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Abstract. A famdy of efficient algorithms for referring certain subclasses of the regular languages from 
fmtte posttwe samples is presented These subclasses are the k-reversible languages, for k = 0, 1, 2, . . . .  
For each k there is an algorithm for finding the smallest k-reversible language containing any fimte 
posluve sample. It ts shown how to use this algorithm to do correct identification m the ILmlt of the k- 
reversible languages from posmve data A reversible language is one that Is k-reverstble for some k __ 0. 
An efficient algonthrn is presented for mfernng reversible languages from posmve and negative examples, 
and it is shown that it leads to correct identification m the hmlt of the class of reversible languages. 
Numerous examples are gtven to dlustrate the algorithms and their behawor 
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1. Introduct ion 

This p a p e r  concerns  the p rob lem o f  induc t ive ly  inferr ing genera l  rules f rom examples .  
People  seem to agree that  this is an  impor t an t  p r o b l e m  area,  bu t  there  is much  less 
agreement  abou t  how to s tudy it. One  o f  the p r i m a r y  goals  o f  this p a p e r  is to indica te  
that  a re la t ively  theore t ica l  approach ,  using tools f rom complex i ty  theory  and  fo rma l  
l anguage  theory,  appea r s  to be bo th  feasible and  fruitful.  

W h e n  people  communica t e  complex  procedures  to o ther  people ,  they  of ten seem 
to rely on  a somewha t  sketchy descr ip t ion  o f  the genera l  ideas,  together  wi th  examples  
to e lucidate  pa r t i cu la r  details .  I f  we could  fred sound,  uniform,  and  convenien t  
me thods  that  would  a l low compu te r  p rog rams  to genera l ize  a pp rop r i a t e ly  f rom 
examples ,  these would  p r o b a b l y  increase the usabi l i ty  o f  compute r s  by  exper ts  and  
nonexper t s  both.  This  p a p e r  is par t  o f  a genera l  s tudy o f  wha t  makes  a class o f  rules 
eff ic ient ly  and  re l iab ly  inferable  f rom examples ,  wi th  the  goal  o f  even tua l ly  f inding  
such methods .  

In  this p a p e r  we s tudy inferabl l i ty  m a pa r t i cu la r  abs t rac t  doma in ,  tha t  o f  infer r ing  
fo rmal  l anguages  f rom finite samples .  Imag ine  that  we are given a finite set o f  strings 
f rom some fo rmal  language,  and  poss ib ly  ano ther  finite set o f  str ings f rom the 
c o m p l e m e n t  o f  the  language ,  and  we are  requi red  to make  a guess o f  wha t  the 
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unknown language is. For example, given the set of strings (00111, 01, 000011, 
001111}, we might guess that the underlying language is the set of all strings 
consisting of any number of O's followed by any number of l's. It may be objected 
that there are infinitely many regular languages that contain this sample, and we 
have no way of knowing whether such a guess is "right." One of the fundamental 
problems for this area of study is to find appropriate, natural, and theoretically sound 
criteria for the "goodness" of generalizations such as this one. 

The concept of identification in the limit, formulated by Gold [18], has been of 
basic importance m theoretical studies of inductive inference. This concept relies on 
looking at the limiting behavior of the inferring process as it is given more and more 
examples of a particular rule. If, for any sequence that eventually contains each 
example of a given rule, the inferring process produces a sequence of guesses that 
eventually converges to one that is a correct description of the underlying rule, then 
the process is said to identify this rule m the limit. Much has been learned about the 
classes of formal languages and partial recursive functions that can be correctly 
identified in the limit by various kinds of effective inference processes [6, 7, 12, 18]. 
However, the inference procedures described in these abstract studies are generally 
enumerative in character and appear to be too inefficient to be of practical use. 

A number of methods have been proposed to perform inductive inference in 
concrete domains, for example, finite automata, context-free grammars, logical 
theories, and programs in LISP and other programming languages. An overview of 
inference techniques for formal grammars and applications in the domain of syntactic 
pattern recognition may be found in the survey article of Fu and Booth [16], and the 
books of Fu [14, 15] and Gonzalez and Thomason [20]. Further references concerning 
both abstract and concrete results in inductive inference may be found in the 
bibliography of Smith [31]. Few studies of inference in concrete domains have given 
analyses of the efficiency of the methods used. In the absence of such analysis, 
behavior on test cases is often used to give some indication of the computational 
feasibility of an inference method. 

However, there has been some theoretical work concerning the possibility of 
efficient inference procedures for specific concrete domains, which we now sketch. 
On the negative side, there are results that show that fmding a smallest finite 
automaton or regular expression compatible with a given fimte sample consisting of 
a finite set of strings marked as "accepted" and another finite set of strings marked 
as "rejected" is an NP-hard problem, even under rather strong restrictions on the 
samples and possible answers [2, 19]. The idea of searching for the "smallest" 
description compatible with the sample is natural and attractive at first sight. 
However, these results suggest that such an approach will not lead to a general 
understanding of the concept of efficient inferability. On the positive side, polyno- 
mial-time inference algorithms have been found for certain classes of parenthesis 
grammars [9, 10, 27] and for the one-variable pattern languages [3]. 

The primary contribution of the present paper is a family of new, efficient 
algorithms to infer certain subclasses of the regular languages from positive samples. 
These algorithms were discovered in the course of trying to understand variants of 
an inference heuristic originally proposed by Feldman [13] and compare favorably 
with a heuristic method of tail-clustering recently proposed by Miclet [29]. The 
classes inferred by these algorithms are the k-reversible languages, for k ffi 0, 1, 
2 . . . . .  The class of zero-reversible languages was studied, though not named, by 
McNaughton [26], who proved that the loop-complexity (or star-height) of a zero- 
reversible language is exactly equal to the cycle rank of its reduced state-graph. This 
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FIG. 1 The pref'Lx tree machine for {X, 00, 11, 
0000, 0101, 0110, 1010} 

suggests both the naturalness of the k-reversible languages and the possibility of 
unexplored, fruitful links between inferability and algebraic structure. 

In evaluating results of this kind, important criteria are: how efficient and incre- 
mental the algorithm is, how precisely and naturally its guess is defined for any given 
sample, whether it does correct identification in the limit, and how natural and useful 
the class of rules inferred is. The algorithms we present are both efficient and 
incremental. The guess for a given sample is shown to be the smallest k-reversible 
language containing the sample, and it is shown that this leads to correct identification 
in the limit of the k-reversible languages. The property of producing the best k- 
reversible "summary" of the input sample suggests that these algorithms may 
ultimately be useful as components of more complex inference procedures employing 
"summaries" of various different kinds. 

In Section 2 we give an informal example of the zero-reversible inference algorithm. 
Formal preliminaries are in Section 3. The definitions and basic results about the 
reversible languages are in Section 4. The zero-reversible inference algorithm is 
formally described, justified, and analyzed in Section 5, and the generalization to k- 
reversible languages is presented in Section 6. The use of negative examples and an 
algorithm to infer reversible languages from positive and negative data are presented 
in Section 7. Section 8 contains comparisons with other methods of inferring regular 
languages from positive data, and Section 9 contains concluding remarks. 

2. An Informal Example 
A zero-reversible acceptor is a deterministic finite-state acceptor with at most one 
final state such that no two arrows entering any state are labeled with the same input 
symbol. Suppose we are given the sample 

S = (~, 00, 11, 0000, 0101, 0110, 1010} 

and are told that it is part of the language of some zero-reversible acceptor. We 
might then proceed as follows. 

First we construct the prefLx tree acceptor for S, shown in Figure 1. This is not 
zero-reversible, because it has more than one final state. So we merge all the final 
states together to produce the acceptor shown in Figure 2a. However, this acceptor 
is not deterministic, so we merge the two states labeled B to produce the acceptor 
shown in Figure 2b. This acceptor is not zero-reversible, because several states 
(labeled B) are 0-predecessors of the state labeled A, and several states (labeled D) 
are l-predecessors of state A. We therefore merge the states labeled B and the states 
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FIG. 2 Stages m the zero-reversible algorithm 

o 

o 
(a) 

I 0 I 

-8:-8 
(b) 

FIG 3. A zero-reversible and a l-reversible acceptor 

labeled D to produce the acceptor shown in Figure 2c. This is still not zero-reversible, 
since the two states labeled C are both 1-predecessors of  state B. Merging these two 
states gives the zero-reversible acceptor shown in Figure 3a. This machine accepts 
the set of  all strings over (0, 1 } that contain an even number of  O's and an even 
number of  l's, which is a plausible inference from the original sample. 

We leave it to the reader to verify that the method we have just sketched infers the 
universal language (0 + 1)* from the sample 

S = {01, 00011, 00111, 001111}, 

which does not seem to be a very plausible inference. In subsequent sections of  this 
paper we precisely describe and analyze the behavior of  the method sketched and 
present a generalization that handles the second kind of  example more satisfactorily. 

3. Basic Definitions and Notation 

in this section we define certain notions we shall need from the theory of  formal 
languages and automata. We generally follow Hartmanis and Steams I23] in spirit, 
though we require some technical modifications of  their definitions. 



Inference of  Reversible Languages 745 

The alphabet is a fLxed finite nonempty set U of  symbols. U* denotes the set of  all 
f'mite strings over U. 2, denotes the empty string. The length of  the string w is denoted 
[w I. The reverse of  the string w is denoted w r. The concatenation of  the strings u and 
v is denoted uv. The string u is a prefix of  the string v if and only if there exists a 
string w such that uw = v. The string u is a suffix of  the string v if and only if there 
exists a string w such that wu = v. 

A language is any subset of  U*. The reverse of  a language L is defined by L r -- 
(w~: w ~ L}. I f L  is any language, then we define the set Pr(L) of  prefLxes of  elements 
of  L by 

Pr(L) = (u: for some v, uv E L} .  

Also, for any w E U*, we denote the left-quotient of  L and w by 

TL(W) = (v:wv E L} .  

Thus, TL(w) ~ 0 if  and only if w E Pr(L). When L is clear from the context, we 
write T(w) instead of  TL (w). 

Apositive sample is a finite set of  strings. S is apositive sample of  the language L if  
and only if S is a finite subset of  L. (We consider samples containing negative as well 
as positive information in Section 7.) 

I f  S is any set, I S I denotes the cardinality of  S. A partition of  S is a set o f  pairwise 
disjoint nonempty subsets of  S whose union is S. I f  ~r is a partition of  S, then for any 
element s E S there is a unique element of  ~r containing s, which we denote B (s, ~r) 
and call the block of  ~r containing s. A partition ~r is said to refine another partition 
rr' if and only if every block of  ~r' is a union of blocks of  ~r. We denote this by 
~r _ ~r'. In this case we also say that ~r' is coarser than ~r, or that 7r is finer than ~r'. 
Note that both of  these relations are reflexive. I f  ~r is a partition of  a set S and S '  is 
a subset of  S, then the restriction of 7r to S '  is the partition ~r' consisting of  all those 
sets B' that are nonempty and are the intersection of  S '  and some block of  ~r. The 
trivialpartition of  a set S is the class of  all sets (s) such that s ~ S. 

A right congruence is a partition ~r of  U* with the property that B(wl, ~r) = 
B(w2, ~r) implies B(WlU,  7r) = B(w2u, ~r) for all wl, w2, u ~ U*. I f L  is any language, 
then Tz(wx) = TL(wD implies TL(wlu) = TL(w2u) for all u, so L determines an 
associated right congruence ~rL by B(wl, ~rL) = B(w2, ~rL) if  and only if  TL(W,) = 
TL (w2). Other natural right congruences are associated with automata.  Note that a 
language L is regular just in case ~rL contains finitely many  blocks. We assume 
familiarity with the basic facts about regular sets [21-24]. 

An acceptor is a quadruple A = (Q , / ,  F, 8) such that Q is a finite set, I and F are 
subsets of  Q, and 6 is a map from Q x U to subsets of  Q. Q is the set of  states, I is 
the set of  initial states, F is the set of final or accepting states of  A, and 6 is the 
transition function of  A. The acceptor is deterministic if  and only if there is at most 
one initial state, and for each state q E Q and symbol a E U there is at most one 
element in 6(q, a). Note that we allow undefined transitions in deterministic automata.  
The empty acceptor is the unique acceptor with Q = O. (The empty acceptor is 
deterministic.) We shall sometimes write 6(q, b) = q' for 6(q, b) = (q'). 

Let A = (Q, L F, 8) and A' = (Q', I', F', 8') be acceptors. A is isomorphic to A'  if  
and only if there exists a bljection h of  Q onto Q'  such that h(1) = I', h(F) = F', and 
for every q E Q and b ~ U, h(6(q, b)) = 6'(h(q), b). Isomorphic acceptors are the 
same up to renaming of  the states. A '  is a subacceptor of  A if and only if Q', I ' ,  and 
F '  are subsets of  Q, L and F, respectively, and for every q '  ~ Q'  and b ~ U, 6'(q', b) 
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is a subset of 8(q', b). Pictorially, a subacceptor is obtained by removing some states, 
initial states, final states, and transition arrows from the diagram of an acceptor. 

I f  Qo is a subset of Q, then the subacceptor of  A induced by Qo is the acceptor 
(Q0, Io, F0, 8o), where Io is the intersection of Qo and L F0 is the intersection of Qo and 
F, and q' ~ 6o(q, b) if and only if q, q' E Qo and q' ~ 8(q, b). A state of A is called 
useful if  and only if there exist strings u and v such that q E 8(I, u) and 8(q, v) 
contains some element of F. States that are not useful are called useless. An acceptor 
that contains no useless states is called stripped. I fA is any acceptor, then the stripped 
subacceptor of A is the subacceptor of A induced by the useful states of A. 

We extend the transition function 8 to map a set of  states and a string to a set of  
states in the usual way. If  q E 8(q', a), then q' is called an a-predecessor of q, and q 
is called an a-successor of q'. 

A string u is accepted by an acceptor A = (Q, I, F, 8) if and only if 8(I, u) contains 
some element of  F. The set of strings accepted by A is called the language of A and 
is denoted L(A). IfA and A' are isomorphic, then L(A) = L(A '). IrA' is a subacceptor 
of A, then L(A') is a subset of L(A). If  A' is the stripped subacceptor of A, then 
L(A') --- L(A). 

Let A be a deterministic acceptor with initial state set I. Defme the partition ~rA by 
B(W1, 97A) = B(W2, "17A) if and only if 8(L Wl) = 8(I,  W2). Since TL(W1) = TL(W2) if 
8(L wl) = 8(L w2), ~rA is a right congruence that refines Irz, where L = L(A). 

Let A = (Q, L F, 8) be any acceptor. I f  ,r is any partition of Q, we define another 
acceptor A/rr = (Q', 1', F', 8') as follows. Q' is the set of blocks of ~r. I '  is the set of 
all blocks of  ~r that contain an element of 1. F'  is the set of all blocks of  ~r that con- 
tain an element of F. The block B2 is in 8'(B1, a) whenever there exist ql ~ B1 and 
q2 ~ B2 such that q2 ~ 8(q~, a). A/ir is called the quotient of A and ~r. 

Let L be any regular language. We define the canonical acceptor for L, A (L) = 
(Q, / ,  F, 8), as follows: 

Q = (TL(u):u E Pr(L)),  
I =  {TL(X)} if L#QS,  otherwise I =  O, 
F =  {TL(w):w E L},  

8(TL(U), a) = Tz(ua) if  u, ua E Pr(L). 

(Note that if L = O, then Pr(L) = O and A (L) is the empty acceptor.) Recall that 
TL(U~) = TL(U2) implies TL(UlV) = TL(U2V) for all strings v, so that this transition 
function is well defined and A (L) is deterministic. The acceptor A (L) accepts the 
language L and has the minimum possible number of states among all acceptors of  
L. A (L) is stripped, that is, contains no useless states. Note that the right congruence 
rrA<L) induced by A(L) coincides with the right congruence ~rL induced by L. An 
acceptor A is called canonical if and only ifA is isomorphic to the canonical acceptor 
for the language of A. Given a deterministic acceptor A, there is an efficient procedure 
to fred a canonical acceptor for L(A), as described in [1]. 

Let S be a positive sample, that is, a finite set of strings. Define the prefix tree 
acceptor for S, PT(S) = (Q, L F, 8), as follows: 

a = Pr(S), 
I =  {~} if  S # O ,  otherwise I=QS,  
F = S ,  

8(u, a) = ua whenever u, ua E Q. 

Then PT(S) is a deterministic acceptor that accepts precisely the set S. (Note that if  
S = O, then PT(S) is the empty acceptor.) The inference algorithms that we shall 
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consider begin with the prefix tree acceptor for the input sample and generalize it by 
merging states. The following lemma concerns what kinds of  acceptors may be 
obtained by merging states of  the prefix tree acceptor for a sample. 

LE~MA 1. Let S be a positive sample of the regular language L, and let Ao be the 
prefix tree acceptor for S. Let ~r be the partition ~rt, restricted to the set Pr(S) of prefixes 
of elements of S. Then Ao/er is isomorphic to a subacceptor of  A(L). 

PROOF. The result holds trivially if S = O, so assume that S ~ O. We shall denote 
TL(w) by T(w). The partition ¢r is defined by B(wx, ¢r) = B(w2, ¢r) if  and only if T(wl) 
= T(w2), for all wa, w2 E Pr(S). Hence h(B(w, ¢r)) = T(w) is a well-defined and 
injective map from the states of  Ao/rr to the states of  A(L). The initial state B(2,, or) 
of  Ao/cr is mapped to the initial state T(k,) of  A(L). I f  B1 is a final state of  Ao/er, then 
B1 = B(w, or) for some w in S, and since L contains S, T(w) is a final state of  A(L). 
Hence h maps final states of A0/~r to final states of A(L). 

If  B2 is a b-successor of  B~ in Ao/~r, then for some w E Pr(S) we have B2 = 
B(wb, ~r), BI = B(w, It), and wb ~ Pr(S). Thus h(B2) = T(wb) is a b-successor of  
h(B1) = T(w) in A(L). 

Thus h is an isomorphism between Ao/cr and a subacceptor of  A(L). [] 

COROLLARY 2. L(Ao/cr) is contained in L. 

It may also be shown that if S is a complete sample for L, that is, exercises every 
transition in A (L), then the acceptor Ao/cr defmed above is isomorphic to A (L). Of  
course, in the inference procedures we consider, ¢r is not given but rather must be 
guessed. These results show only that a correct guess exists. 

4. Reversible Languages 

In this section we define reversible regular languages and establish some of  their 
basic properties. Inference algorithms for these languages are described in later 
sections. 

4.1. ZERO-REVERSIBLE ACCEPTORS AND LANGUAGES. Let A = (Q , / ,  F, 3) be an 
acceptor, and let L = L(A). The reverse of  6, denoted 6r, is defined by 

~r(q, a) = {q':q ~ ~(q', a)) for all a ~ U, q ~ Q. 

The reverse of  the acceptor A is A ~ = (Q, F , / ,  /~r). Pictorially, we obtain A r from A 
by interchanging the initial and final states and reversing each of  the transition 
arrows. It is not difficult to verify by induction that L(A ~) = (L(A)) ~. 

The acceptor A is said to be zero-reversible if  and only if both A and A r are 
deterministic. Using the terminology of  Cohen and Brzozowski [8], an acceptor is 
resetfree if  and only if for no two distinct states ql and q2 do there exist b C U and 
qz E Q such that 8(ql, b) = q3 = 8(q2, b). Then an acceptor is zero-reversible if  and 
only if it is deterministic, has at most one final state, and is reset-free. Alternatively, 
a zero-reversible acceptor is any subacceptor of  a permutation acceptor with at most 
one initial and one final state. 

Remark 3. Note that if A is zero-reversible and accepts uv, then ~(qo, u) = 
6~(qt, v r )  if  I = (qo) and F = (qt}- Consequently, i fA accepts both ulv and u2v, then 
8(q0, ul) = ~(q0, u2). 

Remark 4. I fA is a zero-reversible acceptor and A' is any subacceptor of  A, then 
A'  is a zero-reversible acceptor. 
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LEMMA 5. Suppose A is a zero-reversible acceptor. Then the stripped subacceptor 
A '  of  A is canonical. 

PROOF. A' is a zero-reversible acceptor and accepts L = L(A). I f L  is the empty 
language, then A' is the empty acceptor and therefore canonical. So suppose that L 
is not the empty language. Let A'  = (Q, (qo), (qf), 8). Let ql and q2 be states of A', 
and suppose that (v:8(ql, v) = qf) = ( v : ~ ( q 2 ,  v)  = qf). Since A' is stripped, this 
implies that there exist strings u~, uz, v such that ql = 6(q0, Ul), q2 = 8(q0, uz), and ulv, 
uzv ~ L. Thus, by Remark 3, ql = qz. Hence A' is canonical. [] 

A language L is defined to be zero-reversible if and only if there exists a zero- 
reversible acceptor A such that L = L(A). The following lemma shows that we need 
only test the canonical acceptor to determine whether a language is zero-reversible. 

LEMMA 6. A regular language L is zero-reversible i f  and only i f  the canonical 
acceptor A (L) is zero-reversible. 

PROOV. The "if"  direction is immediate from the definitions. Suppose that L is 
zero-reversible and A is a zero-reversible acceptor for L. The stripped subacceptor A'  
of A is canonical, zero-reversible, and accepts L. Since A (L) is isomorphic to A', 
A (L) is zero-reversible. [] 

The next result gives a purely language-theoretic characterization of the zero- 
reversible sets. 

THEOREM 7. Let L be a regular language. Then L is zero-reverszble if  and only tf  
whenever ulv and u2v are in L, Tz(ul) = Tz(u2). 

PROOF. We denote TL(w) by T(w). Suppose L is zero-reversible. By the above 
lemma, the canonical acceptor A(L)  is zero-reversible. Thus, if  ulv and u2v are in L, 
then by Remark 3, u~ and u2 lead to the same state of A (L), that is, T(ul) = T(u2). 

Conversely, suppose that whenever ulv and u2v are in L, T(u~) = T(u2). Thus, if u~ 
and u2 are in L, T(u~) = T(u~), so A (L) has at most one accepting state. I f  T(ui) and 
T(u2) are states of A(L) such that T(ulb) = T(u2b) is a state of A(L) for some b ~ U, 
then there exists a string v such that ulbv and u2bv are in L, so by the hypothesis, 
T(u~) = T(u2). Hence, A (L) is zero-reversible, and therefore L is zero-reversible. [] 

Example 8. Let U = (0, 1}. The language of all strings over U containing an 
even number of l 's and an even number of O's is accepted by the acceptor shown in 
Figure 3a and is therefore zero-reversible. The canonical acceptor for the language 
0*l* is shown in Figure 3b. Since the canonical acceptor is not zero-reversible, the 
language 0* l* is not zero-reversible. [] 

In order to do correct identification in the limit from positive data, we must avoid 
the problem of "overgeneralizing," that is, of accidentally guessing a language that 
is a strict superset of the unknown language. This problem is analyzed in a general 
setting in [4]. For this particular setting we define a characteristic sample of a zero- 
reversible language L to be a sample So of L with the property that L is the smallest 
zero-reversible language that contains So. If  we detect a characteristic sample for L 
among the input strings, then we are assured that a guess of L will not be an 
overgeneralization. The following result is used in the proof of correct identification 
in the limit of the zero-reversible languages. 

THEOREM 9. For any zero-reversible language L there exists a characteristic 
sample. 
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PROOF. Clearly, if L = ~,  then So = O is a characteristic sample for L. Suppose 
L ~ O, and let A = (Q, (qo}, (qr}, 6) be the canonical acceptor for L. For  each state 
q E Q, let u(q) and v(q) be strings of  the minimum possible lengths such that 
6(qo, u(q)) = q and 6(q, v(q)) = qf. Let So consist of all strings of  the form u(q)v(q)  
such that q E Q and all strings of the form u(q)bv(q') such that q E Q, b ~ U, and 
q' = 6(q, b). We show that So is a characteristic sample for L. 

Let L'  be any zero-reversible language containing So. We show that TL,(W) = 
TL,(u(q)) for all strings w ~ Pr(L), where q = 6(q0, w). Since u(qo) = ~, this holds for 
X. Inductively suppose that this holds for all elements of Pr(L) of  length at most n, 
for some n _> 0. Let w be a string from Pr(L) of  length n, and suppose that b ~ U is 
such that wb E Pr(L). By the inductive hypothesis, Tz,(W) = TL,(u(q)), where q = 
6(qo, w). Thus, TL,(wb) = TL,(u(q)b). If  q' = 6(q, b) = 6(qo, wb), then u(q')v(q') and 
u(q)bv(q') are both elements of  So. Thus TL,(u(q')) = Tr,(u(q)b) because L '  is zero- 
reversible, by Remark 3. Hence TL,(Wb) = TL,(u(q')), which completes the induction. 

Thus for every w ~ L, TL,(W) = TL'(u(qr)), and since u(qr) ~ So, this tmplies that 
w E L'. Therefore, L is contained in L',  and L is the smallest zero-reversible language 
that contains So. Hence So is a characteristic sample for L. []  

Example 10. Consider the language over {0, 1) consisting of  all strings containing 
an even number of  O's and an even number of l's, whose canonical acceptor is 
pictured in Figure 3a. Applying the construction process described in the above 
proof to obtain a characteristic sample for this language, we may define u(A) = ~, 
v(A) = ~, u(B) = O, v(B) = O, u(C) = 01, v(C) = 10, u(D) = 1, and v(D) - 1, which 
gives the sample 

So = (X, 00, 11, 0101, 0110, 1010). [] 

4.2. K-REVERSmL~ ACCEPTORS AND LANGUAGES. The notion of  k-reversibility is 
a generalization of zero-reversibility. Let k be a fixed nonnegative integer. Let A = 
(Q, L F, 6) be an acceptor. The string u is said to be a k-follower (resp. k-leader) of  
the state q in A if and only if I u I = k and 6(q, u) # O (resp. 6r(q, ur) # 0 ) .  Note that 
every state has exactly one 0-follower and one 0-leader, namely, h. The acceptor A 
is defined to be deterministic with lookahead k if  and only if for any pair of  distinct 
states q, and q2, if ql, q2 E I or q,, q2 ~ 6(q3, a) for some q3 ~ Q and a E U, then 
there is no string that is a k-follower of both ql and q2. This guarantees that any 
nondeterministic choice in the operation of  A can be resolved by looking ahead k 
symbols past the current one. 

An acceptor A is defined to be k-reversible if  and only ifA is deterministic and A ~ 
is deterministic with lookahead k. A language L is defined to be k-reversible if  and 
only if there exists a k-reversible acceptor A such that L = L(A).  Note that these 
definitions coincide with the definitions for zero-reversible acceptors and languages 
when k = 0. 

Remark 11. I fA = (Q, {qo), F, 6) is k-reversible and uavw and u2vw are accepted 
by A, where Iv I = k, then there is a unique state q such that 6(qo, uav) = q = 
6(qo, u2v). 

Remark 12. Any subacceptor of  a k-reversible acceptor is k-reversible. 

The analog of  Lemma 5 for k-reversible languages is not in general true, but it still 
suffices to test the canonical acceptor for a language to decide whether it is k- 
reversible, as we now show. 
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LEMMA 13. A regular set L is k-reversible if  and only i rA(L)  is k-reversible. 

PROOF. We denote TL(W) by T(w). The "if"  direction is immediate. Suppose L 
is k-reversible and is accepted by the k-reversible acceptor A ~- (Q, {qo}, F, 6). A (L) 
is a deterministic acceptor of  L, and ~rA refines erA(L). We must check that (A(L)) r is 
deterministic with lookahead k. Suppose T(w 0 and T(w2) are states of  (A(L)) ~ and 
v is a k-follower of  T(wl) and of  T(w2) in (A(L)) ~. Then there exist strings ul and u2 
such that T(ulv ~) = T(wl) and T(uzv r) = T(w2). I f  T(w 0 and T(w2) are both initial 
in (.4 (L)) r, or if for some a ~ U there is a state T(w3) of  A (L) such that T(w,a) -- 
T(w3) = T(w2a), then there exists a string w such that A(L)  accepts both utv~w and 
u2v~w. Thus A accepts both of  these strings, and by the above remark, 8(q0, utv ~) = 
q = 8(qo, u2v r) for some q in A. Thus ulv ~ and u2v ~ are in the same block of  ~A, and 
therefore in the same block of  ~rA(L), SO T(ulv ~) = T(u2v ~) and T(wt) = T(w2). Thus 
A(L)  is k-reversible. []  

We now give a characterization of  the k-reversible languages purely in terms of  
the languages. 

THEOREM 14. Let L be a regular language. Then L is k-reversible if  and only if  
whenever ulvw and u2vw are in L and I v l = k, TL(UlV) ---- TL(u2v). 

PROOF. We denote TL(w) by T(w). Suppose L is k-reversible. By the above 
lemma, the canonical acceptor A(L)  is k-reversible. Suppose u~vw and u2vw are in L, 
where [ v I = k. Then by Remark I l, u~v and u2v lead to the same state of  A (L), so 
T(ulv) = T(u2v). 

Conversely, suppose that L is such that whenever uxvw and u2vw are in L, where 
Iv[ = k, then T(ulv) = T(u2v). Suppose that ul, uz, and v are such that T(ulv) and 
T(uzv) are accepting states of  A(L), where Iv I = k. Then UlV and u2v are in L, so by 
the hypothesis, T(UlV) = T(uzv). Similarly, if ul, u2, and v are such that T(ulvb) = 
T(u2vb) is some state of  A(L),  where Iv[ -- k, then there exists some string w such 
that ulvbw and uzvbw are in L. Then T(u~v) = T(uzv) by the hypothesis on L. Hence 
A (L) is k-reversible, and therefore L is k-reversible. [] 

Example 15. The acceptor shown in Figure 3b is 1-reversible, so the language 
0* 1" is 1-reversible. Consider the regular set L denoted by the regular expression 
ba*c + d(aa)*c. The canonical acceptor for L is shown in Figure 4. This acceptor is 
not k-reversible for any k _> 0, since for any k > 0, a ~ is a k-leader of  two distinct 
states that have a common c-successor. Hence L is not k-reversible for any 
k _ 0 .  [] 

We now consider characteristic samples for k-reversible languages. A positive 
sample S is a characteristic sample for a k-reversible language L if  and only if L is the 
smallest k-reversible language containing S. (Note that whether a sample is a 
characteristic sample for a given language depends on the value of  k under consid- 
eration. Thus a sample that is characteristic for a zero-reversible language L may not 
be characteristic for the same language considered as a 1-reversible language.) 

THEOREM 16. Let L be any k-reversible language. Then there exists a characteristic 
samples So for  L. 

PROOF. Since Theorem 9 establishes this result in the case k = 0, we assume 
k _> 1. If  L = ~,  then So = ~ is a characteristic sample for L, so we suppose that 
L # ~.  Let A = (Q, {qo}, F, 6) be the canonical acceptor for L. For each q E Q let 
Lq denote the set of  k-leaders of  q in A. For  each pair q E Q and x E Lq let u(q, x) 
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denote a string u of  the minimum possible length such that 8(qo, ux)  = q. For each 
q ~ Q let v(q) denote a string v of the minimum possible length such that 8(q, v) 
E F. The sample So is def'med to consist of  all strings w E L of  length less than k, 
all strings u(q, x )xv(q)  such that q E Q and x ~ Lq, and all strings u(q, x)xbv(q')  
such that q E Q, x ~ Zq, and q'  = 6(q, b). No other strings are in So. 

Let L '  be any k-reversible language containing So. We must show that L is 
contained in L' .  Clearly any element w of L of length less than k is in So and 
therefore in L' .  We show by induction that for every w C Pr(L) of  length at least k, 
TL,(w) = TL,(u(q, x )x) ,  where x is the suffix of  w of  length k and q = 8(q0, w). If  w 
has length exactly k, then w --- x and u(q, x )  = ~, so this condition is satisfied. 
Suppose that for some n > k this condition is satisfied for all strings w ~ Pr(L) of  
length at most n. Suppose w is any element of  Pr(L) of  length n + 1. Write w = 
w'axb, where Ix l = k - 1 and a, b E U. By the induction hypothesis, TL,(w'ax) = 
TL,(u(q, ax)ax), where q = 8(qo, w'ax). Thus TL,(w) = TL,(u(q, ax)axb). Let q '  -- 
8(q, b) = 8(qo, w). Then So contains the strings u(q, ax)axbv(q')  and u(q', xb)xbv(q'),  
so L '  contains both of these strings. By Remark 11, this implies that TL, (u(q, ax)axb) 
= TL,(u(q', xb), xb), so TL,(w) = TL,(u(q', xb)xb), completing the induction step. 

Now let w be any element of  L of  length at least k, and let x be the suffix of  w of  
length k. Then TL,(w) = TL,(u(qr, x)x), where ql E F. Since qr is an accepting state, 
v(qr) = ~,, so u(qf, x )x  is in So and therefore in L'. Hence w is in L', which completes 
the proof that L is contained in L'. Thus L is the smallest k-reversible language 
containing So, and So is a characteristic sample for L. [] 

Example 17. Consider the language 0"1" whose canonical acceptor is shown in 
Figure 3b. Applying the method of  the above proof to construct a characteristic 
sample So for this l-reversible language, we obtain LA = {0), LB = (1}, u(A, O) 
= ~, v(A) = ~, u(B, 1) = ~,, v(B) = ~,, and So = {A, 0, 1, 00, 01, 11). []  

4.3 GENERAL PROPERTIES OF REVERSIBLE LANGUAGES. Let Rk denote the class 
of  k-reversible languages over the alphabet U, and let R,  denote the union of  all the 
Rh for k >__ 0. The languages in R,  are called simply the reversible languages. 

THEOREM 18. I f  k is any nonnegative integer, 

(1) Rk is properly contained in Rh+l, 
(2) Rk is closed under pairwise intersection, 
(3) R ,  is not closed under pairwise union or complementation, 
(4) R ,  is not closed under concatenation, 
(5) R ,  is not closed under Kleene closure, 
(6) Rk is closed under reversal. 



752 DANA ANGLUIN 

PROOF. It is immediate from the definitions that Rk is contained in Rk+l. The 
language denoted by lk+ll * is (k + 0-reversible but not k-reversible, showing that 
the containment is proper. 

It is straightforward to verify that the usual direct product construction applied to 
two k-reversible acceptors produces a k-reversible acceptor that recognizes the 
intersection of  the languages of  the two acceptors. A description of  the product 
construction may be found in [24]. 

Since the languages denoted by the expressions ba*c and d(aa)*c are easily checked 
to be zero-reversible, Example 15 shows that the union of  two zero-reversible 
languages may not be reversible. Thus R ,  is not closed under pairwise union. De 
Morgan's laws then imply that R,  is not closed under complementation with respect 
to U*. 

The languages L1 = (a + b)* and L2 ~- (a  + C)* are easily seen to be zero-reversible, 
but their concatenation L~ = LIL2 is not reversible. To see this, note that for every k, 
bap, caP, and bapb are in L3, while capb is not in La, so by Theorem 14, L3 is not k- 
reversible for any k. Thus R .  is not closed under concatenation. 

Let L4 denote the set of  all strings over the alphabet (0, 1, 2} whose digits add up 
to 1 modulo 3. L4 is easily seen to be zero-reversible, but (L0* is not reversible. To 
see this, we note that for every k, 10kl, 0kl, and 10421 are in (L0*, while 0421 is not. 
Thus, by Theorem 14, (/_,4)* is not k-reversible for any k, and R .  is not dosed under 
Kleene closure. 

Closure of  Rk under reversal is immediate when k = 0 but requires proof  in the 
case that k _ 1. Fix k _> 1. Let L be a k-reversible language, and let A = (Q, {q0}, 
F, 8) be the canonical acceptor for L. Then A is k-reversible, so A" is deterministic 
with lookahead k. We construct another acceptor, A1 = (Q1, 11, F1, 81), to  accept U.  
This acceptor is deterministic and operates by "looking ahead" k symbols in the 
input to make A r deterministic. We show that A1 is k-reversible, which implies that 
L r is k-reversible. 

Let z be distinct from all the elements of  Q. States of  A1 are of  the form (z, u), 
where u is a string of length less than k, or of  the form (q, u), where q U Q and u is 
a string of length k. The element z is a "place holder" before k symbols of  the input 
have been read. The state (q, u) signifies being in state q of  A r looking ahead at the 
string u in the input. 

Le t f ( q )  denote the set of  k-followers of  state q in W, that is, 

f (q )  = {u: lu l  = k and 6~(q, u) # O}. 

We define AI as follows: 

Q1 = ((z, u):]u] < k) 0 ((q, u):u ~ f (q)) ,  
I ,  = ((z, x)) ,  
F,  = {(z,  u):u E L r) tO ((q, u):8(qo,  u r) = q} ,  

81((z, u), a) = {(z, ua)} 
if 

8,((z, u), a) = {(q, ua):q ~ F, ua E f ( q ) }  
if 

l u l < k -  1, 

l . l = k - 1 ,  
81((q, a,u), a2) = ((q', uaz):q' ~ 8r(q, al), ua2 ~ f(q ')) .  

Clearly A1 has one initial state. We now show that there is at most one a-successor 
for each state of  A1, for each symbol a E U. I f [u [  < k - 1, then the state (z, u) has 
a unique a-successor for each a E U. If  [ u ] -- k - 1, then for each a E U, because A r 
is deterministic with lookahead k, there is at most one state q in F with ua ~ f ( q ) ,  so 
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there is at most one a-successor of(z ,  u) inAb Iflul  = k - 1 and at ~ Uis  such that 
(q, a~u) E Q~, then for any a2 ~ U there is at most one state q '  E 8r(q, a~) such that 
uaz E f ( q ' ) ,  so (q, a~u) has at most one a-successor in A1. Thus Ax is deterministic. 

To see that A1 accepts U,  we argue as follows. If lul < k, then ~a((z, 20, u) = (z, u), 
and (z, u) is an accepting state of  A1 if and only i fu  E L r. Iflul --- k, then let u = u~v, 
where [ v[ = k. Then 8x((z, h), ulv) is either empty or is a state (q, v) such that v ~ f ( q )  
and q E 6"(qr, Ul), for some qr E F. Thus, if A~ accepts u, 3(q0, v ~) = q and q 
8r(qf, u~), so q0 ~ 6r(qf, UaV) and u = u~v is in L r. Conversely, if u = ulv is in U,  then 
v~u~ is in L, so i fq  = 8(qo, vr), then (q, v) E F t  and 81((z, ~), UlV) -- (q, v), soA~ accepts 
u. Thus U --- L(AI).  

It remains to show that At is k-reversible. We have already seen that it is 
deterministic. Suppose two states of  A~ have a common k-follower v in the reverse of  
A~. Then they must be of  the form (q~, v r) and (q2, v~), since they have a common k- 
leader v" in A~. If  these states are both in F1, then q~ -- 3(q0, v) = q2, so (q~, v ~) = 
(q2, vr). If  for some a E U, 61((q~, v~), a) = ~((q2, v~), a) = (q~, v'), then q3 E ~(q~, b) 
and qz E 6"(qz, b), where b is the initial symbol of  v ~. Thus q~ = 6(qa, b) = qz, by the 
determinism of A, and (q~, v ~) = (q2, vr)- Thus A1 is k-reversible, which shows that L r 
is k-reversible. Hence Rk is closed under reversal. [] 

R.  consists of a hierarchy of  classes, contains all the nonempty t'mite languages 
over U, and does not contain all the regular languages over U. We now compare R .  
with another class of  regular sets with generally similar properties, the definite 
languages [30]. A regular language L is k-defimte if  and only if whenever ul and u2 
have a common sUffLX of  length k, Tc(ul) = TL(uz). Note that this implies that there 
are finitely many distinct k-definite regular languages over a fixed alphabet U. (This 
is true because there must be fewer than [ U[ ~+1 states in the canonical acceptor for 
a k-definite language.) Let Dk denote the class of  k-definite languages and D.  the 
union of  all Dk for k _> 0. 

THEOREM 19. R .  properly contains D. .  For every k >-- 0, Rk properly contains Dk. 

PROOF. Let L be a k-definite language; we show that L is k-reversible. We denote 
TL(w) by T(w). If  L = 6 ,  then L is k-reversible; so suppose L # 6 ,  and let A ( L )  = 
(Q, {qo}, F, 6) be the canonical acceptor for L. Suppose ql and q2 are states of  (A(L))  r 
with a common k-follower v. Then there exist strings ul and u2 such that 

6(qo, ulv ~) = ql and 6(qo, u2v') = qz. 

Since L is k-definite, T(UlV r) = T(u2vr), that Is, ql = qz. Hence no two distinct states 
of  (A(L))" have a common k-follower, so A(L)  is k-reversible, and therefore L is k- 
reversible. Thus Dk is contained in Rk. 

In Example 8 it was shown that the language over {0, 1 } consisting of  those strings 
that contain an even number of l's and an even number of  O's is zero-reversible and 
therefore contained in Rk for all k _> 0. Since this language is not k-definite for any 
k ___ 0, we conclude that Rk properly contains Dk for all k ___ 0 and that R .  properly 
contains D..  

(We also note for each k _> 0, Rk contains infinitely many languages, while D~ 
contains only finitely many languages.) [] 

The reverse defimte languages [ 17] are simply the reversals of  the defimte languages. 
Thus, as a corollary of  this theorem and the closure of  each Rk under reversal, we 
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have that each Rk properly contains the k-reverse defmite languages, and R ,  properly 
contains the reverse definite languages. 

Ginzburg has also defined a generalization of the definite and reverse definite 
languages called the generalized definite languages [17]. A language is generalized 
definite if and only if  it may be expressed as the union of  a f'mite set of strings and a 
/'mite union of  languages of  the form FU*G, where F and G are t'mite sets of  strings, 
and U is the alphabet. An algebraic characterization of these languages has been 
given by Zalcstein [33]. In order to compare R ,  with the generalized definite 
languages, we need some additional facts about R, .  

LEMMA 20. Let F be a finite set of strings and L a reversible language. Then 
F 0 L is a reversible language. 

PROOF. If  F is the empty set, then the result clearly holds, so assume F is 
nonempty. Let kl denote the length of the longest string in F, and let k2 denote the 
smallest nonnegative integer such that L is k2-reversible. Let k = k~ + kz + 1. We 
shall show that F O L is k-reversible using Theorem 14. 

Suppose ulvz and u2vz are in F O L, where I v l = k. Then these strings must be in 
L, since their lengths exceed k~. Since L is k2-reversible and k is greater than k2, for 
every string w, UlVW is in L if and only if uzvw is in L. But u,vw is in L if and only if  
u, vw is in F O L for i = 1, 2, because of length considerations. Hence F O L is k- 
reversible. [] 

LEMMA 21. Let F be a prefix-free finite set o f  strings, G a suffix-free f imte  set o f  
strings, and L a reversible language. Then FL and LG are reversible languages. 

PROOF. Since LG = (GrL~) r and G r is a prefix-free finite set of  strings, it suffices 
to prove that FL is reversible, since the reversible languages are dosed under reversal. 
If  F is the empty set, then FL is empty and therefore reversible, so assume that F is 
nonempty. Let k~ denote the length of the longest string in F, and let k2 denote the 
least nonnegative integer such that L is k2-reversible. Let k = k~ + kz. We shall use 
Theorem 14 to show that FL is k-reversible. 

Suppose ulvz and u2vz are in FL, where I v l = k. Write v = v~v2, where I vl I = k~ 
and Iv21 = k2. There exist stringsfi and g, such that u,vz = u, vxv2z =f ig ,  v2z for i = 
1, 2, and, moreover, f~ is in F a n d  g, v2z is in L for i = 1, 2. Since L is k2-reversible, this 
implies that for every string w, g~v2w is in L if and only ifg2v2w is in L. 

Let an arbitrary string w be given. We shall show that if u~vw is in FL then u2vw 
is in FL, the converse being proved similarly. So, suppose that UxVW is in FL. Since 
u~vw =flglvzw and F is prefix-free, this implies that glv2w is in L. Thus g2v2w is in L, 
andf2g2v2w = u2vw is in FL. This shows that FL is k-reversible. [] 

The following example shows that the restriction of  F to be prefix-free is essential 
in the above lemma. 

Example 22. Let L = (111)* and F = { 1, 11 ). Then FL is not reversible, since for 
every k, uk = 13k÷1 and vk = 13k÷2 are in FL, but ukl is in FL while vkl is not. Thus, 
by Theorem 14, FL is not k-reversible for any k. [] 

THEOREM 23. Let E, F, and G be finite sets o f  strings. Then E t3 FU*G is a 
reversible language, where U is the alphabet. 

PROOF. Let F '  denote (u E F: for no v in F is v a proper prefix of  u} and G' 
denote {u E G:for no v in G is v a proper suffix of v}. Then F '  is prefLx-free, G' is 
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suffix-free, and FU*G = F'U*G', where U is the alphabet. Thus, since U* is zero- 
reversible, by the preceding two lemmas we have that E 0 FU*G is a reversible 
language. (Note that this gives an alternative proof of the fact that R ,  contains the 
definite and reverse definite languages.) [] 

Thus R .  contains some of the generalized definite languages, but the following 
example shows that it does not contain all of  them. 

Example 24. Let U denote {a, b, c, d} and L = aU*a + dU*bca. Then L is 
clearly generalized definite, but it is not reversible. To see this, note that for every 
k > O, a(bc)ka, d(bc)ka, and a(bc)kba are in L, but d(bc)kba is not in L. Thus, by 
Theorem 14, L is not k-reversible for any k. 

Since the set of  strings of even parity is not generalized definite, we see that the 
classes of  reversible and generalized definite languages are incomparable. The same 
is true of  the reversible and locally testable languages, defined in [28]. 

5. The Zero-Reversible Inference Algorithm 

In this section we describe, justify, and analyze the algorithm ZR to infer zero- 
reversible regular sets from positive samples. The generalization to k-reversible 
regular sets, which is somewhat more complicated, is treated in the next section. 

The input to ZR is a f'mite nonempty set of strings S. The output is a particular 
deterministic acceptor A = ZR(S). Theorem 26 shows that L(A) is the smallest zero- 
reversible language that contains S. Theorem 27 shows that using ZR at the finite 
stages of  an infinite inference procedure leads to correct identification in the limit of  
the zero-reversible languages. Theorem 28 shows that ZR runs in nearly linear time. 
A simple incremental updating scheme for ZR is described. 

5.1 THE ALGORITHM ZR. On input S, ZR first constructs Ao -- PT(S), the prefix 
tree acceptor for S. It then constructs the freest partition ~rf of  the set Qo of  states of 
A0 with the property that Ao/~r r is zero-reversible, and outputs Ao/~rf. 

To construct 7rf, ZR beings with the trivial partition of Qo and repeatedly merges 
any two distinct blocks B1 and B2 such that either B1 and B2 both contain accepting 
states of Ao or there exists a block Ba and a symbol b such that there are b-successors 
(resp. b-predecessors) of states of B3 in both B1 and B2. When there no longer remains 
any such pair of blocks, the resulting partition is ~r r. 

To implement this merging process efficiently, ZR keeps track of the further 
merges immediately implied by each merge performed. The variable LIST contains 
a pointer to a list of pairs of states whose corresponding blocks are to be merged. ZR 
initially selects some accepting state q' of Ao and places on LIST all pairs (q', q) such 
that q is an accepting state of A0 other than q'. This ensures that all blocks containing 
an accepting state of A0 will eventually be merged. 

For each block B of the current partition and each symbol b ~ U, ZR maintains 
two quantities, s(B, b) and p(B, b), indicating the b-successors and b-predecessors of 
B. If  there exists some state q E B such that 8o(q, b) is defined, then s(B, b) is some 
such 80(q, b); otherwise, s(B, b) is the empty set. Similarly, if for some q E B, 8~(q, b) 
is defined, then p(B, b) is defined to be some such 8~(q, b); otherwise, p(B, b) is the 
empty set. These quantities are initialized as s({q}, b) = 80(q, b) and p({q}, b) = 
8~(q, b) for all q ~ Q0 and b E U. 

After these initializations, ZR proceeds as follows. While the list LIST is 
nonempty, ZR removes the first pair of states (ql, q2). If  ql and q2 are already in the 
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same block o f  the current partition, Z R  goes on to the next pair  o f  states f rom LIST.  
Otherwise, the blocks containing q~ and q2, call them B1 and  B2, are merged to form 
a new block Ba. 

This action entails that  L I S T  and the p-  and s-values be updated as follows. For  
each b E U, if  s(B1, b) and s(Bz, b) are both  nonempty ,  then the pair  (s(B~, b), 
s(B2, b)) is added  to LIST.  Similarly, ffp(B1, b) andp(B2, b) are both nonempty, then 
the pair  (p(B1, b), p(B2, b)) is added  to LIST.  Also, if  either s(B~, b) or s(B2, b) is 
nonempty ,  then an element q is chosen f rom one o f  them and s(Ba, b) is set to q; 
otherwise, s(B3, b) is set to the empty  set. Similarly, p(B3, b) is defined according to 
p(B1, b) and p(B2, b). After this updating,  Z R  goes on to the next pair o f  states f rom 
LIST.  

W h e n  L I S T  becomes empty,  the current parti t ion is ~rf. Z R  outputs  Ao/~rf and halts. 
A somewhat  more  formal  description o f  Z R  m a y  now be gwen. 

Algortthm ZR 
Input. a nonempty posmve sample S. 

Output a zero-reversible acceptor A. 

* Inmahzatton 
Let Ao = (Qo, 10, Fo, (~o) be PT(S) 
Let ~ro be the trivial partmon of Q0 
For each b ~ U and q E Qo let s({q), b) = 8o(q, b) andp({q}, b) = 8~ (q. b) 
Choose some q' E Fo. 
Let LIST contain all pairs (q', q) such that q ~ F0 - {q'}. 
Let i = O. 
* Merging 
Whd¢ LIST ~ ~ do 
begin 

Remove some element (ql, q2) from LIST 
Let B1 = B(ql, it,), B2 = B(q2, ~rz) 
If B~ # B2 then 
begin 

Let 7rz+x be ~', with B1 and B2 merged 
For each b E U, s-UPDATE(B,, B2, b) and p-UPDATE(Ba, B2, b) 
Increase i by 1 

end 
end 
* Termination 
Let f = z and output the acceptor Ao/~rf 

The procedure s-UPDATE(B~,  Be, b) places (s(B1, b), s(B2, b)) on LIST  if both 
s(B1, b) and s(Bz, b) are nonempty  and defines s(B3, b) to be s(B~, b) if this is 
nonempty  and s(Bz, b) otherwise (where B3 is the union o f  B1 and B2). The  procedure 
p - U P D A T E  is defined similarly, with p in place o f  s. The  description o f  the algori thm 
Z R  is now complete,  and we turn to analyzing its correctness and running time. 

5.2. THE CORRECTNESS OF ZR.  In this section we show that Z R  correctly finds 
the smallest zero-reversible language that contains the input sample. The  following 
lemma may  be interpreted as saying that the algori thm Z R  performs the minimal  
generalization o f  the sample that produces a zero-reversible inference. 

LEMMA 25. Let S be any nonempty positive sample, Ao the prefix tree acceptor 
PT(S) for S, and ~rf the final partition found by ZR on input S. Then ~rf is the finest 
partition ~r such that Ao/~r IS zero-reversible. 
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PROOF. Let Ao = (Qo, Io, Fo, 8o). If  the pair (ql, q2) is ever placed on LIST, then 
ql and q., must be in the same block of  the final partition, that is, B(ql, ~rr) = 
B(q2, ~rr). Also, it is not difficult to verify by induction on t that for i = 0, 1 . . . . .  f ,  if  
ql and q2 are distinct elements of 6o(B, b) (resp. 6~(B, b)) for some block B of  ~ri 
and symbol b E U, then there exists a chain q~, q~ . . . . .  q~ of  elements of  3o(B, b) 
(resp. 6~(B, b)) such that q~ = q~, q2 = q~, and for each j, 0 _<j < n, either (qj, q~+l) 
or (q~+,, q~) is placed on LIST prior to or during the construction of  ~r~. 

Therefore the initialization guarantees that all the accepting states of  Ao are in the 
same block of  ~r r, so Ao/~r r has exactly one accepting state. Also, for each block B of  
~r r and symbol b ~ U, all the elements of  6o(B, b) (resp. 6~(B, b)) are contained in one 
block of  ~rr. Thus Ao/~r r is zero-reversible. 

It remains to show that if ~r is any partition of  Qo such that Ao/~r is zero-reversible, 
then ~r r refines ~r. We prove by induction that rr, refines ~r for t = 0, 1 . . . . .  f .  Clearly 
Cro, the trivial partition of  Qo, refines ~r. Suppose ~ro, ~r~ . . . . .  ~r, all refine ~r and ~r,+, is 
obtained from ~r, in the course of  processing entry (q~, q2) from LIST. Thus ¢r,+1 is 
obtained from ~r, by merging the blocks B(q~, ~r,) and B(q2, ~r~). Since ~r, refines ~r, 
B(ql, ~r~) is a subset of  B(q,, ~r) and B(q2, ~r,) is a subset of  B(q2, ~r), so to show that 
~r,+~ refines ~r, it suffices to show that B(q,, ~r) = B(q2, ~r). 

Either ( q l ,  q2) was first placed on LIST during the initialization stage or not. If  so, 
then ql and q~ are both accepting states, and since Ao/~r is zero-reversible, it has only 
one accepting state, so B(q,, ~r) = B(q~, ~r). Otherwise, (q~, q~) was first placed on 
LIST in consequence of  some previous merge, let us say the merge to produce ~r~ 
from ~r~_~, where 0 < j _< i. Then (qt, q~) = (s(B~, b), s(B~, b)) (resp. (p(B~, b), 
p(B~, b))), where B~ and B~ are the blocks of  ~r~_, merged in forming ~rj and b is some 
symbol. Then q~ and q2 are b-successors (resp. b-predecessors) of  two states in some 
block B of  ~rj. Since ~r~ refines ~r by the induction hypothesis, ql and q~ are b-successors 
(resp. b-predecessors) of  some block B' in ~r, and since Ao/~r is zero-reversible, 
B(q,, ~r) = B(qe, ~r). Thus in either case ~r,+x refines ~r, and by induction we conclude 
that ~r r refines ~r. [] 

THEOREM 26. Let S be a nonempty positive sample, and let Ar be the acceptor 
output by algorithm ZR on input S. Then L(Ar) is the smallest zero-reversible language 
containing S. 

PROOF. The preceding lemma shows that L(Ar) is a zero-reversible language 
containing S. Let L be any zero-reversible language containing S, and let ~r be the 
restriction of  the partition ~r/~ to the elements of  Pr(S). If  Ao denotes the prefix tree 
acceptor for S, then Lemma 1 shows that Ao/~r is isomorphic to a subacceptor of  
A(L), and Corollary 2 shows that L(Ao/~r) is contained in L. Lemma 6 shows that 
A(L) is zero-reversible, and therefore Ao/~r is zero-reversible, by Remark 4. By the 
above lemma, ~rr therefore refines ~r, so L(Ao/rrr) = L(Ar) is contained in L(Ao/~r). 
Consequently, L(Ar) is contained in L, and L(Ar) is the smallest zero-reversible 
language containing S. [] 

5.3 IDENTIFICATION IN THE LIMIT OF THE ZERO-REVERSIBLE LANGUAGES. In this 
section we show that the algorithm ZR may be used at the finite stages of  an infinite 
inference process to identify the zero-reversible languages in the limit. The idea is 
simply to run ZR on the sample at the nth stage and output the result as the nth 
guess. Define an operator ZRoo from infinite sequences of strings w~, wz, w, . . . .  to 
infinite sequences of  acceptors A~, A~, An, . . .  by 

A,~ = ZR((Wl, w2 . . . . .  Wn}) for all n _> 1. 
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It is clear that the operator ZR~ is effective; the nth output is the result of running 
the algorithm ZR on the first n input strings. (Later we show how d,,+, may be 
obtained from A,, and w,,+1 by a simple updating scheme based on ZR.) We need to 
show that this converges to a correct guess after a fmite number of  stages. 

An infinite sequence of strings wl, w2, ws . . . .  is defined to be a positive presentation 
of  a language L if  and only i f  the range of  the sequence is precisely L, that is, every 
element of  the sequence is an element of  L and vice versa. An infinite sequence of 
acceptors A~, A2, A3 . . .  is said to converge to an acceptor A if and only if there exists 
an integer N such that for all n ~ N, A,, is isomorphic to A. The result that ZR® 
correctly identifies the zero-reversible languages in the limit from positive data is 
formulated as follows. 

THEOREM 27. Let L be a nonempty zero-reversible language, w~, w2, w3, .. .  a 
positive presentation of L, and A~, A2, A3 . . . .  the output of ZR~o on this input. Then A~, 
A2, As . . . .  converges to the canonical acceptor A(L ) for L. 

PROOF. By Theorem 9, L contains a characteristic sample. Let N be sufficiently 
large that (Wl, w2, . . . ,  WN) contains a characteristic sample for L. For n >_ N, L(An) 
is the smallest zero-reversible language containing (wl, w2 . . . . .  wn}, by definition of  
ZR® and Theorem 26. Thus L(An) = L, by the definition of  a characteristic sample. 
Moreover, it is easily checked that the acceptor output by ZR is stripped, and 
therefore canonical, by Lemma 5. Hence A,~ is isomorphic to A(L)  for all n _ N, so 
A~, A2, A3 . . . .  converges to A(L). [] 

5.4 THE RUNNING TIME OF ZR 

THEOREM 28. The algorithm ZR may be implemented to run in time O(na(n)), 
where n is one more than the sum of the lengths of the input strings and a is a very 
slowly growing function. ( Tarjan [32] defines a.) 

PROOF. Let S be the set of  input strings, and let n be one more than the sum of  
the lengths of the strings in S. The prefix tree acceptor A0 ffi PT(S) may be 
constructed in time O(n) and contains at most n states. Similarly, the time to output 
the final acceptor is O(n). The partitions ~r, of the states of  Ao may be queried and 
updated using the collapsing FIND and weighted UNION operations described and 
analyzed by Tarjan [32]. Processing each pair of  states from LIST entails two FIND 
operations to determine the blocks containing the two states. I f  the blocks are distinct, 
which can happen at most n - 1 times, they are merged with a UNION opera- 
tion, and O([ UI) further processing may place at most 2[ U[ new pairs on LIST. 
Thus a total of at most (21 U[ + 1)(n - 1) pairs must be processed. Thus at most 
(4[ U[ + 2)(n - 1) FIND operations and n - 1 UNION operations are required, 
which requires a total time of O(na(n)). [] 

5.5 UPDATING A GUESS. It is useful in the context of  the process ZRoo to show 
that ZR may be modified to have good incremental behavior. That is, given the 
output A: computed by ZR on input S, and given a new string w, we may easily 
update AltO be the output computed by ZR on input S'  = S 13 {w). The method for 
doing this is to start at the initial state of A[ and follow the transitions At makes on 
the input string w. If  no undefmed transitions are encountered and the last state 
reached is the accepting state, then At already accepts w and nothing need be done. 
Otherwise, add new states and transitions for each symbol of  w starting with the first 
undefined transition (if any). Mark the last state reached by w as accepting, and 
place the pair consisting of  this state and the accepting state of At on LIST. Continue 
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the merging portion of  the algorithm ZR until LIST is empty, and output Af/~r', 
where ~r' is the final partition of the states of Af. The correctness of  this procedure is 
verified in the same way as that of  the original algorithm ZR, since the order of  
detecting and performing required merges is immaterial. 

Example 29. If  we run ZR on the input (0, 00, 11, 1100}, we obtain the acceptor 
shown in Figure 5a. If we then add the string 101 to the sample and perform the 
updating procedure just described, we first obtain the acceptor shown in Figure 5b. 
This is then "folded up" as shown in Figure 5c and d to obtain as a final result an 
acceptor for strings with an even number of  l's. [] 

6. The k-Reversible Inference Algorithms 

Let k be a fixed positive integer. We describe an algorithm, k-RI, to infer k-reversible 
sets from positive samples. Let S be a nonempty positive sample. On input S, k-RI 
constructs the prefix tree acceptor for S, A0 = PT(S), and finds the finest partition 
~rf of the states of  Ao such that Ao/~rf is k-reversible. It then outputs a canonical 
acceptor for L(Ao/Irl) and halts. 

To find ~rf, k-RI begins with the trivial partition and repeatedly merges any two 
blocks that violate the conditions for k-reversibility in the quotient acceptor Ao/~r. 
When no pair of  blocks is found to violate these conditions, the resulting parti- 
tion is ~rf. 

More precisely, let S be the set of  input strings. If  S is empty, then k-RI outputs 
the empty acceptor and halts. Otherwise, it constructs the prefLx tree acceptor for S, 
say Ao = (Q0, lo, Fo, 80). It takes ~ro to be the trivial partition of  Q0 and i to be equal 
to 0. While there exist two distinct blocks B1 and B2 of  ~r, such that either 

(1) for some b E U and Ba ~ m, B1 and B2 are both b-successors of  Ba in Ao/~r,, or 
(2) B1 and B2 have a common k-leader in Ao/m, and either B1 and B2 are both final 

states of  Ao/~r, or there exists a block Ba of  ~r, and a symbol b ~ U such that B3 
is a b-successor of  both B1 and B2 in Ao/~r,, 

k-RI constructs 7r,+1 by merging B1 and B2 in ~r,, and increments i by 1. When no 
such pair of  blocks exists, k-RI sets f to the final value of  L It then constructs and 
outputs a canonical acceptor for L(Ao/~rf). 
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6.1 CORRECTNESS, IDENTIFICATION 1N THE LIMIT, ANALYSIS. Since this t r e a t m e n t  

is largely analogous to the zero-reversible case, an abbreviated presentation is given. 

LEMMA 30. Let S be a nonempty positive sample, Ao the prefix tree acceptor for  S, 
and ¢rr the final partition found by k-R1 on input S. Then ~r r is the finest partition of the 
states of  Ao such that Ao/Irf is k-reversible. 

PROOF. It is clear that Ao/cr r is k-reversible, since k-RI will continue to merge 
blocks as long as the conditions for k-reversibility are violated. Suppose ¢r is any 
partition of  the states of  A0 such that Ao/cr is k-reversible. As in the proof of  Lemma 
25, it is not difficult to show by induction that ~r, refines ¢r for i = 0, 1 . . . . .  f .  [] 

THEOREM 31. Let S be a nonempty positive sample, and let At  be the acceptor 
output by k-RI  on input S. Then L(Ar) is the smallest k-reversible language con- 
taining S. 

PROOF. This proof is completely analogous to the proof  of  Theorem 26 and is 
omitted. [] 

We define an operator k-RLo from infinite sequences w~, w2, w3 . . . .  of  strings to 
infinite sequences A~, A2, A3 . . . .  of  acceptors by 

An = k-RI({Wl, w2 . . . .  , Wn}) for all n >__ 1. 

It is clear that k - R L  is effective. 

THEOREM 32. Let L be a nonempty k-reversible language and w~, w2, wa . . . .  any 
positive presentation of L. On this input, the output A~, A2, Aa, . . .  of  k - R L  converges 
to A(L). 

PROOF. Let N be sufficiently large that (w~, w2 . . . .  , ws} contains a characteristic 
sample for the k-reversible language L. For  each n >_ N, L(An) is the smallest k- 
reversible language containing (wl, w2 . . . . .  wn}, so L(An) = L. By definition of  k-RI, 
An is canonical, so An is isomorphic to A(L) for all n ___ N. Thus A~, A2, A3 . . . .  
converges to A(L). [] 

THEOREM 33. The algorithm k-RI  may be implemented to run in time O(kn3), 
where n is one more than the sum of the lengths of the input strings. 

PROOF. We represent each quotient acceptor Ao/rr, by a directed graph G~ with 
one node for each block of  or, and an edge labeled b from B1 to B2 if and only if B2 
is a b-successor of  B1 in .4o/¢r,. Each accepting node is so marked. The nodes are 
numbered by integers in the range 1 to n. It suffices to keep a list of  the current 
nodes, a (possibly redundant) list of  the current edges (where (b, x, fl) represents edge 
labeled b from node x to node y), and a Boolean vector indexed by node numbers 
indicating whether each node is accepting or not. 

For  each G, we compute some auxiliary quantities: a list H,, and k + 1 matrices 
C °, C 1 . . . . .  C, k. For each ordered pair (b, x, y) and (b', x' ,  y ' )  of  edges of  G~ (not 
necessarily distinct), i f  b = b', then put the pair ((x, x') ,  (y, y ' ) )  on the list H,. 
C°[x, y] is defmed to be 1 for all pairs (x, y) of  nodes of  G,  For  each r, 0 _< r < k, 
C~ ÷1 is defined from C~ as follows. Initialize C7÷1[x, y] to be 0 for all pairs (x, y) of  

t r X nodes of  G,. Then for each pair ((x, x') ,  (y, y )) from H,, if  C, [ , x ' ]  = 1, then set 
r+l t C, [ y , y ]  = 1. 
It is not difficult to verify that ((x, x'),  (y, y ' ) )  is on the list 11, i f  and only if  there 

exists a symbol b ~ U such that x is a b-predecessor o f y  and x '  is a b-predecessor 
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of y '  in G,. Also, for each pair (x, y) of nodes of G, and for each r, 0 _< r ~ k, 
C~[x, y] = 1 if and only if there exists a common r-leader of  x and y in G~. 

Thus, once these quantities have been computed, we may test for the existence of  
a pair of nodes of G, violating the conditions on k-reversibility as follows. For each 
pair (b, x, y) and (b', x', y ' )  of edges of G,, if b = b', x = x', and y # y ' ,  then y and 
y '  give a violation of determinism and should be merged. For each pair x # y of 
nodes of G, that are both accepting, if C,k[x, y] = 1, then x and y have a common k- 
leader in G, and should be merged. Similarly, for each pair (b, x, y) and (b', x',  y ' )  of 
edges of G, such that b = b', y = y', x # x', and C~[x, x'] = 1, x and x'  have a 
common b-successor and a common k-leader in G, and should be merged. 

In order to merge x and y in G, where x < y, we scan all the edges on the edge list 
of G, and replace each occurrence o f y  by x. I f y  is accepting, then x is also marked 
accepting. Finally, y is removed from the node list for G,. The resulting graph is G,+I. 

, C,+I are computed, and the search begins for The auxiliary quantities H,+~, C~+1, . . .  k 
another pair of nodes to merge. When no pair remains to be merged, the graph is 
converted to an acceptor and minimized by a standard algorithm [1]. 

The initial graph Go has at most n nodes and n edges, and its node and edge lists 
and acceptance vector may be computed in time O(n). Thus the node and edge lists 
for all of the graphs G, contain at most n elements. Computing the auxiliary quantities 
H, and C O . . . . .  C~ from G~ may be done in time O(kn2). Searching for a pair to 
merge may be done in time O(n2), and updating the node and edge lists and the 
acceptance vector when two nodes are merged takes time O(n). Since at most n - 1 
merges may be performed, the total time to find the final graph is O(kna), which 
dominates the time required to convert it to an acceptor and minimize it. [] 

We note that the approach to updating a guess used for zero-reversible inference 
works also in this more general case. In practice it will probably prove useful to 
remove duplicates from the edge lists of the quotient acceptors, since in general they 
may be expected to shrink dramatically as merges are performed. 

7. Using Negative Data 

Theorem 32 shows that for each k the k-reversible languages can be correctly 
identified in the limit from positive data. It is however not the case that the whole 
class of reversible languages, R . ,  can be correctly identified in the limit from positive 
data, as the general results in [4, 18] on identification in the limit from positive data 
show. 

If  we consider the problem of inferring the reversible languages from positive and 
negative data, one approach immediately presents itself. That is to construct the k- 
reversible inference from the positive examples for k = 0, 1, 2, . . .  until a language is 
found that does not contain any of the negative examples. 

We define apositive and negative sample to be an ordered pair (So, $1) such that So 
and $1 are disjoint finite sets of strings. We describe an algorithm RI whose input is 
a positive and negative sample (So, $1), and whose output is a reversible acceptor A 
that accepts all the strings m $1 and none of the strings in So. If  $1 = ~,  then RI 
outputs the empty acceptor and halts. Otherwise, for each k -- 0, 1, 2 . . . . .  RI calls 
k-RI on the set $1 to produce an acceptor Ak, until an acceptor Ak is found that does 
not accept any of the strings in So. This final acceptor is the output of RI. (Note that 
0-RI is the algorithm ZR.) The correctness of this algorithm is formulated as follows. 

THEOREM 34. With the positive and negative sample (So, Sx) as input, the algorithm 
R l  finds the smallest k such that there exists a k-reversible language containing $1 and 
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disjoint from So, and outputs a canonical acceptor for the smallest k-reversible language 
with this property. 

PROOF. This is immediate from Theorems 26 and 31 and the order in which RI 
searches for an acceptor with the required properties. [] 

The running time of  RI is also easily established. 

THEOREM 35. The algorithm RI  runs in time O(m2na), where m is one more than 
the final value of k found and n ts one more than the sum of the lengths of the input 
strings. In particular, m <_ n. 

PROOF. Let (So, $1) be an input to RI. The total time spent in calls to k-RI for 
k = 0, 1 . . . . .  m - 1 is O(m2na), by Theorems 28 and 33. The total time spent in 
testing whether the resulting acceptors contain an element of  So is O(mn), since 
following the transitions of  a string through a deterministic acceptor may be done in 
time linear in the length of  the string. Since So and $1 are disjoint, i f k  _> n - 1, then 
the prefix tree acceptor for S~ is a k-reversible acceptor whose language contains $1 
and is disjoint from So. Thus m _ n. []  

Now we turn to the question of  identification in the limit. We need a notion of  a 
presentation of  a language containing positive and negative examples. A complete 
presentation of  a language L is an infinite sequence (w~, el), (wz, e2), (wa, e3) . . . .  such 
that w, is a string, e, is either 0 or 1, e, = 1 if  and only if  w~ E L, and for every string 
u ~ U* there exists an index i such that u = w~. We define two related functions, 
giving the positive and negative examples in initial segments of  the complete 
presentation: 

So(n) -- (w,:l _< i _< n, e, = 0), 
Sl(n) = (w~:l _< i < _ n, e~ = 1). 

We may define an effective operator RIo~ that maps complete presentations to infinite 
sequences of  acceptors A~, A2, A3 . . . .  such that 

An = RI(S0(n), Sl(n)) for all n _> 1, 

where So(n) and S~(n) are the functions associated with the given complete presen- 
tation. (The behavior of  Rim on sequences of  ordered pairs that are not complete 
presentations of  some language is not specified.) 

The following lemma shows that RI® searches at each stage through a descending 
chain of  languages. 

LEMMA 36. Let S be a positive sample, and let A = j -RI(S)  and A '  = k-RI(S),  
wherej < k. Then L(A) contains L(A'). 

PROOF. L(A')  is the smallest k-reversible language containing S. L(A) is a j -  
reversible, and therefore k-reversible, language containing S. Thus L(A ') is contained 
in L(A). [] 

THEOREM 37. Let L be a reversible language, and let (wl, el), (w2, ez) . . . .  be a 
complete presentation of L. Let Ax, A2, A3 . . . .  be the output of  Rlo~ on thts input. Then 
A~, A2, A3 . . . .  converges to A(L). 

PROOF. The result holds trivially if L - ~,  so assume L # O. Let k be the least 
nonnegative integer for which L is k-reversible. If  k = 0, then the guess of  RIo~ will 
always be the zero-reversible guess, which converges to A(L)  by Theorem 27. 
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Suppose k >_ 1. Let N be sufficiently large that St(N) contains a characteristic sample 
for L as a k-reversible language. Consider L ' ,  the language accepted by the acceptor 
(k - 1)-RI(SI(N)). This language contains L by the preceding lemma and the fact 
that L = k-RI(SI(N)). However, since L '  is (k - l)-reversible, it is not equal to L. 
Choose some element w' that is in L '  but not in L. Let N '  _ N be sufficiently large 
that So(N') contains w'. 

For each n :> N', RI~ computesj-RI(S~(n)) fo r j  = 0, 1 . . . . .  k - 1 and finds that 
they each contain the element w' of So(n). Hence Rloo computes and outputs 
k-RI(S~(n)), which by Theorem 32 is a canonical acceptor for L. Thus in this case 
also A1, As, Aa . . . .  converges to A(L). [] 

Thus Rloo does correct identification in the limit of the reversible languages from 
positive and negative data. Its behavior in each finite stage is reasonable, both in 
terms of the characterization of the guess and the time required to compute it. In 
practice, its running time could probably be improved by incorporating the incre- 
mental updating scheme of the algorithms ZR and k-RI for new positive examples 
and by keeping track of the largest value of k required so far to use as the starting 
place for the search for new acceptors in the case when a negative example invalidates 
the current guess. 

Other approaches to the use of negative data should also be considered. For 
example, an approach that overcame the asymmetry of RI in the use of positive and 
negative data would be interesting. 

8. Some Comparisons 

The zero-reversible inference algorithm is based on a heuristic originally proposed 
by Feldman [11, 13], so it is not surprising that it duplicates the performance of the 
heuristic on the primary examples given in those papers, which we reproduce below: 

L1 = {strings of a's and b's with an even number ofa 's},  
$1 = (b, bb, aa, baa, aba, baba, abba, bbaba, bbaa, aabb), 
Lz = (c + bb)a*b, 
Sz = {cb, bbb, cab, bbab, caab, bbaab, caaab}. 

Itoga [25] describes some experiments with a variant of Feldman's heuristic that is 
rather sensitive to the order of presentation of the data. The primary example studied 
is a seven-state transducer over (a, b, c} that outputs 1 if it has seen the three symbols 
a, b, c (in any order) since the beginning of the string or the last time it output 1, 
whichever is later, and otherwise outputs 0. Itoga's method correctly identifies this 
transducer from a particular sample of 104 strings. If  we convert this to an acceptor 
in the standard way, the resulting language is not reversible, so our methods do not 
apply. 

Biermann and Feldman [5] describe a method of inferring regular sets from 
positive data by merging states with equal sets of k-tails, starting with an acceptor 
derived from the sample strings. The set of k-tails of a state is simply the set of 
strings of length k or less that are accepted from that state. The final acceptor is 
generally nondeterministic. The user specifies the value of k that is used by the 
method; for each regular set, k may be set sufficiently large to guarantee correct 
identification in the limit of that regular set. 

Miclet [29] describes an approach to inferring regular sets from positive data by 
merging states according to a similarity measure on their sets of k-tails (for k chosen 
by the algorithm and decremented at each stage). The general approach is quite 
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flexible and interesting; however, the particular heuristic implementation illustrated 
in the paper seems to be dominated in its performance by the zero-reversible 
algorithm. The three examples considered in the paper are all zero-reversible, and 
are correctly identified from the given data by the zero-reversible algorithm: 

L3 = a(bc)*d, 
Ss = (abcd, abcbcd), 
L3 = (aa + ba(aa)*c)*, 
$4 = {aabac, baaac, bacbac, aabaaac, bacaabac, aaaaaabac, 

aaaabaaac, baaaaaaac, bacbacbac, bacaabaaaaac), 
L5 = {strings with an even number of a's and an odd number of b's), 
S~ = {aba, bbb, abbab, bbaba, bbbbb, abaabab, babbbaaab, 

bbaaabbab, bbbaaabab, baabbbbbaba), 

(The tail-clustering method described by Miclet requires another stnng added to S~ 
in order to identify L5 correctly.) 

These comparisons suggest that the class of zero-reversible languages captures an 
interesting class of phenomena in the inference of regular sets from positive data, 
though it certainly does not exhaust the domain. It is hoped that a clear understanding 
of this class will help to stimulate investigation of other types of phenomena in this 
domain. 

9. Conclusions 

We have presented efficient algorithms to infer k-reversible languages from positive 
data and reversible languages from positive and negative data. The zero-reversible 
inference algorithm is of particular interest because of the relation between zero- 
reversible languages and automata whose syntactic monoids are permutation groups. 
This suggests that it may be possible to use the algebraic properties of automata to 
help characterize their "inferability." It is interesting to contrast these results with 
those of Crespi-Reghizzi et al. [10], which specifically concern "noncounting" (i.e., 
permutation-free) languages. Perhaps there will be a useful synthesis of these two 
approaches. 

The algorithms and implementations we have given are fairly straightforward and 
may not be the most efficient possible. However, this is appropriate in a domain such 
as this one, where much of the current work must be viewed as exploratory feasibility 
studies. Time and further experience will tell whether these algorithms are indeed 
solving the "right" problems. For this, experience with computer implementations of 
relatively straightforward algorithms may be more relevant at present than a search 
for faster algorithms. However, faster algorithms for these problems would certainly 
be welcome. 

It should be evident that inductive inference swarms with unsolved, mostly ill- 
defined, problems. This paper will have achieved one of its primary goals if it has 
helped to indicate how one line of approach may lead to well-defined problems and 
solid theoretical progress. 
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