Aural Pattern Recognition Experiments and the Subregular Hierarchy

James Rogers and Geoffrey K. Pullum Presented by: Nazila Shafiei December 5th, 2017

The Subregular Hierarchy (Heinz 2010, Figure 2)

The Subregular Hierarchy- Four main classes:

- 1. Strictly Local Stringsets
- 2. Locally Testable Stringsets
- 3. Locally Threshold Testable
- 4. Star-Free Stringsets

1. Strictly Local Stringsets

No need for repetition, we have seen enough of this \bigcirc

2. Locally (*k*-) Testable Stringsets (LT_k)

A stringset L is Locally Testable iff there is some k such that, for all strings x and y: if $F_k (\rtimes .x. \ltimes) = F_k (\rtimes .y. \ltimes)$ then $x \in L \Leftrightarrow y \in L$ (or $x \notin L \Leftrightarrow y \notin L$).

In plain English: If the set of the *k*-factors of one string equals the set of the *k*-factors of another string, either both strings belong to L, or neither belongs to L.

In other words, a pattern is locally k-testable iff it is possible to decide whether the set of k-factors making up the word is allowable. So, any locally 2-testable pattern either includes both *fifizt* and *fififizt* or excludes both (since they have the same set of 2-factors: *fi, if, iz, zt*) (Heinz 2010).

Example 1: Consider the following two stringsets:

Some-B= { $w \in \{A,B\}^* | |w|_B \ge 1$ } (the set of strings of A's and B's with at least one B) **One-B**= { $w \in \{A,B\}^* | |w|_B = 1$ } (the set of strings of A's and B's with exactly one B)

Some-B is Locally Testable, but One-B is not. The language of Some-B is $A^k B A^k B A^k$, while the language of One-B is $A^k B A^k$. These two strings have the same *k*-factors (eg. 1-factors={×, A, B,

 \ltimes }), but Some-B is learnable whereas One-B is not. The reason is because it is not possible to keep track of the number of B's occurring in the string.

Difference between SL_k and LT_k: An LT_k pattern may include a word like *rakt* but exclude a word like *rak* since the two words have different sets of *k*-factors (2-factors={*ra*, *ak*, *kt*} versus {*ra*, *ak*}). On the other hand, a SL_k includes both *rakt* and *rak* because the *k*-factors for the first one is a superset for the *k*-factors of the second one.

For each k, the class SL_k is a proper subset of LT_k .

But, SL_{k+1} is not a subset of LT_k nor is LT_k a subset of SL_{k+1} . In fact, LT_2 includes stringsets that are not SL for any *k*.

Similarities between SL_k and LT_k : As with SL, the LT_k stringsets are learnable in the limit if k is fixed.

3. Locally Threshold Testable

It would be better to keep track of *how many* times a *k*-factor occurs. We can set a threshold for this and still have a finite-state. This way we can recognize any n-B string for any *n* smaller than the threshold. These are the languages definable in First-Order Logic with the successor relation (but without the order (Place et al. 2014)).

FO(+1): An \triangleleft -model of a string *w* is a structure $\langle \mathcal{D}, \triangleleft, P_{\sigma} \rangle \ \sigma \in \Sigma$

where the domain $\mathcal{D} \stackrel{\text{def}}{=} \{i \in \mathbb{N} | 0 \le i < |w|\}$ is the set of positions in w, \lhd is the successor relation on these positions ($x \lhd y \stackrel{def}{\Leftrightarrow} y = x+1$) and, for each $\sigma \in \Sigma$, the predicate P_{σ} picks out the set of positions at which σ occurs in w.

For instance, $P_s = 1$, $P_r = 2$, etc.

For instance, the language $a^+b^+a^+b^+$ is locally threshold testable. This is because in a string *abab*, which has an *a* as a prefix, we have *ab* as an infix exactly two times, and *ba* as an infix exactly one time (Bojańczyk 2007).

We show these languages in this format: $LTT_{[k,t]}$, where k means k-factor and t is our threshold.

So, One-B above is $LTT_{[1,2]}$. But, the following stringset is not:

B-before- $C \stackrel{\text{def}}{=} \{ w \in \{A, B, C\}^* | \text{ at least one B precedes any } C \}$

Reason: The set of 1-factor for ABACA is the same for ACABA.

 LT_k is a special case of $LTT_{[k,t]}$ when t=1 (Place et al. 2014).

4. Star-Free Stringsets

The next step is to extend the FO signature to include the order ("precedes" or "less-than"). This class is called $FO(\leq)$, which coincides with the Star-Free sets (SF).

B-before-C, for example, is the set of strings over {A, B, C} which satisfy:

 $(\forall x)[C(x) \rightarrow (\exists y) [B(y) \land y < x]].$

A set of strings is First-Order definable in FO(<), i.e. , relative to the class of finite $\langle \mathcal{D}, \triangleleft, <, P_{\sigma} \rangle \sigma \in \Sigma$ models, iff it is non-counting.

A stringset L is SF iff it is Non-Counting (NC). This means iff there exists some n > 0 such that, for all strings *u*, *v*, *w* over Σ , if $uv^n w$ occurs in L, then $uv^{n+1}w$, for all $i \ge 1$, occurs in L as well.

An example of a <u>not</u> NC stringset, which requires modular counting is the set of strings of A's and B's in which the number of B's is even:

Even-B $\triangleq \{w \in \{A, B\}^* \mid |w|_B \mod 2 = 0^1\}$

Using LT strategies cannot recognize this pattern because it cannot distinguish $(A^*BA^*)^{2n}$ from $(A^*BA^*)^{2n+1}$.

Subregular	<i>Hierarchies</i>	of Stringsets	(from	Heinz .	2015)
0		/ 0	V		

Classes	Learnable	Counts Occurrence	Tracks Precedence	Example
SL_k	if k is fixed	X	X	*CC
LT_k	if k is fixed	X	×	Some-B
$LTT_{[k,t]}$	if k and t are fixed	\checkmark	X	One-B
SF	??	X	✓	B-before-C

¹ Mod 2=0 means the number of B's divided by 2 should have the remainder of 0.

LT_k versus LTT_k :

LT Automata:

LTT Automata:

(Rogers and Heinz 2014)

References:

- Bojańczyk, Mikołaj. 2007. A new algorithm for testing if a regular language is locally threshold testable. *Information Processing Letters* 104(3): 91-94.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41(4): 623-661.
- Heinz, Jeffrey. 2015. The computational nature of phonological generalizations. *Ms., University of Delaware* (2015).
- Place, Thomas, Lorijn Van Rooijen, and Marc Zeitoun. 2013. On separation by locally testable and locally threshold testable languages, *Logical Methods in Computer Science* 10 (3:24): 1-28.
- Rogers, James, and Geoffrey K. Pullum. 2011. Aural pattern recognition experiments and the subregular hierarchy. *Journal of Logic, Language and Information* 20(3): 329-342.
- Rogers, James, and Jeffrey Heinz. 2014. Model Theoretic Phonology. Workshop slides in *the 26th European* Summer School in Logic, Language and Information.