

solve the membership problem of S (see 1).
6. But there are uncountably many stringsets (elements of ℘(Σ∗), (see 2)).
7. So most stringsets have no solution to the membership problem.
8. Consequently any conceivable learning problems which targets a a non-enumerable

stringset S has no solution because the learning algorithm cannot ultimately output a
program which solves the membership problem for S. No such program exists or can
exist!

The Chomsky Hierarchy provides additional classification of membership problems which
have solutions (i.e. stringsets) (Chomsky, 1956; Hopcroft and Ullman, 1979).

Computably Enumerable

Context-
Sensitive

Mildly
Context-
Sensitive

Context-FreeRegularFinite

Figure 1.5: The Chomsky Hierarchy

Of particular interest is the class of regular languages, which may be defined as the class
of stringsets whose membership problem can be solved by a computational device whose
memory requirements are bounded and thus crucically do not grow without bound with

9

draft—December 19, 2017 J. Heinz

respect to the length of the strings. Finite-state acceptors are one way to represent such
computations.

As you may know, zooming in on the class of regular languages reveals some more struc-
ture (McNaughton and Papert, 1971; Thomas, 1982).

Figure 1.6: Room at the bottom.

These subregular classes are shown below from a model-theoretic perspective (Rogers
et al., 2010, 2013).

Regular

Non-Counting
Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

Figure 1.7: Subregular Hierarchies.

10

Appendix

1.A Enumerating Σ∗

The usual way to enumerate strings in Σ∗ is to order them first by their length and then
within strings of the same length to order them in dictionary order, as shown below.

0 λ 3 c 6 ac . . .
1 a 4 aa 7 ba
2 b 5 ab 8 bb

Figure 1.A.1: Enumerating Σ∗ with Σ = {a, b, c}.

A natural question that arises is what is the nth string in this enumeration? What
effective procedure yields the nth string?

One way to find the nth string is to build a tree of all the strings in a “breadth-first”
fashion. The first few steps are shown below.

0,λ 0,λ

1,a

0,λ

1,a 2,b

0,λ

1,a 2,b 3,c

0,λ

1,a 2,b 3,c

4,aa

1. 2. 3. 4. 5.

Figure 1.A.2: Enumerating Σ∗ with Σ = {a, b, c}.

The procedure for Σ could be stated as follows. Remember we know there are k elements
in Σ, and we can assume they are ordered. We are given as input a number n and we want
to output the nth string in the enumeration of Σ∗.

1. Set a counter variable c to 0.
2. BUILD a node labeled (0, λ).
3. If 0 = n then OUTPUT λ and STOP.
4. Otherwise, ADD (0, λ) to the QUEUE.
5. REMOVE the first element (m,w) from the QUEUE.
6. Set variable i to 1.
7. Let a be the ith symbol in Σ.
8. Increase c by 1.

11

draft—December 19, 2017 J. Heinz

9. BUILD a node labeled (c, w · a) as a daughter to (m,w).
10. If c = n then OUTPUT w · a and STOP.
11. Otherwise, ADD this daughter node to the end of the QUEUE.
12. Increase i by 1.
13. If i > k then go to step 5. Otherwise, go to step 7.
The general form of this algorithm is very useful. Recall that an enumeration of Σ∗ is

also an enumeration of all programs! This means we could try running some set of inputs X
on all the programs to find a program that gives a certain output. Basically, in steps 3 and
10 we would check to see how the program w behaves on the inputs in X . If the behavior is
what we like, we output this program and stop. Otherwise we continue to the next program!

1.B Non-enumerable stringsets

This is where Alëna Aksenova’s handout comes in.

12

Chapter 2

Identification in the Limit from

Positive Data

A definition of a learning problem requires specifying the instances of the problem and
specifying what counts as correct answers for these instances. This means thinking carefully
about an interaction between three items: the learning targets, the learning algorithm, and
the input to the learning algorithm, which can be thought of as the available evidence.

This is difficult because we have to confront the question “Which inputs is it reasonable
to expect the learning algorithm to succeed on?” For example, if we are trying to identify a
stringset S which is of infinite size but the evidence for S contains only a single string s ∈ S
then we may feel this places an unreasonable burden on the learning algorithm. What is at
stake here was expressed by Charles Babbage:

On two occasions I have been asked [by members of Parliament], “Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers come
out?” I am not able rightly to apprehend the kind of confusion of ideas that
could provoke such a question. as quoted in de la Higuera (2010, p. 391)

It’s unfair to expect a summation algorithm to succeed if the input is wrong. More generally,
how do we define learning in such a way so that the input to the algorithm is not “wrong”.
What does it mean to have input of sufficient quality in learning? We want to only consider
instances of the learning problem that are reasonable or fair. But nailing that down precisely
is hard! In fact, what we will see is that this is an ongoing issue and there are many attempts
to address it. The issue is a live one today.

2.1 Identification in the limit

Gold (1967) provided some influential definitions of learning. He called his approach identi-

fication in the limit. He provided not one, but several definitions, and he compared what
kinds of stringsets were learnable in these paradigms.

13

draft—December 19, 2017 J. Heinz

No one I know knows what happened to Gold. He seems to have disappeared from
academia in the 1980s.

Gold conceptualized learning as a never-ending process unfolding in time. Evidence is
presented piece by piece in time to the learning algorithm. The learning algorithm outputs
a program with each piece of evidence it receives based on its experience up to the present
moment. As time goes on, the programs the learning algorithm outputs must be identical
and must solve the membership problem for the target stringset.

Time t 1 2 3 4 . . . n . . .

Evidence at time t e(1) e(2) e(3) e(4) . . . e(n) . . .

Input to Algorithm at time t e〈1〉 e〈2〉 e〈3〉 e〈4〉 . . . e〈n〉 . . .

Output of Algorithm at time t G(1) G(2) G(3) G(4) . . . G(n) . . .

Figure 2.1: A schema of the Identification in the Limit learning paradigm

Let us explain the notation in the figure. The notation “e(n)” means the evidence pre-
sented at time n. This notation is functional which means evidence can be understood as a
function with domain N.

The notation “e〈n〉” refers to the sequence of evidence up to the nth one. For exam-
ple, e(3) means the finite sequence “e(1), e(2), e(3).” In mathematics, angle brackets are
sometimes used to denote sequences so some mathematicians would write this sequence as
〈 e(1), e(2), e(3) 〉.

The notation “G(n)” refers to the program output by the algorithm with input e〈n〉. If
A is the algorithm, and we wish to use functional notation so that A(i) = o means “on input
i, algorithm A outputs o” then G(n)=A(e〈n〉).

There are two important ideas in this paradigm. First, a successful learning algorithm is
one that converges over time to a correct generalization. At some time point n, the algorithm
must output the same program and this program must solve the membership problem for S.
This means the algorithm can make mistakes, but only finitely many times.

Second, which infinite sequences of evidence learners must succeed on? Which are the
ones of sufficient quality? Gold defined required these sequences to be representative of the
target stringsets. Each possible piece of evidence occurs at some point in the unfolding
sequence of evidence. Lest we think this is too good to be true, recall that the input to the
learner at any given point n in time is the finite sequence e〈n〉, and that to succeed, it is
only allowed to make finitely many mistakes.

2.1.1 Definition of identification in the limit from positive data

The box below precisely defines the paradigm when learning from positive data. Let us define
the “evidence” when learning from positive data more precisely. A positive presentation

of a stringset S is a function ϕ : N → S such that ϕ is onto. Recall that a function f is

14

draft—December 19, 2017 J. Heinz

onto provided for every element y in its co-domain there is some element x in its domain
such that f(x) = y. Here, this means for every string s ∈ S, there is some n ∈ N such that
ϕ(n) = s.

Definition 1 (Identification in the limit from positive data).

Algorithm A identifies in the limit from positive data a class of stringsets C provided
1

for all stringsets S ∈ C,2

for all positive presentations ϕ of S,3

there is some number n ∈ N such that4

for all m > n,5

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

6

7

• the program output by A on ϕ〈m〉 solves the membership problem
for S.

8

9

Here is breakdown of what these lines mean.
Line 1 Establishes the name of the relationship between an algorithm A and a collection of

stringsets C provided the definition holds.
Line 2 The algorithm must succeed for all S ∈ C.
Line 3 The algorithm must succeed for all positive presentations ϕ of S.
Line 4 It succeeds on ϕ for S if there is a point in time n
Line 5 such that for all future points in time m,
Lines 6-7 the output of A converges to the same program, and
Lines 8-9 the output of A correctly solves the membership problem for S.
This paradigm is also called learning from text.

2.1.2 The Strictly k-Piecewise Stringsets

Example 3. Here we present an algorithm and prove that it identifies the Strictly k-
Piecewise (SPk) stringsets in the limit from positive data. SP stringsets were proposed
to model aspects of long-distance phonotactics Heinz (2010a), motivated on typological and
learnability grounds. The learning scheme discussed here exemplifies more general ideas
Heinz (2010b); Heinz et al. (2012).

The notion of subsequence is integral to SP stringsets. Informally, a string u is subse-
quence of string v if one is left with u after erasing zero or more letters in v. For example,
ab is a subsequence of ccccccacccccccccbccccccc. Formally, u is a subsequence of v (u ⊑ v)
provided there are strings x1, x2, . . . xn and strings y0, y1, . . . yn such that u = x1x2 . . . xn and
v = y0x1y1x2y2 . . . xnyn. It is the yi strings that erased in v to leave u.

A stringset S is Strictly Piecewise if and only if it is closed under subsequence. In other
words, if s ∈ S then every subsequence of s is also in S.

A theorem shows that every SP stringset S has a basis in a finite set of strings (Rogers
et al., 2010). These strings can be understood as forbidden subsequences. That is any string

15

draft—December 19, 2017 J. Heinz

s ∈ Σ∗ containing any one of the forbidden subsequences is not in S. Conversely, any string
s which does not contain any forbidden subsequence belongs to S.

The same theorem shows that a SP stringset S can be defined in terms of a finite set
of permissible subsequences. Because the set is finite, there is a longest string in this set.
Let its length be k. In this case, any s ∈ Σ∗ belongs to S if and only if every one of its
subsequences of length k or less is permissible.

In other words we can define SPk stringsets as follows. Let a grammar G be a finite subset
of Σ∗ and let k be the length of a longest string in G. Let subseqk(s) = {u | u ⊑ s, |u| ≤ k}.
The “language of the grammar” L(G) is defined as the stringset {s | subseqk(s) ⊆ G}.
We are going to be interested in the collection of stringsets SPk, defined as those stringsets
generated from grammars G with a longest string k. Formally,

SPk
def
= {S | G ⊆ Σ≤k, L(G) = S} .

This is the collection C of learning targets.
For all S ∈ SPk, all presentations ϕ of S, and all time points t ∈ N define A as follows:

A
(

ϕ〈t〉
)

=

{

subseqk(ϕ(t)) if t = 1
A(ϕ〈t− 1〉) ∪ subseqk(ϕ(t)) otherwise

One can prove that algorithm A identifies in the limit from positive data the collection
of stringsets SPk.

Exercise 7. Prove algorithm A identifies in the limit from positive data the collection of
stringsets SPk.

For any presentation φ and time t, define k-SPIA (Strictly k-Piecewise Inference Algo-
rithm) as follows

k-SPIA
(

ϕ〈t〉
)

=

{

∅ if t = 0
k-SPIA(ϕ〈t− 1〉) ∪ subseqk(ϕ(t)) otherwise

Note that we are being a little sloppy here. Technically, the output of k-SPIA given some
input sequence is a set of subsequences G, not a program. What we really mean with the
above is that k−SPIA outputs a program which uses G to solve the membership problem
for L(G) = {w | subseqk(w) ⊆ G}. This program looks something like this.

1. Input: any word w.
2. Check whether subseqk(w) ⊆ G.
3. If so, OUTPUT Yes, otherwise OUTPUT No.

All k−SPIA does is update this program simply by updating the contents of G.

Theorem 1. For each k, k−SPIA identifies in the limit from positive data the collection of
stringsets SPk.

Proof Consider any k ∈ N. Consider any S ∈ SPk. Consider any positive presentation ϕ
for S. It is sufficient to show there exists a point in time tℓ such that for all m ≥ tℓ the
following holds:

16

draft—December 19, 2017 J. Heinz

1. k-SPIA(〈m〉) = k−SPIA(〈tℓ〉) (convergence), and
2. k-SPIA(〈m〉) is a program that solves the membership probem for S.

Since S ∈ SPk, there is a finite set G ⊆ Σ≤k such that S = L(G).
Consider any subsequence g ∈ G. Since g ∈ G there is some word w ∈ S which contains

g as a k-subsequence. Since G is finite, there are finitely many such w, one for each g in G.
Because ϕ is a positive presentation for S, there is a time t where each of these w occurs.
For each w let t be the first occurence of w in ϕ. Let tℓ denote the latest time point of all of
these time points t. Next we argue that for all time points m larger than this tℓ, the output
of k−SPIA correctly solves the membership problem for S and does not change.

Consider any m ≥ tℓ. The claim is that k-SPIA(〈m〉) = k−SPIA(〈tℓ〉) = G. For each g in
G, a word containing g as a subsequence occurs at or earlier than tℓ and so g ∈ k−SPIA(〈m〉).
Since g was arbitrary in G, G ⊆ k−SPIA(〈m〉).

Similarly, for each g ∈ k−SPIA(〈m〉), there was some word w in ϕ such that w contains
g as a subsequence. Since ϕ is a positive presentation for S, w is in S. Since w belongs to
S, subseqk(w) ⊆ G and so g belongs to G. Since g was arbitrary in k-SPIA(〈m〉) it follows
that k-SPIA(〈m〉) ⊆ G.

It follows k-SPIA(〈m〉) = G.

Since m was arbitrarily larger than tℓ we have both convergence and correctness.
Since ϕ was arbitrary for S, S arbitrary in SPk and k arbitrary, the proof is concluded. ���

2.1.3 The Strictly k-Local Stringsets

Here we present an algorithm and prove that it identifies the Strictly k-Local (SLk) stringsets
in the limit from positive data. The first proof of this result was presented by Garcia
et al. (1990), though the Markovian principles underlying this result were understood in
a statistical context much earlier. The learning scheme discussed there exemplifies more
general ideas (Heinz, 2010b; Heinz et al., 2012).

The notion of substring is integral to SL stringsets. Formally, a string u is substring
of string v (u E v) provided there are strings x, y ∈ Σ∗ and v = xuy. Another term for
substring is factor. So we also say that u is a factor of v. If u is of length k then we say u is
a k-factor of v.

A stringset S is Strictly k-Local if and only if there is a number k such that for all strings
u1, v1, u2, v2, x ∈ Σ∗ such that if |x| = k and u1xv1, u2xv2 ∈ S then u1xv2 ∈ S. We say S is
closed under suffix substitution (Rogers and Pullum, 2011).

A theorem shows that every SLk stringset S has a basis in a finite set of strings (Rogers
and Pullum, 2011). These strings can be understood as forbidden substrings. Informally, this
means any string s containing any one of the forbidden substrings is not in S. Conversely,
any string s which does not contain any forbidden substring belongs to S.

The same theorem shows that a SL stringset S can be defined in terms of a finite set of
permissible substrings. In this case, s belongs to S if and only if every one of its k-factors is
permissible.

17

draft—December 19, 2017 J. Heinz

We formalize the above notions by first defining a function the factork, which extracts
the substrings of length k present in a string, or those present in a set of strings. If a string
s is of length less than k then factork just returns s.

Formally, let factork(s) equal {u | u E s, |u| = k} whenever k ≤ |s| and let factork(s) =
{s} whenever |s| < k. We expand the domain of this function to include sets of strings as
follows: factork(S) =

⋃

s∈S factork(s).
To formally define SLk grammars, we introduce the symbols ⋊ and ⋉, which denote left

and right word boundaries, respectively. These symbols are introduced because we also want
to be able to forbid specific strings at the beginning and ends of words, and traditionally
strictly local stringsets were defined to make such distinctions (McNaughton and Papert,
1971). Then let a grammar G be a finite subset of factork({⋊}Σ∗{⋉}).

The “language of the grammar” L(G) is defined as the stringset {s | factork(⋊s⋉) ⊆ G}.
We are going to be interested in the collection of stringsets SLk, defined as those stringsets
generated from grammars G with a longest string k. Formally,

SLk
def
= {S | G ⊆ factork({⋊}Σ∗{⋉}), L(G) = S} .

This is the collection C of learning targets.
For all S ∈ SLk, for any presentation φ and time t, define k-SPIA (Strictly k-Local

Inference Algorithm) as follows

k-SLIA
(

ϕ〈t〉
)

=

{

∅ if t = 0
k-SLIA(ϕ〈t− 1〉) ∪ factork(⋊ϕ(t)⋉) otherwise

Exercise 8. Prove algorithm k-SLIA identifies in the limit from positive data the collection
of stringsets SLk.

Note that we are being a little sloppy here. Technically, the output of k-SLIA given some
input sequence is a set of subsequences G, not a program. What we really mean with the
above is that k−SLIA outputs a program which uses G to solve the membership problem
for L(G) = {w | subseqk(w) ⊆ G}. This program looks something like this.

1. Input: any word w.
2. Check whether factork(⋊w⋉) ⊆ G.
3. If so, OUTPUT Yes, otherwise OUTPUT No.

All k−SLIA does is update this program simply by updating the contents of G.

Theorem 2. For each k, k−SLIA identifies in the limit from positive data the collection of
stringsets SLk.

Proof Consider any k ∈ N. Consider any S ∈ SLk. Consider any positive presentation ϕ
for S. It is sufficient to show there exists a point in time tℓ such that for all m ≥ tℓ the
following holds:

1. k-SLIA(〈m〉) = k−SLIA(〈tℓ〉) (convergence), and
2. k-SLIA(〈m〉) is a program that solves the membership probem for S.

18

draft—December 19, 2017 J. Heinz

Since S ∈ SLk, there is a finite set G ⊆ Σ≤k such that S = L(G).
Consider any factor g ∈ G. Since g ∈ G there is some word w ∈ S which contains g as

a k-factor. Since G is finite, there are finitely many such w, one for each g in G. Because ϕ
is a positive presentation for S, there is a time t where each of these w occurs. For each w
let t be the first occurence of w in ϕ. Let tℓ denote the latest time point of all of these time
points t. Next we argue that for all time points m larger than this tℓ, the output of k−SLIA
correctly solves the membership problem for S and does not change.

Consider any m ≥ tℓ. The claim is that k-SLIA(〈m〉) = k−SLIA(〈tℓ〉) = G. For each g
in G, a word containing g as a factor occurs at or earlier than tℓ and so g ∈ k−SLIA(〈m〉).
Since g was arbitrary in G, G ⊆ k−SLIA(〈m〉).

Similarly, for each g ∈ k−SLIA(〈m〉), there was some word w in ϕ such that w contains
g as a factor. Since ϕ is a positive presentation for S, w is in S. Since w belongs to S,
factork(w) ⊆ G and so g belongs to G. Since g was arbitrary in k-SLIA(〈m〉) it follows
that k-SLIA(〈m〉) ⊆ G.

It follows k-SLIA(〈m〉) = G.
Since m was arbitrarily larger than tℓ we have both convergence and correctness.
Since ϕ was arbitrary for S, S arbitrary in SLk and k arbitrary, the proof is concluded. ���

2.1.4 Strictly k-Local Treesets

Trees are like strings in that they are recursive structures. Informally, trees are structures
with a single ‘root’ which dominates a sequence of trees.

Defining Trees and Treesets

Formally, trees extend the dimensionality of string structures from 1 to 2 (Rogers, 2003).
Like strings, we assume a set of symbols Σ. This is often partioned into symbols of different
types depending on whether the symbols can only occur at the leaves of the trees or not.
We don’t make any such distinction here.

Definition 2 (Trees).
Base Case: If a ∈ Σ then a[] is a tree.
Inductive Case: If a ∈ Σ and t1, t2, . . . tn is a string of trees of length n then a[t1t2 . . . tn]

is a tree.

Also, a tree a[] is called a leaf. We denote set of all possible trees with T2
Σ. A treeset T

is a subset of T2
Σ.

(This notation follows Rogers (2003) wherein Td
Σ denotes tree-like structures with Σ being

the set of labels and d being the dimensionality. Since strings are of dimension 1, this means
the set of all strings Σ∗ is equivalent to T1

Σ.)
Here are some examples.

Example 4. Let Σ = {NP, VP, S}. Then the following are trees.

19

draft—December 19, 2017 J. Heinz

1. S[NP[] VP[VP[] NP []]]
2. NP[VP[] S[] S[] VP[]]
3. NP[NP[NP[] VP[] S[]]]

We might draw these structures as follows.

(1)
S

NP VP

VP NP

(2)
NP

VP S S VP

(3)
NP

NP

NP VP S

Note that the expression “a string of trees” in the definition of trees implies that our
alphabet for strings is all the trees. Since we are defining trees, this may seem a bit circular.
The key to resolving this circularity is to interleave the definition of the alphabet of the
strings with the definition of trees in a zig-zag fashion. First we apply the inductive case for
trees once, then we use those trees as an alphabet to define some strings of trees. Then we
go back to trees and apply the inductive case again, which yields more trees which we can
use to enlarge our set of strings and so on. While we do not go through the details here, this
method essentially provides a way to enumerate the set of all possible trees.

Here are some useful definitions which give us information about trees.

Definition 3.

1. The root of a tree a[t1 . . . tn] is a.
2. The size of a tree t, written |t|, is defined as follows. If t = a[], its size is 1. If not,

then t = a[t1t2 . . . tn] where each ti is a tree. Then |t| = 1 + |t1|+ |t2|+ . . .+ |tn|.
3. The depth of a tree t, written depth(t), is defined as follows. If t = a[], its depth

is 1. If not, then t = a[t1t2 . . . tn] where each ti is a tree. Then depth(t) = 1 +
max

{

depth(t1), depth(t2), . . . , depth(tn)
}

where max takes the largest number in the
set.

4. The yield of a tree t, written yield(t), maps a tree to a string of its leaves as follows.
If t = a[] then yield(t) = a. If not, then t = a[t1t2 . . . tn] where each ti is a tree. Then
yield(t) = yield(t1) · yield(t2) · . . . · yield(tn).

5. Tree t is a subtree of t′ = a[t1 . . . tn] provided there is i such that either t = ti or t is a
subtree of ti.

6. A tree t = a[a1[] . . . an[]] is a 2-local tree of tree t′ (t E t′) provided there exists a
subtree s of t′ such that s = a[t1 . . . tn] and the root of each ti is ai.

7. A 1-treetop of t = a[t1t2 . . . tn] is a[].
8. A k-treetop of t = a[t1t2 . . . tn] is a[s1s2 . . . sn] where each si is a (k − 1)-treetop of ti.
9. A tree t = a[t1 . . . tn] is a k-local tree of tree t′ (t E t′) provided

(a) t is of depth k
(b) there exists a subtree s of t′ such that s = a[s1 . . . sn] and for each i, ti is the

(k − 1) treetop of si.

20

draft—December 19, 2017 J. Heinz

Strictly Local Treesets

The notion of k-local tree (E) is integral to Strictly Local treesets.
As with SL stringsets, we define a function factork, which extracts the k-local trees

present in a tree (or set of trees). If a tree t is of depth less than k then factork just returns
{t}.

Formally, let factork(t) equal {s | s E t, depth(s) = k} whenever k ≤ depth(t) and let
factork(t) = {t} whenever depth(t) < k. We expand the domain of this function to include
sets of strings as follows: factork(T) =

⋃

t∈T factork(t).
Then a SLk treeset grammar G = (Σ0,Σℓ, Fk), which will be interpreted as the symbols

permissible as the roots, the symbols permissible as the leaves, and the permissible k-Local
trees. So Σ0,Σℓ ⊆ Σ and Fk is a finite subset of factork(T

2
Σ).

The “language of the grammar” L(G) is defined as the treeset

L
(

(Σ0,Σℓ, Fk)
) def
= {t | root(t) ∈ Σ0, yield(t) ∈ Σ∗

ℓ , factork(t) ⊆ Fk, } .

We are going to be interested in the collection of treesets SLTk, defined as those treesets
generated from grammars G where the depth of the largest permissible local tree is k.
Formally,

SLTk
def
= {T | ∃G = (Σ0,Σℓ, Fk),Σ0 ⊆ Σ, Σℓ ⊆ Σ, Fk ⊆ factork(T

2
Σ), Fk finite, L(G) = T} .

This is the collection C of learning targets.

Theorem 3. For each k, the class k-SLT is identifiable in the limit from positive data.

To make this result clear, let us remind ourselves what a positive presentation of data is.
It means for each t ∈ T there is some time point i such that φ(i) = t. So the evidence here
are tree structures, not the yields of tree structures.

Exercise 9. Prove the theorem.

Context-Free Grammars

Definition 4. A context-free grammar is a tuple 〈T,N, S,R〉 where
• T is a nonempty finite alphabet of symbols. These symbols are also called the terminal
symbols, and we usually write them with lowercase letters like a, b, c, . . .

• N is a nonempty finite set of non-terminal symbols, which are distinct from elements
of T . These symbols are also called category symbols, and we usually write them with
uppercase letters like A,B,C, . . .

• S is the start category, which is an element of N .
• A finite set of production rules R. A production rule has the form

A → β

where β belongs to (T ∪N)∗ and A ∈ N . So β are strings of non-terminal and terminal
symbols and A is a non-terminal.

21

draft—December 19, 2017 J. Heinz

Example 5. Consider the following grammar G1:
• T = {john, laughed,and};
• N = {S, VP1, VP2}; and
•

R =

S → john VP1
VP1 → laughed

VP1 → laughed VP2
VP2 → and laughed VP2
VP2 → laughed

Example 6. Consider the following grammar G2:
• T = {a, b};
• V = {S}; and
• The production rules are

R =

{

S → aSb
S → ab

}

The language of a context-free grammar (CFG) is defined recursively below.

Definition 5. The (partial) derivations of a CFG G = 〈T ,N , S,R〉 is written D(G) and is
defined recursively as follows.

1. The base case: S belongs to D(G).
2. The recursive case: For all A → β ∈ R and for all γ1, γ2 ∈ (T ∪N)∗, if γ1Aγ2 ∈ D(G)

then γ1βγ2 ∈ D(G).
3. Nothing else is in D(G).

Then the language of the grammar L(G) is defined as

L(G) =
{

w ∈ T ∗ | w ∈ D(G)
}

.

Exercise 10. How does G1 generate John laughed and laughed and laughed?

Exercise 11. What language does G2 generate?

Theorem 4. The languages generated by context-free grammars are exactly the yields of the
Strictly 2-Local treesets.

Exercise 12. Explain how the 2-local trees in a tree relate to the production rules of a
context-free grammar.

22

Chapter 3

Identification in the Limit: General

Results

In this chapter review general results in the identification in the limit paradigm. We begin
with some theorems for learning from positive data.

We have already seen that the following classes of languages are identifiable in the limit
from positive data.

1. BAR-X = {x̄ | x ∈ Σ∗}. Recall x̄
def
= {w ∈ Σ∗ | w 6= x}.

2. For each k ∈ N, SPk

3. For each k ∈ N, SLk

The following classes of stringsets are fundamental ones in formal language theory so it
makes sense to be curious about their learnability.

1. The class of finite stringsets (FIN).
2. The class of regular stringsets (REG).
3. The class of context-free stringsets (CF).
4. The class of context-sensitive stringsets (CS).

These are in the following relationship: FIN (REG (CF (CF.

3.1 Identification in the limit from positive data

Theorem 5. FIN is identifiable in the limit from positive data.

Exercise 13. Prove this theorem. (Hint: FIN can be learned with string extension learning.)

Any class which includes every finite language and at least one more is a superfinite class
of languages.

Theorem 6. No superfinite class of stringsets is identifiable in the limit from positive data.

There are different ways to prove this theorem. Here is one based on (de la Higuera,
2010, p. 151).

23

draft—December 19, 2017 J. Heinz

Proof [sketch] Consider any superfinite class of languages C. By definition C includes all
finite languages and at least one infinite language L∞.

Let x1, x2, . . . be the infinitely many words of L∞.
Let L1 = {x1}, L2 = L1 ∪ {x2}, L3 = L2 ∪ {x3}, and so on. So Lk = Lk−1 ∪ {xk}. For

each k ∈ N, Lk ∈ C since Lk is finite.
For the sake of contradiction, assume there is an algorithm A that identifies C in the

limit from positive data. We will show there is a presentation for L∞ for which A fails to
converge.

Pick a presentation ϕ1 for L1. Since A identifies L1 in the limit, there is a convergence
point i1 such that A outputs a grammar for L on ϕ1[i1]. Let ϕ2 be some presentation of L2

such that for all j < i1, ϕ2(j) = ϕ1(j) and ϕ2(i1 + 1) = x2. More generally, let ϕk be some
presentation of Lk such that for all j < ik−1, ϕk(j) = ϕk−1(j) and ϕk(ik−1 + 1) = xk.

In this manner we construct a presentation ϕ∞ for L∞. Consider any i ∈ N. There exists
j, j + 1 such that ij < i ≤ ij+1. Let k equal j + 1. Then ϕ∞(i) equals ϕk(i).

How does A behave on ϕ∞? It does not converge. This is because for all k ∈ N, at time
point ik, A will output a program for Lk. So it never converges to a grammar for L∞ even
though ϕ∞ is a positive presentation for L∞. ���

Gold explains the idea behind his result this way.

It is of great interest to find why information presentation by text is so weak
and under what circumstances it becomes stronger. Therefore, it is worthwhile
to understand the method used in Theorems I.8 and I.9 to prove that any class
of languages containing all finite languages and at least one infinite language is
not identifiable in the limit from a text in five out of six of the models using text.

The basic idea is proof by contradiction. Consider any proposed guessing al-
gorithm. It must identify any finite language correctly after a finite amount of
text. This makes it possible to construct a text for the infinite language which
will fool the learner into making a wrong guess an infinite number of times as
follows. The text ranges over successively larger, finite subsets of the infinite lan-
guage. At each stage it repeats the elements of the current subset long enough
to fool the learner. Thus, the method of proof of the negative results concerning
text depends on the possibility of there being a huge amount of repetition in the
text. Perhaps this can be prevented by some reasonable probabilistic assump-
tion concerning the generation of the text. In this case one would only require
identification in the limit with probability one, rather than for every allowed text.

I have been asked, “If information presentation is by means of text, why not guess
the unknown language to be the simplest one which accepts the text available?”
This is identification by enumeration. It is instructive to see why it will not
work for most interesting classes of languages: The universal language (if it is
in the class) will have some finite complexity. If the unknown language is more
complex, then the guessing procedure being considered will always guess wrong,

24

draft—December 19, 2017 J. Heinz

since the universal language is consistent with any finite text. This follows from
the fact that, if L is the unknown language and if L’ ⊃ L, then L’ is consistent
with any finite segment of any text for L. The problem with text is that, if you
guess too large a language, the text will never tell you that you are wrong.

It immediately follows that the class of regular, context-free, context-sensitive, and com-
putably enumerable classes of stringsets are not identifiable in the limit from positive data.

Furthemore, for every finite stringset S, there is some k such that S is Strictly k-Local.
Thus FIN (SL. Hence neither SL nor LT nor LTT nor TSL is identifiable in the limit from
positive data.

Theorem 7 ((Angluin, 1980)). A class C is identifiable in the limit from positive data iff
for each S ∈ C there is a finite set D ⊆ S such that for all S ′ ∈ C such that D ⊆ S ′ it holds
that S ′ 6⊆ S.

Pictorially, Figure 3.1 is the situation that cannot obtain.

Figure 3.1: No such L’ in every class identifable in the limit from positive data!

Corollary 1. Every finite class of languages is identifiable in the limit from positve data.

Gold’s theorems and Angluin’s theorems above are the basis for the so-called “Subset
problem” in linguistics literature on learning (Wexler and Culicover, 1980; Berwick, 1985).

3.2 Identification in the limit from positive and nega-

tive data

A positive and negative presentation of a stringset S provides example strings not in S
in addition to example strings in S. This can be formalized using the characteristic function

25

draft—December 19, 2017 J. Heinz

of S. Every set S has a characteristic function with domain Σ∗ defined as follows.

fS(s) =

{

1 iff s ∈ S
0 otherwise

Characteristic functions are total functions, which means defined for all s ∈ Σ∗. Also recall,
that we write (x, y) ∈ f whenever f(x) = y. So we can think of fS as a set of points where
(s, 0) means s 6∈ S and (s, 1) means s ∈ S.

Then a positive and negative presentation of a stringset S is a function ϕ : N → fS
such that ϕ is onto. Here, this means for every string s ∈ Σ∗, there is some n ∈ N such that
ϕ(n) = (s, fs(s)).

Definition 6 (Identification in the limit from positive and negative data).

Algorithm A identifies in the limit from positive and negative data a class of stringsets
C provided

1

2

for all stringsets S ∈ C,3

for all positive and negative presentations ϕ of S,4

there is some number n ∈ N such that5

for all m > n,6

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

7

8

• the program output by A on ϕ〈m〉 solves the membership problem
for S.

9

10

The only difference between the definition above and the one in Definition 1 is in line 3.
This paradigm is also called learning from an informant.

Theorem 8. The computable class of languages is identifiable in the limit from positive and
negative data.

Proof [sketch] The algorithm proceeds by enumeration over programs. Since programs are
strings, we can essentially use the enumeration for strings we used before.

The learning algorithm finds the first program in the enumeration that successfully clas-
sifies all of the data it has observed so far in ϕ.

How does it do this? Well, it looks at the first program in the enumeration and submits
to it each data point ϕ[i]. If the first program fails to compute anything, or classifies any one
of the data points incorrectly, the learning algorithm moves to the next program and checks
again. This repeats. Evenutally, it must find a program which classifies all of the observed
data points correctly. At this point, it outputs this program.

How do we know this algorithm converges to a correct program for S? Well, there is a
program for S in the enumeration. There may be more than one such program so let P be
the first program in the enumeration for S. Once the learning algorithm reaches P it will

26

draft—December 19, 2017 J. Heinz

output P since P will classify all data points from ϕ correctly because ϕ is a positive and
negative presentation of S.

How do we know the learning algorithm will eventually output P on any positive and
negative data presentation ϕ for S? Consider any program P ′ prior to P in the enumeration.
Since P is the first program in the enumeration for S, P ′ is not a program for S. It follows
that there is some w ∈ S, or w 6∈ S that P ′ misclassifies. It follows that there is some point
in time i such that ϕ(i) = (w, x) with x ∈ {0, 1}. At this point the learning algorithm will
conclude that P ′ does not classify everything it has seen in ϕ[i] correctly, and will move to
the next program in the enumeration. Since P ′ was arbitrary, it follows that the algorithm
will eventually reach adn output program P . ���

3.3 Identification in the limit from primitive recursive

texts

Recall that algorithms have to succeed for any text or from any informant. As we discuss
later, this has been one source of criticism of Gold’s learning paradigm.

Let’s consider texts for the moment. That is, let’s consider positive presentations for
some stringset S which has at least two strings in it. How many positive presentations are
there? It should be easy to see that there are infinitely many. If u, v are distinct words in S
then a text could start either u, v or u, u, v or u, u, u, v or u, u, u, u, v and so on. In fact, there
are uncountably many presentations for S. This can be shown by the same diagnolization
argument that we used earlier to show that there are uncountably many subsets of Σ∗.

We can also ask how many of these presentations are computable? Provided there are at
least two strings in S, the answer is only countably many.

This situation is exactly analgous to the number of real numbers between 0 and 1,
inclusive, and the number of computable real numbers between 0 and 1, inclusive.

In other words, most of the presentations that the Gold paradigm is required to succees
on are uncomputable. Some have argued this is not reasonable.

Regardless of whether it is or not, we may be interested in what changes if we change
the definition of learning to only require success on computable texts.

A particularly strong form of computability is computability via primitive recursion.
This is weaker than Turing-machine computable. For example, Turing machines are not
guaranteed to halt on input, but primitive recursive programs are guaranteed to halt. See
Rogers (1967) for details on primitive recursion.

Definition 7 (Identification in the limit from primitive recursive texts).

27

draft—December 19, 2017 J. Heinz

Algorithm A identifies in the limit from positive data a class of stringsets C provided
1

for all stringsets S ∈ C,2

for all positive, computable presentations ϕ of S,3

there is some number n ∈ N such that4

for all m > n,5

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

6

7

• the program output by A on ϕ〈m〉 solves the membership problem
for S.

8

9

The only difference between the definition above and the ones in Definitions 1 and 6 is
in line 3.

Theorem 9. The recursive (computable) class of languages is identifiable in the limit from
primitive recursive texts.

I’m not able at present to explain this proof, so it is omitted. I think the basic ideas
are that (1) primitive recursive texts are enumerable and (2) it is possible to translate a
primitive recursive text into a grammar a language equal to the content of the text (set of
strings in the text). So an algorithm can identify by enumeration the primitive recursive
text and thus the language the text is from.

3.4 Gold’s interpretation of these results

From (Heinz, 2016):
Gold (1967:453-454) provides three ways to interpret his three main results:

1. The class of natural languages is much smaller than one would expect from
our present models of syntax. That is, even if English is context-sensitive, it
is not true that any context-sensitive language can occur naturally. . . In par-
ticular the results on [identification in the limit from positive data] imply the
following: The class of possible natural languages, if it contains languages
of infinite cardinality, cannot contain all languages of finite cardinality.

2. The child receives negative instances by being corrected in a way that we
do not recognize. . .

3. There is an a priori restriction on the class of texts [presentations of data;
i.e. infinite sequences of experience] which can occur. . .

The first possibility follows directly from the fact that no superfinite class of languages is
identifiable in the limit from positive data. The second and third possibilities follow from
Gold’s other results on identification in the limit from positive and negative data and on
identification in the limit from positive primitive recursive data . . .

28

draft—December 19, 2017 J. Heinz

Each of these research directions can be fruitful, if honestly pursued. For the case of
language acquisition, Gold’s three suggestions can be investigated empirically. We ought to
ask

1. What evidence exists that possible natural language patterns form subclasses of major
regions of the Chomsky Hierarchy?

2. What evidence exists that children receive positive and negative evidence in some,
perhaps implicit, form?

3. What evidence exists that each stream of experience each child is exposed to is guar-
anteed to be generated by a fixed, computable process (i.e. computable probability
distribution or primitive recursion function)? More generally, what evidence exists
that the data presentations are a priori limited?

My contention is that we have plenty of evidence with respect to question (1), some
evidence with respect to (2), and virtually no evidence with respect to (3).

Finally, Gold concludes his paper this way.

Concerning inductive inference, philosophers often occupy themselves with the
following type of question: Suppose we are given a body of information and a set
of possible conclusions, from which we are to choose one. Some of the conclusions
are eliminated by the information. The question is, of the conclusions which are
consistent with the in- formation, which is “correct”?

If some sort of probability distribution is imposed on the set of conclusions, then
the problem is meaningful. But if no basis for choosing between the consistent
conclusions is postulated a priori, then inductive inference can do no more than
state the set of consistent conclusions.

The difficulty with the inductive inference problem, when it is stated this way,
is that it asks, “What is the correct guess at a specific time with a fixed amount
of information?” There is no basis for choosing between possible guesses at a
specific time. However, it is interesting to study a guessing strategy. Now one
can investigate the limiting behavior of the guesses as successively larger bodies
of information are considered. This report is an example of such a study. Namely,
in interesting identification problems, a learner cannot help but make errors due
to incomplete knowledge. But, using an “identification in the limit” guessing
rule, a learner can guarantee that he will be wrong only a finite number of times.

3.5 Criticisms

1. Identification in the limit from positive data is too hard. The texts can be adversarial.
2. identification in the limit doesn’t address time or resource complexity of learning.

The first point is articulated well by Clark and Lappin (2011).
The second point is about feasibility. Learning by enumeration is very, very far from

efficient. So even if every finite class of languages is identifiable in the limit from positive

29

draft—December 19, 2017 J. Heinz

data, large finite classes may not be efficiently learnable because learning by enumeration is
awfully slow! Similarly, Even if the recursive class is identifiable in the limit from primitive
recursive text, it is not efficiently learnable. So we need some way to identify feasibly
learnable subclasses.

Much research since Gold has aimed to incorporate feasibility into learning. The Probably
Approximately Correct learning model is one influential example (Valiant, 1984; Anthony
and Biggs, 1992; Kearns and Vazirani, 1994).

Many researchers advocate a learning setting where the aim is not to learn categorical
stringsets but to learn probabilty distributions over them (“stochastic stringsets.”) We will
talk about this next.

The most repeated refrain ever in cognitive scince, computational linguistics about the
theory of learning languages is this: “Gold (1967) showed that context-free grammars are not
learnable but Horning (1969) showed that probabilistic context-free grammars are.” There
is so much confusion about this, I wrote about it: (Heinz, 2016).

30

Chapter 4

Automata Methods

In this chapter we explain how using finite-state automata as grammar formalism, can lead
to successful learning algorithms. A key aspect of the results here is that the automata are
deterministic.

In the first section, we examine cases where the structure of the automata is fixed. We
review Strictly k-Local learaning in the context of finite-state automata. We see how the
method there can be generalized to stochastic stringsets and transductions. The stochastic
Strictly k-Local stringsets are n-gram models in the NLP literature. Input and Output
Strictly Local transductions are due to Chandlee (Chandlee, 2014; Chandlee et al., 2014,
2015; Chandlee and Heinz, Forthcoming; Chandlee et al., To appear).

In the second section, we examine cases where the structure of the automata is not fixed.
The primary result there is the alogorithm RPNI which can learn any regular language
from positve and negative data in polynomial time and data. This result provides the basis
for algorithms which efficiently learn any stochastic regular stringets (ALEGRIA) and any
sequential transductions (OSTIA) from positive data only. The reason why ALEGRIA and
OSTIA can get by with positive data but RPNI cannot is discussed.

4.1 Finite-state automata

Definition 8. A deterministic finite-state acceptor (DFA) is a tuple (Q,Σ, q0, F, δ) where
• Q is a finite set of states;
• Σ is a finite set of symbols (the alphabet);
• q0 ∈ Q is the initial state;
• F ⊆ Q is a set of accepting (final) states; and
• δ is a function with domain Q×Σ and co-domain Q. It is called the transition function.

We extend the domain of the transition function to Q × Σ∗ as follows. In these notes,
the empty string is denoted with λ.

δ∗(q, λ) = q

δ∗(q, aw) = δ∗((δ(q, a), w) (4.1)

31

draft—December 19, 2017 J. Heinz

Consider some DFA A = (Q,Σ, q0, F, δ) and string w ∈ Σ∗. If δ∗(q0, w) ∈ F then we say
A accepts/recognizes/generates w. Otherwise A rejects w.

Definition 9. The stringset recognized by A is L(A) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

The use of the ‘L’ denotes “Language” as stringsets are traditionally referred to as formal
languages.

Definition 10. A stringset is regular if there is a DFA that recognizes it.

4.1.1 Exercises

Exercise 14. This exercise is about designing DFA. Let Σ = {a, b, c}. Write DFA which
express the following generalizations on word well-formedness.

1. All words begin with a consonant, end with a vowel, and alternate consonants and
vowels.

2. Words do not contain aaa as a substring.
3. If a word begins with a, it must end with c.
4. Words must contain two bs.
5. Words have an even number of nasals (Let Σ = {a, b, n}).

Exercise 15. This exercise is about reading and interpreting DFA. Provide generalizations
in English prose which accurately describe the stringset these DFA describe.

1.

0 1

b
c
a

a b
c

2.

0 1 2
b

c

b
a a

c
a

3.

0 1

a

a

b
c

b
c

4. Write the DFA in #1-3 in mathematical notation. So what is Q,Σ, q0, F, and δ?

32

draft—December 19, 2017 J. Heinz

4.2 Generalizing Strictly Locality with Weighted Au-

tomata

For each k, and each there is a canonical form for strictly k-local stringsets. Here it is.

Definition 11. Given the stucture of the canonical SLk DFA for L(G) is a DFA such that
• Q = Σ≤k−1;
• Σ is the alphabet;
• q0 = λ;
• F = Q; and
• For all q ∈ Q, σ ∈ Σ, δ(q, σ) = suffk−1(qa)

Here is an example, where Σ = {a, b, c} and k = 2. Observe that the language of this
DFA is Σ∗.

λ

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

Figure 4.1: A canonical SL2 DFA

Other SL2 languages are obtained by removing transitions or making states non-final. In
other words, every SL2 stringset corresponds to some subgraph of this canonical DFA.

To see why, consider any strictly k-local grammar G ⊆ factork({⋊}Σ∗{⋉}).
• For all w ∈ Σ∗: w ∈ F iff w⋉ ∈ G or ⋊w⋉ ∈ G.
• For all wa ∈ Σ∗: δ(w, a) exists iff wa ∈ G or ⋊wa ∈ G.

4.2.1 Strictly k-Local stringsets

We have already seen an algorithm that learns Strictly k-local stringsets. It operates by
recording the k-factors of the observed words appended with word boundaries. These k-
factors correspond to transitions in the canonical machine. So as each word is observed, we
essenentially carve a path in the canonical SLk DFA.

Figure 4.2 illustrates such learning for positive presentations beginning with 〈a, aaab, bc〉.

It is worthwhile to compare the development of the DFA above compared to string
extension learning grammar.

33

draft—December 19, 2017 J. Heinz

λ

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

t=0

λ

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

t=1

λ

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

t=2

λ

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

t=3

Figure 4.2: Learning as carving paths in the pre-existing structure. The DFA at time t = 0
shows is the structure and subsequent DFA show the paths carved at each point in time with
ϕ(1) = a, ϕ(2) = aaab, ϕ(2) = bc.

time t ϕ(t) factork(⋊ϕ(t)⋉) Gt

0 ∅
1 a {⋊a, a⋉} {⋊a, a⋉}
2 aaab {⋊a, aa, ab, b⋉} {⋊a, a⋉, aa, ab, b⋉}
3 bc {⋊b, bc, c⋉} {⋊a, a⋉, aa, ab, b⋉, ⋊b, bc, c⋉}

For each time t, the stringset generated by the grammar and the DFA are exactly the same!

4.2.2 Stochastic Strictly k-Local stringsets

“Carving paths” in a fixed determinstic structure can be generalized to learn stochastic
stringsets. A stochastic stringset is a probability distribution over Σ∗. So each string has
some probability between 0 and 1 (inclusive) and the sum of all the probabilities of all the
strings equals 1.

∑

w∈Σ∗

P (w) = 1 (4.2)

34

draft—December 19, 2017 J. Heinz

Each DFA describes a class of stochastic stringsets as follows. Each transition δ(q, a) is
associated with a probability θqa. Each state is also associated with a probability θq⋉. The
probability on the state is the probability of stopping/accepting/finality. The probabilities
associated with each transitiona and each state are the parameters of the model the DFA
describes. Provided for each state q, the following holds then the DFA describes a probability
distribution over Σ∗.

∑

a∈Σ

θqa + θq⋉ = 1 (4.3)

We define a function π which describes the computational “process” and “path” string
w ∈ Σ∗ takes from any state q ∈ Q with any initial real value r. The operator (·) indicates
multiplication.

π(q, λ, r) = r · θq⋉

π(q, wa, r) = π(δ(q, a), w, r · θqa)

(4.4)

The function such a real-weighted DFA A describes is given by the equation below.

fA(w) = π(q0, w, 1) (4.5)

It can be said that the DFA is a parametric model with |Q|+ |Q| · |Σ| parameters. For a
given DFA whose parameters are fixed, these parameters are often written simply as θ even
if there are many of them. You can think of θ as a vector of values. The possible values these
parameters can take on while still ensuring a probability distribution over Σ∗ is denoted Θ.

So what does it mean to learn a stochastic stringset? Given a parametric model, it
basically means finding the true values of the parameters θ from the set of all possible
parameter settings Θ. This may not reasonable when the data sample is small. So here is
one definition of learning stochastic stringsets that has been proposed that avoids the issue
of data sufficiency.

Definition 12 (Maximum Likelihood Estimate (MLE)).

Algorithm A yields the maximum likelihood estimate for a class of stochastic stringsets
C provided

10

11

for all stochastics stringsets S ∈ C,12

for all sequences D of independent and identically distributed strings drawn
from S

13

14

• the parameters θ output by A assign a probability to D which is greater
than the probability other parameter choices θ′ ∈ Θ assign to D.

15

16

In other words, if A outputs parameters θ than any deviation from θ will lower the probability
of the data. In this way, the learning algorithm does not try to find the true parameter values,

35

draft—December 19, 2017 J. Heinz

it simply identifies those values that maximize the likelihood (probability) of the data under
the assumed parametric model.

Importantly, the MLE is also what is known as a consistent estimator. With enough
data, it will converge to the true values. Calculus expresses convergence over real values
with the idea of aribtirary precision. So for any small number ǫ you think of, there will
be some large sample of data such that the MLE will return parameters θ that assign a
probability to words that are within ǫ of the true values.

36

draft—December 19, 2017 J. Heinz

Definition 13 (Consistent Estimator).

Algorithm A is a consistent estimator for a class of stochastic stringsets C provided
17

for all stochastics stringsets S ∈ C,18

for all ǫ > 019

there is some number n ∈ N such that20

for all sequences D of independent and identically distributed strings
drawn from S with |D| > n,

21

22

• the parameters θ output by A with D are within ǫ of the true
parameter values.

23

24

OK, that’s a measuring stick by which we can judge our learning algorithms.
If the parametric is a DFA, as we have considered above, then the algorithm that
1. pushes the data through the DFA,
2. counts the times each transition is traversed, and then
3. then normalizes the counts to obtain parameter values

yields the maximum likelihood estimate. This result is a proven theorem (Vidal et al.,
2005a,b).

Figure 4.3 shows how the counting would progress and Table 4.1 how the parameter
values are updated over time.

37

draft—December 19, 2017 J. Heinz

λ

a

b

c

a:0

b:0

c:0

a:0

b:0

c:0

a:0

b:0

c:0

a:0

b:0

c:0

t=0

0

0

0

0

λ

a

b

c

a:1

b:0

c:0

a:0

b:0

c:0

a:0

b:0

c:0

a:0

b:0

c:0

t=1

0

1

0

0

λ

a

b

c

a:2

b:0

c:0

a:2

b:1

c:0

a:0

b:0

c:0

a:0

b:0

c:0

t=2

0

1

1

0

λ

a

b

c

a:2

b:1

c:0

a:2

b:1

c:0

a:0

b:0

c:1

a:0

b:0

c:0

t=3

0

1

1

1

Figure 4.3: Learning as counting paths in the pre-existing structure. The DFA at time t = 0
shows is the structure and subsequent DFA show the paths carved at each point in time with
ϕ(1) = a, ϕ(2) = aaab, ϕ(2) = bc.

38

draft—December 19, 2017 J. Heinz

0 1 2 3 0 1 2 3

θλ⋉ 0 0 0 0 θb⋉ 0 0 1 0.5
θλa 0 1 1 0.67 θba 0 0 0 0
θλb 0 0 0 0.33 θbb 0 0 0 0
θλc 0 0 0 0 θbc 0 0 0 0.5

θa⋉ 0 1 0.25 0.25 θc⋉ 0 0 0 1
θaa 0 0 0.5 0.5 θca 0 0 0 0
θab 0 0 0.25 0.25 θcb 0 0 0 0
θac 0 0 0 0 θcc 0 0 0 0

Table 4.1: Parameter values for the SL2 parametric model with the sample

39

draft—December 19, 2017 J. Heinz

4.2.3 Input Strictly k-Local Transductions

Tracing the paths through a given deterministic finite-state automaton also helps us under-
stand how transductions can be learned. A string-to-string transduction is a function from
Σ∗ to ∆∗.

Each DFA describes a class of transductions as follows. Each transition δ(q, a) is associ-
ated with an output string θqa. Each state is also associated with an output string θq⋉, and
the initial state is also associated with an output string θ⋊. The strings associated with each
transitions and each state are the parameters of the model the DFA describes.

We define a function π which describes the computational “process” and “path” string
w ∈ Σ∗ takes from any state q ∈ Q with any initial string value v ∈ ∆∗. The operator (·)
refers to concatenation.

π(q, λ, v) = v · θq⋉

π(q, wa, v) = π(δ(q, a), w, v · θqa)

(4.6)

Then the function such a string-weighted DFA A describes is given by the equation below.

fA(w) = π(q0, w, θ⋊) (4.7)

Figure 4.4 shows two Input Strictly 2-Local functions with Σ = ∆ = {a, b, c}. The first
function describes “progressive b-assimilation.” As a rewrite rule, this process would be
expressed as c → b/b . The second function describes “regressive b-assimilation.” As a
rewrite rule, this process would be expressed as c → b/ b.

λ

a

b

c

a:a

b:b

c:c

a:a

b:b

c:c

a:a

b:b

c:b

a:a

b:b

c:c

λ

λ

λ

λ

λ

λ

a

b

c

a:a

b:b

c:λ

a:a

b:b

c:λ

a:a

b:b

c:λ

a:ca

b:bb

c:c

λ

λ

λ

λ

c

Figure 4.4: 2-ISL transducers for progressive b-assimilation (left) and regressive b-
assimilation (right).

The identification in the limit paradigm for positive data natrually yields a definitions
transduction learning. A positive presentation is now example transductions, which are
input-output pairs (w, f(w)).

40

draft—December 19, 2017 J. Heinz

More precisely, a positive presentation of a string-to-string function f is a function
ϕ : N → f such that ϕ is onto. This means for every input-output pair (w, f(w)) defined by
f , there is some n ∈ N such that ϕ(n) = (w, f(w)).

Definition 14 (Identification in the limit from positive data (function version)).

Algorithm A identifies in the limit from positive data a class of string-to-string functions
C provided

25

26

for all functions f ∈ C,27

for all positive presentations ϕ of f ,28

there is some number n ∈ N such that29

for all m > n,30

• the program output by A on ϕ〈m〉 is the same as the the program
output by A on ϕ〈n〉, and

31

32

• the program output by A on ϕ〈m〉 which takes any string w ∈ Σ∗

for which f is defined as input and returns f(w) as output.
33

34

The algorithm SOSFIA (Structured Onward Subsequential Function Inference Algo-
rithm) (Jardine et al., 2014) provably identifies the k-ISL functions in the limit from positive
data.

Here is a summary of how SOSFIA works with illustrations by examples. Given a sample
S of input-output pairs, SOSFIA calculates the common output (common out) of every prefix
of any input string. The common output of an input prefix u is the longest prefix common to
all the output strings whose corresponding input strings have prefix u. This longest common
prefix is denoted lcp.

SOSFIA then uses these common outputs to calculate the minimal change (min change)
each letter introduces to the output string. These minimal changes are the parameter values
(the outputs associated with the transitions). Minimal change is calculated using “left
division.” This operation “strips away” a prefix of a string. Formally, whenever w = uv
then u−1w = v. We say “the left division of w by u equals v.”

Formal definitions of common out and min change from Jardine et al. (2014, p. 101).

Definition 15. The common output of an input prefix w in a sample S ⊂ Σ∗ ×∆∗ for t is
the lcp of all t(wv) that are in S: common outS(w) = lcp({u ∈ Σ∗ | ∃v s.t. (wv, u) ∈ S})

Definition 16. The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to wσ is:

min changeS(σ, w) =

{

common outS(σ) if w = λ
common outS(w)

−1common outS(wσ) otherwise

Consider progressive b-assimilation and let the sample S be as shown.

S = {(aa, aa), (ab, ab), (ac, ac), (ba, ba), (bb, bb), (bc, bb), (ca, ca), (cb, cb), (cc, cc)}

41

draft—December 19, 2017 J. Heinz

The input prefixes in this sample are Si = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}. So we
need to calculate the longest common prefix of all the outputs associated with each string.
Here they are.

common outS(λ) = lcp(f(Si)) = λ

common outS(a) = lcp(f(a), f(aa), f(ab), f(ac)) = a
common outS(b) = lcp(f(b), f(ba), f(bb), f(bc)) = b
common outS(c) = lcp(f(c), f(ca), f(cb), f(cc)) = c

common outS(aa) = lcp(f(aa)) = aa
common outS(ab) = lcp(f(ab)) = ab
common outS(ac) = lcp(f(ac)) = ac

common outS(ba) = lcp(f(ba)) = ba
common outS(bb) = lcp(f(bb)) = bb
common outS(bc) = lcp(f(bc)) = bb

common outS(ca) = lcp(f(ca)) = ca
common outS(cb) = lcp(f(cb)) = cb
common outS(cc) = lcp(f(cc)) = cc

With the common out values we can calculate the minimal changes.

min changeS(a, λ) = common outS(a) = a
min changeS(b, λ) = common outS(b) = b
min changeS(c, λ) = common outS(c) = c

min changeS(a, a) = common outS(a)
−1common outS(aa) = a−1aa = a

min changeS(b, a) = common outS(a)
−1common outS(ab) = a−1ab = b

min changeS(c, a) = common outS(a)
−1common outS(ac) = a−1ac = c

min changeS(a, b) = common outS(b)
−1common outS(ba) = b−1ba = a

min changeS(b, b) = common outS(b)
−1common outS(bb) = b−1bb = b

min changeS(c, b) = common outS(b)
−1common outS(bc) = b−1bb = b (!!)

min changeS(a, c) = common outS(c)
−1common outS(ca) = c−1ca = a

min changeS(b, c) = common outS(c)
−1common outS(cb) = c−1cb = b

min changeS(c, c) = common outS(c)
−1common outS(cc) = c−1cc = c

The minimal change letter σ with string w gives us the output string at the state suffk−1(w)
for the transition labeled σ. Above, we would have min changeS(σ, q) = θqσ.

Now consider regressive b-assimilation and let the sample S be as shown.

S =

{

(aa, aa), (ab, ab), (ac, ac), (ba, ba), (bb, bb), (bc, bc), (ca, ca), (cb, bb), (cc, cc),
(aca, aca), (acb, acb), (bca, bca), (bcb, bbb), (cca, cca), (ccb, cbb)

}

42

draft—December 19, 2017 J. Heinz

As before, the input prefixes in this sample are Si = {λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}.
So we need to calculate the longest common prefix of all the outputs associated with each
string. Here they are.

common outS(λ) = lcp(f(Si)) = λ

common outS(a) = lcp(f(a), f(aa), f(ab), . . .) = a
common outS(b) = lcp(f(b), f(ba), f(bb), . . .) = b
common outS(c) = lcp(f(c), f(ca), f(cb), . . .) = λ (!!)

common outS(aa) = lcp(f(aa)) = aa
common outS(ab) = lcp(f(ab)) = ab
common outS(ac) = lcp(f(ac), f(aca), f(acb)) = a (!!)

common outS(ba) = lcp(f(ba)) = ba
common outS(bb) = lcp(f(bb)) = bb
common outS(bc) = lcp(f(bc), f(bca), f(bcb)) = b (!!)

common outS(ca) = lcp(f(ca)) = ca
common outS(cb) = lcp(f(cb)) = bb
common outS(cc) = lcp(f(cc), f(cca), f(ccb)) = c (!!)

With the common out values we can calculate the minimal changes.

min changeS(a, λ) = common outS(a) = a
min changeS(b, λ) = common outS(b) = b
min changeS(c, λ) = common outS(c) = c

min changeS(a, a) = common outS(a)
−1common outS(aa) = a−1aa = a

min changeS(b, a) = common outS(a)
−1common outS(ab) = a−1ab = b

min changeS(c, a) = common outS(a)
−1common outS(ac) = a−1a = λ

min changeS(a, b) = common outS(b)
−1common outS(ba) = b−1ba = a

min changeS(b, b) = common outS(b)
−1common outS(bb) = b−1bb = b

min changeS(c, b) = common outS(b)
−1common outS(bc) = b−1b = λ

min changeS(a, c) = common outS(c)
−1common outS(ca) = λ−1ca = ca

min changeS(b, c) = common outS(c)
−1common outS(cb) = λ−1bb = bb

min changeS(c, c) = common outS(c)
−1common outS(cc) = λ−1c = c

Again, we see that min changeS(σ, q) = θqσ.
Readers are referred to the paper for full details on SOSFIA and that it provably identifies

in the limit the class of k-ISL functions.

4.2.4 Output Strictly k-Local Transductions

Chandlee et al. (2015) prove a similar algorithm for inferring k-OSL functions.

43

draft—December 19, 2017 J. Heinz

4.3 Generalizing to any DFA

The aforementioned strategies hold for any deterministic finite-state automata. In other
words, each deterministic finite state machine defines a class of stringsets, a class of stochastic
stringsets, and a class of transductions, and each class can be learned with the methods
described above.

Heinz and Rogers (2013) establish this for Boolean case. For stochastic stringsets, this re-
sult was known much earlier. Jardine et al. (2014) establish this for “Input” based transduc-
tions. For output-based transductions, the theorems Chandlee et al. (2015) do not address
this general case, but the same techniques apply there as well.

To my knowledge, these results have not yet been ported to tree automata.

44

Chapter 5

Summary of Part 1

Let us review what we have covered so far.

5.1 Computational characterizations of linguistic gen-

eralizations

1. It is important to be able to relate the intensional description of a linguistic general-
ization (a grammar) to its extensional description (a potentially infinite set of points).

2. This requires some mathematics.
3. Formal grammars like automata and logic are well-studied tools that accomplish this.
4. They provide insights into the nature of natural language patterns not obtainable in

other ways.
5. They are not finished! There is a lot yet to accomplish to develop formal grammars

for linguistics, and we should not ignore the lessons of previous research.
6. For linguistics:

• Well-formedness can be characterized with sets
• Transformations can be characterized with functions

7. So what is the nature of these sets and functions for linguistics?

5.2 Algorithms

1. Algorithms are procedures which solve well-defined problems after finitely many steps.
2. Proving an algorithm solves a well-defined problem is important.
3. Proving an algorithm finds the answer to any instance of the problem with a certain

amount of resources is also important.
4. This also requires some mathematics.
5. These results guarantee the general behavior of the algorithm.
6. This stands in contrast to simulations, which only show a program’s specific behavior

on a specific instance of some problem.

45

draft—December 19, 2017 J. Heinz

7. Problems for linguistics where algorithms help:
• Membership problems
• Transformation problems
• Learning problems.

5.3 Defining Learning

1. What is a reasonable definition? Many issues and answers.
• When is the data is good enough?
• What counts as successful learning?

2. Learning problems ought to be defined for classes of generalizations, not individual
generalizations.

5.4 Learning Definitions

1. Identification in the limit
(a) Does the learner only make finitely many mistakes for any of the allowable pre-

sentations of examples?
• from positive data on arbitrary presentations
• from positive and negative data on arbitrary presentations
• from positive data on recursive presentations
• from positive data on primitive recursive presentations

2. Maximum likelihood estimate for stochastic sets
(a) Does the learner do its best? (This means any deviation from its output worse.)
• It is constrained by the data it gets.
• It is constrained by its hypothesis space/structural limitations/parametric model/space
of parametric models.

3. Other definitions we did get to.
(a) Probably Approximately Correct learning
(b) Maximizing the margin (for classification)
(c) Maximizing the entropy (related to MLE)
(d) Stochastic finite learning
(e) . . .

4. Complexity issues we did not get to.
(a) Mistake bounds
(b) VC dimension
(c) Update-time and “Pitt’s trick”
(d) . . .

46

draft—December 19, 2017 J. Heinz

5.5 Important results in learning theory

1. Finite class of stringsets is identifiable in the limit from positive data on arbitrary
presentations.

2. No superfinite class of stringsets is identifiable in the limit from positive data on arbi-
trary presentations.

3. The computably enumerable stringsets are identifiable in the limit from positive and
negative data on arbitrary presentations. (This learner by enumeration is not efficient.)

4. The computable stringsets are identifiable in the limit from positive data on primitive
recursive presentations. (This learner by enumeration is not efficient.)

5. Gold’s conclusions and critical analysis/reflection.
• Maybe not all context-free (context-sensitive) stringsets are possible human lan-
guages.

• Maybe humans access negative evidence in some way.
• Maybe the data humans receive is not arbitrary in some way.

6. Results we did not go over:
(a) The regular class of stringsets is efficiently identifiable in the limit from positive

and negative data (RPNI).
(b) Deterministic regular transductions are identifiable in the limit from positive data

(OSTIA).
(c) Deterministic regular probability distributions are identifiable in the limit from

positive data (RLIPS, ALEGRIA).
(d) Corresponding results extend these to tree languages and tree transductions.

5.6 String extension learning and automata learning

1. String extension learning
(a) Basic idea: Well-formedness of a structure is determined by its “parts”
(b) Formal grammars are finite sets.

• substrings (SL)
• subsequences (SP)
• substrings on a tier (TSL)
• sets of substrings (LT)
• sets of subsequences (PT)
• multisets of substrings (LTT)
• local trees (SL treesets)
• lots of possibilities . . .

(c) There is a function which maps structures like strings or trees to sets.
(d) The formal grammar defines a set of structures (like strings or trees) as all struc-

tures whose image under the function is a subset of the grammar.
(e) Learning builds a grammar by unioning the images of the examples under the

function. (It begins with the empty set.)

47

draft—December 19, 2017 J. Heinz

(f) Identification in the limit from positive data.
2. Automata learning stringsets

(a) Basic idea: Memory required to determine well-formedness is independent of
length of the input.

(b) A finite-state machine is a grammar solving some membership or transformation
problem.

(c) Deterministic finite acceptors (DFAs) correspond to classes of stringsets.
• Each SLk stringset is a sub-graph of the SLk DFA.
• Each TSLT,k stringset is a sub-graph of the TSLT,k DFA.
• Each LTk stringset is a sub-graph of the LTk DFA.
• Each PTk stringset is a sub-graph of the PTk DFA.
• Each LTTt,k stringset is a sub-graph of the LTTt,k DFA.

(d) Learning simply traces the path of the sample in the DFA.
3. Automata learning stochastic stringsets

(a) Probabilities are added to the transitions.
(b) DFAs correspond to classes of stochastic stringsets as before.
(c) Learning simply counts the paths of the sample in the DFA and normalizes.
(d) Provably gets the MLE.

4. Automata learning string-to-string functions
(a) Output strings are added to the transitions.
(b) DFAs correspond to classes of string-to-string transformations as before.
(c) Learning assigns to each transition the contribution (minimal change) each symbol

makes at state q by factoring out the common output of all input strings which
lead to q.

(d) Provably efficiently learns the class of transductions.
5. Work in progress

(a) SPk is characterized by a set of DFAs and learning traces the sample through
each DFA. (The stringset the set of DFAs defines is given by intersection.)

(b) Heinz and Rogers (2010) generalized this idea to learn the MLE of stochastic SPk

stringsets.
(c) Shibata and Heinz (in prep) provide a much better proof of this result, and gen-

eralize (I think) to sets of DFAs under some conditions.
(d) The transducer case is wide open, though I have some ideas.

5.7 Open Questions

1. ISL and OSL functions are functions—so each input has at most one output.
(a) How can we add variation to this?
(b) How can we add probabilities to this?
(c) Once accomplished, this has MANY potential applications in NLP.

2. The proper notion of k-factor and generalizing these results to representations
(a) Subsequences are k-factors with the right representations

48

draft—December 19, 2017 J. Heinz

(b) SL tree languages are k-factors with the right representations
(c) What about k-factors of autosegmental structures?
(d) What about k-factors for feature-based representations?

3. The subregular classes for strings and string-to-string functions can be lifted to trees.
(a) SP, LT, PT, TSL treesets? What are these and do they capture syntactic gener-

alizations?
(b) ISL and OSL tree transductions?

4. Expanding the grammatical architecture
(a) We have examined learning generalizations within individual modules of gram-

mar (phonotactics, phonological transformations, morphological transformations,
syntactic well-formedness).

(b) How can more than one component be learned simultaneously?
(c) What is the role or character of the lexicon in morpho-phonological learning?
(d) How can learning be defined in the face of exceptions? (cf. Tolerance Principle)
(e) What algorithms can “successfully learn” in the face of exceptions?

5. For all these questions, it is imperative to define a learning problem. What are the
instances of the problem (example data)? What are its answers (target grammars)?

49

draft—December 19, 2017 J. Heinz

50

Bibliography

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information
Control 45:117–135.

Anthony, M., and N. Biggs. 1992. Computational Learning Theory . Cambridge University
Press.

Berwick, Robert. 1985. The acquisition of syntactic knowledge. Cambridge, MA: MIT Press.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral dissertation, The
University of Delaware.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2014. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics 2:491–503.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2015. Output strictly local functions. In
Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), edited by
Marco Kuhlmann, Makoto Kanazawa, and Gregory M. Kobele, 112–125. Chicago, USA.

Chandlee, Jane, and Jeffrey Heinz. Forthcoming. Strictly local phonological processes. Lin-
guistic Inquiry .

Chandlee, Jane, Jeffrey Heinz, and Adam Jardine. To appear. Input strictly local opaque
maps. Phonology .

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on
Information Theory 113124. IT-2.

Clark, Alexander, and Shalom Lappin. 2011. Linguistic Nativism and the Poverty of the
Stimulus . Wiley-Blackwell.

Garcia, Pedro, Enrique Vidal, and José Oncina. 1990. Learning locally testable languages in
the strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory , 325–338.

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

51

draft—December 19, 2017 J. Heinz

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics , 897–906. Uppsala, Sweden: Association
for Computational Linguistics.

Heinz, Jeffrey. 2016. Computational theories of learning and developmental psycholinguistics.
In The Oxford Handbook of Developmental Linguistics , edited by Jeffrey Lidz, William
Synder, and Joe Pater, chap. 27, 633–663. Oxford, UK: Oxford University Press.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science 457:111–127.

Heinz, Jeffrey, and James Rogers. 2013. Learning subregular classes of languages with fac-
tored deterministic automata. In Proceedings of the 13th Meeting on the Mathematics
of Language (MoL 13), edited by Andras Kornai and Marco Kuhlmann, 64–71. Sofia,
Bulgaria: Association for Computational Linguistics.

de la Higuera, Colin. 2010. Grammatical Inference: Learning Automata and Grammars .
Cambridge University Press.

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley.

Horning, J. J. 1969. A study of grammatical inference. Doctoral dissertation, Stanford
University.

Jardine, Adam, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014. Very efficient learn-
ing of structured classes of subsequential functions from positive data. In Proceedings of
the Twelfth International Conference on Grammatical Inference (ICGI 2014), edited by
Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka, vol. 34, 94–108. JMLR: Work-
shop and Conference Proceedings.

Kearns, Michael, and Umesh Vazirani. 1994. An Introduction to Computational Learning
Theory . MIT Press.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Osherson, Daniel, Scott Weinstein, and Michael Stob. 1986. Systems that Learn. Cambridge,
MA: MIT Press.

Rogers, Hartley. 1967. Theory of Recursive Functions and Effective Computability . McGraw
Hill Book Company.

Rogers, James. 2003. wMSO theories as grammar formalisms. Theoretical Computer Science
293:291–320.

52

draft—December 19, 2017 J. Heinz

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Math-
ematics of Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol.
6149 of Lecture Notes in Artifical Intelligence, 255–265. Springer.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. 2013. Cognitive and sub-regular complexity. In Formal Grammar , edited by Glyn
Morrill and Mark-Jan Nederhof, vol. 8036 of Lecture Notes in Computer Science, 90–108.
Springer.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information 20:329–342.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal of Computer
and Systems Sciences 25:370–376.

Valiant, L.G. 1984. A theory of the learnable. Communications of the ACM 27:1134–1142.

Vidal, Enrique, Franck Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C.
Carrasco. 2005a. Probabilistic finite-state machines-part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27:1013–1025.

Vidal, Enrique, Frank Thollard, Colin de la Higuera, Francisco Casacuberta, and Rafael C.
Carrasco. 2005b. Probabilistic finite-state machines-part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence 27:1026–1039.

Wexler, Kenneth, and Peter Culicover. 1980. Formal Principles of Language Acquisition.
MIT Press.

53

