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The Subregular Hierarchy (Heinz 2010, Figure 2) 

The Subregular Hierarchy- Four main classes: 
1. Strictly Local Stringsets 
2. Locally Testable Stringsets 
3. Locally Threshold Testable 
4. Star-Free Stringsets 

1. Strictly Local Stringsets 
No need for repetition, we have seen enough of this J  
2. Locally (k-) Testable Stringsets (LTk) 
A stringset L is Locally Testable iff there is some k such that, for all strings x and y: if Fk (⋊.x.⋉) = 
Fk (⋊.y.⋉) then x ∈ L ⇔ y ∈ L (or x ∉ L ⇔ y ∉ L).  
In plain English: If the set of the k-factors of one string equals the set of the k-factors of another 
string, either both strings belong to L, or neither belongs to L.  
In other words, a pattern is locally k-testable iff it is possible to decide whether the set of k-factors 
making up the word is allowable. So, any locally 2-testable pattern either includes both fifizt and 
fififizt or excludes both (since they have the same set of 2-factors: fi, if, iz, zt) (Heinz 2010). 

Example 1: Consider the following two stringsets: 

Some-B= {w ∈ {A,B}* | |w|B ≥1} (the set of strings of A’s and B’s with at least one B) 
One-B= {w ∈ {A,B}* | |w|B =1} (the set of strings of A’s and B’s with exactly one B) 

Some-B is Locally Testable, but One-B is not. The language of Some-B is Ak BAkB Ak, while the 
language of One-B is AkB Ak. These two strings have the same k-factors (eg. 1-factors={⋊,	A, B, 

LTT 



⋉}), but Some-B is learnable whereas One-B is not. The reason is because it is not possible to keep 
track of the number of B’s occurring in the string.  
Difference between SLk and LTk: An LTk pattern may include a word like rakt but exclude a word 
like rak since the two words have different sets of k-factors (2-factors={ra, ak, kt} versus {ra, ak}). 
On the other hand, a SLk includes both rakt and rak because the k-factors for the first one is a 
superset for the k-factors of the second one.  
For each k, the class SLk is a proper subset of LTk. 
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But, SLk+1 is not a subset of LTk nor is LTk a subset of SLk+1.  
In fact, LT2 includes stringsets that are not SL for any k.  
Similarities between SLk and LTk: As with SL, the LTk stringsets are learnable in the limit if k is 
fixed. 
3. Locally Threshold Testable 
It would be better to keep track of how many times a k-factor occurs. We can set a threshold for this 
and still have a finite-state. This way we can recognize any n-B string for any n smaller than the 
threshold.  These are the languages definable in First-Order Logic with the successor relation (but 
without the order (Place et al. 2014)). 

FO(+1): An ⊲-model of a string w is a structure 
 𝒟, ⊲, 𝑃+ 		𝜎 ∈ Σ 

where the domain 𝒟 ≝ {i	∈ ℕ| 0 ≤ i < |w|} is the set of positions in w,	⊲ is the successor relation on 
these positions (x ⊲ y 
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 y = x+1) and, for each 𝜎 ∈ Σ, the predicate 𝑃+ picks out the set of positions 

at which 𝜎 occurs in w.  

 A hypothetical [sri∫]   
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For instance, Ps= 1, Pr = 2, etc.  
For instance, the language a+b+a+b+ is locally threshold testable. This is because in a string abab, 
which has an a as a prefix, we have ab as an infix exactly two times, and ba as an infix exactly one 
time (Bojańczyk 2007).  

We show these languages in this format: LTT[k,t], where k means k-factor and t is our threshold. 
So, One-B above is LTT[1,2]. But, the following stringset is not: 

B-before-C≝ {w ∈ {A, B, C}* | at least one B precedes any C}  

Reason: The set of 1-factor for ABACA is the same for ACABA.  
LTk  is a special case of LTT[k,t] when t=1 (Place et al. 2014). 



4. Star-Free Stringsets 
The next step is to extend the FO signature to include the order (“precedes” or “less-than”). This class 
is called FO(<), which coincides with the Star-Free sets (SF).  
B-before-C, for example, is the set of strings over {A, B, C} which satisfy: 
 (∀x)[C(x) → (∃y) [B(y) ∧ y < x]].  

 
A set of strings is First-Order definable in FO(<), i.e. , relative to the class of finite 𝒟, ⊲, <, 𝑃+ 	𝜎 ∈ 
Σ models, iff it is non-counting. 
A stringset L is SF iff it is Non-Counting (NC). This means iff there exists some n > 0 such that, for 
all strings u, v, w over Σ, if uvnw occurs in L, then uvn+1w, for all i ≥ 1, occurs in L as well.  
An example of a not NC stringset, which requires modular counting is the set of strings of A’s and 
B’s in which the number of B’s is even: 

 Even-B≝ {w ∈ {A, B}* | |w|B mod 2= 01} 

Using LT strategies cannot recognize this pattern because it cannot distinguish (A*BA*)2n from 
(A*BA*)2n+1. 

    
Subregular Hierarchies of Stringsets (from Heinz 2015) 

Classes  Learnable Counts Occurrence Tracks Precedence Example 
SLk if k is fixed ✗ ✗ *CC 
LTk if k is fixed ✗ ✗ Some-B 
LTT[k,t] if k and t are fixed ✓ ✗ One-B 
SF ?? ✗ ✓ B-before-C 

                                                
1 Mod 2= 0 means the number of B’s divided by 2 should have the remainder of 0.  
 



LTk versus LTTk : 

LT Automata:         LTT Automata: 

 
         (Rogers and Heinz 2014) 
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