
Inference of Reversible Languages

DANA A N G L U I N

Yale Untverstty, New Haven, Connecttcut

Abstract. A famdy of efficient algorithms for referring certain subclasses of the regular languages from
fmtte posttwe samples is presented These subclasses are the k-reversible languages, for k = 0, 1, 2,
For each k there is an algorithm for finding the smallest k-reversible language containing any fimte
posluve sample. It ts shown how to use this algorithm to do correct identification m the ILmlt of the k-
reversible languages from posmve data A reversible language is one that Is k-reverstble for some k __ 0.
An efficient algonthrn is presented for mfernng reversible languages from posmve and negative examples,
and it is shown that it leads to correct identification m the hmlt of the class of reversible languages.
Numerous examples are gtven to dlustrate the algorithms and their behawor

Categories and Subject Descriptors F 1 1 [Computation by Abstract Devices] Models of ComputaUon--
automata, F 4 3 [Mathematical Logic and Formal Languages] Formal Languages--classes defined by
grammars or automata; 1 2 6 [Artificial Intelligence] Learnmg--mductlon, 1.5 1 [Pattern Recognition]
Models--structural

General Terms' Algorithms, Theory

Addmonal Key Words and Phrases Inductive inference, grammatical mference, reversible languages

1. Introduct ion

This p a p e r concerns the p rob lem o f induc t ive ly inferr ing genera l rules f rom examples .
People seem to agree that this is an impor t an t p r o b l e m area, bu t there is much less
agreement abou t how to s tudy it. One o f the p r i m a r y goals o f this p a p e r is to indica te
that a re la t ively theore t ica l approach , using tools f rom complex i ty theory and fo rma l
l anguage theory, appea r s to be bo th feasible and fruitful.

W h e n people communica t e complex procedures to o ther people , they of ten seem
to rely on a somewha t sketchy descr ip t ion o f the genera l ideas, together wi th examples
to e lucidate pa r t i cu la r details . I f we could fred sound, uniform, and convenien t
me thods that would a l low compu te r p rog rams to genera l ize a pp rop r i a t e ly f rom
examples , these would p r o b a b l y increase the usabi l i ty o f compute r s by exper ts and
nonexper t s both. This p a p e r is par t o f a genera l s tudy o f wha t makes a class o f rules
eff ic ient ly and re l iab ly inferable f rom examples , wi th the goal o f even tua l ly f inding
such methods .

In this p a p e r we s tudy inferabl l i ty m a pa r t i cu la r abs t rac t doma in , tha t o f infer r ing
fo rmal l anguages f rom finite samples . Imag ine that we are given a finite set o f strings
f rom some fo rmal language, and poss ib ly ano ther finite set o f str ings f rom the
c o m p l e m e n t o f the language , and we are requi red to make a guess o f wha t the

This research was supported by the National Science Foundation under Grant MCS 80-02447
Author's address Department of Computer Science, Yale Umverslty, P O Box 2158, Yale Station, New
Haven, CT 06520
Permission to copy without fee all or part of this material ~s granted provided that the coptes are not made
or distributed for direct commercial advantage, the ACM copyright notice and the Utle of the publlcaUon
and its date appear, and notice Is given that copying is by permission of the Assoclauon for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permission
© 1982 ACM 0004-5411/82/0700-0741 $00 75

Journal of the Association for Computing Machinery, Vol 29, No 3, July 1982, pp 741-765

742 DANA ANGLUIN

unknown language is. For example, given the set of strings (00111, 01, 000011,
001111}, we might guess that the underlying language is the set of all strings
consisting of any number of O's followed by any number of l's. It may be objected
that there are infinitely many regular languages that contain this sample, and we
have no way of knowing whether such a guess is "right." One of the fundamental
problems for this area of study is to find appropriate, natural, and theoretically sound
criteria for the "goodness" of generalizations such as this one.

The concept of identification in the limit, formulated by Gold [18], has been of
basic importance m theoretical studies of inductive inference. This concept relies on
looking at the limiting behavior of the inferring process as it is given more and more
examples of a particular rule. If, for any sequence that eventually contains each
example of a given rule, the inferring process produces a sequence of guesses that
eventually converges to one that is a correct description of the underlying rule, then
the process is said to identify this rule m the limit. Much has been learned about the
classes of formal languages and partial recursive functions that can be correctly
identified in the limit by various kinds of effective inference processes [6, 7, 12, 18].
However, the inference procedures described in these abstract studies are generally
enumerative in character and appear to be too inefficient to be of practical use.

A number of methods have been proposed to perform inductive inference in
concrete domains, for example, finite automata, context-free grammars, logical
theories, and programs in LISP and other programming languages. An overview of
inference techniques for formal grammars and applications in the domain of syntactic
pattern recognition may be found in the survey article of Fu and Booth [16], and the
books of Fu [14, 15] and Gonzalez and Thomason [20]. Further references concerning
both abstract and concrete results in inductive inference may be found in the
bibliography of Smith [31]. Few studies of inference in concrete domains have given
analyses of the efficiency of the methods used. In the absence of such analysis,
behavior on test cases is often used to give some indication of the computational
feasibility of an inference method.

However, there has been some theoretical work concerning the possibility of
efficient inference procedures for specific concrete domains, which we now sketch.
On the negative side, there are results that show that fmding a smallest finite
automaton or regular expression compatible with a given fimte sample consisting of
a finite set of strings marked as "accepted" and another finite set of strings marked
as "rejected" is an NP-hard problem, even under rather strong restrictions on the
samples and possible answers [2, 19]. The idea of searching for the "smallest"
description compatible with the sample is natural and attractive at first sight.
However, these results suggest that such an approach will not lead to a general
understanding of the concept of efficient inferability. On the positive side, polyno-
mial-time inference algorithms have been found for certain classes of parenthesis
grammars [9, 10, 27] and for the one-variable pattern languages [3].

The primary contribution of the present paper is a family of new, efficient
algorithms to infer certain subclasses of the regular languages from positive samples.
These algorithms were discovered in the course of trying to understand variants of
an inference heuristic originally proposed by Feldman [13] and compare favorably
with a heuristic method of tail-clustering recently proposed by Miclet [29]. The
classes inferred by these algorithms are the k-reversible languages, for k ffi 0, 1,
2 The class of zero-reversible languages was studied, though not named, by
McNaughton [26], who proved that the loop-complexity (or star-height) of a zero-
reversible language is exactly equal to the cycle rank of its reduced state-graph. This

Inference of Reversible Languages 743

FIG. 1 The pref'Lx tree machine for {X, 00, 11,
0000, 0101, 0110, 1010}

suggests both the naturalness of the k-reversible languages and the possibility of
unexplored, fruitful links between inferability and algebraic structure.

In evaluating results of this kind, important criteria are: how efficient and incre-
mental the algorithm is, how precisely and naturally its guess is defined for any given
sample, whether it does correct identification in the limit, and how natural and useful
the class of rules inferred is. The algorithms we present are both efficient and
incremental. The guess for a given sample is shown to be the smallest k-reversible
language containing the sample, and it is shown that this leads to correct identification
in the limit of the k-reversible languages. The property of producing the best k-
reversible "summary" of the input sample suggests that these algorithms may
ultimately be useful as components of more complex inference procedures employing
"summaries" of various different kinds.

In Section 2 we give an informal example of the zero-reversible inference algorithm.
Formal preliminaries are in Section 3. The definitions and basic results about the
reversible languages are in Section 4. The zero-reversible inference algorithm is
formally described, justified, and analyzed in Section 5, and the generalization to k-
reversible languages is presented in Section 6. The use of negative examples and an
algorithm to infer reversible languages from positive and negative data are presented
in Section 7. Section 8 contains comparisons with other methods of inferring regular
languages from positive data, and Section 9 contains concluding remarks.

2. An Informal Example
A zero-reversible acceptor is a deterministic finite-state acceptor with at most one
final state such that no two arrows entering any state are labeled with the same input
symbol. Suppose we are given the sample

S = (~, 00, 11, 0000, 0101, 0110, 1010}

and are told that it is part of the language of some zero-reversible acceptor. We
might then proceed as follows.

First we construct the prefLx tree acceptor for S, shown in Figure 1. This is not
zero-reversible, because it has more than one final state. So we merge all the final
states together to produce the acceptor shown in Figure 2a. However, this acceptor
is not deterministic, so we merge the two states labeled B to produce the acceptor
shown in Figure 2b. This acceptor is not zero-reversible, because several states
(labeled B) are 0-predecessors of the state labeled A, and several states (labeled D)
are l-predecessors of state A. We therefore merge the states labeled B and the states

744 DANA ANGLUIN

I

0 0

I

(a)

1

I

I 0

(b)

(c)

FIG. 2 Stages m the zero-reversible algorithm

o

o
(a)

I 0 I

-8:-8
(b)

FIG 3. A zero-reversible and a l-reversible acceptor

labeled D to produce the acceptor shown in Figure 2c. This is still not zero-reversible,
since the two states labeled C are both 1-predecessors of state B. Merging these two
states gives the zero-reversible acceptor shown in Figure 3a. This machine accepts
the set of all strings over (0, 1 } that contain an even number of O's and an even
number of l's, which is a plausible inference from the original sample.

We leave it to the reader to verify that the method we have just sketched infers the
universal language (0 + 1)* from the sample

S = {01, 00011, 00111, 001111},

which does not seem to be a very plausible inference. In subsequent sections of this
paper we precisely describe and analyze the behavior of the method sketched and
present a generalization that handles the second kind of example more satisfactorily.

3. Basic Definitions and Notation

in this section we define certain notions we shall need from the theory of formal
languages and automata. We generally follow Hartmanis and Steams I23] in spirit,
though we require some technical modifications of their definitions.

Inference of Reversible Languages 745

The alphabet is a fLxed finite nonempty set U of symbols. U* denotes the set of all
f'mite strings over U. 2, denotes the empty string. The length of the string w is denoted
[w I. The reverse of the string w is denoted w r. The concatenation of the strings u and
v is denoted uv. The string u is a prefix of the string v if and only if there exists a
string w such that uw = v. The string u is a suffix of the string v if and only if there
exists a string w such that wu = v.

A language is any subset of U*. The reverse of a language L is defined by L r --
(w~: w ~ L}. I f L is any language, then we define the set Pr(L) of prefLxes of elements
of L by

Pr(L) = (u: for some v, uv E L} .

Also, for any w E U*, we denote the left-quotient of L and w by

TL(W) = (v:wv E L} .

Thus, TL(w) ~ 0 if and only if w E Pr(L). When L is clear from the context, we
write T(w) instead of TL (w).

Apositive sample is a finite set of strings. S is apositive sample of the language L if
and only if S is a finite subset of L. (We consider samples containing negative as well
as positive information in Section 7.)

I f S is any set, I S I denotes the cardinality of S. A partition of S is a set o f pairwise
disjoint nonempty subsets of S whose union is S. I f ~r is a partition of S, then for any
element s E S there is a unique element of ~r containing s, which we denote B (s, ~r)
and call the block of ~r containing s. A partition ~r is said to refine another partition
rr' if and only if every block of ~r' is a union of blocks of ~r. We denote this by
~r _ ~r'. In this case we also say that ~r' is coarser than ~r, or that 7r is finer than ~r'.
Note that both of these relations are reflexive. I f ~r is a partition of a set S and S ' is
a subset of S, then the restriction of 7r to S ' is the partition ~r' consisting of all those
sets B' that are nonempty and are the intersection of S ' and some block of ~r. The
trivialpartition of a set S is the class of all sets (s) such that s ~ S.

A right congruence is a partition ~r of U* with the property that B(wl, ~r) =
B(w2, ~r) implies B(WlU, 7r) = B(w2u, ~r) for all wl, w2, u ~ U*. I f L is any language,
then Tz(wx) = TL(wD implies TL(wlu) = TL(w2u) for all u, so L determines an
associated right congruence ~rL by B(wl, ~rL) = B(w2, ~rL) if and only if TL(W,) =
TL (w2). Other natural right congruences are associated with automata. Note that a
language L is regular just in case ~rL contains finitely many blocks. We assume
familiarity with the basic facts about regular sets [21-24].

An acceptor is a quadruple A = (Q , / , F, 8) such that Q is a finite set, I and F are
subsets of Q, and 6 is a map from Q x U to subsets of Q. Q is the set of states, I is
the set of initial states, F is the set of final or accepting states of A, and 6 is the
transition function of A. The acceptor is deterministic if and only if there is at most
one initial state, and for each state q E Q and symbol a E U there is at most one
element in 6(q, a). Note that we allow undefined transitions in deterministic automata.
The empty acceptor is the unique acceptor with Q = O. (The empty acceptor is
deterministic.) We shall sometimes write 6(q, b) = q' for 6(q, b) = (q').

Let A = (Q, L F, 8) and A' = (Q', I', F', 8') be acceptors. A is isomorphic to A' if
and only if there exists a bljection h of Q onto Q' such that h(1) = I', h(F) = F', and
for every q E Q and b ~ U, h(6(q, b)) = 6'(h(q), b). Isomorphic acceptors are the
same up to renaming of the states. A ' is a subacceptor of A if and only if Q', I ' , and
F ' are subsets of Q, L and F, respectively, and for every q ' ~ Q' and b ~ U, 6'(q', b)

746 DANA ANGLUIN

is a subset of 8(q', b). Pictorially, a subacceptor is obtained by removing some states,
initial states, final states, and transition arrows from the diagram of an acceptor.

I f Qo is a subset of Q, then the subacceptor of A induced by Qo is the acceptor
(Q0, Io, F0, 8o), where Io is the intersection of Qo and L F0 is the intersection of Qo and
F, and q' ~ 6o(q, b) if and only if q, q' E Qo and q' ~ 8(q, b). A state of A is called
useful if and only if there exist strings u and v such that q E 8(I, u) and 8(q, v)
contains some element of F. States that are not useful are called useless. An acceptor
that contains no useless states is called stripped. I fA is any acceptor, then the stripped
subacceptor of A is the subacceptor of A induced by the useful states of A.

We extend the transition function 8 to map a set of states and a string to a set of
states in the usual way. If q E 8(q', a), then q' is called an a-predecessor of q, and q
is called an a-successor of q'.

A string u is accepted by an acceptor A = (Q, I, F, 8) if and only if 8(I, u) contains
some element of F. The set of strings accepted by A is called the language of A and
is denoted L(A). IfA and A' are isomorphic, then L(A) = L(A '). IrA' is a subacceptor
of A, then L(A') is a subset of L(A). If A' is the stripped subacceptor of A, then
L(A') --- L(A).

Let A be a deterministic acceptor with initial state set I. Defme the partition ~rA by
B(W1, 97A) = B(W2, "17A) if and only if 8(L Wl) = 8(I, W2). Since TL(W1) = TL(W2) if
8(L wl) = 8(L w2), ~rA is a right congruence that refines Irz, where L = L(A).

Let A = (Q, L F, 8) be any acceptor. I f ,r is any partition of Q, we define another
acceptor A/rr = (Q', 1', F', 8') as follows. Q' is the set of blocks of ~r. I ' is the set of
all blocks of ~r that contain an element of 1. F' is the set of all blocks of ~r that con-
tain an element of F. The block B2 is in 8'(B1, a) whenever there exist ql ~ B1 and
q2 ~ B2 such that q2 ~ 8(q~, a). A/ir is called the quotient of A and ~r.

Let L be any regular language. We define the canonical acceptor for L, A (L) =
(Q, / , F, 8), as follows:

Q = (TL(u):u E Pr(L)),
I = {TL(X)} if L#QS, otherwise I = O,
F = {TL(w):w E L},

8(TL(U), a) = Tz(ua) if u, ua E Pr(L).

(Note that if L = O, then Pr(L) = O and A (L) is the empty acceptor.) Recall that
TL(U~) = TL(U2) implies TL(UlV) = TL(U2V) for all strings v, so that this transition
function is well defined and A (L) is deterministic. The acceptor A (L) accepts the
language L and has the minimum possible number of states among all acceptors of
L. A (L) is stripped, that is, contains no useless states. Note that the right congruence
rrA<L) induced by A(L) coincides with the right congruence ~rL induced by L. An
acceptor A is called canonical if and only ifA is isomorphic to the canonical acceptor
for the language of A. Given a deterministic acceptor A, there is an efficient procedure
to fred a canonical acceptor for L(A), as described in [1].

Let S be a positive sample, that is, a finite set of strings. Define the prefix tree
acceptor for S, PT(S) = (Q, L F, 8), as follows:

a = Pr(S),
I = {~} if S # O , otherwise I=QS,
F = S ,

8(u, a) = ua whenever u, ua E Q.

Then PT(S) is a deterministic acceptor that accepts precisely the set S. (Note that if
S = O, then PT(S) is the empty acceptor.) The inference algorithms that we shall

Inference of Reversible Languages 747

consider begin with the prefix tree acceptor for the input sample and generalize it by
merging states. The following lemma concerns what kinds of acceptors may be
obtained by merging states of the prefix tree acceptor for a sample.

LE~MA 1. Let S be a positive sample of the regular language L, and let Ao be the
prefix tree acceptor for S. Let ~r be the partition ~rt, restricted to the set Pr(S) of prefixes
of elements of S. Then Ao/er is isomorphic to a subacceptor of A(L).

PROOF. The result holds trivially if S = O, so assume that S ~ O. We shall denote
TL(w) by T(w). The partition ¢r is defined by B(wx, ¢r) = B(w2, ¢r) if and only if T(wl)
= T(w2), for all wa, w2 E Pr(S). Hence h(B(w, ¢r)) = T(w) is a well-defined and
injective map from the states of Ao/rr to the states of A(L). The initial state B(2,, or)
of Ao/cr is mapped to the initial state T(k,) of A(L). I f B1 is a final state of Ao/er, then
B1 = B(w, or) for some w in S, and since L contains S, T(w) is a final state of A(L).
Hence h maps final states of A0/~r to final states of A(L).

If B2 is a b-successor of B~ in Ao/~r, then for some w E Pr(S) we have B2 =
B(wb, ~r), BI = B(w, It), and wb ~ Pr(S). Thus h(B2) = T(wb) is a b-successor of
h(B1) = T(w) in A(L).

Thus h is an isomorphism between Ao/cr and a subacceptor of A(L). []

COROLLARY 2. L(Ao/cr) is contained in L.

It may also be shown that if S is a complete sample for L, that is, exercises every
transition in A (L), then the acceptor Ao/cr defmed above is isomorphic to A (L). Of
course, in the inference procedures we consider, ¢r is not given but rather must be
guessed. These results show only that a correct guess exists.

4. Reversible Languages

In this section we define reversible regular languages and establish some of their
basic properties. Inference algorithms for these languages are described in later
sections.

4.1. ZERO-REVERSIBLE ACCEPTORS AND LANGUAGES. Let A = (Q , / , F, 3) be an
acceptor, and let L = L(A). The reverse of 6, denoted 6r, is defined by

~r(q, a) = {q':q ~ ~(q', a)) for all a ~ U, q ~ Q.

The reverse of the acceptor A is A ~ = (Q, F , / , /~r). Pictorially, we obtain A r from A
by interchanging the initial and final states and reversing each of the transition
arrows. It is not difficult to verify by induction that L(A ~) = (L(A)) ~.

The acceptor A is said to be zero-reversible if and only if both A and A r are
deterministic. Using the terminology of Cohen and Brzozowski [8], an acceptor is
resetfree if and only if for no two distinct states ql and q2 do there exist b C U and
qz E Q such that 8(ql, b) = q3 = 8(q2, b). Then an acceptor is zero-reversible if and
only if it is deterministic, has at most one final state, and is reset-free. Alternatively,
a zero-reversible acceptor is any subacceptor of a permutation acceptor with at most
one initial and one final state.

Remark 3. Note that if A is zero-reversible and accepts uv, then ~(qo, u) =
6~(qt, v r) if I = (qo) and F = (qt}- Consequently, i fA accepts both ulv and u2v, then
8(q0, ul) = ~(q0, u2).

Remark 4. I fA is a zero-reversible acceptor and A' is any subacceptor of A, then
A' is a zero-reversible acceptor.

748 D A N A A N G L U I N

LEMMA 5. Suppose A is a zero-reversible acceptor. Then the stripped subacceptor
A ' of A is canonical.

PROOF. A' is a zero-reversible acceptor and accepts L = L(A). I f L is the empty
language, then A' is the empty acceptor and therefore canonical. So suppose that L
is not the empty language. Let A' = (Q, (qo), (qf), 8). Let ql and q2 be states of A',
and suppose that (v:8(ql, v) = qf) = (v : ~ (q 2 , v) = qf). Since A' is stripped, this
implies that there exist strings u~, uz, v such that ql = 6(q0, Ul), q2 = 8(q0, uz), and ulv,
uzv ~ L. Thus, by Remark 3, ql = qz. Hence A' is canonical. []

A language L is defined to be zero-reversible if and only if there exists a zero-
reversible acceptor A such that L = L(A). The following lemma shows that we need
only test the canonical acceptor to determine whether a language is zero-reversible.

LEMMA 6. A regular language L is zero-reversible i f and only i f the canonical
acceptor A (L) is zero-reversible.

PROOV. The "if" direction is immediate from the definitions. Suppose that L is
zero-reversible and A is a zero-reversible acceptor for L. The stripped subacceptor A'
of A is canonical, zero-reversible, and accepts L. Since A (L) is isomorphic to A',
A (L) is zero-reversible. []

The next result gives a purely language-theoretic characterization of the zero-
reversible sets.

THEOREM 7. Let L be a regular language. Then L is zero-reverszble if and only tf
whenever ulv and u2v are in L, Tz(ul) = Tz(u2).

PROOF. We denote TL(w) by T(w). Suppose L is zero-reversible. By the above
lemma, the canonical acceptor A(L) is zero-reversible. Thus, if ulv and u2v are in L,
then by Remark 3, u~ and u2 lead to the same state of A (L), that is, T(ul) = T(u2).

Conversely, suppose that whenever ulv and u2v are in L, T(u~) = T(u2). Thus, if u~
and u2 are in L, T(u~) = T(u~), so A (L) has at most one accepting state. I f T(ui) and
T(u2) are states of A(L) such that T(ulb) = T(u2b) is a state of A(L) for some b ~ U,
then there exists a string v such that ulbv and u2bv are in L, so by the hypothesis,
T(u~) = T(u2). Hence, A (L) is zero-reversible, and therefore L is zero-reversible. []

Example 8. Let U = (0, 1}. The language of all strings over U containing an
even number of l 's and an even number of O's is accepted by the acceptor shown in
Figure 3a and is therefore zero-reversible. The canonical acceptor for the language
0*l* is shown in Figure 3b. Since the canonical acceptor is not zero-reversible, the
language 0* l* is not zero-reversible. []

In order to do correct identification in the limit from positive data, we must avoid
the problem of "overgeneralizing," that is, of accidentally guessing a language that
is a strict superset of the unknown language. This problem is analyzed in a general
setting in [4]. For this particular setting we define a characteristic sample of a zero-
reversible language L to be a sample So of L with the property that L is the smallest
zero-reversible language that contains So. If we detect a characteristic sample for L
among the input strings, then we are assured that a guess of L will not be an
overgeneralization. The following result is used in the proof of correct identification
in the limit of the zero-reversible languages.

THEOREM 9. For any zero-reversible language L there exists a characteristic
sample.

Inference of Reversible Languages 749

PROOF. Clearly, if L = ~, then So = O is a characteristic sample for L. Suppose
L ~ O, and let A = (Q, (qo}, (qr}, 6) be the canonical acceptor for L. For each state
q E Q, let u(q) and v(q) be strings of the minimum possible lengths such that
6(qo, u(q)) = q and 6(q, v(q)) = qf. Let So consist of all strings of the form u(q)v(q)
such that q E Q and all strings of the form u(q)bv(q') such that q E Q, b ~ U, and
q' = 6(q, b). We show that So is a characteristic sample for L.

Let L' be any zero-reversible language containing So. We show that TL,(W) =
TL,(u(q)) for all strings w ~ Pr(L), where q = 6(q0, w). Since u(qo) = ~, this holds for
X. Inductively suppose that this holds for all elements of Pr(L) of length at most n,
for some n _> 0. Let w be a string from Pr(L) of length n, and suppose that b ~ U is
such that wb E Pr(L). By the inductive hypothesis, Tz,(W) = TL,(u(q)), where q =
6(qo, w). Thus, TL,(wb) = TL,(u(q)b). If q' = 6(q, b) = 6(qo, wb), then u(q')v(q') and
u(q)bv(q') are both elements of So. Thus TL,(u(q')) = Tr,(u(q)b) because L ' is zero-
reversible, by Remark 3. Hence TL,(Wb) = TL,(u(q')), which completes the induction.

Thus for every w ~ L, TL,(W) = TL'(u(qr)), and since u(qr) ~ So, this tmplies that
w E L'. Therefore, L is contained in L', and L is the smallest zero-reversible language
that contains So. Hence So is a characteristic sample for L. []

Example 10. Consider the language over {0, 1) consisting of all strings containing
an even number of O's and an even number of l's, whose canonical acceptor is
pictured in Figure 3a. Applying the construction process described in the above
proof to obtain a characteristic sample for this language, we may define u(A) = ~,
v(A) = ~, u(B) = O, v(B) = O, u(C) = 01, v(C) = 10, u(D) = 1, and v(D) - 1, which
gives the sample

So = (X, 00, 11, 0101, 0110, 1010). []

4.2. K-REVERSmL~ ACCEPTORS AND LANGUAGES. The notion of k-reversibility is
a generalization of zero-reversibility. Let k be a fixed nonnegative integer. Let A =
(Q, L F, 6) be an acceptor. The string u is said to be a k-follower (resp. k-leader) of
the state q in A if and only if I u I = k and 6(q, u) # O (resp. 6r(q, ur) # 0) . Note that
every state has exactly one 0-follower and one 0-leader, namely, h. The acceptor A
is defined to be deterministic with lookahead k if and only if for any pair of distinct
states q, and q2, if ql, q2 E I or q,, q2 ~ 6(q3, a) for some q3 ~ Q and a E U, then
there is no string that is a k-follower of both ql and q2. This guarantees that any
nondeterministic choice in the operation of A can be resolved by looking ahead k
symbols past the current one.

An acceptor A is defined to be k-reversible if and only ifA is deterministic and A ~
is deterministic with lookahead k. A language L is defined to be k-reversible if and
only if there exists a k-reversible acceptor A such that L = L(A). Note that these
definitions coincide with the definitions for zero-reversible acceptors and languages
when k = 0.

Remark 11. I fA = (Q, {qo), F, 6) is k-reversible and uavw and u2vw are accepted
by A, where Iv I = k, then there is a unique state q such that 6(qo, uav) = q =
6(qo, u2v).

Remark 12. Any subacceptor of a k-reversible acceptor is k-reversible.

The analog of Lemma 5 for k-reversible languages is not in general true, but it still
suffices to test the canonical acceptor for a language to decide whether it is k-
reversible, as we now show.

750 DANA ANGLUIN

LEMMA 13. A regular set L is k-reversible if and only i rA(L) is k-reversible.

PROOF. We denote TL(W) by T(w). The "if" direction is immediate. Suppose L
is k-reversible and is accepted by the k-reversible acceptor A ~- (Q, {qo}, F, 6). A (L)
is a deterministic acceptor of L, and ~rA refines erA(L). We must check that (A(L)) r is
deterministic with lookahead k. Suppose T(w 0 and T(w2) are states of (A(L)) ~ and
v is a k-follower of T(wl) and of T(w2) in (A(L)) ~. Then there exist strings ul and u2
such that T(ulv ~) = T(wl) and T(uzv r) = T(w2). I f T(w 0 and T(w2) are both initial
in (.4 (L)) r, or if for some a ~ U there is a state T(w3) of A (L) such that T(w,a) --
T(w3) = T(w2a), then there exists a string w such that A(L) accepts both utv~w and
u2v~w. Thus A accepts both of these strings, and by the above remark, 8(q0, utv ~) =
q = 8(qo, u2v r) for some q in A. Thus ulv ~ and u2v ~ are in the same block of ~A, and
therefore in the same block of ~rA(L), SO T(ulv ~) = T(u2v ~) and T(wt) = T(w2). Thus
A(L) is k-reversible. []

We now give a characterization of the k-reversible languages purely in terms of
the languages.

THEOREM 14. Let L be a regular language. Then L is k-reversible if and only if
whenever ulvw and u2vw are in L and I v l = k, TL(UlV) ---- TL(u2v).

PROOF. We denote TL(w) by T(w). Suppose L is k-reversible. By the above
lemma, the canonical acceptor A(L) is k-reversible. Suppose u~vw and u2vw are in L,
where [v I = k. Then by Remark I l, u~v and u2v lead to the same state of A (L), so
T(ulv) = T(u2v).

Conversely, suppose that L is such that whenever uxvw and u2vw are in L, where
Iv[= k, then T(ulv) = T(u2v). Suppose that ul, uz, and v are such that T(ulv) and
T(uzv) are accepting states of A(L), where Iv I = k. Then UlV and u2v are in L, so by
the hypothesis, T(UlV) = T(uzv). Similarly, if ul, u2, and v are such that T(ulvb) =
T(u2vb) is some state of A(L), where Iv[-- k, then there exists some string w such
that ulvbw and uzvbw are in L. Then T(u~v) = T(uzv) by the hypothesis on L. Hence
A (L) is k-reversible, and therefore L is k-reversible. []

Example 15. The acceptor shown in Figure 3b is 1-reversible, so the language
0* 1" is 1-reversible. Consider the regular set L denoted by the regular expression
ba*c + d(aa)*c. The canonical acceptor for L is shown in Figure 4. This acceptor is
not k-reversible for any k _> 0, since for any k > 0, a ~ is a k-leader of two distinct
states that have a common c-successor. Hence L is not k-reversible for any
k _ 0 . []

We now consider characteristic samples for k-reversible languages. A positive
sample S is a characteristic sample for a k-reversible language L if and only if L is the
smallest k-reversible language containing S. (Note that whether a sample is a
characteristic sample for a given language depends on the value of k under consid-
eration. Thus a sample that is characteristic for a zero-reversible language L may not
be characteristic for the same language considered as a 1-reversible language.)

THEOREM 16. Let L be any k-reversible language. Then there exists a characteristic
samples So for L.

PROOF. Since Theorem 9 establishes this result in the case k = 0, we assume
k _> 1. If L = ~, then So = ~ is a characteristic sample for L, so we suppose that
L # ~. Let A = (Q, {qo}, F, 6) be the canonical acceptor for L. For each q E Q let
Lq denote the set of k-leaders of q in A. For each pair q E Q and x E Lq let u(q, x)

Inference of Reversible Languages

a

b c

d c
FIG. 4. A nonreversible acceptor

751

denote a string u of the minimum possible length such that 8(qo, ux) = q. For each
q ~ Q let v(q) denote a string v of the minimum possible length such that 8(q, v)
E F. The sample So is def'med to consist of all strings w E L of length less than k,
all strings u(q, x)xv(q) such that q E Q and x ~ Lq, and all strings u(q, x)xbv(q')
such that q E Q, x ~ Zq, and q' = 6(q, b). No other strings are in So.

Let L ' be any k-reversible language containing So. We must show that L is
contained in L' . Clearly any element w of L of length less than k is in So and
therefore in L' . We show by induction that for every w C Pr(L) of length at least k,
TL,(w) = TL,(u(q, x)x) , where x is the suffix of w of length k and q = 8(q0, w). If w
has length exactly k, then w --- x and u(q, x) = ~, so this condition is satisfied.
Suppose that for some n > k this condition is satisfied for all strings w ~ Pr(L) of
length at most n. Suppose w is any element of Pr(L) of length n + 1. Write w =
w'axb, where Ix l = k - 1 and a, b E U. By the induction hypothesis, TL,(w'ax) =
TL,(u(q, ax)ax), where q = 8(qo, w'ax). Thus TL,(w) = TL,(u(q, ax)axb). Let q ' --
8(q, b) = 8(qo, w). Then So contains the strings u(q, ax)axbv(q') and u(q', xb)xbv(q'),
so L ' contains both of these strings. By Remark 11, this implies that TL, (u(q, ax)axb)
= TL,(u(q', xb), xb), so TL,(w) = TL,(u(q', xb)xb), completing the induction step.

Now let w be any element of L of length at least k, and let x be the suffix of w of
length k. Then TL,(w) = TL,(u(qr, x)x), where ql E F. Since qr is an accepting state,
v(qr) = ~,, so u(qf, x)x is in So and therefore in L'. Hence w is in L', which completes
the proof that L is contained in L'. Thus L is the smallest k-reversible language
containing So, and So is a characteristic sample for L. []

Example 17. Consider the language 0"1" whose canonical acceptor is shown in
Figure 3b. Applying the method of the above proof to construct a characteristic
sample So for this l-reversible language, we obtain LA = {0), LB = (1}, u(A, O)
= ~, v(A) = ~, u(B, 1) = ~,, v(B) = ~,, and So = {A, 0, 1, 00, 01, 11). []

4.3 GENERAL PROPERTIES OF REVERSIBLE LANGUAGES. Let Rk denote the class
of k-reversible languages over the alphabet U, and let R, denote the union of all the
Rh for k >__ 0. The languages in R, are called simply the reversible languages.

THEOREM 18. I f k is any nonnegative integer,

(1) Rk is properly contained in Rh+l,
(2) Rk is closed under pairwise intersection,
(3) R , is not closed under pairwise union or complementation,
(4) R , is not closed under concatenation,
(5) R , is not closed under Kleene closure,
(6) Rk is closed under reversal.

752 DANA ANGLUIN

PROOF. It is immediate from the definitions that Rk is contained in Rk+l. The
language denoted by lk+ll * is (k + 0-reversible but not k-reversible, showing that
the containment is proper.

It is straightforward to verify that the usual direct product construction applied to
two k-reversible acceptors produces a k-reversible acceptor that recognizes the
intersection of the languages of the two acceptors. A description of the product
construction may be found in [24].

Since the languages denoted by the expressions ba*c and d(aa)*c are easily checked
to be zero-reversible, Example 15 shows that the union of two zero-reversible
languages may not be reversible. Thus R , is not closed under pairwise union. De
Morgan's laws then imply that R, is not closed under complementation with respect
to U*.

The languages L1 = (a + b)* and L2 ~- (a + C)* are easily seen to be zero-reversible,
but their concatenation L~ = LIL2 is not reversible. To see this, note that for every k,
bap, caP, and bapb are in L3, while capb is not in La, so by Theorem 14, L3 is not k-
reversible for any k. Thus R . is not closed under concatenation.

Let L4 denote the set of all strings over the alphabet (0, 1, 2} whose digits add up
to 1 modulo 3. L4 is easily seen to be zero-reversible, but (L0* is not reversible. To
see this, we note that for every k, 10kl, 0kl, and 10421 are in (L0*, while 0421 is not.
Thus, by Theorem 14, (/_,4)* is not k-reversible for any k, and R . is not dosed under
Kleene closure.

Closure of Rk under reversal is immediate when k = 0 but requires proof in the
case that k _ 1. Fix k _> 1. Let L be a k-reversible language, and let A = (Q, {q0},
F, 8) be the canonical acceptor for L. Then A is k-reversible, so A" is deterministic
with lookahead k. We construct another acceptor, A1 = (Q1, 11, F1, 81), to accept U.
This acceptor is deterministic and operates by "looking ahead" k symbols in the
input to make A r deterministic. We show that A1 is k-reversible, which implies that
L r is k-reversible.

Let z be distinct from all the elements of Q. States of A1 are of the form (z, u),
where u is a string of length less than k, or of the form (q, u), where q U Q and u is
a string of length k. The element z is a "place holder" before k symbols of the input
have been read. The state (q, u) signifies being in state q of A r looking ahead at the
string u in the input.

Le t f (q) denote the set of k-followers of state q in W, that is,

f (q) = {u: lu l = k and 6~(q, u) # O}.

We define AI as follows:

Q1 = ((z, u):]u] < k) 0 ((q, u):u ~ f (q)) ,
I , = ((z, x)) ,
F, = {(z, u):u E L r) tO ((q, u):8(qo, u r) = q} ,

81((z, u), a) = {(z, ua)}
if

8,((z, u), a) = {(q, ua):q ~ F, ua E f (q) }
if

l u l < k - 1,

l . l = k - 1 ,
81((q, a,u), a2) = ((q', uaz):q' ~ 8r(q, al), ua2 ~ f(q ')) .

Clearly A1 has one initial state. We now show that there is at most one a-successor
for each state of A1, for each symbol a E U. I f [u [< k - 1, then the state (z, u) has
a unique a-successor for each a E U. If [u] -- k - 1, then for each a E U, because A r
is deterministic with lookahead k, there is at most one state q in F with ua ~ f (q) , so

Inference o f Reversible Languages 753

there is at most one a-successor of(z , u) inAb Iflul = k - 1 and at ~ Uis such that
(q, a~u) E Q~, then for any a2 ~ U there is at most one state q ' E 8r(q, a~) such that
uaz E f (q ') , so (q, a~u) has at most one a-successor in A1. Thus Ax is deterministic.

To see that A1 accepts U, we argue as follows. If lul < k, then ~a((z, 20, u) = (z, u),
and (z, u) is an accepting state of A1 if and only i fu E L r. Iflul --- k, then let u = u~v,
where [v[= k. Then 8x((z, h), ulv) is either empty or is a state (q, v) such that v ~ f (q)
and q E 6"(qr, Ul), for some qr E F. Thus, if A~ accepts u, 3(q0, v ~) = q and q
8r(qf, u~), so q0 ~ 6r(qf, UaV) and u = u~v is in L r. Conversely, if u = ulv is in U, then
v~u~ is in L, so i fq = 8(qo, vr), then (q, v) E F t and 81((z, ~), UlV) -- (q, v), soA~ accepts
u. Thus U --- L(AI).

It remains to show that At is k-reversible. We have already seen that it is
deterministic. Suppose two states of A~ have a common k-follower v in the reverse of
A~. Then they must be of the form (q~, v r) and (q2, v~), since they have a common k-
leader v" in A~. If these states are both in F1, then q~ -- 3(q0, v) = q2, so (q~, v ~) =
(q2, vr). If for some a E U, 61((q~, v~), a) = ~((q2, v~), a) = (q~, v'), then q3 E ~(q~, b)
and qz E 6"(qz, b), where b is the initial symbol of v ~. Thus q~ = 6(qa, b) = qz, by the
determinism of A, and (q~, v ~) = (q2, vr)- Thus A1 is k-reversible, which shows that L r
is k-reversible. Hence Rk is closed under reversal. []

R. consists of a hierarchy of classes, contains all the nonempty t'mite languages
over U, and does not contain all the regular languages over U. We now compare R .
with another class of regular sets with generally similar properties, the definite
languages [30]. A regular language L is k-defimte if and only if whenever ul and u2
have a common sUffLX of length k, Tc(ul) = TL(uz). Note that this implies that there
are finitely many distinct k-definite regular languages over a fixed alphabet U. (This
is true because there must be fewer than [U[~+1 states in the canonical acceptor for
a k-definite language.) Let Dk denote the class of k-definite languages and D. the
union of all Dk for k _> 0.

THEOREM 19. R . properly contains D. . For every k >-- 0, Rk properly contains Dk.

PROOF. Let L be a k-definite language; we show that L is k-reversible. We denote
TL(w) by T(w). If L = 6 , then L is k-reversible; so suppose L # 6 , and let A (L) =
(Q, {qo}, F, 6) be the canonical acceptor for L. Suppose ql and q2 are states of (A(L)) r
with a common k-follower v. Then there exist strings ul and u2 such that

6(qo, ulv ~) = ql and 6(qo, u2v') = qz.

Since L is k-definite, T(UlV r) = T(u2vr), that Is, ql = qz. Hence no two distinct states
of (A(L))" have a common k-follower, so A(L) is k-reversible, and therefore L is k-
reversible. Thus Dk is contained in Rk.

In Example 8 it was shown that the language over {0, 1 } consisting of those strings
that contain an even number of l's and an even number of O's is zero-reversible and
therefore contained in Rk for all k _> 0. Since this language is not k-definite for any
k ___ 0, we conclude that Rk properly contains Dk for all k ___ 0 and that R . properly
contains D..

(We also note for each k _> 0, Rk contains infinitely many languages, while D~
contains only finitely many languages.) []

The reverse defimte languages [17] are simply the reversals of the defimte languages.
Thus, as a corollary of this theorem and the closure of each Rk under reversal, we

754 DANA ANGLUIN

have that each Rk properly contains the k-reverse defmite languages, and R , properly
contains the reverse definite languages.

Ginzburg has also defined a generalization of the definite and reverse definite
languages called the generalized definite languages [17]. A language is generalized
definite if and only if it may be expressed as the union of a f'mite set of strings and a
/'mite union of languages of the form FU*G, where F and G are t'mite sets of strings,
and U is the alphabet. An algebraic characterization of these languages has been
given by Zalcstein [33]. In order to compare R , with the generalized definite
languages, we need some additional facts about R, .

LEMMA 20. Let F be a finite set of strings and L a reversible language. Then
F 0 L is a reversible language.

PROOF. If F is the empty set, then the result clearly holds, so assume F is
nonempty. Let kl denote the length of the longest string in F, and let k2 denote the
smallest nonnegative integer such that L is k2-reversible. Let k = k~ + kz + 1. We
shall show that F O L is k-reversible using Theorem 14.

Suppose ulvz and u2vz are in F O L, where I v l = k. Then these strings must be in
L, since their lengths exceed k~. Since L is k2-reversible and k is greater than k2, for
every string w, UlVW is in L if and only if uzvw is in L. But u,vw is in L if and only if
u, vw is in F O L for i = 1, 2, because of length considerations. Hence F O L is k-
reversible. []

LEMMA 21. Let F be a prefix-free finite set o f strings, G a suffix-free f imte set o f
strings, and L a reversible language. Then FL and LG are reversible languages.

PROOF. Since LG = (GrL~) r and G r is a prefix-free finite set of strings, it suffices
to prove that FL is reversible, since the reversible languages are dosed under reversal.
If F is the empty set, then FL is empty and therefore reversible, so assume that F is
nonempty. Let k~ denote the length of the longest string in F, and let k2 denote the
least nonnegative integer such that L is k2-reversible. Let k = k~ + kz. We shall use
Theorem 14 to show that FL is k-reversible.

Suppose ulvz and u2vz are in FL, where I v l = k. Write v = v~v2, where I vl I = k~
and Iv21 = k2. There exist stringsfi and g, such that u,vz = u, vxv2z =f ig , v2z for i =
1, 2, and, moreover, f~ is in F a n d g, v2z is in L for i = 1, 2. Since L is k2-reversible, this
implies that for every string w, g~v2w is in L if and only ifg2v2w is in L.

Let an arbitrary string w be given. We shall show that if u~vw is in FL then u2vw
is in FL, the converse being proved similarly. So, suppose that UxVW is in FL. Since
u~vw =flglvzw and F is prefix-free, this implies that glv2w is in L. Thus g2v2w is in L,
andf2g2v2w = u2vw is in FL. This shows that FL is k-reversible. []

The following example shows that the restriction of F to be prefix-free is essential
in the above lemma.

Example 22. Let L = (111)* and F = { 1, 11). Then FL is not reversible, since for
every k, uk = 13k÷1 and vk = 13k÷2 are in FL, but ukl is in FL while vkl is not. Thus,
by Theorem 14, FL is not k-reversible for any k. []

THEOREM 23. Let E, F, and G be finite sets o f strings. Then E t3 FU*G is a
reversible language, where U is the alphabet.

PROOF. Let F ' denote (u E F: for no v in F is v a proper prefix of u} and G'
denote {u E G:for no v in G is v a proper suffix of v}. Then F ' is prefLx-free, G' is

Inference of Reversible Languages 755

suffix-free, and FU*G = F'U*G', where U is the alphabet. Thus, since U* is zero-
reversible, by the preceding two lemmas we have that E 0 FU*G is a reversible
language. (Note that this gives an alternative proof of the fact that R , contains the
definite and reverse definite languages.) []

Thus R . contains some of the generalized definite languages, but the following
example shows that it does not contain all of them.

Example 24. Let U denote {a, b, c, d} and L = aU*a + dU*bca. Then L is
clearly generalized definite, but it is not reversible. To see this, note that for every
k > O, a(bc)ka, d(bc)ka, and a(bc)kba are in L, but d(bc)kba is not in L. Thus, by
Theorem 14, L is not k-reversible for any k.

Since the set of strings of even parity is not generalized definite, we see that the
classes of reversible and generalized definite languages are incomparable. The same
is true of the reversible and locally testable languages, defined in [28].

5. The Zero-Reversible Inference Algorithm

In this section we describe, justify, and analyze the algorithm ZR to infer zero-
reversible regular sets from positive samples. The generalization to k-reversible
regular sets, which is somewhat more complicated, is treated in the next section.

The input to ZR is a f'mite nonempty set of strings S. The output is a particular
deterministic acceptor A = ZR(S). Theorem 26 shows that L(A) is the smallest zero-
reversible language that contains S. Theorem 27 shows that using ZR at the finite
stages of an infinite inference procedure leads to correct identification in the limit of
the zero-reversible languages. Theorem 28 shows that ZR runs in nearly linear time.
A simple incremental updating scheme for ZR is described.

5.1 THE ALGORITHM ZR. On input S, ZR first constructs Ao -- PT(S), the prefix
tree acceptor for S. It then constructs the freest partition ~rf of the set Qo of states of
A0 with the property that Ao/~r r is zero-reversible, and outputs Ao/~rf.

To construct 7rf, ZR beings with the trivial partition of Qo and repeatedly merges
any two distinct blocks B1 and B2 such that either B1 and B2 both contain accepting
states of Ao or there exists a block Ba and a symbol b such that there are b-successors
(resp. b-predecessors) of states of B3 in both B1 and B2. When there no longer remains
any such pair of blocks, the resulting partition is ~r r.

To implement this merging process efficiently, ZR keeps track of the further
merges immediately implied by each merge performed. The variable LIST contains
a pointer to a list of pairs of states whose corresponding blocks are to be merged. ZR
initially selects some accepting state q' of Ao and places on LIST all pairs (q', q) such
that q is an accepting state of A0 other than q'. This ensures that all blocks containing
an accepting state of A0 will eventually be merged.

For each block B of the current partition and each symbol b ~ U, ZR maintains
two quantities, s(B, b) and p(B, b), indicating the b-successors and b-predecessors of
B. If there exists some state q E B such that 8o(q, b) is defined, then s(B, b) is some
such 80(q, b); otherwise, s(B, b) is the empty set. Similarly, if for some q E B, 8~(q, b)
is defined, then p(B, b) is defined to be some such 8~(q, b); otherwise, p(B, b) is the
empty set. These quantities are initialized as s({q}, b) = 80(q, b) and p({q}, b) =
8~(q, b) for all q ~ Q0 and b E U.

After these initializations, ZR proceeds as follows. While the list LIST is
nonempty, ZR removes the first pair of states (ql, q2). If ql and q2 are already in the

756 DANA ANGLUIN

same block o f the current partition, Z R goes on to the next pair o f states f rom LIST.
Otherwise, the blocks containing q~ and q2, call them B1 and B2, are merged to form
a new block Ba.

This action entails that L I S T and the p- and s-values be updated as follows. For
each b E U, if s(B1, b) and s(Bz, b) are both nonempty , then the pair (s(B~, b),
s(B2, b)) is added to LIST. Similarly, ffp(B1, b) andp(B2, b) are both nonempty, then
the pair (p(B1, b), p(B2, b)) is added to LIST. Also, if either s(B~, b) or s(B2, b) is
nonempty , then an element q is chosen f rom one o f them and s(Ba, b) is set to q;
otherwise, s(B3, b) is set to the empty set. Similarly, p(B3, b) is defined according to
p(B1, b) and p(B2, b). After this updating, Z R goes on to the next pair o f states f rom
LIST.

W h e n L I S T becomes empty, the current parti t ion is ~rf. Z R outputs Ao/~rf and halts.
A somewhat more formal description o f Z R m a y now be gwen.

Algortthm ZR
Input. a nonempty posmve sample S.

Output a zero-reversible acceptor A.

* Inmahzatton
Let Ao = (Qo, 10, Fo, (~o) be PT(S)
Let ~ro be the trivial partmon of Q0
For each b ~ U and q E Qo let s({q), b) = 8o(q, b) andp({q}, b) = 8~ (q. b)
Choose some q' E Fo.
Let LIST contain all pairs (q', q) such that q ~ F0 - {q'}.
Let i = O.
* Merging
Whd¢ LIST ~ ~ do
begin

Remove some element (ql, q2) from LIST
Let B1 = B(ql, it,), B2 = B(q2, ~rz)
If B~ # B2 then
begin

Let 7rz+x be ~', with B1 and B2 merged
For each b E U, s-UPDATE(B,, B2, b) and p-UPDATE(Ba, B2, b)
Increase i by 1

end
end
* Termination
Let f = z and output the acceptor Ao/~rf

The procedure s-UPDATE(B~, Be, b) places (s(B1, b), s(B2, b)) on LIST if both
s(B1, b) and s(Bz, b) are nonempty and defines s(B3, b) to be s(B~, b) if this is
nonempty and s(Bz, b) otherwise (where B3 is the union o f B1 and B2). The procedure
p - U P D A T E is defined similarly, with p in place o f s. The description o f the algori thm
Z R is now complete, and we turn to analyzing its correctness and running time.

5.2. THE CORRECTNESS OF ZR. In this section we show that Z R correctly finds
the smallest zero-reversible language that contains the input sample. The following
lemma may be interpreted as saying that the algori thm Z R performs the minimal
generalization o f the sample that produces a zero-reversible inference.

LEMMA 25. Let S be any nonempty positive sample, Ao the prefix tree acceptor
PT(S) for S, and ~rf the final partition found by ZR on input S. Then ~rf is the finest
partition ~r such that Ao/~r IS zero-reversible.

Inference of Reversible Languages 757

PROOF. Let Ao = (Qo, Io, Fo, 8o). If the pair (ql, q2) is ever placed on LIST, then
ql and q., must be in the same block of the final partition, that is, B(ql, ~rr) =
B(q2, ~rr). Also, it is not difficult to verify by induction on t that for i = 0, 1 f , if
ql and q2 are distinct elements of 6o(B, b) (resp. 6~(B, b)) for some block B of ~ri
and symbol b E U, then there exists a chain q~, q~ q~ of elements of 3o(B, b)
(resp. 6~(B, b)) such that q~ = q~, q2 = q~, and for each j, 0 _<j < n, either (qj, q~+l)
or (q~+,, q~) is placed on LIST prior to or during the construction of ~r~.

Therefore the initialization guarantees that all the accepting states of Ao are in the
same block of ~r r, so Ao/~r r has exactly one accepting state. Also, for each block B of
~r r and symbol b ~ U, all the elements of 6o(B, b) (resp. 6~(B, b)) are contained in one
block of ~rr. Thus Ao/~r r is zero-reversible.

It remains to show that if ~r is any partition of Qo such that Ao/~r is zero-reversible,
then ~r r refines ~r. We prove by induction that rr, refines ~r for t = 0, 1 f . Clearly
Cro, the trivial partition of Qo, refines ~r. Suppose ~ro, ~r~ ~r, all refine ~r and ~r,+, is
obtained from ~r, in the course of processing entry (q~, q2) from LIST. Thus ¢r,+1 is
obtained from ~r, by merging the blocks B(q~, ~r,) and B(q2, ~r~). Since ~r, refines ~r,
B(ql, ~r~) is a subset of B(q,, ~r) and B(q2, ~r,) is a subset of B(q2, ~r), so to show that
~r,+~ refines ~r, it suffices to show that B(q,, ~r) = B(q2, ~r).

Either (q l , q2) was first placed on LIST during the initialization stage or not. If so,
then ql and q~ are both accepting states, and since Ao/~r is zero-reversible, it has only
one accepting state, so B(q,, ~r) = B(q~, ~r). Otherwise, (q~, q~) was first placed on
LIST in consequence of some previous merge, let us say the merge to produce ~r~
from ~r~_~, where 0 < j _< i. Then (qt, q~) = (s(B~, b), s(B~, b)) (resp. (p(B~, b),
p(B~, b))), where B~ and B~ are the blocks of ~r~_, merged in forming ~rj and b is some
symbol. Then q~ and q2 are b-successors (resp. b-predecessors) of two states in some
block B of ~rj. Since ~r~ refines ~r by the induction hypothesis, ql and q~ are b-successors
(resp. b-predecessors) of some block B' in ~r, and since Ao/~r is zero-reversible,
B(q,, ~r) = B(qe, ~r). Thus in either case ~r,+x refines ~r, and by induction we conclude
that ~r r refines ~r. []

THEOREM 26. Let S be a nonempty positive sample, and let Ar be the acceptor
output by algorithm ZR on input S. Then L(Ar) is the smallest zero-reversible language
containing S.

PROOF. The preceding lemma shows that L(Ar) is a zero-reversible language
containing S. Let L be any zero-reversible language containing S, and let ~r be the
restriction of the partition ~r/~ to the elements of Pr(S). If Ao denotes the prefix tree
acceptor for S, then Lemma 1 shows that Ao/~r is isomorphic to a subacceptor of
A(L), and Corollary 2 shows that L(Ao/~r) is contained in L. Lemma 6 shows that
A(L) is zero-reversible, and therefore Ao/~r is zero-reversible, by Remark 4. By the
above lemma, ~rr therefore refines ~r, so L(Ao/rrr) = L(Ar) is contained in L(Ao/~r).
Consequently, L(Ar) is contained in L, and L(Ar) is the smallest zero-reversible
language containing S. []

5.3 IDENTIFICATION IN THE LIMIT OF THE ZERO-REVERSIBLE LANGUAGES. In this
section we show that the algorithm ZR may be used at the finite stages of an infinite
inference process to identify the zero-reversible languages in the limit. The idea is
simply to run ZR on the sample at the nth stage and output the result as the nth
guess. Define an operator ZRoo from infinite sequences of strings w~, wz, w, to
infinite sequences of acceptors A~, A~, An, . . . by

A,~ = ZR((Wl, w2 Wn}) for all n _> 1.

758 DANA ANGLUIN

It is clear that the operator ZR~ is effective; the nth output is the result of running
the algorithm ZR on the first n input strings. (Later we show how d,,+, may be
obtained from A,, and w,,+1 by a simple updating scheme based on ZR.) We need to
show that this converges to a correct guess after a fmite number of stages.

An infinite sequence of strings wl, w2, ws is defined to be a positive presentation
of a language L if and only i f the range of the sequence is precisely L, that is, every
element of the sequence is an element of L and vice versa. An infinite sequence of
acceptors A~, A2, A3 . . . is said to converge to an acceptor A if and only if there exists
an integer N such that for all n ~ N, A,, is isomorphic to A. The result that ZR®
correctly identifies the zero-reversible languages in the limit from positive data is
formulated as follows.

THEOREM 27. Let L be a nonempty zero-reversible language, w~, w2, w3, .. . a
positive presentation of L, and A~, A2, A3 the output of ZR~o on this input. Then A~,
A2, As converges to the canonical acceptor A(L) for L.

PROOF. By Theorem 9, L contains a characteristic sample. Let N be sufficiently
large that (Wl, w2, . . . , WN) contains a characteristic sample for L. For n >_ N, L(An)
is the smallest zero-reversible language containing (wl, w2 wn}, by definition of
ZR® and Theorem 26. Thus L(An) = L, by the definition of a characteristic sample.
Moreover, it is easily checked that the acceptor output by ZR is stripped, and
therefore canonical, by Lemma 5. Hence A,~ is isomorphic to A(L) for all n _ N, so
A~, A2, A3 converges to A(L). []

5.4 THE RUNNING TIME OF ZR

THEOREM 28. The algorithm ZR may be implemented to run in time O(na(n)),
where n is one more than the sum of the lengths of the input strings and a is a very
slowly growing function. (Tarjan [32] defines a.)

PROOF. Let S be the set of input strings, and let n be one more than the sum of
the lengths of the strings in S. The prefix tree acceptor A0 ffi PT(S) may be
constructed in time O(n) and contains at most n states. Similarly, the time to output
the final acceptor is O(n). The partitions ~r, of the states of Ao may be queried and
updated using the collapsing FIND and weighted UNION operations described and
analyzed by Tarjan [32]. Processing each pair of states from LIST entails two FIND
operations to determine the blocks containing the two states. I f the blocks are distinct,
which can happen at most n - 1 times, they are merged with a UNION opera-
tion, and O([UI) further processing may place at most 2[U[new pairs on LIST.
Thus a total of at most (21 U[+ 1)(n - 1) pairs must be processed. Thus at most
(4[U[+ 2)(n - 1) FIND operations and n - 1 UNION operations are required,
which requires a total time of O(na(n)). []

5.5 UPDATING A GUESS. It is useful in the context of the process ZRoo to show
that ZR may be modified to have good incremental behavior. That is, given the
output A: computed by ZR on input S, and given a new string w, we may easily
update AltO be the output computed by ZR on input S' = S 13 {w). The method for
doing this is to start at the initial state of A[and follow the transitions At makes on
the input string w. If no undefmed transitions are encountered and the last state
reached is the accepting state, then At already accepts w and nothing need be done.
Otherwise, add new states and transitions for each symbol of w starting with the first
undefined transition (if any). Mark the last state reached by w as accepting, and
place the pair consisting of this state and the accepting state of At on LIST. Continue

Inference of Reversible Languages

0 0

1 1
(a) (b)

0 0 0

1
1

(c) (d)

FIG. 5 Updating a guess.

759

the merging portion of the algorithm ZR until LIST is empty, and output Af/~r',
where ~r' is the final partition of the states of Af. The correctness of this procedure is
verified in the same way as that of the original algorithm ZR, since the order of
detecting and performing required merges is immaterial.

Example 29. If we run ZR on the input (0, 00, 11, 1100}, we obtain the acceptor
shown in Figure 5a. If we then add the string 101 to the sample and perform the
updating procedure just described, we first obtain the acceptor shown in Figure 5b.
This is then "folded up" as shown in Figure 5c and d to obtain as a final result an
acceptor for strings with an even number of l's. []

6. The k-Reversible Inference Algorithms

Let k be a fixed positive integer. We describe an algorithm, k-RI, to infer k-reversible
sets from positive samples. Let S be a nonempty positive sample. On input S, k-RI
constructs the prefix tree acceptor for S, A0 = PT(S), and finds the finest partition
~rf of the states of Ao such that Ao/~rf is k-reversible. It then outputs a canonical
acceptor for L(Ao/Irl) and halts.

To find ~rf, k-RI begins with the trivial partition and repeatedly merges any two
blocks that violate the conditions for k-reversibility in the quotient acceptor Ao/~r.
When no pair of blocks is found to violate these conditions, the resulting parti-
tion is ~rf.

More precisely, let S be the set of input strings. If S is empty, then k-RI outputs
the empty acceptor and halts. Otherwise, it constructs the prefLx tree acceptor for S,
say Ao = (Q0, lo, Fo, 80). It takes ~ro to be the trivial partition of Q0 and i to be equal
to 0. While there exist two distinct blocks B1 and B2 of ~r, such that either

(1) for some b E U and Ba ~ m, B1 and B2 are both b-successors of Ba in Ao/~r,, or
(2) B1 and B2 have a common k-leader in Ao/m, and either B1 and B2 are both final

states of Ao/~r, or there exists a block Ba of ~r, and a symbol b ~ U such that B3
is a b-successor of both B1 and B2 in Ao/~r,,

k-RI constructs 7r,+1 by merging B1 and B2 in ~r,, and increments i by 1. When no
such pair of blocks exists, k-RI sets f to the final value of L It then constructs and
outputs a canonical acceptor for L(Ao/~rf).

760 DANA ANGLUIN

6.1 CORRECTNESS, IDENTIFICATION 1N THE LIMIT, ANALYSIS. Since this t r e a t m e n t

is largely analogous to the zero-reversible case, an abbreviated presentation is given.

LEMMA 30. Let S be a nonempty positive sample, Ao the prefix tree acceptor for S,
and ¢rr the final partition found by k-R1 on input S. Then ~r r is the finest partition of the
states of Ao such that Ao/Irf is k-reversible.

PROOF. It is clear that Ao/cr r is k-reversible, since k-RI will continue to merge
blocks as long as the conditions for k-reversibility are violated. Suppose ¢r is any
partition of the states of A0 such that Ao/cr is k-reversible. As in the proof of Lemma
25, it is not difficult to show by induction that ~r, refines ¢r for i = 0, 1 f . []

THEOREM 31. Let S be a nonempty positive sample, and let At be the acceptor
output by k-RI on input S. Then L(Ar) is the smallest k-reversible language con-
taining S.

PROOF. This proof is completely analogous to the proof of Theorem 26 and is
omitted. []

We define an operator k-RLo from infinite sequences w~, w2, w3 of strings to
infinite sequences A~, A2, A3 of acceptors by

An = k-RI({Wl, w2 , Wn}) for all n >__ 1.

It is clear that k - R L is effective.

THEOREM 32. Let L be a nonempty k-reversible language and w~, w2, wa any
positive presentation of L. On this input, the output A~, A2, Aa, . . . of k - R L converges
to A(L).

PROOF. Let N be sufficiently large that (w~, w2 , ws} contains a characteristic
sample for the k-reversible language L. For each n >_ N, L(An) is the smallest k-
reversible language containing (wl, w2 wn}, so L(An) = L. By definition of k-RI,
An is canonical, so An is isomorphic to A(L) for all n ___ N. Thus A~, A2, A3
converges to A(L). []

THEOREM 33. The algorithm k-RI may be implemented to run in time O(kn3),
where n is one more than the sum of the lengths of the input strings.

PROOF. We represent each quotient acceptor Ao/rr, by a directed graph G~ with
one node for each block of or, and an edge labeled b from B1 to B2 if and only if B2
is a b-successor of B1 in .4o/¢r,. Each accepting node is so marked. The nodes are
numbered by integers in the range 1 to n. It suffices to keep a list of the current
nodes, a (possibly redundant) list of the current edges (where (b, x, fl) represents edge
labeled b from node x to node y), and a Boolean vector indexed by node numbers
indicating whether each node is accepting or not.

For each G, we compute some auxiliary quantities: a list H,, and k + 1 matrices
C °, C 1 C, k. For each ordered pair (b, x, y) and (b', x' , y ') of edges of G~ (not
necessarily distinct), i f b = b', then put the pair ((x, x') , (y, y ')) on the list H,.
C°[x, y] is defmed to be 1 for all pairs (x, y) of nodes of G, For each r, 0 _< r < k,
C~ ÷1 is defined from C~ as follows. Initialize C7÷1[x, y] to be 0 for all pairs (x, y) of

t r X nodes of G,. Then for each pair ((x, x') , (y, y)) from H,, if C, [, x '] = 1, then set
r+l t C, [y , y] = 1.
It is not difficult to verify that ((x, x'), (y, y ')) is on the list 11, i f and only if there

exists a symbol b ~ U such that x is a b-predecessor o f y and x ' is a b-predecessor

Inference of Reversible Languages 761

of y ' in G,. Also, for each pair (x, y) of nodes of G, and for each r, 0 _< r ~ k,
C~[x, y] = 1 if and only if there exists a common r-leader of x and y in G~.

Thus, once these quantities have been computed, we may test for the existence of
a pair of nodes of G, violating the conditions on k-reversibility as follows. For each
pair (b, x, y) and (b', x', y ') of edges of G,, if b = b', x = x', and y # y ' , then y and
y ' give a violation of determinism and should be merged. For each pair x # y of
nodes of G, that are both accepting, if C,k[x, y] = 1, then x and y have a common k-
leader in G, and should be merged. Similarly, for each pair (b, x, y) and (b', x', y ') of
edges of G, such that b = b', y = y', x # x', and C~[x, x'] = 1, x and x' have a
common b-successor and a common k-leader in G, and should be merged.

In order to merge x and y in G, where x < y, we scan all the edges on the edge list
of G, and replace each occurrence o f y by x. I f y is accepting, then x is also marked
accepting. Finally, y is removed from the node list for G,. The resulting graph is G,+I.

, C,+I are computed, and the search begins for The auxiliary quantities H,+~, C~+1, . . . k
another pair of nodes to merge. When no pair remains to be merged, the graph is
converted to an acceptor and minimized by a standard algorithm [1].

The initial graph Go has at most n nodes and n edges, and its node and edge lists
and acceptance vector may be computed in time O(n). Thus the node and edge lists
for all of the graphs G, contain at most n elements. Computing the auxiliary quantities
H, and C O C~ from G~ may be done in time O(kn2). Searching for a pair to
merge may be done in time O(n2), and updating the node and edge lists and the
acceptance vector when two nodes are merged takes time O(n). Since at most n - 1
merges may be performed, the total time to find the final graph is O(kna), which
dominates the time required to convert it to an acceptor and minimize it. []

We note that the approach to updating a guess used for zero-reversible inference
works also in this more general case. In practice it will probably prove useful to
remove duplicates from the edge lists of the quotient acceptors, since in general they
may be expected to shrink dramatically as merges are performed.

7. Using Negative Data

Theorem 32 shows that for each k the k-reversible languages can be correctly
identified in the limit from positive data. It is however not the case that the whole
class of reversible languages, R . , can be correctly identified in the limit from positive
data, as the general results in [4, 18] on identification in the limit from positive data
show.

If we consider the problem of inferring the reversible languages from positive and
negative data, one approach immediately presents itself. That is to construct the k-
reversible inference from the positive examples for k = 0, 1, 2, . . . until a language is
found that does not contain any of the negative examples.

We define apositive and negative sample to be an ordered pair (So, $1) such that So
and $1 are disjoint finite sets of strings. We describe an algorithm RI whose input is
a positive and negative sample (So, $1), and whose output is a reversible acceptor A
that accepts all the strings m $1 and none of the strings in So. If $1 = ~, then RI
outputs the empty acceptor and halts. Otherwise, for each k -- 0, 1, 2 RI calls
k-RI on the set $1 to produce an acceptor Ak, until an acceptor Ak is found that does
not accept any of the strings in So. This final acceptor is the output of RI. (Note that
0-RI is the algorithm ZR.) The correctness of this algorithm is formulated as follows.

THEOREM 34. With the positive and negative sample (So, Sx) as input, the algorithm
R l finds the smallest k such that there exists a k-reversible language containing $1 and

762 DANA ANGLUIN

disjoint from So, and outputs a canonical acceptor for the smallest k-reversible language
with this property.

PROOF. This is immediate from Theorems 26 and 31 and the order in which RI
searches for an acceptor with the required properties. []

The running time of RI is also easily established.

THEOREM 35. The algorithm RI runs in time O(m2na), where m is one more than
the final value of k found and n ts one more than the sum of the lengths of the input
strings. In particular, m <_ n.

PROOF. Let (So, $1) be an input to RI. The total time spent in calls to k-RI for
k = 0, 1 m - 1 is O(m2na), by Theorems 28 and 33. The total time spent in
testing whether the resulting acceptors contain an element of So is O(mn), since
following the transitions of a string through a deterministic acceptor may be done in
time linear in the length of the string. Since So and $1 are disjoint, i f k _> n - 1, then
the prefix tree acceptor for S~ is a k-reversible acceptor whose language contains $1
and is disjoint from So. Thus m _ n. []

Now we turn to the question of identification in the limit. We need a notion of a
presentation of a language containing positive and negative examples. A complete
presentation of a language L is an infinite sequence (w~, el), (wz, e2), (wa, e3) such
that w, is a string, e, is either 0 or 1, e, = 1 if and only if w~ E L, and for every string
u ~ U* there exists an index i such that u = w~. We define two related functions,
giving the positive and negative examples in initial segments of the complete
presentation:

So(n) -- (w,:l _< i _< n, e, = 0),
Sl(n) = (w~:l _< i < _ n, e~ = 1).

We may define an effective operator RIo~ that maps complete presentations to infinite
sequences of acceptors A~, A2, A3 such that

An = RI(S0(n), Sl(n)) for all n _> 1,

where So(n) and S~(n) are the functions associated with the given complete presen-
tation. (The behavior of Rim on sequences of ordered pairs that are not complete
presentations of some language is not specified.)

The following lemma shows that RI® searches at each stage through a descending
chain of languages.

LEMMA 36. Let S be a positive sample, and let A = j -RI(S) and A ' = k-RI(S),
wherej < k. Then L(A) contains L(A').

PROOF. L(A') is the smallest k-reversible language containing S. L(A) is a j -
reversible, and therefore k-reversible, language containing S. Thus L(A ') is contained
in L(A). []

THEOREM 37. Let L be a reversible language, and let (wl, el), (w2, ez) be a
complete presentation of L. Let Ax, A2, A3 be the output of Rlo~ on thts input. Then
A~, A2, A3 converges to A(L).

PROOF. The result holds trivially if L - ~, so assume L # O. Let k be the least
nonnegative integer for which L is k-reversible. If k = 0, then the guess of RIo~ will
always be the zero-reversible guess, which converges to A(L) by Theorem 27.

Inference of Reversible Languages 763

Suppose k >_ 1. Let N be sufficiently large that St(N) contains a characteristic sample
for L as a k-reversible language. Consider L ' , the language accepted by the acceptor
(k - 1)-RI(SI(N)). This language contains L by the preceding lemma and the fact
that L = k-RI(SI(N)). However, since L ' is (k - l)-reversible, it is not equal to L.
Choose some element w' that is in L ' but not in L. Let N ' _ N be sufficiently large
that So(N') contains w'.

For each n :> N', RI~ computesj-RI(S~(n)) fo r j = 0, 1 k - 1 and finds that
they each contain the element w' of So(n). Hence Rloo computes and outputs
k-RI(S~(n)), which by Theorem 32 is a canonical acceptor for L. Thus in this case
also A1, As, Aa converges to A(L). []

Thus Rloo does correct identification in the limit of the reversible languages from
positive and negative data. Its behavior in each finite stage is reasonable, both in
terms of the characterization of the guess and the time required to compute it. In
practice, its running time could probably be improved by incorporating the incre-
mental updating scheme of the algorithms ZR and k-RI for new positive examples
and by keeping track of the largest value of k required so far to use as the starting
place for the search for new acceptors in the case when a negative example invalidates
the current guess.

Other approaches to the use of negative data should also be considered. For
example, an approach that overcame the asymmetry of RI in the use of positive and
negative data would be interesting.

8. Some Comparisons

The zero-reversible inference algorithm is based on a heuristic originally proposed
by Feldman [11, 13], so it is not surprising that it duplicates the performance of the
heuristic on the primary examples given in those papers, which we reproduce below:

L1 = {strings of a's and b's with an even number ofa 's},
$1 = (b, bb, aa, baa, aba, baba, abba, bbaba, bbaa, aabb),
Lz = (c + bb)a*b,
Sz = {cb, bbb, cab, bbab, caab, bbaab, caaab}.

Itoga [25] describes some experiments with a variant of Feldman's heuristic that is
rather sensitive to the order of presentation of the data. The primary example studied
is a seven-state transducer over (a, b, c} that outputs 1 if it has seen the three symbols
a, b, c (in any order) since the beginning of the string or the last time it output 1,
whichever is later, and otherwise outputs 0. Itoga's method correctly identifies this
transducer from a particular sample of 104 strings. If we convert this to an acceptor
in the standard way, the resulting language is not reversible, so our methods do not
apply.

Biermann and Feldman [5] describe a method of inferring regular sets from
positive data by merging states with equal sets of k-tails, starting with an acceptor
derived from the sample strings. The set of k-tails of a state is simply the set of
strings of length k or less that are accepted from that state. The final acceptor is
generally nondeterministic. The user specifies the value of k that is used by the
method; for each regular set, k may be set sufficiently large to guarantee correct
identification in the limit of that regular set.

Miclet [29] describes an approach to inferring regular sets from positive data by
merging states according to a similarity measure on their sets of k-tails (for k chosen
by the algorithm and decremented at each stage). The general approach is quite

764 DANA ANGLUIN

flexible and interesting; however, the particular heuristic implementation illustrated
in the paper seems to be dominated in its performance by the zero-reversible
algorithm. The three examples considered in the paper are all zero-reversible, and
are correctly identified from the given data by the zero-reversible algorithm:

L3 = a(bc)*d,
Ss = (abcd, abcbcd),
L3 = (aa + ba(aa)*c)*,
$4 = {aabac, baaac, bacbac, aabaaac, bacaabac, aaaaaabac,

aaaabaaac, baaaaaaac, bacbacbac, bacaabaaaaac),
L5 = {strings with an even number of a's and an odd number of b's),
S~ = {aba, bbb, abbab, bbaba, bbbbb, abaabab, babbbaaab,

bbaaabbab, bbbaaabab, baabbbbbaba),

(The tail-clustering method described by Miclet requires another stnng added to S~
in order to identify L5 correctly.)

These comparisons suggest that the class of zero-reversible languages captures an
interesting class of phenomena in the inference of regular sets from positive data,
though it certainly does not exhaust the domain. It is hoped that a clear understanding
of this class will help to stimulate investigation of other types of phenomena in this
domain.

9. Conclusions

We have presented efficient algorithms to infer k-reversible languages from positive
data and reversible languages from positive and negative data. The zero-reversible
inference algorithm is of particular interest because of the relation between zero-
reversible languages and automata whose syntactic monoids are permutation groups.
This suggests that it may be possible to use the algebraic properties of automata to
help characterize their "inferability." It is interesting to contrast these results with
those of Crespi-Reghizzi et al. [10], which specifically concern "noncounting" (i.e.,
permutation-free) languages. Perhaps there will be a useful synthesis of these two
approaches.

The algorithms and implementations we have given are fairly straightforward and
may not be the most efficient possible. However, this is appropriate in a domain such
as this one, where much of the current work must be viewed as exploratory feasibility
studies. Time and further experience will tell whether these algorithms are indeed
solving the "right" problems. For this, experience with computer implementations of
relatively straightforward algorithms may be more relevant at present than a search
for faster algorithms. However, faster algorithms for these problems would certainly
be welcome.

It should be evident that inductive inference swarms with unsolved, mostly ill-
defined, problems. This paper will have achieved one of its primary goals if it has
helped to indicate how one line of approach may lead to well-defined problems and
solid theoretical progress.

ACKNOWLEDGMENTS. Talks with Manuel Blum and Ehud Shapiro have been val-
uable in the development of these ideas and results. The comments of the referees
have been helpful in improving the correctness and completeness of the paper.

REFERENCES

1 AHO, A V, HOPCROFT, J E , AND ULLMAN, J D.
Ad&son-Wesley, Reading, Mass., 1974

The Destgn and Analysts of Computer Algortthms

Inference o f Reversible Languages 765

2. ANGLUIN, D On the complexity of minimum inference of regular sets. Inf. Control 39 (1978),
337-350

3 ANGLUIN, D Finding patterns common to a set of strings J Comput. Syst Sci. 21 (1980), 46-62.
4 ANGLtrIN, D Inductive mference of formal languages from positive data Inf Control 45 (1980),

117-135
5. B~ERMANN, A W, AND FELDMAN, J.A On the synthesis of ftmte-state machines from samples of

their behavior IEEE Trans. Comput C-21 (1972), 592-597
6 BLUM, L, AND BLUM, M. Toward a mathematic theory of inductive mference. Inf. Control 28 (1978),

125-155.
7 CASE, J., AND SMITH, C Anomaly hierarchies of mechamzed inductive reference. Proc. 10th ACM

Symp on Theory of Computmg, San Diego, Cahf., 1978, pp 314-319.
8 COHEN, R.S, AND BRZOZOWSKI, J A. General properties of star height of regular events. J Comput.

Syst. Sct 4 (1970), 260-280.
9 CRESPI-REGHIZZI, S An effective model for grammar inference. In Information Processing, North

Holland, 1972, pp 524-529
10. CRESPI-REGHIZZI, S, GUIDA, G , AND MANDR1OLI, D Noncoummg context-free languages. J. ACM

25, 4 (Oct. 1978), 571-580.
11 FELDMAN, J.A First thoughts on grammatical inference Tech. Rep., Artificial Intelligence Project,

Stanford Univ., Stanford, Calif., 1967
12. FELDMAN, J A Some decidability results m grammatical inference Inf. Control 20 (1972), 244-262.
13 FELDMAN, J.A., GIPS, J., HORNING, J.J., AND REDER, S Grammatical complexity and inference

Tech Rep, Computer Science Dep., Stanford Umv, Stanford, Calif., 1969.
14 Fu, K S Syntactic Methods m Pattern Recogmtton Academic Press, New York, 1975.
15 Fu, K S Syntactic Pattern Recognition, Apphcations Sprmger-Verlag, New York, 1977.
16 Fu, K S, AND BOOTH, T.L. Grammatical reference" Introduction and survey, Parts 1 and 2 IEEE

Trans. Syst., Man Cybern SMC-5 (1975), 95-11l, 409-423.
17 GINZBURG, A. About some properties of definite, reverse-definite and related automata. IEEE

Trans Electron. Comput. EC-15 (1966), 806-810
18. GOLD, E M Language identification in the lunlt Inf Control 10 (1967), 447-474
19 GOLD, E.M. Complexity of automaton identification from given data Inf Control 37 (1978),

302-320
20 GONZALEZ, R.C, AND THOMASON, M.G. Syntactic Pattern Recognition, An Introduction. Addison-

Wesley, Reading, Mass, 1978.
21 HARRISON, M.A lntroductzon to Swztchmg and Automata Theory. McGraw-Hill, New York. 1965
22 HARRISON, M.A. Introduction to Formal Language Theory Addison-Wesley, Reading, Mass, 1978.
23. HARTMANIS, J., AND STEARNS, R.E Algebraic Theory of SequentlalMachmes Prentice-Hall, Engle-

wood Cliffs, N J , 1966
24. HOPCROFa', J E , AND ULLMAN, J.D Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, Reading, Mass., 1979.
25 ITOGA, S Y. A new heuristic for infernng regular grammars. 1EEE Trans Pattern Anal. Mich. lntell,

PAMI-3 (1981), 191-197.
26 McNAtrGHTON, R. The loop complexity of pure-group events, ln f Control 11 (1967), 167-176
27 MCNAUGI-ITON, R Parenthesis grammars J ACM 14, 3 (July 1967), 490-500
28 MCNAUGHTON, R, AND PAPERT, S Counter-Free Automata M.I T Press, Cambridge, Mass., 1971.
29. MICLET, L. Regular references with a tad-clustering method IEEE Trans Syst. Man Cybern. SMC-

10 (1980), 737-743
30 PERLES, M, RABIN, M.O, AND SHAM1R, E. The theory of defmite automata. IEEE Trans. Electron

Comput EC-12 (1963), 233-243
31 SMITH, C.H An inductive mference blbhography Tech Rep CSD TR 323, Computer Science Dep.,

Purdue Umv, Lafayette, Ind, 1979
32. TARJAN, R E Efficiency of a good but not hnear set union algorithm J ACM 22, 2 (Apr 1975),

215-225
33 ZALCSTEIN, Y Locally testable languages J. Comput. Syst. Sct 6 (1972), 151-167

RECEIVED SEPTEMBER 1980, REVISED APRIL 1981; ACCEPTED SEPTEMBER 1981

Journal of the Association for Computing Machinery, Vol 29, No 3, July 1982

