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Some basic definitions
(Formal Language Theory)

» An alphabet is a finite set of symbols. EX.:
»2={0,1,23,4,5,6,7,8,9}
» 2 ={A,CT G}
» > = set of Part-Of-Speech tags
» 2 = {0, 1}, usually denoted {a, b}

» A word/string on an alphabet is a finite sequence of
symbols

» 000042 or 84 or €
» VBN-TL NNS-TL IN-TL NP-TL



Some basic definitions
(Formal Language Theory)

» A language over an alphabet is a (possibly non-
finite) set of strings over this alphabet.

>

[
>
>

[, =al

[, =al

L =110, 11, 12, 13, 14, 15, 16, 17, 18, 19}

' natural numbers

DNA sequences that correspond to a gene

[, = all

| POS tag sequences that correspond to an English

sentence

»L={a"b": n>0}



Some basic definitions
(Formal Language Theory)

» If a language is infinite (or too big to be finitely
represented), we need a finite representation to be able
to handle it : we call this representation a grammar.

» Well-known grammar classes : the Chomsky hierrachy

» Regular grammars: productions A—aB or A—¢€
» Context-free grammars: A—BC or A—a (normal form)

» Context sensitive grammars: 0AB—ayf

» With each of these classes of grammars is
associated a class of languages.



Some basic definitions
(Formal Language Theory)

» DFA:
b a

@’

» Regular grammars:

Qy—=>bQpQr—aQ;,Qy— €
Q= bQ;, Q= aq,




Some basic definitions
(Formal Language Theory)

» Context-free grammars:

» The alphabet of the language : 2
» A finite set of variables (called non-terminals) : N

» A set of context-free rules: PCc N —» (N U 2)*

» A special non-terminal (the axiom) : S

» The language represented by a context-free grammar
is the set of strings over 2 that one can obtain from
the axiom using the rules of P.



Some basic definitions
(Formal Language Theory)

» Context-free grammars:

» The alphabet of the language : 2

» A finite set of variables (called non-terminals) : N
» A set of context-free rules: PC N—» (N U 2)*

» A special non-terminal (the axiom) : S

» Example: 2={a, b}, N={S}, P={S—>a S b,
S—->ab}

What is the language of this grammar?



Some basic definitions
(Formal Language Theory)

» Context-free grammars:

» The alphabet of the language : 2
» A finite set of variables (called non-terminals) : N
» A set of context-free rules: Pc N— (NU 2)*
» A special non-terminal (the axiom) : S
» Example: 2={a, b}, N={S}, P={S—->aSb,S—»ab}
What is the language of this grammar?
» {a"b" : n>0}

P h=3:S->aSb—-aaSbb—-aaabbb
We write S -»* aaabbb



Grammatical Inference

» We are interested in algorithms that are able to learn a
class of languages using a given class of grammars:

» A learning algorithm is fed with data corresponding to an
unknown language of the class,

» It outputs a hypothesis (i.e. a grammar of the class) that is a
representation of a language,

» If the outputed grammar is an “acceptable” representation
of the unknown language then the algorithm has learnt the
language

» If it can learn all languages of the class, then we say that
the algorithm learns the class.



Grammatical Inference

» When can we say that an algorithm is able to learn?

» Experimentally validate (e.g. Cross-validation)

Corpus

aaaaabbbbb Yes A

babbbaabb No )
Learning

abb No > sample

aaaaaaaaaaabbbbbbbbbbb Yes

abababab No ~

ab Yes } test sample

» Fulfills conditions of a formal definition of learning



Grammatical Inference

» When can we say that an algorithm is able to learn?

» Practically validate (e.g. cross-validation)

» Fulfills conditions of a formal definition of learning:
» Probably Approximatively Correct (PAC) paradigm
The probability that the error rate of the output h of

the agorithm is greater than a epsilon is less than a
delta: Pr(error(h)<€) > 1-0



Grammatical Inference

» When can we say that an algorithm is able to learn?

» Practically validate (e.g. cross-validation)

» Fulfills conditions of a formal definition of learning:
» Probably Approximatively Correct (PAC) paradigm

P Identification in the limit

Input: an infinite (complete) sequence of data
Behaviour: for each new data a hypothesis is outputed

Learning: for each possible sequence, there exists a
moment at which the algorithm converges to a
hypothesis that is equivalent to the target grammar,
and it never changes its hypothesis after.



Grammatical Inference

» What kind of data?

» Examples (of sentences, DNA codes, bird songs, ...)
» Example and counter-examples
» Structured examples (trees, skeletons, ...)

» Queries to an oracle
_



Grammatical Inference

» Nice results for regular languages:

» Efficient identification from positive and negative
examples, RPNI [Oncina & Garcia, 92]

» Identification from positive examples only of subclasses:
reversible [Angluin, 82], locally testable, ...

» PAC-learning of the whole class from positive examples
(with restrictions on the distribution of examples) [Clark
& Thollard, 02]

» Learning of the whole class using membership and
equivalence queries [Angluin, 87]



Grammatical Inference

» Nice results for regular grammars:

» Few postives results for context-free grammars
(prior to the works presented today)

» Efficient identification of small subclasses from postive
and negative examples (reduction to the regular case)

» Identification of a very restrictive subclass from positive
examples (very simple grammars [ Yolomori, 02])

» The whole class from skeletons [Sakakibara, 92]
» No positive result for contex-sensitive grammars



Grammatical Inference

» Why are regular languages a success story?

» Strong link between the representation and the structure
of the language (residual, Nerode equivalence
classes, ...).

» Slogan: “The structure of the representation should
be based on the structure of the language, not
something arbitrarily imposed on it from outside”

» Identify some structure in the language
» Show how that structure can be observed

» Construct a representation based on that structure
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Key idea

» [earn a structurally defined class of languages

» Use only examples of the language
» Rely on the notion of Context:

A string u appear in the context (I,r) in a string w if
w=lur.

The set of all contexts of u in a language L is written
Cr(u) =1 (Lr):lurin L}.

For instance, the substring ab appears in the context
(a,b) in the word aabb.



Syntactic congruence

» Well-studied relation structuring languages

® u and v are syntactically congruent w.r.t. a
language L iff for all Lr in £*, lur is in L iff lvris
in L (u=,v).

» In term of context, u = v it Cy(u) = Cr(v).

® [u] is congruence class of u, i.e. the set of all
substrings v such that u =, v

» Example: L={bcb,baab,cb,aab}, c=, aa, bcb=, baab,
|bcb] = [baab] # [cb]



A weaker relation

» The weak substitutability:

u and v are weakly substitutable w.r.t. a language
L, iff there exist I,r in X*, lur is in L iff lvr is in L
Notation : u =, v

» In term of set of contexts, u =, v if and only if
C,(u)nC, (v)Zgd



Substitutability

The syntactic congruence is the most interesting: u and v
always appear in the same context (then they can be
generated by the same non-terminal, for instance).

But: from a finite set of examples, we can only observe
the weak substitutability.

We can unify these notions in order to ensure the
observability of the syntactic congruence



Substitutable languages

» A language L is substitutable iff for all u and v in
X* u =, vimpliesu =, v, i.e. the weak
substitutability implies the syntactic congruence.

» The sets of contexts of two substrings of words of L
are either disjoint or identical.

» In other words:
If lur, lvr and l'ur' are in L then I'vr' is in L.



Examples

P Y * js substitutable.

» {a" |n>0} is substitutable (all contexts of a substring
have the form (ak,a')).

» {wcwRw in (a,b)*} is substitutable.
» {a"cb" |n>0} is substitutable.
» {w: |wl|, =|wl], and |w|.= |w|4} is substitutable.

» {a"b" In>0} is not substitutable: for instance, we
have a =, aab but not a =, aab

» {a,aa} is not substitutable (a and aa share the
context (&,¢) but not the context (g,a))



Algorithm: main ideas

» We want to compute the syntactic classes of the language
from the examples, together with their mutual structure.

P We are going to use the fact that [u][v] C [uv] by creating
the rules [uv] - [u][V]

» Algorithmic trick: the Substitution graph
» each distinct substring of the learning sample is a node.

» There is an edge between two nodes if they appear in the
same context(s).



Running Example

L.S={c;aca;bcb;abcba;aacaa} (palindrome with a center marked)

C bcbha abchb
abcba aca acaa ac
bcb ca aaca

aacaa

a b ab abcb

bc ba aac caa




Running example

[.S={c;aca;bcb;abcba;aacaa}

bcba abch
acaa ac
ca aaca

Context (a,g)

Empty context (€,£) First step: create a non terminal for
each component.

a b ab abcbh .. [c] (=[aca]=[abcba]=[bcb]=[aacaa])

bc ba aac caa [ca] (=[bcba]=[acaa])

(= = )
But also: [ab], [abcb], [bc], [aac], [ba]...



Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

=

Context (a,g)

Empty context (g,€)

Next step: create the rules for the

a b ab abcbh ... letters of the alphabet.
bc ba aac caa [a] - a
[b] - b

c] - ¢C



Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

=

Context (a,g)

Empty context (g,€)

a b ab abch .. Third step: create the rules for
bc ba aac caa each component.

[w] - [u][v] when uv is a
member of the component of w.



[.S={c;aca;bcb;abcba;aacaa}

Empty context (g,€)

a
bc

abcha
bcb

b ab abcb

ba

acCa

aacC

Running example

|

Caa

bcba abch
acaa ac
ca aaca

Context (a,g)

Component (g,¢):

C
C

C

C

—

—

—

—

a][bcbal, [c] - [ab)

a][ca], [c] - [ac][a]

cb], [c] - [bc][b]

a
0]
a

a][acaal, [c] - [aa

[cba], c — [abc][ba], [c] - [abcb][a]

[caa], [c] - [aac][aa], [c] - [aaca][a]



Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

=

Context (a,g)

Empty context (g,€)

Component (g,€):

a b ab abcb ... [c]-[a][ca], [c]~[ab] [cba], [c] - [abc] [bal], [c] -
bc ba aac caa [c]-[a][cal, [c]~ a]
c]—[b] [cb], [c] - [bc] [0]
a

a] [cal, [c] - [aa] [caa], [c] -~ [aac] [aa], [c] -




Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

| Context (a,g)

Empty context (g,€)

Component (g,€):

a b ab abcb ... c]-[a] [ca], [c] - [a],
bc ba aac caa c] - [ab] [cba], [c] - [abc] [ba], [c] - [b] [cb],
c] - [bc] [b], [c] - [aa] [caa], [c] - [aac] [aa],




Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

| Context (a,g)

Empty context (g,€)

Component (a,<): (final result)

a b ab abcb ... [ca] - [c] [a], [ca] - [aa]

bc ba aac caa ical — [b] [cba], [ca] — [bc] [ba], [ca] — [a] [caa]



Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

=

Context (a,g)

Empty context (g,€)

(final result)

a b ab abcb ... - [a] [c], - [aa] [ca]

bc ba aac caa ~ [ab] [cb], — [abc] [b],

~ [aac] [a]



Running example

[.S={c;aca;bcb;abcba;aacaa}

bcha abcb
abcha aca acaa ac
bcb ca aaca

=

Context (a,g)

Empty context (g,€)

Components of one string:

a b ab abcb ... [ab] - [a][b], [aac] — [a]
bc ba aac caa [aa] - [a][a] ...

, [aac] ~ [aa][c],



Running example

[.S={c;aca;bcb;abcba;aacaa}

Outputed grammar: G=<{a,b,c}, V, P, [c] >
where P = {[a] — a, [b] - Db,
c] — [a]lca] | [=c/[a] | ¢, [ca] - [c][a], ~ [a][c],
c] ~ [ab][cba] | [abc][ba] | [b][cb] | [bc][b] | [aa]lcaa] | [aac][aa]
ca] ~ [ac/[aa] | [b][cba] | [bc][ba] | [a][caal
— [aa][ca] | [ab][cb] | [abc][b] | [aac] [a]

ab] - [a][b] We can show that this
[aac] — [a] | [aa][c] grammar generates the
aa] — [a][a] language of palindromes

} with a center marked.



Learning Result

» The algorithm identifies polynomially in the limit
the class of context-free substitutable languages.

» The polynomial bounds are on
©  Computation: it takes a polynomial time in the size of
the learning sample to run the algorithm.

©  Data: for each substitutable language, there exists a
characteristic sample whose cardinality is
polynomial in the size of the target.



Substitutable context-free and O-
reversible reqular languages

» A regular language is O-reversible if whenever uw
and vw are in the language then ux is in the
language iff vx is in the language [ Angluin, 82].

» Substitutable languages are the (context-free) exact
analogue of O-reversible languages (regular).



Direct Extensions

» This work [Clark & Eyraud, 05, 07] generated different
extensions

» Identification of k-1 substitutable languages [ Yoshinaka, 08]

» PAC-learning of unambigous NTS languages [Clark, 06], of
subclasses of CFG [Shibata&Yoshinaka, 16]

» Local substitutable languages [ Coste, Garet & Nicolas, 12]
» Substitutable tree languages [ Kasprzik & Yoshinaka, 11]
» Substitutable graph languages [Eyraud, Janodet, Oates, 12&16]

» Identification with the help of an oracle of congruential
context-free laguages [Clark, 10], conjunctive grammars
| Yoshinaka, 15], Parallel Multiple CF grammars [Clark &
Yoshinaka, 14]

» Heuristics have preceded theory [Harris, 54], [Brill et al., 90]
| Adriaans, 99], [van Zaanen, 00] [Klein & Manning, 02], ...



Substitutable Languages and
Natural Languages

» Natural languages are obviously more complex, but
substitutable ones can give nice insights into some
linguistic disputes.

» Ex.: Auxiliary fronting in polar questions

Sentences like 'Is the man who is hungry ordering
dinner?' are unlikely to be present in a child environment.

However, it has been shown that children are quickly able
to identify it as correct and reject the wrong sentence 'Is
the man who hungry is ordering dinner?"

Used as a clue in defence of the theory of innate
knowledge of native language.



A (very) simple example

S = { the man who is hungry asked a beer.
the man asked a beer.

the man is hungry.

the man is ordering dinner.
is the man hungry? }
(+) is the man who is hungry ordering dinner?

(-) is the man who hungry is ordering dinner?

®» Our algorithm can identifies correct structure from incorrect
one without any example on this particular structure in
the sample.
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Congruencial classes

» Recall: Given a language L, [u] is the congruence class of u,
that is the set of all substrings v such that u =, v

P If the language is not regular : an infinite number of
congurence classes

» However, substitutable (and others) can be represented by a
finite number of them



Prime congruence classes

» Two particular congruence classes:

» The unit; [€]
» The zero: 0 = {u : for all (I,r), lur is not in L. }

» A congruence class X is prime if it is non-zero and non-unit
and for any two congruence classes Y, Z such that
X =Y - Z then either Y or Z is the unit.
If a non-zero non-unit congruence class is not prime then

we say it 1s composite.



Prime congruence classes

» Example: L={a"cb" : n >0}
» [e]={e} and 0=X"baX": not prime by definition,
L : prime (because L=[c]=[acal#[a][ca]={a"cb" : n >1})
a] = {a} and [b] ={b} : both prime
a'l={a'}=[a][a"!] with i>1: not prime (same for b)

a'c] = {a"cb’:j >0} and [cb'] = {a/cb’" : j > 0} : not
prime

vy v v 9%

» Note: L = {ab} has 5 congruence classes: [a], [b], [ab], [€]
and 0. The first 4 are all singleton sets. [a] and [b] are
prime but [ab] = {ab} = [a]|b], and so L is not prime.




L

SC

» L_ : the set of all languages which are substitutable,

non-empty, do not contain ¢, and have a finite
number of prime congruence classes.

» Example: {a"cb": n >0}

» Counter-example: L={c'ba’b : i>0} U {c'de'd : i>0}
» CF and substitutable
» But for all i, C, (ba'b) = {(c, €)} = C (de'd)

» Infinite number of classes [balb]=[de'd]={ba'b, de'd},
each of which is prime.



Prime decomposition

» A prime decomposition of a congruence class X is a

finite sequence of one or more prime congruence
classesa=<X ,..., X >suchthat X = X X .. X

» Lemma: Every non-zero non-unit congruence class
of a language in L. has a unique prime factorisation



Correct rules

» Correct production: [X] — o where a is a sequence
of at least 2 primes and [(] is a prime congruence
class.

A correct lexical production is one of the form

la] » a where a € X, and [a] is prime.
»Ex:L={ancbn|n>0}. Primes: [a], [c], [b].

The correct lexical productions are the three obvious

ones [a]—a, [b]—b and [c] - c.

The only correct productions have [c] on the left
hand side, and are [c]— [a][c]|b], [c] - [a][a][c]|b]
Ib] and so on.



Too long rules

» We say that a sequence of primes o is pleonastic (too
long) if a = ypo for some vy, 3, 6, which are
sequences of primes, such that |y| + (0| > 0, [B] is a
prime, and |B| > 1

» A rule is too long if its right handside is too long. It
is valid otherwise



Canonical grammar

» Lemma: If L € L then there are a finite number of
valid productions

» Let Lin L. Its (unique) canonical grammar G (L):

» Non-terminals: the prime congruence classes of L, together
with an additional symbol S (the start symbol).

» Productions:

» the single production containing the start symbol: S — a(L), where
a(L) be the unique prime decomposition of L.

» All valid productions
» The production [a] — a, for each terminal symbol a that occurs in the
language

» Theorem: the language of G, (L) is L



Learning result

» The previous algorithm can be adapted to output
only canonical grammars: it identifies in the limit
the class L

» Moreover, it learns exactly the target grammar
(=language + structure): strong learning

» Corrolary: it learns trees from strings!



Outline

» Introduction

» Learning Substitutable languages

» Prime congruence classes

» Extension to tree and graph grammars
» A dual approach

» Conclusion

03/30/18

54



Extension to tree

» Instead of strings the data are trees

» The grammars are Simple Context Free Tree Grammar

CFQ) S= N & N=1o0 — S = NI N
S
- A A- 2
TAG) ﬁ & A —
N*

SCFTG) ¢ $ & N#A* Si&

AAA




Extension to tree

» All we need is the transposition of the notions of
context, subtree and a gluing mechanism.

( SCFTGs 1
A m
|
eS= A .AﬁA 'AEL(G)
Anb S5 Anb
t\ /2 k3. © © © )\ o\ A3
St s
. El| :tree-context
3
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/1N
O O O
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Distributional learning of tree
languages
» |Kasprzik & Yoshinaka, 11]:

» r-substitutable context-free tree languages are efficiently
identifiable in the limit from positive tree examples.

» r-SCFTG with p-finite environment are identifiable from
positive presentation using a membership oracle.

» The algorithms are simple adaptation to trees of the ones
for the strings.



Extension to graphs

» Again, we need to define what a context is, what a
subgraph is, and how to glu them together.

» But we also need to restrict ourselves as general
graphs are too complex:

» We need tractable isomorphism (and sub-isomorphisme)

» We need a grammar formalism where it is polynomially
doable to test whether a given graph is in the language

» Plane graphs are good candidate: polynomial
decidable sub-isomorphism.



Plane Graph

» Embeddings of planar graph in the plan:

11
@,

f1 f2

» Class of isotopy



Substitutability

10 14

(1) .
O, ©B® =

» In a substitutable plane graph language, whenever
two plane graphs appear in the same context once,
they share the same set of contexts.



Learning result

» |Eyraud, Janodet, Oates, 16]: Substitutable plane
graph languages are identifiable in the limit from
examples of the language

» Promising research
-2 P Languages are close under isomorphism.

» First non-trivial class of graph grammars to be learnable

@ » Algorithm is not efficient
» Hard to extend to more complex kind of graphs
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Distributional Learning

» A new familly of approaches to handle grammar
induction:

» “Observe, model, exploit the relation between substrings
and contexts”

» Primal (ex: substitutable): a non-terminal represent a
(set of) string that appear in the same contexts: if [u]
—* v then Cr(u) = Cr(v)

» Dual: a non-terminal represent a (set of) context and
generates only strings that appear in this context: if
[((Lr)] »*uthenu €{w : Iwrin L} = S;(L,r)



An example

»L={a"b": n=0}
» Observation table:

(€e) (ag) (eb)  (ab)

€ yes no no yes
a no no yes no
b no yes no no
ab yes no no yes
aab no no yes no
abb no yes no no

aabb yes no no yes



An example

»L={a"b": n>0}
» Observation table:

(€e) (ag) (eb)  (ab)

€ 1 0 0) 1

a 0 0 1 0

b 0 1 0 0
ab 1 0 0 1
aab 0 0 1 0
abb 0 1 0 0
aabb 1 0) 0) 1



An example

»L={a"b": n>0}
» Observation table:

(€e) (ag) (eb)  (ab)

€ 1 0 0) 1

a 0 0 1 0

b 0 1 0 0
ab 1 0 0 1
aab 0 0 1 0
abb 0 1 0 0
aabb 1 0) 0) 1

» Primal: similar lines (or similar parts of different
lines) may correspond to the same non-terminal



An example

»L={a"b": n>0}
» Observation table:

(ee) (ag) (eb)  (ab)

€ 1 0 0) 1

a 0 0 1 0

b 0 1 0 0
ab 1 0 0 1
aab 0 0 1 0
abb 0 1 0 0
aabb 1 0) 0) 1

» Dual: similar columns may correspond to the same
non-terminal



An example

»L={a"b": n>0} but we only “see” the
sample S={ab, aabb}

» Observation table:

(€,€) (a,f) (,b) (a,b)

€ ? ? ? 1

a ? ? 1 ?

b ? 1 ? ?
ab 1 ? ? 1
aab ? ? 1 ?
abb ? 1 ? ?
aabb 1 ? ? ?

» Ask an oracle for the missing information



An example

»L={a"b": n>0} but we only “see” the
sample S={ab, aabb}

» Real observation table:

(c,e) (a,e) (g,b) (ab) (aacg) (aabk) (g,bb) (g,abb) (aab) (abb)

[ +

ab + +

aa +

bb +

aab +

abb +

aabb +




An example

»L={a"b": n>0} but we only “see” the
sample S={ab, aabb}

Context set

» Real observation table: T
Kernel e) (ag) (eb) (ab) (aag) (aabg) (e,bW




Learning principle

» Problem: if the language is not regular, there exists a
non-finite number of syntactic congruence classes.

» What we need is to restrict ourselves to classes of
languages that are representable by finitely many
congruence classes

» Then we may observe these classes in the completed
observable table constructed from a finite sample:

» Either by considering similar rows (primal)

» Or by considering similar column (dual)



Finite Context Property (dual)

P ACFGG=<ZX,N,S, P> has the (one) Finite Context
Property iff every A€N admits a characterizing
context (l,r) such that S; (I,r)={v: N=* v}

» Examples: all regular languages, parenthesis
languages, ...

» With enough data, one column of the observation
table corresponds exactly to each non-terminal of the
target grammar.

» Adding new columns add new non-terminals (thus new
rules)

» Adding new lines remove incorrect rules



Learning in the dual

Let D :=K:=F:= @; .
Forn= 123 not sound

let D := {ui,u2,...,Un} £ S

tD ¢ L(G(F’K)) then " Complete, Complete

let F := Con(D) ‘Completd  not sound and Sound
End if : convergence
: t

let K := Sub(D) :comnglete wrong Sound

output G(F, K) v not complete
End for

>
Grammar creation: \ /
Non-terminals: [(I,1)], (I,r) In F

Rules: [(I,)] = aliflarin L
[(1L,N] = [(I,rD][(5,15)] if for all wy, w, in K s.t. l;wqr; and lLws,r, in L
we have lw;w,rin L




Learning results

» [Clark, 10 ; Yoshinaka, 11] 1-FCP (and 1-FKP) classes
are identifiable in the limit from examples using a
membership query with

» An update time polynomial in the size of the sample

» An number of queries polynomial in the size of the target
grammar.

» Extended to k-FCP (and k-Finite Kernel Property and k-
Finite Distributional Property where each non-terminal
has either a characteristic context or characteristic
string).

» Extended to other classes of grammars: multiple CFG
and parallel CFG.

» Extended to PAC-learning results
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Overall results (in 2012...)

String formalisms Tree form. | Graph form.
CFG MCFG SCFTG PGG
: Eyraud,
Substitutable Clarlk()g E}yTraud Yoshinaka '09 YK?]S.’pri'k 8; ’ Janodet &
’ Qetilila e Oates '12
: : , Yoshinaka &
Primal| Congruential Clark '10 Clark '10
Finite Kernel Yoshinaka'11 Yoshinaka'10 | Kasprzik &
Property Yoshinaka '11
Context- Shirakawa &
deterministic Yokomori '93
Dual

Finite Context
Property

Clark, Eyraud &

Habrard '08 (CBFG)

Clark'10

Kasprzik &
Yoshinaka '11




Next steps

» Restrictions rely on a class of grammars (to make
sure the language is representable by a finite number
of congruence classes).

» Use of a membership oracle (for the more complex
classes).

» Not practical that way but nice proof of concept.



MISC. citations

» John Myhill, 1950, commenting on Bar-Hillel

I shall call a system regular if the following holds for all
expressions p,v and all wifs ¢, each of which contains an
occurrence of v: If the result of writing p for some occurrence of v
in @ is a wif, so is the result of writing p for any occurrence of v in
Y. Nearly all formal systems so far constructed are regular; ordinary
word-languages are conspicuously not so.

» Noam Chomsky review of Greenberg (1959)

Let us say that two units A and B are substitutablel if there are
expressions X and Y such that XAY and XBY are sentences of L;
substitutable2 if whenever XAY is a sentence of L then so is XBY
and whenever XBY is a sentence of L. so is XAY (i.e. A and B are
completely mutually substitutable). These are the simplest and basic
notions. (footnote 3. They are discussed by R. Carnap in The
Logical Syntax of Language, 1934)



String Rewriting Rule

» Introduced in 1914 by Alex Thue.

» A string rewriting rule replaces a substring of a
string by another substring.

» Example: ab — €

This rule replaces substings ab by g, i.e. it erases
substrings ab.

aabbab — abab — ab - ¢



Running Example

LS={c;aca;bcb;abcba;aacaa} (palindromes with a center marked)

C bcba abcb
abcba aca acaa ac
bcb ca aaca

aacaa

a b ab abcb
bc ba aac caa



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcha abcb
abcba aca acaa ac
bcb ca aaca

R

Context (a,g)

Empty context (g,€)

a b ab abcb
bc ba aac caa



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcha abcb
abcba aca acaa ac
bcb ca aaca

R

Context (a,g)

Empty context (g,€)

Erase component made of
a unique element.



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcha abcb
abcba aca acaa ac
bcb ca aaca

U

Context (a,€)

Reduced the graph:

Empty context (g,€)

If uand v are in the same
component and u > v

Then replace every |ur by Ivr



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcha abcb
abcba aca acaa ac
bcb ca aaca

R

Context (a,g)

Empty context (g,€)



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcba abch
abcha aca ca ac
bcb ca ac

R

Context (a,g)

Empty context (g,€)



Running Example

" LS={c;aca;bcb;abcba;aacaa}

C bcba abch
abcha aca ca ac
bcb ca ac

R

Context (a,g)

Empty context (g,€)



Running Example

" LS={c;aca;bcb;abcba;aacaa}

acC
acC

acC

R

Context (a,g)

Empty context (g,€)



Running Example

" LS={c;aca;bcb;abcba;aacaa}

ac
ac
ac
l Context (a,g)
Empty context (g,€) For every pair (u,v) of disctinct

substrings in the same component,
creataruleu — v (u>v).



Running Example

" LS={c;aca;bcb;abcba;aacaa}

ac
ac
ac
l Context (a,€)
Empty context (&,) Outputed SRS:

<{aca - c; bcb - c}, {c}>



Learning in the Primal

Let D .= K:=F:= @;
Forn=1,2,3,...
let D :={uy,u2,...,un}
It D ¢ L(G(K,F)) then
let K := Sub(D)
End if
let F := Con(D)
output G(K,F)
End for



Finite Kernel Property (primal)

P ACFGG=<Z,N,S, P> has the (one) Finite Kernel
Property iff every A €N admits a characterizing string
u such that C; (u)={(Lr):3v, N=>* v, Ivr€L(G)}

» Examples: all regular languages, parenthesis
languages, ...

» With enough data, one line of the observation table
corresponds exactly to each non-terminal of the
target grammar.

» Adding new lines add new non-terminals (thus new rules)

» Adding new columns remove incorrect rules



