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Abstract. A famuly of efficient algonthms for inferrmg certain subclasses of the regular languages from
finute positive samples 1s presented These subclasses are the k-reversible languages, for k=0, 1, 2, ....
For cach k there is an algonthm for finding the smallest k-reversible language contamng any finite
positive sample. It 1s shown how to use this algonthm to do correct wdentification in the hmit of the k-
reversible languages from positive data A reversible language 18 one that 1s k-reversible for some k = 0.
An efficient algonthm 1s presented for inferring reversible languages from positive and negative examples,
and 1t 1s shown that it leads to correct identification i the hmt of the class of reversible languages.
Numerous examples are given to illustrate the algorithms and theiwr behavior
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1. Introduction

This paper concerns the problem of inductively inferring general rules from examples.
People seem to agree that this is an important problem area, but there is much less
agreement about how to study it. One of the primary goals of this paper is to indicate
that a relatively theoretical approach, using tools from complexity theory and formal
language theory, appears to be both feasibie and fruitful.

When people communicate complex procedures to other people, they often seem
to rely on a somewhat sketchy description of the general ideas, together with examples
to elucidate particular details. If we could find sound, vniform, and convenient
methods that would allow computer programs to generalize approprately from
examples, these would probably increase the usability of computers by experts and
nonexperts both. This paper is part of a general study of what makes a class of rules
efficiently and reliably inferable from examples, with the goal of eventually finding
such methods.

In this paper we study inferability in a particular abstract domain, that of inferring
formal languages from finite samples. Imagine that we are given a finite set of strings
from some formal language, and possibly another finite set of strings from the
complement of the language, and we are required to make a guess of what the
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unknown language is. For example, given the set of strings {00111, 01, 000011,
001111}, we might guess that the underlying language is the set of all strings
consisting of any number of 0’s followed by any number of I's. It may be objected
that there are infinitely many regular languages that contain this sample, and we
have no way of knowing whether such a guess is “right.” One of the fundamental
problems for this area of study is to find appropriate, natural, and theoretically sound
critera for the “goodness” of generalizations such as this one.

The concept of identificatton in the limit, formulated by Gold [18], has been of
basic importance 1n theoretical studies of inductive inference, This concept relies on
looking at the limiting behavior of the inferring process as it is given more and more
examples of a particular rule. If, for any sequence that eventually contains each
example of a given rule, the inferring process produces a sequence of guesses that
eventually converges to one that is a correct description of the underlying rule, then
the process is said to identify this rule 1n the limit. Much has been learned about the
classes of formal languages and partial recursive functions that can be correcily
identified in the limit by various kinds of effective inference processes [6, 7, 12, 18].
However, the inference procedures described in these abstract studies are generally
enumerative in character and appear to be too inefficient to be of practical use.

A number of methods have been proposed to perform inductive inference in
concrete domains, for example, finite automata, context-free grammars, logical
theories, and programs in LISP and other programming languages. An overview of
inference techniques for formal grammars and applications in the domain of syntactic
pattern recognition may be found in the survey article of Fu and Booth [16], and the
books of Fu [14, 15] and Gonzalez and Thomason [20]. Further references concerning
both abstract and concrete results in inductive inference may be found in the
bibliography of Smith [31]. Few studies of inference in concrete domains have given
analyses of the efficiency of the methods used. In the absence of such analysis,
behavior on test cases is often used to give some indication of the computational
feasibility of an inference method.

However, there has been some theoretical work concerning the possibility of
efficient inference procedures for specific concrete domains, which we now sketch.
On the negative side, there are results that show that finding a smallest finite
automaton or regular expression compatible with a given fimite sample consisting of
a finite set of strings marked as “accepted” and another finite set of strings marked
as “rejected” is an NP-hard problem, even under rather strong restrictions on the
samples and possible answers [2, 19]. The idea of searching for the “smallest”
description compatible with the sample is natural and attractive at first sight.
However, these results suggest that such an approach will not lead to a general
understanding of the concept of efficient inferability. On the positive side, polyno-
mial-time inference algorithms have been found for certain classes of parenthesis
grammars [9, 10, 27] and for the one-variable pattern languages [3].

The primary contribution of the present paper is a family of new, efficient
algorithms to infer certain subclasses of the regular languages from positive samples.
These algorithms were discovered in the course of trying to understand variants of
an inference heuristic originally proposed by Feldman [13] and compare favorably
with a heuristic method of tail-clustering recently proposed by Miclet [29]. The
classes inferred by these algornthms are the k-reversible languages, for k = 0, 1,
2, .... The class of zero-reversible languages was studied, though not named, by
McNaughton [26], who proved that the loop-complexity (or star-height) of a zero-
reversible language is exactly equal to the cycle rank of its reduced state-graph. This
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Fra. 1 The prefix tree machine for {A, 00, 11,
0000, 0101, 0110, 1010}

suggests both the naturainess of the k-reversible languages and the possibility of
unexplored, fruitful links between inferability and algebraic structure.

In evaluating results of this kind, important criteria are: how efficient and incre-
mental the algorithm is, how precisely and naturally its guess is defined for any given
sample, whether it does correct identification in the limit, and how natural and wseful
the class of rules inferred is. The algorithms we present are both efficient and
incremental. The guess for a given sample is shown to be the smallest k-reversible
language containing the sample, and it is shown that this leads to correct identification
in the limit of the k-reversible langnages. The property of producing the best k-
reversible “summary” of the input sample suggests that these algorithms may
ultimately be useful as components of more complex inference procedures employing
“summaries” of various different kinds.

In Section 2 we give an informal example of the zero-reversible inference algorithm.
Formal prehiminaries are in Section 3. The definitions and basic results about the
reversible languages are in Section 4. The zero-reversible inference algorithm is
formally described, justified, and analyzed in Section 5, and the generalization to k-
reversible languages is presented in Section 6. The use of nepative examples and an
algorithm to infer reversible languages from positive and negative data are presented
in Section 7. Section 8 contains comparisons with other methods of inferring regular
languages from positive data, and Section 9 contains concluding remarks.

2. An Informal Example

A zero-reversible acceptor is a deterministic finite-state acceptor with at most one
final state such that no two arrows entering any state are labeled with the same input
symbol. Suppose we are given the sample

S = (A, 00, L1, 0000, 0101, 0110, 1010}

and are told that it is part of the language of some zero-reversible acceptor. We
might then proceed as follows.

First we construct the prefix tree acceptor for S, shown in Figure 1. This is not
zero-reversible, because it has more than one final state. So we merge all the final
states together to produce the acceptor shown in Figure 2a. However, this acceptor
is not deterministic, so we merge the two states labeled B to produce the acceptor
shown in Figure 2b. This acceptor is not zero-reversible, because several states
(labeled B) are O-predecessors of the state labeled A, and several states (labeled D)
are l-predecessors of statec 4. We therefore merge the states labeled B and the states
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F16. 2 Stages in the zero-reversible algonthm

Fig 3. A zero-reversible and a 1-reversible acceptor

labeled D to produce the acceptor shown in Figure 2¢. This is still not zero-reversible,
since the two states labeled C are both 1-predecessors of state B. Merging these two
states gives the zero-reversible acceptor shown in Figure 3a. This machine accepts
the set of all strings over {0, 1} that contain an even number of 0’s and an even
number of 1's, which is a plausible inference from the original sample.

We leave it to the reader to verify that the method we have just sketched infers the
universal language (0 + 1)* from the sample

§ = {01, 00011, 00111, 001111},

which does not seem to be a very plausible inference. In subsequent sections of this
paper we precisely describe and analyze the behavior of the method sketched and
present a generalization that handles the second kind of example more satisfactorily.

3. Basic Definitions and Notation

In this section we define certain notions we shall need from the theory of formal
languages and automata. We generally follow Hartmanis and Stearns [23] in spint,
though we require some technical modifications of their definitions.
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The alphabet is a fixed finite nonempty set U of symbols. U* denotes the set of all
finite strings over U. A denotes the empty string. The length of the string w is denoted
| w|. The reverse of the string w is denoted w*, The concatenation of the strings # and
v is denoted uv. The string u is a prefix of the string v if and only if there exists a
string w such that zw = v. The string u is a suffix of the string v if and only if there
exists a string w such that wu = v.

A language is any subset of U*. The reverse of a language L is defined by L” =
{w":we L} If Lis any language, then we define the set Pr(L) of prefixes of elements
of L by

Pr(L) = {u:for some v, uv € L}.
Also, for any w € U*, we denote the left-quotient of L and w by
T:(w)y= {viwveE L}.

Thus, Tr(w) # @ if and only if w € Pr(L). When L is clear from the context, we
write T(w) instead of Tp(w).

A positive sample 1s a finite set of strings. S is a positive sample of the language L if
and only if § is a finite subset of L. (We consider samples containing negative as well
as positive information in Section 7.)

If S'is any set, | §| denotes the cardinality of S. A partition of § is a set of pairwise
disjoint nonempty subsets of § whose union is S. If  is a partition of S, then for any
element s € S there is a unique element of # containing s, which we denote B(s, 7)
and call the block of w containing 5. A partition 7 is said to refine another partition
7’ if and only if every block of 7’ is a union of blocks of 7. We denote this by
7 = . In this case we also say that =’ is coarser than =, or that = is finer than 7",
Note that both of these relations are reflexive. If = is a partition of a set § and §” is
a subset of S, then the restriction of = to S’ is the partition =’ consisting of all those
sets B’ that are nonempty and are the intersection of §’' and some block of 7. The
trivial partition of a set S is the class of all sets {s} such that s € S.

A right congruence is a partition « of U* with the property that B(w,, 7) =
B{ws, w) implies B(w, 7} = B(wau, @) for all wy, we, u € U*. If L is any language,
then Tr(wi) = Tip(we) implies Tp(wiu) = Tip(wew) for all u, so L determines an
associated right congruence m, by B(wi, 71) = B(we, my) if and only if Tp(w)) =
T1(wz). Other natural right congruences are associated with automata. Note that a
langnage L is regular just in case . contains finitely many blocks. We assume
familiarity with the basic facts about regular sets {21-24].

An acceptor is a quadruple 4 = (Q, I, F, §) such that @ is a finite set, / and F are
subsets of , and & is a map from @ x U to subsets of Q. Q is the set of states, I is
the set of initial states, F is the set of final or accepiing states of 4, and & is the
transition function of A. The acceptor is deterministic if and only if there is at most
one initial state, and for each state g € Q and symbol a € U there is at most one
element in §(q, @). Note that we allow undefined transitions in deterministic automata.
The empty acceptor is the unique acceptor with Q@ = . (The empty acceptior is
deterministic.) We shall sometimes write 8(g, &) = g’ for 8(g, b) = {¢'}.

Let A= (Q, L, F, 8) and 4’ = (', I’, F’, 8’) be acceptors. A4 is isomorphic to A’ if
and only if there exists a byjection A of Q onto Q' such that A(f) = I', A(F) = F’, and
for every ¢ € @ and b € U, h(6(q, b)) = §'(h(q), b). 1somorphic acceptors are the
same up to renaming of the states. A" is a subacceptor of A if and only if @', I, and
F’ are subsets of @, I, and F, respectively, and foreveryg' € Q' and b € U, §'(¢’. b)
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is a subset of 8(¢’, b). Pictorially, a subacceptor is obtained by removing some states,
initial states, final states, and transition arrows from the diagram of an acceptor.

If Qo is a subset of Q, then the subacceptor of A induced by (y is the acceptor
(Qu, Lo, Fy, 6y), where Iy 1s the intersection of Oy and 1, Fy is the intersection of Qo and
F,and ¢' € du(g, b) if and only if ¢, ¢’ € Qv and g’ € 8(q, b). A state of A is called
useful if and only if there exist strings u and v such that ¢ € §({, u) and 8(g, v)
contains some element of F. States that are not useful are called useless. An acceptor
that contains no useless states is called stripped. 1f 4 is any acceptor, then the siripped
subacceptor of A is the subacceptor of A4 induced by the useful states of 4.

We extend the transition function & to map a set of states and a string to a set of
states in the usual way. If g € 8(g’, ), then ¢’ is called an a-predecessor of g, and ¢
is called an a-successor of g'.

A string u is accepied by an acceptor A = (@, [, F, 8) if and only if 8(Z, 4} contains
some element of F. The set of strings accepted by A is called the Janguage of 4 and
is denoted L(A). If A and 4’ are isomorphic, then L(4) = L(4"). If 4’ is a subacceptor
of A, then L(A4’) is a subset of 1.(4). If A’ is the stripped subacceptor of A, then
L(A")y = L(A).

Let A be a deterministic acceptor with initial state set {. Define the partition 74 by
B{w1, ma) = B(wz, m4) if and only if 8(J, wi) = 8(I, we). Since Tp(w1) = Ti(wy) if
8(I, wi) = §(J, wq), m4 is a right congruence that refines 7z, where L = L(4).

Let A = (Q, I, F, 8) be any acceptor. If # is any partition of (J, we define another
acceptor A/m = (@', I', F', 8") as follows. 0 is the set of blocks of #. I’ is the set of
all blocks of # that contain an element of I. F” is the set of all blocks of = that con-
tain an element of F. The block B; is in 8'(B1, a) whenever there exist g; € B1 and
g2 € B; such that g; € 8(qu., a). A/ is called the quotient of A and 7.

Let L be any regular language. We define the canonical acceptor for L, A(L) =
(Q, 1, F, ), as follows:

Q= {Ti{u):u € Pr(L)},

1= {T(N)} if L#U, aotherwise 1=,
F={Ti(w):weE L},
8(Tr{u), a) = Tr(ua) if w, ua € Pr(L).

(Note that if . = &, then Pr{L) = (J and A(L) is the empty acceptor.) Recall that
Tp(u)) = Tr{uz) implies Tr(uyv) = Tn(uzv) for all strings v, so that this transition
function is well defined and A(L) is deterministic. The acceptor A(L) accepts the
language L and has the minimum possible number of states among all acceptors of
L. A(L) is stripped, that is, contains no useless states. Note that the right congruence
7a induced by A(L) coincides with the right congruence 7. induced by L. An
acceptor A is called canenical if and only if 4 is isomorphic to the canonical acceptor
for the language of 4. Given a deterministic acceptor 4, there is an efficient procedure
to find a canonical acceptor for L(4), as described in [1].

Let 5 be a positive sample, that is, a finite set of strings. Define the prefix tree
aceeptor for S, PT(S) = (@, I, F, §), as follows:

@ = Pr(S),
I={A} if §S#&, otherwise =0,
F=25,

8(u, ay = ua whenever u, ua € Q.

Then PT(S) is a deterministic acceptor that accepts precisely the set S. (Note that if
S = &, then PT(S) is the empty acceptor.) The inference algorithms that we shall
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consider begin with the prefix tree acceptor for the input sample and generalize it by
merging states. The following lemma concerns what kinds of acceptors may be
obtained by merging states of the prefix tree acceptor for a sample.

LemMA 1. Let S be a positive sample of the regular language L, and let Ay be the
prefix tree acceptor for S. Let w be the partition 7y, restricted to the set Pr(S) of prefixes
of elements of S. Then Ao/ n is isomorphic to a subacceptor of A(L).

Proor. The result holds trivially if § =&, so assume that § 5 . We shall denote
T1(w) by T(w). The partition = is defined by B(wy, 7} = B(ws, 7) if and oaly if T(w))
= T(wp), for all wy, w, & Pr(S). Hence A(B(w, 7)) = T(w) is a well-defined and
injective map from the states of Ao/# to the states of A(L). The initial state B(\, 7)
of Ao/ is mapped to the initial state T(A) of A(L). If B, is a final state of Ao/m, then
B, = B(w, ) for some w in S, and since L contains S, T(w) is a final state of A(L).
Hence 7 maps final states of Ao/ to final states of A(L).

If B, is a b-successor of B, in Ao/w, then for some w € Pr(S) we have By =
B(wb, 7), By = B(w, 7), and wb € P1(S). Thus h(B:) = T(wb) is a b-successor of
h(B1) = T(w)in A(L).

Thus £ is an isomorphism between Ao/7 and a subacceptor of A(L). O

COROLLARY 2. L(Ao/7) is contained in L.

It may also be shown that if S is a complete sample for L, that is, exercises every
transition in A(L), then the acceptor Ao/7 defined above is isomorphic to A(L). Of
course, in the inference procedures we consider. 7 is not given but rather must be
guessed. These results show only that a correct guess exists.

4. Reversible Languages

In this section we define reversible regular languages and establish some of their
basic properties. Inference algorithms for these languages are described in later
sections.

4.1. ZERO-REVERSIBLE ACCEPTORS AND LANGUAGES. Let A = (0, I, F, 8) be an
acceptor, and let L. = L(A). The reverse of 8, denoted §", is defined by

(g, a)={q':q € 3(¢, a)) forall a€ U, g€ Q.

The reverse of the acceptor A is A" = (@, F, 1, §"). Pictorially, we obtain 4" from A
by interchanging the initial and final states and reversing each of the transition
arrows. It is not difficult to verify by induction that L(A") = (L{4))".

The acceptor A4 is said to be zerg-reversible if and only if both 4 and A" are
deterministic. Using the terminology of Cohen and Brzozowski [8], an acceptor is
reset-free if and only if for no two distinct states ¢, and ¢ do there exist b € U and
gs € Q such that 8(g1, b) = ¢s = 8(gz, b). Then an acceptor is zero-reversible if and
only if it is deterministic, has at most one final state, and is reset-free. Alternatively,
a zero-reversible acceptor is any subacceptor of a permutation acceptor with at most
one initial and one final state.

Remark 3. Note that if 4 is zero-reversible and accepts uv, then 8(qo, #) =
8"(gr, v If I = {qo} and F = {g;}. Conseguently, if 4 accepts both u,v and uv, then
5(9& ul) = 6(q0> “2)'

Remark 4. If A is a zero-reversible acceptor and A’ is any subacceptor of 4, then
A’ is a zero-reversible acceptor.



748 DANA ANGLUIN

LemMa 5. Suppose A is a zero-reversible acceptor. Then the stripped subaccepior
A’ of A is canonical.

PrOOF. A’ is a zero-reversible acceptor and accepts L = L(4). If L is the empty
language, then A’ is the empty acceptor and therefore canonical. So suppose that L
is not the empty language. Let A" = (0, {44}, {4/}, 8). Let 41 and ¢: be states of 4’,
and suppose that (v:8(q:, v) = g} = {v:8(q, v) = qr}. Since A’ is stripped, this
implies that there exist strings u,, w2, v such that g, = 8(go, 1), g2 = 8(qo, u2), and uyv,
uzv € L. Thus, by Remark 3, ¢1 = ¢.. Hence A’ is canonical. [

A language L is defined to be zero-reversible if and only if there exists a zero-
reversible acceptor 4 such that L = L(4). The following lemma shows that we need
only test the canonical acceptor to determine whether a language is zero-reversible.

LeMMA 6. A regular language L is zero-reversible if and only Jif the canonical
acceptor A(L) is zero-reversible.

Proor. The “if” direction is immediate from the definitions. Suppose that L is
zero-treversible and A is a zero-reversible acceptor for L. The stripped subacceptor 4’
of 4 is canonical, zero-reversible, and accepts L. Since A(L} is isomorphic to 4’,
A(L) is zero-reversible. L[l

The next result gives a purely langnage-theoretic characterization of the zero-
reversible sets.

THeOREM 7. Ler L be a regular language. Then L is zero-reversible if and only if
whenever uwy and wgv are in L, Tp(uy) = Tr(iz).

Proor. We denote T.{w) by T(w). Suppose L is zero-reversible. By the above
lemma, the canonical acceptor A (L) is zero-reversible. Thus, if 11v and wv are in L,
then by Remark 3, 2; and u; lead to the same state of A(L), that is, T(z) = T(u).

Conversely, suppose that whenever w1v and wov are in L, T'(t1) = T'(u2). Thus, if 1
and u; are in L, T(u,) = T(u2), so A(L) has at most one accepting state. If T(u) and
T(u.) are states of A(L) such that T(u1b) = T(u=h) is a state of A(L) for some b € U,
then there exists a string v such that w,bv and wuzbv are in L, so by the hypothesis,
T(u,) = T(u). Hence, A(L) is zera-reversible, and therefore L is zero-reversible. [

Example 8. Let U = {0, 1}. The language of all strings over U containing an
even number of 1’s and an even number of Os is accepted by the acceptor shown in
Figure 3a and is therefore zero-reversible. The canonical acceptor for the language
0*1* is shown in Figure 3b. Since the canonical acceptor is not zero-reversible, the
langnage 0*1* is not zero-reversible. {l

In order to do correct identification in the limit from positive data, we must avoid
the problem of “overgeneralizing,” that is, of accidentally guessing a language that
is a strict superset of the unknown language. This problem is analyzed in a general
setting in [4]. For this particular setting we define a characteristic sample of a zero-
reversible language L to be a sample So of L with the property that L is the smallest
zero-reversible language that contains 8. If we detect a characteristic sample for
among the input strings, then we are assured that a guess of L will not be an
overgeneralization. The following result is used in the proof of correct identification
in the limit of the zero-reversible languages.

THEOREM 9. For any zero-reversible language L there exists a characteristic
sample.
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Proor. Clearly, if L = (J, then Sy = & is a characteristic sample for L. Suppose
L# O, and let A = (Q, {q0}, {gr}, §) be the canonical acceptor for L. For each state
q € @, let u(g) and v{g) be strings of the minimum possible lengths such that
8(qo, u(g)) = g and 8(q, ¥(g)) = g. Let S, consist of all strings of the form u{g)v(g)
such that ¢ € @ and all strings of the form u(g)bv(q’) such thatg€ @, & € U, and
g’ = 8(g, b). We show that 5 is a characteristic sampie for L.

Let L’ be any zero-reversible language containing So. We show that Ti(w) =
T1(u(q)) for all strings w € Pr(L), where ¢ = 8(qo, w). Since u(go) = A, this holds for
A. Inductively suppose that this holds for all elements of Pr(L) of length at most ~,
for some # = 0. Let w be a string from Pr(L) of length », and suppose that b € U is
such that wb € Pr(L). By the inductive hypothesis, Tp(w) = Tr{u(g)), where g =
8(qo, w). Thus, TrAwb) = Tr(u(g)b). If ¢ = 8(g, b) = 8{go, wh), then u(gy(¢’) and
u(q)bv(q’) are both elements of So. Thus 72(u(g")) = Tr(u(q)b) because L’ is zero-
reversible, by Remark 3. Hence T7.(wb) = T:(u(g’}), which completes the induction.

Thus for every w € L, Tr.(w) = Twru(q)), and since u(gy) € S, this implies that
w € L’ Therefore, L is contained in L’, and L is the smallest zero-reversible language
that contains So. Hence S, is a characteristic sample for L. [1

Example 10. Consider the language over {0, 1} consisting of all strings containing
an even number of 0°s and an even number of I’s, whose canonical acceplor is
pictured in Figure 3a. Applying the consiruction process described in the above
proof 1o obtain a characteristic sample for this language, we may define u(4) = A,
v(d) = A, w(B) =0, W(B) = 0, w(C) = 01, v(C) = 10, u{D) = 1, and w(D) = 1, which
gives the sample

So = {A, 00, 11, 0101, 0110, 1010}. A

4.2. K-REVERSIBLE ACCEPTORS AND LANGUAGES.  The notion of k-reversibility is
a generalization of zero-reversibility. Let & be a fixed nonnegative mteger. Let 4 =
(Q, 1, F, ) be an acceptor. The string « is said to be a k-follower (resp. k-leader) of
the state g in 4 if and only if | 2| = k and 8(g, ) # & (resp. §(g, u") # ). Note that
every state has exactly one O-follower and one O-leader, namely, A. The acceptor 4
is defined to be deterministic with lookahead k if and only if for any pair of distinct
states g1 and g, if g1, g2 € T or 1, g2 € 8(qs. a) for some g3 € @ and @ € U, then
there is no string that is a k-follower of both ¢; and g.. This guarantees that any
nondeterministic choice in the operation of 4 can be resolved by looking ahead &k
symbols past the current one.

An acceptor A is defined to be k-reversible if and only if 4 is deterministic and 4™
is deterministic with lookahead k. A language L is defined to be k-reversible if and
only if there exists a k-reversible acceptor A such that L = L{4). Note that these
definitions coincide with the definitions for zero-reversible acceptors and languages
when k = 0.

Remark 11. I A =(Q, {qo}, F, 8) is k-reversible and w;vw and uzvw are accepted
by A, where |v| = k, then there is a unique state g such that 8(qe, w1;v) = ¢ =
S(qo, ugv).

Remark 12. Any subacceptor of a k-reversible acceptor is k-reversible.

The analog of Lemma 5 for k-reversible languages is not in general true, but it still
suffices to test the canonical acceptor for a lanpuage to decide whether it is k-
reversible, as we now show.
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LemMa 13, A regular set L is k-reversible if and only if A(L) is k-reversible.

Proor. We denote Tp(w) by T(w). The “if” direction is immediate. Suppose L
is k-reversible and is accepted by the k-reversible acceptor 4 = (Q, {qo}, F, 8). A(L)
is a deterministic acceptor of L, and n4 refines 74). We must check that (4(L))" is
deterministic with lookahead k. Suppose T(wi) and T(w2) are states of (4(L))" and
v is a k-follower of T(wy) and of T(wz) in (A(L))". Then there exist strings u; and u
such that T(u,v") = T(wy) and T(usv™) = T(ws). If T(wy) and T(ws) are both initial
in (A(L)), or if for some a € U there is a state T(ws) of A(L) such that T'(wia) =
T(wy) = T(wea), then there exists a string w such that 4(L) accepts both w1v'w and
usv'w. Thus 4 accepts both of these strings, and by ihe above remark, 8(go, u:v") =
q = 8(go, tzv”) for some q in 4. Thus @;v* and uev™ are in the same block of 74, and
therefore in the same block of 74y, $0 T(av") = T(uev™) and T(wy) = T(wgz). Thus
A(L) is k-reversible. (]

We now give a characterization of the k-reversible languages purely in terms of
the langnages.

THEOREM 14. Let L be a regular language. Then L is k-reversible if and only if
whenever uyvw and weyw are in L and |v| = k, To(uwv) = Tr(usv).

ProoF. We denote Tr(w) by T(w). Suppose L is k-reversible. By the above
lemma, the canonical acceptor A{L) is k-reversible. Suppose u,vw and usvw are in L,
where |v| = k. Then by Remark 11, #1v and wsv lead to the same state of A(L}), so
T(uv) = T{uw).

Conversely, suppose that L is such that whenever w:vw and wvw are in L, where
|v| = k, then T(u1v) = T(uzv). Suppose that u;, #s, and v are such that T'(zv) and
T(u2v) are accepting states of A(L), where |v| = k. Then wyv and v are in L, so by
the hypothesis, T(11v) = T(uzv). Similarly, if ui, u, and v are such that T(wvb) =
T(uzvb) is some state of A(L), where |v| = k, then there exists some siring w such
that u;vbw and wevbw are in L. Then T'(u;v) = T(uzv) by the hypothesis on L. Hence
A(L) is k-reversible, and therefore L is k-reversible. [J

Example 15. The acceptor shown in Figure 3b is l-reversible, so the language
0*1* is l-reversible. Consider the regular set L denoted by the regular expression
ba*c + d{aa)*c. The canonical acceptor for L is shown in Figure 4. This acceptor is
not k-reversible for any k = 0, since for any k = 0, a* is a k-leader of two distinct
states that have a common c-successor. Hence L is not k-reversible for any
k=0 0O

We now consider characteristic samples for k-reversible languages. A positive
sample S is a characteristic sample for a k-reversible language L if and only if L is the
smallest k-teversible language containing S. (Note that whether a sample is a
characteristic sample for a given language depends on the value of £ under consid-
eration. Thus a sample that is characteristic for a zero-reversible language L may not
be characteristic for the same language considered as a 1-reversible language.)

THeoreM 16.  Let L be any k-reversible language. Then there exists a characteristic
samples Sa for L.

Proor. Since Theorem 9 establishes this result in the case k = 0, we assume
k= 1. If L =, then Sy = & is a characteristic sample for L, so we suppose that
L#9. Let A= (0, {go}, F, 8) be the canonical acceptor for L. For each g € Q let
L, denote the set of k-leaders of ¢ in A. For each pair ¢ € Q and x € L, let u(g, x)
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Fic. 4. A nonreversible acceptor

denote a string u of the minimum possible length such that (g, ux) = ¢. For each
g € Q let Wg) denote a string v of the minimum possible length such that 8(g, v)
€ F. The sample S, is defined to consist of all sirings w € L of length less than &,
all strings u(g, x)xv(g) such that ¢ € Q and x € L,, and all strings u(g, x)xbv(q’)
such that ¢ € Q, x € L,, and ¢’ = 8(q, b). No other strings are in So.

Let L’ be any k-reversible language containing So. We must show that L is
contained in L'. Clearly any element w of L of length less than k is in So and
therefore in L’. We show by induction that for every w € Pe(L) of length at least &,
Ti(w) = Tr(u(g, x)x), where x is the suffix of w of length k and ¢ = 8(qo, w). If w
has length exactly k, then w = x and u(q, x) = A, so this condition is satisfied.
Suppose that for some # = k this condition is satisfied for all strings w € Pr(L) of
length at most n. Suppose w is any element of Pr(L) of length n + 1. Write w =
w’axh, where |x| = k — 1 and @, b € U. By the induction hypothesis, Tr(w'ax) =
Ti(u(g, ax)ax), where g = 8(qo, w'ax). Thus Tr(w) = Ti(u(g, axyaxb). Let ¢’ =
8(q, b) = 8(go, w). Then S, contains the strings #(g, ax)axbv(g’y and u(q’, xbyxbv(q’),
50 L’ contains both of these strings. By Remark 11, this implies that Ti (ulg, ax)axh)
= Tiulg’, xb), xb), so TrAw) = Tr(u(g’, xb)xb), completing the induction step.

Now let w be any element of L of length at least &, and let x be the suffix of w of
length k. Then Ti(w) = T.{(w(gs x)x), where g; € F. Since g, is an accepting state,
v(gr) = A, 50 ulgy, x)x is in So and therefore in L'. Hence w is in L', which completes
the proof that L is contained in £'. Thus L is the smallest k-reversible language
containing So, and Sy is a characteristic sample for L. [

Example 17.  Consider the language 0*1* whose canonical acceptor is shown in
Figure 3b. Applying the method of the above proof to construct a characteristic
sample S, for this 1-reversible language, we obtain L, = {0}, Lg = {1}, u(4, O)
=AvA)y=AuB, 1)=A v(B)=A and So= {7, 0,1,00,01,11}. O

4.3 GENERAL PROPERTIES OF REVERSIBLE LANGUAGES. Let R, denote the class
of k-reversible languages over the alphabet U, and let R, denote the union of all the
R, for k = 0. The languages in R, are called simply the reversible languages.

THEOREM 18, If k is any nonnegative integer,

(1) R, is properly contained in R,

(2) R, is closed under pairwise intersection,

(3) R, is not closed under pairwise union or complementation,
(4) R, is not closed under concatenation,

(5) R, is not closed under Kleene closure,

{6) R, is closed under reversal.
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Proor. It is immediate from the definitions that R, is contained in Rz.,. The
language denoted by 1**1* is (k + 1)-reversible but not k-reversible, showing that
the containment is proper.

It is straightforward to verify that the usual direct product construction apptied to
two k-reversible acceptors produces a k-reversible acceptor that recognizes the
intersection of the languages of the two acceptors. A description of the product
construction may be found in [24].

Since the languages denoted by the expressions ba*c and d(aa)*c are easily checked
to be zero-reversible, Example 15 shows that the union of two zero-reversible
languages may not be reversible. Thus R, is not closed under pairwise union. De
Morgan’s laws then imply that R, is not closed under complementation with respect
to U*.

The languages L, = (a + b)* and L, = (a + c¢)* are easily seen to be zero-1eversible,
but their concatenation Ly = L1L, is not reversible. To see this, note that for every £,
ba", ca®, and ba*b are in L;, while ca*b is not in Ls, so by Theorem 14, L; is not k-
reversible for any k. Thus R, is not closed under concatenation.

Let L4 denote the set of all strings over the alphabet {0, 1, 2} whose digits add up
to 1 modulo 3. L, is easily seen to be zero-reversible, but (14)* is not reversible. To
see this, we note that for every k, 10*1, 0°1, and 10*21 are in (L4)*, while 0*21 is not.
Thus, by Theorem 14, (L,)* is not k-reversibie for any &, and R, is not closed under
Kleene closure.

Closure of R, under reversal is immediate when k = 0 but requires proof in the
case that £ = 1. Fix £ = 1. Let L be a k-reversible fanguage, and let 4 = (Q, {q0},
F, §) be the canonical acceptor for L. Then A4 15 k-reversible, so A" is deterministic
with lookahead k. We construct another acceptor, A; = (Qy, 11, F1, 81), to accept L.
This acceptor is deterministic and operates by “looking ahead” & symbols in the
input to make A" deterministic. We show that A, is k-reversible, which implies that
L' is k-reversible.

Let z be distinct from all the elements of Q. States of A, are of the form (z, u),
where u is a string of length less than &, or of the form (g, u), where g € @ and u is
a string of length k. The element z is a “place holdes” before k symbols of the input
have been read. The state (g, z) signifies being in state g of 4" looking ahead at the
string « in the input.

Let f(g) denote the set of k-followers of state g in A", that 1s,

f(g) = {u:|u| = k and §(g, v) # @}.
We define A; as follows:

1= {(z, wy:|u| <k} U {(q, w):u Ef(9)}
I = {(z, V)},
Fi={(z,wy:n&€ L} U {{g, u):8(go. u*) = q}.
3i((z, u), a) = {(z, ua)}
if |ul<k-—1,
bi((z, u), a) = ((g, ua):q € F, ua € f(q)}
if |ul=k-1,
8:((q, @), a2) = {(g', uaz):q" € 8'(q, a1), uaz € f(q)}.

Clearly A1 has one initial state. We now show that there is at most one a-successor
for each state of A4, for each symbol g € U. If |u| < k — 1, then the state (z, u) has
a unique g-successor for each a € U. If |u| = k — 1, then for each @ € U, because A"
is deterministic with lookahead k, there is at most one state g in F with ua € f(g), so
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there is at most one a-successor of (z, ) in A1, If {u| =k — | and &y € U is such that
(g, a1ur) € O, then for any a; € U there is at most one state ¢' € 8, @1} such that
uas € f(q"), so (g, au) has at most one a-successor in A;. Thus 4, is deterministic.

To see that A, accepts L, we argue as follows. If |u| < k, then 8§,((z, A), w) = (z, u},
and (z, ) is an accepting state of 4, if and only if u € L". If |u| = k, then let u = w;v,
where | v| = k. Then 8i((z, A), u;v) is either empty or is a state (g, v) such that v € f(g)
and g € 8(gp ), for some gr € F. Thus, if 4; accepts u, 8(qo, ') = g and g €
8"(qr u1), 50 go € 8'(gy, uyv) and w = uyv is in L. Conversely, if u = v is in L*, then
viui is in L, so if ¢ = 8(qo, v°), then (g, v) € F1 and 8i((z, A), i1v) = (g, v), so A; accepts
u. Thus L7 = L(A,).

Ii remains to show that 4; is k-reversible. We have already seen that it is
deterministic. Suppose two states of 4; have a common k-follower v in the reverse of
Ai. Then they must be of the form {gi, v") and (gs, V"), since they have a common k-
leader v in A;. If these states are both in Fj, then g1 = 8(go, v) = g2, 50 {qs, V') =
(gs, V7). If for some a € U, 8i((g1, v"), @) = 81((g2, V'), 4) = (g3, ¥). then gz € (g, b)
and q; € §(qz, b), where b is the initial symbol of v'. Thus ¢q; = 8(g3, b) = ¢, by the
determinism of 4, and (g1, ¥") = (go, v'). Thus A, is k-reversible, which shows that L*
is k-reversible. Hence R; is closed under reversal. [

R, consists of a hierarchy of classes, contains all the nonempty finite languages
over U, and does not contain all the regular languages over I/. We now compare R,
with another class of regular sets with generally similar properties, the definite
languages [30]. A regular language L is k-definute if and only if whenever u; and 1,
have a common suffix of length %, Tr(u:) = Ti(w2). Note that this implies that there
are finitely many distinct k-definite regular languages over a fixed alphabet U. (This
is true because there must be fewer than | U[**’ states in the canonical acceptor for
a k-definite language.) Let D; denote the class of k-definite languages and D, the
union of all D for k = 0.

THEOREM 19. R, properly contains D,. For every k = 0, Ry, properly contains Dy.

ProoF. Let L be a k-definite language; we show that L is k-reversible. We denote
Tir(w) by T(w). If L = &, then L is k-reversible; so suppose L # &, and let A(L) =
(Q, {go}, F, 8) be the canonical acceptor for L. Suppose ¢1 and g are states of (4(L))"
with a common k-follower v. Then there exist strings u; and u; such that

8(go, uv) =q1  and  8(qo, uxv") = qo.

Since L is k-definite, T(u1v") = T(uav'), that 15, 1 = ¢2. Hence no two distinct states
of (A(L))" have a common k-follower, so A(L) is k-reversible, and therefore L is 4-
reversible. Thus Dy is contained in R,.

In Example 8 it was shown that the language over {0, |} consisting of those strings
that contain an even number of I’s and an even number of 0’s 1s zero-reversible and
therefore contained in R;, for all & = 0. Since this language is not k-definite for any
k = 0, we conclude that R, properly contains D, for all k = 0 and that R, properly
contains D,.

{We also note for each k = 0, R, contains infinitely many languages, while D
contains only finitely many languvages.) [

The reverse definite languages [L7] are simply the reversals of the definite languages.
Thus, as a corollary of this theorem and the closure of each R;, under reversal, we
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have that each R; properly contains the k-reverse definite languages, and R, properly
contains the reverse definite languages.

Ginzburg has also defined a generalization of the definite and reverse definite
languages called the generalized definite languages [17]. A language is generalized
definite if and only if it may be expressed as the union of a finite set of strings and a
finite union of languages of the form FU*(;, where F and & are finite sets of strings,
and U is the alphabet. An algebraic characterization of these languages has been
given by Zalcstein [33]. In order to compare R, with the generalized definite
languages, we need some additional facts about R,.

LemMma 20. Let F be g finite set of strings and L a reversible language. Then
F U L is a reversible language.

Proor. If F is the empty set, then the result clearly holds, so assume F is
nonempty. Let &k, denote the length of the longest string in F, and let k; denote the
smallest nonnegative integer such that L is ky-reversible. Let k = & + k; + 1. We
shall show that F U L is k-reversible vsing Theorem 14.

Suppose wivz and wevz are in F U L, where | v| = k. Then these strings must be in
L, since their lengths exceed k,. Since L is ko-reversible and k is greater than ks, for
every string w, wvw is in L if and only if wyyw is in L. But u,vw is in L if and only if
wywisin FU L for i = 1, 2, because of length considerations. Hence F U L is k-
reversible. O

LEMMA 21. Let F be a prefix-free finite set of strings, G a suffix-free finite set of
strings, and L a reversible language. Then FL and LG are reversible languages.

PrOOF. Since LG = (G'L")" and G" is a prefix-free finite set of strings, it suffices
to prove that FL is reversible, since the reversible languages are closed under reversal.
If Fis the empty set, then FL is empty and therefore reversible, so assume that F is
nonempty. Let &, denote the length of the longest string in F, and let k2 denote the
least nonnegative integer such that L is kz-reversible. Let &k = k1 + k2. We shall use
Theorem 14 to show that FL is k-reversible.

Suppose uivz and upvz are in FL, where {v| = k. Write v = vivs, where || = Kk
and |v2| = ks There exist strings £, and g, such that wyz = wvivez = figvez for i =
1, 2, and, moreover, £, is in Fand gvez isin L for i =1, 2. Since L is kz-reversible, this
implies that for every string w, givew is in L if and only if gevew is in L.

Let an arbitrary string w be given. We shall show that if u,vw is in FL then uvw
is in FL, the converse being proved similarly. So, suppose that z;vw is in FL. Since
wvw = figivew and F is prefix-free, this implies that giv;w is in L. Thus gowewisin L,
and fagovew = wpvw is in FL. This shows that FL is k-reversible. {1

The following example shows that the restriction of F to be prefix-free is essential
in the above lemma.

Example22. Let L =(111)* and F= {1, 11}. Then FI. is not reversible, since for
every k, uz = 1°*'" and v; = 12 are in FL, but w1 is in FL while v,1 is not. Thus,
by Theorem 14, FL is not k-reversible for any &. (J

THEOREM 23. Let E, F, and G be finite sets of strings. Then E U FU*G is a
reversible language, where U is the alphabet.

Proor. Let F’ denote {u € F:for no v in F is v a proper prefix of u} and G’
denote {# € G:for no v in G is v a proper suffix of v}. Then F’ is prefix-free, G is
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suffix-free, and FU*G = F'U*G’, where U is the alphabet. Thus, since U* is zero-
reversible, by the preceding two lemmas we have that £ U FU*G is a reversible
language. (Note that this gives an alternative proof of the fact that R, contains the
definite and reverse definite languages.) [

Thus R, contains some of the generalized definite languages, but the following
example shows that it does not contain all of them.

Example 24. Let U denote {a, b, ¢, d} and L = al/*a + dU*bca. Then L is
clearly generalized definite, but it is not reversible. To see this, note that for every
k > 0, a(bc)a, d(bc)'a, and a(bc)'ba are in L, but d(bc)*ba is not in L. Thus, by
Theorem 14, L is not k-reversible for any £.

Since the set of strings of even parity is not generalized definite, we see that the
classes of reversible and generalized definite languages are incomparable. The same
is true of the reversible and locally testable languages, defined in [28].

3. The Zero-Reversible Inference Algorithm

In this section we describe, justify, and analyze the algorithm ZR to infer zero-
reversible regular sets from positive samples. The generalization to k-reversible
regular sets, which is somewhat more complicated, is treated in the next section.

The input to ZR is a finite nonempty set of strings 5. The output is a particular
deterministic acceptor 4 = ZR(S). Theorem 26 shows that L.(4) is the smallest zero-
reversible language that contains S. Theorem 27 shows that using ZR at the finite
stages of an infinite inference procedure leads to correct identification in the limit of
the zero-reversible languages. Theorem 28 shows that ZR runs in nearly linear time.
A simple incremental updating scheme for ZR is described.

5.1 THe ALcoriTeM ZR. On input S, ZR first constructs 4o = PT(S), the prefix
tree acceptor for S. It then constructs the finest partition 77 of the set Qo of states of
A, with the property that 4o/7y is zero-reversible, and outputs Ao/ 7.

To construct 75 ZR beings with the trivial partition of (% and repeatedly merges
any two distinct blocks By and B, such that either B, and B; both contain accepting
states of Ao or there exists a block Bs and a symbol & such that there are b-successors
(resp. b-predecessors) of states of B; in both 8, and B;. When there no longer remains
any such pair of blocks, the resulting partition is 7.

To implement this merging process efficiently, ZR keeps track of the further
merges immediately implied by each merge performed. The variable LIST contains
a pointer to a list of pairs of states whose corresponding blocks are to be merged. ZR
initially selects some accepting state g” of 4o and places on LIST all pairs (¢', g) such
that g is an accepting state of Ao other than g’. This ensures that all blocks containing
an accepting state of A, will eventually be merged.

For each block B of the current partition and each symbol b € U, ZR maintains
two quaatities, s(8, b) and p(B, b), indicating the b-successors and b-predecessors of
B. If there exists some state ¢ € B such that 8u(g, b) is defined, then s(B, b) 15 some
such 8u(g, b); otherwise, s(B, b) is the empty set. Similarly, if for some g € B, 8i(g, b)
is defined, then p(8, b) is defined to be some such 85(q, b); otherwise, p(B, b) is the
empty set. These quantities are initialized as s({q}, b) = du(q. b) and p({g}. b) =
8i(q, by forallg € Qo and b e U.

After these initializations, ZR proceeds as follows. While the list LIST is
nonempty, ZR removes the first pair of states (g1, g2). If g: and g; are already in the



756 DANA ANGLUIN

same block of the current partition, ZR goes on to the next pair of states from LIST,
Otherwise, the blocks containing ¢, and g, call them B, and B, are merged to form
a new block B

This action entails that LIST and the p- and s-values be updated as follows. For
each b € U, if s(By, b) and s(B:, b) are both nonempty, then the pair (s(B,, b),
5(Bz, b)) is added to LIST. Similarly, 1f p(B,, &) and p(Bz, b} are both nonempty, then
the pair (p(B1, b). p(B2, b)) 15 added to LIST. Also, if either s(Bi, b) or s(Bs, b) is
nonempty, then an element ¢ is chosen from one of them and s(B;, b) is set to q;
otherwise, s(B;, b) is set to the empty set. Similarly, p(Bs, b) is defined according to
P(B1, b) and p(B;, b). After this updating, ZR goes on to the next pair of states from
LIST.

When LIST becomes empty, the current partition is 7. ZR outputs 4o/nrand halts.

A somewhat more formal description of ZR may now be given.

Algorithm ZR
Input. a2 nonempty positive sample 3.
Outpul a zerc-reversible acceptor 4.
+ [Initialization
Let Ae = (Qo, [U. Fo, 60) be PT(S)
Let m, be the trivial parution of Qy
Foreach b € Uand ¢ € Qv let 5({g}, b) = 8u(q, &) and p({q}. b) = i (4. b)
Choose some g’ € Fo,
Let LIST contamn all paurs (g, g) such that ¢ € 5 - {¢"}.
Letz=20.
* Merging
While LIST # @ do
begin
Remove some element (41, g2) from LIST
Let B, = B{q, m), B: = B(ge, m)
If By # B then
begin
Let 7,41 be . with B, and B: merged
For each b € U, s-UPDATE(B, Bs, b) and p-UPDATE(B, B2, b)
Increase 1 by 1
end
end

+ Termination
Let f = 1 and output the acceptor Ao/#s

The procedure s-UPDATE(B), B, b} places (s(B1, b), s(B2, b)) on LIST if both
#(By, b) and s(B,, b) are nonempty and defines s(Bs, b) to be s(By, b) if this is
nonempty and s(Bz, b) otherwise (where B; is the union of By and B»). The procedure
p-UPDATE is defined similarly, with p in place of 5. The description of the algorithm
ZR is now complete, and we turn to analyzing its coyrectness and running time.

5.2. THE CORRECTNESS OF ZR. In this section we show that ZR correctly finds
the smallest zero-reversible language that contains the input sample. The following
lemma may be interpreted as saying that the algorithm ZR performs the minimal
generalization of the sample that produces a zero-reversible inference.

LemMa 25, Let S be any nonempty positive sample, A the prefix tree acceptor
PT(S) for S, and =y the final partition found by ZR on input S. Then m; is the finest
partition m such that Ao/ 15 zero-reversible.
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Prook. Let Ay = (Qo, 1o, Fo, 8o). If the pair (g,, ¢2) is ever placed on LIST, then
¢ and g» must be in the same block of the final partition, that is, B(qi, m) =
B(g., m). Also, it is not difficult to verify by induction on sthat fori=0, I, ..., £ if
q1 and g2 are distinct elements of 8B, b) (resp. 8i(B, b)) for some block B of =
and symbol b € U, then there exists a chain ¢1, ¢2, ..., ¢, of elements of 8B, b)
(resp. 8§(B, b)) such that ¢, = g1, g2 = ¢,, and for each j, 0 = j < #, either (g;, ¢;+1)
or (q;+1, 4,) is placed on LIST prior to or during the construction of .

Therefore the initialization guarantees that all the accepting states of A, are in the
same block of 7y, so Ao/7r has exactly one accepting state. Also, for each block B of
7rand symbol b € U, all the elements of §u(B, b) (resp. 8(B, £)) are contained in one
block of 7. Thus Ao/ 7ris zero-reversible,

It remains to show that if  is any partition of @ such that 4o/ is zero-reversible,
then 7, refines 7. We prove by induction that 7, refines 7w for: =0, 1, ..., f. Clearly
o, the trivial partition of Qy, refines 7. Suppose o, 71, ..., 7, all refine 7 and 7.+ is
obtained from #; in the course of processing entry (qi, ¢2) from LIST. Thus 4 is
obtained from =, by merging the blocks B(q, 7)) and B(gz, 7). Since , refines 7,
B(gi, m,) is a subset of B(q:, 7) and B(g», m.) is a subset of B(gs, 7), so to show that
am+1 refines 7, it suffices to show that B(gi, ) = B(ge, 7).

Either (g1, q2) was first placed on LIST during the initialization stage or not. If so,
then ¢, and ¢; are both accepting states, and since Ao/ is zero-reversible, it has only
one accepting state, so B{q:, ) = B{(q.. m). Otherwise, (41, g2) was first placed on
LIST in consequence of some previous merge, let us say the merge to produce =,
from m,_1, where 0 < j =< i. Then (g1, q2) = {(s(By, b), s(Bs, b)) (resp. {p(B, b),
p(Bs, b))). where B, and B; are the blocks of 7,_, merged in forming =, and b is some
symbol. Then ¢ and g, are b-successors (resp. b-predecessors) of two states in some
block B of ;. Since 7, refines = by the induction hypothesis, ¢, and ¢, are b-successors
(vesp. b-predecessors) of some block B’ in 7, and since Ao/7 is zero-reversible,
B(q:, m) = B(gz, 7). Thus in either case .. refines =, and by induction we conclude
that 7y refines 7. [

THEOREM 26. Let S be a nonempty positive sample, and let Ay be the acceptor
output by algorithm ZR on input . Then L(Ay) is the smallest zero-reversible language
containing S.

Proor. The preceding lemma shows that L(4;) is a zero-reversible language
containing S. Let L be any zero-reversible language containing S, and let 7 be the
restriction. of the partition w2, to the elements of Pr(S8). If 4o denotes the prefix tree
acceptor for S, then Lemma | shows that Ay/# is isomorphic to a subacceptor of
A(L), and Corollary 2 shows that L{4./7) is contained in L. Lemma 6 shows that
A(L) is zero-reversible, and therefore 4y/7 is zero-reversible, by Remark 4. By the
above lemma, =, therefore refines 7, so L{Aq/77) = L(A;) is contained in L{4,/7).
Consequently, L(A4y) is contained in L, and L{4;) is the smallest zero-reversible
language containing S. [

5.3 IDENTIFICATION IN THE LIMIT OF THE ZERO-REVERSIBLE LANGUAGES. In this
section we show that the algorithm ZR may be used at the finite stages of an infinite
inference process to identify the zero-reversible languages in the limit. The idea is
simply to tun ZR on the sample at the nth stage and output the vesult as the nth
guess. Define an operator ZR.. from infinite sequences of strings wi, wy, w3, ... t0
infinite sequences of acceptors A, Az, As, ... by

Ar =ZR({w1, wa, ..., Wa)) forall n=1.
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It is clear that the operator ZR,, is effective; the nth output is the result of running
the algorithm ZR on the first n input strings. (Later we show how A1 may be
obtained from 4, and w1 by a simple updating scheme based on ZR.) We need to
show that this converges to a correct guess after a finite number of stages.

An infinite sequence of strings w1, ws, ws, ... is defined to be a positive presentation
of a language L if and only if the range of the sequence is precisely L, that is, every
element of the sequence is an element of L and vice versa. An infinite sequence of
acceptors A1, As, Az . .. is said to converge to an acceptor A if and only if there exists
an integer N such that for all n = N, A, is isomorphic to 4. The result that ZR..
correctly identifies the zero-reversible languages in the limit from positive data is
formulated as follows.

TueoReM 27. Let L be a nonemply zerc-reversible language, w1, wo, w3, ... a
positive presentation of L, and A\, Az, As, .. . the output of ZR.. on this input. Then A,,
Asz, As, ... converges to the canonical acceptor A(L) for L.

Proor. By Theorem 9, L contains a characteristic sample. Let ¥ be sufficiently
large that {wy, we, ..., ww} contains a characteristic sample for L. For n = N, L(4»)
is the smallest zero-reversible language containing {wy, wy, ..., wn }, by definition of
ZR.. and Theorem 26. Thus L(4,) = L, by the definition of a characteristic sample.
Moreover, it is easily checked that the acceptor output by ZR is stripped, and
therefore canonical, by Lemma 5. Hence A, is isomorphic to A(L) for all n = N, s0
Ay, Ay, A, ... converges to A(L). O

5.4 THe RunnmnG TiME OF ZR

THEOREM 28. The algorithm ZR may be implemented to run in time O(na{n)),
where n is one more than the sum of the lengths of the input strings and o is a very
slowly growing functien. (Tarjan [32] defines «.)

Proor. Let S be the set of input strings, and let n be one more than the sum of
the lengths of the strings in 5. The prefix tree acceptor 4¢ = PT(S) may be
constructed in time O(n) and contains at most » states. Similarly, the time to cutput
the final acceptor is O(n). The partitions 7, of the states of 4, may be queried and
updated using the collapsing FIND and weighted UNION operations described and
analyzed by Tarjan [32). Processing each pair of states from LIST entails two FIND
operations to determine the blocks containing the two states. If the blocks are distinct,
which can happen at most n — 1 times, they are merged with a UNION opera-
tion, and O(| U]} further processing may place at most 2| U| new pairs on LIST.
Thus a total of at most (2| U] + 1)(n — 1) pairs must be processed. Thus at most
A U| + 2)0{(n — 1) FIND operations and n — 1 UNION operations are required,
which requires a total time of O(ra(n)). H

5.5 UPDATING A GUESS. It is useful in the context of the process ZR. to show
that ZR may be modified to have good incremental behavior. That is, given the
output A; computed by ZR on input §, and given a new string w, we may easily
update 4, to be the output computed by ZR on input S’ = § U {w}. The method for
doing this is to start at the initial state of 4, and follow the transitions 4, makes on
the input string w. If no undefined transitions are encountered and the last state
reached is the accepting state, then A, already accepts w and nothing need be done.
Otherwise, add new states and transitions for each symbol of w starting with the first
undefined transition (if any). Mark the last state reached by w as accepting, and
place the pair consisting of this state and the accepting state of 4;on LIST. Continue
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the merging portion of the algorithm ZR until LIST is empty, and output 4;/7’,
where 7’ is the final partition of the siates of 4;. The correctness of this procedure is
verified in the same way as that of the original algorithm ZR, since the order of
detecting and performing required merges is immaterial.

Example 29. If we run ZR on the input {0, 00, 11, 1100}, we obtain the acceptor
shown in Figure 3a. If we then add the string 101 to the sample and perform the
updating procedure just described, we first obtain the acceptor shown in Figure 5b.
This is then “folded up” as shown in Figure 5c and d to obtain as a final result an
acceptor for strings with an even number of I's. O

6. The k-Reversible Inference Algorithms

Let k be a fixed positive integer. We describe an algorithm, k-R1, to infer k-reversible
sets from positive samples. Let S be a nonempty positive sample. On input S, k-RI
constructs the prefix tree acceptor for S, 4o = PT(S), and finds the finest partition
my of the states of Ao such that Ao/7, is k-reversible. It then outputs a canonical
acceptor for L{Ae/m) and halts.

To find 7, k-RI begins with the trivial partition and repeatedly merges any two
blocks that violate the conditions for k-reversibility in the quotient acceptor Ao/
When no pair of blocks is found to violate these conditions, the resulting parti-
tion is 7.

More precisely, let S be the set of input strings. If S is empty, then k-RI outputs
the empty acceptor and halts. Otherwise, it constructs the prefix tree acceptor for S,
say Ao = (Qv, fo, Fo, &). Tt takes mo to be the trivial partition of Qo and i to be equal
to 0. While there exist two distinct blocks B; and B of m, such that either

(1) for some b € U and B; € 7,, B; and B; are both h-successors of By in Ao/7,, or

(2) B; and B; have a common k-leader in 4y/m,, and either B, and B; are both final
states of Ao/, or there exists a block B3 of 7, and a symbol & € U such that B;
is a h-successor of both B, and B; in A¢/7,,

k-RI constructs m4; by merging By and B: in ., and increments i by 1. When no
such pair of blocks exists, k-RI sets f to the final value of i. It then constructs and
outputs a canonical acceptor for L(Ao/my).
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6.1 CORRECTNESS, IDENTIFICATION IN THE LIMIT, ANALYSES. Since this treatment
is largely analogous to the zero-reversible case, an abbreviated presentation is given.

LemMa 30. Let S be a nonempty positive sample, A, the prefix tree accepior for S,
and m; the final partition found by k-RI on input S. Then n is the finest partition of the
states of Ao such that Ao/ 7y is k-reversible.

Proor. It is clear that Aqo/m is k-reversible, since k-RI will continue to merge
blocks as long as the conditions for k-reversibility are violated. Suppose # is any
partition of the states of 4, such that 4o/= is k-reversible. As in the proof of Lemma
25, it is not difficult to show by induction that =, refines » fori =0, 1, ..., £ L[]

THEOREM 31. Let S be a nonempty positive sample, and let Ay be the acceptor
output by k-RI on input S. Then L(Ay} is the smallest k-reversible language con-
taining S.

Proor. This proof is completely analogous to the proof of Theorem 26 and is
omitted. L[]

We define an operator k-RI., from infinite sequences wy, we, wa, ... of strings to
infinite sequences 41, Az, A3, ... of acceptors by

Ar = k-RI({w1, w2, ..., wp,}) forall n= 1.
It is clear that k-Rl.. is effective.

THEOREM 32. Let L be a nonempty k-reversible language and wy, wy, ws, ... any
positive presentation of L. On this input, the output Ax, Az, As, ... of k-RI converges
to A(L).

Proos. Let N be sufficiently large that {w,, ws, ..., wx} contains a characteristic
sample for the k-reversible language L. For each n = N, L(A,) is the smallest k-
reversible language containing {wy, we, ..., w.), s0 L(4,) = L. By definition of k-R1,
A, is canonical, s0 A, is isomorphic to A(L) for all n = N. Thus 4,, Az, A3, ...
converges to A(L). [

TuroreMm 33. The algorithm k-RI may be implemented to run in time O(kn®),
where n is one more than the sum of the lengths of the input strings.

ProOF. We represent each quotient acceptor Ao/, by a directed graph G, with
one node for each block of 7. and an edge labeled b from B, to B; if and only if B,
is a b-successor of B; in Ao/m. Each accepting node is so marked. The nodes are
numbered by integers in the range 1 to n. It suffices to keep a list of the current
nodes, a (possibly redundant) list of the current edges (where (b, x, y) represents edge
labeled b from node x to node y), and a Boolean vector indexed by node numbers
indicating whether each node is accepting or not.

For each G, we compute some auxiliary quantities: a list H,, and & + | matrices
C?, Cl, ..., Ck. For each ordered pair (b, x, ) and (¥, x’, ") of edges of G, (not
necessarily distinct), if # = &', then put the pair ((x, x"), (», »')) on the list H,.
Cx, »] is defined to be 1 for all pairs (x, p) of nodes of G,. Foreach r, 0 < r <k,

7! 15 defined from C! as follows. Initialize C;*'[x, y] to be O for all paiss (x, y) of
nodes of G,. Then for each pair ((x, x"), (y, »)) from H,, if C/[x, x'] = 1, then set
CHyy1=1

It is not difficult to verify that ((x, x), (, y')) is on the list H, if and only if there
exists a symbol & € U such that x is a b-predecessor of y and x” is a b-predecessor
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of y" in G,. Also, for each pair (x, ¥) of nodes of G, and for cach r, 0 = r =< &,
C/[x, y] = 1 if and only if there exists a common r-leader of x and y in G..

Thus, once these quantities have been computed, we may test for the existence of
a pair of nodes of G, violating the conditions on k-reversibility as follows. For each
pair (b, x, ) and (¥, x’, ) of edges of G., if b= b’, x = x’, and y # ), then y and
¥ give a violalion of determinism and should be merged. For each pair x ## y of
nodes of G, that are both accepting, if Cf[x, y] = 1, then x and y have a common k-
leader in G, and should be merged. Similarly, for each pair (b, x, ) and (#', x, ¥') of
edges of G, such that b = b', y = y', x # x’, and CHx, x’] =1, x and x’ have a
common 5-successor and a common k-leader in G, and should be merged.

In order to merge x and y in G;, where x < y, we scan all the edges on the edge list
of G, and replace each occurrence of y by x, If y is accepting, then x is also marked
accepting. Finally, y is removed from the node list for G.. The resulting graph is G,
The auxiliary quantities H,+1, Ctsy, ..., Cls1 are computed, and the search begins for
another pair of nodes to merge. When no pair remains to be merged, the graph is
converted to an acceptor and minimized by a standard algorithm {1].

The initial graph G, has at most # nodes and » edges, and its node and edge lists
and acceptance vector may be computed in time O(#). Thus the node and edge lists
for all of the graphs G, contain at most 7 elements. Computing the auxiliary quantities
H, and C), ..., Cf from G, may be done in time O(kn®). Searching for a pair to
merge may be done in time O(n®), and updating the node and edge lists and the
acceptance vector when two nodes are merged takes time O(n). Since at most n — 1
merges may be performed, the total time to find the final graph is O(kn®), which
dominates the time required to convert it to an acceptor and minimize it. [J

We note that the approach to updating a guess used for zero-reversible inference
warks also in this more general case. In practice it will probably prove useful to
remove duplicates from the edge lists of the quotient acceptors, since in general they
may be expected to shrink dramatically as merges are performed.

7. Using Negative Data

Theorem 32 shows that for each & the k-reversible languages can be correctly
identified in the limit from positive data. It is however not the case that the whole
class of reversible languages, R,,, can be correctly identified in the limit from positive
data, as the general results in [4, 18] on identification in the limit from positive data
show.

If we consider the problem of inferring the reversible languages from positive and
negative data, one approach immediately presents itself. That is to construct the k-
reversible inference from the positive examples for k =0, 1, 2, ... until a language is
found that does not contain any of the negative cxamples.

We define a positive and negative sample to be an ordered pair (So, S3) such that Sy
and S, are disjoint finite sets of strings. We describe an algorithm RI whose input is
a positive and negative sample (So, S1), and whose output is a reversible acceptor A
that accepts all the strings 1n §, and none of the strings in So. If §1 = &, then RI
outputs the empty acceptor and halts. Otherwise, for each k= 0, L, 2, ..., RI calls
k-RI on the set S; to produce an acceptor A;, until an acceptor A4; is found that does
not accept any of the strings in S,. This final acceptor is the output of R1. (Note that
0-RI is the algorithm ZR.) The correctness of this algorithm is formulated as follows.

THEOREM 34. With the positive and negative sample (So, S1) as input, the algorithm
RI finds the smallest k such that there exists a k-reversible language containing Sy and
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disjoint from Sy, and outputs a canonical acceptor for the smallest k-reversible language
with this property.

Proor. This is immediate from Theorems 26 and 31 and the order in which RI
searches for an acceptor with the required properties. [

The running time of RI is also easily established.

TueorEM 35. The algorithm RI runs in time O(m*n®), where m is one more than
the final value of k found and n 1s one more than the sum of the lengths of the input
strings. In parficular, m < n.

PrOOF. Let (8o, 51) be an input to RI. The total time spent in calls to k-RT for
k=0,1,..., m— lis O(m*n®), by Theorems 28 and 33. The total time spent in
testing whether the resulting acceptors contain an element of S, is O(mn), since
following the transitions of a string through a deterministic acceptor may be done in
time linear in the length of the string. Since S, and $} are disjoint, if k = »n — 1, then
the prefix tree acceptor for S is a k-reversible acceptor whose language contains Sy
and is disjoint from Sp. Thus m=rn. 0

Now we turn to the question of identification in the limit. We need a notion of a
presentation of a language containing positive and negative examples. A complefe
presentation of a langnage L is an infinite sequence (w1, e1), (we, e2), (ws, €3), ... such
that w, is a string, e, is either 0 or 1, e, = 1 if and only if w, € L, and for every string
u € U* there exists an index / such that ¥ = w,. We define two related functions,
giving the positive and negative examples in initial segments of the complete
presentation:

So(n) = (wi:l =i=<n, e =0},
Sin)y=(w:l=i=n,e=1)}.

We may define an effective operator RL. that maps complete presentations to infinite
sequences of acceptoss 4,, 4z, A3, ... such that

An = RI(So(r), S1(n)) foral n=1,

where So(n) and Si(n) are the functions associated with the given complete presen-
tation. (The behavior of Rl. on sequences of ordered pairs that are not complete
presentations of some language is not specified.)

The following lemma shows that RI. searches at each stage through a descending
chain of languages.

LeMMa 36. Let S be a positive sample, and let A = j-RI(S) and A" = k-RI(S),
where j < k. Then L(A) contains L(A’).

Proor. L{A'} is the smallest k-reversible langnage containing §. L(4) is a j-
reversible, and therefore &-reversible, language containing §. Thus L(4") is contained
in L{4). O

THEOREM 37. Let L be a reversible language, and let (wy, e;), (w2, &), ... be a
complete presentation of L. Let Ay, Az, As, ... be the output of RI.. on this input. Then
Ay, Az, As, ... converges to A(L).

Proor. The result holds trivially if L = &, so assume L # . Let & be the least
nonnegative integer for which L is k-reversible. If k¥ = 0, then the guess of RI.. will
always be the zero-reversible guess, which converges to A(L) by Theorem 27.
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Suppose k = L. Let N be sufficiently large that Si(NV) contains a characteristic sample
for L as a k-reversible language. Consider L’, the language accepted by the acceptor
{k — 1)-RI(S1(¥)). This language contains L by the preceding lemma and the fact
that L = k-RI(Sy(N)). However, since L’ is (k — 1)-reversible, it is not equal io L.
Choose some element w’ that is in L’ but not in L. Let N* = N be sufficiently large
that So(N") contains w’.

For each n = N’, RL., computes j-RI(Si(n)) for j=0, 1, ..., k — | and finds that
they each contain the element w’ of So(z). Hence RI. computes and outputs
k-RI(S\(n)), which by Theorem 32 is a canonical acceptor for L. Thus in this case
also 4,, Az, Ay, ... converges to A(L). []

Thus RI. does correct identification in the limit of the reversible languages from
positive and negative data. Its behavior in each finite stage is reasonable, both in
terms of the characterization of the guess and the time required to compute it. In
practice, its running time could probably be improved by incorporating the incre-
mental updating scheme of the algorithms ZR and k-RI for new positive examples
and by keeping track of the largest value of k required so far to use as the starting
place for the search for new acceptors in the case when a negative example invalidates
the current guess.

Other approaches to the use of negative data should also be considered. For
example, an approach that overcame the asymmetry of Rl in the use of positive and
negative data would be interesting.

8. Some Comparisons

The zero-reversible inference algorithm is based on a heuristic originally proposed
by Feldman [11, 13], so it is not surprising that it duplicates the performance of the
heuristic on the primary examples given in those papers, which we reproduce below:

L, = {strings of a’s and &’s with an even number of a’s},
S1 = {b, bb, aa, baa, aba, baba, abba, bbaba, bbaa, aabb),
Lz = {c + bb)a*b,

Se = {ch, bbb, cab, bbab, caab, bbaab, caaab).

Itoga [25] describes some experiments with a variant of Feldman’s heuristic that is
rather sensitive to the order of presentation of the data. The primary example studied
is a seven-state transducer over {a, b, ¢} that outputs 1 if it has seen the three symbols
a, b, ¢ (in any order) since the beginning of the siring or the last time it output 1,
whichever is later, and otherwise outputs 0. Itoga’s method correctly identifies this
transducer from a particular sample of 104 strings. If we convert this to an acceptor
in the standard way, the resulting language is not reversible, so our methods do not
apply.

Biermann and Feldman [5] describe 2 method of inferring regular sets from
positive data by merging stales with equal sets of k-tails, starting with an acceplor
derived from the sample strings. The set of k-tails of a state is simply the set of
strings of length k or less that are accepted from that state. The final acceptor is
generally nondeterministic. The user specifies the value of k that is used by the
method; for each regular set, k may be set sufficiently large to guarantee correct
identification in the limit of that regular set.

Miclet [29] describes an approach to inferring regular sets from positive data by
merging states according to a similarity measure on their sets of k-tails (for £ chosen
by the algorithm and decremented at each stage). The general approach is quite
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flexible and interesting; however, the particular heuristic implementation illustrated
in the paper seems to be dominated in its performance by the zero-reversible
algorithm. The three examples considered in the paper are all zero-reversible, and
are correctly ideatified from the given data by the zero-reversible algorithm:

Ly = a(bc)*d,

8 = {abed, abebed},

Ly = (aa + ba(aa)*c)*,

S: = {aabac, baaac, bacbac, aabaaac, bacaabac, aaaaaabac,
aaaabaaac, baaaaaaac, bachachae, bacaabaaaaac},

L; = {strings with an even number of a’s and an odd number of &’s},

S5 = {aba, bbb, abbab, bbaba, bbbbb, abaabab, babbbaaab,
bbaaabbab, bbbaaabab, baabbbbbaba},

(The tail-clustering method described by Miclet requires another string added to Ss
in order to identify Ls correctly.)

These comparisons suggest that the class of zero-reversible languages captures an
interesting class of phenomena in the inference of regular sets from positive data,
though it certainly does not exhaust the domain. It is hoped that a clear understanding
of this class will help to stimulate investigation of other types of phenomena in this
domain.

9. Conclusions

We have presented efficient algorithms to infer k-reversible languages from positive
data and reversible languages from positive and negative data. The zero-reversible
inference algorithm is of particular interest because of the relation between zero-
reversible languages and automata whose syntactic monoids are permutation groups.
This suggests that it may be possible to use the algebraic properties of automata to
help characterize their “inferability.” It is interesting to contrast these results with
those of Crespi-Reghizzi et al. [10], which specifically concern “noncounting” (i.e.,
permutation-free) languages. Perhaps there will be a useful synthesis of these two
approaches.

The algorithms and implementations we have given are fairly straightforward and
may not be the most efficient possible. However, this is appropriate in a domain such
as this one, where much of the current work must be viewed as exploratory feasibility
studies. Time and further experience will tell whether these algorithms are indeed
solving the “right” problems. For this, experience with computer implementations of
relatively straightforward algorithms may be more relevant at present than a search
for faster algorithms. However, faster algorithms for these problems would certainly
be welcome.

It should be evident that inductive inference swarms with unsolved, mostly ill-
defined, problems. This paper will have achieved one of its primary goals if it has
helped to indicate how one line of approach may lead to well-defined problems and
solid theoretical progress.
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