
draft—October 17, 2017 J. Heinz

0.1 Strictly k-Local Stringsets

Here we present an algorithm and prove that it identifies the Strictly k-Local (SLk) stringsets
in the limit from positive data. The first proof of this result was presented by Garcia
et al. (1990), though the Markovian principles underlying this result were understood in
a statistical context much earlier. The learning scheme discussed there exemplifies more
general ideas (Heinz, 2010; Heinz et al., 2012).

The notion of substring is integral to SL stringsets. Formally, a string u is substring
of string v (u E v) provided there are strings x, y ∈ Σ∗ and v = xuy. Another term for
substring is factor. So we also say that u is a factor of v. If u is of length k then we say u is
a k-factor of v.

A stringset S is Strictly k-Local if and only if there is a number k such that for all strings
u1, v1, u2, v2, x ∈ Σ∗ such that if |x| = k and u1xv1, u2xv2 ∈ S then u1xv2 ∈ S. We say S is
closed under suffix substitution (Rogers and Pullum, 2011).

A theorem shows that every SLk stringset S has a basis in a finite set of strings (Rogers
and Pullum, 2011). These strings can be understood as forbidden substrings. Informally, this
means any string s containing any one of the forbidden substrings is not in S. Conversely,
any string s which does not contain any forbidden substring belongs to S.

The same theorem shows that a SL stringset S can be defined in terms of a finite set of
permissible substrings. In this case, s belongs to S if and only if every one of its k-factors is
permissible.

We formalize the above notions by first defining a function the factork, which extracts
the substrings of length k present in a string, or those present in a set of strings. If a string
s is of length less than k then factork just returns s.

Formally, let factork(s) equal {u | u E s, |u| = k} whenever k ≤ |s| and let factork(s) =
{s} whenever |s| < k. We expand the domain of this function to include sets of strings as
follows: factork(S) =

⋃

s∈S
factork(s).

To formally define SLk grammars, we introduce the symbols ⋊ and ⋉, which denote left
and right word boundaries, respectively. These symbols are introduced because we also want
to be able to forbid specific strings at the beginning and ends of words, and traditionally
strictly local stringsets were defined to make such distinctions (McNaughton and Papert,
1971). Then let a grammar G be a finite subset of factork({⋊}Σ∗{⋉}).

The “language of the grammar” L(G) is defined as the stringset {s | factork(⋊s⋉) ⊆ G}.
We are going to be interested in the collection of stringsets SLk, defined as those stringsets
generated from grammars G with a longest string k. Formally,

SLk

def
= {S | G ⊆ factork({⋊}Σ∗{⋉}), L(G) = S} .

This is the collection C of learning targets.
For all S ∈ SLk, for any presentation φ and time t, define k-SPIA (Strictly k-Local

Inference Algorithm) as follows

k-SLIA
(

ϕ〈t〉
)

=

{

∅ if t = 0
k-SLIA(ϕ〈t− 1〉) ∪ factork(⋊ϕ(t)⋉) otherwise

1

draft—October 17, 2017 J. Heinz

Exercise 1. Prove algorithm k-SLIA identifies in the limit from positive data the collection
of stringsets SLk.

Note that we are being a little sloppy here. Technically, the output of k-SLIA given some
input sequence is a set of subsequences G, not a program. What we really mean with the
above is that k−SLIA outputs a program which uses G to solve the membership problem
for L(G) = {w | subseq

k
(w) ⊆ G}. This program looks something like this.

1. Input: any word w.

2. Check whether factork(⋊w⋉) ⊆ G.

3. If so, OUTPUT Yes, otherwise OUTPUT No.

All k−SLIA does is update this program simply by updating the contents of G.

Theorem 1. For each k, k−SLIA identifies in the limit from positive data the collection of

stringsets SLk.

Proof Consider any k ∈ N. Consider any S ∈ SLk. Consider any positive presentation ϕ

for S. It is sufficient to show there exists a point in time tℓ such that for all m ≥ tℓ the
following holds:

1. k-SLIA(〈m〉) = k−SLIA(〈tℓ〉) (convergence), and

2. k-SLIA(〈m〉) is a program that solves the membership probem for S.

Since S ∈ SLk, there is a finite set G ⊆ Σ≤k such that S = L(G).
Consider any factor g ∈ G. Since g ∈ G there is some word w ∈ S which contains g as

a k-factor. Since G is finite, there are finitely many such w, one for each g in G. Because ϕ

is a positive presentation for S, there is a time t where each of these w occurs. For each w

let t be the first occurence of w in ϕ. Let tℓ denote the latest time point of all of these time
points t. Next we argue that for all time points m larger than this tℓ, the output of k−SLIA
correctly solves the membership problem for S and does not change.

Consider any m ≥ tℓ. The claim is that k-SLIA(〈m〉) = k−SLIA(〈tℓ〉) = G. For each g

in G, a word containing g as a factor occurs at or earlier than tℓ and so g ∈ k−SLIA(〈m〉).
Since g was arbitrary in G, G ⊆ k−SLIA(〈m〉).

Similarly, for each g ∈ k−SLIA(〈m〉), there was some word w in ϕ such that w contains
g as a factor. Since ϕ is a positive presentation for S, w is in S. Since w belongs to S,
factork(w) ⊆ G and so g belongs to G. Since g was arbitrary in k-SLIA(〈m〉) it follows
that k-SLIA(〈m〉) ⊆ G.

It follows k-SLIA(〈m〉) = G.
Since m was arbitrarily larger than tℓ we have both convergence and correctness.
Since ϕ was arbitrary for S, S arbitrary in SLk and k arbitrary, the proof is concluded. ���

2

draft—October 17, 2017 J. Heinz

References

Garcia, Pedro, Enrique Vidal, and José Oncina. 1990. Learning locally testable languages in
the strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory , 325–338.

Heinz, Jeffrey. 2010. String extension learning. In Proceedings of the 48th Annual Meeting

of the Association for Computational Linguistics , 897–906. Uppsala, Sweden: Association
for Computational Linguistics.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science 457:111–127.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information 20:329–342.

3

