For any presentation ϕ and time t, define k-SPIA (Strictly k-Piecewise Inference Algorithm) as follows

$$k\text{-}\mathrm{SPIA}(\varphi\langle t\rangle) = \begin{cases} \varnothing & \text{if } t = 0\\ k\text{-}\mathrm{SPIA}(\varphi\langle t - 1\rangle) \cup \mathtt{subseq}_k(\varphi(t)) & \text{otherwise} \end{cases}$$

Note that we are being a little sloppy here. Technically, the output of k-SPIA given some input sequence is a set of subsequences G, not a program. What we really mean with the above is that k-SPIA outputs a program which uses G to solve the membership problem for $L(G) = \{w \mid \mathsf{subseq}_k(w) \subseteq G\}$. This program looks something like this.

- 1. Input: any word w.
- 2. Check whether $\operatorname{subseq}_k(w) \subseteq G$.
- 3. If so, OUTPUT Yes, otherwise OUTPUT No.

All k-SPIA does is update this program simply by updating the contents of G.

Theorem 1. For each k, k-SPIA identifies in the limit from positive data the collection of stringsets SP_k .

Proof Consider any $k \in \mathbb{N}$. Consider any $S \in SP_k$. Consider any positive presentation φ for S. It is sufficient to show there exists a point in time t_ℓ such that for all $m \geq t_\ell$ the following holds:

- 1. k-SPIA($\langle m \rangle$) = k-SPIA($\langle t_{\ell} \rangle$) (convergence), and
- 2. k-SPIA($\langle m \rangle$) is a program that solves the membership probem for S.

Since $S \in SP_k$, there is a finite set $G \subseteq \Sigma^{\leq k}$ such that S = L(G).

Consider any subsequence $g \in G$. Since $g \in G$ there is some word $w \in S$ which contains g as a k-subsequence. Since G is finite, there are finitely many such w, one for each g in G. Because φ is a positive presentation for S, there is a time t where each of these w occurs. For each w let t be the first occurence of w in φ . Let t_{ℓ} denote the latest time point of all of these time points t. Next we argue that for all time points m larger than this t_{ℓ} , the output of k-SPIA correctly solves the membership problem for S and does not change.

Consider any $m \ge t_{\ell}$. The claim is that k-SPIA $(\langle m \rangle) = k$ -SPIA $(\langle t_{\ell} \rangle) = G$. For each g in G, a word containing g as a subsequence occurs at or earlier than t_{ℓ} and so $g \in k$ -SPIA $(\langle m \rangle)$. Since g was arbitrary in $G, G \subseteq k$ -SPIA $(\langle m \rangle)$.

Similarly, for each $g \in k$ -SPIA($\langle m \rangle$), there was some word w in φ such that w contains g as a subsequence. Since φ is a positive presentation for S, w is in S. Since w belongs to S, subseq_k(w) $\subseteq G$ and so g belongs to G. Since g was arbitrary in k-SPIA($\langle m \rangle$) it follows that k-SPIA($\langle m \rangle$) $\subseteq G$.

It follows k-SPIA($\langle m \rangle$) = G.

Since m was arbitrarily larger than t_{ℓ} we have both convergence and correctness. Since φ was arbitrary for S, S arbitrary in SP_k and k arbitrary, the proof is concluded. \Box