
Transducers, Logic and Algebra for Functions of Finite Words

Emmanuel Filiot Pierre-Alain Reynier

Université Libre de Bruxelles Aix-Marseille Université

The robust theory of regular languages is based on three important pillars: computation (automata), logic,
and algebra. In this paper, we survey old and recent results on extensions of these pillars to functions from
words to words. We consider two important classes of word functions, the rational and regular functions,
respectively defined by one-way and two-way automata with output words, called transducers.

1. INTRODUCTION
Important connections between computation, mathematical logic, and algebra have
been established for regular languages of finite words. The class of regular languages
corresponds to the class of languages recognized by finite automata, to the class of
languages definable in monadic second-order logic (MSO) with one successor [Büchi
1960; Elgot 1961; Trakhtenbrot 1961], and to the class of languages whose syntac-
tic monoid, a canonical monoid attached to every language, is finite (see for instance
[Straubing 1994]). While automata are well-suited to study the algorithmic properties
of regular languages, the algebraic view has provided effective characterizations of
regular languages and its subclasses. Most notably, the problem of deciding whether
a regular language is first-order definable amounts to checking whether its syntactic
monoid, which is computable from any finite automaton recognizing the language, is
aperiodic, which is decidable. See [Diekert et al. 2008] for a survey on first-order de-
finable languages, and [Straubing 1994] for generalizations to other monoid varieties
and fragments of MSO. In this paper, we want to survey some old and recent results
that extend the three main pillars of language theory to functions of finite words.

At the computational level, word functions are defined by transducers, which extend
automata with outputs on their transitions. They can be seen as Turing machines with
a read-only input tape initially filled with the input word, and a write-only output tape
on which to write the output word. We will consider two important classes of transduc-
ers: one-way and two-way transducers. For both classes, the output head is assumed to
move only to the right, and for the class of one-way transducer, the input head is also
restricted to move to the right. This yields the class of rational functions, long studied
in the literature [Berstel and Boasson 1979], and the strictly more expressive class of
regular functions, which has received more attention in the recent years.

At the logical level, we consider MSO transducers, as defined by Courcelle in the
more general context of graph transformations [Courcelle 1994]. MSO transducers are
based on MSO for words, and the main idea is to define the output word by some MSO

ACM SIGLOG News 4 July 2016, Vol. 3, No. 3

q "

b | b

a | "

q0 q1q2 q3 "q4"
� | b�

� | �

b | ✏

b | b

� | a�

� | �

a | ✏

a | a

Fig. 1. One-way transducers T0 and T1 realizing fdel and fsw respectively, where � 2 {a, b}.

interpretation on the input word. We present results establishing connections between
one-way and two-way transducers and classes of MSO transducers.

At the algebraic level, we present a notion of syntactic congruence for functions in-
troduced by Choffrut, which is of finite index iff the function is sequential, i.e. can be
defined by some input-deterministic one-way transducer. We also present a generaliza-
tion of this algebraic characterization to rational functions, a result due to Reutenauer
and Schützenberger. We give an application of the latter characterization to the first-
order definability problem for rational functions. For the more general class of regular
functions, no algebraic characterization is known, but we present preliminary results
towards it.

The paper is simply organized along the three pillars: transducers, logic, and alge-
bra. We conclude with some extensions of the presented results and further research
directions.

2. TRANSDUCERS
In this paper we assume ⌃ to be a finite alphabet and denote by ⌃

⇤ the set of finite
words over ⌃, and by ✏ the empty word. A transduction f is a relation on ⌃

⇤. In this
paper, we will be particularly interested in (partial) functions and for such objects, we
denote by dom(f) their domain.

Example 2.1. In this paper, we will use three running examples, the functions f
del

,
f
sw

and f
mir

, over the alphabet ⌃ = {a, b}. The function f
del

erases the letters a of an
input word: e.g. f

del

(abba) = bb. The function f
sw

puts the last symbol in a first position
(’sw’ stands for ’swap’). It is defined by f

sw

(✏) = ✏ and for all u 2 ⌃

⇤ and � 2 ⌃, by
f
sw

(u�) = �u. Finally, the function f
mir

copies an input word u and concatenates it
with its mirror image u, i.e. f

mir

(u) = uu for all u 2 ⌃

⇤. E.g. f
mir

(ab) = abba.

2.1. One-way transducers
One-way transducers are Turing machines with two left-to-right tapes. The first tape is
read-only and contains the input word while the second tape is write-only and contains
the output word. For example, to realize the function f

del

for Example 2.1 by a one-way
transducer, the machine will simply go through the input word, from left to right, and,
for each input symbol �, copy � on the output tape iff � is different from a.

Formally, a one-way transducer1 is a tuple T = (Q, I, F,�, t) where Q is a finite set of
states, I ✓ Q is a set of initial states, F ✓ Q is a set of final states, � ✓ Q⇥⌃⇥⌃

⇤ ⇥Q
is a finite set of transitions, and t : F ! ⌃

⇤ is a terminal output function. A transition
� = (p, a, w, q) 2 � of T is represented as p

a|w��! q. Intuitively it means that if the

1More generally, a transducer is defined as a finite automaton over the monoid ⌃⇤ ⇥ ⌃⇤. Our definition
corresponds to real-time transducers in the literature [Berstel and Boasson 1979]. For transductions which
are functions, real-time transducers and transducers coincide in expressiveness, therefore we just call them
transducers in this paper, as this paper is about functions.

ACM SIGLOG News 5 July 2016, Vol. 3, No. 3

transducer is in state p, and the next input letter is a, then it may go to state q and
write the word w on the output tape. W.l.o.g., we assume that for all p, q 2 Q, a 2 ⌃,
there exists at most one w 2 ⌃

⇤ such that (p, a, w, q) 2 �. The class of these transducers
is denoted NFT, standing for non-deterministic finite-state transducers.

Given a word u = a1 . . . an 2 ⌃

⇤, a run of T from p to q on u is a sequence of states
⇢ = (q

i

)

i=0..n such that q0 = p, q
n

= q and, for each i 2 {1, . . . , n}, there is a transition
of the form q

i�1
ai|wi���! q

i

in �. We say that a run ⇢ = (q
i

)

i=0..n is accepting if q0 2 I and
q
n

2 F . The output of such an accepting run ⇢ on u, denoted by out

u

(⇢), is defined as
the concatenation of the words produced by the transitions and the image of state q

n

by the terminal function t, i.e. the finite word w1 . . . wn

t(q
n

) 2 ⌃

⇤.
The transduction defined (or realized) by T is the relation JT K composed of the pairs

(u,w) such that there exists an accepting run ⇢ of T on u satisfying w = out

u

(⇢).
An NFT T is functional if the transduction it defines is a function. The class of func-

tional NFT is denoted by fNFT. The class of functions realized by fNFT is called the
class of rational functions2. An NFT is sequential if the underlying input automaton,
obtained by projecting away the output words on transitions, is deterministic. Observe
that such transducers obviously recognize functions. The class of sequential NFT is
denoted by SFT. The class of functions realized by SFT is called the class of sequential
functions.

Example 2.2. We describe two examples on the alphabet ⌃ = {a, b}. The transducer
T0, depicted on the left of Figure 1, is functional, sequential, and realizes the function
f
del

. Its terminal function is constant equal to ✏, and is depicted by a target free out-
going arrow. The transducer T1, depicted on the right of Figure 1, is functional but not
sequential. It realizes the function f

sw

. Intuitively, the non-determinism is mandatory
to guess initially the last letter of the input word.

2.2. Two-way transducers
Two-way transducers extend one-way transducers as follows: instead of being left-to-
right, the input tape is two-way. As an example, this intuitively allows the transducer
to move to the end of the input word, and to copy it on the output tape during a right-
to-left traversal. This transformation thus maps every input word to its mirror image.

Formally, we will consider that two-way transducers take as input a word u 2 ⌃

⇤

surrounded by left and right end-markers, denoted by ` and a, which we suppose
do not belong to the alphabet ⌃. These end-markers allow the transducer to identify
the beginning and end of the input word. We denote by ⌃` the alphabet ⌃ [{`,a}.
A two-way transducer is a tuple T = (Q, I, F,�) where Q, I and F are as in one-
way transducers. � is a finite set of transitions which are elements of the form
(p, a, w, q,m) 2 Q ⇥ ⌃` ⇥ ⌃

⇤ ⇥ Q ⇥ {�1,+1}. Compared with one-way transducers,
transitions contain now a component m 2 {�1,+1} which indicates the direction of
the move (left or right). We also require that transitions reading the left end-marker
always move to the right.

Note also that the definition does not include a terminal function. This function is
indeed useless for two-way transducers as it can be simulated using the right end-
marker.

The class of these transducers is denoted by 2NFT, standing for two-way non-
deterministic finite-state transducers.

A configuration of a two-way transducer T is a pair (q, i) 2 Q⇥ (N \ {0}) where q is a
state and i is a position on the input tape. Given an input word u = a1 . . . an 2 ⌃

⇤, we

2They are called rational because they can be alternatively defined by the more general and classical notion
of rational subsets of monoids, see [Berstel and Boasson 1979].

ACM SIGLOG News 6 July 2016, Vol. 3, No. 3

q0 q1 q2 q3 q
f

� | �,+1 � | �,�1 � | ",+1

`| ",+1 a| ",�1 `| ",+1 a| ",+1

Fig. 2. A two-way transducer T2 for fmir .

will consider an execution of T on the input ` u a2 ⌃

⇤
`. A run of T on the input u0

=` u a
is a finite sequence of configurations ⇢ = (p1, i1) . . . (pm, i

m

) such that i1 = 0, i
m

= n+2,
and for all k 2 {1, . . . ,m� 1}, 0  i

k

 n+ 1 and 3
(p

k

, u0
[i
k

], w
k

, p
k+1, ik+1 � i

k

) 2 �, for
some word w

k

. The output of such a run ⇢ on ` u a, denoted by out

u

(⇢), is defined as the
concatenation of the words produced by the transitions, i.e. the finite word w1 . . . wm

2
⌃

⇤.
This run is accepting if p1 2 I and p

m

2 F . This means that for all the configura-
tions but the last one, the reading head should be on a letter of the input u0. For the
run to be accepting, the last configuration must correspond to the reading head being
immediately after the end of the input word (i

m

= n+ 2).
As for NFT, the transduction defined by T is the relation JT K composed of the pairs

(u,w) such that there exists an accepting run ⇢ of T on ` u a satisfying w = out

u

(⇢).
As for one-way transducers, we will be interested in the subclasses of transduc-

ers functional and sequential transducers, denoted respectively by f2NFT and 2SFT,
and defined respectively as the transducers whose semantics is a function, resp. the
transducers whose underlying input (two-way) automaton is deterministic. The class
of functions realized by f2NFT is called the class of regular functions. This terminology
comes from the equivalence with a logical formalism, so-called MSO transducers, that
will be presented in the next section.

Example 2.3. Consider the transducer T2 for f
mir

depicted on Figure 2. It maps
every input word u to uū, where ū denotes the mirror image of u. The left and right
end-markers are important here to allow the transducer to identify the beginning and
end of the input word.

2.3. Landscape of transducer classes
Figure 3 gives the inclusion relations existing between the six classes of transducers
we have defined so far. Let us first comment on these inclusions. Relations trivially
extend functions. Rational functions strictly contain sequential functions, strictness
being witnessed by the transduction f

sw

. Regular functions strictly contain rational
ones, as witnessed by f

mir

. Last, unlike for one-way transducers, in presence of two-
wayness, functional non-determinism does not increase expressive power (equality be-
tween f2NFT and 2SFT), as shown in [Engelfriet and Hoogeboom 2001]. This equiva-
lence is effective.

We also depict on this picture the decidability status of several subclasses decision
problems. For instance, we have proven in [Filiot et al. 2013] that it is decidable, given
a f2NFT, whether there exists an equivalent one-way transducer. This decidability
result is indicated on the edge from f2NFT to fNFT. Concerning this result, the overall
complexity of our decision procedure is non-elementary, and a recent work provided
a 2EXPSPACE procedure for the subclass of sweeping transducers [Baschenis et al.

3We use the following notation: u0[0] denotes symbol `, u0[i] with 1  i  n denotes the i-th letter of u, and
u0[n+ 1] denotes symbol a.

ACM SIGLOG News 7 July 2016, Vol. 3, No. 3

va
lu

ed
ne

ss

expressiveness

SFT fNFT 2SFT =f2NFT

NFT 2NFT

⇢

⇢

⇢ ⇢

⇢

sequential
functions

rational
functions

regular
functions

PTIME
[Choffrut 1977]

[Weber and Klemm 1995]
[Béal et al. 2003]

PTIME
[Schützenberger 1975]

[Gurari and Ibarra 1983]
[Béal et al. 2003]

decidable
[Culik and Karhumaki 1987]

undecidable
[Baschenis et al. 2015]

decidable
[Filiot et al. 2013]

Fig. 3. A landscape of transducers of finite words.

2015]. Other decidability and undecidability results are depicted on the other edges in
a similar way.

2.4. Equivalence problem
Checking whether two transducers are equivalent, i.e. whether they define the same
transduction, is a natural and important problem, that has been studied by several au-
thors. Unfortunately, this problem is already undecidable for NFT, as proven in [Grif-
fiths 1968]. On the positive side, this problem is decidable for the classes of functional
transducers we have presented (it is actually sufficient decide whether two functional
transducers have the same domain, and then decide whether the disjoint union of the
two transducers is functional), which explains the interest for these classes. The de-
cidability frontier lies actually beyond functional transducers, as it encompasses the
class of so-called finite-valued transducers, defined as the transducers for which there
exists some natural number k such that, for every input word, the number of outputs
associated with this input word is at most k. This decidability result has been proven
for instance in [Culik II and Karhumäki 1986; Weber 1993; de Souza 2008] for finite-
valued one-way transducers. In [Culik II and Karhumäki 1986], the authors claim
that the equivalence problem is even decidable for the class of finite-valued two-way
transducers.

3. LOGICS
A formalism based on monadic second-order logic (MSO) has been defined by [Cour-
celle 1994] to define transformations of graph structures. In this section, we cast this
formalism to word to word functions, and refer the reader to [Courcelle and Engelfriet
2012] for more details and results about MSO transducers for general graph struc-
tures.

Words w are seen as logical structures on the domain {1, . . . , |w|} over the signature
consisting of unary predicates a(x) for each symbol of ⌃, and the binary predicate x � y
for the total order on positions. Recall that MSO on words is the extension of first-order
logic with quantification over sets of positions (see [Straubing 1994] for details). It is
well-known by Büchi’s theorem that a language is MSO-definable iff it is regular. We

ACM SIGLOG News 8 July 2016, Vol. 3, No. 3

present extensions of this fundamental result to word functions defined by one-way
and two-way transducers.

3.1. MSO transducers
The definition of MSO transducers is technical and in this paper, we rather want to
define them intuitively and with examples. We refer the interested reader to [Courcelle
1994; Engelfriet and Hoogeboom 2001; Filiot 2015] for detailed definitions.

In an MSO transducer, the output word is defined as an MSO interpretation over
a fixed number k of copies of the input word. Therefore, the nodes of the output word
are copies 1 to k of the nodes of the input word. Output nodes are denoted xc, for every
copy c and input node x. For every copy c, only the nodes satisfying a given formula
�c

pos

(x) with one free first-order variable x are kept. For instance, assume one takes
two copies of the input word, and in the first copy, one keeps all nodes x1 such that x is
labeled a, and in the second copy, one keeps all nodes x2 such that x is labeled b. This
is specified by the two formulas �1

pos

(x) = a(x) and �2
pos

(x) = b(x).
The output label and order predicates are defined by MSO formulas with one and

two free first-order variables respectively, interpreted over the input structure. For
instance, over the alphabet ⌃ = {a, b}, to set all the output labels to a, one just specifies
the formulas �c

a

(x) = > and �c

b

(x) = ? for all copies c. The output order predicate
relates input nodes of possibly different copies, and is therefore defined by formulas of
the form �c,d

� (x, y) for any copies 1  c, d  k.
Finally, a closed MSO formula �

dom

defines the domain of the function. All in all, an
MSO transducer over an alphabet ⌃ is a tuple

T = (k,�
dom

, (�c

pos

(x))1ck

, (�c

a

(x))1ck,a2⌃, (�
c,d

� (x, y))1c,dk

)

The output structure may not be a word, but here we assume that an MSO transducer
T outputs only word structures. It is a decidable property. Note that the length of
output word of an input word of length M by an MSO transducer is bounded by kM ,
since one takes a fixed number k of copies of the input word.

input

word

copy 1

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a
�1,1
� �1,1

� �1,1
�

(a) Transformation fdel defined by Tdel

input

word

copy 1

copy 2

a b a a b b b a

1 2 3 4 5 6 7 8

a b a a b b b a

a b a a b b b a

�1,1
� �1,1

� �1,1
� �1,1

� �1,1
� �1,1

� �1,1
�

�1,2
�

�2,2
��2,2

� �2,2
� �2,2

� �2,2
� �2,2

� �2,2
�

(b) Transformation fmir defined by Tmir

Fig. 4. Functions defined by MSO-transducers

ACM SIGLOG News 9 July 2016, Vol. 3, No. 3

3.2. Examples of MSO transducers
As a first example, an MSO transducer T

del

that realizes f
del

is illustrated in Fig. 4(a)
(only the successor relation is depicted). Input nodes filtered out by formulas �c

pos

(x)
are represented by fuzzy nodes. It is realized by the MSO transducer

T
del

=(1,�
dom

⌘ >,�1
pos

(x) ⌘ ¬a(x), (�1
�

(x) ⌘ �(x))
�2⌃,�

1,1
� (x, y) ⌘ x � y)

As a second example, consider the function f
mir

. To realize f
mir

with an MSO trans-
ducer (Fig. 4(b)), one needs two copies of an input word u. The labels are kept un-
changed, however the order is reversed for the second copy. One also sets that all nodes
of the first copy are smaller than the nodes of the second copy, as they appear before in
the output word. Therefore, f

mir

is realized by the transducer T
mir

with k = 2 and

�
dom

⌘ > �c

pos

(x) ⌘ > �c

a

(x) = a(x) �c

b

(x) = b(x)

�1,1
� (x, y) ⌘ x � y �1,2

� (x, y) ⌘ > �2,1
� (x, y) ⌘ ? �2,2

� (x, y) ⌘ y � x

for all copies c 2 {1, 2}. Note that given an input word u, the order on the output word
positions is the binary relation O = {(ic, jd) | 1  c, d  2, i, j 2 dom(u), u |= �c,d

� (i, j)}.
Only the successor relation induced by O is depicted on the figure.

3.3. Büchi theorems for word functions
Regular functions. The first automata-logic connection for word transformations has

been given by Engelfriet and Hoogeboom for the class of regular functions:

THEOREM 3.1. [Engelfriet and Hoogeboom 2001] A function f is regular iff it is
realized by some MSO transducer.

In order to prove the direction from 2SFT to MSO transducers, one builds an MSO
transducer that, given an input word u, outputs a (linear) graph that represents the
run of the 2SFT on u. The converse direction is more complex, and involves an extended
model of two-way transducers which can perform ”MSO jumps” '(x, y), where '(x, y) is
an MSO formula that defines a function from x positions to y positions. Intuitively, the
machine can move from position x to position y providing '(x, y) holds true. 2SFT with
MSO jumps are then converted, based on the Büchi theorem, into 2SFT with regular
look-around. These 2SFT can move only to positions which are in the 1- neighbourhood
of the current position, but their move can be based on a regular property of the current
prefix and suffix of the word. Finally, it is shown that 2SFT with regular look-around
are equivalent to 2SFT.

Rational functions. Using an adequate restriction of MSO transducers, one can also
prove a Büchi theorem for rational functions. Intuitively, an MSO transducer is order-
preserving if in the graphical representation of the output, there is no right-to-left
edge. For instance, considering the transformations depicted on Figure 4, the trans-
formation f

del

satisfies this property while the transformation f
mir

does not. Formally,
this property requires that for every input word u and for every c, d 2 {1, . . . , k}, if
the formula �c,d

� (x, y) evaluates to true in u, then x � y also evaluates to true. This
property is decidable.

THEOREM 3.2. [Bojanczyk 2014; Filiot 2015] A function f is rational iff it is realized
by some order-preserving MSO transducer.

The proof proceeds as follows: given a one-way transducer, the MSO transducer
that builds as output the run of the one-way transducer naturally satisfies the order-
preserving property. Conversely, the idea is to identify, for each position of the input

ACM SIGLOG News 10 July 2016, Vol. 3, No. 3

word, the subword of the output that corresponds to this position. One can then repre-
sent the transduction as a regular language, and make use of Büchi theorem.

The power of transducer-logic connections is illustrated by the following definability
problem. As shown in [Filiot et al. 2013], it is decidable whether a deterministic two-
way finite state transducer T is equivalent to a one-way functional finite state trans-
ducer. As a consequence of this result and of the two previous theorems, we obtain the
following corollary:

COROLLARY 3.3. Given an MSO-transducer, it is decidable whether it is equivalent
to some order-preserving MSO-transducer.

4. ALGEBRA
Similarly to regular languages, sequential and rational functions can be character-
ized by the index finiteness of well-chosen (canonical) congruences. For the class of
regular functions, no algebraic characterizations are known but we present partial re-
sults based on algebraic properties of the transition structure of two-way transducers
(their transition monoid). For the class of regular functions with origin information,
i.e. regular functions extended with pointers from any output position to some input
position (intuitively, the input position from which they originate), an algebraic char-
acterization is known [Bojanczyk 2014]. We present origin information at the end of
this section.

We recall that a left (resp. right) congruence on ⌃

⇤ is an equivalence relation ⌘ such
that for all u, v 2 ⌃

⇤ and � 2 ⌃, if u ⌘ v then �u ⌘ �v (resp. if u ⌘ v then u� ⌘ v�). For
u 2 ⌃

⇤, we denote by [u]⌘ the class of u, or just [u] when it is clear from the context.
A congruence ⌘ (left or right) has finite-index if its quotient ⌃

⇤/⌘ has finitely many
classes.

In this section, we also denote by � the prefix relation on words, and by u ^ v the
longest common prefix of any two words u and v. Given a language L ✓ ⌃

⇤ and a word
u 2 ⌃

⇤, we denote by u�1L the residual of L by u, i.e. the set of words w such that
uw 2 L. When u � v, we denote by u�1v the unique word w such that v = uw.

4.1. Sequential functions
It is well-known that any regular language is recognized by a unique minimal com-
plete deterministic automaton. Intuitively, for a language L, any two words u, v which
behave equivalently with respect to continuations w (uw 2 L iff vw 2 L) must reach
the same state in a minimal deterministic automaton. This is captured by the right
congruence ⌘

L

: u ⌘
L

v if for all w 2 ⌃

⇤, uw 2 L iff vw 2 L. The well-known Myhill-
Nerode’s theorem states that L is regular iff ⌘

L

has finite index. Moreover, the index
of ⌘

L

is exactly the number of states of the minimal complete deterministic automaton
recognizing L.

In this section, we explain how to extend the characterization of regular languages
to sequential functions, an extension due to Choffrut [Choffrut 1979; Choffrut 2003].
In a minimal sequential transducer defining a function f : ⌃

⇤ ! ⌃

⇤, two (input) words
u, v must go to the same state if they behave the same w.r.t. dom(f) (u ⌘dom(f) v),
but also w.r.t. the outputs, in the sense that the output produced when processing a
continuation w should not depend on u and v. To capture this idea, one first defines a
canonical way of producing the output, via a total function ˆf : ⌃

⇤ ! ⌃

⇤ which, given
a word u, outputs the longest common prefix of all words f(uw) for all continuations
w 2 u�1dom(f):

ˆf(u) =
^

{f(uw) | w 2 u�1dom(f)} where
^

? is set to ✏.

ACM SIGLOG News 11 July 2016, Vol. 3, No. 3

Then, one defines the relation ⌘
f

by u ⌘
f

v if the following two statements hold:

(i) u ⌘dom(f) v (ii) 8w 2 u�1dom(f), ˆf(u)�1f(uw) = ˆf(v)�1f(vw)

Note that ˆf(u)�1 is necessarily a prefix of f(uw), and similarly for ˆf(v)�1, by defi-
nition of ˆf . It turns out that ⌘

f

is a right congruence, which allows one to construct
a transducer T

f

for f (possibly with infinitely many states). The set of states of T
f

is ⌃

⇤/⌘f , with initial state [✏] and set of accepting states dom(f)/⌘f . The transitions
are ([u], a, w, [ua]) with u 2 ⌃

⇤, a 2 ⌃ and w =

ˆf(u)�1
ˆf(u�). The terminal function is

t : [u] 7! ˆf(u)�1f(u) for u 2 dom(f).
Note that if ⌘

f

has finite index, then T
f

is a proper sequential transducer with
finitely many states, and therefore f is sequential. The converse is also true, and one
gets a Myhill-Nerode theorem for sequential functions, due to Choffrut:

THEOREM 4.1. [Choffrut 2003; Choffrut 1979] A function f : ⌃

⇤ ! ⌃

⇤ is sequential
iff ⌘

f

has finite index.
Note that T

f

is canonical. Moreover when f is sequential, then T
f

is minimal, and
any sequential transducer realizing f can be uniquely mapped to T

f

, through a notion
of transducer morphism, e.g. defined in [Choffrut 2003]. In that sense, T

f

is unique.

4.2. Rational functions
In this section, we present an algebraic characterization, as well as a canonical trans-
ducer construction, for rational functions, due to Reutenauer and Schützenberger. This
characterization is based on the model of bimachines, which are essentially sequential
transducers extended with regular look-ahead. We adopt the latter view, which will
hopefully allow us to give an intuitive explanation of Reutenauer and Schützenberger’s
result. This formalization also appeared in [Boiret et al. 2012].

Rational functions with infinite syntactic congruence. Let us see why the finiteness of ⌘
f

fails at characterizing rational (but non-sequential) functions. Over ⌃ = {a, b}, con-
sider the function f

sw

of Example 2.1. The congruence ⌘dom(fsw) has only one class
⌃

⇤. The function ˆf
sw

is constant equal to ✏: for any u 2 ⌃

⇤, ˆf
sw

(u) � (f
sw

(ua) ^
f
sw

(ub)) = au ^ bu = ✏. Therefore, for all u, v 2 ⌃

⇤ and all w 2 ⌃

⇤, ˆf
sw

(u)�1f
sw

(uw) =
ˆf
sw

(u)�1
(v)f

sw

(vw) iff f
sw

(uw) = f
sw

(vw) iff u = v. Therefore, ⌘
fsw has infinite index.

Now, consider the following two restrictions on dom(f
sw

): last
a

= {ua | u 2 ⌃

⇤}
and last

b

= {ub | u 2 ⌃

⇤}, then the function f
sw

is sequential on these two restricted
domains. This suggests that modulo some information about the suffix (whether it
ends with a or b in this case), the function is sequential. Unlike the latter example, the
suffix information needed to be sequential may change along an input word. Consider
for instance the iterated version of f

sw

that we denote f⇤
sw

, which is defined over the
alphabet � = ⌃ [{#} by:
f⇤
sw

: u1#u2# . . .#u
n

7! f
sw

(u1)#f
sw

(u2)# . . .#f
sw

(u
n

) where u
i

2 ⌃

⇤ and n � 0

To realize f⇤
sw

in a sequential way, a transducer needs to know, when reading a symbol
� 2 {a, b}, if it is the last letter of a block in {a, b}+, and otherwise whether the last
letter of this block is an a or a b. Modulo this look-ahead information, the function f⇤

sw

is sequential.
Sequentiality modulo regular look-ahead. Let us formalise the notion of sequentiality

modulo (regular) look-ahead information. A look-ahead information L is a partition
of ⌃

⇤ assumed to be the quotient of ⌃

⇤ by a left congruence of finite index, de-
noted by ⌘L. We denote by [u]L the class of a word u. The look-ahead extension is

ACM SIGLOG News 12 July 2016, Vol. 3, No. 3

q0q
a

q
b

q#

(�, last

a

) | � (�, last

b

) | �

(

#,
l

a

s

t

b

) |
#b

(

#

, la
s

t

a

)

| #
a

(#, end) | #

(

a,
e

n

d

)

| ✏ (b,
e

n

d

) | ✏

(�, last

a

) | a�

(#, last

a

) | #a

(�, last

b

) | b�

(#, last

b

) | #b

(�, end) | �

Fig. 5. Sequential transducer realizing f⇤
sw[L], where � 2 {a, b} and � 2 {a, b,#}.

the function eL : ⌃

⇤ ! (⌃ ⇥ L)⇤ defined for all u = �1 . . .�n

2 ⌃

⇤ by eL(u) =

(�1, [�2 . . .�n

]L)(�2, [�3 . . .�n

]L) . . . (�n

, [✏]L). A function f : ⌃

⇤ ! ⌃

⇤ is sequential mod-
ulo L (or L-sequential) if the function denoted f [L] : (⌃ ⇥ L)⇤ ! ⌃

⇤ defined on
eL(dom(f)) by f [L](eL(u)) = f(u), is sequential.

Note that a function f over an alphabet ⌃ is sequential iff it is {⌃⇤}-sequential.
As a second example, the function f⇤

sw

is L-sequential for L = {end, last

a

, last

b

} where
end = ✏+#�

⇤, and for � 2 {a, b}, last

�

= (a+ b)⇤�(✏+#�

⇤
). The function f⇤

sw

[L] is re-
alized by the sequential transducer of Fig. 5. Note that this transducer also checks
that the look-ahead annotations are correct, i.e. it ensures that the domain is ex-
actly eL(dom(f⇤

sw

)). For instance, whenever the information end is read, the transducer
moves to state q#, from which only # can be read. This ensures that the annotation by
look-ahead information end is correct. The only way to access state q

a

is when reading
the look-ahead information last

a

, and the only way to leave q
a

is when reading (a, end),
thus ensuring that the last letter of the block is indeed a. Since the transducer is se-
quential, has domain eL(dom(f⇤

sw

)), and the look-ahead annotation is unique for each
word, projecting away the look-ahead information on this transducer yields an unam-
biguous transducer realizing f⇤

sw

.

A canonical look-ahead. It is known [Elgot and Mezei 1965] that any rational function
f : ⌃

⇤ ! ⌃

⇤ equals the composition of two functions r : ⌃

⇤ ! �

⇤ and ` : �

⇤ !
⌃

⇤ for some intermediate alphabet �, i.e. f = ` � r, where ` is sequential and r is
right-sequential, i.e. the function m � r �m is sequential, where m is the function that
mirrors input words. In other words, r can be realized by a sequential transducer that
processes input words backwards and produces output words backwards. Moreover, T
can be chosen to be letter-to-letter, i.e. produce exactly one output symbol per input
symbol, and hence T is nothing else than an automaton that computes some look-
ahead information (the output symbols). We can rephrase this decomposition result in
terms of L-sequentiality:

THEOREM 4.2. [Elgot and Mezei 1965] f is rational iff it is L-sequential for some L
of finite index.

The strong result of Reutenauer and Schützenberger is precisely to show that, in the
latter proposition, L can be chosen in a canonical way, that depends only on f , denoted
L
f

. The idea is to identify suffixes u and v that have only a bounded “difference” on
the outputs f(wu) and f(wv) for all w such that wu,wv 2 dom(f). To quantify this

ACM SIGLOG News 13 July 2016, Vol. 3, No. 3

effect, they use the notion of delay distance between words, defined by d(t1, t2) = |t1|+
|t2|�2|t1^t2|. In other words, this distance only counts what remains when the longest
common prefix of t1 and t2 has been cut out. Then, two words u, v are equivalent for
⌘Lf if (i) for all w 2 ⌃

⇤, wu 2 dom(f) iff wv 2 dom(f), and (ii) the set {d(f(wu), f(wv)) |
wu,wv 2 dom(f)} is finite. It turns out that ⌘Lf is a left congruence, and it is of finite
index when f is rational.

Example 4.3. As an example, consider again the function f⇤
sw

defined before. The
look-ahead given before is actually the canonical one, i.e. L

f

⇤
sw

= {end, last

a

, last

b

}.
Indeed, let �,� 2 {a, b}, u, v 2 {a, b}⇤ and u0, v0 2 end. Then, any w such that
wu�u0 2 dom(f⇤

sw

) and wv�v0 2 dom(f⇤
sw

) is of the form w1w2 where w1 2 �

⇤
#

and w2 2 ⌃

⇤. Then, {d(f⇤
sw

(w1w2u�u
0
), f⇤

sw

(w1w2v�v
0
)) | w1 2 �

⇤
#, w2 2 ⌃

⇤} =

{d(f⇤
sw

(w1)�w2uf
⇤
sw

(u0
), f⇤

sw

(w1)�w2vf
⇤
sw

(v0)) | w1 2 �

⇤
#, w2 2 ⌃

⇤}, which is finite iff
� = �. This gives the two classes last

a

and last

b

. Similarly, it is possible to check that
all words in the set end are equivalent.

We can now state Reutenauer and Schützenberger’s result:

THEOREM 4.4. [Reutenauer and Schützenberger 1991] Let f : ⌃

⇤ ! ⌃

⇤. The follow-
ing three statements are equivalent:

(1) f is rational,
(2) L

f

has finite index and f is L
f

-sequential,
(3) L

f

and ⌘
f [Lf] have finite index.

When f is given by a transducer, a canonical sequential transducer for f [L
f

] can be
constructed effectively. Projecting its input symbols on ⌃ (i.e. discarding the look-ahead
information), one gets a canonical unambiguous transducer T

f

realizing f .

Bimachines. The latter theorem was originally presented based on the notion of bi-
machines. A bimachine is made of a right deterministic automaton R reading input
words from right to left, a deterministic automaton L, and an output function ! which
takes states of L, states of R and symbols in ⌃ as arguments, and produces a word.
The output produced at position i in a word w = �1 . . .�n

is !(l,�
i

, r) where l is the
state of L reached after processing the prefix �1 . . .�i

(if it exists), and r is the state
of R reached after reading the suffix �

i

. . .�
n

. Reutenauer and Schützenberger’s re-
sult is precisely to show that for any rational function f , there exists a canonical right
automaton R

f

, a left automaton L[R
f

] (which is canonical once the right automaton is
fixed), and an output function !, which defined a canonical bimachine for f . Translated
in the look-ahead framework, R

f

defines the look-ahead information L
f

, and by taking
the product of R

f

and L[R
f

], one obtains a sequential transducer realizing f [L
f

].

4.3. First-order definable functions
If only first-order formulas are allowed in the definition of (order-preserving) MSO-
transducers, one gets the subclass of (order-preserving) FO-transducers. A function is
(order-preserving) first-order definable if it is definable by an (order-preserving) FO-
transducer. First-order definable languages L are characterized by languages having
aperiodic syntactic congruence4 ⌘

L

, which yields a decision procedure for automata:
minimize the automaton and check the aperiodicity of its transition congruence. We
present similar results for rational functions and partial results for functions definable
by two-way transducers.

4A congruence ⌘ on ⌃⇤ is aperiodic if there exists n0 2 N such that for all u, v 2 ⌃⇤ and n � n0, un ⌘ vn iff
un+1 ⌘ vn+1.

ACM SIGLOG News 14 July 2016, Vol. 3, No. 3

The transition congruence ⌘
A

of an automaton A is defined by u ⌘
A

v if for all states
p, q, it holds p

u�! q iff p v�! q. The transition congruence of a transducer is the transition
congruence of its underlying (input) automaton, and a transducer is aperiodic if its
transition congruence is aperiodic. It is known that a rational function f is order-
preserving first-order definable iff it is realized by some aperiodic transducer [Filiot
et al. 2016]. Moreover, a function f is realizable by some aperiodic transducer iff the
canonical left congruence L

f

and the right congruence ⌘
f [Lf] are both aperiodic, which

is decidable when f is given by some transducer. Therefore, one gets the following
theorem:

THEOREM 4.5. [Lhote 2015; Filiot et al. 2016] It is decidable whether a transducer
defines an order-preserving first-order function.

The problem of deciding whether a transducer is equivalent to some aperiodic and
functional one has been generalized to arbitrary congruence varieties in [Filiot et al.
2016]. It is shown in this case that the congruences L

f

and ⌘
f [Lf] may not be in the

varieties, even if some transducer realizing the function is, but at least one pair of
congruences L and ⌘

f [L] is in the variety, where those pairs are taken in a finite com-
putable set of congruences.

No such results are known for functions definable by deterministic two-way trans-
ducers, mainly because for such functions the existence of a canonical device is still
open. Nevertheless, the notion of transition congruence can be extended to two-way
automata and therefore to two-way transducers. Roughly, it identifies words with the
same state behaviors, where the behaviors are either left-to-right, right-to-left, left-to-
left and right-to-right. For instance, left-to-right behaviors are exactly as for classical
one-way automata, and a pair of states (p, q) if a left-to-left behavior of a word u if
there is a run that enters u from the left in state p, and leaves u to the left in state q.

THEOREM 4.6. [Carton and Dartois 2015] A function f is first-order definable iff it
is realized by some aperiodic two-way transducer.

In [Bojanczyk 2014], a transduction with origin is a function from words u to pairs
(v, o), where v is a word, and o is an origin mapping that sends any position of v to a
position of u, the position from which “it has been created”. Most transducer models,
including MSO- and FO-transducers, implicitly bear origin information. We denote by
JT K

o

the origin transduction defined by a transducer. For regular transductions with
origin, an algebraic characterization is known (see [Bojanczyk 2014]), based on which
first-order definability can be decided:

THEOREM 4.7. [Bojanczyk 2014] Given a two-way transducer T realizing a trans-
duction with origin JT K

o

, it is decidable whether there exists an FO-transducer T 0 such
that JT K

o

= JT 0K
o

.

5. EXTENSIONS AND PERSPECTIVES
Functions of finite words enjoy multiple presentations by means of transducers, logic
and algebra. We have presented some old and recent results using these different tools,
as well as some nice equivalence results. In this conclusion, we present a recent alter-
native automaton model, as well as some extensions to other structures than finite
words.

Streaming String Transducers. Recently, an alternative model of transducers has
been introduced in [Alur and Černý 2011], named streaming string transducers (SST
for short). Intuitively, it consists in a deterministic one-way automaton extended with a
finite number of registers, valued with finite words. These registers are updated along

ACM SIGLOG News 15 July 2016, Vol. 3, No. 3

q
b Y q

a X q0 XY

b;
X:=Xa
Y:=Yb a;

X:=Xa
Y:=Yb

a;
X:=Xa
Y:=Yb

b;
X:=Xa
Y:=Yb

�;
X:=X�
Y:=�Y

Fig. 6. Two streaming string transducers.

transitions but never tested, and they are used to define the output of a run. Two
examples of SST are depicted on Figure 6. The left SST realizes the function mapping
any word of the form u� to �|u|, and ✏ to itself, while the right SST realizes the function
f
mir

.
Interestingly, it has been proven that a simple restriction of this model, so-called

copyless SST (updates should make a linear use of registers) exactly coincides with the
class of regular functions [Alur and Černý 2010]. Intuitively, this means that the model
allows to transfer the complexity of runs of two-way transducers to the updates of
variables. Similarly, a simple restriction of SST (called right-appending SST) coincides
with the class of rational functions, namely that in which updates are of the form X :=

Y u, where X and Y are registers, and u is a finite word. This model has been applied to
the verification of list-processing programs [Alur and Černý 2011], and implemented
[Alur et al. 2015].

Concerning first-order definable transformations, a result similar to Theorem 4.6
has been provided for streaming string transducers in [Filiot et al. 2014; Dartois et al.
2016b], using an adequate notion of transition monoid of an SST.

Another natural problem for this model is the notion of register complexity of a
function, i.e. the minimal number of registers needed to realize a regular function.
This problem has attracted a lot of attention recently. In [Daviaud et al. 2016], a so-
lution is proposed for the class of right-appending SST using a generalization of the
twinning property, a tool that has been introduced in [Choffrut 1977] to characterize
sequential functions among rational ones. In [Baschenis et al. 2016], the authors con-
sider also a register minimization problem but for the class of non-deterministic SST
where concatenations of registers are forbidden in the register updates.

Infinite words. The determinization problem, i.e. deciding whether a transducer de-
fines a sequential function, has been extended to infinite word transducers with Büchi
acceptance condition in [Béal and Carton 2002]. Correspondence between MSO and
SST on infinite strings have been shown in [Alur et al. 2012].

Trees and nested words. Tree transducers have been studied in numerous works,
in particular by Joost Engelfriet and Sebastian Maneth, and we will not give here
an exhaustive list. However, in order to echo the transducer-logic connection that we
have presented in this paper, let us mention that it has been in shown in [Engelfriet
and Maneth 2003] that MSO-definable tree transducers exactly coincide with Macro
Tree Transducers that are linear-size increase, i.e. the size of the output tree is always
linear in the size of the input tree. Let us also mention the survey [Maneth 2015] about
the equivalence problem for tree transducers.

Recently, we have also considered transducers whose inputs are tree linearizations
represented as nested words [Filiot et al. 2010]. We have defined so called visibly push-

ACM SIGLOG News 16 July 2016, Vol. 3, No. 3

down transducers and have proven that several positive results of one-way transduc-
ers are preserved by this model. Recently, we have shown that MSO-definable nested
word-to-word transformations and a two-way model of visibly pushdown transducers
are equivalent [Dartois et al. 2016a].

Some perspectives. For the class of regular functions, we have seen logical and au-
tomata models. An interesting and challenging research direction is to build an alge-
braic framework for regular transductions.

On the logical side, MSO transducers can be transformed into two-way or streaming
transducers in non-elementary time. This blow-up is not avoidable, which raises the
question of having MSO expressive logics well-suited to define transductions, and that
enjoy better complexities.

Finally, an interesting direction, which generalizes the classical Church synthesis
problem, is that of sequential uniformisation. The problem is to decide whether from
a given word relation, one can extract a function such that (i) it has the same domain
as the relation, (ii) it is included in the relation, and (iii) it belongs to some class of
functions with interesting properties. The relation can be thought of as a set of good be-
haviours of a system, and the function as the behaviour of the synthesised system. The
required properties of the targeted class of functions depend on the applications. For
instance, one may target sequential functions for memory efficiency. For rational rela-
tions and the class of sequential functions, this problem is undecidable, but decidable
when restricted to finite-valued rational relations or deterministic rational relations
[Filiot et al. 2016].

Acknowledgments
We thank the editorial board of ACM SIGLOG newsletter for giving us the opportunity
to present these exciting results. We would like to warmly thank Nathan Lhote for his
careful reading on the algebra section.

This work was partially supported by the French ExStream project (ANR-13- JS02-
0010), the Belgo-French PHC project VAST (35961QJ) funded by Campus France
and WBI, the ARC project Transform (Federation Wallonia-Brussels) and the Belgian
FNRS CDR project Flare. Emmanuel Filiot is research associate at F.R.S.-FNRS.

REFERENCES
Rajeev Alur and Pavol Černý. 2010. Expressiveness of streaming string transducers. In Foundations of

Software Technology and Theoretical Computer Science (FSTTCS) (LIPIcs), Vol. 8. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 1–12.

Rajeev Alur and Pavol Černý. 2011. Streaming transducers for algorithmic verification of single-pass list-
processing programs. In Proc. of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011. ACM, 599–610.

Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. 2015. DReX: A Declarative Language for Effi-
ciently Evaluating Regular String Transformations. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. 125–137.

Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. 2012. Regular Transformations of Infinite Strings. In
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik,
Croatia, June 25-28, 2012. 65–74.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. 2015. One-way definability of sweep-
ing transducers. In 35th International Conference on Foundation of Software Technology and Theoretical
Computer Science, FSTTCS 2015 (LIPIcs), Vol. 45. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
178–191.

Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis. 2016. Minimizing resources of sweep-
ing and streaming string transducers. In In Proceedings of the 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP’16) (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik. To appear.

ACM SIGLOG News 17 July 2016, Vol. 3, No. 3

Marie-Pierre Béal and Olivier Carton. 2002. Determinization of transducers over finite and infinite words.
Theor. Comput. Sci. 289, 1 (2002), 225–251.

Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. 2003. Squaring transduc-
ers: an efficient procedure for deciding functionality and sequentiality. Theoretical Computer Science
292, 1 (2003), 45–63.

Jean Berstel and Luc Boasson. 1979. Transductions and context-free languages. Ed. Teubner (1979), 1–278.
Adrien Boiret, Aurélien Lemay, and Joachim Niehren. 2012. Learning Rational Functions. In Developments

in Language Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August 14-17, 2012.
Proceedings (Lecture Notes in Computer Science). Springer, 273–283.

Mikolaj Bojanczyk. 2014. Transducers with Origin Information. In 41st Internationl Colloquium on Au-
tomata, Languages, and Programming (ICALP) (LNCS), Vol. 8573. Springer, 26–37.

J. R. Büchi. 1960. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik 6, 1–6 (1960), 66–92.

Olivier Carton and Luc Dartois. 2015. Aperiodic Two-way Transducers and FO-Transductions. In Computer
Science Logic (CSL) (LIPIcs), Vol. 41. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 160–174.

Christian Choffrut. 1977. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-
Séquentielles en tant que Relations Rationnelles. Theor. Comput. Sci. 5, 3 (1977), 325–337.

Christian Choffrut. 1979. A Generalization of Ginsburg and Rose’s Characterization of G-S-M Mappings. In
Automata, Languages and Programming, 6th Colloquium, Graz, Austria, July 16-20, 1979, Proceedings.
88–103.

Christian Choffrut. 2003. Minimizing subsequential transducers: a survey. Theor. Comput. Sci. 292, 1 (2003),
131–143.

Bruno Courcelle. 1994. Monadic Second-Order Definable Graph Transductions: A Survey. Theor. Comput.
Sci. 126 (1994), 53–75.

Bruno Courcelle and Joost Engelfriet. 2012. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach. Encyclopedia of mathematics and its applications, Vol. 138. Cambridge
University Press.

K. Culik and J. Karhumaki. 1987. The Equivalence Problem for Single-Valued Two-Way Transducers (on
NPDT0L Languages) is Decidable. SIAM J. Comput. 16, 2 (1987), 221–230.

Karel Culik II and Juhani Karhumäki. 1986. The Equivalence of Finite Valued Transducers (On HDT0L
Languages) is Decidable. Theor. Comput. Sci. 47, 3 (1986), 71–84.

Luc Dartois, Emmanuel Filiot, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016a. Two-Way Visibly Push-
down Automata and Transducers. In Proc. 31st Annual IEEE Symposium on Logic in Computer Science
(LICS’16). IEEE Computer Society. To appear.

Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. 2016b. Aperiodic String Transducers. In Proc. 20th
International Conference on Developments in Language Theory (DLT 2016) (Lecture Notes in Computer
Science). Springer. To appear.

Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot. 2016. A Generalized Twinning Property for
Minimisation of Cost Register Automata. In Proc. 31st Annual IEEE Symposium on Logic in Computer
Science (LICS’16). IEEE Computer Society. To appear.

Rodrigo de Souza. 2008. On the Decidability of the Equivalence for k-Valued Transducers. In Developments
in Language Theory, 12th International Conference, DLT 2008, Kyoto, Japan, September 16-19, 2008.
Proceedings (Lecture Notes in Computer Science), Vol. 5257. Springer, 252–263.

Volker Diekert, Paul Gastin, and Manfred Kufleitner. 2008. A Survey on Small Fragments of First-Order
Logic over Finite Words. Int. J. Found. Comput. Sci. 19, 3 (2008), 513–548.

C. C. Elgot. 1961. Decision Problems of Finite Automata Design and Related Arithmetics. In Transactions
of the American Mathematical Society 98, 1 (1961), 21–51.

C. C. Elgot and J. E. Mezei. 1965. On relations defined by generalized finite automata. IBM Journal of
Research and Development 9 (1965), 47–68.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2001. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Log. 2, 2 (2001), 216–254.

Joost Engelfriet and Sebastian Maneth. 2003. Macro Tree Translations of Linear Size Increase are MSO
Definable. SIAM J. Comput. 32, 4 (2003), 950–1006.

Emmanuel Filiot. 2015. Logic-Automata Connections for Transformations. In Logic and Its Applications
(ICLA). Springer, 30–57.

Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. 2016. First-order definability of rational transduc-
tions: an algebraic approach. In Logic in Computer Science (LICS). IEEE.

ACM SIGLOG News 18 July 2016, Vol. 3, No. 3

Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. 2013. From Two-Way to One-
Way Finite State Transducers. In Logic in Computer Science (LICS). IEEE, 468–477.

Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. 2016. On Equivalence and Uniformi-
sation Problems for Finite State Transducers. In ICALP. To appear.

Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi. 2014. First-order Definable String
Transformations. In Foundation of Software Technology and Theoretical Computer Science, (FSTTCS)
(LIPIcs), Vol. 29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 147–159.

Emmanuel Filiot, Jean-Franois Raskin, Pierre-Alain Reynier, Frédéric Servais, and Jean-Marc Talbot. 2010.
Properties of Visibly Pushdown Transducers. In Proc. 35th International Symposium on Mathematical
Foundations of Computer Science (MFCS’10) (Lecture Notes in Computer Science), Vol. 6281. Springer,
355–367. DOI:http://dx.doi.org/10.1007/978-3-642-15155-2 32

T. V. Griffiths. 1968. The Unsolvability of the Equivalence Problem for Lambda-Free Nondeterministic Gen-
eralized Machines. J. ACM 15, 3 (1968), 409–413. DOI:http://dx.doi.org/10.1145/321466.321473

Eitan M. Gurari and Oscar H. Ibarra. 1983. A note on finite-valued and finitely ambiguous transducers.
Mathematical systems theory 16, 1 (1983), 61–66.

Nathan Lhote. 2015. Towards an algebraic characterization of rational word functions. CoRR
abs/1506.06497 (2015). http://arxiv.org/abs/1506.06497

Sebastian Maneth. 2015. A Survey on Decidable Equivalence Problems for Tree Transducers. Int. J. Found.
Comput. Sci. 26, 8 (2015), 1069–1100. DOI:http://dx.doi.org/10.1142/S0129054115400134

Christophe Reutenauer and Marcel-Paul Schützenberger. 1991. Minimization of Rational Word Functions.
SIAM J. Comput. 20, 4 (1991), 669–685.

Marcel Paul Schützenberger. 1975. Sur les relations rationnelles. In Proc. 2nd GI Conference on Automata
Theory and Formal Languages, Kaiserslautern, May 20-23, 1975 (Lecture Notes in Computer Science),
Vol. 33. Springer, 209–213.

Howard Straubing. 1994. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston, Basel
and Berlin.

Boris Avraamovich Trakhtenbrot. 1961. Finite automata and logic of monadic predicates (in Russian). Dokl.
Akad. Nauk SSSR 140 (1961), 326–329.

Andreas Weber. 1993. Decomposing Finite-Valued Transducers and Deciding Their Equivalence. SIAM J.
Comput. 22, 1 (1993), 175–202.

Andreas Weber and Reinhard Klemm. 1995. Economy of Description for Single-Valued Transducers. Infor-
mation and Computation 118, 2 (1995), 327–340.

ACM SIGLOG News 19 July 2016, Vol. 3, No. 3

http://dx.doi.org/10.1007/978-3-642-15155-2_32
http://dx.doi.org/10.1145/321466.321473
http://arxiv.org/abs/1506.06497
http://dx.doi.org/10.1142/S0129054115400134

