Chapter 2

Representations, Models, and
Constraints

JEFFREY HEINZ AND JAMES ROGERS

2.1 Logic and Constraints in Phonology

In this chapter, we show how to use logic and model-theoretic representations
to define constraints on the well-formedness of those representations. The
power in this kind of computational analysis comes from the framework’s
flexibility in both the kind of logic used and the choice of representation.

As will be explained, those choices provides a “Constraint Definition Lan-
guage” (CDL) in the sense of (de Lacy, 2011). Each CDL has psychological,
typological, and learnability ramifications which can be carefully studied.
Conversely, the psychological, typological, and learnability considerations
provide evidence for the computational nature of phonological generaliza-
tions on well-formedness.

This is not the first instance logic has been used in phonological theory. In
fact, there is considerable history. Example: definitions of constraints
pre-OT and DP.

A notable turning point occurred in the early 1990s with the developments
of two theories: Declarative Phonology and Optimality Theory.

Declarative Phonology made explicit use of logical statements in describ-
ing the phonology of a language. Example of a DP constraint.

In Optimality Theory, first-order logic was often used implicitly to define

23



24 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

constraints.Example: definitions of constraints in OT.

Unlike Optimality Theory, the CDLs in this book will provide language-
specific, inviolable constraints. For a representation to be well-formed it must
not violate any constraint. This is a feature the CDLs here have in common
with Declarative Phonology. Scobbie et al. explain:

The actual model of constraint interaction adopted is maximally
simple: the declarative model. In such a model, all constraints
must be satisfied. The procedural order in which constraints are
checked (or equivalently, in which they apply) is not part of the
grammar, but part of an implementation of the grammar (as a
parser, say) which cannot affect grammaticality. (Scobbie et al.,
1996, p. 692)

2.2 Chapter Outline

In the remainder of this chapter, we informally introduce model-theoretic
representations of strings and different logics. Most mathematical details for
the models and logical languages discussed in this chapter are provided in
Appendix A to Part I of this book. Some readers may benefit by consulting
Appendix A in parallel with this chapter. Readers for whom this does not
satisfy their appetite are referred to the textbooks on logic and model theory
provided in the Further Reading section below.

We focus on strings because they are widely used and well-understood.
Most importantly, they are sufficient to illustrate how different CDLs can
be defined and how these CDLs have consequences for psychological models,
typology, and learnability. Several chapters later in the book provide concrete
examples of non-string representations motivated by phonological theory. A
mathematical treatment of representations and logic is given in the appendix
of part I of this book. Concepts and definitions introduced here are presented
there precisely and unambiguously.

First, we introduce the canonical word model, which is known as the
successor model. This is followed by an informal treatment of First-Order
(FO) logic. This yields the first CDL (FO with successor) and we show how
to define a constraint like *NT-—voiceless obstruents are prohibited from
occuring immediately after nasals—in this CDL.

Next we alter the successor model so that the representations makes use
of phonological features. This yields another CDL (FO with successor and
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2.2. CHAPTER OUTLINE 25

features). We comment on some notable points of comparison between the
two CDLs, again using the *NT constraint.

The narrative continues by discussing one typological weakness the afore-
mentioned CDLs: they are unable to describe long-distance constraints which
are arguably part of the phonological competence of speakers of some lan-
guages. This provides some motivation for a CDL defined in terms of a more
powerful logic, Monadic Second Order (MSO) logic. The CDL we call ‘MSO
with successor and features’ and we explain how it is able to define such
long-distance constraints. The key is that with MSO logic it is possible to
deduce that one element in a string precedes another element, no matter how
much later the second element occurs. The availability of the precedence
relation makes it possible to define long-distance constraints.

We continue to evaluate the MSO with successor CDL from a typological
perspective. We argue that there are significant classes of constraints defin-
able in this CDL that are bizarre from a phonological perspective. In other
words, we motivate seeking a more restrictive CDL capable of describing
local and long-distance constraints in phonology.

One solution is to make the precedence relation part of the representation.
This model of words is called the precedence model, which stands in contrast
to the successor model. We show how the CDL “FO with precedence” is also
able to describe both local and long-distance constraints of the kind found
in the phonologies of the world’s languages.

The remaining sections introduces logics that are more restrictive than
First Order logic, which permits defining more restrictive CDLs. The moti-
vation here primarily comes from psychological, typological, and learnability
considerations. Typologically, typical constraints in phonology are definable
with in terms of these more restrictive logics and CDLs. Psychologically,
they have clear cognitive interpretations in terms of memory. And from a
learning perspective, constraints in these restrictive CDLs can be feasibly
learned from positive evidence.

Finally, the chapter concludes with a high-level discussion seeking to ex-
plain the following points. First, there is a tradeoff between representations
and logical power. Second, as mentioned, the choice of representation and
the choice of logic has consequences for typology, psychological reality, mem-
ory, and learnability. These consequences are fully reviewed in this section.
Third, the representations and logics discussed in this chapter are only the
tip of the iceberg. Readers undoubtedly will have asked themselves “What is
possible with this representation?” and “Why don’t we consider this variety

January 25, 2018 (© Jeffrey Heinz



26 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

of logic?” Some chapters in this book address such questions. Comprehen-
sively answering such questions, however, is beyond the scope of this book.
But it is not beyond the scope of phonological theory. If some readers of this
book pose and answer such questions, then this book will have succeeded in
its goals.

2.3 The Successor Model

This section introduces the central ideas of model-theoretic representations
with a concrete example. The concrete example comes from the “successor”
model, which is arguably the canonical model for strings.

Model-theoretic representations provide a uniform framework for repre-
senting all kinds of objects. Here the objects under study are strings. We
need to be clear about two things: what the objects are, and what counts as
a successful model-theoretic representation of a set of objects.

Strings are sequences of events. If we are talking about words, the events
could be given as speech sounds from the International Phonetic Alphabet.
Strings are typically defined inductively. Each event corresponds is assigned
some symbol. The set of symbols in use is called the alphabet. Each
symbol on its own is a string, and if w is a string and a is a symbol then
the concatenation of w and a, written wa, is also a string. This inductive
definition yields a set of objects: all logically possible sequences of symbols
of the alphabet of finite length.

A successful model theoretic-representation of a set of objects must pro-
vide a representation for each object and must provide distinct representa-
tions for distinct objects. It may be strange to ask the question “How can we
represent strings?” After all, if we are talking about the string tent isn’t tent
itself a representation of it? It is, but the information carried in such repre-
sentations is implicit. Model-theoretic representations make the information
explicit.

Model-theoretic representations for objects of finite size like strings con-
tain two parts. The first is a finite set of elements called the domain. The
second is a finite set of relations. The relations provide information about the
domain elements. The model signature summarizes two parts and serves to
define the nature of model in terms of the information in the representation.
In this book, it is written like this: (D | Ry, Ra, ... R,).

We first show a model-theoretic representation of a word and then we
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2.3. THE SUCCESSOR MODEL 27

explain it. While this may seem backwards to some, it seems to work better
pedagogically. It can be helpful to refer to the end-product as one goes about
explaining how one got there.

Figure 2.1 shows the successor model for the word tent in addition to a
graphical diagram of it on its right. The graphical diagram puts the domain
elements in circles. Edges labeled with < indicate the binary relation called
“successor.” Finally, the unary relations, one for each symbol in the alpha-
bet, are shown in typewriter face above the domain elements that belong to
them. Throughout this book we will often use graphical diagrams instead of
displaying the literal mathematical representation on the left. The order of
the relations in the signature is fixed but it is also arbitrary.

Mtent
=(D|t,enab,...,zd)

- <{1,2,3,4} | {1,4}, {2}, {3}, : : :

z,9,...9,

{(1.2),(2.3).(3.4)} )

Figure 2.1: At left, the successor model of the word tent. At right, a graphical
diagram of this model.

In the case of strings, the number of domain elements matches the length
of the string. So a model-theoretic representation of a word like tent would
have a domain with four elements, one for each event in the sequence. We can
represent these domain elements with the suits in a deck of cards (O, {, &, #)
or we could use numbers (1,2,3,4) as we did in Figure 2.1. We will usually
use numbers because as strings get longer we can always find new numbers.
However, keep in mind that the numbers are just names of elements in the
model in the same way the suits would have been. They get their mean-
ing from the relationships they stand in, not from anything inherent in the
numbers themselves.

In the successor word model, there is a unary relation a for each symbol a
in the alphabet. We use the typewriter font to distinguish the relations from
the symbols. It is customary to denote the alphabet with ¥. We write (a)4ex
to mean this finite set of relations. If a domain element belongs to the unary
relation a then it means this element has the property of being a. So for the
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28 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

word tent, two elements will belong to t, a different element will belong to e
and the remaining element will belong to n. For every other symbol a in the
alphabet the relation a will be empty. When we write x € a and/or a(x) we
mean that domain element = belongs to the unary relation a.

There is also a single binary relation called “successor”. A domain element
x stands in the successor relation to y if the event y corresponds to comes
in fact immediately after the event x corresponds to. In this book, we use
the symbol < to indicate the successor relation. For the word tent, if 2 € R,
and 3 € R, then (2,3) would be in the successor relation. We will write
(2,3) € 4, <(2,3), and/or 243 to mean that domain elements 2 and 3 stand
in the successor relation.

The model signature for the successor model is thus (D | (a)sex, <). The
successor model is not the only way to represent words. From a phono-
logical perspective, it is arguably a strange model. We will consider more
phonologically natural models of words below.

It is easy to see that there is a general method for constructing a unique
model for each logically possible string. Given a string of w of length n we
can always construct the successor model as follows. Since w is a sequence of
n symbols, we let w = aqas . . . a,. Then set the domain D = {1,2,...n}. For
each symbol a € ¥ and 7 between 1 and n inclusive, ¢ € a if and only if a; = a.
And finally, for each ¢ between 1 and n — 1 inclusive, let the only elements
of the successor relation be (7,7 + 1). This is summarized in Table 2.8. This

D &

a

{1,2,...n}
{i € D | a; = a} for each unary relation a
{(i,i+1) C D x D}

def

def

Table 2.1: Creating a successor model for any word w = aas ... a,.

construction guarantees the model’s soundness: each string has a model and
distinct strings will have distinct models. It is also important to recognize
that removing any one of the unary or binary relations will result in a model
which does not guarantee that models of distinct strings are distinct.
Model-theoretic representations provide an ontology and a vocabulary
for talking about objects. They provide a primitive set of facts from which
we can reason. For instance in the word rent, we know that the ¢ occurs
sometime after the r. However this fact is not immediately available from
the successor model. It can be deduced, but that deduction requires some
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2.4. FIRST ORDER LOGIC 29

computation. Measuring the cost of such computations is but one facet of
what model theory accomplishes. On the other hand, the successor model
makes immediately available the information that ¢ occurs immediately after
the n. As will hopefully be clear by the end of this chapter, this distinction
can shed light on differences between local and long-distance constraints in
phonology.

From a psychological perspective, the primitive set of facts can be thought
of as the primitive psychological units. In its strongest form, the model-
theoretic representation of words as embodied in its signature makes a con-
crete claim about the psychological reality of the ways words are represented.

2.4 First Order Logic

Now that the models provide representations, what do we do with them?
Logic provides a language for talking about these representations. First Or-
der logic is a well-understood logical language which we introduce informally
here. For those already familiar with FO logic, you will see take advantage
of things like prenex normal form without discussion.

In addition to the Boolean connectives such as conjunction, disjunction,
implication, and negation, FO logic also includes existential and universal
quantification over variables that range over domain elements. These vari-
ables are called first order variables. Apart from these “logical connec-
tives” and quantified variables, the basic vocabulary of FO logic comes from
the relations in the model signature. Thus each model-theoretic represen-
tation supplies the ingredients for the logical language. Table 2.2 summa-
rizes the vocabulary of FO logic with an arbitrary model (D | Ry, Ry, ... R,).
Model vocabulary are also called atomic formulas because they are the
primitive terms from which larger logical expressions are built. As will be
explained they play a special role in the ontology of model-theoretic linguistic
theories.

Since the appendix defines FO logic formally, here we define valid sen-
tences and formulas of FO logic ostensively. Below we give examples of three
types of expressions: sentences of FO logic, formulas of FO logic, and syn-
tactically ill-formed expressions.

Example 1 (Sentences of FO logic.). Sentences of FO logic are complete
sentences that can be interpreted with respect to a model. Below are five
sentences of FO logic with English translations below.
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30 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Logical Connectives

conjunction
disjunction
negation
implication
biconditional

T 14 <>

Syntactic Elements

left parentheses
right parentheses
, comma for separating variables

~— —~

Variables, Quantifiers, and Equality

variables which range over elements of the domain
existential quantifier

universal quantifier

equality between variables

Model Vocabulary

< w s
=
IS

R(z) for each unary relation R in { Ry, Ro,.
R(z,y) for each binary relation R in {R;, Rs,.

R}
R}
Ry}

Ry}

2Ry for each binary relation R in {R;, Ra, .

R(z1,x9...2,) for each n-ary relation R in { Ry, Rs,.

Table 2.2: Symbols and their meaning in FO logic. Certain sequences of
these symbols are valid FO sentences and formulas. Note we write binary
relations in one of two ways.

1. Sentences of FO logic.

) Fz,y,z (Bl =y) Az =2) A=y = 2))
) Fz,y (n(z) At(y) Az <y)

C; —Jz,y (n(x) At(y) Ax<y)
)

2. English translation (in terms of the models).
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2.4. FIRST ORDER LOGIC 31

(a) There are three distinct domain elements.

(b) There are two domain elements in the successor relation; the for-
mer has the property of being n; the latter has the property of
being t.

(c) It is not the case that there exists two domain elements in the
successor relation of which the former has the property of being n
and the latter has the property of being t.

(d) For every pair of domain elements that stand in the successor
relation, it is not the case that the former has the property of
being n and the latter has the property of being t.

(e) For all domain element which have the property of being n, it is
succeeded by a domain element which has the property of being t.

3. English translation (in terms of the strings the models represent).
(a) There are at least three symbols.

(b) There is a substring nt.

(c¢) There is no substring nt.

(d) There is no substring nt.

(e) If there is n then there is a ¢ immediately following it.

Sentences of FO logic are interpreted with respect to models. Models
for which the sentence is true are said to satisfy the sentence. If a model
M of string w satisfies a sentence ¢ we write M,, = ¢. Consequently, every
FO sentence ¢ divides the objects being modeled into two classes: those
that satisfy ¢ and those that do not. In this way, logical sentences define
constraints. The strings whose models satisfy the sentence do not violate
the constraint; strings whose models do not satisfy the constraint do violate
it. (Chapter ?? shows how logical sentences can define different types of
weighted constraints.)

Table 2.3 provides examples of strings whose models satisfy the formulas
in Example 1 and examples of strings whose models do not. An important
feature of FO logic is that there are algorithmic solutions to the problem of
deciding whether a given model satisfies a given sentence. This algorithm
works because the syntactic rules that build up larger sentences from smaller
ones have clear semantic interpretations with respect to the model under
consideration. In short, it is an unambiguous and compositional system. For
instance, M = ¢ A if and only if M = ¢ and M = . The interpretation
of quantifiers is discussed after introducing formulas below.
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32 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

ASS

My = ¢ M. = ¢

too, tent, tit to, a

tent, rent, ntnt ten, to, phobia
ten, to, phobia  tent, rent, nint
ten, to, phobia  tent, rent, nint
rent, antler ten, nantucket

AA/O\/-\/-\
eLzse

@
~—

Table 2.3: Some strings whose models satisfy the formulas in Example 1 and
some whose models do not.

Example 2 (Formulas of FO logic.). Formulas of FO logic are incomplete
sentences in the sense that they contain variables that are not bound. A
variable is bound only if it is has been introduced with a quantifier and is
within that quantifier’s scope. Variables that are not bound are called free.
The formulas below are only interpretable with respect to a model M if the
free variables are assigned some interpretation as an elements of the domain

of M.

1. Formulas of FO logic.

) n(z) Vm(z) Vn(z)
) Fy (n(z) At(y) Az <y)
(c) =3y (zay)
(d) =3y (y<z)
) “(=y)A=(z=2)A=(y =2
) x<Ay Ay<z

2. English translation.

(a) z has the property of being n, m, or .

(b) x has the property of being n and coming immediately before an
element which has the property of being ¢.

(c) There is no element which succeeds x.

(d) There is no element which = succeeds.

(e) z, y and z are distinct.

(f) x is succeeded succeeded by y which is succeeded by z.

The difference between formulas and sentences is that sentences admit
no free variables. Because these formulas can only be interpreted in terms
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of one or more un-instantiated variables, formulas are often used to define
predicates. Predicates are essentially abbreviations for formulas with the
unbound variables serving as parameters. Below we repeat the formulas from
above, but use them to define new predicates. We write predicates in sans
serif font.

) = n(z)Vn(z)Vy(z)
) = Fy (n(z) At(y) Axay)
) = 3y (zay)
first(x) = -3y (y<x)
) = =y A-(z=2)A~(y=2)
) = x<AyAydz

These predicates can then be used to define new sentences. For example,
the sentence Vz(—nt(z)) is equivalent to (1d) in Example 1 above. In the
same way that programmers write functions which encapsulate snippets of
often-used programming code, predicates generally help writing and reading
complex logical sentences.

Since sentences have no free variables, they must begin with quantifiers.
Determining whether a model satisfies a sentence is compositional. It also
depends on the assignment of variables to elements in the domain. For
instance, to determine whether M satisfies ¢ = Jz(¢(z)), we must find an
element of the domain of M, which if assigned to x, means that ¢ evaluates
to true. If no such element exists, then M does not satisfy ¢. Similarly, M
satisfies ¢ = Vx(¢(z)) if and only if every element of the domain M, when
assigned to x, results in ¢ evaluating to true.

Finally we give some examples of syntactically ill-formed sequences. The
following expressions are junk; they are not interpretable at all.

Example 3 (Syntactically ill-formed sequences). 1. Syntactically ill-formed
sequences.

(a) z3 )a(
(b) ¥3 (nV t)
(C) —El(n<1t)

2. Comments.
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(a) Quantifiers always introduce variables to their left and parentheses
are used normally.

(b) No quantifier can be introduced without a variable and n-ary rela-
tions from the model vocabulary must always include n variables.

(¢c) Many beginning students make this sort of error when trying to
express a logical sentence which forbids nt sequences. This ex-
pression breaks the same rules as the one before it.

We conclude this section by providing an example of a logical sentence
defining a constraint which bans voiceless obstruents after nasals. This is con-
straint in the literature is often abbreviated *NT. Since the model signature
does not include relations for concepts like nasals and voiceless consonants,
we first define predicates for these notions. We assume the alphabet is limited
to the following IPA symbols: a,b,d,e,q,i,k,l,m,n,o0,p,r,s,t,u,z

Example 4 (The constraint *NT defined under the FO with successor
model.).

nasal(x) & n(z) Vm(z) (2.1)
voiceless(z) % p(z) Vt(z) Vk(z)Vs(z) (2.2)
*NT < 32, y(x <y A nasal(z) A voiceless(y)) (2.3)

It is easy to see that models of words like tent and lampoon do not satisfy
*NT but models of words like ten and moon do. For example, in the model
of tent, the expression 3z, y(x <y A nasal(x) A voiceless(y)) is true when x = 3
and y = 4. Hence, *NT evaluates to false. On the other hand, in the
model of the word moon, every value assigned x and y results in the sentence
Jz,y(x <y A nasal(x) A voiceless(y)) evaluating to false. Hence the sentence
*NT evaluates to true and so Me0n = *NT.

This section has presented the first CDL: FO with successor. The FO with
successor model has been studied carefully and it is known precisely what
kinds of constraints can and cannot be expressed with this CDL (Thomas,
1982), as will be discussed below.

2.5 Feature-based Word Models

One way in which the successor model above is strange from a phonological
perspective is its absence of phonological features. The properties associated
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