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Series Foreword 

This series in learning, development, and conceptual change will include 
state-of-the-art reference works, seminal book-length monographs, and 

texts on the development of concepts and mental structures. It will span 
learning in all domains of knowledge, from syntax to geometry to the social 
world, and will be concerned with all phases of development, from infancy 
through adulthood. 

The series intends to engage such fundamental questions as 

The nature and limits of learning and maturation: the influence of the 
environment, of initial structures, and of maturational changes in the 
nervous system on human development; learnability theory; the problem 
of induction; domain specific constraints on development. 

The nature of conceptual change: conceptual organization and conceptual 
change in child development, in the acquisition of expertise, and in the 
history of science. 

Lila Gleitman 
Susan Carey 
Elissa Newport 
Elizabeth Spelke 



Preface 

It is a familiar observation that an organism's genotype may be conceived 
as a function that maps potential environments into potential phenotypes. 
Relativizing this conception to cognitive science allows human intellectual 
endowment to be construed as a particular function mapping early experi­
ence into mature cognitive competence. The function might be called 
'"human nature relative to cognition." Learning theory is a mathematical 
tool for the study of this function. This book attempts to acquaint the 
reader with the use of this tool. 

Less cryptically, learning theory is the study of systems that map evi­
dence into hypotheses. Of special interest are the circumstances under which 
these hypotheses stabilize to an accurate representation of the environment 
from which the evidence is drawn. Such stability and accuracy are conceived 
as the hallmarks oflearning. Within learning theory, the concepts "evidence," 
"stabilization," ~·accuracy," and so on, give way to precise definitions. 

As developed in this book, learning theory is a collection of theorems 
about certain kinds of number-theoretic functions. We have discussed the 
application of such theorems to cognitive science and epistemology in a 
variety of places (e.g., Osherson, Stob, and Weinstein, 1984, 1985, 1985a; 
Osherson and Weinstein, 1982a, 1984, 1985). In contrast, the present work 
centers on the mathematical development of learning theory rather than 
on empirical hypotheses about human learning. As an aid to intuition, 
however, we have attempted to concretize the formal developments in this 
book through extended discussion of first language acquisition. 

We have not tried to survey the immense field of machine inductive 
inference. Rather, we have selected for presentation just those results that 
seem to us to clarify questions relevant to human intellectual development. 
Several otherwise fascinating topics in machine learning have thus been 
left aside. Our choices no doubt reflect tacit theoretical commitments not 
universally shared. An excellent review of many topics passed over here is 
provided by Angluin and Smith (1982). Our own previously published 
work in the technical development of learning theory (e.g., Osherson and 
Weinstein, 1982, 1982a; Osherson, Stob, and Weinstein, 1982, 1982a, 1985) 
is entirely integrated herein. 

Our concern in the present work for the mathematical development of 
learning theory has resulted in rigorous exposition. Less formal introduc­
tions to the central concepts and topics of learning theory are available in 
Osherson and Weinstein (1984) and Osherson, Stob, and Weinstein (1984). 

We would be pleased to receive from our readers comments and correc­
tions, as well as word of new results. 
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How to Use This Book 

Mathematical prerequisites for this text include elementary set theory 
and an intuitive understanding of the concept "computable function." 
Lewis and Papadimitriou (1981) provide an excellent introduction to this 
materiaL Acquaintance with the elementary portion of recursion theory is 
also advisable. We recommend Machtey and Young (1978). 

Starred ~aterial in the text is of more advanced character and may 
be omitted without loss of continuity. We have relegated considerable 
exposition to the exercises, which should be at least attempted. 

Definitions, examples, lemmas, propositions, open questions, and exer­
cises are numbered independently within the section or subsection in which 
they appear. Thus proposition 4.4.1B refers to the second proposition of 
section 4.4.1; it appears before lemma 4.4.1A, the first lemma of the same 
section. Symbol, subject, and name indexes may be found at the end of the 
book. 

We use standard set-theoretic notation and recursion-theoretic nota­
tion drawn from Rogers (1967) throughout. Note that c denotes proper 
inclusion, whereas <:::::: denotes (possibly improper) inclusion. 
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Introduction 

Let us play a game. 
We have selected a set of numbers, and you must guess the set that we 

have in mind. The set consists of every positive integer with a sole exception. 
Thus the set might be {2, 3, 4, 5, ... ) or {I, 3, 4, 5, ... ) or {1, 2, 4, 5, ... ), etc. 
We will give you an unlimited number of clues about the set, and you are 
to guess after each clue. We will never tell you whether you are right. 

First clue: The set contains the number I. 
Please guess the set we have in mind. Would you like to guess the set 

{2, 3,4, 5, ... }? (That would be unwise.) 
Second clue: The set contains the number 3. 
Please make another guess. How about {I, 2, 3, 4, 5, 6, 8, 9, 10, ... ) or does 

that seem arbitrary to you? 
Third clue: The set contains the number 4. 
Go ahead and guess. 
Fourth clue: The set contains the number 2. 
Does the fourth clue surprise you? Guess again. 
Fifth clue: The set contains the number 6. 
Guess. 
Sixth clue: The set contains the number 7. 
Guess. 
Seventh clue: The set contains the number 8. 
Guess. 
We interrupt the game at this point because we would like to ask you 

some questions about it. 
First question: Are you confident about your seventh guess? Give an 

example of an eighth clue that would lead you to repeat your last guess. 
Give an example of an eighth clue that would lead you to change your 
guess. 

Second question: Let us say that a "guessing rule" is a list of instructions 
for converting the clues received up to a given point into a guess about the 

set we have in mind. Were your guesses chosen according to some guessing 
rule, and if so, which one? 

Third question: What should count as winning the game? Consider the 
following criterion: You win just in case at least one of your guesses is right. 
This criterion makes winning the game too easy. Say why. 

Fourth question: We advocate the following criterion: You win just in 
case you eventually make the right guess and subsequently never change 
your mind regardless of the new clues you receive. In this case let us say 



2 Introduction 

that you "win in the limit." Is it possible to win the game in the limit even 
though you make one hundred wrong guesses? Is there any number of 
wrong guesses that is logically incompatible with winning the game in the 
limit'/ 

Fifth question: Suppose that all the clues we give you are of the form: 
The set contains the number n. Suppose furthermore that for every positive 
integer i, we eventually give you a clue of this form if and only if i is in 
fact contained in the set we have in mind. (So for every number i in our set, 
you are eventually told that the set contains i; also you receive no false 
information about the set.) Do not suppose anything about the order in 
which you will get all these clues. We will order them any way we please. 
(Recall how we surprised you with the fourth clue.) Now let us call a 
guessing rule "winning" just in case the following is true. If you use the rule 
to choose your guesses, then no matter which of the sets we have in mind, 
you are guaranteed to win the game in the limit. Specify a winning guessing 
rule for our game. 

Sixth question: We make the game harder. This time we are allowed to 
select any of the sets that are legal in the original game, but we may also 
select the set { l, 2, 3,4, 5, 6, ... ) of all positive integers. The rules about clues 
are the same as given in question 5. Play this new game with a friend, and 
then think about the following question. Is there a winning guessing rule 
for the new game? 

Seventh question: Let us make the last game easier. The choice of sets is 
the same as in the last game, but we now agree to order our clues in a 
certain way. For all positive integers i andj, if both i andj are included in 
the set we have in mind, and if i is less thanj, then you will receive the clue 
••The set contains C' before you receive the clue "The set containsj." Can 
you specify a winning guessing rule for this version of the game? 

Eighth question: Here is another variant. We select a set from the original 
collection (thus the set {l, 2, 3,4, 5, ... ) of all positive integers is no longer 
allowed). Clues can be given in any order we please. You get only one guess. 
You may wait to see as many clues as you like, but your first guess is 
definitive. Play this game with a friend. Then show that no matter what 
rule you use to make your guess, you are not guaranteed to be right. Think 
about what happens if you are allowed two guesses in the game. 

The games we have been playing resemble the process of scientific 
discovery. Nature plays our role, selecting a certain pattern that is imposed 
on the world. The scientist plays your role, examining an endless series 
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of clues about this pattern. In response to the clues, the scientist emits 
guesses. Nature never says whether the guesses are correct. Scientific 
success consists of eventually offering a correct guess and never deviating 
from it thereafter. Language acquisition by children can also be construed 
in terms of our game. The child's parents have a certain language in mind 
(the one they speak). They provide clues in the form of sentences. The child 
converts these clues into guesses about the parents' language. Acquisition 
is successful just in case the child eventually sticks with a correct guess. 

The similarity of our game to these and other settings makes it worthy 
of more careful study. We would like to know which versions of the 
game are winnable and by what kinds of guessing rules. Research on these 
questions began in the 1960s by Putnam (1975), Solomonoff (1964), and 
Gold (1967). These initial investigations have given rise to a large literature 
in computer science, linguistics, philosophy, and psychology. This body 
of theoretical and applied results is generally known as learning theory 
because many kinds of learning (e.g., language acquisition) can be con­
strued as successful performance in one of our games. 

In this book we attempt to develop learning theory in systematic fashion, 
presupposing only basic notions from set theory and the theory of compu­
tation. Throughout our exposition, definitions and theorems are illustrated 
by consideration of language acquisition. However, no serious application 
of the theory is described. 

The book is divided into three parts. Part I advances a fundamental 
model of learning due essentially to Gold (1967). Basic notation, termi­
nology, and theorems are there presented, to be relied on in all subsequent 
discussion. In part II these initial definitions are generalized and varied in 
dozens of ways, giving rise to a multitude oflearning models and theorems. 
We attempt to impose some order on these results through a system of 
notation and classification. Part III explores diverse issues in learning 
theory that do not fit neatly into the classification offered in part II. 


