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-Preface 

This course is concerned with the two broad topics of logic and com­
putability and the relationship between them. Classical propositional 
and predicate logic is the topic for the first three chapters of the text, 
the theory of computable functions occupies the fourth chapter, and 
the relationship between the two, as embodied in the Incompleteness 

· . Theorems of Godel, comprises the fifth chapter . 
A package of computer programs called Logiclab is included with 

this book. The package contains both DOS and Windows versions 
of four programs. The DOS versions are TABLEAU, COMPLETE, 
PREDCALC, and GNUMBER, and the Windows versions are TAB­
WIN, COMPWIN, PREDWIN, and GNUMWIN. These programs are 
keyed to the book and are desig,ned to be used for problems, student ex­
perimentation, and classroom demonstrations. They work on an IBM 
PC or compatible personal computer. Many of the problem sets in 
this book use the Logiclab programs. The Windows versions work with 
Windows 3.0 or later, and with Windows 95, and have built-in tuto­
rials which will quickly show you how to use the programs. Complete 

·-~--,:.-.:'"··"'·-_,, ...... •--··---·--·ln for the programs are included in the appendices at the end 
of the book. 

While there are no specific mathematical prerequisites for the book, 
some experience with abstract mathematical proof is crucial. Some ba­
sic mathematical concepts used in this text are explained in Appendix 
A .. The material of Chapters 2 and 3 will be more meaningful to the 
student who has had a course in linear algebra or abstract algebra. 

vu 
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Chapter 1 

Propositional· Logic 

This book is about formal languages which are powerful enough for the 
development of mathematics. Unlike natural languages such as English, 
formal languages have a precise set of rules for forming sentences. This 
set of rules is called the syntax of the language. 

In this chapter we study a very simple formal language called propo­
sitional logic. The main topics will be well formed formulas (or wffs), 
formal tableau proofs, and models. These concepts will be tied together 
at the end of the chapter with the Completeness Theorem. At the end 
of the chapter there are two problem sets. One problem set uses the 
TABLEAU program and is done on a computer. It gives the student a 
set of examples of formal tableau proofs, and some experience in build­
ing such proofs. The other problem set is a collection of pencil and 
paper problems. 

1.1 Introduction 

In propositional logic one can build new statements out of old state­
ments using propositional connectives. These connectives are not, 
and, or, if,. and if and only if We are only concerned with the common 
mathematical meanings of these connectives. In some cases the math­
ematical meaning is slightly different from the meaning in everyday 
English. We now explain these meanings. 

1 



2 CHAPTER 1. PROPOSITIONAL LOGIC 

NEGATION. A sentence of form 'not p' is true wh:n pis ~alse, and 
is false when pis true. The symbol used in mathematical logic for not 
is ...,, Of the two sentences 

-i2+2=4 

-i2+2=5 

the first is false while the second is true. The sentence -ip is called the 
negation of p. 

CONJUNCTION. A sentence of form 'p and q'is true exac~ly when 
both p and q are true. The mathematical symbol for and 1s /\ (or 
sometimes & ) . Of the four sentences 

2+2 4 A 2+3 5 

2+2=4 A 2+3=7 

2+2=6 A 2+3=5 

2+2=6 A 2+3=7 

the first is true and the last three are false. The sentence p A q is called 
the conjunction of p and q. . . 
. The words and and but have the same meanmg for the mathemati­
cian. For example, the statement 

"11' > 3 but 11' < 3.2" 

has the same mathematical meaning as· the statement 

· "11' > 3 and 11' < 3.2." 

DISJUNCTION. A sentence of form 'p or q' is true exactly when 
at least one of the sentences p, q is true. 

The symbol used in mathematical logic for or is V. Of the four 
sentences 

2+2 4 v 2+3 = 5 

2+2=4 v 2+3=7 

2+2=6 v 2+3=5 

2+2=6 v 2+3=7 

1.1. INTRODUCTION 
3 

the first three are true while the last is false. The sentence p V q is 
called the disjunction of p and q. 

In everyday usage, the phrase soup or salad included in a restau­
rant menu means that the customer can have either soup or s~lad with 
his/her dinner at no extra cost but not both. This usage of the word 
or is called exclusive (because it excludes the case where both compo­
nents are true). On the other hand, the question Do you want cream 
or s.ugar with your coffee? means cream or sugar or both. This is the 
inclusive meaning of the word or, and is sometimes written and/orin 
English. Mathematicians 'always use the inclusive meaning; when they 
intend the exclusive meaning they say so explicitly as in p or q but not 
both. 

IMPLICATION. 'p implies q' is false exactly when p is true but 
q is false. The mathematical symbol for "implies" is *· Of the four 
sentences 

2+2 4 =} 2+3 5 
2+2==4 =} 2+3=7 
2+2 6 =?- 2+3=5 
2+2=6 * 2+3=7 

the second is false and the first, third and fourth are true. 
The forms 'p implies q', 'if p, then q', 'q, if p', 'p only if q', and 'q 

whenever p' all have the same meaning for the mathematician. 
This usage is in sharp contrast to the usage in everyday language. 

In common discourse a sentence of form if p then q or p implies q 
suggests that there is a causal relationship between p ·and q. Consider 
for example the sentence 

If Columbus discovered America, then Aristotle was a Greek. 

. Since Aristotle was indeed a Greek this sentence either has form If true 
then true or If false then true and is thus true according to the meaning 
of implies we have adopted. However, common usage would judge this 
sentence either false or nonsensical because there is no causal relation 
between Columbus's voyage and Aristotle's nationality. 



4 CHAPTER 1. PROPOSITIONAL LOGIC 

The mathematical usage of p implies q is much simpler than· the 
everyday usage. The main advantage of the mathematical usage is 
that the truth value of p implies q depends only on the truth values of 
p and q, and not on other aspects of p and of q. 

EQUIVALENCE. The forms 'p if and only if q', 'pis equivalent to q', 
and 'p exactly when q' all have the same meaning for the mathematician: 
they are true when p and q have the same truth value and false when 
p and q have different truth values. 

Sometimes iff is used as an abbreviation for if and only if The 
mathematical symbol for if and only if is{::}. Equivalence is the equality 
of propositional logic, because p {:} q says that the truth values of p 
and q are equal to each other. 

Of the four sentences 

2+2=4 {::} 2+3=5 
2+2 4 {::} 2+3 7 

2+2=6 {::} 2+3=5 
2+2 6 {::} 2+3=7 

the first and last are true while the other two are false. 
The statement p if and only if q has the same meaning as if p then 

q and if q then p. 
For each of the connectives which we have introduced, the truth 

value of the new sentence depends in a simple way on the truth values 
of the original sentences. The rules for truth values are summarized in 
the following tables. 

A B A/\B AVB A=}B A{::}B 
T T T T T T 
T F F T F F 
F T F T T F 
F F F F T T 

1.2. SYNTAX OF PROPOSITIONAL LOGIC 5 

1.2 Syntax of Propositional Logic 

In this section we give the grammatical rules for propositional logic. 
A vocabulary for propositional logic is a non-empty set Po 

of proposition symbols, which are denoted by lower case letters 
p, q, r, s,pi, qi,.... The proposition symbols will stand for proposi­
tions, which are simple statements which may be combined to form 
other statements. Propositional logic is not concerned with any in­
ternal structure these propositions may have; indeed, for us the only 
meaning a proposition symbol may take is a truth value either true 
or false. 

We start our development of propositional logic by giving a list of 
primitive symbols which includes the vocabulary, the connectives, and 
two brackets which will be used in the same way that parentheses are 
used in algebra. 

The primitive symbols of the propositional logic are: 

• proposition symbols p, q, r, ... from Po 

• the negation sign --, 

• the conjunction sign /\ 

• the disjunction sign V 

• the implication sign => 

• the equivalence· sign {::} 

• the left bracket [ 

• the right bracket ] . 

Any· finite sequence of these symbols is called a string. Here are 
some examples of strings: 

[p /\ q] p /\ q]] [pl\ ]] /\ /\. 

Our first task is to specify the syntax of propositional logic: 'we 
. must say which strings are grammatically correct. These strings are 
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called well-formed formulas, or more briefly, wffs. If we wish to be 
specific about exactly which proposition symbols may appear in a w:ff 
A we say it is a wff i~ the vocabulary P0• 

Definition 1.2.1 Let Po be a set of proposition symbols. A wff 
of propositional logic with the vocabulary Po is a string which can 
be obtained by finitely many applications of the following rules of 
formation: 

(W:Po) If p E Po, then pis a wff; 

(W :-i) If A is a w:ff, then •A is a w:ff; 

(W:/\) if A is a w:ff and B is a wff, then [A/\ B] is a w:ff; 

(W:V) if A is a w:ff and Bis a w:ff, then [AV B] is a w:ff; 

(W :=>) if A is a w:ff and B is a w:ff, then [A =} B] is a w:ff; 

(W:~) if A is a w:ff and Bis a w:ff, then [A~ B] is a w:ff .. 

For example the string [pVq] can be built using the rules of formation 
and hence is a w:ff. 

However, the strings pV q, [p] V [q], Vpq (which correspond to [pV q] 
in other treatments of propositional logic) cannot be built up in this 
way and are not w:ffs. 

We can show that a particular string A is a w:ff by using the rules 
of formation repeatedly in a step by step manner. When we do this we 
get a sequence of strings, called a parsing sequence for A. A string 
which is not a. w:ff cannot have a parsing sequence. 

For example, we show that the string [ ..,p => . [ q /\ p]] is a w:ff by 
giving a parsing sequence. 

(1) pis a wff by (W:P0). 

(2} q is a w:ff by (W:P0). 

(3) [q /\ p] is a wff by (1), (2), and (W:/\). 

( 4) -ip is a w:ff by (1) and (W:•). 

1.3 .. INDUCTION ON LENGTH OF WFFS 7 

(5) [•p => [q /\ p]] is a wff by (3), ( 4), and (W:=> ). 

Most wffs have several different parsing sequences. We must always 
start with one of the proposition letters, build up in some order from 
simpler to more complex wffs, and end with the string which we want to 
show is a wff. Here is another parsing sequence for the wff [•p => [q /\p]]. 

(1) q is a wff by (W:P0). 

(2) pis a wff by (W:P0 ). 

(3) •p is a w:ff by (2) and (W:•). 

( 4) [q /\ p] is a wff by (1), (2), and (W:/\). 

(5) [•p=? [q/\p]] is awffby (3), (4), and (W:=>). 

· As the example illustrates, a parsing sequence for a string S is a 
finite sequence of strings Si, ... , Sn such that the last string Sn is S, 
and each string Si in the sequence is either a proposition symbol, is 
the negation of an earlier string in the sequence, or is built from two 
earlier strings in the sequence using a binary connective. By applying 
the definition of a w:ff at each step, we see that each string Si in the 
sequence is a w:ff, and hence the final string S is a wff. 

To parse a wff is to find a parsing sequence for the wff. 
We shall use bold-face upper-case letters near the beginning of the 

alphabet like A, B, C to denote arbitrary wffs. Other bold-face upper­
case letters like S, U will denote strings which might or might not be 
wfu. · 

1.3 Induction on Length of Wffs 

Many times in this book we shall use the idea of the length of a wff. 
The length of a string of symbols · 

S = S1 ••. Sm 

is the number m. The empty string has length zero. The only wffs of 
. length one are the propositional symbols. 
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Quite often we shall prove some fact about w:ffs by induction on the 
length of wffs. We illustrate this method with a simple example. It 
~ill be useful to use an asterisk * to stand for one of the four binary 
connectives /\, V, *' ¢?. 

Proposition 1.3.1 Every wff has the same number of left brackets as 
right brackets. 

Proof: Let us call a wff balanced if it has the same number of left as 
right brackets. Every wff of length one is balanced because the only 
wffs of length one are propositional symbols, which have no brackets. 
Assume that every wff of length at most n is balanced. Let A be a wff 
of length n + 1. There are two cases: 

Case 1: A = •B. B is a wff of length at most n and hence is 
balanced. A has the same brackets as B, so A is also balanced. 

Case 2: A = [B * C] where * is a binary connective. B and C 
are wffs of length at most n and hence are balanced. The number of 
left brackets in A is. equal to the number of left brackets in B plus the 
number of left brackets in C plus one, and the number of right brackets 
in A is the same, so A is balanced. 

We have assumed that all wffs of length at most n are balanced, and 
proved that all wffs of length at most n + 1 are balanced. By induction, 
all wffs are balanced. End of Proof. 

The following fact turns out to be very useful and will be proved by 
a somewhat harder induction on the length of a wff. 

Proposition 1.3.2 If C is a wff of propositional logic, then no string 
which is obtained by removing one or more symbols at the end of C is 
a wff. 

Before giving the proof, we shall rephrase the proposition and give 
an example. 

A string T is said to be an initial part of a string S if T is formed 
by removing one or more symbols at the end of S. 

We shall often use the notation TU to mean the string T followed 
by the string U. If T is a string of length m and U is a string of length 
n, then TU will be a string of length m + n. 

1.3. INDUCTION ON LENGTH OF WFFS 9 

Thus T is an initial part of S if S = TU for some string U which 
is not empty. · 

Proposition 1.3.2 says that: no initial part of a wff of propositional 
logic is a wff. 

Here is an example. The initial parts of the wff 

[[p =} [q /\ p]] =} q] 

are the empty string and the strings 

[, [[, [[p, [[p [[p * [, [[p =} [q, [[p * [qi\, 
[[p * [q /\ p, [[p * [q /\ p], [[p =} [q /\ p]], [[p * [q /\ p]] *, 
[[p * [q /\p]] * q. 

None of these initial parts are wffs. The whole wff has length 13, and 
the initial parts have lengths 0 through 12. 

Proof of Proposition 1.3.2: We prove by induction on n that no 
initial part of a wff of length at most n is a wff. This is true for n 1 
because the only initial part of a wff of length 1 is the empty ·string, 
which is not a wff. Assume that no initial part of a wff of length at 
most n is a wff. Let A be a wff of length n + 1. We must prove that 
no initial part of A is a wff. There are two cases: 

Case l: A is •B. We assume that an initial part D of A is a wff 
and get a contradiction. We have A = DT where T is not empty. 
D is a wff starting with •, so D = •E where E is a wff. Removing 
the initial • symbols from A= DT, we get B =ET. But then B is 
a wff of length at most n which has a wff E as an initial part. This 
contradicts our inductive hypothesis. Therefore no initial part of A is 
a wff. 

Case 2: A is [B * C] where * is a binary connective. We assume that 
an initial part D of A is a wff and get a contradiction. A= DT where 
Tis nonempty. Dis a wff starting with[, so D = [EoF] for some binary 
connective o and some wffs E and F. Then B * C] = E o F]T. Both 
B and E are wffs of length at most n. By our inductive hypothesis, 
neither of B, E can be an initial part of the other. Since B and E 
start at the same place within A, they must be the same, B = E. 
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Therefore B * C] =Bo F]T, so*= o and C] = F]T. But then t~e 
wff F is proper initial part of the wff C of lengt~ ~t. most n. Th:s 
contradicts our inductive hypothesis. Therefore no m1tial part of A is 
a wff. End of Proof. 

1.4 Main Connective 

In order to assign meanings to wffs we need to know that each wff 
can be read in exactly one way. This will be shown by the Unique 
Readability Theorem, which will be proved rather easily from the 
preceding proposition. · . . 

Each wff is either a propositional symbol, starts with a negat10n 
symbol, or starts with a left bracket. A wff -,A is the negation of th.e 
shorter wff A. Wffs which start with a left bracket are more compli­
cated, but they are also built up from shorter wffs. We shall see that 
every wffwhich is not already a proposition symbol can be broken down 
into shorter wffs in a unique way. 

Consider a wff C which starts with a left bracket. C must have 
been built from two other wffs using a binary connective. This binary 
connective must be introduced in the last step of a parsing sequence, 
and is called the main connective of C. It is clear that C has a 
main connective. The Unique Readability Theorem will show that C 
has only one main connective. This is the key fact we need in order to 
break each wff down into simpler wffs in a unique way. 

For example, the main connective of the wff 

[[p [q /\ p]] :::} q] 

is the second occurrence of :::} . The given wff is built from the two 
shorter wffs 

[p :::} [ q /\ p]], q 

using the connective :::} . 
In this example, the connective :::} occurs twice in the wff, but only 

the second occurrence counts as the main connective. 

1.4. MAIN CONNECTIVE 
11 

Definition 1.4.1 We say that an occurrence of a binary connective 
* is a main connective of a wff C if C [A* B] where A and B are 
wffs. 

Theorem 1.4.2 (Unique Readability) Each propositional wff C 
which begins with a left bracket has exactly one main connective. 

· Proof: We consider the case where A is a wff of the form [B *CJ for 
some wffs B and C and binary connective *· Suppose that A is also 
equal. to [Do EJ where D and E are wffs and o is a binary connective. 
The wffs B and D are strings which both start at the same place, right 
after the first left bracket in A. By Proposition 1.3.2, one of B, D 
cannot be an initial part of the other. Therefore B D. It follows 
that * o and C E! End of Proof. 

Exercise 4 gives a useful rule for finding the main connective of a 
wff C: An occurrence of a connective* is the main connective of C if 
and only if C has the form [S * T) where S has the same number of left 
brackets as right brackets. 

To make our wffs more readable, we shall introduce abbreviated 
wffs. These are strings which are not wffs according to our definition, 
but are usually shorter and easier for people to read, and can always 
be translated into a full wff. 

Rules for Abbreviating Wffs 

• The outermost brackets of a wff need not be written. For example, 
we may write pV q as an abbreviation for the wff [pV q], and write 
p ~ [q V r] as an abbreviation for the wff [p ~ [q V r]). 

• We define the precedence of the binary connectives by the list 

with /\ being of highest precedence and ¢:?- lowest. If* and o are 
two binary connectives with * having higher precedence than o, 
and A, B, Care wffs, then A* Bo C means [[A* BJ o C), and 
Ao B * C means [Ao [B * C]]. 
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For example, p /\ q V r is an abbreviation for [[p /\ q] V r] rather than 
for [p /\ [ q V r ]] , since /\ has a higher precedence than V. 

The string which is. obtained from a wff C by using the preceding 
rules whenever possible is called the standard abbreviation of C. 
The standard abbreviation of a wff is usually easier to read than the 
full wff. For this reason, the TABLEAU program always displays the 
standard abbreviation of a wff. 

Proposition 1.3.2 is not true for abbreviated wffs. Abbreviated wffs 
frequently have initial parts which are abbreviated wffs or even full 
wffs. For example, consider the string S = p V q /\ r. S is ~ot a wff, but 
it is an abbreviation for the wff [p V [q /\ r]]. The wff pis an initial part 
of A. The string p V q, which is an abbreviation for the wff [p V q] is 
another initial part of S. ' 

Given the standard abbreviation C' of a wff C, it is always possible 
to recover the original wff C . Exercise 9 gives an easy way to do this 
by finding which symbol of C' corresponds to the main connective of 
the original wff C. 

In defining the standard abbreviation, we have not changed our 
notion of a wff. We shall always use full wffs in the original sense when 
proving theorems about wffs, but will often use the abbreviated form 
when discussing particular examples. 

There are two other conventions which we shall sometimes use to 
improve readability. , 

The first of these conventions involves repeated /\ or repeated V 
connectives. We may write A/\ B /\ G instead of [A/\ B] /\ C. Similarly, 
we may write AV B V C instead of [AV B] V C. Note that [[p /\ q] /\ r] 
and [p /\ [q /\ r]] are two different wffs. The string p /\ q /\ r is an 
abbreviation for the first wff [[p /\ q] /\ r], but not for the second wff 
[pl\ [q /\ r]J. This convention is particularly useful when we wish to write 
a conjunction or disjunction of a finite number of wffs, for example, 
Ai /\ Az /\ A3 /\ A4 /\As, or A1 /\···/\An. 

Our second convention is that we may insert an extra pair of brack­
ets around a wff to make it easier to read. 

Notice that in the rules of formation of wffs, no new brackets are 
required in forming the negation ·A of a wff A. Instead of the rule 
(W:•), _we could have used the rule that if A is a wff, then [•A] is a 
wff. This was not done because it would only ad~ an unnecessary extra 
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pair of brackets. 
According to the rules, •p /\ q means [ •p /\ q], and does not mean 

•[p /\ q]. To remind us of this fact, we might write [•p] /\ q instead of 

•p /\ q. 
A string obtained from a wff C using some combination of the con-

ventions in this section will be called an abbreviation of C. Thus 
each wff has many abbreviations, but only one standard abbreviation. 
The TABLEAU program accepts as input any abbreviation of a wff. 
But after you finish typing the abbreviated wff at the keyboard, the 
program will display only its standard abbreviated form. 

1.5 Semantics of Propositional Logic 

In this section we shall assign truth values to wffs of propositional logic. 
· We start with the notion of a model, which assigns a truth value to each 

propositional symbol. Given a model, we can then compute the truth 
value of any wff by a step by step process which parallels the rules for 
building wffs. 

There are two truth values in propositional logic, T and F. A 
model M for propositional logic of type Po is a function which 
assigns to each proposition symbol p E Po a truth value which we 

denote by PM. 
This is the first of many times in this text when we shall use the 

mathematic~! concept of a function. In general, a function f from a 
set A to a set B is a mathematical object which assigns an element 
J(a) E B to each element a E A. We sometimes use the notation 
f : A -+ B to indicate that f is a function from A to B. Thus a model 
for propositional logic is just a function M : Po-+ {T, F}. 

For example, if the vocabulary contains two propositional symbols, 
Po= {p, q}, there are 4 different models of type Po, which we may call 

Mo ... M3: 
PMo = T,qMo = T, 

PM1 = T,qM1 = F, 

PM2 F,qM2 = T, 

PMa = F,qMa = F. 
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If Po has n propositional symbols where n is finite, there are 2n 
different models of type P0 • If Po is infinite then there are infinitely 
many models of type P0 • 

Figure 1.5 lists the rules for computing the truth value AM of a wff 
A in model M. 

(M:Po) 

(M:-.) 

(M:/\) 

(M:V) 

. (M:=>) 

(M:{::}) 

Truth Value Rules 

If A is a propositional symbol p, AM = PMi 

[-.ALvi = T 
(•A]M=F 

if AM .F; 
if AM T. 

[A/\ B]M = T if AM T and BM = T; 
[A/\ B]M = F otherwise. 

[AV B]M = T if AM T or BM = T; 
[AV B]M = F otherwise. 

(A=> B]M = T if AM F or BM = T; 
[A => B]M = F otherwise. 

[A {::} B]M = T if AM BM ; 
[A{::} B]M = F otherwise. 

Figure 1.1: Truth Value Rules for Propositional Logic. 
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Using these rules, the truth value of each wff in each model can be 
computed by choosing a parsing sequence for the wff and applying one 
of the rules at each step. 

For example, let us compute the value of [p => -iq] => [ q V p] for a 
model M with PM T and qM = F. We first parse the wff. 

(1) pis a wff by (W:Po). 

(2) q is a wff by (W:Po). 

(3) -.q is a wff by (2) and (W:-.). 

( 4) [p => •q] is a wff by (1), (3), and (W:=> ). 

(5) [q V p] is a wff by (i), (2), and (W:V). 

(6) [[p => -iq] => [q V p]] is a wff by (4), (5), and (W:=> ). 

Now we apply the rules for AM: 

(1) PM= T. 

(2) qM = F. 

(3) [-.q]M T by (2) and (M:-i). 

( 4) [p => -.q]M T by (1), (3), and (M::::} ). 

(5) [q V P]M T by (1),(2), and (M:V). 

(6) ([p => -.q] => [q V p]]M = T by (4),(5), and (M:=> ). 

The next theorem states a vitally important fact about truth values: 
Although a wff can have many different parsing sequences, the truth 
value depends only on the model and the wff, and does not depend on 
the particular parsing sequence· which was used to construct the wff. 

Theorem 1.5.1 ·Given a model M and a wff A, the truth value AM 
·is the same for all parsing sequences of A. 
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This theorem shows that given a model M for P0 , there is a unique 
fonction which assigns a truth value AM to each wff A and satisfies all 
the rules in Figure 1.5. 

We leave the proof of this theorem as an exercise at the end of the 
chapter. Hint: the proof uses ideas that we have already developed 
in this book, the Unique Readability Theorem and induction on the 
length of wffs. 

There are several different ways of saying that a wff is true in a 
model, which call attention to the model, the wff, or the truth value. 

We shall often write the equation AM = T in the alternate form 
M f= A. This alternate form uses .the useful "turnstile symbol" f=, 
which is read "models," or "is a model of." The following five expres­
sions all mean the same thing: 

AM=T 
A is true in M 
A holds in M. 
M f=A 
M is a model of A 

Similarly, the following are the same: 

AM F 
A is false in M. 
M~A 

In the next proposition we write down rules for truth values which 
are similar to the rules for tableau proofs in propositional logic which 
will be giVen later on in this chapter. 

Proposition 1.5.2 Let M be a model for propositional logic and A 
and B be wff s. Then: 

If M f= ••A, then M f= A. 

[EJ If M f= [A/\ BL then M f= A and M f= B. 

I•/\ I If M F= •[A/\ BL then M f= -:-iA or M f= •B. 

If M F= [AV B], then either M f= A or M f= B. 
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I •VI If M F= •[AV B], then M F= •A and M ~ •B. 

If M f= [A:::} B], then either M f= ·A or M f= B .. 

If M f= ·[A* B], then M f= A and M f= •B. 

If M f= [A{:} B), then either both M f= A and M f= B or else 
both M f= ·A and M f= ·B. 

1-i {:}I If M f= •[A{:} B], then either both M f= A and M F= •B or 
else both M f= •A and M f= B. 

1.6 Truth Tables and Tautologies 

The evaluation of the truth value AM of a wff A in a model M is so 
mechanical that we can arrange the work in a table. We first review 
our semantical rules in tabular form: 

and 

A B A/\B AVB A=>B A¢:> B 
T T T T T T 

T F F T F F 

F T F T T F 

F F F F T T 

Now we can evaluate AM by the following strategy. 
We first write the wff A, and then underneath each occurrence of a 

proposition symbol we write the symbol's value: 

[p :::} -, 
T 

q] :::} [q v p] 
F F T 
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Then we fill in the value of each wff on the parsing sequence under its 
·main connective: 

[p :::} ...., 
T 

T 
T 

q] :::} [q v p] 
F F T 

T 

T 

To save space we may write all the truth values on the same line: 

[p :::} ...., q] :::} [q v p] 
TTTFTFTT 

A wff A is called a tautology if it is true in every model: M f= A 
for every model M. To check if A is a tautology, we can make a truth 
table which computes the value of A in every possible model. 

Take for the vocabulary Po a finite set of propositional symbols 
which contains at least every propositional symbol in A .. The rows 
of the truth table will correspond to the models M of type P0 • 

columns of the truth table will correspond to the proposition symbols 
and connectives in the string A. For example, 

[p :::} ...., q] :::} [q v p] 
T F F T T T T T 
T T T F T F T T 
F T F T T T T F 
:F T T F F F F F 

The entries in the column under the main connective (the fifth column 
in this example) give the values for the whole wff. Since the last of 
these values is F, the wff is not a tautology. 

Here is a tautology: 

...., p :::} [p :::} q] 
F T T T T T 
F T T T F F 
T F T F T T 
T F T F T F 
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Note that the same table shows that •A :::} [A :::} B] is a tautology for 
any wffs A and B (not just proposition symbols): 

...., A =:;.. [A 
F T T T 
F T T T 
T F T F 
T F T F 

:=;.. BJ 
T T 
F F 
T T 
T F 

This is because the wffs A and B can only take the values T and F 
just like the proposition symbols p and q. 

Suppose we have a tautology C built from two proposition symbols 
p and q. We will then another tautology D by replacing each p in 
C by a wff A and replacing each q in C by a wff B. (A similar remark 
holds for wffs with more than two proposition symbols). 

1. 7 Tableaus 

In ordinary discourse, a wff A is said to follow from another wff B 
if, assuming B is true, one can show that A is true by purely logical 
reasoning. Similarly, A follows from a list of other wffs B 1, ... , Bn if 
one can show that A is true assuming that each of the wffs B 1 , ... , Bn is 
true. Truth tables give us one method of showing that one wff follows 
from others. In this section we shall introduce a second and more 
practical method for doing this, the method of tableau proofs. Tableau 
proofs have two major advantages over truth tables. First, a tableau 
proof will usually be much shorter than the corresponding truth table 
computation. Second, the method of tableau proofs carries over to the 
more important predicate logic, while the method of truth tables does 
not. 

Often one can see very quickly (without computing the full truth 
table) whether some particular wff is a tautology by using an indirect 
argument. As an example we show that the wff p :::} [q [p /\ q]] 
is a tautology. If not, there is a model M for its negation, i.e. (1) 
M f= •[p :::} [q :::} [p /\ q]]. From (1) we obtain (2) M f= p and 
(3) M f= •[q [p /\ q]. From (3) we obtain (4) M q and (5) 

· M f= •[p /\ q]. From (5) we conclude that either (6) M •p or else 
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(7) M P= -iq. But (6) contradicts (2) and (7) contradicts ( 4). Thus no 
such model M exists; i.e. the wff p ::::} [q ::::} [p /\ q]] is a tautology as 
claimed. 

We can arrange this argument in a diagram, Figure 1.2, called a 
tableau. 

(1) -.[p::::} [q::::} (p /\ q]]] (negation of wff to prove) 

(2) I 
by (1) p 

(3) 
II 

by (1) -.[q::::} [p /\ q]] 

(4) I 
by (3) q 

(5) II by (3) -.[p /\ q] 

(6, 7) -ip 
/~ 

by (5) -iq 

Figure 1.2: A Tableau Proof. 

The steps in the original argument appear at "nodes" of the tableau. 
The number to the left of a wff is its step number in the argument; the 
number to the right is the number of the earlier step which justified the 
given step. The nodes are connected by lines. (Later on we shall explain 
why some of these lines are double). The two branches at the bottom of 
the tree correspond to the two possibilities in the case analysis. There 
are two ways to move from wff (1) down to the. bottom of the diagram: 

(1)-(2)-(3)-(4)-( 5 )-( 6) and ( 1 )-(2)-(3 )-( 4 )-( 5 )-(7); 

Along each of these two branches there is a wff and its negation: namely 
(2) and (6) for the former branch and ( 4) and (7) for the latter. 

The method of tableaus can also be used to show that one wff 
(called the conclusion) follows from one or more other wffs (called the 
hypotheses). The tableau in Figure 1.3 shows that the wff p ::::} r 
follows from the set of hypotheses p ::::} q and q ::::} r. The first node 
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is the negation of the conclusion, -.[p ::::} r], and the second and third 
nodes contain the two hypotheses. On each branch of the tableau there 
is a wff and its negation. This shows that it is impossible for both 
hypotheses to be true and the conclusion to be false. Thus in any 
model in which both hypotheses are true, the conclusion is also true. 

(1) -,[p :::} r] (negation of wff to prove) 

(2) 
I hypothesis p::::} q 

(3) 
II hypothesis q::::} r 

(4) 
I by (1) p 

(5) 
II by (1) -.r 

(6,7) -ip 
/ ~ by (2) q 

(8,9) 
/ ~ by (3) 1q r 

Figure 1.3: A Tableau Proof with Two Hypotheses. 

We shall now extend the "turnstile" notation to apply to sets of 
wffs as well as single wffs. This will make it easier to discuss the case 
where one wff follows from a set of hypotheses. After that we will be 
ready to explain the tableau method in general. 

A finite set is a set of the form S = { s0 , ... , sn} where n is a 
natural number. A countable set is an infinite set of the form S == 
{so, ... , sn, .. . } where n runs over all natural numbers. The empty set 
is also considered to be a finite set. 

Let us consider sets whose elements are wffs. In this book we shall 
confine our attention to sets of wffs which are either finite or countable. 
If H is a set of wffs and M is a model we shall say M models· H (or 

. ·Mis.a model of H, or M satisfies H) and write M P= H if M models 
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every element A of H: 

M f= H iff M f= A for all A E H. 

Of course, when His a finite set, say H = {A1, A2, ... , An}, then the 
notations 

and 

are synonymous. However, the new notation M f= His handy, espe­
cially when H is an infinite set. A wff A is a tautology if and only if 
the set {•A} consisting of the single wff •A has no models. Instead 
of trying to show that a given wff is a tautology, the tableau method 
tries to show that a given set of wffs has no models. 

We now introduce yet another use of the "turnstile" symbol. A wff 
A is called a semantic consequence of the set of wffs H, in symbols 
H f= A, if every model of His a model of A. Evidently, A is a semantic 
consequence of H if and only if the set HU {•A} has no models. The 
notation "H f= A" is a formal description of the intuitive idea "A 
follows from H." 

To sum up, we have introduced three ways to use the "turnstile" 
notation. M f= A means that M is a model of the wff A. M f= H 
means that M is a model of the set of wffs H. H f= A means that 
every model of His a model of A. 

The tableau method which we now describe makes the task of de­
ciding whether H f= A holds more manageable, particularly in the case 
of first order logic in the next chapter. 

As a stepping stone to the mathematical definition of a tableau, we 
first introduce the concept of a tree. A tree T is a system consisting 
of a finite or countable set of points called the nodes of the tree, a 
distinguished node T'T called the root of the tree, and a function 7r, or 
7rT, which assigns to each node t distinct from the root another node 
7r(t) called the parent oft; it is further required that if we repeatedly 
take parents starting from any node t, forming the sequence of nodes 
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we will reach the root node 

in finitely many steps. nodes 1r1(t), 1r
2(t), 7r3 (t), ... are called the 

proper ancestors of t; a node t' is an ancestor of t if it is either 
t itself or is a proper ancestor of t. Thus the root is an ancestor of 
every node, including itself. Conversely, each node s whose parent t 
is called a child oft. A node of the tree which has no children is called 
a terminal node. 

It is customary to draw a tree upside downwith the root at the top, 
because it is natural to start at the top of a piece of paper and work 
down when building a tableau. Each node is connected to its parent 
by a line. For example, in· the tree 

a 

c 

~f 

g 

the root is a; the parent function is defined by 11" ( b) 7r ( c) = a, 7r ( d) 
b, 7r( e) = 7r(f) c, 7r(g) = e; the terminal nodes are d,f, g. 

A tree with finitely many nodes, such as the preceding example, is 
called a finite tree, and a tree with infinitely many nodes is called an 
infinite tree. Infinite trees are possible because, although we required 
that a node has only finitely many ancestors, a node can have infinitely 
many descendants (children, grandchildren, etc.) 

·The simplest example of an infinite tree is the tree of natural num­
bers, with the set of nodes T == {O, 1, 2, ... }, the root node rT 0, and 
the parent function 11"( n) n -1. This tree has no terminal nodes, and 
every node has exactly one child. Here is a picture. 
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0 

I 
1 
I 
2 

I 
3 

I 

A subset r of a tree Tis called a branch of T if the root node rT 

belongs to r' the parent of each nonroot node in r is in r' and each 
node in r is either a terminal node of T or has exactly one child in r. 
We say that a node t is on the branch r if t is an element of the set r . 

. By successively taking parents, we see that for every node t on a 
branch r, every ancestor of t is also on r. By successively choosing 
children, we see that each node of a tree is on at least one branch of 
the tree. A terminal node t will be on exactly one branch r, which is 
equal to the set of all ancestors oft and is finite. On the other hand, a 
node with more than one child will be on more than one branch. 

A branch r will either have exactly one terminal node t, in which 
case r is finite, or will have no terminal nodes, in which case r is 
infinite. The number of nodes on a finite branch r is called the length 
of r. 

All the branches of a finite tree must be finite. In the above example 
of a finite tree, the branches are (d, b, a), (!, c, a), (g, e, c, a). 

The infinite tree of natural numbers has just one branch, which is 
the whole tree. 

Figure 1.2 at the beginning of this section is a tree with a wff at­
tached to each node. This is an example of a labeled tree. By a labeled 
tree for propositional logic we shall mean a system consisting of a 
tree T, a finite or countable set of wffs H which is called the set of 
hypotheses,. and a wff (p(t) attached to each nonroot node t. We shall 
say that the wff "A occurs at t" or that "A is t," when A= (p(t). All 
the wffs in the hypothesis set H are considered to occur at the root 
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node. 
A wff which occurs at a child of a node t will be called a child 

wff (or simply child) of t, and we shall use similar terminology for 
grandchildren, ancestors, etc. Thus a hypothesis wff is an ancestor of 
every node of T. 

We are now ready to define tableaus. An example of a tableau is 
shown in Figure 1.2 at the start of this section. You will see hundreds 
of additional examples of tableaus as you work the problems using the 
TABLEAU computer program. The idea is that tableaus are labeled 
trees which are built up step by step according to a particular set 
of rules, called the tableau extension rules. In this process, we start 
with just the root node labeled by the hypothesis set, and at each 
step we form a new tableau by adding one or more new nodes with 
attached wffs. During this process we form a sequence of larger and 

·larger tableaus, called a tableau chain. 

Definition 1.7.1 A propositional tableau chain is a finite or 
infinite sequence of finite labeled trees To, ... , Tn, ... such that To 
consists only of a root node with the set of hypotheses H, and each Tk+1 

in the sequence is obtained from Tk by applying one of the following 
tableau extension rules at a terminal node t of Tk: 

If t has an ancestor ••A, extend Tk by adding the child A oft. 

[ZJ If t has an ancestor A /\ B, extend by adding a child A and 
grandchild B oft. 

I 1/\ I If t has an ancestor •[A/\ B], extend by adding two children •A 
and 1B oft. 

[2J If t has an ancestor A V B, extend by adding two children A and 
B oft. 

I •VI If t has an ancestor •[AV B], extend by adding a child •A and 
grandchild ·B of t. 

I:::} I If t has an ancestor A :::} B, extend by adding two children ·A 
.and B oft. 
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1-. =?I If t has an ancestor -.[A=? B], extend by adding a child A and 
a grandchild -.B oft. 

I# I If t has an ancestor [A<=> B], extend by adding two children A 
and •A oft, a child B of A, and a child -.B of -.A. 

1-. #I If t has an ancestor •[A <=> B], extend by adding two children 
A and -.A oft, a child •B of A, and a child B of -.A. 

In each case, the ancestor wff is said to be used at t and the other 
wffs mentioned are said to be added at t. 

Definition 1. 7.2 A finite propositional tableau is a labeled tree 
T which is the last term Tn of some finite propositional tableau chain 
To, ... ,Tn. 

Thus a finite propositional tableau has finitely many nodes, but its 
hypothesis set H may be either finite or countable. 

Definition 1. 7.3 An infinite propositional tableau is a labeled 
tree T which is the union of some infinite propositional tableau chain 

To, ... ,Tk, ... , 

in symbols, T uk=O Tk. 
That is, T is the infinite labeled tree such that t is a node of T if 

and only if tis a node of Tk for some k EN, and whenever t E Tk, the 
parent 7r(t) and wff d>(t) are the same in T as in Tk. 

By a propositional tableau with root ff we shall mean either a 
finite or an infinite propositional tableau whose set of hypotheses is H. 

The role of a tableau chain in building a tableau is analogous to the 
role of a parsing sequence in building a wff 1 • To build a propositional 
tableau, start with a tree T 0 consisting of a single node (its root) and 
a set H of hypotheses at the root node. Then extend the tableau T 0 

1The TABLEAU program makes ~t easy to build a finite tableau. The program 
starts with a. tableau. To with only a root node, and forms a new tableau each time 
the Extend command is used. 
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to a tableau T 1, and extend T 1 to T 2, and so on. Each extension uses 
one of the set of nine rules for extending a finite propositional tableau 
Tn. At each stage we choose a terminal node t of Tn and a wff C 
which appears on the branch through t, and build Tn+l by adjoining 
one, two, or four nodes below t according to the rule determined by the 
form of C. 

At each stage of the process of building a tableau, we will have 
a finite propositional tableau Tk. If the process continues through 
all k, the union of the chain of finite tableaus Tk will be an infinite 
propositional tableau T. 

For reference we have summarized the nine extension rules in Fig­
ure 1.4. This figure shows the node t and a wff C above it; the vertical 
dots indicate the branch of the tableau through t so the figure shows 
C on this branch. (It is not precluded that C be at t itsdf.) Below t 
'in the figure are the wffs at the children oft, and' when appropriate the 
grandchildren oft. When both child and gra:O:dchild are added together 
in a single rule, they are connected by a double line. 
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Figure 1.4: Propositional Tableau Extension Rules. 
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Tableaus will be used in two ways: to build a formal proof of a 
wff A from a hypothesis set H, and to build a model of a set of wffs 
H. Formal proofs will be finite tableaus, while both finite and infinite 
tableaus will be used to build models. 

We are now ready to define the notion of a tableau proof. The 
tableau in Figure 1.2 at the beginning ~:J this section is an example of a 
tableau proof. You will see other examples of tableau proofs when you 
solve the problems using the TABLEAU program. Going along with 
the idea of proving a wff by showing that its negation has no models, 
we shall first define a tableau confutation of a set of hypotheses, and 
then define a proof of a wff to be a confutation of the negation of the 

wff. 
We say that a wff A occurs along, or on, a branch r if A is either a 

hypothesis (hence attached to the root node) or is attached to a nonroot 
node of r. We call a branch r of a tableau contradictory if for some 
wff A, both A and ·A occur along the branch. 

Definition 1. 7.4 By a confutation of a hypothesis set H in propo­
sitional logic we mean a finite propositional tableau T with root H 
such that every branch of T is contradictory 2

• By a confutation of 
a wff A we mean a confutation of the one-element set {A}. By a 
tableau proof of a wff A from a hypothesis set H we mean a tableau 
confutation of H U-{ 1 A}. 

The case that H is the empty set is of particular interest. By a 
tableau proof of A we mean a tableau confutation of {·A}. This is the 
same thing as a tableau proof of A from the empty set of hypotheses. 

The "single turnstile" symbol I- is useful when discussing whether 
or not a wff has a tableau proof. The notation 

HI-A 

means that· there· is a tableau proof of A from H. The notation I- A 
means that there is a tableau proof of A. 

the TABLE.AU program, one can see at a glance whether or not a finite 
tableau with a finite root is a confutation. A node is colored. red .if every branch 
through the node is contradictory. In a confutation every node is colored red. 
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Since tableau confutations are by definition finite tableaus, all tableau 
proofs have only finitely many nodes, even when the hypothesis set is 
infinite. 

In the next few sections yve shall prove the Soundness and Com­
pleteness Theorems, which will clarify the relationship between tableau 
proofs and semantic consequences. 

1.8 Soundness 

In. this section we will prove the 

Soundness Theorem 

If a propositional wjf has a tableau proof, then it is a tautology. 

The main step is the following 

Lemma 1.8.1 Let T be a finite propositional tableau with root H. Let 
M be a propositional model of the hypothesis set H. Then there is a 
branch r such that M I= r J that is, M I= A I or every wff A on r. 

Proof: By Definition 1. 7.1 there is a finite propositional tableau chain 
To, Ti, ... such that T is the last term Tn. We must show that there 
is a branch r of T such that every w:ff A which occurs on r holds in 
M. To do this, we shallfind a sequence of branches rk of Tk, k :=:; n, 
such that for each k < n , r,c c rk+i, and every w:ff A which occurs 
on rk+i holds in M (in symbols, M I= rk+i)· Then r n is a branch of 
T and M I= r n as required. 

When k = 0 we take r 0 to be the set whose only element is the 
root node, so that the w:ffs A on r 0 are simply those of H. Thus the 
assumption ,1\lt I= H shows. that M I= r 0 • If Tk+t is obtained from 
T k by extending at some node other than the terminal node of r k we 

1.8. SOUNDNESS 31 

simply take T k = r k+i and there is nothing to prove. Hence assume 
that Tk+t is obtained from Tk by extending at the terminal node of rk 
by applying one of the nine tableau extension rules to some w:ff Aj in 
the list. We use a case analysis and Proposition 1.5.2. 

· (1) If Ai is ••A then rk+1 is obtained from rk by adjoining A. 

(2) If Ai is [A/\ B] then rk+t is obtained from rk by adjoining A and 
B. 

(3) If Aj is ·[A/\ BL then rk+l is obtained from rk by adjoining 
either •A (if M I= ·A) or ·B (if M I= ·B). 

( 4) If Ai is [AV B], then rk+t is obtained from rk by adjoining either 
A (if M I= A) or B (if M I= B). 

(5) If Aj is ·[AV B], then rk+i is obtained from rk by adjoining •A 
and •B. 

(6) If Ai is [A B], then then rk+t is obtained from rk by adjoining 
either ·A (if M I= ·A) or B (if M I= B). 

(7) If Ai is •[A B], then then rk+i is obtained from rk by adjoining 
A and 1 B. 

(8) :If Ai is [A ¢:> B], then rk+1 is obtained from I\ by adjoining 
either both A and B (if M I= A and M I= B) or else both •A 
and ·B (if M •A and M I= ·B). 

(9) If Aj is ·[A ¢:> B], then then rk+i is obtained from rk by adjoining 
either both A and ·B (if M I= A and M I= ·B) or else both 
·A and B (if M I= ·A and M I= B). 

cases (1), (2), (5), and (7) the branch rk+l is the unique branch of 
Tk+1 which extends rk; in the remaining cases rk+l is one of the two 
branches of Tk+t which extend rk· . End of Proof. 

The above lemma actually holds for infinite tableaus as well as finite 
tableaus (Exercise 20), but we shall only use the lemma in the finite 
case. 
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Lemma 1.8.2 If a finite or countable set H of propositional wffs has 
a tableau confutation, then H has no model. 

Proof: Suppose His a hypothesis set and Tis a tableau confutation 
of H; if H has a model M, then by the previous lemma, there is a 
branch r of Teach of whose wffs holds in M. Since every branch of T 
is contradictory, there is a wff A such that both A and •A are on r. 
But this is impossible since by Definition 1.5, no model satisfie~ a wff 
and its negation. End of Proof. 

Theorem 1.8.3 (Extended Soundness Theorem) Suppose H is a 
finite or countable set of propositional wffs and A is a propositional wff; 
If H f- A then H F A/ in other words, if there is a tableau proof of A 
from H, then A is a semantic consequence of H. 

Proof: Given H and A and a tableau confutation T of HU {•A}, we 
note that by the previous lemma, H U {•A} has no model, that is, no 
model of H is also a model of •A. Thus, if M is a model of H, M is 
a model of A. It follows that HF A. End of Proof. 

A tableau confutation can be used to show that a propositional wff 
is a tautology. Remember that a propositional wff A is a tautology if 
and only if it is true in every model, and also if and only if -.A is false 
in every model. Thus if •A has a confutation, then A is a tautology. 
Therefore the Soundness Theorem in the box at the beginning of this 
section is a corollary of the Extended Soundness Theorem. 

1.9 Finished Sets 

In this section we introduce the concept of a finished set of wffs. It will 
be used in the proof of the Completeness Theorem in the next section. 
The concept will be refined in the next chapter to handle predicate 
logic. 

By a basic wff we shall mean a propositional symbol or a negation 
of a propositional symbol. The basic wffs are the ones which cannot 
be broken down into simpler wffs by the rules for extending tableaus. 
A set A of wffs is called contradictory iff it contains some wff A 

1.9. FINISHED SETS 33 

together with the negation •A of that wff. A set A of wffs is called 
finished iff it is not contradictory and for each wff C E A either C is 
basic or one of the following is true: 

[-.-.] C has form -.-.A where A E A; 

[/\] C has form [A/\ BJ where both A E A and B E A; 

[-./\] C has form -.[A /\ B] where either -.A E A or -.B E A; 

[V] C has form [AV B] where either A E A or B E A; 

[-.v] Chas form -.[AV B] where both -.A EA and ·B EA; 

[ =}] C has form [A =? B] where either -.A E A or B E A; 

[-. =>] Chas form -.[A=? B] where both A EA and -.BE A; 

[{::}] C has form [A {::} B] where either both A E A and B E A or 
else both •A EA and ·BE A; 

[-. {::}] C has form -.[A{::} B] where either both A E A and -.B E A 
or else both ·A EA and BE A. 

Notice the similarity between this definition and the tableau extension 
rules of Definition 1.7.l. Notice also that in each of these rules, the 
new wffs have smaller length than the original wff C. 

Here is an example of a finished set of wffs: 

p A q,p :=;.. [s v p], s v p,p, q. 

The set 
p /\ q,p =? [s V p],p, q 

is not finished because it does not satisfy rule [=?]. The set 

p /\ q,p =? [~ V p],s V p,p 

is not finished because it does not satisfy rule [/\]. The set 

p /\ q,p::::;.. [s V p], -.p,p, q 

is not finished because it is contradictory. 
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Lemma 1.9.1 (Finished Set Lemma) Let A be a finished set of 
wffs. Then A has a model. In fact, any model of the set of basic 
wffs in ~ is a model of all the wffs in A. 

Proof: Let us first note that the set of basic wffs in A has at least one 
model. Let us define N by PN = T if p is in A and PN = F in p is 
not in A. Then (because A is not contradictory) PM F if ..,p is in 
A. Indeed, any model M in which each p which occurs in A is true, 
and each p such that ..,p occurs in A is false, is a model of the set of 
basic wffs in A. Given one model of the set of basic wffs in A, another 
model of the set of basic wffs in A can be obtained by changing the 
truth values of any propositional symbols q such that neither q nor ..,q 
occur on A. 

Let M be a model of all basic wffs in A. We must show that 

M f=A, 
that is, that M f= C for each wff CE ~. Now let R(n) be the following 
property of a natural number n: For every wff C, if C belongs to A 
and Chas length at most n, then M models C. 

R(O), R(l), and R(2) are true because every wff of length ::; 2 is 
basic, and M models every basic wff in A. Assume R(n). Suppose 
that C has length at most n + 1 and belongs to A. By examining each 
of the nine cases listed above, we see that since M models every wff in 
~ of length at most n, M also models C. This proves R(n + 1). We 
conclude by induction that R(n) holds for all n, and thus M models 
every wff in A as required. End of Proof. 

1.10 Completeness 

In this section we will prove the 

Completeness T.heorem 

If a propositional wff is a tautology, then it has a tableau proof. 
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The next lemma is the main fact which we shall prove in order to 
get the Completeness Theorem. 

Lemma 1.10.1 (Finite Main Lemma) Let H be a finite set of 
propositional wffs. Either H has a tableau confutation or H has a 
model. 

We have already shown in Lemma 1.8.2 that H cam~ot have both a 
tableau confutation and a model. This, combined with the Finite Main 
Lemma above, shows that H has a tableau confutation if and only if 
H does not have a model. 

Here is the basic idea in proving the Finite Main Lemma. First make 
a systematic attempt to find a tableau confutation of H by building a 
very rich finite tableau, called a finished tableau. Then show that this 

. finished tableau is either a tableau confutation of H, or else has a 
branch whose wffs form a finished set which gives us a model of H. 

To carry out this basic idea, we first give a careful definition of the 
notion of a finished tableau. Then a finished tableau will be built in 
the proof of the Tableau Extension Lemma. After that, near the end 
of this section, we prove the Finite Main Lemma. 

A branch r of a tableau is said to be finished if r is not contradic­
tory and every nonbasic wff on r is used at some node of r 3

• In other 
words, a branch r is finished if and only if the set A of wffs which 
occur along r is a finished set in the sense of the previous section. A 
propositional tableau Tis said to be finished if every branch of T is 
either finished or is finite and contradictory. 

A confutation is automatically a finished tableau because every 
branch is finite and contradictory. A finite finished tableau either has at 
least one finished branch or is a confutation. Figure 1.5 is an example of 
a finished tableau which is not a confutation. It has two contradictory 
branches and one finished branch. 

Finished tableaus can be either finite or infinite. In this section 
we shall construct a finite finished tableau on the way to proving the 

the TABLEAU program, a branch r is finished if its terminal node is yellow 
and each node of r is either a basic wff or is shown by the Why command to be 

· invoked at some other node of r. 
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Figure 1.5: A Finished Tableau. 

Completeness Theorem. In the next section we shall use infinite fin­
ished tableaus to establish the connection between proofs and semantic 
consequences of an infinite set of hypotheses. 

A tableau T' is said to be an extension of a finite tableau T if 
T' can be obtained from T by repeatedly adding nodes at the ends of 
branches. 

Lemma 1.10.2 (Tableau Extension Lemma) Every finite propo­
sitional tableau with a finite root H can be extended to a finite finished 
tableau (with the same hypothesis set)4. 

Proof: We shall call a wff A at a node t in a tableau unused if A 
is not a basic wff and there is a noncontradictory branch through t on 
which A is not used5 • Note that a tableau is finished if and only if 
there are no unused wffs in the tableau. 

algorithm for doing this is illustrated by the computer program COM­
PLETE, which is included with this book. 

5 In the COMPLETE program, unused wffs are colored yellow, wffs through 
which every branch is contradictory are colored red, and other wffs are colored 
blue. 
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Let H be a finite hypothesis set which remains fixed throughout our 
proof. Given a finite tableau T with root H, let u(T) be the length of 
the longest unused wff in T, with the provision that u(T) = 0 if there 
are no unused wffs, that is if Tis finished. Since there are only finitely 
many wffs occurring anywhere in T, the number u(T) exists. We prove 

·the lemma by induction on u(T). 
Let R( n) be the statement that every finite propositional tableau 

T with root H and with u(T) < n can be extended to a finite finished 
tableau. R( n) asserts that the lemma is true whenever u(T) < n. The 
statement R(l) is true, because a tableau T with u(Tr < 1 is already 
finished. Assume R(n). Choose a finite tableau T with root H and 
u(T) < n+ 1. Extend T to a new finite tableau T' by using every unused 
wff A in T once on every noncontradictory branch through A. Each 
of the unused wffs in the original tableau T is used in the new tableau 

· T'. Moreover, each new wff which was added in forming T' has length 
less than u(T), because the added wffs always have smaller length than 
the used wffs. Therefore u(T') < u(T) < n + 1, so u(T') < n. By 
the induction hypothesis R(n), there is a finite finished extension T" 
of T'. T" is also a finished extension of T. This proves R( n + 1) and 
completes the induction. End of Proof. 

Proof of the Finite Main Lemma: Let H be a finite set of wffs 
which does not have a tableau confutation. By the Tableau Extensfon 
Lemma, the tableau consisting of only a root node with hypothesis set 
H can be extended to a finite finished tableau T. This tableau still has 
root H. Since T is not a confutation, it has a finished branch r. By 
the Finished Set Lemma 1. 9 .1, the set A of all wffs on r has a model 
M. In particular, M is a model of Has required. End of Proof. 

Theorem 1.10.3 (Extended Completeness Theorem) If a wff A 
is a semantic consequence of a finite set of wffs H, then there is a 
tableau proof of A from H. In other words, 

H I= A implies H I- A. 

Proof: Suppose that A is a semantic consequence of H. Then the set 
formed by adding the negation of A to H has no models. By the Finite 
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Main Lemma, this set has a tableau confutation, which is a tableau 
proof of A from H. (The special case where the hypothesis set H is 
empty is the Completeness Theorem in the box at the beginning of this 
section.) End of Proof. 

We reiterate that tableau proofs are finite. Thus in the Extended 
Completeness Theorem, if H I= A then there is a finite tableau proof 
of A from H. In the next section we see that this still works when the 
hypothesis set H is infinite. 

1.11 Compactness 

In this section we shall show that the Extended Completeness Theorem 
and other results of the last section hold for a countable set of hypothe­
ses. We are studying countable sets of hypotheses in this chapter to 
prepare the way for predicate logic, where they are of great importance. 
Most of contemporary of mathematics is based on two particular count­
able sets of hypotheses in predicate logic, Zermelo Fraenkel set theory, 
to be introduced in Chapter 3, and Peano arithmetic, to be introduced 
in Chapter 4. 

The key result in this section is the following infinite form of· the 
Main Lemma. 

Lemma 1.11.1 (Main Lemma) Let H be a countable set of propo­
sitional wffs. Either H has a tableau confutation or H has a model. 

We first show that each countable hypothesis set has a finished 
tableau. 

Lemma 1.11.2 For every finite or countable set H of propositional 
wffs, there is a finished tableau with root H. 

Proof: The Tableau Extension Lemma shows that each finite hypoth­
esis set His the root of a finished tableau. It remains to give the proof 
in the case that H is a countable set 

H = {A1, ... ,An, ... }. 
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Let Hn be the finite subset 

composed of the first n elements of H. We shall say that a finite 
tableau T n with root H is finished for Hn if the tableau T~ which is 
the same as Tn except that it has root Hn instead of H is a finished 
tableau. Using the Tableau Extension Lemma countably many times, 
we obtain a sequence of finite tableaus To, ... , Tn, ... with root H such 
that To has only a root node, and for each n > 0, Tn is .an extension 
of Tn-l which is finished for Hn. We can also take the Tn to have 
the additional property that no contradictory branch r of Tn-i gets . 
extended in forming Tn, that is, the terminal node of r in Tn-1 is still 
a terminal node of T n. 

Let T be the union T Uh::o Tk. Let r be a branch of T. If r is 
contradictory, with a contradictory pair A, •A, then there is an n such 
that both of the nodes A and ·A belong to T n. Then r n T n is already 
a contradictory branch of Tn. By our construction, the contradictory 
branch r n T n never gets extended after stage n, so r r n T n and r 
is finite. 

On the other hand, if r is noncontradictory, then our construction 
insures that r is a finished branch. Therefore T is a finished tableau 
with root H. End of Proof. 

Our next lemma is a general mathemathematical principle which is 
useful in a variety of circumstances. We shall use it here to show that 
if all the branches of a tableau are finite and contradictory, then the 
tableau itself is finite and hence is a confutation. 

Theorem 1.11.3 (Konig Tree Theorem) If a tree has infinitely 
many nodes and each node has finitely many children,· then the tree 
has an infinite branch. 

Proof: To prove this, choose an infinite sequence .of nodes to, t1, t2, ... 
with the properties 

1. t 0 is the root node; 

2. tn+l is a child of tn; and 
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3. each tn has infinitely many nodes beneath it; 

Given a node tn with infinitely many nodes beneath it, one of its chil­
dren must also have infinitely many nodes beneath it. This is because 
tn has finitely many children and an infinite set cannot be the union of 
finitely many finite sets. Let tn+I be any child of tn which has infinitely 
many nodes beneath it. The set of nodes { tn : n = 0, 1, 2, ... } is an 
infinite branch. End of Proof. 

The Ki:>nig Tree Theorem fails if we omit the requirement that each 
node have only finitely many children; see Exercise 30. 

Corollary 1.11.4 Let T be a finished tableau. Then either T has a 
finished branch or T is a· tableau confutation. 

Proof: Suppose T has no finished branch. Then every branch of Tis 
finite and contradictory. Since every branch of T is finite, T is a finite 
tableau by the Konig Tree Theorem. Since Tis finite and every branch 
of T is contradictory, T is a tableau confutation. End of Proof. 

Proof of the Main Lemma: Suppose that H does not have a tableau 
confutation. By Lemma 1.11.2, there is a finished tableau T with root 
H. T is not a tableau confutation by assumption, so by the preceding 
corollary, T has a finished branch r. By the Finished Set Lemma, 
the set of wffs on r has a model M. Finally, since all the wffs in the 
hypothesis set H occur on r, M is a model of H. End of Proof. 

We now give several consequences of the Main Lemma. Our first 
consequence is the Compactness Theorem 

Theorem 1.11.5 (Compactness Theorem) Let H be a countable 
set of propositional wffs. Suppose that every finite subset of H has a 
model. Then H has a model 6 • 

Proof: Suppose that H does not have a model. By the Main Lemma, 
H has a tableau confutation T. Since each tableau confutation is a 

6The Compactness Theorem is actually true even when H is an uncountable set 
of wffs. The proof in the general case requires transfinite induction which is beyond 
the scope of this book. 
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finite tableau, the set H' of all wffs in H which are used somewhere 
in T is finite. Now let T' be the labeled tree which is the same as T 
but with root Ho instead of H. Then T' is a tableau confutation of 
H'. By the Extended Soundness Theorem, H' has no models. But this 
contradicts the assumption that every finite subset of H has a model. 
Therefore H does have a model. End of Proof. 

As we mentioned at the beginning of this section, the Extended 
Completeness Theorem holds for countable as well as finite hypothesis 
sets H. The Soundness Theorem also holds for such hypothesis sets. 
We can therefore combine the Extended Soundness, Extended Com­
pleteness, and the Compactness Theorems together into one concise 
statement. 

Corollary 1.11.6 Suppose H is a finite or countable set of wffs and 
A is a wff. Then 

Hr A if and only if Hf= A. 

Proof: The Extended Soundness Theorem says that if H r A then 
H f= A. Suppose that H f= A. Then H U {~A} has no models. 
By the Compactness Theorem, there is a finite subset· Ho C H such 
that Ho U {·A} has no models. Then Ho -F A. By the Extended. 
Completeness Theorem, Ho r A. Therefore H I- A. End of Proof. 

Let us say that a set. H of wffs is logically consistent if there is 
no wff A for which Hr [A/\ •A]. From the last corollary, we have the 
following: 

Corollary 1.11. 7 Suppose His a finite or countable ·set of wffs. Then 
the fallowing are equivalent: 

1. H has a model. 

2. H is logically consistent. 

3. H has no tableau confutation. 

Proof: Exercise 31. End of Proof. 

One application of the Propositional Compactness Theorem is that 
the Four Color Theorem for finite maps implies the Four Color Theorem 
for infinite maps. That is: 
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If every finite map in the plane can be colored with four 
colors so that no two adjacent countries have the same color, 
then the same is true for every infinite map in the plane. 

Suppose that C is a set of countries on some given map. Introduce 
four proposition symbols 

1 2 3 4 
Pc,Pc,Pc,Pc 

for each country c/inC. The proposition symbol p~ is meant to express 
the fact that the color of country c is i. We thus define the vocabulary 
Po to be the set 

,.,.., { 1 2 3 4 • C} ro = Pc, Pc, Pc, Pc · c E · 

Let H be the set of all sentences of the following forms: 

1. P! V p~ V p~ V p~ for each c; 

2. p~ =>·~for each c and for each i =f. j; and 

3. ·[p~ /\ p~,] for each i and for each pair of distinct countries c and 
c' which are next to each other. 

Now a model M for H corresponds to a coloring of the countries by 
the four colors { 1, 2, 3, 4} such that adjacent countries are colored differ­
ently. Ifevery finite submap of the given map has a four coloring, then 
every finite subset of H has a model. By the Compactness Theorem H 
has a model, hence the entire map can be four colored. 

For another application of the Compactness Theorem of this kind, 
see Exercise 32. · 

1.12 Valid Arguments 

In this section we shall use tableaus to obtain some valid consequence 
patterns which arise frequently in mathematical proofs. Here is a first 
example. 
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Modus Ponens. From p and p => q we may conclude q. 

p,p => q F= q 

In view of the Soundness Theorem, we need only give a tableau proof 
of q from the hypotheses p and p => q. Here it is. 

•q 

I 
p 

I 
p => q 

•p q 

If, in developing a mathematical proof, we happen to know that cer­
tain statements A 1 , .•• , Ak are all true (they may have already been 
proved or they may be assumed as hypotheses) and we know that an­
other statement B is a semantic consequence of Ai, ... , Ak, then we 
can conclude that B is also true. Thus, taking Modus Ponens as an 
example, if we can establish the truth of p and p => q, then we may 
conclude that q is also true. 

Laws such as Modus Ponens are called valid argument forms. 
They are often used without being mentioned in ordinary mathematical 
proofs, and are helpful in understanding the plan of the proof. Here is 
a typical example of a mathematical proof which makes use of Modus 
Ponens. 

Proposition 1.12.1 There is an x in the interval (1, 7r) such that 
ln(x) = sin(x), where ln(x) is the natural logarithm of x. 

Proof: Let J(x) = ln(x) - sin(x). We must show that there is an 
x E (1, 7r) such that J(x) = 0. The Intermediate Value Theorem states 
that if f is continuous on a closed interval [a,b] and f(a) < 0 < f(b), 

·then there exists x E (a, b) such that f ( x) = 0. We note that f is 
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continuous on [1,-rr] and that f ( 1) < 0 < f (tr). Therefore there exists 
x E (1, tr) such that f(x) = 0. End of Proof. 

The above proof does not explicitly mention the Law of Modus 
Ponens. In fact, Modus Ponens is so familiar that it is rarely mentioned 
in a proof and should be understood as implicit in the argument. To see 
where Modus Ponens was ·used, let p be the statement "f is continuous 
on (1, tr] and J(l) < 0 < f(tr)," and let q be the statement to be proved, 
"there exists x E (1, tr) such that f(x) 0.'' We know that p is true, 
and the Intermediate Value Theorem gives us p =} q. The statement q 
follows from p and p =? q by Modus Ponens. 

We shall now use tableaus to find two more valid argument forms, 
and illustrate them in actual mathematical proofs. 

Indirect Proof. From •p =? [q /\ •q] we may conclude p. 

Verbally, the Indirect Proof Law says that in order to prove p, we may 
show that •p leads to a contradiction. Here is a tableau proof. 

'P 

I 
-.p :::} q /\ •q 

----- -........._ ''P q /\ •q 

I 
q 

II 

The proof of Euclid's famous theorem that there are infinitely many 
prime numbers can by analyzed as an Indirect Proof. 

Proposition 1.12.2 There is no largest prime. 
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Proof: Suppose there is a largest prime a. Let b = a! + 1. Let c be 
a prime number which divides b. Since a is the largest prime, c :::; a. 
However, no number d :::; a divides b, so •c :::; a. We conclude that 
there is no largest prime. End of Proof. 

To see where the Indirect Proof Law was used, let p denote the 
sentence to be proved, in this case "a is not the largest prime." Let q 
be the statement "c :::; a." In the course of the proof we have shown 
that •p => q /\ •q. Using the Indirect Proof Law, it follows that the 
desired conclusion pis true. 

Here is another commonly used valid argument form and its tableau 
proof. 

Proof by Cases. From p:::} q and -.p:::} q we may conclude q. 

p:::} q, •p:::} q I= q 

Verbally, the Proof by Cases Law says that in order to prove q, we may 
prove that q holds in each of the two cases p and •p. Tableau proof: 

•q 

I 
p :::} q 

I 
•p :::} q 

~ -----q 

We give an example of the Proof by Cases Law from the calculus. 

Proposition 1.12.3 (Rolle's Theorem) If a, bare real numbers with 
a < b, the function f is continuous on [a, b] and differentiable on (a, b), 
and f(a) = f(b) = 0, then there is a number c in (a, b) such that 
f'(c) 0. 
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Proof: We find the desired number c in (a, b) as follows. If for all x in 
·(a, b), f(x) = 0, then let c be any such x. If, on the other hand, there 
exists x in (a, b) such that f(x) i= 0, then if f(x) > 0 we may take 
(c, f(c)) to be a maximum for f by continuity on [a, b], and if f(x) < 0 
we may take ( c, f ( c)) to be a minimum for f again by continuity. We 
have shown in each case that a < c < b and f'( c) = 0. End of Proof. 

Let us analyze the above proof and see where the Proof by Cases 
Law was used. Let q be the sentence to be proved, namely, "There is a 
number c in (a, b) such that f'(c) = O," and let p be the sentence "For 
all x in (a, b), f(x) = O." We have proved that p * q and -.p * q. It 
then follows using Proof by Cases that the· desired conclusion q is true. 

In Exercise 1 7 we consider some other valid argument forms which 
are commonly used in mathematics. 

1.13 Tableau Problems (TABl) 

This is the first of three problem sets using the TABLEAU or TAB­
WIN program. In. this assignment you will construct tableau proofs 
in propositional logic. The problems are located in directory TABl on 
the distribution diskette, and the SETUPDOS or SETUPWIN program 
will put them in a subdirectory called TABl on your hard disk. This 
directory contains an assignment of seven problems, called CASES, 
CONTR, CYCLE, EQUIV, PIGEON, PENT, SQUARE. It also has 
the extra files SAMPLE, ASAMPLE, RAMSEY. SAMPLE is a sample 
problem and ASAMPLE is its solution. The problem RAMSEY is very 
difficult and is described below. 

Use the TABLEAU or TABWIN program commands to load each. 
problem, do your work, and then save your ·answer on your diskette 
or hard drive. Each problem consists of a list of hypotheses and/or a 
wff to be proved. Your solution should be a tableau proof, with every 
node colored red. The file name of your answer should be the letter A 
followed by the name of the problem. (For example, your answer to the 
CYCLE problem should be called ACYCLE). Be sure your name is on 
your diskette label. 

The solutions to these computer problems will be similar to the two 
"hand" examples of tableau proofs given at the beginning of Section 1. 7. 

1.13. TABLEAU PROBLEMS (TABl) 

EXAMPLE 1 A rule for conjunctions of wffs. 

Hypotheses: none 

To prove: p * [q ~ [p /\ q]] 

The solution is given in Figure 1.2 and has 6 nonroot nodes. 

EXAMPLE 2 The Transitivity Law. 

Hypotheses: p * q, q * r 

To prove: p * r 
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The solution is given in Figure 1.3 and also has 6 nonroot nodes. 

At the end of this paragraph we list the set of problems in order 
of difficulty, with attached comments. For each TABLEAU problem in 
this book, an approximate value is given for the number of nodes in the 
solution: its par value. There will always be at least one solution with 
the suggested number of nodes, and in many cases there are solutions 
which use even fewer nodes. You are not required to find a solution 
with the suggested number of nodes. The par value is included only 
as a guide to the difficulty of the problem. We also list the number 
of entries in the truth table for the problem. This number is equal to 
2n * m where n is the number of distinct propositional symbols and m 
is the number of occurrences of propositional symbols and connectives. 
You are not required to build the truth table. Its size is given only so 
you can compare it with the size of the tableau proof. 

CASES (8 nodes) (88 truth table entries) The rule of proof by cases. 

Hypotheses: a=? c, b =? c 

.To prove: [a Vb]=? c 

CONTR (12 nodes) (36 truth table entries) The law of contraposition. 

Hypotheses: none 

To prove: [p * q] ~ [•q * •p] 
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EQUIV (20 nodes) (72 truth table entries) Two wffs which are equiv­
alent to a third wff are equivalent to each other. 

Hypotheses: p <=> q, q <=> r 

To prove: p <=> r 

PIGEON (24 nodes) (88 truth table entries) The pigeonhole principle: 
Among any three propositions there must be a pair with the same 
truth value. 

Hypotheses: None 

To prove: [p <=> q] V [p <=> r] V [q <=> r] 

CYCLE (26 nodes) (416 truth table entries) Given that four wffs im­
ply each other around a cycle and at least one of them is true, 
prove that all of them are true. 

Hypotheses: p =? q, q =? r, r =? s, s =? p, p V q V r Vs; 

To prove: p /\ q /\ r /\ s 

PENT ( 38 nodes) ( 55,320 truth table entries) It is not possible to color 
each side of a pentagon red or blue in such a way that adjacent 
sides are of different colors. 

Hypotheses: bl V r 1, b2 V r2, b3 V r3, b4 V r4, b5 V r5, ..., [bl /\ b2], 
...,[b2/\b3], ...,[b3/\b4], ...,[b4/\b5], ...,[b5/\bl], ...,[rl/\r2], ...,[r2/\r3], 
...,[r3 /\ r4], ...,[r4 /\ r5], ...,[r5 /\ rl) 

To prove: A tableau confutation. 

SQUARE ( 58 nodes) ( 1 7 ,408 truth table entries) There are nine propo-
sitional symbols which can be arranged in. a square: 

al a2 a3 
bl b2 b3 
cl c2 c3 

Assume that there is a letter such that for every number the 
proposition is true (that is, there is a row of true propositions). 
Prove that for every number there is a letter for which the propo­
sition is true (that is, each column contains a true proposition). 

1.13. TABLEAU PROBLEMS (TABl) 

Hypothesis: [al/\ a2 /\ a3] V [bl/\ b2 /\ b3] V [cl Ac2 /\ c3] 

To prove: [al V bl V cl]/\ [a2 V b2 V c2] /\ [a3·v b3 V c3] 
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'RAMSEY (1140 nodes) (8,060,928 truth table entries) The simplest 
case of Ramsey's Theorem can be stated as follows. Out of any 
six people, there are either three people who all know each other 
or three people none of whom know each other. This problem has 
15 proposition symbols ab, ac, ... , ef, which may be interpreted 
as meaning "a knows b," etc. The problem has a list of hypotheses 
which state that for any three people among a, b, c, d, e, f, there 
is at least one pair who know each other and one pair who do not 
know each other. Ramsey's Theorem says that these hypotheses 
are inconsistent and so must have a tableau confutation. 

Here is an informal proof of Ramsey's Theorem in the case at 
hand. Select one of the people, say a. The five remaining people 
may be divided into two sets: those who know a and those who 
do not. At least one of these sets must have three people in it. 
Hence there are essentially two cases: 

1. a knows all the people b, c, d. If none of b, c, d know each 
other, then { b, c, d} is a set of three people none of whom 
know each other. If two of b, c, d know each other, say b 
knows c, then {a, b, c} is a set of three people all of whom 
know each other. 

2. a does not know any of the people b, c, d. If b, c, d know each 
other, then { b, c, d} is a set of three people all of whom know 
each other. If two of b, c, d do not know each other, say b 
does not know c, then {a, b, c} is a set of three people none 
of whom know each other. 

The tableau confutation is very long since the rules of proposi­
tional tableaus do not allow us to rename the people as we have 
done in the informal proof. This problem is optional, and is in­
cluded mainly to illustrate the power of the tableau method. 
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1.14 Exercises 

1. For a wff A define s(A) to be the number of occurrences of proposi­
tion symbols in A, and b( A) to be the number of occurrences of binary 
connectives (/\, V, =>, ¢>) in A. Prove by induction on the length of 
wffs that for every wff A, 

s(A) = b(A) + 1. 

2. Prove by induction pn the length of wffs that every wff has the same 
number of left brackets as right brackets. 

3. Prove by induction on the length of wffs that an initial part of a 
wff is either a string of negation symbols or has more left brackets than 
right brackets. 

4. Let C be a wff which has the form C = [S * T], where S and T are 
strings. Prove that * is the main connective of C if and only if S has 
the same number of left brackets as right brackets. · 

5. Show that there is a unique function c from the set of wffs on the 
vocabulary Po to the set N of natural numbers such that 

(basis) c(p) = 0 for any p E P0 • 

(negation) c( •A) = c(A) + 1. 

(binary) c([A * B]) c(A) + c(B) + 1 
for any binary connective*· 

Prove that for any wff A the number c( A) is the number of occurrences 
of connectives in A. (A connective is one of the symbols.,/\, V, =>, ¢>.) 

6. Show that there is a unique function L from the set WFF(Po) of 
wffs to the set N of natural numbers as follows: 

(Basis) L(p) = 1 for p E P0 • 

1.14. EXERCISES 

(Negation) L(•A) = L(A) + 1. 

(Binary connective) L([A * B]) = L(A) + L(B) + 3 

What information does L(A) give about the wff A? 
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7. Write the standard abbreviations of the following wffs. (You can 
use the TABLEAU program to check your answers). 

1. [[p =} q] ~ •[r /\ s]] 

2. [p =} [q ¢> •[r /\ s]]] 

3. •[[p =} q] ¢> [r /\ s]] 

4. •[p =} [q ¢> [r /\ s]]] 

8. Write the wffs with the following standard abbreviations. 

1. p/\qVr=?s 

2. p /\ [q V r] =} s 

3. p/\qV[r=?s] 

4. [p /\ q V r] =} s 

5. p/\[qVr=?s] 

9. Prove the following rule for finding the main connective of a wff 
C given only the standard abbreviation C'. If there is an occurrence 
of a binary connective * in C' which is preceded by the same number 
of left brackets as right brackets, then * is the main connective of C. 
Otherwise, C is either a proposition symbol or C is the negation of a 
wff. 

(This proof requires a more difficult induction on the length of wffs.) 

10. The purpose of this exercise is to show that bad things could 
·happen without the Unique Readability Theorem. Let P be a subset 
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of the set of integers Z. Define the set of well formed integers with the 
vocabulary P to be the set of all integers which can be obtained by 
finitely many applications of the following rules offormation: 

- If p E P, then p is a well formed integer. 

- If a and b are well formed integers then so is their product ab. 

The set of all well formed integers with the vocabulary Pis denoted by 
W(P). In the following take P {-1, 2, 5}. 

(i) Find all well formed integers a such that -31 ::; a ::; 31. 

(ii) Show that the analog of the Unique Readability Theorem fails by 
exhibiting well-formed integers ai, a2 , b1 , b2 such that a1b1 = a2 b2 

but ai # a2. 

(iii) Show that for any function g : P -r Z and any function f : Z x Z -r Z 
there is at most one function </> : W(P) -r Z such that 

- If p E P, then </>(p) = g(p). 

- Ifa, b E W(P) then </>(ab)= f(<f>(a), <f>(b)). 

(iv) Show that no such function</> exists when g(p) = p and J(a, b) a. 

( v) Show that there is such a function ·</> when g(-1) = -1, g(2) = 
g(5) 1, and J(a,b) =ab. What is it? 

11. Prove Theorem 1.5.1, that for a given a model M and wff A, 
the truth value AM is the same for all parsing sequences of A. (Hint: 
Use the Unique Readability Theorem and an induction on the length 
of wffs.) 

12. Show that the following are tautologies, first by using truth tables 
and then using tableaus. 

1.14. EXERCISES 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 

••p <=> p 
[p /\ q] /\ r <=> p /\ [q /\ r] 
[p V q] V r # p V [q V r] 
p/\q<=>q/\p. 
pVq<=>qVp 
p /\ [q V r] <=> [p /\ q] V [p /\ r] 
p V [q /\ r] # [p V q] /\ [p V r] 
p =} [q =} r] <=> [p =} q] =} [p =} r] 
·[p v q] <=> •p /\ •q 
-,[p /\ q] <=> •p v •q 
[[p =} q] =} p] =} p 
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(Double Negation Law) 
(Associative Law} 
(Associative Law} 
(Commutative Law) 
(Commutative Law) 
(Distributive Law} 
(Distributive Law) 
(Self-Distributive Law) 
(DeMorgan's Law) 
(DeMorgan's Law) 
(Peirce's Law) 

13. Let M be the model for propositional logic such that PM = T 
for every proposition symbol p. Prove by induction on length that for 
every wff A: Either the • symbol occurs in A, or M f= A. 

14. Show that [A =? B] =} A is a tautology if A is p =} p and B 
is q, but is not a tautology if A and B are both p =} q. (The aim 
of this exercise is to make sure you distinguish between a proposition 
symbol p and a variable A used to stand for a wff which may have more 
complicated structure.) 

15. We say that two wffs A and Bare logically equivalent if the w:ff 
A <=> B is a tautology. Show that for any wff A there is a wff B such 
that A and B are logically equivalent and the only connectives which 
occur in B are • and /\. Do the same for the connectives • and =?. 

16. If p is a proposition symbol and C is a propositional wff, then for 
each propositional wff A, the wff A(p//C) formed by substituting C 
for p in A is defined inductively by: 

(a) p(p//C) = C. 

(b) If q is a proposition symbol different from p, then q(p//C) = q. 

.(c) (:A)(p//C) •(A(p//C)). 
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( d) For each binary connective* 

[A* B](p//C) [A(p//C) * B(p//C)]. 

For example, 

[[p ·<=1,, r]:::} p](p//q /\ p) is [[q /\ p] ¢:> r] ::::}·[q /\ p]. 

Prove that for any proposition symbol p and wffs A, B, and C, 

[B # C]:::} [A(p//B) # A(p//C)] 

is a tautology. (Show by induction on the the length of the wff A that 
in every model of 

B#C, 

the two wffs 
A(p//B) , A(p//C) 

have the same truth value.) 

17. Here are some additional valid argument forms which are frequently 
used in mathematical proofs. Give a tableau proof for each one. 

(i) P * q,-•q F= •p 

(ii) PF= q::::} P 

(iii) P v q, •p F= q 

(iv (Co~traposition Law) •q =? •p f= p =? q 

( v) (.Transitive Law) p ::::} q, q :::} r f= p :::} r 

(vi) p =? [ q V r], q ::::} t, r ::::} t f= p :::} t. 

18. In this exercise you are asked to provide a proof of the given 
statement using the given argument form. 
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(1) "The square root of 2 is irrational." 

Use the Indirect Proof Law. (Hint: Assume there is a number 
m/n, with m and n integers, whose square is 2 and arrive at a 
contradiction.) 

(2) "Between any two rational numbers there is an irrational number." 

Use the Proof by Cases Law. (Hint: You may first wish to prove 
that for any integer k and any prime p, k + (1/ vfP) is irrational; 
see part (1) above.) 

(3) "If n is an odd integer, then n2 is odd." 

Use the Contraposition Law. 

(4) "If x,y are real numbers, then x =/= y implies ex =f. eY." 

Use the law p:::} [q V r],q =? t,r:::} t ~ p:::} t. 

(5) "If 2n - 1 is a prime number, so is n." 

Use the Contraposition Law. 

19. In this exercise we present several well-known theorems and their 
proofs. In each proof, find a valid argument form that is used. 

(a) Definition. A function f with domain A is one-one if for all 
x,y EA, f(x) = f(y) implies x = y (see also Section A.5 in the 
Appendix). A function f is left cancellable if for all sets A and 
all 91 : A -+ B, 92 : A -+ B, if f o 91 = f o 92 then 91 = 92. (See 
the Appendix for the definition off o 9.) 

Theorem. If f is left cancellable, then f is one-one. 

Proof. Suppose f with domain Bis not one-one. Then there are 
x =f. y with f(x) = f(y). Define 91 : {O} -+ B, 92 : {O} -+ B by 
91(0) = x, g2(0) = y. Now f o 91 f o 92 but 91 =f. 92· Thus f is 
not left cancellable. 
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(b) Theorem. (Subgroups of cyclic groups are cyclic.) Suppose A 
is a set of integers (recall the set Z of integers consists of the 
numbers ... -2, -1, 0, 1, 2, ... ) and A is closed under subtraction 
(i.e. for all x, y E A, x y E A as well). Then there is an n E N 
such that every m E A is a multiple of n. 

Proof. Let n be the least positive integer in A. Given 
m E A, use long division to write m = nq + r for q, r E Z 
and r 2 0, r < n. Now m, nq are in A (why?). Since A is closed 
under subtraction, r m - nq E A. Since n is the least positive 
integer in A, r 2 0, and r < n, it follows that r = 0. Hence, r = 0 
and m = nq, as required. 

(c) Theorem. (Fundamental Theorem of Arithmetic) Every com­
posite positive integer (i.e. an integer greater than one which is 
not prime) is a product of primes. 

Proof. Suppose not, i.e., suppose there is a composite number c 
which has no prime factorization. Let k E N be such that 2k > c. 
Since c is composite but unfactorable into primes, we can write 
c = ci d1 where c1 is composite and also unfactorable into primes. 
Similarly, write c1 = c2d2 where c 2 is composite and unfactorable 
into primes. Continuing in this way, obtain Ck-i = ckdk. Now 
c ci di = c2d2di = · · · = ckdkdk-i · · · di 2 Ck • 2k > c, which is 
impossible. 

( d) Examine Cantor's Theorem given in Appendix A.6. What is the 
argument form? 

20. Prove that Lemma 1.8.l holds for infinite tableaus. 

21. The .Kill command in the TABLEAU program, works as follows 
when it is invoked with the cursor at a node t. If there is a double 
line below t, (i.e. t and its child were added together) then every node . 
below the child oft is removed from the tableau. Otherwise, every node 
below t is removed from the tableau. Using the definition of proposi­
tional tableau, prove that if you have a tableau before invoking the Kill 
command, then you have a tableau after using the Kill command. 
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22. Prove: If A has a tableau proof then A(p//C) has a tableau proof 
with the same number of nodes (in fact, with the same tree but different 
wffs assigned to the nodes). 

23. Let H be a finite set of propositional wffs. By a strict confutation 
·of H we mean a tableau T with root H such that every branch of T 
has a contradictory pair of the form { s, -is} where s is a propositional 
symboL 

(a) Give a strict confutation of the set 

H = {[•p V [q /\ r]], •[•p V [q /\ r]]}. 

(b) Prove by induction of the length of wffs that for every wff A, the 
set H = {A, ·A} has a strict confutation. 

( c) Using part (b ), prove that every finite set H of wffs which has a 
tableau confutation has a strict confutation.· 

24. Use the Soundness and Completeness Theorems for propositional 
logic to prove that if A has a tableau proof from H and B has a tableau 
proof from A, then B has a tableau proof from H. 

25. Use the ·soundness and Completeness Theorems to prove that if 
[AV B] has a tableau proof from H, C has a tableau proof from A, 
and C has a tableau proof from B, then C has a tableau proof from H. 

26. 

(a) Make a finished tableau with the single hypothesis 

[ q :::} p /\ •r] /\ [ t V r]. 

(b) Choose one of the finished branches, r , and circle the terminal 
node of r. 

( c) Using the Finished Set Lemma, find a wff A such that: 
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1. A has exactly the same models as the set of wffs on the 
branch r which you chose, and 

2. The only connectives occurring in A are/\ and ....,. 

27. Let T be· a finished tableau with finite hypothesis set H in which 
every wff is used at most once on each branch. Prove that each branch 
of T has at most 2n+ 1 nodes, where n is the total number of connectives 
occurring in wffs in the set H. 

28. In this exercise we describe an extremely simple language to give 
the reader an easy example of the Soundness and Completeness Theo­
rems. 

The vocabulary for "baby logic" is a nonempty set Po of proposition 
symbols. The primitive symbols are the proposition symbols from Po 
together with the connective -i. A string in this language is a wff if 
it is obtained from finitely many applications of the following rules of 
formation. 

Each p in Po is a wff. 

If A is a wff, then -iA is a wff. 

Given a model M of type Po, we obtain, as in the text, a uniquely 
defined function which assigns a truth value AM to each wff A of baby 
logic according to the rules 

If A is a propositional symbol p, AM= PM· 

Tableaus are also defined as before, but now every tableau has only 
one branch. 

Without using the Soundness and Completeness Theorems for Propo­
sitional Logic, prove these theorems for baby logic; i.e., prove 

(Soundness) If there is a tableau proof of A from H, then H I= A. 

(Completeness) If H I= A, there is a tableau proof of A from H. 
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(Hint: One approach is to mimic the lemmas used to prove these 
theorems for Propositional Logic in the text. This approach will provide 
the student with easy special cases of these lemmas. Another approach 
is as follows. For any p E Po and natural number n, define ....,np by 
induction with the rules: _,op= p, ....,n+Ip = ....,....,np. As a main lemma, 
show that there is a tableau confutation of a hypothesis set H if and 
only if there are p E Po and natural numbers m, n such that mis even, 
n is odd, _,mp E H, and _,np E H. 

29. Let X and Y be sets and R be a binary relation between X and 
Y, i.e. RC Xx Y. For each x EX define 

Rx= {y E Y: (x, y) ER} 

Assume 

(1) for every finite S C X there exists a one-one function f : S -+ Y 
such that f(x) E Rx for x ES; 

(2) for every x E X the set Rx is finite. 

(a) Show that there exists a one-one function F : X -+ Y such that 
F(x) E Rx for all x E X. Hint: For each a E X, and b E Y 
introduce a proposition symbol Pab whose intended interpretation 
is F( a) = b. Use the Compactness Theorem. 

(b) Give an example which shows that hypothesis (2) cannot be dropped. 
Hint: The negation of (2) asserts that at least one Rx is not finite. 
In the example, there should be no one-one function F : X-+ Y 
such that F(x) E Rx for all x EX. 

30. Give an example of a tree with infinitely many nodes that has no 
infinite branch. Why does this not contradict the Konig Tree Theorem? 

31. Prove Corollary 1.11.7 

32. Given a countable set of students and a countable set of classes, 
suppose each student wants one of a finite set of classes, and e~ch class 
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has a finite enrollment limit. Prove that if each finite set of students can 
be accommodated, then the whole set can. Hint: Use the Compactness 
Theorem. Let your ·basic proposition symbols consist of Psc where s is 
a student and c is a class: Psc is intended to mean student s will take 
class c. 

Polish notation for propositional logic is defined as follows. The 
logical symbols are {/\, V, •, {:}, => }, and the nonlogical symbols or 
proposition symbols are the elements of an· arbitrary set P0 . The well­
formed formulas in Polish notation ( wffpn) are the members of the 
smallest set of strings which satisfy: 

1. Each p E Po is wffpn; 

2. If A is w:ffpn, then so is •A; 

3. If A is w:ffpn and B is wffpn, then /\AB is wffpn, V AB is wffpn, 
{:} AB is w:ffpn, and => AB is w:ffpn. 

Note that no parentheses or brackets are needed for Polish notation. 

33. Put the wff [p {:} q] ::::} [•q V r] into Polish notation. 

34. Construct a parsing sequence for the wffpn 

V• => pq {:} rp 

to verify that it is wffpn. Write this wff in regular notation. 

35. Prove using induction on length that for any w:ffpn A, the number 
of occurrences of logical symbols of the kind{/\, V, {:},=>}in A is always 
exactly one less than the number of occurrences of proposition symbols. 

36. Using induction on length, prove that for any wffpn A and any 
occurrence of a proposition symbol pin A except the last, the number 
of logical symbols of the kind {/\, V, {:},::::}} to the left of p is strictly 
greater than the number of proposition symbols to the left of p. 

37. State and prove a Unique Readability Theorem for wffs in Polish 
notation. 

Chapter 2 

Pure Predicate Logic 

In this chapter we study the family of languages known as first-order 
languages or predicate logics. These languages have the quantifiers 
for all and there exists. Instead of propositional symbols they have 
predicates. As in the first chapter, we shall develop the concepts of a 
wff, a formal proof, and a model, and prove a Completeness Theorem 
which ties them together. Predicate logic is rich enough to express the 
statements and prove the theorems which arise in ordinary mathemat­
ical practice. 

2.1 Introduction 

A predicate is a word or phrase like is a man, is less than, belongs to, 
or even is which can be combined with one or more names of individuals 
to yield meaningful sentences. For example, Socrates is a man, Two 
is less than four, This hat belongs to me, He is her partner. Na~es of 
specific individuals are called parameters. Symbols called variables 
stand for arbitrary individuals. If the variables in an expression are 
replaced by parameters the result acquires a meaning. For example, in 
the assertion 

P(x) : x is less than 4 

we understand that the variable x stands for any number in the par­
ticular class of numbers we are studying (e.g. ·the natural numbers, 
the. real numbers, etc.). For instance, if x is understood to stand for 

61 
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a natural number in this example, and we replace x by the number 1, 
the assertion 

P(l) : 1 is less than 4 

is true, whereas replacing x by 5 yields the false statement 

P(5) : 5 is less than 4. 

The number of variables associated with a predicate is called the 
arity of the predicate. Hence, the predicate 

P(x) : x is less than 4 

is a 1-ary, or unary predicate; 

Q(x, y) : x is less than y 

is a 2-ary or binary predicate; and 

R( x, y, z) : x is between y and z 

is a 3-ary, or ternary predicate. 
If P( Xi, ... , Xn) is an n-ary predicate and if ai, .. . , an are values 

such that P( ai, ... , an) is true we say that ( a1 , ... , an) satisfies P. 
Thus in the above examples, 1 satisfies P, (1, 2) satisfies Q, but (1, 2, 3) 
does not satisfy R. 

The predicate logic developed here will be called pure predicate 
logk to distinguish it from the full predicate logic of the next chap­
ter. (Full predicate logic will add to pure predicate logic the expressive 
power of constants, functions, and equality). 

A unary predicate determines a set of things; namely those things 
for which it is true. Similarly, a binary predicate determines a set of 
pairs of things - a binary relation - and in general an n-ary pred­
icate determines an n-ary relation. For example, the predicate is a 
man determines the set of men and the predicate is west of (when ap­
plied to American cities) determines the set of pairs (a, b) of American 
cities such that a is west of b. (For example, the relation holds be­
tween Chicago and New York and does not hold between New York 
and Chicago.) Different predicates may determine the same relation 
(for example, x is west of y and y is east of x.) 
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The phrase for all is called the universal quantifier and is de­
noted symbolically by V. The phrases there exists, there is a, and 
for some all have the same meaning: there exists is called the exis­
tential quantifier and is denoted symbolically by 3. 

The universal quantifier is like an iterated conjunction and the ex­
istential quantifier is like an iterated disjunction. To understand this, 
suppose that there are only finitely many individuals; that is the vari­
able x takes on only the values a1 , a2, ... , an. Then the sentence V x P( x) 
means the same as the sentence P(a1 )/\P(a2)/\ ... /\P(an) and the sen­
tence P(x) means the same as the sentence P(a1)V P(a2)V ... V P(an)· 
In other words, if 

Vx[x a1 V x a2 V ... V x = an] 

then 
[VxP(x)] ¢=> [P(a1) /\ P(a2) /\ ... /\ P(an)] 

and 
[3xP(x)] 

Of course, if the number of distinct individuals is infinite, such an in­
terpretation of quantifiers is not possible since infinitely long sentences 
are not allowed in predicate logic. 

The similarity between V and/\ and between 3 and V suggests many 
logical laws. For example, DeMorgan's laws 

have the following versions in predicate logic: 

•3xP(x) ¢=> Vx•P(x), •VxP( x) ¢=> 3x•P( x ). 

In sentences of form VxP( x) or 3xP( x ), the variable x is called a 
dummy variable or a bound variable. The meaning of the sen­
tence is unchanged if the variable xis replaced everywhere by another 
variable. Thus the sentences 

VxP(x) ¢=> VyP(y), 3xP(x) ¢=> 3yP(y), 

are both true. For example, the sentence there is an x satisfying x + 7 = 
5 has ex~ctly the same meaning as the sentence there is a y satisfying 
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Y + 7 = 5. We say that the second sentence arises from the first by 
alphabetic change of a bound variable. , 

In mathematics, universal quantifiers are not always explicitly in­
serted in a text but must be understood by the reader. For example, 
when an q.lgebra textbook contains the equation 

x+y y+x 

the author means 
YxYy x + y = y + x. 

( The former equation is called an identity, since it is true for all values 
of the variables, as opposed to an equation to be solved where the 
object is to find those values of the variables which make the equation 
true.) 

A precise notation for predicate logic is important because natural 
language is ambiguous in certain situations. Particularly troublesome 
in English is the word any which sometimes means for all and sometimes 
there exists, depending on the context. 

2.2 Syntax of Predicate Logic 

A vo~abulary P for pure predicate logic consists of a set Pn of n-ary 
predicate symbols for each natural number n 0, 1, ... , where at 
least one of the sets Pn is nonempty. The 0-ary predicate symbols are 
j~st propositional symbols as in propositional logic. The words unary, 
binary} ternary mean respectively 1-ary, 2-ary, 3-ary. In the intended 
interpretation of predicate logic the predicate symbols denote relations 
such as x < y or x + y = z. 

In addition to the primitive symbols of propositional logic the fol­
lowing are primitive symbols of pure predicate logic: 

• the predicate symbols from P 0 , Pi, P 2 , •• • ; 

• an infinite set 

VAR= {x, y, z, xo, yo, z0, xi, y1, .. . } 

of symbols which are called· variables· 
' 
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• a set K,, possibly empty, of symbols which are called parameters; 

• the right and left parenthesis and comma ( , ); 

• the universal quantifier Y; 

• the existential quantifier 3. 

For the syntax, the only difference between a variable and a param­
eter is that the latter may not appear immediately after a quantifier in 
a wff. The reason for having parameters is that they will make it much 
easier to develop the semantics for predicate logic, beginning in Sec­
tion 2.4. (The parameters will denote particular elements of a model 
and the variables will stand for arbitrary members of a model). 

Definition 2.2.1 A symbol which is either a variable or a parameter 
is called an individual symbol. When we wish to emphasize the 
similarity between them, we will sometimes call variables individual 
variables, and call parameters individual parameters. 

Any finite sequence of symbols of any kind is called a string. Our 
first task is to specify the syntax of pure predicate logic; i.e. to spec­
ify which strings are grammatically correct. These strings are called 
well-formed formulas. The phrase well-formed formula is often ab­
breviated to wff. 

Definition 2.2.2 A wff of pure predicate logic is a string which 
can be obtained by :finitely many applications of the following rules of 
formation: 

(W:Po) Any proposition symbol from Po is a wff; 

(W:Pn) If u1, u2, ... , Un are individual symbols (variables or parame­
ters), and p E Pn is an n-ary predicate symbol, then p(u1, u2, ... , un) 
is a wff; 

(W:-,) If A is a wff, the ..,A is a wff; 

(W:/\, V, {:})If A and Bare wffs, then [A/\B], [AVB], [A=? B], 
.and [A{:} B] are wffs; 
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(W:V, 3) If A is a wff and x is a variable, then the strings \:/xA and 
3xA are wffs. 

If we wish to emphasize that the predicate symbols appearing in a 
wff A come from.a specific vocabulary P, and that the parameters come 
from a set K, we say that the wff is formed from the vocabulary P with 
parameters from K. The set of all wffs formed from the vocabulary P 
with parameters from K, will be denoted by WFF(P, K). 

The wffs obtained from the basic rules (W:P0 ) and (W:Pn) are called 
atomic wffs. Thus the atomic wffs are precisely those wffs in which no 
connectives or quantifiers occur. 

To show that a particular string of symbols· is a w:ff we construct 
a sequence of wffs u~ing this definition. This is called parsing the 
wff and the sequence is called a parsing sequence. Although it is 
never difficult to tell if a short string is a wff, the parsing sequence is 
important for theoretical reasons. 

As an example, let us assume that Po contains a propositional sym­
bol q, and that P1 contains a unary predicate symbol P. We first parse 
the wff Vx[P(x) =? q] . 

(1) P(x) is a w:ff by (W:P1). 

(2) q is a wff by (W:Po). 

(3) [P(x) =? q] is a w:ff by (1), (2), and (W:=? ). 

( 4) Vx[P(x) q] is a wff by (3) and (W:V). 

Now we parse the wff [VxP(x) q]. 

(1) P(x) is a wff by (W:P1). 

(2) VxP(x) is a wff by (1) and (W:V). 

(3) q is a wff by (W:Po). 

( 4) is a wff by (2), (3) and (W:=? ). 
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The. two wffs are alike except for the location of the brackets. In 
the parsing sequence for the first wff, Vx[P(x) =? q], the =? must be 
introduced before the V, but in the parsing sequence for the second wff, 
[V x P ( x) =} q], the V must be introduced before the =?. 

We continue using the abbreviations and conventions introduced in 
the propositional logic chapter and in addition add a few more. 

• We shall use rather than= for a predicate symbol correspond­
ing to equality in our formal language, to avoid confusion with 
the ordinary equality symbol used outside of predicate logic. 

• Certain well-known binary predicates like == and < are tradition­
ally written between the variables (for example x < y) rather 
than before the variables (for example < ( x, y)), and we continue 
this practice. Expressions such as x < y are said to be written in 
infix notation. 

• The three rules (W:•), (W:V), and (W:3) put brackets around 
wffs in the same way. Thus •P(x) =? q means [•P(x) =? q] rather 
than •[P(x) =} q]. Likewise VxP(x) =? q means [VxP(x) =? q] 
and not Vx[P(x) =? q]. Since it is easy to confuse these two, we 
may insert extra brackets and write [VxP(x)] =} q for VxP(x) =? 

q. Thus, an abbreviated wff can actually contain more brackets 
than an unabbreviated wff. 

The following lemma is proved in the same way as the corresponding 
lemma in propositional logic, by induction on the length of wffs. 

Lemma 2.2.3 In pure predicate logic, no initial part of a wff is a wff. 

Each wff of pure predicate logic is either an atomic wff, starts with 
a negation symbol or quantifier, or starts with a left bracket. As before, 
the wffs which start with a left bracket are formed by combining two 
other wffs with a binary connective called the main connective. 

Theorem 2.2.4 (Unique Readability) Each wff C of pure predi­
cate logic which starts with a left bracket has exactly one main con­
nective * such that C [A* B] where A and B are wffs. 

The proof is an easy modification of the Unique Readability Theo­
rem on page 11 and is left as an exercise. 
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2.3 Free and Bound Variables 

In predicate logic, an individual symbol x may appear in several differ­
ent places in the same wff A. We shall call each place where a symbol 
or string s appears in A an occurrence of s in A. It is important to 
distinguish between two kinds of occurrences of a variable in a wff free 
and bound occurrences. Informally, the free occurrences of vari~bles 
stand for elements of a universe set, and the truth value of a wff will 
depend on which element is assigned. to the free occurrences of individ­
ual symbols. On the other hand, the bound occurrences of variables 
are dummy variables which appear within quantifiers. 

We first declare that every occurrence of an individual parameter 
in a wff is free. For individual variables, we shall first define the notion 
of a bound occurrence and then declare that all other occurrences are 
free. 

A wff B is said to be a well-formed part of a wff A if A is SBT 
for some strings S and T. 

Let x be a variable and Q be a quantifier, either V or 3, such that 
Qx occurs in A. Suppose that B is a well formed part of A, so that 
A SBT for some strings S and T, and that B begins with Qx. 
Thus B is a wff of the form Qx C. B is called the scope of that 
occurrence of the quantifier Qin A. We shall show later that the scope 
of a quantifier in a wff is unique. Every occurrence of x in the wff 
B Qx C (including the occurrence immediately after the Q) is called 
a bound occurrence of x in A. Any occurrence of x in A which is 
not a bound occurrence is called a free occurrence of x in A. 

For example, in the wff 

P( x, y) * V x [3y R( x, y) * Q( x, y)], 

the first occurrence of x is free, the three remaining occurrences of x 

are bound, the first and last occurrences of y are free the second and 
third occurrences of y are bound, the wff ' 

Vx[3yR(x,y) =} Q(x,y)] 

is the sco~e of the quantifier Vx and the wff 3yR(x, y) is the sco'pe of 
the quantifier 3y. If we make a change of bound variable (say replacing 
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all bound occurrences of x by u and all bound occurrences of y by v) 

we obtain the wff 

P(x,y) =} Vu[3vR(u,v) =} Q(u,y)] 

which has exactly the same meaning as the original wff. 
Before going further, we shall prove that a quantifier occurrence has 

only one scope in a wff. 

Theorem 2.3.1 (Unique Scope) For each occurrence Q of a quan­
tifier in a wff A, there is a unique well formed part of A which begins 
with Q. This unique well formed part of A is called the scope of that 

occurrence of Q. 

Proof: We first prove the existence of a scope by induction on the 
length of A. Let P( n) be the property. that for each wff A of length 
:::; n, each occurrence Q of a quantifier in A is the beginning of at least 
one well formed part of A. An easy proof by induction shows that P( n) 
is true for all natural numbers n. Thus every occurrence of a quantifier 

has at least one scope. 
The proof of the uniqueness of the scope uses the lemma that no 

initial part of a wff is a wff. Let Q be an occurrence of a quantifier in 
a wff A, and suppose B and C are two well formed parts of A which 
begin with Q. Since Band C both start at Q and neither one can be 
an initial part of the othc=;r, B and C are the same. Thus there is only 
one well formed part of A which begins with Q. End of Proof. 

We shall d~note by 
C(x//y) 

the result of replacing all free occurrences of the variable x in C by the 
individual symbol y, which may be either a variable or a parameter. 
For example, if C is the wff R(x) V [Q(x) =} 3xP(x,z)] then C(xj/u) 
is the wff R(u) V [Q(u) =} 3xP(x, z)]. 

There is a problem with this notation. We would like any wff of the 
form 

VxC * C(x//y) 
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to be valid (i.e. true in any interpretation), because it says that if C 
is true for all x, then it is in particular true when x is y. But consider 
the case where C is 3y x < y. In this case we would obtain 

V x3y x < y => 3y y < y 

which is false for the natural numbers since Vx3y x < y is true (take 
y = x + 1) but y < y is false. The problem is that the substitution 
of y for x in 3y x < y creates a bound occurrence of y at a position 
where there is a free occurrence of x; this problem is called confusion 
of bound variables. 

We say that the individual symbol y is freely substitutable for 
the individual variable x in the wff C if no free occurrence of x in C 
occurs in a well-formed part of C which is of the form VyB or 3yB. 
Henceforth we will use the notation C( x / / y) only in the case that y is 
freely substitutable for x in C. We use free for as an abbreviation for 
freely substitutable for, so y is free for x in A means that y is freely 
substitutable for x in A. By definition a parameter is always freely 
substitutable for a variable x in a wff C. 

We shall see later that if y is free for x in C, then the wff 

VxC => C(x//y) 

is true in all interpretations, which is what we wanted. 
By a plain wffwe shall mean a wff which has no parameter symbols. 

Thus WFF(P, 0) is the set of all plain wffs formed from P. 
A plain wff with no free variables is called a sentence. The set of 

all sentences in the vocabulary P is SENT( P, 0). 
A sentence .has a meaning (truth value) once we specify (1) the 

meanings of all the propositional symbols and predicate symbols which 
appear in it, and (2) the range of values which the bound variables 
assume. For example, the sentence 3xVy x ~ y is true if :::; has its usual 
meaning and the variables x and y range over the natural numbers 
(since Vy 0 :::; y) but is false if the variables x and y range over the 
integers. By contrast the truth value of a wff which has one or more 
free variables depends on the values of the free variables. For example, 
the wff x = y is true if x = 2 and y = 2 but is false if x = 2 and y = 3. 
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A wff A E WFF(P, K) with parameters from K but no free vari­
ables is called a sentence with parameters from K. The set of all 
sentences with parameters from K is denoted by SENT(P, K) . 

A sentence with parameters from K has a meaning once we specify 
(1) and (2) above, and (3) the meanings of all parameter symbols which 
appear in it. For example, the sentence Vy 0 :::; y is true if :::; and 0 
have their usual meaning, and the variable y ranges over the natural 
numbers. 

2.4 Semantics of Predicate Logic 

In this section we shall introduce models of pure predicate logic, and 
then define what is meant by the truth value of a sentence in a model. 

Given a natural number n and a set X, an n-ary relation on X 
is a subset of the set xn of all length n sequences (xi, X2, ... , Xn) of 
elements from X. The set of all n-ary relations on X will be written 
RELn(X). 

The set X 1 is the same as X, and a 1-ary relation, or unary rela­
tion, on Xis just a subset of X. Similarly, X 2 is the same as Xx X, 
and 2-ary relations are also called binary relations. 

The 0-ary relations on X correspond in a natural way to truth 
values. The only sequence of length 0 is the empty sequence(). The set 
X 0 has only one element, the empty sequence(); in symbols, X 0 

{()}. 

There are two 0-ary relations on X, the empty set 0 which corresponds 
to the truth value F, and the set X 0 which corresponds to the truth 
value T. 

A model for pure predicate logic of type P is a system M 
consisting of a non-empty set M called the universe of the model 
M, and a function which assigns an n-ary relation qM to each n;.ary 
predicate symbol q of P. 

We emphasize that only the universe set M of a model M is required 
to be nonempty. A unary relation pM may be any subset of M at all, 
empty or nonempty. After we define the notion of a truth value of a 
sentence in a model, we will be able to use sentences of predicate logic 
to express properties of relations. As a simple example, the sentence 
·3x p(X.) will be true in a model M if and only if pM is a nonempty 
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subset of M, and the sentence V x p( x) will be true in a model M if and 
only if pM = M. As an even simpler example, a propositional symbol q 
will be true in M if and only if qM = M 0 , i.e. qM contains the empty 
sequence. 

To illustrate the concept of a model, suppose the vocabulary P has 
only a single unary predicate symbol p. Then a model M of type P · 
consists of a nonempty set M and a subset pM (which may or may not 
be empty) of M. Given a nonempty finite set M with n elements, there 
are 2n different models of type P with universe M, one for each subset 
pM of M. Given an infinite set M, there are infinitely many different 
models of type P with universe M. 

As a second example, suppose the vocabulary P has two unary 
predicate symbokp and q. In this case a model M of type P consists 
of a nonempty universe set Mand two subsets pM and qM of M. Given 
a nonempty finite set M of size n, there will be (2n )2 different models 
of type P with universe M. 

Finally, suppose the vocabulary P has one binary predicate symbol 
p. In this case a model M of type P consists of a nonempty universe 
set M and a subset pM of the set M x M. Given a nonempty finite set 
M of size n, there will be 2n

2 
different models of type P with universe 

M. 
Recall that a plain wff is a wff in which no parameters occur. A 

wff with parameters from K is a wff all of whose parameters (if any) 
are in the set K - in other words, a wff which has no parameters outside 
of K. Thus a plain wff is a wff with parameters from K for every set K. 

Our next goal will be to assign an appropriate truth value to each 
plain sentence in every model for a vocabulary P. The easiest way to do 
this is to do even more: given a model M, we shall assign a truth value 
to each sentence with parameters from M. Since every plain sentence 
is also a sentence with parameters from M, this will accomplish our 
goal. 

Given a model M, we shall work with the predicate logic whose set 
of parameters K is the universe set M of M. SENT(P, M) is the set 
of all sentences with parameters from M. 

If C is a plain wff of pure predicate logic and x 1 , ••• , Xn are the free 
variables of C, we may form a sentence with parameters from M by 
choosing ai, ... , an E M and replacing all free occurrences of Xk in C 
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by ak for k = 1, ... , n. The resulting sentence, called an insta_nce of 

C in M, is denoted by 

C(xi, ... , Xn//ai, ... ,an)· 

As a particular case, if C is a plain sentence then no parameters are 
needed, and C already an instance of itself. 

Now we define M I= A where A E SENT(P, M). Figure 2.1 gi~es 
the rules which determine the truth value AM of a sentence A with 
parameters from M. As in propositional logic we sometimes write M 
A instead of AM = T, and M ~ A instead of AM = F" 
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Truth Value Rules 

(M:'Po) If p E 'Po , PM = T iff () E PM; 

(M:•) (•A]M = Tiff AM = F; 

(M:A) (A A B]M = T iff AM = T and BM = T; 

(M:V) [AV B]M = T iff AM = T or BM = T; 

(M:=>) (A B]M =Tiff AM= For BM= T; 

(M:{:}) [A{::} B]M = T iff AM = BM ; 

(M:V) [ViA]M =Tiff A(x//a)M T for every a EM; 

(M:[3) 3xA]M Tiff A(x//b)M = T for some b EM. 

Figure 2.1: Truth Value Rules for Predicate Logic. 
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The following theorem is important for the semantics for pure pred­
icate logic because it shows that' the rules unambiguously determine 
a truth value for each sentence in a model. It is the analog of Theo­
rem 1.5.1 for propositional logic. 

Theorem 2.4.1 For any model M (of type P} with universe M there 
is a unique function which assigns a truth value AM to each sentence 
A E SENT(P, M) and satisfies the rules of Figure 2.1. 

We shall skip the proof of Theorem 2.4.1, which is again by induction 
on the length of wffs using the Unique Readability Theorem. 

In the next few examples we illustrate our definition of the truth 
value of a sentence in a model with some detailed computations. In 
each example, we go step by step through a parsing sequence for the 
sentence. Because of the quantifier rules, we shall compute the truth 
value of every instance of the wff at each step of the parsing sequence. 

Example 2.4.2 We compute the truth value of the sentence 

VxP(x) => q 

in a model M whose universe is a two element set M {O, 1}, with 
qM 0 and pM E REL1 (M) given by 

pM = {0}. 

We first parse the sentence. 

(1) P(x) is a wff by (W:P1). 

(2) VxP(x) is a wff by (1) and (W:V). · 

(3) q is a wff by (W:Po). 

( 4) VxP( x) => q is a wff by (2), (3) and (W:=> ). 

Now we apply the definition. 

(1) P(O)M T and P(l)M = F by (M:'P1). 

· (2) [\fxP(x)]M = F by (1) and (M:\f). 
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(3) qM = F by (M:Po). 

(4) [\lxP(x) => q]M = T by (2), (3), and (M::::> ). 

Example 2A.3 We compute the truth value of sentence 

\lx[P(x) => q] 

in the model M of the previous example. 

We first parse the sentence. 

(1) P( x) is a wff by (W:P1). 

(2) q is a wff by (W:Pa). 

(3) P( x) =} q is a wff by (1 ), (2), and (W::::> ). 

( 4) \lx[P( x) =} q] is a wff by (3) and (W:V). 

Now we apply the definition. 

(1) M f= P(O) and MF P(l) by (M:Po). 

(2) M F q by (M:P0) because qM = F. 

(3) M F P(O) => q and M f= P(l) => q by (1), (2), and (M::::> ). 

(4) M F \lx[P(x) =} q] by (3) and (M:V). 

Example 2.4.4 We compute the truth value of 

\ly3x x :'.Sy=> 3x\ly x :'.Sy 

for a model M whose universe set is the set M N of natural numbers, 
and :'.SM is the usual order relation on N: 

<M = {(a, b) E N2
: a :'.Sb}. 

We first parse the wff. 

(1) x :'.S y is a wff by (W:P2). 
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(2) 3x x::; y is a wff by (1) and (W:3). 

(3) \ly3x x ::; y is a wff by (2) and (W:V). 

(4) \ly x ::; y is a wff by (1) and (W:V). 

.(5) 3x\ly x::; y is a wff by (4) and (W:3). 

(6) [\ly3x x ::; y => 3x\ly x ::; y] is a wff by (3), (5), and· (W::::> ). 

Now we apply the definition of M f= A to this parsing_ sequence. 

( 1) M F c ::; d iff c ::; M d . 

(2) M f= 3x x ::; d for every d since M f= 0::; d for every d. 

(3) M f= \ly3x x :'.S y by (2). 

( 4) M F Vy c ::; y iff c = 0. 

(5) M f= 3x\lyx :'.Sy by (4). 

(6) M f= \ly3x x ::; y => 3x\ly x ::; y by (3) and (5). 
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Example 2.4.5 We compute the truth value of the wff of the preced­
ing example for a different model. Take M = Z, the set of integers, 
with ::;M the usual order relation on Z: 

<M = {(a,b) E Z2
: a::; b}. 

( 1) M F c :'.S d iff c ::; M d . 

(2) M f= 3x x ::; d for every d, since M f= c ::; d if c d. 

(3) M f= \ly3x x ::; y by (2). 

· (4) M FVyc::;yforeveryc,sinceM F c::;d'ifd = c-1. 

(5) M F 3x\ly x :'.Sy by (4). 

(6) M F \ly3x x ::; y => 3x\ly x ::; y by (3) and (5). 
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We can now define the notion of semantic consequence as before. 
The sentence A is said to be a semantic consequence of a set H 
of sentences, and we write H f= A, if every model of H is also a 
model of A. If H f= A and H is the empty set, we say that A is a 
valid sentence. In other words, a valid sentence is one which holds 
in every· model; it is the analog for predicate logic of a tautology in 
propositional logic. In Section 2.6 we will again encounter the tableau 
method for establishing' semantic consequence and validity of sentences. 
To motivate the new tableau rules we give the following extension of 
Proposition 1.5.2 from page 16. 

Proposition 2.4.6 Suppose M is a model with universe M. 

V If M f= VxA and a EM then M f= A(xlla). 

1--NI If M f= -NxA then M f= •A(xl lb) for some b EM. 

@] If M f= 3xA then M f= A(xl lb) for some b EM. 

If M f= •3xA and a EM then M •A(xl la). 

2.5 Graphs 

The semantics for w:ffs with three or fewer variables can be represented 
graphically. Let A be a w:ff with at most the free variables x, y. The 
( x, y) graph of A in M is the set of all pairs of elements of M for 
which A is true, that is, 

GRAPHx,y(A,M) = {(a,b) E M2
: M A(x,y/la,b)}. 

If A is a sentence, the (x, y) graph of A in· M is either the whole 
plane M 2 or the empty set. This is because A has no free variables, 
so A(x, y 11 a, b) is just the original sentence A for every pair a, b. If 
M f= A then the ( x, y) graph of A is the whole plain M 2 , and otherwise 
the graph is the empty set. 

If the x axis is horizontal and A is a wff with only x free, then 
the (x, y) graph of A in M will be a union of vertical columns in the 
M x M plane. This is because the graph of A is the set 

{(a, b) .E M 2 
: M f= A(xl la)}, 
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and two pairs (a, b) and (a, c) in the same column go with the same 
instance A(xl la) of A. Similarly, if A has only y free, its (x, y) graph 
will be a union of horizontal rows in the M x M plane. 

A wff with n free variables can be represented by an n-dimensional 
graph. The PREDCALC program gives a graphical representation of 
wffs all of whose variables, both free and bound, are among x, y, and 
z. A finite universe of the form O, 1, ... , n - 1 of size n must first be 
chosen, where n is between 1 and 8. The (x, y, z) graph of a wff is a 
subset of a cube with n points on each side. The model in the program 
has three binary relations 

x = y, x < y, x > y, 

and nine ternary relations 

x = y + z, x = y - z, x y * z, 

x < y + z, x < y z, x < y * z, 

x > y + z, x > y - z, x > y * z, 

which can be entered using the button for atomic formulas. Here the 
addition, subtraction, and multiplication are performed modulo n. 
(To add or multiply two numbers modulo n, add or multiply them in 
the usual way and then take the remainder after division by n. To 
subtract two numbers modulo n, subtract in the usual way and then 
add n if the result is negative). There is also a provision for adding 
"random" unary, binary, or ternary relations to the vocabulary. By 
experimenting with the program, you can see what happens to the 
graphs when you combine wffs with connectives and quantifiers. 

2.6 Tableaus 

Recall that a sentence A of predicate logic is said to be valid if A 
is true in every model. In propositional logic it is possible to test 
whether a wff is valid in a finite number of steps by constructing a 
truth table. This cannot be done in predicate logic. In predicate logic 
there are infinitely many models to consider, even when the vocabulary 
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of predicate symbols is finite. Since we cannot physically make a table 
of all models, we need another method of showing that a sentence is 
valid. To this end, we shall generalize the notion of tableau proof from 
propositional logic to predicate logic. As before, a formal proof of a 
sentence A will be represented as a tableau confutation of the negation 
of A. 

Tableaus in predicate logic are defined in the same way as tableaus 
in propositional logic except that there are four additional rules for ex­
tending thein. The new rules are the [2J and ~rules for wffs which 

begin with quantifiers and the I •VI and rules for the negations 
of wffs which begin with quantifiers. As in case of propositional 
logic, our objective will be to prove the Soundness Theorem and the 
Completeness Theorem. The Soundness Theorem will show that ev­
ery sentence which has a tableau proof is valid, and the Cornpleteness 
Theorem will show that every valid sentence has a tableau proof. The 
tableau rules are chosen in such a way that if M is a model of the set 
of hypotheses of the tableau, then there is at least one branch of the 
tableau such that every wff on the branch is true for M .1 

A labeled tree for pure predicate logic is a system (T, H, ~) 
where T is a tree, His a set of wffs and <I> is a function which assigns 
to each nonroot node t of T a wff <I> ( t) ·of pure predicate logic. The 
definition is exactly the same as for propositional logic, except that the 
wffs are now wffs of predicate logic. As in propositional logic, "the wff 
A is at the node t" means that "A is <I>(t)." The wffs of Hare said to 
be "at the root." We shall use the same terminology (ancestor, child, 
parent, etc.) as we did for propositional logic. 

Definition 2.6.1 A tableau chain for pure predicate logic is a finite 
or infinite sequence of finite labeled trees which is formed using the nine 
tableau extension rules for propositional logic (see section 1.7.1) and the 
following additional tableau extension rules: 

[2J If t has an ancestor VxA, extend by adding a child A(x//a) oft, 
where a is an individual symbol which is free for x in A. 

1For a precise statement, see Lemma 2.7.2 on page 86 below. 
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I •VI if t has an ancestor •VxA, extend by adding a child •A(x//b} of 
t, where b is an individual symbol which does not occur in any 
ancestor of t. 

If t has an ancestor 3xA, extend by adding a child A(x//b) of 
t, where b is an individual symbol which does not occur in any 
ancestor of t. 

l ·3 l If t has an ancestor •3xA, extend by adding a child •A(x//a) of 
t where a is an individual symbol which is free for x in A. 

The four new rules are summarized in Figure 2.2, which should be 
viewed as an extension of Figure 1.4 on page 28. 

Definition 2.6.2 A tableau for predicate logic is a labeled tree 
which is either the last term of a finite tableau chain, or the union of 
an infinite tableau chain. 
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Tableau Extension Rules 

VxA 

t 

I 
A(x//a) 

·3xA 

t 

I 
•A(x//a) 

a is free for x 

3xA 

t 

I 
A(x//b) 

•VxA 

t 

I 

·A(x//b) 

bis new 

Figure 2.2: Tableau Extension Rules for Pure Predicate Logic. 
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Notice that the [2J and I ·3 I rules are similar to each other, and the 

[lJ and I •VI rules are similar to each other. The V and I ·3 I rules allow 
any substitution at all as long as there is no confusion of free and bound 
variables. On the other hand, the@] and I ·VI rules are very restricted, 
and only allow us to substitute a completely new symbol b for x. In 
an informal mathematical proof, if we know that 3xA is true we may 
introduce a new symbol b to name the element for which A(x//b) is 
true. It would be incorrect to use a symbol which has already been 
used for something else. This informal step corresponds to the 3 rule 
for extending a tableau. A similar remark applies to the •V rule. 

A tableau confutation of a set H of wffs in predicate logic is a 
tableau T with root H such that each branch is contradictory, that 
is, each branch has a pair of wffs A and •A. A tableau proof of a wff 
A is a tableau confutation of the set {·A}, and a tableau proof of A 

· from the hypotheses H is a tableau confutation of the set HU {•A}. 
If there is a tableau proof of A from H, we say that A is provable 
from Hand write Ht-- A. 

The main purpose of tableaus is to give a method for ~showing that a 
sentence is valid, or that one sentence is a semantic consequence of a set 
of other sentences. For this reason, We shall usually work with tableaus 
whose hypothesis set H is a set of sentences, rather than merely a set 
of wffs. 

We shall see later that if a set of sentences H has a tableau confuta­
tion, it has one such that every individual symbol which occurs freely 
on the tableau is a parameter rather than a variable. We shall always 
follow the practice of building tableaus with no free variables, because 
then we never have to worry about a variable being both free and bound 
in a wff. This is done by using individual parameters rather than indi­
vidual variables in the quantifier extension rules. 

It is usually much more difficult to find formal proofs in predicate 
logic than in propositional logic, because if one is careless, the tableau 
will keeg_g;owing forever. One useful rule of thumb is to try to use the 
@]and L:~~Jrules, which introduce new individuals, as early as possible. 
9.E-ite often, these new individuals will appear in substitutions in the 
l!'.J or I •3 I rules later on. This rule of thumb is illustrated in the two 
simple examples in Figure 2.3. , 
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(1) ·3y P(y) • to be proved 

(2) 
l 

3x P(x) hypothesis 

(3) 
I 

P(a) by (2) 

(4) 
I 

•P(a) by (1) 

A tableau proof of 3y P(y) from 3x P(x). 

(1) •Vy3x P(x, y) • to be proved 

(2) 
I 

3xVy P(x, y) hypothesis 

(3) 
I 

Vy P(a, y) by (2) 

(4) 
I 

1 3x P(x, b) by (1) 

(5) 
I 

P(a, b) by (3) 

(6) 
I 

•P(a,b) by (4) 

A tableau proof of Vy3x P(x, y) from 3xVy P(x, y). 

Figure 2.3: Two Tableau Proofs in Predicate Logic. 
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2. 7 Soundness 

In this section we will prove the 

Soundness Theorem 

If a sentence of pure predicate logic has a tableau proof, then it 
is valid. 
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The proof of the Soundness Theorem for predicate logic is similar 
to the proof of the Soundness Theorem for propositional logic, but with 
extra steps for the quantifiers. Recall that Lemma 1.8.1 for proposi­
tional logic asserted that if T is a finite tableau with a set H of wffs 
at the root and if M is a model for H then· there is a branch T such 
that M f= r. Without some qualification this will not be true in pred­
icate logic since the wffs in the tableau proof may have free variables 
or parameter symbols which are not elements of M. To make it correct 
we must replace the free variables or parameter symbols which occur 
in the tableau with suitable parameters from M. 

To this end define a valuation in the set M to be a list of pairs 

where x1, x2 , ••• xe are distinct individual symbols (variables or param­
eters) and a1 , a2 , • •• ae are elements of M. For any wff A we write A( v) 
in place of the more cumbersome 

. A(xi, x2, ... xd /ai, a2, ... , ae) 

If the list xi, x2, ••• xe contains all the individuar symbols occurring 
freely in the wff A then A( v) is a sentence with parameters from M. If 
Mis a model with universe Mand r is a set of wffs, then the notation 

MF r(v) 
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means that MI= A(v) for each wff A in r. The notation is used only 
. when the list X1, X2, ••• Xe contains all the individual symbols which 

occur freely in some wff of r. 
Recall that a sentence of pure predicate logic is a wff with no free 

individual symbols, that is, no free variables and no parameters. To 
keep things simple, in this section we shall consider only finite tableaus 
T whose hypothesis set H is a finite or countable set of sentences. If 
T is such a tableau, then each branch r of T will have only finitely 
many wffs in addition to the hypotheses. Since no individual symbols 
occur freely in H, only finitely many individual symbols occur freely in 
r . In this case, M I= r( v) is meaningful and says that M I= A( v) for 
each wff A which occurs along r; i.e. the same notation is used for the 
branch and the set of wffs which occur along the branch. 

In the exercises we shall see that the results in this section can be 
extended to all tableaus by using infinite valuations. 

Definition 2.7.1 A wff A is called satisfiable in a model Miff there 
is a valuation v in the universe of M such that M I= A( v ). A set r of 
wffs in which only finitely many individual symbols occur freely is called 
simultaneously satisfiable in a model M iff there is a valuation v in 
the universe of M such that M I= r( v ). 

Lemma 2. 7.2 Let T be a finite tableau in predicate logic whose hy­
potheses set H is a finite or countable set of sentences, and let M be a 
model for H, that is, 

M f=H. 
Then there is a branch r of T which is simultaneously satisfiable in M. 

Proof: The proof of this lemma is similar to the proof of Lemma 1.8.1 
which is the corresponding lemma for propositional logic. The idea is to 
carefully choose individual symbols from the model at each step where 
the ~ rule or the [YJ rule is used in extending the tableau T. 

By definition there is a finite tableau chain T 0 , Ti, ... , Tn with 
T = Tn. We will construct inductively a branch rk of Tk and a 
valuation 
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such that the wffs 
Ai,A2, ... ,Am 

which occur along this branch satisfy M I= Aj(vk) for j 1, 2, ... k. 
The first coordinates x1 , x2 , ••• , xek of the pairs in the list v will be 
precisely the individual symbols which occur free along rk. The branch 
·rk+l will extend the branch rk and the valuation Vk+1 will extend vk. 

When k = 0 the wffs Aj are simply those of H so we take v0 to be 
empty and the result is the hypothesis M I= H. If Tk+l is obtained 
from T k by extending at some node other than the terminal node of r k 

We simply take rk = rk+l and Vk Vk+i and there is nothing to prove. 
Hence assume Tk+l is obtained from Tk by extending at the terminal 
node of r k by applying one of the thirteen tableau extension rules to 
some wff Aj in the list. We use a case analysis and Proposition 1.5.2 
(page 16). 

In case the Tk is extended to Tk+l via one of the nine propositional 
tableau extension rules we take Vk+i Vk and argue as in Proposi-
tion 1.8.1. In the remaining cases we argue as follows. 

(10) Suppose Aj is VxA and the tableau is extended by adjoining 
A(x//y). Take Vk+i = Vk if the individual symbol y appears in 
the list x1, ... xe of first coordinates in vk; if not, extend Vk to 
Vk+i by adjoining the pair (y, a) where a is any element of M. By 
the induction hypothesis M I= VxA(vk) so M I= A(vk+1). 

(11) Suppose Aj is -NxA and the tableau is extended by adjoining 
-iA( x / / y). In this case the individual symbol y does not occur in 
the list of first coordinates in Vk and by the induction hypothesis 
M I= -iVxA( vk)· Choose b E M so that M I= -.A( Vk+i) where 
Vk+i is defined by adjoining (y, b) to vk. 

(12) Suppose Aj is 3xA and the tableau is extended by adjoining 
A(x/ /z). Proceed as in (11). 

(13) Suppose Aj is -i3xA and the tableau is extended by adjoining 
-iA(xi /y). Proceed as in (10). 

End of Proof. 

As in propositional logic, we have the following lemma which is 
proved in essentially the same way: 
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Lemma 2. 7.3 If a finite or countable set H of sentences has a tableau 
confutation, then H has no model. 

Proof: Suppose His a hypothesis set and T is a tableau confutation 
of H; if H · has a model M, then by the previous lemma, there is a 
branch r in T and a valuation v in M such that M F r(v). But this. 
is impossible since every branch of T is contradictory. End of Proof. 

This lemma gives us the Extended Soundness Theorem just as with 
propositional logic. Since the proof carries over without change, we 
omit the details. The Soundness Theorem in the above box is the 
special case where the hypothesis set H is empty. 

Theorem 2.7.4 (Extended Soundness Theorem) Suppose that 
HU {A} is a finite· or countable set of sentences. If H I- A then H I= A; 
in other words, if there is a tableau proof of A from H, then A is a 
semantic consequence of H. 

As in propositional logic, a tableau confutation can be used to show 
that a sentence is valid. This is the special case of the Extended Sound­
ness Theorem in which the hypothesis set H is empty. Thus, if I- A, 
then every model (of the empty set of hypotheses) is a model of A; 
hence A is valid. 

2.8 Finished Sets 

By an atomic wff we mean either a propositional symbol alone or a 
wff of form p(x1, x2, ... , xn) where pis an n-ary predicate symbol and 
xi, x2, ... , Xn are individual symbols. By a basic wff in pure predicate 
logic we mean a wff which is either an atomic wff or the negation of an 
atomic wff. We call a set A of wffs contradictory if it contains some' 
wff A, and its negation •A. A set A of sentences with parameters 
from M is a finished set on M if A is not contradictory, and for each· 
C E A, either C is a basic wff, C satisfies one of the conditions [••] to 
[ • {::}] from Section 1. 9 on page 33, or else one of the following is true: 

[VJ Chas form VxA where A(x//a) EA for every a EM; 

2.8. FINISHED SETS 

[•VJ C has form •VxAwhere 1 A(x//b) EA for some b EM; 

[3] Chas form.3xA where A(x//b) E A for some b EM; 

[•3] Chas form -,:JxA where ·A(x//a) E A for every a EM. 
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The definition of a finished set is parallel to the definition of a tableau. 
It should be noted, however, that the [2J and I ·3 I tableau extension · 
rules differ markedly from the [\I] and[ •3] clauses in the definition of a 
finished set. The latter two rules say that every possible substitution 
instance must lie in the finished set, whereas the former two rules say 
that the tableau is extended by one substitution. 

Lemma 2.8.1 (Finished Set Lemma) Suppose M is a non-empty 
set and that A is a set of sentences with parametersfrom M. Assume 

. that A is finished set on M. Define a model M for pure predicate logic 

as follows: 

e The universe set of the model M is the set M. 

e For each propositional symbol p E Po, PM = T if and only if 

pE A. 

• For each n-ary predicate symbol p E Pn 

Then M f= A. 

Proof: We shall prove that 

MI= C if CE A 

by induction of the length of C. The pattern of proof is as follows. 
First we prove ( *) in case C is a basic wff. Then we choose C E A, 
assume that ( *) is true for all wffs A which are shorter than C, and 
prove that M f= C. (This shows that if (*)is true for ali wffs A shorter 
than C, then ( *) is also true when A is C.) . 

First consider' the case where C is basic. If C is p(b1, b2, ... , bn) and 
. · p(bi, b2,.;., bn) E A, then M I= C by the definition of M. If C is 
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•p(b1, b2, ... , bn) and C E a, then p(bi, b2, ... , bn) rl. a for otherwise 
· the set a would be contradictory and hence not finished. Hence in this 
case as well M I= C by the definition of M. 

Now choose C E a and assume inductively that ( *) is true for all 
wffs shorter than C. We have just handled the case where C is basic so 
we may assume that C is not basic. Hence C has one of the forms [ ••], 
[/\], ... , [•3] as in the definition of finished set given above. There are 
thirteen cases, one for each part of the definition. They are all similar 
so we will only prove five of them and leave the rest to the reader. 

[ ••J In this case C has the form ••A. As we have assumed that 
C E a the definition of finished set tells us that A E a. By the 
induction hypothesis, M I= A. Hence M I= C. 

[VJ In this case C has the form AV B. As we have assumed that 
C E a the definition of finished set tells us that either A E a or 
B E a. By the induction hypothesis, either M I= A or M I= B. 
Hence MI= C. 

[•VJ In this case Chas the form •(AV B]. As we have assumed that 
C E a the definition of finished set tells us that •A E a and 
·B E a. By the induction hypothesis, M I= •A and M I= •B. 
Hence MI= C. 

[V] In this case C has the form VxA. As we have assumed that C E a 
the definition of finished set tells us that 

A(x//a) Ea for every a EM. 

The induction hypothesis tells us that M I= A( x //a) for every 
a E M. Hence M I= C. 

[•VJ In this case C has the form •VxA. As we have assumed that 
C E a, the definition of finished set tells us that 

•A(x//b) Ea for some b EM. 

The induction hypothesis tells us that M I= A(x//b). Hence 
M l=C. 

End of Proof. 

2.9. COMPLETENESS 

2.9 Completeness 

In this section we will prove the 

Completeness Theorem 

If a sentence of pure predicate logic is valid, then it has a 
tableau proof. 
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The Completeness Theorem for pure predicate logic uses many of 
· the ideas introduced in connection with the Completeness Theorem for 

propositional logic. One important difference is that infinite tableaus 
are needed even when the set of hypotheses is finite. As with proposi­
tional logic, our main task is to prove the following Main Lemma. 

Lemma 2.9.1 (Main Lemma) Suppose H is a finite or countable set 
of sentences in pure predicate logic. Either H has a tableau confutation 
in which no free variables occur, or H has a model. 

As before, the Extended Soundness Theorem shows that H cannot 
have both a tableau confutation (with or without free variables) and a 
model. To prove the Main Lemma we shall' construct a tableau T in 
which every branch is either finished or finite and contradictory. The 
tableau T will also have the property that no free variables occur on 
T. 

The formulation of the Completeness Theorem in the box at the 
beginning of this section is a special case of the following. (Take the 
hypothesis set H to be empty.) 

Theorem 2.9.2 (Extended Completeness Theorem) Suppose H 
is a finite or countable set of sentences and A is a sentence in pure 
predicate logic. If every model of H is a model of A, then there is a 
tableau proof of A from H in which no free variables occur. Thus if 
H l=.A, then H ~ A. 
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The proof of the Completeness Theorem from the Main Lemma 
carries over from propositional logic without change, and so we omit it 
here. Following the pattern which we used for propositional logic, we 
shall now state and prove a Tableau Extension Lemma ·for predicate 
logic, and then prove the Main Lemma. 

We fix a countable set M of new individual parameters which occur 
nowhere in H. A branch of a tableau is said to be finished on M if· 
the set of wffs on the branch is finished on M. Define a tableau T 
to be finished on M if every branch of T is either finished on M or 
else both finite and contradictory .. In a finished tableau, the finished 
branches, if any, may be either finite or infinite. (A branch will have to 
be infinite if M is infinite and a wff of form VxA or •3xA appears on 
the branch.) If all the branches of a tableau are finite and contradictory, 
then by the Konig Tree Theorem from Chapter 1, the tableau will have 
finitely many nodes and hence will be a confutation. Tableau proofs 
and tableau confutations are always required to be finite, but finished 
tableaus which are not confutations are allowed to be infinite. 

Lemma 2.9.3 (Tableau Extension Lemma) Let M be a countable 
set {to be used as a set of parameter symbols} and let H be a finite or 
countable set of sentences in pure predicate logic. Then there exists a 
finished tableau T on M with root H, such that no free variables occur 
on T. 

Proof: We construct a sequence of finite tableaus 

such that T n+l is an extension of T n for each n E N. The finished 
tableau will be the union of the tableaus in this sequence. The tableau 
To is just the trivial tableau with only the root node and the given set 
of sentences H attached to it. Since the set M is countable we may list 
its elements: 

M = { ai, a2, a3, .. . }. 

We also list the elements of the finite or countable set H, 
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Let Ho be the empty set and Hn = { C1, ... , Cn}, with the understand­
ing that if H is finite with n elements then we instead take Hm = H 
when m 2 n. 

We shall construct the sequence Tn of tableaus using only the pa-
rameter symbols from M in the quantifier rules. Since each tableau T n 

·will have only finitely many nodes, T will contain only finitely many 
sentences outside H and hence only finitely many parameters from M 
occur in T n. (The finished tableau, however, may well use all the pa­
rameters from M.) 

Given the finite tableau Tn we form a finite extension Tn+1 with 
the following properties. For any noncontradictory branch r of T n+1 
and wff A on r such that either A E Hn or A is a no~root wff T n: 

1. If A is of the form VxB then for every i 1, 2, ... , n + 1 the wff 
B(x// ai) is on r. 

2. If A is of the form •3xB then for every i = 1, 2, ... , n + 1, the 
wff ·B(x//ai) is on r. 

3. If A is of any other form, then A is used (as the hypothesis of a 
tableau extension rule) at least once along r. For example, if A 
is of the form 3xB then for some integer k, possibly much bigger 
than n, the wff B(x//ak) is on r. As a second example, if A is 
of the form B V C then either B is on r or C is on r. 

Furthermore, no contradictory branch of T n is extended in forming 

Tn+l· 
The tableau Tn+l is constructed in .finitely many stages by taking 

care of all wffs in Hn and all nonroot wffs of T n one at a time. Now 
we claim that the union T = Un T n is a finished tableau on M. Let r 
be any branch of T. If r is contradictory then r is finite as before. 

If r is not contradictory we must show that a, the set of all wffs 
on r, is a finished set. Suppose that A E a. Then for some n, A is 
either in Hn or is a nonroot wff of Tn· Since r n Tn+i is a branch of 
T n+i, by the construction A has been used. on r n T n+i and hence on 
r. Now suppose that A has the form VxB. Then for every m > n and 
i :s; m, the wff B(x//ai) is on r n Tm. Hence for every i = 1, 2, ... the 
wff B{ x I I ai) is on r. Similarly if A has the form ·3xB' then for every 
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i = 1, 2, ... the wff -.B(x/ /ai) is .on r. The other cases for the wff A 
may be dealt with in a similar manner to complete the proof that il is 
a finished set. It follows that T is a finished tableau with hypothesis 
set H. End of Proof. 

Proof of the Main Lemma: The Main Lemma for the Completeness. 
Theorem can now be deduced as follows. Let H be a finite or countable 
set of sentences in pure predicate logic. By the Tableau Extension 
Lemma, there is a finished tableau T on M with root H and no free 
variables. By the Konig Tree Theorem, T is either a tableau confutation 
of H or T has a non contradictory branch r. In the latter case, the set 
of wffs on r is a finished set on M, so by the Finished Set Lemma, H 
has a model. End of Proof. 

Note that this proof shows that any finite or countable set of sen­
tences of pure predicate logic which has a model has an infinite model, 
i.e., one with an infinite universe. This will not be the case for the full 
predicate logic (at least if we require our model to respect equality in 
the sense explained in the next chapter). 

We conclude this section by stating the Compactness Theorem for 
pure predicate logic. It is proved from the Main Lemma exactly as in 
the propositional logic case. 

Theorem 2. 9.4 (Compactness Theorem) Let H be any countable 
set of sentences of pure predicate logic. If every finite subset of H has 
a model, then H has a model. 

2.10 Equivalence Relations 

The full predicate logic studied in the next chapter introduces some 
rules of logic which deal with equality. The pure predicate logic studied 
in this chapter treats the equality symbol like any other binary relation 
symbol. However, by adding certain axioms to the hypothesis set of 
any tableau, we can assure (without adding any additional logical rules) 
that the equality symbol essentially represents true equality. We shall 
explain how to do this in this section. 

To make it easier to distinguish an equality symbol in our vocab­
ulary P of predicate logic from the ordinary uses of equality outside 
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of predicate logic, we shall use the symbol= as an equality symbol in 
predicate logic. There is nothing in our definition of model which says 
that the value =M of the equality symbol = has to be the equality 
relation between elements of M. We say that a model M of type P 
respects equality iff for all a, b EM, the universe of M, we have 

M f= a = b if and only if a b. 

In the next chapter we introduce the term pre-model for a model 
which may or may not respect equality, and reserve the term model for 
models which do respect equality. 

Equality Axioms 

(1) 
(2) 
(3) 
(4) 

Vxx = x 

VxVy[x = y => y = x] 
VxVyVz[x = y /\ y z =? x z] 

VV!Yf.x ii=> [p(x) {::} P(ii)]] 

Definition 2.10.1 The sentences in the box comprise the set E(P) 
of equality axioms for the vocabulary P. There is one instance of ( 4) 
for each predicate symbol p. In ( 4) p denotes an n-ary predicate symbol 
and we have used the following abbreviations: 

Vx for 

Vii for 

x =ii for 

p(x)· for 

p(ii) for 

Vx1Vx2 · · · Vxn 

Vy1VY2 · · · Vyn 

X1 Y1 /\ X2 = Y2 /\ · • • /\ Xn = Yn 

p(x1, X2, ... , Xn) 

P(Y1,Yz,. · .,yn)· 
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In this section we shall prove the following Soundness and Com­
pleteness Theorem for models which respect equality. 

Soundness & Completeness with Equality 

A sentence B in the vocabulary P is true in every model for P 
which respects equality if and only if Bis tableau provable from 
the hypothesis set E(P). 

This is a special case of the following theorem: 

Theorem 2.10.2 Let H be a set of sentences and A a sentence in the 
vocabulary P. Every model of H which respects equality is a. model of 
A if and only if there is a tableau proof of A from the hypothesis set 
HU E(P). 

To ·prove this theorem we need to develop the theory of equiva­
lence relations. We shall use· this theory again in Chapter 3. A bi­
nary relation = on a set X is called an equivalence relation iff the 
equality axioms (1 ), -(2), and (3) above hold in the model M whose 
universe is X and where the value :::::M assigned the equality symbol is 
=· The equivalence relation is called a congruence relation for the 
relation R E RELn(X) iff in addition M models equality axiom (4) 
when PM R. In other words an equivalence relation on Xis a binary 
relation on X which satisfies the following three laws: 

Reflexive Law 
Symmetric Law 
Transitive Law 

x x 
x y implies y = x 

x = y and y = z implies x = z 

for x, y, z EX. An equivalence relation is a congruence relation for 
R E RELn(X) iff in addition 

(x1, · · ·, Xn) ER and X1 Y1, • · ·, Xn = Yn implies (yi, ... , Yn) ER 
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for X1, ... ,yn EX. 
The equality relation on any set is an equivalence relation. The 

equality relation is a congruence relation for any relation R: equals 
may be substituted for equals without changing the meaning. Another 
important equivalence relation is equality modulo m. Each positive 
integer m determines an equivalence relation on Z denoted =m · The 
definition is2 

X =m y {::::::} ml (y - X ). 

The notation mlb is read m divides band means that m =ab for some 
integer a. For example 3 : 7 24 while 7 '#3 2. Equality mod m is ·a 
congruence relation for each of the ternary relations x + Y = z and 
xy = z but not for the binary relation x < y. (See Exercises 34 on 
page 135 and 10 on page 183.) 

Any function 7r from X to X determines an equivalence relation on 
. X via the definition 

x =1r y ~ 7r(x) = 7r(y). 

For example, define 7r from Z to {O, 1, ... , m -1} by taking 7r(x) to be 
the remainder when x is divided by m: 

r 7r(x) x = qm+r, 0 ~ r < m. 

Then x =m y iff 7r ( x) = 7r (y). The following lemma reverses this 

process. 

Lemma 2.10.3 Let = be an equivalence relation on a: set X and for 
each x E X define the equivalence class of x by 

[x] = {y EX: x:::: y}. 

Then for all x, y E X the following are equivalent: 

(i) x y; 

(ii) [x] = [y]; 
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(iii) [x] n [yJ # 0. 

Proof: Assume (i). Choose z E [x]. Then z = x and x = y so z = x 
by the Transitive Law. Hence [x] C [y]. Choose z E [y]. Then z = y so 
z x by the 'I'.ransitive and Symmetric Laws. Hence [y] C [x]. Hence 
[x] = [y]. We have proved (ii). 

Assume (ii). Then x E [x] = [y] by the Reflexive Law [x] n [y] -/: 0. 
We have proved (iii). 

Assume (iii). Then there is a z E [x] n [y]. Hence z = x abd z = y 
so x y by the Transitive and Symmetric laws. We have proved (i). 
End of Proof. 

Lemma 2.10.4 Suppose that = is a congruence relation for a relation 
RE RELn(X). Let X denote the set of equivalence classes of=· Then 
there is a uniqy,e relation RE RELn(X) such that 

(x1, X2, ... , Xn) ER~ ([x1], [x2], ... , [xn]) E fl. 

The relation R is called the relation induced by R on the set of equiv­
alence classes X. 

Proof: Define R by 

R = {([x1], [x2], ... , [xn]) : (x1, X2, ... , Xn) ER}. 

Then (xi, x2, ... , Xn) E R implies ([x1], [x2], ••• , [xn]) E R by defini­
tion. If ([x1], [x2], ... , [xn]) E R then (again by definition) there ex-
ist yi,y2, .. . , Yn with [xi] = [yi] and (Y1, y2, ... , Yn) E R. But then 
(x1, X2, ... 'Xn) E R by the definition of congruence relation. Unique-
ness is an immediate consequence of the definition of equality of sets. 
(Exercise 35 relates to this construction.) End of Proof. 

Now assume that P is a vocabulary which contains the equality 
symbol and let M be a model for sentences (1 ), (2), and (3) and all the 
sentences (4) where p E P. Let M be the universe of M. Let= be the 
binary relation ::::::M which represents the equality predicate symbol = 
in the model M. By definition = is a congruence relation for each of 
the relations_pM. Let M be the set of equivalence classes and for each 
p E P let PM be the relation induced by pM and let M be the model 
thus defined. 
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Theorem 2.10.5 (Equality Construction) The model M respects 
equality. Moreover for any sentence A we have 

Proof: The proof is by induction on the length of A. To make the 
induction work it is necessary to prove a stronger statement, namely 
that 

Mf=A(v)~Mf=A(v) 

for every vahiation 

where x1 , x2 , ••• x.e are distinct individuals, ai, a2, ••• , a.e E M, and 

We omit the details. 

Proof of Soundness in 2.10.2: Suppose that HU E(P) r A. Let 
M be a model of H which respects equality. Then M is also a model 
for the set E(P) of equality axioms. Now by the ordinary Soundness 
Theorem 2. 7.4, M is a model of A. End of Proof. 

Proof of Completeness in 2.10.2: Suppose there is no tableau proof 
of A from HUE(P). Then by the ordinary Completeness Theorem 2.9.2 
there is a model M of HU E(P) in which A is false. By the Equality 
Construction the model M respects equality, and is a model of H in 
which A is false. · End of Proof. 

Henceforth we assume that all models mentioned in this book 
· respect equality. 
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2.11 Order Relations 

By an order relation mathematicians usually mean a transitive binary 
relation, that is a binary relation S satisfying the transitive law below. 
As usual write x S y instead of (x, y) Es, and x < y instead of 
[ X S y /\ •X :::'.:: y]. 

Order Axioms 

( 1) Reflexive Law 
(2) Transitive Law 
(3) Anti-symmetric Law 
( 4) Comparability Law 
( 5) No First Element 
(6) No Last Element 
(7) Density Law 

Vx x s x 
VxVyVz[x S y /\ y S z => x S z] 
VxVy[x S y /\ y S x => x == y] 
V xVy [ x S y V y S x] 
•3zVx z S x 
•3wVx x S w 
VxVy[x < y => 3z[x < z /\ z < y]]. 

A model for axioms (1)-(2) is called a pre-order. A model for axioms 
(1)-(3) is called a partial order. A model for axioms (1)-(4) is called 
a linear order. An order which satisfies (5) is said to have no first 
element; an order which doesn't is said to have a first element. 
Similarly for (6). A model for axioms (1)-(7) is called a dense linear 
order without first or last element. 

Some familiar linear orders include the set R of real numbers, the 
set Q of rational numbers, the set Z of integers, and the set N of natural 
numbers, all with the usual S relation. Of these R and Q are dense 
linear orders without first or last element, Z and N are not dense, Z has 
no first or last element, and N has a first element but no last element. 
Each a, b ER determines four intervals 

[a, b] = {x ER: a S x Sb}, 

[a, b[= {x ER: as x < b}, 

]a, b[= {x ER: a< x < b}, 

] a, b] = { x E R : a < x s b}, 
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called respectively the closed interval, open interval, and half-open 
intervals with endpoints a and b. If a < b these are all dense linear 
orders, [a, b] has first and last element, ]a, b[ has neither first nor last 
element, [a, b[ has a first but no last element, all:d ]a, b] has a last but no 
first element. An example of a partial order which is not a linear order 
is the set P(X) of all subsets of a set X having more than one element, 
where the relation symbol S is interpreted as the subset relation C. 

Thus, for example, letting X = N, the set of natural numbers, we can 
demonstrate that ( 4) fails for the model M = (P(X), C) by considering 
the two sets 

0 { n E N : n is odd}, E { n E N : n is even}. 

Any binary relation R on a set X determines a preorder SR called 
the transitive closure of R. The definition is that for x, y E X we 
have x SR y iff there is a sequence x0 , Xi, x2 , .• . Xn of elements of X 

such that x0 = x, Xn = y and 

(xk-i,xk) ER fork= 1,2, ... ,n. 

The transitive closure is reflexive since sequences of length n = 0 are 
allowed. It is transitive since a sequence from x to y may be followed 
by a sequence from y to z to given a sequence from x to z. If the set X 
is finite we may represent the transitive closure as follows:. Draw a dot 
for each element of X and an arrow from x to y if ( x, y) E R. Then 
x SR y iff x may be connected to y by a path of arrows .. 

2.12 Set Theory 

In this section we give the axioms for ZST - Zermelo set theory, 
which were introduced by Zermelo in 1906 as a foundation for mathe­
matics. Zermelo set theory is a part of a larger and more recent set of 
axioms called ZFC Zermelo-Fraenkel set theory with the axiom 
of choice. The first-order language in which the sentences of Zermelo 
set .theory are formulated has no proposition symbols and has just two 
predicate symbols: one for equality (==) and one for membership( E). 
The equality axi<?ms are tacitly included in ZST. Thus, when we say 
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that a sentence C is a theorem of ZST we mean that it is provable 
from the axioms of ZST and the equality axioms. While the vocab­
ulary of ZST is very simple, it has been shown that the sentences of 
(virtually) every mathematical theory can be translated into sentences 
of ZST. Much of mathematics, including all the mathematics done in 
this book, can be carried within ZST, and (virtually) every theorem of 
mathematics can be treated as a theorem of the larger axiom set ZFC. 
See A. Levy's book on set theory for a complete list of axioms for the 
larger theory ZFC and interesting discussion. 

2.12. SET THEORY 

Axioms of Zermelo Set Theory 

(1) Pairing: VxVy:JzVu[u E z {::} x = u Vy= u] 

Translation: If x, y are sets, so is z = { x, y}. 

(2) Extensionality: VxVy[x = y {::} Vz[z E x {::} z E y]] 

Translation: Two sets are equal iff they have the same 
elements. 

(3) Empty set: :JxVy[y E x => y f. y] 

Translation: There is a set which has no elements. 

( 4) Union: Vx:JyVz[z E y {::} :Ju[u E x /\ z E u]] 

Translation: The union of a set of sets is a set. 

(5) Power set: Vx:JyVz[z E y {::} Vu[u E z => u Ex]] 

Translation: The collection of all subsets of a set is also a 
set. 

(6) Infinity: :Ju[0 Eu/\ Vx[x Eu=> x U {x} Eu]] 

Translation: There is an infinite set. 

(7A) Comprehension: Vx:JyVz[z E y {::} [z Ex/\ A(z)]] 

Translation: There is a set y = { z E x : A}. 
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The last item (7 A) is an infinite list of axioms, one for each wff 
A(z) in which y does not occur. Together, this infinite list is called the 
Comprehension scheme. Given a set x and a wff A(z), the Comprehen­
sion scheme allows us to form the set of all z E x such that A ( z). For 
example, once we have the set of natural numbers and a wff which ex­
presses the property "z is even", we can use the Comprehension scheme 
-to prove that the set of even natural numbers exists. 
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The remaining axioms of ZFC, which are not given here, are also 
·sentences of pure predicate· logic with the = and E symbols. Their 
names are the Axiom of Regularity, the Axiom of Choice, and an infinite 
list of axioms called the Scheme of Replacement. 

The Axiom of Infinity deserves some comment. To make the ax­
iom readable, we have expressed it using symbols which are not in the 
original vocabulary of Zermelo set theory: 0 for the empty set, and 
x U { x} for the union of x and the singleton { x}. These expressions 
are abbreviations for notions given to us by the other axioms. So, for 
example, 0 E u could be formally expressed by the wff' 

:lz[z E u /\ Vy-iy E z]. 

We leave as an exercise (Exercise 49) the verification that the entire 
Axiom of Infinity can be expressed in a formally correct way as a wff 
in the vocabulary of Zermelo set theory. 

·u is reasonable to translate the Axiom of Infinity as "there is an 
infinite set," because it says that there is a set u such that 

0 Eu, {0} Eu, {0, {0}} Eu, {0, {0}, {0, {0}}} E u, .... 

2.13 Tableaus and Mathematical Proofs 

In composing a "real" mathematical proof, a mathematician is free to 
use not only the rules of tableau proofs, but any other rules which are 
known to be sound. By a sound set of rules we mean a set of rules 
such that any wff which is proved from a hypothesis set H using the 
rules is a semantic consequence of H. Real mathematical proofs are 
usually written in paragraph form rather than· in tree form. However, 
they can be translated into tree form, and can be thought of as tableau 
proofs which use extra rules. When extra rules are allowed, proofs 
become easier to find and easier to understand. On the other hand, the 
concept of a proof is more complicated when more rules are allowed. 
When the aim is to study the concept of a proof, as in this book, one 
should keep the set of rules as small and simple as possible. But when 
the aim is to discover proofs in mathematics, one should make the set 
of rules as rich as possible. 
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In this section we shall make a short detour from our main path and 
discuss some of the extra mles of proof in pure predicate logic which 
are commonly used in mathematics. Each of these extra rules is easily 
seen to be sound .. The Extended Completeness Theorem shows that 
any wff which can be proved from a hypothesis set H using the tableau 
rules and the extra rules can be proved from H using only the tableau 
rules. Often, however, the formal tableau proof will be considerably 
longer. 

For the sake of simplicity, our presentation in this section will he 
less precise than in our main line of development We shall deal with 
tableaus in a broader sense which are built using a variety of extra rules 
as well as the original tableau extension rules. In order to combine 
various rules together, we need to work with hypothesis sets which 
contain sentences with parameters from JC. The Extended Soundness 
and Completeness Theorems for sentences with parameters from JC are 
given in the Exercises. 

For each of the extra rules, we shall first display the rule in a box, 
and then prove a theorem which says that the extra rule is sound. In 
this section we shall always assume that H is a set of sentences with 
parameters from JC, and that all tableaus mentioned are finite. 

Direct Proof Rule. Color a node of a tableau red if every 
branch through it either contains the formula to be provedor.is 

Theorem 2.13.1 (Direct Proof Theorem) If there is a tableau T 
with root H such that the wff A occurs on every noncontradictory 
branch of T, then A is tableau provable from H. 

Proof: To get a tableau proof of A from H, simply add -iA to the list 
of hypotheses H. This makes each branch of T contradictory, so that 
Tis a tableau proof of A from H. End of Proof. 

By a direct proof of A from H we mean a tableau with root 
H such that A ,occurs on every noncontradictory branch. The Direct 
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Proof Theorem shows that if A has a direct proof from H, then it has a 
tableau proof from H. Ordinary tableau proofs, which add •A to the 
list' of hypotheses, are called indirect proofs. Sometimes there is an 
indire.ct proof of A from H but no direct proof. It is considered good 
form in mathematics to give a direct proof if you can find one, because 
direct proofs are often easier to follow than indirect proofs. 

Learning Rule. If r is a branch in a tableau and B is tableau 
provable from some o.r all of the formulas in r' then the tableau 
may be extended by adding B to the end of the branch r. 

Theorem 2.13.2 (Learning Theorem) Suppose that a wff A has a 
proof from H which uses all the tableau rules plus the Learning Rule. 
Then A is tableau provable from H. 

Proof: Our plan is to prove that the Learning Rule is sound by imi­
tating the proof of the Soundness Theorem, then to use the Extended 
Completeness Theorem to prove the Learning Theorem. 

Let T be a labeled tree whose root is a set of sentences H which is 
built up using the tableau rules and the Leaning Rule. We may assume 
that all the w:ffs on T are sentences with parameters in some set K' 
which contains K. As in the proof of Lemma 2. 7.2, one can prove by 
induction on the number of nodes in T that for any model M of H, 
there is a branch r of T and a valuation v such' that M F r( v ). The 
induction step has one new case corresponding to the Learning Rule. 
Suppose B is added to the end of a branch r by the Learning Rule. 
Let M F r( v). By the Extended Soundness Theorem for hypotheses 
with extra parameters (Exercise 24), M f= B( v ). This completes the 
induction. 

Exactly as in the proof of the Soundness Theorem, we see that if A is 
provable from H using the tableau rules and the Learning Rule then A . ' 
is a semantic consequence of H. Finally, by the Extended Completeness 
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Theorem, if A is provable from H using the tableau rules and the 
Learning Rule, then A is tableau provable from H. End of Proof. 

The Learning Rule is quite powerful. There are two ways to. use 
it in a mathematical proof. One way is to invoke a previous theorem 
during the proof of a new theorem. This makes it possible to build up 
a body of knowledge by keeping a record of theorems which have been 
proved. The second way is to temporarily stop work on the original 
tableau, use a new a sheet of paper to write out ·a tableau proof of a 
w:ff A from the formulas on the branch, and then add A to the end of 
the branch in the original tableau. One can think of this method in 
terms of "windows" which can be opened and used to hold subordinate 
tableaus within the main tableau. To use the Learning Rule, "open a 
window" at the end of a branch in a tableau. Inside the window, put 
a tableau proof of a w:ff A from the formulas on the branch. Then 
return to the main tableau and add the new formula A right below the 
window. Sometimes there will be windows within windows. 

In many cases a w:ff A easily follows from a branch r using only 
propositional logic, and one can add A to the end of r by the Learning 
Rule. For example, if B and C both occur on a branch, one can add 
B /\ C to the end of the branch. Similarly, if A :::> B and B =? A . 
both occur on a branch, one can add A ¢:? B to the end of the branch. 
Another common example is modus ponens: if B and B :::> C both 
occur on a branch, one can add C to the end of the branch. There is 
a similar consequence of the Learning Rule which uses an equivalence 
instead of an implication: If Band C ¢:? 'B both occur on a branch, one 
can add C to the end of the branch. Some other examples are provided 
by the valid argument rules given in Chapter 1. 

By the Learning Rule, ·any formula which has a tableau proof can 
be added at any time to the end of a branch; for example, A V ·A can 
always be added. 

The Learning Rule may also be used to add the formula 3x A to 
the end of a branch whenever a formula of the form,A(x//c) occurs on 
the branch. In this way, one can often give a direct proof of a formula 
which starts with an existential quantifier. 

Each of the next three rules is obtained by combining a theorem 
. with the Learning Rule. 
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Deduction Rule. If r is a branch of a tableau and B is tableau 
provable from A and some or all of the formulas in r, then 
A => B may be added to the end of the branch r. 

Theorem 2.13.3 (Deduction Theorem) If B is tableau provable 
from H and A, then A => B is tableau provable from H. 

Proof: Suppose H, A I- B. By the Extended Soundness Theorem, 
H, A f= B. It follows from the truth table for => that H f= A => B. 
By the Extended Completeness Theorem, H I- A => B. End of Proof. 

To see that the Deduction Rule is sound, we note that it is obtained 
by combining the Deduction Theorem with the Learning Rule as fol­
lows. If B is tableau provable from A and a branch r, then A => B is 
provable from r by the Deduction Theorem, so we may add A=> B to 
the end of r by the Learning Rule. 

The Deduction Rule is often used in the following way. To add 
A => B to the end of a branch r, open a window and prove B from 
A and formulas on r, then return to the main tableau and use· the 
Deduction Rule. In a mathematical proof, this is usually expressed by 
saying that we temporarily assume A and prove B, then conclude that 
A=?B. 

Generalization Rule. If r is a branch of a tableau and 
A(x//c) is tableau provable from a set of.wffs on r in which 
the individual symbol c does not occur free, then Vx A may be 
added to the end of the branch r. 

Theorem 2.13.4 (Generalization Theorem) Suppose that VxA is 
a sentence with parameters from K. If an individual symbol c does not 
occur free in H and A(x//c) is tableau provable from H, then Vx A is 
tableau provable from H. 
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Proof: Let T be a tableau proof of A(x//c) from H. By adding 
the additional hypothesis -Nx A to T and inserting the wff 1 A(x//c) 
immediately below the root of the tableau, we obtain a tableau proof 
of Vx A from H. End of Proof. 

We can see that the Generalization Rule is sound as follows. If 
A( x I I c) is tableau provable from formulas on a branch r in which c 
does not occur free, then Vx A is provable from r by the Generalization 
Theorem, so we may add Vx A to the end of r by the Learning Rule. 

The Generalization Rule is often used in the following way. To add 
Vx A to the end of a branch r, open a window, choose a new individual 
symbol c, prove A( x / / c) from formulas on r in which c does not occur 
free, then come back to the main tableau and use the Generalization 
Rule. In a mathematical proof, this is usually expressed by saying that 
we let c be arbitrary, prove A(x//c), then conclude that Vx A~ 

We shall discuss two more extra rules which are used very frequently 
in mathematical proofs, the Definition Rule and the Substitution Rule. 

Definition Rule. If r is a branch of a tableau, A is a wff with 
the free variables x 1 , ..• , xn, and r is an n-a:ry predicate symbol 
which does not occur on the branch r or in A, then the formula 

(2.1) 

be added at the end of the branch. 

Theorem 2.13.5 (Definition Theorem) If A and B are wffs with 
parameters from K,, A has the free variables x1 , ••. , Xn, r is an n­
ary predicate symbol which does not occur in H, A, or B, and B is 
tableau provable from H together with the formula 2.1, then B is tableau 
provable from H alone. 

The formula 2;1 is called a definition of the predicate r. An appli­
. cation. of the Definition Rule can be easily recognized in a mathematical 
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proof because it is usually signaled by a word such as "define," "let," 
·or "where." The purpose of this rule is to make a proof easier to un­

derstand by replacing a long formula which may appear several times 
by an atomic formula with a new predicate symbol. This is especially 
helpful if the name of the new symbol is chosen to remind the reader 
of its meaning. 

There are many examples of the Definition Rule in the proofs in 
this book. For instance, during the proof of the Completeness Theo:­
rem for Propositional Logic, the predicates "basic wff," "unused node," 
"finished branch," and "finished tableau" were defined. 

Proof of the Definition Theorem: Suppose. that Bis tableau prov­
able from HU {C} where C is the formula 2.1. Let P be the vocabulary 
of H, so that P U { r} is the vocabulary of H U { C}. Then any model 
of HU {C} in the vocabulary PU {r} is a model of B. Now let M be 
a model of H in the original vocabulary P. We may expand M to a 
model N of HU { C} in the vocabulary PU { r} by taking r JI to be the 
set of n-tuples of elements of M which satisfy the wff A in M. Thus 
NI= B. It can by shown by an induction on wffs that for every wff D 
in the original vocabulary P and any valuation v in M, M I= D(v) if 
and only if N I= D( v ). Therefore M I= B, so H I= B. Finally, by the 
Extended Completeness Theorem, Ht- B. End of Proof. 

The following Substitution Rule is often used in combination with 
the Definition Rule. 

Substitution Rule. Suppose C is a wff, A and B are wffs with 
at most the free variables xi, ... , Xn, A is a well-formed part of 
C, and D is the wff obtained from C by replacing the string A 
by the string B. If r is a branch which contains the wffs C and 

(2.2) 

then D may be added to the end of the branch. 
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Theorem 2.13.6 {Substitution Theorem) Suppose C is a sentence 
with parameters from K, A and B are wffs with at most the free vari­
ables xi, ... , xn, A is a well-formed part of C, and D is the wff obtained 
from C by replacing the string A by the string B. Then D is tableau 
provable from C and Yx1 ... Yxn [A¢:;> B]. 

The proof is by induction on the length of the wff C, and is left as 

Exercise 53. 
The Substitution Rule is obtained from the Substitution Theorem 

and the Learning Rule as follows. Suppose that C and Yx1 ... Yxn [A ~ 
B] occur on r. By the Substitution Theorem, D is tableau provable 
from r, so by the Learning Rule, D may be added to the end of the 
branch. Thus the Substitution Rule is sound. 

The Substitution Rule is frequently used in the following way. Sup­
pose a new predicate r is introduced by the definition 

using the Definition Rule. Then the Substitution Rule may be used 
to replace a well-formed part A within a wff C by the new predicate 
r(x1 , ... , xn)· It may also be used to "unravel" the definition by re­
placing a well-formed part r(x1 , ... , Xn) within a wff C by the old wff 
A. 

Recall that a set of rules is said to be sound if any wff which is proved 
from a hypothesis set H using the rules is a semantic consequence of 
H. In this section we have introduced several extra rules which are 
commonly used in real mathematical proofs. We showed that each of 
these extra rules is sound by proving that any tableau proof using an 
extra rule can be replaced by an ordinary tableau proof. What we 
really need in order to use these extra rules in mathematical proofs is 
one grand soundness theorem which says that the set of all the extra 
rules together, plus the original tableau rules, is ~ound. 

Theorem 2.13. 7 The set of rules consisting of the original tableau 
extension rules and the Direct Proof, Learning, Deduction, Generaliza­
tion, . Definition, . and Substitution Rules is sound. 
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Proof: We prove that Lemma 2.7.2 is true for tableau proofs and direct 
·tableau proofs which use the extra rules. That is, for every tableau T 
for H which uses the extra rules and any model M of H, there is 
a branch r of T and a valuation v such that M f= r( v ). Like the 
ordinary Soundness Theorem, the proof is by induction on the number 
of nodes in the tableau. The induction has one new case for each of 
the extra rules for extending the tableau. In each case, we need only 
repeat the argument used to show that the extra rule by itself is sound. 
The soundness of the set of all our extra rules now follows as before. 
End of Pro of. 

As we mentioned before, mathematical proofs are usually written 
in paragraph form rather than in tree form. When the proof is trans­
lated into tree form, a list of "cases" will translate into a node with 
two children, as in the V rule and .similar tableau rules. A temporary 
assumption in a mathematical proof will often begin an application of 
the Deduction Rule, and a phrase such as "consider an arbitrary c" will 
begin an application of the Generalization Rule. 

Very simple steps in proofs are often omitted or grouped together. 
For example, if a hypothesis has the form VxVyVz C, one usually sub­
stitutes for the variables x, y and z all at once rather than using the V 
tableau rule three times. 

Because of the extra rules, a real mathematical proof translated into 
tree form will usually be shorter and have fewer negations and branches 
than the corresponding full tableau proof. 

Example 2.13.8 We conclude this section with an example of a math­
ematical proof in paragraph form which we shall analyze as a tableau 
proof with extra rules. 

Hypotheses: 
(1) p =} q V r 
(2) q=}Vxs(x) 
(3) r =} Vyt(y) 
(4) Vy [t(y) =} s(y)] 

To Prove: 
p => Vx s(x) 

Proof in paragraph form: Temporarily assume p. By (1), q V r. 
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Case 1: q. By (2), Vxs(x). 

Case 2: r. By (3), Vyt(y). Consider an arbitrary a. Then t(a). By 
(4), t(a) ::::> s(a): Therefore s(a). Since a was arbitrary, Vxs(x). 

Since Vx s(x) in all cases, p =} Vx s(x) as required. End of Proof. 

The above proof can be translated into a direct proof which uses the 
tableau rules together with the Deduction and Generalization Rules. 
The figure on page 114 shows the proof in tree form, skipping the 
simpler steps which use the ordinary tableau rules. The large window 
contains a direct proof of Vx s(x) from the original hypotheses and the 
temporary hypothesis p, and is used for the Deduction Rule. The small 
window contains a direct proof of s(a), where a is new, from the wffs on 
the branch above the window, and is used for the Generalization Rule. 

/ 2.14 PREDCALC Problems (PRED2) 

This set of problems uses the PREDCALC or PREDWIN program. 
Its purpose is to make the student more familiar with the behavior 
of truth values of wffs of predicate logic in a model. There are twelve 
problems. They are located in the directory PRED2 on the distribution 
diskette, and the SETUPDOS or SETUPWIN program will put them 
in a subdirectory called PRED2 on your hard disk. In each problem, 
a goal graph will appear on the screen and your task is to use the 
"calculator" keys to get an exact copy of the goal in position one of 
the stack. If the letters NC appear after the label GOAL, your answer 
must use none of the parameter (or constant) symbols 0,1, ... in order 
to get full credit. (If you have a text only monitor, you will have to use 
the View command to see the goal graph.) 

Suggestions: Think of a wff which has the required graph and write 
it down, then make a parsing sequence for the wff and build it up step 
by step. You always start out with atomic wffs involving=,<,>,+,-, 
or *. To see the graph of the goal wff in detail, hit V for View. If 
you want to keep part of what you did and change the rest, hit R to 
Replay, go as far as you want by pressing the Enter key, then hit K to 
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Hypotheses: 

(1) 

(2) 

(3) 

(4) 

Proof: 

p=}qVr 

q=?Vxs(x) 

r =}Vy t(y) 

Vy[t(y) => s(y )] 

Temporary hypothesis: p 

I 
qVr (by 1) 

q r 
I 

Vxs(x) (by2) 
I 

Vy t(y) (by 3) 
I 

t(a) 
I 

t(a) => s(a) 
I 

(by 4) 

s(a) 

I 

Vxs(x) (by Gen. Rule) 

p=}Vxs(x) (by Deduction Rule) 

Figure 2.4: Example 2.13.8 in Tree Form. 
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Kill the remaining steps and make your changes. As in the previous 
problem set, you should give your solution the name of the problem 
preceded by the letter A. The approximate number of steps needed for 
a solution and other comments are given below. You do not have to 
find a solution with exactly the suggested number of steps. However, 
if you are using many more steps than suggested you are probably on 
the wrong track. 

POINT. 5 steps. (A graph consisting of one point in the cube). 

PLANES. 5 steps. (Three perpendicular planes). 

SQRPLUS. 4 steps. (The graph of the equation z y 2 + 1). 

TOUGK 3 steps. (A graph which has something to do with divisi-
bility by 3). 

DIAG. 3 steps. (The diagonal of the cube from lower front left to 
upper back right). No parameters allowed. 

TWOLESS. 4 steps. (x is at least 2 less than z). No constants 
allowed. 

FOUR. 5 steps. (z is divisible by 4). No parameters allowed. 

XXX. 5 steps. (A stack of eight X's formed by two vertical planes). 
No parameters allowed. 

TRUESUM. 6 steps. (z = x +yin the usual way instead of modulo 
8). No parameters allowed. 

ALLEVEN. 8 steps. (All three variables are even). No parameters 
allowed. 

SOMEVEN. 8 steps. (At least one variable is even). No parameters 
allowed. 

SQRSUM. 9 steps. (z is the sum of two squares). No parameters 
allowed. 

Here are some optional projects using the PREDCALC program. 

1. The sentence 
VzVx[O < x =} 3yz = X*Y] 



116 CHAPTER 2. PURE PREDICATE LOGIC 

is true for some universes of size between 1 and 8 but false for 
others. Find out when it is true and when it is false. 

2. The R( .. . ) key in the upper left corner of the PREDCALC key~ 
pad can be used to add extra predicate symbols with one, two, 
or three places to the vocabulary. The computer will randomly 
choose models for these predicates. Use this key to experiment 
with graphs of a wff in randomly chosen models. By using the 
"Replay" command, you can repeat a session with the same wffs 
but different randomly chosen models. 

3. The . h( .. ) key also adds extra predicate symbols with two 
or three places to the vocabulary. The computer will randomly 
choose models in which the first variable is a function of the other 
one or two variables. 

4. Find a single sentence A which uses only the variables x and y, 
+, connectives, and quantifiers, such that A is true in each of 
the PREDCALC models of even universe size 2, 4, 6, 8 and false 
in each of the models of odd universe size 1, 3, 5, 7. 

5. Find eight different sentences A 1, .•. , A 8 which use only the vari­
ables x and y, the predicate symbol <, connectives and quanti­
fiers, such that for each n, An is true in the PREDCALC model 
with universe size n, but is false in every other universe size. 

2.15 Tableau Problems (TAB3) 

This assignment uses the TABLEAU or TAB WIN program. In this 
assignment you will construct tableau proofs in predicate logic. The 
problems are located in directory TAB3 on the distribution diskette, 
and the SETUPDOS or SETUPWIN program will put them in a sub­
directory called TAB3 on your hard disk. There are three groups of 
problems in this directory: 

1. SHORTl, SHORT2, ... , SHORTS, 

2. SETI, SET2, ... , SET6,' 
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3. ORDERl, ORDER2, .. ., ORDER6. 

Use the TABLEAU or TABWIN program commands to load the 
problem, do your work, and then save your answer on your diskette 
or hard drive. The file name of your answer should be the letter A 
followed by the name of the problem. 

As in the propositional problems, each problem is assigned a sug­
gested number of nodes: its par value. The par value is given only 
as a guide; you are not expected to attain it exactly. You should try 
problems with smaller par value first. 

The first group of problems, called 

SHORTLTBU through SHORTS.TBU, 

develop some· of the basic properties of quantifiers. You should do 
these pro bl ems first by hand on a piece of paper, and then do them 
on the computer to check your work. This will help you discover any 
misunderstandings you may have. 

SHORTl (3 nodes) 

Hypothesis: 3x p(x,x) 

To prove: 3x 3y p(x,y) 

SHORT2 (3 nodes) 

Hypothesis: 3y p(y) 

To prove: 3y Vx_ p(y) 

SHORT3 (4 nodes) 

Hypothesis: Vy Vx p(x, y) 

To prove: Vx Vy p(x, y) 

SHORT4 (6 nodes) 

Hypothesis: p /\ 3x q( x) 

. To prove: 3x [p /\ q(x )] 
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SHORTS (7 nodes) 

Hypothesis: 3x [p(x) /\ q(x)] 

To prove: 3x p(x) A3x q(x) 

SHORT6 (11 nodes) 

Hypothesis: None 

To prove: 3x p( x) # -.V x •p( x) 

SHORT7 (9 nodes) 

Hypothesis: Vx 3y F(x,y) 

To prove: Vx 3y 3z [F(x,y) /\ F(y,z)] 

SHORTS (23 nodes) 

Hypothesis: None 

To prove: Vx p(x) /\ Vx q(x) # Vx [p(x) /\ q(x)] 

The remaining problems are more difficult, and you need an overall 
·picture of your proof so that you will be able to choose useful substitu­
tions for the quantifiers. Before doing the formal proof on the computer, 
you should make a sketch of the main steps of the proof with pencil 
and paper. 

The next group of problems called 

SETl. TBU through SET6. TBU 

are about sets. 

SET! (10 nodes). 

Hypothesis: 

Vx Vy [subset(x,y) # Vz [in(z,x) =} in(z,y)]] 

To prove: 
Vx subset(x, x) 
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The predicate in( x, y) means that x is an element of y, and the 
predicate subset( x, y) means that xis a subset of y~ The hypoth­
esis defines subset(x, y) in terms of in(x, y ). The conclusion states 
that every set is a subset of itself. 

SET2 (14 nodes) 

Hypotheses: 

Yx Vy [subset(x,y) # Vz [in(z,x) =} in(z,y)]], 

Vx [empty(x) # • 3y in(y,x)]. 

To prove: 
Vx [empty(x) =}Vy subset(x,y)] 

The predicate empty( x) means that x is the empty set. The first 
hypothesis is the same as before. The second hypothesis defines 
empty( x) in terms of in( x, y). The conclusion states that the 
empty set is a subset of every set. 

SET3 (28 nodes) 

Hypotheses: 

Vx Vy [subset( x, y) # Vz [in(z, x) =} in( z, y )]], 

Vx Vy Vz [union(x,y,z) #Vt [in(t,z) # in(t,x) Vin(t,y)]]. 

To prove: 

Vx Vy Vz [union( x, y, z) =} subset(x, z )] 

The predicate union( x, y, z) means that z is the union of x and 
y. The hypotheses define subset(x,y) and union(x,y) in terms of 
in( x, y ). The conclusion states that x is a subset of the union of 
x and y. 

SET4 (33 nodes) 
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Hypothesis: 

Vx Vy [subset(x,y) {:} Vz [in(z,x)::::} in(z,y)]] 

To prove: 

Vx Vy Vz [subset(x,y) /\ subset(y,z)::::} subset(x,z)] 

The hypothesis is again the definition of subset(x, y) in terms of 
in(x, y). The conclusion is the transitivity law for subsets, that if 
x is a subset of y and y is a subset of z, then x is a subset of z. 

SETS (42 nodes) 

Hypotheses: 

Vx Vy [subset(x,y) {:} Vz [in(z,x):::} in(z,y)]], 

Vx Vy [eq(x, y) {:} Vz [in(x, z) =? in(y, z )]], 

Vx [single(x) {:} 3y in(y,x)/\Vy Vz [in(y,x)/\in(z,x):::} eq(y,z)]]. 

To prove: 

Vx [single(x):::} Vy [3z [in(z,x) /\ in(z,y)]:::} subset(x,y)]] 

The predicate eq( x, y) means that x and y are elements of the 
same sets. The predicate single( x) means that x has exactly 
one element. The hypotheses define the predicates subset(x, y), 
eq(x, y).' and single(x). The conclusion states that if single(x) and 
y contams some element of x, then x is a subset of y. 

SET6 (51 nodes) 

Hypotheses: 

Vx Vy [subset(x,y) ¢;. Vz [in(z,x):::} in(z,y)]], 

Vx Vy Vz [union(x, y, z) {:}Vt [in(t, z) {:} in(t, x) V in(t, y )]]. 
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To prove: 

Vx Vy Vz [union(x,y,z):::} Vu [subset(x,u)/\subset{y,u):::} subset( 

The hypotheses define the predicates subset(x, y) and union(x, y, z). 
The conclusion states that if both x and y are subsets of u, then 
the union of x and y is a subset of u. 

The next group of problems called 

ORDERLTBU through ORDER6.TBU 

concern partial orders. 

ORDERl (19 nodes) 

Hypotheses: 
Vx x ~ x, 

Vx Vy Vz [x ~ y /\ y ~ z :::} x ~ z]. 

To prove: 

Vw Vx Vy Vz [[w ~ x /\ x ~ y] /\ y ~ z =? w ~ z] 

The hypotheses state that ~ is a partial ordering. The conclusion 
states that if w ~ x ·~ y ~ z, then w ~ z. 

ORDER2 (21 nodes) 

Hypotheses: 
Vx x ~ x, 

Vx Vy Vz [x ~ y /\. y ~ z :::} x ~ z], 

VxVyVz[glb(x,y,z) {:} [z ~ x/\z ~ y]/\Vt[t ~ x/\t ~ y =} t ~ z]]~ 

To prove: 
Vx Vy [x ~ y:::} glb(x,y,x)] 
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The predicate glb( x, y, z) means that z is the greatest lower bound 
of x and y in the partial ordering s, that is, z is the ·greatest 
element which is s both x and y. The conclusion states that if 
x s y, then x is the greatest lower bound of x and y. 

ORDER3 (27 nodes) 

Hypotheses: 
Vx x s x, 

Vx Vy Vz [x Sy A y S z => x S z], 

VxVyVz[glb(x,y,z) {:} [z S xAz S y]AVt[t S xAt Sy=> t S z]]. 

Tq prove: 

Vx Vy Vz Vt [glb(x, y, z) A glb(x, y, t) => z s t] 

The hypotheses are the same as for ORDER2. The conclusion 
states that if z and t are both greatest lower bounds of x and y, 
then z s t. (Since the same reasoning gives t s z, this shows 
that any two greatest lower bounds of x and y are equal). 

ORDER4 (32 nodes) 

Hypotheses: 

To prove: 

Vx x s x, 

Vx Vy Vz [x s y A y S z => x S z], 

Vx Vy 3t [x st A y st]. 

Vx Vy Vz [[x st A y st] A z s t] 
The hypotheses state that s is a partial ordering, and that for 
any two. elements x, y there is an element t such that x s t and 
y s t. The conclusion states that for any three elements x, y, z 
there is an element t such that x st, y st, and z st. 

ORDERS ( 36 nodes) 
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Hypotheses: 

To prove: 

Vx x s x, 

Vx Vy Vz [x s y A y ~ z => x S z], 

Vx Vy [x < y {:} x S y A -.y S x]. 

Vx Vy Vz [x < y A y S z => x < z] 
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The predicate x < y means that x ~ y but not y S x. The 
hypotheses state that s is a partial ordering and define the pred­
icate x < y in terms of x s y. The conclusion states that if 
x < y s z then x < z. 

ORDER6 (104 nodes) 

Hypotheses: 
Vx x s x, 

Vx Vy Vz [x Sy Ay S z => x S z], 

VxVyVz[glb(x,y,z) {:} [z S xAz S y]AVt[t S xAt Sy=> t S z]], 

V x Vy [ eq ( x, y) {:} x s y A y ~ x]. 

To prove: 

[[glb(a, b, c)Aglb(b, c, e))Aglb(d, c, J)]Aglb(a, e,g) => eq(f, g) 

The predicate eq(x,y) means that x S y and y S x. The hy­
potheses state that s is a partial ordering and define the predi­
cates glb ( x, y, z) and eq ( x, y) in terms of x s y. The conclusion 
is an associative law for greatest lower bounds. If we write x UY· 
for the greatest lower bound of x and y, and x = y for eq ( x, Y), 
the conclusion states that 

(a LJ b) Uc= a LJ (b Uc). 
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2.16 Exercises 

1. The string 
3x [Vy p(x,y)::::} •q(x) V r(y)] 

is an abbreviation for a wff in predicate logic. 

(a) Change the string into the wff which it abbreviates by inserting 
brackets in the correct places. 

(b) Write down a parsing sequence for the wff. 

( c) For each wff of your parsing sequence, circle every occurrence of a 
variable which is bound in that wff. 

2. Give an example of a wff A in predicate logic with variables x, y, 
and z which satisfies each of the following four conditions at the same 
time: 

• x is free for y but not for z, 

• y is free for z but not for x, 

• z is not free for x, and 

• z is not free for y. 

3. Prove that for each wff A in pure predicate logic, if B and C are 
well formed parts of A and the first symbol of C is within B, then the 
last symbol of C is within B. 

Hint: Use induction on the length of B and Lemma 2.2.3. 

4. Which of the following sentences A are valid? For those which are, 
give a tableau proof. For those which are not, give a counter-model 
(i.e. a model M such that M ~A). 

(1) [p11 V P12] /\ [p21 V Pd => [Pi1 /\ P21] V [P12 /\Pd 
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(2) [pu /\ P21] V [p12 /\ P22].=> [pu V pl2] /\ [p21 V P22] 

(3) Vx3yp(x,y) => 3y\fxp(x,y) 

(4) 3y\fxp(x,y) => Vx3yp(x,y) 

5. In the following, N denotes the set of natural numbers, 

N = {O,l,2,3, ... } 
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Let N be the model with universe Nin which the predicate symbols=, 
and < and the expression x + y = z all have their usual meanings. 

Which of the following are true in N? 

(I.a) Vx\fy\fz[x + y = z => y + x = z]. 

(Lb) Vx3y x + y = x. 

(2) 3yVx x +y = x. 

(3.a) Vx\f z3y x + y = z. 

(3.b) Vx\fz[x~z=>3yx+y=z]. 

( 4.a) Vx3y x < y. 

(4.b) Vx3yx::; y. 

(5.a) Vx3y y < x. 

(5.b) Vx3y y ~ x. 

(6.a) 3y\fxy < x. 

(6.b) 3y\fxy::;x. 

(7) Vx[Vy x ::; y ::::} x ::::: OJ. 

(8) Vx\fy[[x ::; y /\ y ::; x]::::} x = y]. 

· (9) \lx\fy[[x < y /\ y < x] => •x = y]. 
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(10) Vx3y x < y => 3y 3 < y. 

(11) Vx3y x < y =;. 3y y < y. 

6. Let Z denote the set of integers: 

z { ... ,-2,-1,0,1,2, ... }, 

and let Z be the model with universe Z and the usual meaning for the 
predicate symbols. Which of the sentences of Exercise 5 remain true 
when N is replaced by Z? 

7. In this problem you are to find a model M for predicate logic with 
one binary predicate symbol p. The universe of M is the set {O, 1, 2} 
and the relation pM is a subset of the set of pairs (i,j) with i and j 
from {O, 1, 2}. Your answer will be counted as correct if and only if the 
wff 

Vx3y p(x,y) /\ 3x\ly p(x,y) /\ -.3y\lx p(x,y) 

is true in your model M. You may specify your model by drawing a 3 
by 3 matrix of truth values to indicate the graph of PM. 

8. For each positive integer n construct a model M = (M,pM) as 
follows: 

l'vf {1,2,3, ... ,n- 1}, 

PM = {(i,j) E l'vf x l'vf: ij = 1 (mod n + l)}. 

(Note: x = y (mod k) iff x y is divisible by k.) 
Show that M f= Vx3y p(x,y) when n = 6 _but not when n = 5. 

9. pure predicate logic, let x and y be variables and let A ( x / y) 
(with only one slash) be the wff formed by replacing each bound oc­
currence of x in A by y, leaving the free occurrences alone. For example, 
(Vz3xp(x,z))(x/y) is Vz3yp(y,z). Prove by induction on wffs that if 
A is a wff and y does not occur in A, then the wff [A {::} A(x/y)] 
is valid. Hint: Let R( n) be the following property: For every wff C 
of length ~ n, every model M, and every instance A of C in l'vf, 
M f= A(x/y) whenever y does not occur in A. 
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"10. Give a tableau proof of each of the following: 

(1) -, V x p( x) {::} 3x -.p( x) 

(2) p( x) ¢;> \Ix -.p( x) 

(3) V x p( x) {::} -.3x -.p( x) 

(4) p( x) {::} -.\Ix -.p( x) 

(5) Vxp{x) {::} \lyp(y) 

(6) p(x) {::} 3y p(y) 

(7) Vx[p(x) /\ q(x)] {::} [Vxp(x) /\ Vxq(x)] 

(8) 3x[p(x) V q(x)] ¢=> [3xp(x) V q(x)] 

ll. In this exercise [p = q] is to be understood as an abbreviation 
for the sentence Vx[p(x) {::} q(x)]. Give a tableau proof of each of the 
following: 

(1) [p q]=?[Vxp(x){:}\lxq(x)] 

(2) [p q] [3xp(x) {:} 3xq(x)] 

(3) [p q] =? Vx[-.p(x) {:} -.q(x)] 

(4) [p1 qi]/\ [P2 = q2] =? Vx[(p1(x) /\ P2(x)] {::? [q1(x) /\ q2(x)]] 

(5) [p1 qi]/\ [P2 = q2] * Vx[(p1(x) V P2(x)J {::} [q1(x) V q2(x)]] 

(6) [p1 qi]/\ [p2 = q2] Vx[[p1(x) =? P2(x)] {::} [q1(x) =} q2(x)]] 

(7) [p1 qi]/\ [P2 = q2] =? Vx[(p1(x) ¢=> P2(x)] {::? [q1(x) {::? q2(x)]] 

12. Which of the following sentences A are valid? For those which are, 
give a tableau proof. For those which are not, give a counter-model. 
You may specify your counter-model M by writing down the universe 

· set M · and one or two subsets pM and qM. 
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. (I.a) 3x[p(x) I\ q(x)] => [3xp(x) I\ 3xq(x)] 

(Lb) [3xp(x) I\ 3xq(x)] => 3x[p(x) I\ q(x)] 

(2.a) Vx[p(x) V q(x)]:::} [Vxp(x) V Vxq(x)] 

(2.b) [Vx p(x) V Vx q(x)] => Vx[p(x) V q(x)] 

(3.a) Vx[p(x) => q(x)] => [Vxp(x) => Vxq(x)] 

(3.b) [Vx p(x) => Vx q(x)] => Vx[p(x) => q(x)] 

(4.a) 3x[p(x) => q(x)] =? [3xp(x) =? 3xq(x)] 

(4.b) [3xp(x) =:;. 3xq(x)] =? 3x[p(x) =? q(x)] 

(5.a) Vx[p(x) {:} q(x )] =? [Vx p(x) {:} Vx q(x )] 

(5.b) [Vxp(x) {:} Vxq(x)] => Vx[p(x) {:} q(x)] 

(6.a) 3x[p(x) {:} q(x)] =? [3xp(x) {:} 3xq(x)] 

(6.b) [3xp(x) ~ 3xq(x)] => 3x[p(x) {:} q(x)] 

(7.a) Vx •p(x) =?·'ix p(x) 

( 7. b) -N x p( x) => V x •p( x) 

(8.a) 3x•p(x)=?•3xp(x) 

(8.b) •3xp(x) =? 3x•p(x) 

13. Give a tableau proof of each of the following: 

(1) Vxp {:} p 

(2) 3x p {:} p 

(3) Vx[p I\ q( x )] <¢:? [p I\ Vx q( x )] 

(4) 3x[pl\q(x)] {:} [pl\3xq(x)] 

2.16. EXERCISES 

(5) Vx[p V q(x )] {:} [p V Vx q(x )] 

(6) 3x[p V q(x)] <¢:? [p V 3x q(x)] 

(7) Vx[p =? q(x)] {:} [p =? Vxq(x)] 

(8) 3x[p =? q(x)] {:} [p =? 3xq(x)] 

(9) 3x[q(x) =? p] {:} [Vxq(x) => p] 

(10) Vx[q(x) =? p] {:} [3xq(x) =? p] 
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14. For each pair of wffs (a,b) below, give a tableau proof of one of the 
wffs and a countermodel of the other. 

(I.a) Vx[p => q( x )] => [p => 3x q( x )] 

(1.b) [p => 3xq(x)] => Vx[p => q(x)] 

(2.a) 3x[p =? q(x)] =? [p =? Vxq(x)] 

(2.b) [p =? Vx q(x)] =? 3x[p =? q(x)] 

(3.a) 3x[q(x) =? p] => [3x q(x) => p] 

(3.b) [3x q(x) =? p] => 3x[q(x) =? p] 

(4~a) Vx[q(x) =? p] => [Vxq(x) =? p] 

(4.b) [Vx q(x) =? p] =? Vx[q(x) =? p] 

(5.a) Vx[q(x) <¢:? p] * [Vx q(x) {:} p] 

(5.b) [Vx q(x) {:} p] =? Vx[q(x) {:} p] 

(6.a) 3x[q(x) {:} p] => [3x q(x) {:} p] 

(6.b) [3x q(x) {:} p] =? 3x[q(x) {:} p] 
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15. Let r be the set consisting of the two wffs x == y and •x == y. 
Construct a model M such that each of these two wffs is satisfiable in 
M but the set r is not simultaneously satisfiable in M. 

16. Find a finished tableau with the hypothesis set 

\Ix p( x' x)' 3x\ly p(x, y), 3x'v'y p(y, x ), 

3x3y [•p(x,y) /\ •p(y,x)] 

and the set of parameters M = {a, b, c, d}. 

17. This exercise gives a formal proof of Problem 24 from Chapter 1. 
Consider the following four statements. 

( 1) There exists a tableau proof of A from D. 

(2) There exists a tableau proof of B from A. 

(3) For all A and all B, there exists a tableau proof of B from A if 
and only if for all M, if M models A then M models B. 

(4) There exists a tableau proof of B from D. 

Statements (1)-(3) are the hypotheses, and statement (4) is the for­
mula to be proved. Statement (3) combines the Soundness and Com­
pleteness Theorems for propositional logic. 

Consider the following vocabulary for pure predicate logic. 

P2 ={MO}, 

Let MO(x, y) be interpreted as "x models y," and T P(x, y, z) as "xis 
a tableau proof of z from y." Let the individual parameters a, b, and d 
be interpreted as the wffs A, B, and D. 

Write out the above hypothesis set and formula to prove as sentences 
of pure predicate logic with individual parameters a, b, and d. Then 
give a tableau proof. 

18. Give a formal proof of Problem 25 from Chapter 1 ·analogous to 
the preceding exercise. In addition to the predicate symbols MO, T P, 

.• ~~; I
·· .. :··: 
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another ternary predicate symbol OR is needed, where OR(x, y, z) is 
interpreted as "z = [x Vy]." One of the hypotheses should correspond 
to the statement: 

(0) For all A, B, C and M, if C =AV B then M models C if and 
only if M models A or M models B. 

19. This exercise gives a formal proof of the Main Lemma for the 
Completeness Theorem for propositional logic. Here is a list of five 
statements from Chapter 1. 

( 1) For all H and for all T, T is a finished tableau with hypothesis 
set H if and only if T is a tableau with hypothesis set H and for 
every r, if r is a branch of T then either r is finished or r is 
contradictory ai1d finite. 

(2) For all H and for all T, Tis a confutation of H if and only if Tis 
a tableau with hypothesis set Hand for every r, if r is a branch 
of T then r is contradictory and finite. 

(3) For all H ,T and r, if T is a tableau with hypothesis set H and 
r is a branch of T and r is finished, then there exists M such 
that M models H. 

( 4) For every H there exists T such that T is a finished tableau with 
hypothesis set H. 

(5) For all H, either there exists M such that M models H, or there 
exists T such that T is a confutation of H. 

The hypotheses (1-4) are versions of the definitions of a finished 
tableau and a confutation, and of the Finished Set and Tableau Ex­
tension lemmas. Statement (5) is the formula to be proved, the Main 
Lemma for the Completeness Theorem. 

Consider the following vocabulary for pure predicate logic: 

P1 = {F B, CB}, P2 = {F,B,M,T,C} 
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Let F B(x) be interpreted as "xis a finished branch", and CB(x) as "x 
is a contradictory finite branch." Let F(x,y) be interpreted as "xis a 
finished tableau with hypothesis set y," B(x,y) as "x a branch of y," 
M(x, y) as "xis a model of hypothesis set y," T(x, y) as "xis a tableau 
with the the hypothesis set y," and C(x,y) as "x is a confutation of 
hypothesis set y." 

Write out the above hypothesis set and sentence to prove in pure 
predicate logic with this vocabulary. Give a tableau proof. 

20. Suppose that T is a finite tableau in predicate logic, that H is the 
set of hypotheses of T, that A is a wff whose only free variable is x, 
that bis a variable which is free for x in A, and that every branch of T 
is either contradictory or contains the wff A(x//b). Describe a simple 
way to change T into a tableau proof of 3x A from H. 

21. Suppose that H is a finite set of sentences of pure predicate logic, 
that· H has at least one model, and that H has a finished tableau with 
fewer than 100 nodes. Prove that H has a model whose universe has 
fewer than 100 elements. 

The next four problems need assignments of infinite sets of individ­
ual symbols. By an assignment of a set S of individual symbols in M 
we mean a function v from S into M. Let r be a set of wffs and let S 
be the (possibly infinite) set of individual symbols which occur freely 
in r. r(v) is the set of sentences with parameters from M obtained by 
replacing each free occurrence of an individual symbol x by v(x). r is 
said to be simultaneously satisfiable in a model M if M f= r( v) for 
some assignment v of Sin M. 

22. Prove the analogue of Lemma 2.7.2 for infinite tableaus: If Tis 
an infinite tableau whose hypothesis set H is a set of sentences and 
M f= H, then some branch of T is simultaneously satisfiable in M. 

23. Let T be an infinite tableau whose hypothesis set H is a set of 
sen.tences with parameters from JC. Prove that if H is simultaneously 
satisfiable in a model M, then some branch of T is simultaneou~ly 
satisfiable in M. 
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24. Prove the following Extended Soundness Theorem for sentences 
with parameters from JC: Let HU {A} be a finite or countable set of 
sentences with parameters from JC. If H I- A then H f= A, that is, 
for every model M and assignment v of 'JC in M, if M f= H( v) then 
M f= A(v). 

25. Prove the following Extended Completeness Theorem for sentences 
with parameters from 'JC. Let HU {A} be a finite or countable set of 
sentences with parameters from 'JC. If H F A then H r A. Hint: To 
prove the Main Lemma for sentences with parameters from 'JC, introduce 
an infinite set of new parameter symbols M and use the set 'JC UM as 
the universe of the model being constructed. . 

_26. This exercise indicates why we need to assume that the universe set 
of any model of (pure or full) predicate logic is nonempty. Assume we 
are working in a logic which has at least one binary predicate symbol· 
P. (We will see that, by assumption, every full predicate logic has such 
a symbol.) 

(a) Show that each of the following sentences is valid by giving a 
tableau proof of each using an empty set of hypotheses: 

A : VxVy [P(x,y) V -iP(x,y)] 

B : A=> [3x3y [P(x,y) V-iP(x,y)]] 

(b) Conclude from (a) that for any model M for pure predicate logic, 

Mf=A and Mf=B. 

( c) Conclude from (b) that for any model M for pure predicate logic, 

M f= 3x3y [P(x,y) V-iP(x,y)]. 

(d) Conclude from (c) that a model of predicate logic must have a 
··nonempty universe. 
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It should be mentioned that there are other treatments of logic in 
which the universe of a model is allowed to be empty; such treatments 
generally require a more restricted definition of "proof" than we have 
given in this text. 

27. Let A be a finite linearly ordered set (for example the 26 letters of 
the Latin alphabet) and A* denote set of all finite sequences (words) 
of elements of A. Given two words w, w' E A* we write w ~ w' iff w 
precedes w' in alphabetical order. Define this order relation precisely 
and prove that it is a linear order. (This order is often called the 
lexicographic. order on A*.) Hint: The empty sequence comes first, 
and ac precedes acb but not abaaaa. 

28. Show that the theory of linear orders with no last element has 
infinite models but has no finite models. 

29. Let X = {1, 2, 3, 4}. Compute the transitive closure 5:n of each of 
the following relations RE REL2(X): 

1. R = {(1, 2), (2, 3), (1, 4)}. 

2. R = {(1, 2), (2, 3), (3, 1), (1, 4)}. 

3. R = {(1, 2), (2, 3), (3, 4)}. 

30. Give an example of 

(1) a binary relation R1 which is not a pre-order and whose transitive 
closure is a pre-order but not a partial order; 

(2) a binary relation R2 which is not a pre-order and whose transitive 
closure is a partial order but not a linear order; 

(3) a binary relation R3 which is not a pre-order and whose transitive 
closure is a linear order. 

31. For each of the first three order axioms in Section 2.11, give a 
model in which it fails but the other two axioms hold. 
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32. Let H denote the following three hypotheses: 

•3x 3y [x < y /\ y < x] 

\Ix Vy [x < y :::} Vz [x < z V z < y]] 

\Ix Vy [x 5: y ~ x < y V x = y] 
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Must 5: be represented by a linear order in any model for H? Give 
tableau proofs or a counter-model which respects equality. 

33. Show that every equivalence relation is a congruence relation for 
itself. 

34. Show that the relation x =m y (on Z) is an equivalence relation, 
that it is a congruence relation for each of the ternary relations x+y =m 
z and xy =m z, but that it is not a congruence relation for the binary 
relation x < y. 

35. Let 7r be a function from X to X and R be an n-ary relation on 
X. In the text we observed that 7r determines an equivalence relation 
=11" on X via the definition 

x =11" y ¢::::::> 7r(x) = 7r(y ). 

In Lemma 2.10.3 we saw that every equivalence relation could be de­
fined this way: if an equivalence relation= is given on X and X denotes 
the set of equivalence classes [x] and 7r(x) = [x] then= and =11" are th~ 
same. The n-ary relation R on X. determines an n-ary relation 7r* R 
on X via 

(a} Show that the relation =11" is a congruence relation for 7r* R. 

(b) Show that if X happens to be the space of equivalence classes of 
some equivalence relation= and 7r(x) = [x], then R is the relation 
induced on X by 7r* R in the sense of Lemma 2.10.4. 
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36. Let ~ be a pre-order on a set X and define a binary relation= on 
· X by the rule 

x y {==::} x ~ y and y ~ x. 

Show that = is an equivalence relation, that it is a congruence relation 
for ~, and that the induced relation on the set of equivalence classes is 
a partial order. 

37. Enumerate the eight subsets X0 , ••• , X7 of {1, 2, 3} in such a way 
that 

Xi c X; implies i ~ j. 

38. Show that for any finite partial order (X, :S;) (i.e. Xis finite) there 
is a linear order (X, ~*) which extends ~, i.e. for every a, b E P if 
a ~ b :::} a ~* b. Hint: By induction we may assume that 

where ai ~ a; :::} i ~ j. Let 

L = { x E P : x ~ b, x f=. b}, R = {y E P : b ~ y, x f=. b}. 

Argue that there must be an integer k with 

39. Show that every partial order on a countable set can be extended 
to a linear order. 

Hint: Use the previous problem and the Compactness Theorem. 

40. Let An be the sentence 

3x1 · · · 3xn [[A. xi f=. x5] A Vy [VY == xi]] 
t~J i=l 

where we have used the abbreviations [ /\i~j Xi f=. xi J for 

Xt f=. X2 /\ Xt f=. X3 /\ • • ' /\ Xn-1 f=. Xn 
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y == Xt V y == X2 V • · · V Y ::::: Xn • 

Let H consist of the four sentences:- the sentence An and axioms (1-3) 
from Definition 2.10.1 on page 95. The set Hn has an obvious model 
Mn which respects equality: its universe consists of the firs.t n posit~ve 
integers { 1, 2, ... , n}. Show that for any sentence B contaimng equality 
as its only predicate symbol we have Hn f- B if and only if Mn ~ B. 

41. Two orders (X, ~)and (X', ~')are said to be isomorphic iff there 
is a one-one onto function f : X ~ X' such that for all x, Y E X we 
have 

x ~ y {==::} f(x) ~' f(y). 

Such a function f is called an order isomorphism between the two 
orders. 

(a) Show that the tangent function is an isomorphism between the 
open interval] - 7r /2, 7r /2[ and the set R of all real numbers (each 
with the usual linear order). 

(b) Find real numbers m and c such that the formula 

J(x)=mx+c 

defines an order isomorphism from the interval [ a1) a2] to the in­
terval [bi, b2]. 

42. Show that any two countable dense linear orders without first or 
last element are isomorphic.3 Deduce (using the Completeness Theo­
rem) that if A is any sentence with no parameters and containing only 
the relation symbols ~ and:::::, then Q ~A if and only if R ~A. 

43. A directed set is a pair (D, <)consisting of a.set D and a binary 
relation < on D which models the following axioms: 

Studies in Model Theory, ed. by M.D. Morley, MAA Studies in Math, 
page 6 if you get stuck. 
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(anti-reflexive law) VxVy[•x < y V •y < x] 

(transitive law) VxVyVz[x < y /\ y < z::} x < z] 

(maximum law) VxVy3z[x < z /\ y < z] 

Which of the following sentences are true for all directed sets? 

L Vx •x < x 

2. VxVyVz3w[x < w /\ y < w /\ z < w] 

3. Vx3y x < y 

4. 3yVx x < y 

5. Vx3y y < x 

For those that are true for all directed sets give a tableau proof with 
the three axioms and the negation of the wff to be proved at the root. 
For those that are not true for all directed sets give a counterexample. 
Can a directed set be finite? 

44. 

(a) Give a proof of the problem SET2 from the TABLEAU problem 
set in paragraph form, and analyze it as a proof using the tableau 
rules together with the Direct Proof, Learning, Deduction, and 
Generalization Rules. 

(b) Do the same for the problem SET4. 

45. Show that the first three equality laws (viz. the Reflexive, Sym­
metric, and Transitive Laws) follow from the Axiom of Extensionality. 
(You must give three tableau proofs.) 

46. 

(a) Show that there is no set T such that for all sets x we have 

x ET~ x ~ x. 
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(b) Give a tableau confutation of the w:ff 

3y Vz [z E y ~ •z E z]. 

This wff has form 

3yVz [z E y ~ A(z)]. 

and hence is not a case of the Comprehension scheme 

Vx 3yVz [z E y ~ [z Ex/\ A(z)]]. 

The proof of a contradiction is called Russell's paradox. 

( c) Russell gave the following analogue of the above paradox: 

"Among the citizens of the town of Kenilworth there 
is a barber who shaves all and only those citizens of 
Kenilworth who do not shave themselves. Who shaves 
the barber?" 
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Note that the question as stated is impossible to answer. Can 
you think of a way to resolve the paradox? 

47. Give a tableau confutation of the following two sentences: 

3xVyy Ex 

Vx Vz [z E y ~ z E x /\ •z E z] 

The second hypothesis is a case of the Comprehension scheme of ZST. 
This gives a proof in ZST that the set of all sets does not exist. 

48. Let Xo, Xi,X2 , ••• be subsets of N = {O, 1, 2, ... }. Define a subset 
Y such that Y -=f. Xn for all n. Conclude that the set of subsets of N is 
not countable. 

49. Let W ( u) be the sentence 

0 Eu/\ Vx [x Eu=> x U {x} Eu] . 

. The Axiom of Infinity from Section 2.12 is the wff 3u W(u). 
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(a) Write the Axiom of Infinity in a formally correct way, i.e. without 
using abbreviations like 0 or x U { x}. 

(b) Show any u satisfying W( u) really is infinite. (Describe an infinite 
list of elements that the set u mµst contain). Hint: The sets 0 
and {0} are different. 

50. Let Sl(w) be the wff 

\:/x [x E w <*·Vu [W( u) => x E u]] 

where W( u) is the wff of the previous exercise and let H be the ax­
ioms (1-7) of ZST in the text. Recall that the notation Hr A means 
that there is a tableau proof of A from the hypotheses H. Prove the 
following: 

• Hr 3w!l(w). 

• Hr \:/w\:/w' [Sl(w) A Sl(w') => w:::: w'] 

• Hr \:/u\:/w[W(u) A Sl(w) => w cu] 

(The expression w C u abbreviates \:/x[x E w => x E u].) This exercise 
says that there is a unique set w satisfying !1( w) and that it satisfies an 
analog of the axiom of induction. 

51. In this exercise we describe a model Mo = (M0 , E) for Ax­
ioms (1-5,7) of ZST, given in Section 2.12. A~iom (6), the Axiom of 
Infinity, is false in this model. 

(a) List the elements of the three sets P(0), P(P(0)), and P(P(P(0))), 
where 0 denotes the empty set and for any set X, P(X) denotes 
the power set 

P(X) = {Y : Y c X} 

of all subsets of X. 
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(b) Define sets 

and natural numbers 

as follows: 
Vo 0,ko=O. 

Vn+l = P(Vn), kn+l = 2kn • 

Prove that for all n, Vn has exactly kn elements. (Intuitively, 
Vn = P(P( ... (0) ... )) where Pis repeated n times). 

( c) We now define a model Mo for pure predicate logic with two rela­
tion symbols which will be = and E to suggest equality and set 
membership. The universe Mo for Mo is the set 

Mo= LJ Vn 
nEN 

where Vn is defined in part (b). Now let Mo= (Mo, E) where 
:::: and E are the equality and membership relations among the 
elements of M0 • Prove that Mo is a model of Axioms (lr{5) of 
ZST. 

( d) Prove that the Axiom of Infinity is· false in Mo. 

5 2. In this exercise we build on the preceding exercise to describe a 
model of Axioms (1 )-(7) of ZST. The idea is to repeat the construction 
used in the preceding exercise, but starting with the set M,o instead of 
the empty set. 

Define a model M for pure predicate logic with' the two predicate 
symbols:::: and E as follows. The universe M of Mis defined to be the 
union of a sequence of sets 
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where Mo is the set of the previous exercise and Mn+l is defined induc­
tively by: 

Mn+l = P(Mn) = {X: x c Mn} 

Now, let M =Un Mn and interpret= by equality and Eby membership 
among elements of M. Prove that M is a model of each of Axioms ( 1 )­
( 6) of ZST. 

53. Prove the Substitution Theorem (Theorem 2.13.6). Hint: The 
proof is by induction on the formula C. The Unique Scope Theorem 
is needed at the quantifier step, and Exercise 3 is needed at the binary 
connective step. 

Chapter 3 

Full Predicate Logic 

In this chapter we enrich predicate logic by adding function symbols 
and a special symbol for equality. We shall call this enriched language 
full predicate logic to distinguish it from the simpler pure predicate 
logic developed in the last chapter. Full predicate logic is closer to the 
usual language of mathematics. Although it is in principle possible to 
express everything in the pure predicate logic of the previous chapter, 
in practice it is usually more convenient to develop mathematics in full 
predicate logic. 

3.1 Syntax 

A vocabulary (P, :F) for full predicate logic consists of a list of sets Pn 
of n-ary predicate symbols, and sets :Fn of n-ary function symbols, 
where n = 0, 1, .... These sets may or may not be empty, but P 2 always 
contains the equality symbol::::.:. The 0-ary predicate symbols in Po are 
also called proposition symbols, and the 0-ary function symbols in 
:Fo are also called,constant symbols. 

In addition to the vocabulary symbols (P, :F), full predicate logic 
has all the primitive symbols of pure predicate logic, including the 
set VAR of variables, a set K. of parameters, and the universal and 
existential quantifiers. As before, the elements of the set VAR U IC 
are called individual symbols. The vocabulary constants from :Fo 
·are distinct from the individual parameters from IC, and will play a 
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different role in the semantics of full predicate logic. 
The equality symbol=, which always belongs to P2 in full predicate 

logic, plays a special role. Like the propositional connectives and quan­
tifiers, it will be interpreted in a fixed way in all models. We always 
write 7 = u in place of the more cumbersome = ( u, 7 ). 

Variables, parameter symbols, constant symbols, and function sym­
bols may be combined to form terms. A term is a string which can 
be obtained by finitely many applications of the following rules of 
formation: 

(T: VAR) Any variable is a term. 

(T:K) Any element of K is a term. 

(T:Fo) Any constant symbol from Fo is a term. 

(T:Fn) If f E Fn is a function symbol, where n > 0, and Ti, 7 2 , .•. , 'Tn 

are terms, then f( 71, 72, ..• , 'Tn) is a term. 

These rules are used repeatedly. For example, if y is a variable, c is 
a constant, f is binary, and g is unary, then g(f ( c, g(y))) is a term. 
Terms, like wffs, have parsing sequences. The above example is parsed 
as follows: 

(1) c is a term by (T:F0 ). 

(2) y is a term by (T: VAR). 

(3) g(y) is a term by (2) and (T:F1 ). 

( 4) f( c, g(y)) is a term, by (1 ), (3), and (T:F2). 

(5) g(f(c,g(y))) is a term by (4) and (T:F1 ). 

The set TERM(F, K) of variable free terms of type F with pa­
rameters from K consists of those terms which contain no elements of 
VAR, that is, which are built without using the (T: VAR) rule; 

We continue using the abbreviations and notational conventions in­
troduced earlier and in addition add the the usual mathematical con­
ventions regarding infix notation and parentheses. 
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• The familiar binary function symbols +, -, and * are written in 
infix notation so that (x + y) is written instead of +(x,y). 

• The outer parentheses may be suppressed, so that x + y means 
(x+y). 

• Multiplication has a higher precedence than addition or subtrac­
tion, so that x + y * z means x + (y * z) and not ( x + y) * z. 

• Operations of equal precedence associate to the left in the absence 
of explicit parentheses, so that x y - z means (x. y) - z and 
not x (y - z). 

The set of wffs is defined as before except that the argument places 
in the predicate symbols may be filled by terms. Here are the rules of 
formation. 

(W:P0 ) Any propositional symbol is a wff. 

(W:Pn) If p E Pn is a predicate symbol and Ti, 72, ••• , 'Tn are terms, 
then p( 7 1 , 72, ..• , 'Tn) is a wff. 

(W:-i) If A is a wff, then -iA is a wff. 

(W:/\, V, {:}) If A and Bare wffs, then [A/\B], (A VB], [A* BJ, 
and [A {:} B] are wffs. 

(W:V, 3) If A is a wff, and xis a variable, then VxA and ::lxA are wffs. 

(If it is necessary to explicitly specify the vocabulary (P, F) used in 
the definition of the set of wffs, we shall refer to the wffs defined here 
as built using the vocabulary (P,F).)· 

Atomic wffs and basic wffs are defined as before except that now 
arbitrary terms may occupy the argument positions. Thus atomic 
wffs are those constructed by rules (W:Po) and (W:Pn) above, while a 
basic wff is a wff which is either an atomic wff or the negation of an 
atomic wff. 

The Unique Readability Theorem generalizes to full predicate logic. 
As in the case of pure predicate logic, an occurrence of a variable x in 
·a wff A is a bound occurrence if it is in the scope of a quantifier on 
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x; all other occurrences of individual symbols are called free. As in 
· pure predicate logic all occurrences of a variable in a basic wff are free, 

because a basic wff has no quantifiers. 
In full predic~te logic, the notion of an individual being free for a 

variable in a wff is replaced by the notion of a term being free for a 
variable in a wff. A term r is said to be freely substitutable for, or 
free for, the variable x in a wff A if every variable which occurs in r 
is free for x in A. Given a wff A, a variable x, and a term r which 
is free for x in A, A(x//r) is the wff obtained by replacing each free 
occurrence of x in A by r. 

3.2 Semantics 

In this section we define the notion of a model for full predicate logic, 
and then give the rules which determine the truth value of a sentence 
in a model. As in the case of pure predicate logic, the n-ary predicate 
symbols will stand. for relations on the universe set of the model. The 
n-ary function symbols will stand for functions of n variables on the 
universe set. 

Recall that for each natural number n > 0, an n-ary relation on a 
set Xis a subset of xn, and a 0-ary relation on Xis just a truth value. 
RELn(X) is the set of all n-ary relations on X. We now introduce 
n-ary functions on a set X. When n > 0, an n-ary function on X is 
a function f : xn -+ X from the set xn of n-tuples to the set X. A 
0-ary function on Xis just an element of X. FUNn(X) will denote the 
set of all n-ary functions on X. 

A premodel for full predicate logic of type (P, :F) is a system 
M consisting of a non-empty set M called the universe set of M, 
and for each n ~· 0 a function which assigns to each n-ary predicate 
(or propositional) symbol p an n-ary relation pM on M, and another 
function which assigns to each n-ary function (or constant) symbol f 
an n-ary function (or constant) fM on M. We say that the premodel 
M respects equality if the equality relation of the premodel M is 
true equality, that is, 

...:..M is { (a, b) E M2 
: a = b}. 
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A model for full predicate logic of type (P, :F) is a premodel which 
respects equality. 

In mathematics, models are more important than premodels. Pre­
models are a convenient tool which allows us to begin proving results 
which do not involve the special properties of the equality relation. 
Since every model is a premodel, all of our results for premodels will 
hold for models as well. 

In the next theorem we assign an element of the universe set M as 
a value for each variable free term from TERM(:F, M). 

Theorem 3.2.1 For each premodel M of type (P,:F), there is a unique 
function which assigns an element r M E M to each variable free term 
r E TERM(:F, M) such that the following formation rules hold: 

(M:M) If u EM, then UM= u. 

(M::F0 ) If c E :Fo, then CM = cM. 

(M::Fn) If T1, T2, ... , Tn are terms and f E :Fn is a function symbol, 
then 

Proof: To justify this definition we need a Unique Readability The­
orem for terms: Every term in TERM(:F, JC) is either an individual 
symbol, a constant symbol from :F0 , or can be uniquely read in the 
form 

f(r1,T2, ... ,rn) 

where f E :Fn and r1 , .•• , Tn are terms. We omit the remaining details 
of the proof. End of Proof. 

We define the set WFF(P, :F, JC) of wffs based on the vocabulary 
(P, :F) with additional parameters from the set JC as in pure predicate 
logic except that the rule (W:Pn) is modified to allow terms: 

(W:Pn) If p E Pn and T1, T2, ... , Tn are terms then p( T1, T2, ... , Tn) E 

WFF(P, :F, JC). 
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As in pure predicate logic, SENT(P, :F, JC) is the subset of WFF(P, :F, JC) 
· consisting of those w:ffs with no free variables: it is the set of all sen­

tences built from the vocabulary (P, :F) with additional parameters 
from the set JC. The following is proved in the same way as the analo­
gous result for pure predicate logic. 

Theorem 3.2.2 Given a premodel M of type (P,:F) there is a unique 
function which assigns a truth value AM to ·each sentence A with pa­
rameters from M which satisfies the conditions of Theorem 2.4.1, but 
with the condition (M:P n) modified to read 

(M:Pn) M F p( T1, T2, · · ·, 'Tn) ijf ( 'T1M, 'T2M, · •.•, 'TnM) E PM• 

As usual we have written M F A in place of the more cumbersome 
phrase AM= T. 

Remark 3.2.3 If the premodel M respects equality, then for all terms 

r, a E TERM(:F, M) 

we have 
M Fr a if and only if 'TM = aM. 

3.3 Tableaus 

In full predicate logic, a tableau may be formed using all the. rules for 
tableaus in propositional logic (see Figure 1.4) plus additional rules for 
handling terms and the equality relation. A labeled tree for full 
predicate logic is defined as for propositional logic, except that now 
the w:ffs are those of full predicate logic. 

Definition 3.3.1 A tableau for full predicate logic is defined as 
before except that two of the four quantifier rules allow the substitution 
of terms, and there are three new equality rules. The new rules are: 

[2J If t has an ancestor VxA, extend by adding a child A(x//r) oft, 
where r is a term which is free for x in A; 
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1-N I Ht has an ancestor -NxA, extend by adding a child •A(x//b) of 
t, where b is an individual symbol which does not occur in any 
ancestor oft; 

If t has an ancestor 3xA, extend by adding a child A(x//b) of 
t, where bis an individual symbol which does not occur in any 
ancestor oft; 

I •3 I If t has an ancestor •3xA, extend by adding a child •A(x//r) of 
t, where r is a term which is free for x in A. 

I= 1 I If t has an ancestor [•]p( ... r .. . ), and another ancestor of form 
r = a, extend by adding a child [ •]p( . .. a ... ) of t. 

I = 2 j If t has an ancestor [ •]p( . .. r ... ) , and another ancestor of form 
a = r, extend by adding a child [•]p( ... a ... ) oft. 

Extend by adding a child a== a oft. 

In these rules t denotes the terminal node at which the tableau is 

extended. 
Diagrams for the three equality rules 1 are shown in Figure 3.1. 

In the first two equality rules, [•]p( ... r .. . ) and [•]p( ... a ... ) denote 
basic w:ffs (i.e. atomic w:ffs or negations of atomic w:ffs) such that 
[•]p( ... a ... ) results from [•]p( ... r .. . ) by replacing one occurrence 
of the term r by the term a. The occurrence of r may be a part of 
some longer term within the w:ff [•]p( ... r .. . ). 

For example, if r is f (a) and a is ·b, and we take 

p(g(J(a)), a, f(a)) for p( ... f(a) . .. ), 

then there are two possibilities for p(. «. b •.. ) (one for each occurrence 
of f(a)). We can either take 

p(g(b),a,f(a)) for p( ... b ... ), 

1In the TABLEAU program, the first two equality rules. are invoked by typing 
the G key at the node A to put A in the Get box, typing the S key at the node 
T ::::: u to put either r ::::: <1 or u r into the Sub box (pressing the right arrow key 
toggles between these two), then going to the end of the branch and typing the E 

. ·key to extend the tableau. The third equality rule is invoked by typing the = key. 
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or 
p(g(f(a)), a, b) for p( ... b .. . ). 

In order to be sure that the string [ •]p( . .. u ... ) is a wff, one must 
prove that whenever T occurs within a term, the string formed by re­
placing one occurrence of r by a is also a term. This is left as an 
exercise, with a hint, at the end of this chapter. 

The rules and I= 2 J differ only in that in the former the equal-
ity ancestor is r = u while in the latter it is u r. 

The equality rules are justified by the fact that sentences 

M f= [•]p( ... r ... ) /\ [r a]=> [•]p( ... a ... ) 

M f= [•]p( ... r . .. ) /\ [u = r] => [•]p( ... u .. . ) 

M f= a a 

will be valid in any model M which respects equality. 
The basic definitions are the same as before except for the addi­

tion of the new tableau rules. A branch r of a tableau is said to be 
contradictory if r contains some wff and its negation. 

The notions of a tableau confutation and a tableau proof are defined 
as before. A tableau T is said to be a confutation of a set of sentences 
H if Tis a finite tableau with hypothesis set Hand every branch of Tis 
contradictory. A tableau proof of A from H is a tableau confutation 
of HU {•A}. 
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Tableau Extension Rules 

[•]p(. :.r .. . ) [ •]p( • : • T ••• ) 

t t 

I 
[•]p( ... a ... ) 

I 
[•]p( ... O" • .. ) 

I= 11 ~ 

t 

I 
u=a 

Figure 3.1: Equality Rules for Full Predicate Logic. 
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Here are two simple examples of tableau proofs in full predicate 
·logic. The second example is one of the Equality Axioms from Sec­
tion 2.10. · In Exercise 7 you are asked to give tableau proofs of the 
remaining Equality Axioms. 

Example 3.3.2 A tableau proof of 

VxVy[x == y => f(x) = f(y.)]. 

(1) 1VxVy[x = y => f( x) f(y)] 1 to be proved 

(2) 1Vy[a == y => f(a) = f(y)] by (1) 

I 
(3) 1 [a == b => f(a) = f(b)] by (2) 

I 
(4) a=b by (3) 

II 
(5) 1 f(a) == f(b) by (3) 

I 
(6) 1 f(b) = f(b) by ( 4) and (5) 

I 
(7) f(b) f(b) by equality rule 3 
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Example 3.3.3 A tableau proof of 

VxVy\:/z[x = y A y == z => x = z]. 

(1) 1\:/x\:/y\:/z[x = y A y = z => x = z]. 1 to be proved 

(2) 1\:/yVz[a = y A y == z => a= z] by (1) 

(3) 1\fz[a = b Ab= z =>a= z] by (2) 

(4) 1[a = b A b == c => a = c] by (3) 

(5) by (4) 

II 
(6) by (4) 

(7) by (5) 

II 
(8) by (5) 

(9) a=c by (7) and (8) 
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3.4 Soundness 

The proof of the Soundness Theorem for full predicate logic is much 
as before. The definition of valuation in M (which assigns elements 
of M to finitely many individual symbols), satisfiable, and simul­
taneously satisfiable are the same as for pure predicate logic (see 
Definition 2.7.1). 

Lemma 3.4.1 Let H be a set of sentences of full predicate logic of type 
( P, :F). Let T be a tableau in predicate logic with hypothesis set H. Let 
M be a model of-H. Then there is a branch r of T such that the wffs 
on r are simultaneously satisfiable in M. 

Proof: The proof is like that of Lemma 2. 7 .2 except that we must 
deal with the three equality rules in the step where we build a branch 
r k+1 on T k+i from a given branch r k of a smaller tableau T k. We 
have to check that if any of the equality rules were used to extend rk, 
the valuation Vk given by the induction hypothesis satisfies the new wff 
given by the equality rule. This follows from the fact that the model 
respects equality. End of Proof. 

Theorem 3.4.2 (Soundness Theorem) Suppose H is a set of sen­
tences in full predicate logic and A is a sentence. If H !- A, then 
H f= A, that is, every model of H is a model of A. In particular, if 
there is a tableau proof (without hypotheses) of a sentence A, then A 
is valid. 

This is proved as before: see Theorem 2. 7.~t Both Lemma 3.4.1 
and the Soundness Theorem require that M respect equality. They are 
true for all models but not for all premodels. 

3.5 Completeness 

The Completeness Theorem for full predicate logic is similar to the one 
for predicate logic, but with some additional twists. As before, we begin 
with a main lemma which easily implies the Completeness Theorem. 
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Lemma 3.5.1 (Main Lemma) Let H be a finite or countable set of 
sentences of full predicate logic. Either H has a tableau confutation or 
H has a model which respects equality. 

Theorem 3.5.2 (Extended Completeness Theorem) Suppose H 
. is a finite or countable set of sentences and A is a sentence of full 

predicate logic. If H A then H !- A; that is, if every model of H is 
a model of A, then there is a tableau proof of A from H. In particular, 
a valid sentence has a tableau proof. 

As in the Completeness Theorem for pure predicate logic we fix an 
infinite set M of new parameters. The set TERM(:F, M) will be used 
as the universe set of a model. 

We call a set A of wffs closed under the equality rules if any ba­
sic wff obtained from two wffs of A by an equality substitution is again 
a element of A; in other words, if for all terms 7 and a in TERM(:F, M) 
and all basic wffs [•]p( ... 7 ••• ), the following conditions hold: 

[= 1] if [7 = a],[•]p( ... 7 ... ) EA then [•]p( ... a ... ) EA. 

2] if [a= 7), [•]p( ... 7 ... ) EA then [•]p( ... a ... ) EA. 

[= 3] [a a] EA 

A set A of wffs is called contradictory if it contains some wff and 
its negation. 

The definition of a finished ·set for full predicate logic on a set M 
is verbatim the same as the definition of a finished set of wffs for pure 
predicate logic given before except that now 

• In the [V] and 
M. 

rules the set TERM(:F, M) is used in place of 

• the set A must be closed under equality rules. 

In particular, if a wff VxA is in a finished set A the new version of the 
[VJ rule requires that every wff A ( x / / 7) with 7 E TERM( :F, M) be an 
element of A, not just those where 7 EM. 

As in pure predicate logic, a branch of a tableau is finished on M 
if the. set of all wffs on the branch is finished on M, and a tableau in 
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full predicate logic is finished on M if every branch is either finished 
on Mor else both finite and contradictory. 

For the Tableau Extension Lemma we require that the set :F of func­
tion symbols be finite or countable. In this case, the set TERM( :F, M) 
is countable (see Exercise 8) and we are able to build a finished tableau 
on a countable set of new parameters M as in Chapter 2. We will not 
need the assumption that :Fis finite or countable for the Main Lemma 
or its consequences. 

Lemma 3.5.3 (Tableau Extension Lemma) Suppose that the set 
:F of function symbols is finite or countable. Let M be a countable 
set, and suppose H is a finite or countable set of sentences. Then H is 
the hypothesis set of a finished tableau on M. 

Proof: The proof is basically the same as in pure predicate logic ex­
cept that now we must use terms to extend the tableau at nodes with 
universal quantifiers and we must make sure that the final tableau is 
closed under the equality rules. 

As before, we let H = {C1 , C2, ... } and Hn ={Ai, ... , An}· 
Since the set TERM(:F, M) is countable, it may be arranged in a 

list 
TERM(:F,M) {ri,72, ... }. 

We build finite tableaus To C T 1 C ... with hypothesis set Has before, 
and our final tableau T will be the union of the tab lea us T n. ·We extend 
Tn to a finite tableau Tn+l as in the proof of the Tableau Extension 
Lemma for pure predicate logic with the following additional features. 

If A is either in Hn or at a nonroot node of Tn and A is of the form 
VxB or -.3xB, then each noncontradictory branch in Tn+l through A 
must have then+ 1 formulas [-.]B(x//7i) for i = 1, ... , n + 1. 

To n:ake progress toward closure under the equality rules, each non­
contrad1ctory branch of TnH must have a basic wff p( ... 7 ... ) whenever 
required by the equality rules [= l] or [= 2] using wffs in Hn and/or 
wffs at nonroot nodes of Tn. Finally, each noncontradictory branch of 
Tn+1 must have the wff 7n+i == 7n+l so that condition 3] will be 
satisfied. 

We leave the straightforward proof that T is a finished tableau on 
M to the reader. End of Proof. 
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Lemma 3.5.4 (Finished Set Lemma for Premodels) Suppose .A 
is a finished set of wffs on a set M. Define a premodel M for full 
predicate logic as follows: 

• the universe set of the premodel is TERM(:F, M); 

• for each propositional symbol p E Po, PM = T iff p E A; 

• for each n-ary predicate symbol p E Pn and all 7i, ... , 'Tn E TERM(:F, M) 
(7i, ... ,7n)EpM iffp(7i, ... ,7n)EA. 

Then M A. 

Proof: The proof proceeds as in the Finished Set Lemma for pure 
predicate logic except that we need to use induction on the height 
rather than the length of wffs. This is because if C E A and C is 
of the form VxA then A(x//7) may be longer than VxA. We define 
the height h( A) to be the number of occurrences of quantifiers and 
connectives in A. Thus atomic wffs have height zero. Now proceed 
as in the proof of the Finished Set Lemma for pure predicate logic, 
replacing length by height. For example, if C E A and C is of the form 
VxA, then A(x//7) E A for all 7. Since A(x//7) is of lower height 
than VxA, we have M f= A(x/ /7) for all 7, and hence M f= VxA. 
End of Proof. 

The Finished Set Lemma for Premodels gives us a premodel which 
need not respect equality. To get a model; we need three more lem­
mas. In all three lemmas we assume that A C SENT(P, :F, M) is a 
finished set of wffs in the parameters M. We shall call terms 7 and G' in 
TERM(:F, M) equivalent (abbreviated 7 = G') if the sentence 7 == G' 
is an element of the finished set A. Thus -

7 := (]' iff [ 7 :::::: (]'] E A. 

Lemma 3.5.5 Let A be a finished set of wffs o·n M. Then = is an 
equivalence relation on the set of terms in TERM(:F, M). That is, for 
7,G',p E TERM(;:,M): 

· (reflexivity) 7 7' 
' 
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(symmetry) if r = u then u = r; 

(transitivity) if r = u and u = p then r = p. 

Lemma 3.5.6 Let A be a finished set of wffs on M. Let 

and f E :Fn. If 

then 
f( T1, T2, ..• , Tn) = f( CJ'i, CJ'2, ••• , C!n)· 

Lemma 3.5. 7 Let A be a finished set of wffs ~n M. Suppose 

and p E Pn. If 

then 
p(ri, ... ,rn) EA iffp(ui, ... ,un) EA. 

Proof: The proofs of these three lemmas are easy consequences of 
what it means for the set A to be closed under the equality rules. For 
example, the reflexive law in Lemma 3.5.5 follows from part 3] in the 
definition.· To prove the symmetry law assume [r = u] E A. By [= 3] 
we have [r = r] E b. so we may use 1] with the firsf occurrence of 
r in the basic wff r r to conclude that [u = r] E A. To prove the 
transitive law assume [r = u], [u == p] E A. Apply 2] to replace 
the occurrence of u in the basic wff u == p by r and conclude that 
[r = p] E A. Lemma 3.5.6 follows by applying part [= 1] n times to 
the basic wff 

f( 'T1, T2, • • ·, Tn)::::: f( T1, T2, ••• , Tn), 

(this is an element of A by part [= 3]) to obtain that the wff 

f( Ti, T2, ••• , Tn) f( CJ'1, CJ'2, ••• , C!n) 

is an element of A. Finally, Lemma 3.5. 7 simply follows by repeated 
application of· [ = 1] and 2]. End of Proof. 
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Lemma 3.5.8 (Finished Set Lemma) Let A be a finished set of 
wffs on the nonempty set M. Then there is a model N' with an in­
terpretation for each element a E M such that N I= A. 

Proof: For each r E TERM(:F, M) let [T] denote the equivalence class 
of r: 

[r] {u E TERM(:F,M): T =: u}. 

By Lemma 3.5.5 we have 

[ T] ::::: [ u] iff T =: CJ'. 

We define the universe N of our model N' to be the set of equivalence 
classes: 

N = {[r] : T E TERM(:F, M) }. 

Now by Lemma 3.5.6 each function symbol f E :Fn determines a func­
tion fw E FUNn ( N) by the condition 

In the case n 0, if c E :F0 then cl"= [c]. 
This gives the universe set and the operations of a model N. 
It follows by induction on lengths of terms that for each term T E. 

TERM(:F, M), the element [r] EN is named by r, that is, 

[T) =TN. 

By Lemma 3.5.7 each predicate symbol p E Pn determines a relation 
~ E RELn ( N) by the condition 

((Ti), [r2], ... , [Tn]) E pN iff p( Ti, T2, ••• , Tn) E A. 

For propositional symbols p E Po, PN T if and only if p E A. 
This gives the predicates and completes the definition of the model 

N. Let M be the premodel defined in the Finished Set Lemma for 
Premodels. It can be shown by induction on the height of sentences B 
over M that N f= B if and only if M f= B. The details are left as an 

. · exercise. Since M f= A, we have N' f= A as required. End of Proof. 
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Proof of the Main Lemma: Let H be a finite or countable set of 
·sentences with no tableau confutation. Let :F' be a finite or countable 
subset of :F which contains all the function symbols occurring in H. We 
may apply the Tableau Extension Lemma to get a finished.tableau.with 
hypothesis set Hon a countable set M. Since there is no confutation 
of H, at least one branch r of the tableau is finished, and so by the 
Finished Set Lemma there is a model M of H of type ( P, :F'). The 
remaining function symbols which are in :Fn but not in :F', if any, can 
now be interpreted by any n-ary function on M at all, making M into 
a model of H of the required type (P, :F). End of Proof. 

As before, we now easily get the Compactness Theorem and the 
Extended Completeness Theorem for full predicate logic. 

Theorem 3.5.9 (CompaCtness Theorem) Let H be a countable set 
of sentences of full predicate logic. If every finite subset of H has a 
model, then H has a model. 

3.6 Theory of Groups 

A set of sentences in first order logic is sometimes called a first order 
theory. In this section we look at an important example of a first order 
theory in full predicate logic, the theory of groups. The vocabulary for 
our language will consist of one infix binary function symbol * and one 
constant symbol e. The axioms of group theory are as follows: 

Axioms of Group Theory 

(1) Associativity: Vx\:/y\:/z(x*Y)*z == X*(Y*Z) 

(2) Identity: \Ix [x*e == x A e*x x] 

(3) Inverses: \:/x3y [x*y e /\ Y*X == e] 

These axioms will be collectively known as GT. The first axiom says 
that the operation is associative; the second says that the constant 
symbol e is an identity for the operation; and the third says that every 
element of a group has an inverse relative to *· 

3.6. THEORY OF GROUPS 161 

A model g of these axioms is a group which consists of a universe G 
together with interpretations *9 and e9 of the symbols * and e. Instead 
of writing the group as Q ( G, *9, e9), most textbooks simply identify 
a group g with its universe G whenever the operation and identity are 

clear from the context. 
Examples of groups include 
(1) (Z, +, 0) (recall that Z denotes the set of integers); 
(2) (Q+, ·, 1) where Q+ denotes the positive rationals and "·" de­

notes multiplication; and 
(3) for any set X, the group (S(X), o, Ix) defined as follows: S(X) 

is the set of all permutations f of X. (Recall that a permutation of 
X is a one-one, onto function from X to X; see Appendix A.) The 
operation "o" is composition of functions (see page 372). Finally, Ix 
is the identity permutation on X (see Appendix A, Section A.5). The 

· reader may wish to verify that the group axioms are satisfied by this 

model. 

Example 3.6.1 Figure 3.2 gives a tableau proof that in every group, 
the identity is unique; in this example, we prove the following sentence 

A: 
Vx [Vy X*Y == y::::} x == e]. 

(The sentence actually says that every left identity equals e.) We in­
clude in the hypothesis set only the second axiom since we do not need 
the others in the proof. In the tableau problems at the end of this 
section, other properties of groups are established. 

The groups Z and Q+ mentioned above satisfy the additional prop­

erty 
C: Vx\:/yx*Y Y*X 

called the commutative law. If we could prove C from GT then by 
the Soundness Theorem, C would hold in every group. This is not the 
case h~wever, since for any set X with more than two elements, Sx 
does not satisfy the commutative law (see Exercise ll). A group in 
which C holds is called abelian. 
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(1) Vx[e*x x /\ X*e = x] 

(2) -Nx [Vy X*Y = y x = e] ......, to be proved 

(3) 
I 

-i[Vyt*Y:::::: y => t:::::: e] by (2) 

I 
(4) Vyt*y y by (3) 

II 
(5) -it= e 

(6) 
I 

t*e e by (4) 

I 
(7) e*t = t /\ t*e = t by (1) 

I 
e*t = t by (7) 

II 
(9) he =t 

(10) 
I 

t=e by (6) and (9) 

Figure 3.2: Tableau proof that the identity is unique 
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3. 7 Peano Arithmetic 

We now turn to another first order theory, called Peano Arithmetic. 
Throughout this book, Mathematical Induction has been one of our 

. most important methods in informal proofs. The axioms of Peano 
·Arithmetic consist of a group of six basic axioms, and an infinite list 
of additional axioms called the First Order Induction Principle which 
is the formal counterpart of Mathematical Induction. 

The vocabulary for the predicate logic we will use consists of two 
infix function symbols + and *, one unary function symbol s, and one 
constant symbol 0. The constant symbol 0 is a boldfaced zero to dis­
tinguish it from the usual mathematical symbol 0. (Recall that the 
relation is automatically a relation symbol in the vocabulary.) The 
full predicate logic with this vocabulary will be called the language 
of arithmetic. We let N denote the model of this language which 
has universe N, the set of natural numbers, and in which the function 
symbols + and * are interpreted as ordinary addition and multiplica­
tion, respectively, of natural numbers; s is interpreted as the successor 
function 

s(O) 1,s(l) = 2,s(2) 3, ... ; 

and 0 is interpreted as the natural number 0. This model N is called 
the standard model of arithmetic. 

Definition 3.7.1 Peano Arithmetic, or PA, is the collection con­
sisting of the following six basic axioms: 

1. Vx .....,s(x) = 0 

2. VxVy [s(x) = s(y) => x = y] 

3. Vxx+O = x 

4. VxVyx+s(y) s(x+y) 

5. Vxx*O = 0 
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together with the all the instances of the 

First Order Induction Principle 

Vy1 · · · Vyn [B(O) A Vx [B(x) =* B(s(x))] =* Vx B(x)] 

In this principle B is a wff in the language of arithmetic and all free 
variables of B are among x, y1, ... , Yn To improve readability, we wrote 
B(x) for B, B(O) for B(x/ /0), and B(s(x)) for B(x/ /s(x)). 

Peano Arithmetic is of fundamental importance in mathematics 
because it captures most of the mathematical facts which are know~ 
about the natural numbers. 

Axiom 1 says that O is not the successor of any element. Axiom 2 
says that the successor functions is one-one. Axioms 3 and 4 give the 
~nduct~ve defin~t~on of+ in terms of 0 ands. Axioms 5 and 6 give the 
mductive defimt10n of * in terms of O, s, and +. 

The only constant symbol in the vocabulary of Peano Arithmetic 
is the zero symbol 0. However, by repeatedly applying the successor 
function symbol s to 0 we obtain a constant term for each natural 
number. Thus s(O) stands for 1, s(s(O)) stands for 2, and so on. The 
term 

n == s(s( ... s(O) ... )) .....__,__. 
with n s's followed by 0 stands for the natural number n. It is called 
the numeral of n and is denoted by n. The first few numerals are 

0==0,1==s(0),2 s(s(O)), ... 

Using the six basic axioms alone, one can prove many equations and 
inequalities involving particular numerals. 

We give two examples as illustrations. 

3.7. PEANO ARITHMETIC 165 

Example 3. 7.2 Here is a tableau proof of the sentence 

,3==1 

from Axioms 1 and 2 ~alone. Of course, everyone already knows this 
inequality. Our point here is that there is a tableau proof of it which 
uses only the first two axioms of Peano Arithmetic as hypotheses. ·Only 

the main steps are shown. 

(1) ••s(s(s(O))) == s(O) 
(2) Vx •s(x) == 0 
(3) VxVy[s(x)=s(y)=?x y] 
(4) s(s(s(O))) == s(O) 
(5) •s(s(O))::::: 0 
(6) s(s(s(O))) == s(O) =? s(s(O)) == 0 
(7) s(s(O)) == 0 

• to be proved 
Axiom 1 
Axiom 2 
By (1) 
By (2) 
By (3) 
By (4) and (6) 

By the same method, for any particular natural numbers m and n 
such that m > n, there is a tableau proof of the sentence 

•m= n 

from Axioms 1 and 2 of Peano Arithmetic. 

Example 3. 7 .3 Here is a tableau proof of the sentence 

from Axioms 3 and 4 alone, again showing the main steps. 

(1) -is(O) + s(s(O)) == s(s(s(O))) 
(2) \/xx+ 0 == x 
(3) Vx\fyx + s(y) == s(x + y) 
(4) s(O) + 0 == s(O) 
(5) s(O) + s(O) == s(s(O) + 0) 
(6) s(O) + s(O) == s(s(O)) 
(7) s(O) + s(s(O)) == s(s(O) + s(O))) 
(8) s(O) + s(s(O)) == s(s(s(O))) 

• to be proved 
Axiom 3 
Axiom 4 
By (2) 
By (3) 
By ( 4) and (5) 
By (3) 
By (6) and (7) 
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Again, by the same method, for any three particular natural num­
·bers m, n and p, if m + n = p then the sentence 

m+n::::::p 

has a tableau proof from Axioms 3 and 4 of Peano Arithmetic. 
In spite of these examples, one cannot go very far with only the six 

basic axioms of Peano Arithmetic. The Induction Principle is needed 
early and often in the study of the natural numbers. 

In a formal tableau proof of a sentence from Peano Arithmetic the 
' cases of the Induction Principle which are needed for the proof are 

included in the hypothesis list. Many simple and familiar properties 
of the natural numbers cannot be proved without induction· that is 

' ' there is no tableau proof from the six basic axioms alone, but there is a 
tableau proof from the full set of axioms of Peano Arithmetic including 
the Induction Principle. 

We now give several examples of such sentences. In each example, 
we first sketch a tableau proof of the sentence from Peano Arithmetic. 
We then show:. that the sentence cannot be proved from the six basic 
axioms alone by describing a model of the six basic axioms in which 
the sentence is false. It follows from the Soundness Theorem that a 
sentence which is false in some model of the six basic axioms cannot 
be provable from them. Thus at least one induction axiom is needed in 
any tableau proof of the sentence. 

Example 3.7.4 The sentence 

Ai: Vx•x = s(x) 

is provable from Peano Arithmetic but is not provable from the six 
basic axioms alone. 

Pro of: To prove this sentence from PA, we let B be the wff -, x :::::: s ( x), 
and prove Ai from the hypotheses 

l.Vx•O=s(x) 

2. VxVy [s(x) = s(y) =} x = y] 
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3. B ( 0) /\ V x [B ( x) =? B ( s ( x))] =} V x B ( x) 

Note that V x B ( x) is the same as Ai, the formula to be proved. 
By hypothesis 1, •O = s(O), so B(O) holds. Let a be arbitrary and 
tempor~rily assume B(a), that is, •a= s(a). By hypothesis 2, 

s(a) = s(s(a)) =}a= s(a). 

By propositional logic, •s(a) = s(s(a)), that is, B(s(a)). 
By the Deduction Rule, B(a) =? B(s(a)), and thus by the General­

ization Rule, 
V x [B ( x) =? B ( s ( x))]. 

By hypothesis 3, it follows that V x B ( x), which is the formula to be 
proved. End of Proof. 

A formal tableau proof of the sentence Ai can be carried out in 12 
nodes, and is included in the diskette as PEANO.TBU. 

To see that sentence Ai is not provable from Axioms 1-6 alone, 
we shall describe a model M of Axioms 1-6 in which the sentence Ai 
is false. The uni verse set of the model is the set M = N U { oo} formed 
by adding to the set N of natural numbers one extra element called oo. 
Among elements of N, the function symbols +, *, s, 0 have their usual 
meaning. To complete the definition of the model, we stipulate that 

sM(oo)=oo, 

X +M 00 = 00 +M X = oo, 

O*M OO=OO*M 0=0, 

X # 0 =} X *M 00 = 00 *M X = 00. 

It can be checked that each of the six basic axioms is true in this model. 
However, we see that the sentence Ai is false in the model M by taking 
x = 00. 

Example 3.7.5 The sentence 

A 2 : Vx 0 * x:::::: 0 

is provable from Peano Arithmetic but is not provable from Axioms 
· 1-6 alone. 
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Proof: Here is a direct proof of A2 from PA in paragraph form. The 
following axioms of PA are needed in the proof: 

1. Vx x + o:::::: x 

2. Vx x * o:::::: o 

3. VxVy x * s(y) = x * y + x 

4. 0 * 0 = 0 /\ Vx [O * x = 0 ::::? 0 * s(x) = O] ::::? Vx 0 * x = 0. 

By hypothesis 1, we have 0 * 0 0. We next prove that 

Let a be arbitrary and assume that 0 * a = 0. By hypotheses 3 and 1, 

0 * s(a) == 0 *a+ 0 = 0 *a. 

Then 
O*s(a)=o*a=o. 

By the Deduction and Generalization Rules, 

Then by hypothesis 4, Vx 0 * x = 0 as required. End of Proof. 

The formal tableau proof of A2 from PA is left as Exercise 22. 
To see that A2 is not provable from the six basic axioms alone, we 

modify the model M in the preceding example by stipulating that 

O*M 00=17. 

This modified model is still a model of Axioms 1-6. (In fact, we can 
give 0 * M ex:: any value at all and still have a model of Axioms 1 ~6.) 
To see that the sentence A2 is false in this model, take oo for x. 

Example 3. 7.6 The sentence 

A3 : Vx [x = 0 V 3y x s(y )] 

is provable from Peano Arithmetic but not from Axioms 1-6 alone. 
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Proof: The proof of A3 from PA uses the single induction axiom 

1. B ( O) /\ V x [B ( x) ::::? B ( s ( x))] ::::? V x B (x) 

where B(x) is the wff x = 0 V 3y x = s(y). Note that the formula A3 
.to be proved is V x B ( x). B ( 0) is the sentence 

0 = 0 V 3y 0 = s(y), 

which follows from the equality rule 0 0 by propositional logic. Let 
a be arbitrary and assume B(a). The formula B(s(a)) is 

s(a) = 0 V 3y s(a) = s(y), 

which is easily proved with no hypotheses. 
By the Deduction and Generalization Rules, 

Vx [B(x)::::? B(s(x))]. 

Then by the hypothesis 1., Vx B(x), which is the formula to be proved. 
End of Proof. 

The formal tableau proof of A3 from PA is left as an exercise for 

the student. 

Example 3.7.7 The sentence 

A4 : Vx Vy x + y ·= y + x 

is provable from Peano Arithmetic but not from the six basic axioms 
alone. 

In the computer problem PLUS.TBU, you are asked to give a tableau 
proof of A4 frorri PA. To see that neither of the sentences A3 nor A4 
is provable from Axioms 1-6 alone, we describe a'-model M of Axioms 
1-6 in which each of the sentences A 3 and A 4 is false. The universe 
set of M is the set 
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made up of two "copies" of N and one additional element { c}. The 
function symbols in M are defined as follows: 

and in all other cases the sum is c. 

ao * M x = ·x * M ao = ao and a1 * M x = x * M a 1 = x for all x 

and in all other cases the product is c. The student can now check that 
all the basic axioms of PA are true in the model M. To see that the 
sentence A3 is false in M, take b0 for x. To see that the sentence A 4 

is false in M, note that 

Using the definition given above for + M, one can see that the rela­
tion :::;M orders the elements of M so that 

We now introduce the new symbol:::; as an abbreviation as follows: 
For any terms a, T of arithmetic, we write a:::;r for the sentence 2 

:3z 0-+z =. T 

. where z does not occur in a or r. 

With this symbol, the four axioms for linear order can be proved 
from PA. 

2 Note that technically we have not specified a particular sentence since any choice 
of z not in <J or T satisfies the condition of the definition. However, as the reader 
may easily verify, for any variables x, y not in <J or T, there is a tableau proof of the 
sentence [3x <J + x:::::: r] {::} [3 y <J + y =· r]; thus, any choice of z will do. 
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The Reflexive Law Vx x :::; x is an abbreviation for the sentence 
Vx3zx +z = x, which follows very easily from Axiom 3 of PA. The 
proofs of the other linear order axioms from PA are broken into small 
steps which are included in the Exercises at the end of this chapter. 

In the remainder of this section we shall briefly discuss two other 
forms of arithmetic, one which is much weaker than PA and another 
which is much stronger than PA. 

Weak Arithmetic, or WA, is a particular list of nine axioms which 
are consequences of PA. 

Definition 3. 7.8 The axioms for Weak Arithmetic consist of the six 
basic axioms for Peano Arithmetic together with the following three 
additional axioms; 

7. Vx[x:::;o => x = O] 

8. Vx Vy [x:::;s(y) => [x:::;y V x = s(y )]] 

9. Vx Vy [x:::;y V Y,:::;x]. 

The three additional axioms 7-9 for Weak Arithmetic use the ab­
breviation :::; but officially are sentences of the language of arithmetic. 
Each of these axioms can be proved from PA; the proofs are left to the 
student in the Exercises. 

Axiom 7 says that no element is less than 0. Axiom 8 says that there 
are no elements between x and s(x). Axiom 9 is the Comparability Law 
for linear order. 

Each of the sentences in Examples 3.7.4, 3.7.5, 3.7.6, and 3.7.7 is 
an example of a sentence which can be proved from PA but cannot be 
proved from WA. To see this, recall that in each example we proved 
the sentence from PA and gave a model of the six basic axioms of PA 
in which the sentence is false. In each case, the remaining three axioms 
of WA also hold in the same model. 

Weak Arithmetic is a useful technical tool in the proof of the Godel 
Incompleteness Theorems and the study of computable functions. It 
will be developed further in Chapter 5 on the way to the proof of 
the Godel Incompleteness Theorem. The above examples show that 

· many· familiar facts about the natural numbers cannot be proved from 
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Weak Arithmetic. In spite of this, Weak Arithmetic has two important 
advantages. First, it has only finitely many axioms. Second, as we 
shall see in Chapter 5, the concepts of a wff and a tableau proof in 
full predieate logic can be developed within Weak Arithmetic as well 
as within Peano Arithmetic. 

We now turn to another induction principle which is more powerful 
than the First Order Induction Principle of PA. It cannot be included 
in the axiom list of Peano Arithmetic because it is not a wff .of first 
order predicate logic. 

Second Order Induction Principle 

for every subset AC N 

0 E A/\ Vn [n E A => ( n + 1) E A] :=> Vn n E A. 

In this principle the quantifier Vn means Vn E N. The system of 
axioms consisting of Weak Arithmetic and the Second Order Induction 
Principle is sometimes called Second Order Arithmetic. It is more 
powerful than Peano Arithmetic but is not a set of sentences of first 
order logic. 

Unlike the First Order Induction Principle, the second order version 
is a single axiom. However, this axiom quantifies over subsets, rather 
than elements, of N, and cannot directly be formalized in the first order 
language of arithmetic. 

The advantage of this second principle is that, combined with Weak 
Arithmetic, it captures the standard model N of arithmetic: If M is 
any model of WA having universe M, and, on replacing N by M, the 
Second Order Induction Principle is true, then M is isomorphic to 
N'; that is, the elements of M can be listed, 

M = {rno,mi, ... } 
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so that if +M, *M, SM, OM are the interpretations of the function and 
relation symbols of arithmetic, then we have, for all k, f E N, 

OM mo mk+ M mt = mk+i 

SM (mk) = mk+1 mk*M mt= m1ct· 

(See Theorem 3.7.9 below.) 
The disadvantage of the Second Order Induction Principle is that to 

formalize it one must introduce a second order logic which has variables 
and quantifiers for predicates as well as for individuals. This logic. will 
need additional rules· of proof to take care of the quantifiers over the 
predicates. There will be just one induction axiom but at the price of 
a new list of rules of proof. A logic with quantifiers over predicates 
is called second order logic. Second order logic does not have a 
completeness theorem, and for this reason it has been less important 
than first order logic in the foundations of mathematics. 

The First Order Induction Principle is a reasonable attempt to for­
malize the Second Order Induction Principle in our language. The idea 
is to "spread out" the Second Order Induction Axiom over infinitely 
many distinct sentences to eliminate quantification over subsets. A first 
attempt at spreading out this axiom would be to have, for every subset 

A of N, an axiom 

iA: [OE A/\ Vx [x EA=> s(x) EA]]=} Vx x EA. 

If A were represented by a unary relation symbol PA in our vocabulary, 
we could then write out IA as the formal sentence 

Now, although we have no such relation symbols in our vocabulary, .we 
can represent many subsets A of N with wffs rather than with relat10n 
symbols. For instance, the set E of even numbers is represented by the 
wff B having only the variable x free: · 

3y y+y = x. 

We obtain: 
E = {n EN N' f= B(x//n)}. 
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In fact, every wff of the language determines a subset of Nin exactly 
·the same way. Moreover, if we replace the collection of CA's with 
the collection of first order wffs in our formulation of the second-order 
axiom we obtain the First Order Induction Principle. Unfortunately, 
however, since there are only countably many wffs in the language (see 
Exercise 8) and uncountably many subsets of N (see Appendix A.6), 
"most" subsets of N are not accounted for by the wffs used in the 
first order axiom. Thus we should not expect every model of Peano 
Arithmetic to be isomorphic to N. In fact, models which are not iso­
morphic to N (called nonstandard models of arithmetic) can be 
constructed using the Compactness Theorem; see Theorem 3.8.3 in the 
next section. By contrast 

Theorem 3.7.9 (Uniqueness Theorem) Suppose that Mis a model 
for weak arithmetic and satisfies the Second Order Induction Axiom in 
the sense that if A C M satisfies 

OM EA and 'in EM [n EA=:} (n + 1) EA] 

then A M. (Here M is the universe of the model M.) Then M 
is isomorphic to the standard model N of PA. In particular for any 
sentence A we have M . f= A if and only if N f= A. 

Proof: The assertion that N and M are isomorphic means that there 
is a one-one onto function 

¢:N--+M 

such that 

(1) 
and 

¢(m + n) = ¢(m) +M ¢(n), ¢(mn) = ¢(m) *M ¢(n). (2) 
The equations (1) determine ¢uniquely by induction (on N). Using 
induction again and the fact that M f= WA we see that ¢ is one­
one and that equations (2) hold. (See Exercise 25.) Finally apply the 
Second Order Induction Principle (for M) to the set 

A = { ¢( n) : n E N}. 

We see that A = M so that ¢ is onto. End of Proof. 
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3.8 Some Applications of Compactness 

The Compactness Theorem is one of the most useful theorems in math­
ematical logic. In this section we shall give three applications which 
illustrate its usefulness. 

Theorem 3.8. l Let H be a finite or countable set of sentences. Sup­
pose that for each natural number n, H has a model whose universe set 
has more than n elements. Then H has a model whose universe set is 
infinite. 

Proof: For each n, let En be the sentence 

The sentence En is true in a model M if and only if the universe set of 
M has more than n elements. For each n, the set 

has a model, namely any model of H whose universe set has more than 
n elements. It follows that each finite subset of the countable set of 
sentences 

HU {Ei,E2, ... } 

has a model. By the Compactness Theorem, this set of sentences has 
a model M. Then M is a model of H whose universe is infinite, as 
required. End of Proof. 

The next application involves groups. In the language of group 
theory, let xn be the term for x multiplied by itself n times. That is, 
x0 is e, x 1 is x, and xn+l is (xn) * x. In a group Q, an element g has 
order n if n is the least natural number such that gn = e. An element 
g has infinite order if gn =/= e for each natural number n. 

Theorem 3.8.2 Let H be a finite or countable set of sentences which 
contains all the group axioms. Suppose that for each n, H has a model 
Q which has no elements of order ~ n except the element e of order 0. 

· Then .fl has a model in which all elements except e have infinite order. 



176 CHAPTER 3. FULL PREDICATE LOGIC 

Proof: For each n let Dn be the sentence \fx[xn == e =} x == e]. Then 
for each n, H has a model in which each of the sentences Dk, k :5 n is 
true. Therefore each finite subset of the countable set 

has a model. By the Compactness Theorem, this whole set has a model 
M. Then M is a model of Hin which all elements except e have infinite 
order. End of Proof. 

Our third application concerns models of arithmetic. By complete 
arithmetic we mean the set of all sentences in the vocabulary of PA 
which are true in the standard model N of arithmetic . Thus all the 
axioms of PA belong to complete arithmetic. We shall see from the 
Godel Incompleteness Theorem in Chapter 5 that there are additional 
sentences in complete arithmetic which are not tableau provable from 
PA The following application of the Compactness Theorem shows that 
complete arithmetic, and hence PA, has nonstandard models. 

Theorem 3.8.3 There is a model M of complete arithmetic whose 
universe set M contains an element w such that all the sentences 

0 :5w;1 :5 w, 2 :5 w, ... 

are true in M. (Such an element w is called infinite, and models of 
PA which have infinite elements are called nonstandard models of 
arithmetic.) 

Proof: Add a new constant symbol w to the vocabulary of PA. In this 
expanded vocabulary, let H be the union of complete arithmetic and 
the set of sentences . 

0 :5 w, 1 :5 w, 2 :5 w, .. .. 

Every finite subset H 0 of H has a model, namely the standard model 
N of arithmetic with the extra constant symbol w interpreted by an 
element m E N which is greater than any n such that the sentence 
n :5 w belongs to Ho. By the Compactness Theorem, H has a model 

M. End of Proof. 
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3.9 Tableau Problems (TAB4) 

This assignment uses the TABLEAU or TA~WIN program. You will 
construct tableau proofs in full predicate logic. The problems are lo­
cated in directory TAB4 on the distr~bution diskette, an? _the SETUP­
DOS or SETUPWIN program will put them in a su~d1te~to? called 
TAB4 on your hard disk. There are seven problems m this directory, 
called 

GRO UPl. TBU, GROUP2. TBU, CALCl. TBU, CALC2. TBU, 
CALC3.TBU, ZPLUS.TBU, PLUS.TBU. 

You should load in each problem with the TABLEAU or TABWIN 
program then make a proof sketch on paper, and finally use your proof 
sketch a~ a guide to make a formal tableau proof with the ~ABLE~U 

. or TABWIN program. In many cases your sketch will contam a. strmg 
of equations. As usual, you should save your answer on your diskette 
or hard drive, with the name of the problem p~eceded by ~n A. 

These problems use the full predicate logic with funct10n symbols 
and equality substitutions. Here are some com:nents on the problems. 
You should try the problems with shorter solut10ns (fewer nodes) first. 

GROUPl (16 nodes). 

Hypotheses: 

To prove: 

\fa; \fy \fz x * (y * z) = (x * y) * z, 

\Ix 3y x * y = e, 

\fx x * e = x, 

\fx e * x x. 

\Ix 3y y * x = e 

The hypotheses are axioms from group theory with a binary in­
fix operation.* and a constant symbol e for the identity element. 
The first hypothesis is the associative law, the second hypothe­
sis is that every element has a right inverse, and the other two 
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hypotheses state that e is a two-sided identity element (actually 
the fourth hypotheses can be proved from the other three). Th~ 
sentence to be proved is that every element has a left inverse. 

GROUP2 (21 nodes). 

Hypotheses: 

To prove: 

VxVyVzx*(Y*Z) = (x*Y)*z, 

Vx 3y x * y = e, 

Vx x * e = x. 

Vx Vy Vz [x * z = y * z =} x = y] 

The hypotheses are the axioms for groups. The sentence to be 
proved is the cancellation law. 

CALCl (6 nodes). 

Hypotheses: 

To prove: 

Vy 3x f(x) = y, 

Vx g(f(x)) = x. 

Vy f(g(y)) = y 

The hypotheses state that the function f is onto and that g is an 
inverse function off. The sentence to be proved is that J is an 
invers~, function of g. 

CALC2 ( 30 nodes). 

Hypotheses: 

Vx Vy [x < y =? f(x) < J(y)], 

Vx J(x) < c, 

Vy [Vx J(x) < y =} c < y V c = y], 

..., 3y [x < y /\ y < x], 

Vx Vy [x < y => Vz [x < z V z < y]]. 
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To prove: 

Vy [y < c =? 3x Vz [x < z => y < f(z)]] 

This is the theorem from calculus which states that a bounded 
increasing real function f ( x) approaches a limit as x approaches 
infinity. The vocabulary has a constant c, a unary function f, and 
a binary infix predicate <. The first hypothesis states that the 
function f is increasing, the second and third hypotheses state 
that c is the least upper bound of the range of f, and the last 
two hypotheses are needed facts about the order relation. The 
sentence to be proved states that c is the limit of f ( x) as x ap­
proaches infinity. 

.CALC3 (64 nodes). 

Hypotheses: 

Vx Vy Vz [x :::; y /\ y :::; z => x :::; z], 

Vx 3y..., y:::; x, 

v x [! ( x) :::; 0 =} x :::; c], 

Vy [Vx [f(x):::; 0 x:::; y] =? c:::; y], 

Vx Vy Vz [p(x,y,z) {:> •y:::; x /\ •z:::; y], 

VxVuVv[p(u,f(x),v) => 3s3t[p(s,x,t)/\Vy[p(s,y,t) => p(u,J(y),v)]]]. 

To prove: 
f(c):::; 0 

This is the main part of the the Intermediate Value Theorem from 
calculus. The vocabulary has constants c and 0, a unary function 
f, a binary infix predicate :::; , and a ternary predicate p. The first 
two hypotheses are facts about the order relation. The next two 
hypotheses state that c is the least upper bound of the set of all 
x such that f(x) :::; 0. The fifth hypothesis defines the relation 
p( x, y, z) to .mean that y belongs to the open interval ( x, z). The 
long sixth hypothesis uses the relation p to state that the function 
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f ( x) is continuous for all x. The sentence to be proved is that 
f ( c) ::; 0. 

(A similar proof will show that 0 ::; f ( c). This leads to the 
theorem that if f is continuous and J(a) < 0 < J(b) then there 
is a point c between a and b with f( c) = 0.) 

The problems ZPLUS and PLUS are examples of proofs using the 
induction principle for the natural numbers. The vocabulary has a con­
stant 0 for zero, a unary function s for successor, and a binary function 
+ (written in infix notation x + y) for the sum. The hypotheses in each 
problem give the rules for computing the sum. The other hypotheses 
are cases of the induction principle for natural numbers. 

ZPLUS (11 nodes). 

Hypotheses: 
Vx x + 0 = x, 

Vx Vy x + s(y) = s(x + y), 

O+O =Of\ Vx [O+x x => O+s(x) = s(x)] => Vx O+x = x. 

To prove: 
Vx 0 + x = x 

The third hypothesis is the induction principle for the wff 0 + x = 
x in the variable x. The sentence to be proved is that for all x, 
o+ x x. 

PLUS (38 nodes). 

Hypotheses: 
Vx x + 0 = x, 

VxVy s+s(y)=s(x+y), 

VyO+y = y+O/\(Vy·x+y y+x =>Vy s(x)+y y+s(x)] 
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=> V xVy x + y = y + x, 

Vx[x + O = 0 + x /\ Vy[x + y = y + x => x + s(y) = s(y) + x] 

=>Vy x + y = y + x], 

Vx O+x = x. 

To prove: 
Vx Vy x + y = y + x 

The third and fourth hypotheses are the induction principle for 
Vy x + y = y + x in the variable x, and the induction ~ri~ciple 
for x + y = y + x in the variable y. The last hypothesis is the 
sentence proved in the preceding problem. The sentence to be 
proved is the commutative law for the sum. 

If you get stuck, you may look at the hints below. 

HINT FOR GROUPl: If a* b = e and b * c = e then 

a = a * e = a * ( b * c) = (a * b) * c e * c c, 

so that b * a = e. 

HINT FOR GROUP2: If a* c b * c and c * d e then 

a = a * e = a* ( c * d) (a* c) * d = ( b * c) * d b * ( c * d) b * e = b. 

HINT FOR PLUS: If Vy [a+ y = y +a] and ?(a)+ b = b + s(a), 

then 

s(a) + s(b) s(s(a) + b) = s(b + s(a)) = s(s(b +a)) s(s(a + b)) = 

= s(a+s(b)) s(s(b)+a)=s(b)+s(a). 



182 

3.10 

CHAPTER 3. FULL PREDICATE LOGIC 

Exercises 

1. Let B be the wff 

y = s(x) /\ 3y x + y = z. 
(a) Write down the wff B(x//O). 

(b) Is the term s( x) free for x in B? If it is, write down the wff 
B(x//s(x)). 

(c) Is the term x * y free for x in B? If it is, write down the wff 
B(x//x * y) 

( d) Is the term x * y free for y in B? If it is, write down the wff 
B(y//x * y). 

(e) Write down the sentence B(v) where vis the valuation 

v = ((x, 2), (y, 4), (z, 6)). 

2. Prove that for each term r and each initial segment· U of the string 
r such that the next symbol after U is a function symbol f, there is a 
unique term u within r which starts with f, that is, there is a unique 
term u such that r = U u V for some V. 
· (Hint: Similar to the proof of the Unique Readability Theorem for 
wffs). 

3. Supposer is a term and u is a term within r, that is, r = UuV for 
some strin?s U and V. Prove that for every other term p, the string 
Up V obtamed by replacing u by p in r is also a term. 

(Hint: Use the preceding Exercise. Hold u and p fixed and argue 
by induction on the length of r.) 

4. Let A be a wff in full predicate logic and let B be a wff within A 
that is, A= UBV for some U and V. Prove that for every wff C th~ 
string UCV obtained by replacing B by C in A is also a wff. ' 
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5. Give a tableau proof of the sentence 

VxVy3zz = J(x,y) 

6. Give a tableau proof of the sentence 

Vy [R(y) ¢> 3x [R(x) /\ x::::: y]]. 

7. In the full predicate logic with a vocabulary consisting of the two 
binary predicate symbols =, p, give tableau proofs of each of the Equal­
ity Axioms from Section 2.10. (You may skip the transitive law (3), 
which is already proved in the text as an example). 

8. Suppose there are only countably many function symbols in the 
vocabulary of a full predicate logic and that M is a countable set. 
Prove that TERM(:F, M) is a countable set. (Hint: First show that 
the set of all finite sequences from a countable set is countable. Then 
show that the set S of all symbols except for the predicate symbols is 
countable. Finally, show that each term is a finite sequence (or string) 
of symbols from S). Then show that WFF(P, :F, M) is countable. 

9. Let N = {O, 1, 2, ... } be the set of natural numbers and <Po, </>1, </>2, ... 
be a list elements of FUN1(N), i.e. each <Pn: N-+ N. Define a function 
f : N -+ N such that f -:/= </>n for all n = 0, 1, 2, . . .. Conclude that the 
set FUN1 (N) is not countable. Hint: See Exercise 48 on page 139. 

10. This exercise gives an example of a premodel which is not a model 
and shows how the premodel may be transformed into a model. We use 
the logic of group theory whose vocabulary { *, e} consists of one binary 
function symbol * and one constant symbol e. We ·build a premodel 
Om for each natural number m with the following specifications: 

the universe of Om= N 
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where =m, called equality modulo m, is defined by: 

x =m y {:::=?- x y is divisible by m. 

(For instance, any two even numbers are equal modulo 2, and the fol­
lowing numbers are equal (in pairs) modulo 3 : 2, 5, 8, 11, .... ) 

(a) Show that 9m is a premodel satisfying the axioms of group theory, 
but that 9m is not a group. 

(b) Notice that the elements of 9m can be organized. in an array: 

0, 1, 
m, m+l, 

... ' 

... ' 
m 1 
2m- l 

so that the elements in any column are equal modulo m (but 
elements from different columns are not equal modulo m). 

Let Zm consist of the elements in the top row of the matrix, i.e., 

Zm = { 0, 1, ... , m 1}. 

We interpret * for Zm by the operation +m defined by 

. + . _ { the remainder obtained on dividing 
i m J - i + j by m 

where "i+ J" signifies ordinary addition of natural numbers. Thus, _ 
for example, 

2 3 = 0 

3 +6 4 1 

Show that Zm = (Zm, +m, 0) forms an abelian group. 
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( c) Show that for all m, 9m and Zm satisfy the same first order sen­
tences, i.e., for all sentences A, 

(Hint: For each n E N, let n denote the remainder obtained on 
dividing n by m. Show that for each wff A with free variables 
xi, ... , Xr, and for all natural numbers ni, ... , nr, 

9m f=A(ni, ... ,nr) ~ Zm f=A(fii, ... ,fir)· 

Do this by induction on the wff A. 

(d) Treat Zm as a model of the language of arithmetic by interpreting. 
the multiplication symbol * as *m, defined by 

. . { the remainder obtained on dividing 
i *m J = i * j by m 

Does Z satisfy WA? Which axioms are satisfied and which fail? 
m h · f ? Wh t · th. " . ht" Does your answer depend on the c 01ce o m. a is e ng 

way to define multiplication on 9m so that it too becomes a model 
of the language of arithmetic satisfying the same sentences as Zm? 

11. Recall from page 161 that ( S(X), o, Ix) denotes the permutation 
group of the set X. Show that for any set X with more t~an .two 
elements, this group is not abelian. (Why must S(X) be abehan if X 
has at most two elements?) 

12. Prove that every model of the sentence 

[\fx •s(x) = 0 /\ \fx\fy [s(x) = s(y) =? x = y]] 

of full predicate logic has an infinite universe. 

13. Give a tableau proof from PA of the wff 

\Ix [x = 0 V 3yx s(y)] 
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(Hint: An informal proof was given in Example 3. 7.6. The tableau 
proof involves the use of the induction axiom where B( x) is the wff 
x = OV 3yx = s(y).) 

14. Show that Axiom 7 of WA, 

\:/x [x S 0 => x = O], 

is provable from PA, by proving it from the six basic axioms and the 
sentence 

\:/x [x 0 V 3y x = s(y )] 

from the preceding Exercise. 

15. Show that Axiom 8 of WA, 

\:/x\:/y [x S s(y) => [x S y V x = $(y )]], 

is provable from PA by proving it from the six basic axioms and the 
sentence from Example 3.7.6. 

16. Prove that Axiom 9 of WA, the Comparability Law 

\:/x\:/y[x S y Vy S x], 

is provable from PA. In addition to the axioms of PA, you may use 
the Commutative Law for Addition 

\:/x\:/yx + y = y + x 

from the computer problem PLUS.TBU and.Axiom 8 which is proved 
from PA in the preceding exercise. 

1 7. Show that the sentence 

\:/x\:/y\:/z[x + y = x + z :::::? y = z) 

is provablefrom PA. (Hint: Prove it from the axioms of PA and the 
Commutative Law for Addition from computer problem PLUS.TBU). 
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18. Show that there is a tableau proof from PA of the associative law 

of addition, 
\:/x\:/y\:/z (x + y) + z = x + (y + z). 

(Hint: First come up with an informal proof from the Peano axioms 
using induction. Then translate it into a tableau proof.) 

19. Show that the Transitive Law 

\:/x\:/y\:/z [x S y /\ y S z:::::? x S z] 

is provable from PA. (Hint: Prove it from the Associative Law of 

Addition.) 

20. Show that the Antisymmetric Law 

Vx\:/y [x Sy/\ y S x => x = y] 

is provable from PA. (Hint: Prove it from the basic axioms of PA, the 
Associative Law of Addition, and the sentence from Exercise 17). 

21. Give a tableau proof of the sentence 

from the set of hypotheses 

\:/x x + 0 = x 

\:/x\:/y x * s(y) = x * y + x 

22. Give a tableau proof of the sentence 

\:/x 0 * x = 0 

from Peano arithmetic. Here is a start (showing only the axioms of 
Peano arithmetic which are needed for your proof). 

-Nx o * x = o 
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'r/x x + 0 = x 

Vx x * o:::: o 

VxVy x * s(y) x * y + x 

0 /\ Vx (0 * x = 0 => 0 * s(x) ==OJ::::} Vx O * x 

23. Show that the Distributive Law 

VxVyVz (x + y) * z = x * y + x * z 

0 

is tableau p~ova.ble from PA. You may use extra rules of proof such as 
the Gene:al~zat1on and Deduction Rules, as well as the commutative 
and ~ssoc1at1ve laws for addition, which were proved from PA i r 
exercises. n ear ier 

24. Give a tableau proof of the "strong induction principle" 

Vx [Vy [y < x => P(y)] => P(x)] => Vx P(x) 

from the three hypotheses 

Vx-ix < O, 

VxVy[x < s(y) /\ -.x < y * x == y], 

B(O) /\ Vx [B(x) => B(s(x))] * VxB(x), 

where B(x) is the particular wff Vy [y < x * P(y)]. 

25. Supply the missing details in the proof of Theorem 3. 7.9. 

P
26· The ~ollowi?g argument purports to prove that any two models for 

eano anthmet1c are isomorphic. 

Let M be a model for Peano arithmetic with universe set 
M and define a map 

f:N~M 
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by induction: 

Since 
M f= VxVy[s(x) = s(y) => x = y] 

it follows by induction that f is one-one. Since oM E f(N) 
and s(u) E f(N) whenever u E f(N) and since M models 
the Induction Principle, it follows that M = f (N), that is, 
that f is onto. Finally the formulas 

f(O) 
f(s(x)) 

f(x+y) 

f(x * y) 

0M 

sM(f(x)) 

f(x)+M f(y) 

= f(x) *M f(y) 

hold, the first two by definition and the last two by induc­
tion. 
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The argument is wrong: Theorem 3.8.3 provides a counter-example. 
Where is the error? 

The following four problems use the Compactness Theorem. 

27. Prove that for every set P of prime numbers, there is a model M 
of complete arithmetic and an element a EM such that 

M f= 3xp * x =a 

for each prime p E P, and 

for each prime p ~ P. 

28. Let H be a finite or countable set of sentences in the language of 
. ·group ·theory. Suppose that for each natural number n, H has a model 
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which has at least one element of order ~ n. Then H has a model 
which has at least one element of infinite order. 

29. Let H be a set of sentences which contains the axioms for linear 
order. Suppose H has an infinite model. Prove that H has a model M 
in which there is a countable strictly increasing sequence of elements 
that is, there are elements a1 , a2, a3 , ••• E M such that ' 

30: Let H be the set of all sentences in the vocabulary {O, 1, ~' +, *} 
which are true of the real numbers. Prove that H has a model M with 
an element c such that M f= 0 < c but for each natural number n 
M f= n * c < 1. ( n is the term formed by adding 1 to itself n times).' 

Chapter 4 

Computable Functions 

4.1 Introduction 

Consider the following two statements: 
1. For any two positive integers m and n, there is a largest integer 

g which is a factor of m and n. 
2. For any two positive integers m > n, if mis divided by n obtain­

ing a remainder r, and n is divided by r obtaining a remainder s, and 
r is divided by s obtaining a remainder t, and so forth, stopping the 
first time the remainder is zero, then the last nonzero remainder that 
arises in this process is the largest factor of m and n. 

The first of these statements merely asserts the existence of the 
greatest common divisor (gcd ) of any two positive integers; the second 

· actually gives a procedure to construct g. Moreover, this procedure is 
mechanical in the sense that a computer can be programmed to carry 
out these instructions. 

The procedure given in the second statement is known as the Eu-
. clidean algorithm. An algorithm is a finite set of instructions which, 
when applied to an appropriate input, dictates a unique sequence of 
simple operations to be applied to the input. For some inputs, the se­
quence of operations will come to a halt and an output will be given; 
for others, the sequence of operations on the given input may never ter­
minate, and there will be no output. The Euclidean algorithm accepts 
as input any pair of positive integers m > n and in every case produces 

191 
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an output (namely, gcd(m, n)). 
As another example, consider the following algorithm R: R accepts 

natural numbers as inputs; with input n R checks to determine whether 
n = 0 and if so, outputs O; if not, R adds 1 to n and repeats the 
proc~dure. C~early, R outputs 0 with input 0 and, with input n > O, 
contmues addmg 1 to n forever and gives no output at all. 

The two algorithms described above define functions in a natu­
ral way. The Euc!idean al~~rit~m defines a total function ( m, n) 1-4 

gcd( m, n ). from pairs of positive mtegers to positive integers. The sec­
ond algorithm defines the following "partial" function J: 

f ( n) = { 0 if n = 0 
undefined if n > 0 

'Yhich functions are computed by algorithms? In this chapter we 
provi~e an answer to ~ha: questio;i by devising a simple computing 
machme, called an unlimited register machine which will execute 
p~ograms especially designed to run on this machine; these programs 
will be calle~ RM programs. Given a subset S of Nn, a function 
f : .s --+ N will be called RM computable if there is an RM program 
which. outputs f ( ai, ... , an) _when it runs with input ( a

1
, ... , an) E S, 

and gives no output for any mput lying outside S. 
We will find that virtually all functions S --+ N that come up in 

mathematical practice are RM computable. In addition we will show 
how finite seq.uences and as a result RM programs themselves - can 
be c?ded as smgle natural numbers. We will then be able to construct 
a umversal RM p.rogram UN~V which will be able to execute every RM 
program on any mput: If P is an RM program which is coded by the 
number e, t~e program UNIV will accept as input all pairs of numbers 
(~, n) and will out~ut ~he number which P outputs on input n (or, if p 
gives no output. with mput n, then UNIV gives no output with input 
( e, n) )- The .umversal RM program will allow us to find examples of 
funct10ns which are not RM computable and will provide examples of 
"unsolvable" problems. · 

There are three sets of problems at the end of this chapter. The 
first two problem sets use the GNUMBER program and are done on a 
computer. The third problem set contains ordinary pencil and paper 
problems. . 
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4.2 Numerical Functions and Relations 

A numerical function is a function J defined on a set 'of n-tuples of 
natural numbers: 

Dom(!) C Nn 

and taking natural numbers as values: 

Ran(!) C N. 

The positive integer n is called the arity of the numerical function; it 
is the number of inputs x1 , x2, ••• , Xn required to produce an output 
J(x1, x2, ... , xn)· A numerical function with arity n is also called an n­
ary numerical function, or simply an n-ary function on N. (This 
usage arose from more traditional terminology where unary meant 
1-ary, binary meant 2-ary, ternary meant 3-ary, etc.) 

If Dom(!) = Nn, f is called a total function; if Dom(!) is a 
subset of Nn, f is called a partial function. By "function" we will 
mean "total function" although we will occasionally refer to a function 
redundantly as a total function if we want to emphasize that its domain 
is all of Nn. Since Nn is a subset of itself, every total function is also a 
partial function, that is, the set of total functions is a subset of the set 
of partial functions. 

An n-ary numerical relation is any subset of Nn; note that the 
graph of an n-ary function (partial or total) is an n + 1-ary relation. A 
relation R is determined by its characteristic function which is the 
numerical function CR defined by 

if (x1,x2, ... ,xn) ER 
if (xi, x 2 , ••• , x n) r/. R 

for (x 1, x 2 , ••• , xn) E Nn. An important difference between numeri­
cal functions and numerical relations is that by convention, relations 
are always assumed to be totally defined. Therefore the characteristic 
function CR of a numerical relation is always· total.· 

In qhapter 3 we saw examples of total and partial numerical func­
tions: addition and multiplication are total binary functions; in this 
chapter we call these functions Add and Mult , respectively. Also, sub­

. traction and division are partial binary functions ; recall that we denote 
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subtraction by Subt and division by Divide . Another useful pair of 
partial functions, which we denote by Div and Remain , is given by 
the division algorithm as follows: 

q = Div(x,y), r = Remain(x,y) 

if and only if 

x == qy + r, 0 s; r < y 

with domain {(x, y) E N2 : y > O}. 
We will be interested in extending partial functions to make them 

total. We give some examples below; we define 

• Cut-off subtraction by 

. { x-y x-y = 
0 

for (x, y) E N 2 • 

• The quotient function by 

if y s; x 

if x < y 

t( ) _ { Div(x, y) q x,y - 0 if y > 0 
if y = 0 

for ( x, y) E N 2• 

• The remainder function by 

( ) _ { Remain(x, y) rm x,y -
0 

for (x, y) E N 2• 

if y > 0 
ify=O 

WARNING: In the theory of computable functions the domain of a par­
~ial fu~ction plays ~n important role. Typically an n-tuple ( x1, x2, ... , xn) 
1s not m the domam of some computable function f because the pro­
gram which computes f(x 1, x2, ... , xn) does not terminate normally 
when the input is (x1, x2 , ••• , xn): it goes into an infinite loop. 

The total functions _:_, rm, and qt in the above examples turn out 
to be RM computable. However, it can happen (as we shall see later) 
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that the total function F defined from the partial function f by the 
prescription 

if (x1, x2, ... , Xn) E Dom(!) 
otherwise. 

will not be computable, even though f is computable. 

4.3 The Unlimited Register Machine 

In this section we shall describe an abstract computer called the un­
limited Register Machine or simply register machine (RM). It 
differs from real computers in three ways. 

e First, the instruction set of an RM is much smaller than that of a 
real computer. This makes the RM much easier to study than a 
real computer (although it also makes the RM less efficient than 
a real computer), but does not in principle restrict the computing 
power of the RM; we shall see that the RM can compute anything 
a more complicated computer can. 

6l Second, the RM has an infinite memory: it has infinitely many 
data registers, and infinitely many instruction registers which 
hold the program instructions. Moreover each register can hold 
an arbitrarily large number. This idealization makes the RM easy 
to study and is not as far removed from reality as one might think: 
any particular calculation on an RM will use only a finite amount 
of memory, so any particular calculation which can be done by 
an RM can in principle be performed by a real computer with a 
large enough finite memory. 

11 Third, program memory is disjoint from data memory. 

The register machine has two countable lists of registers, the instruc­
tion registers 10 , Ii, 12 , ... and the data registers Rli R2, R3, .... In 
addition, there is one more register R0 , called the program counter. 
Each instruction register In holds an instruction In which is loaded prior 
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to the execution of a program and does not change. However, all but 
finitely many of the instruction registers hold the halt instruction H. 
At any given time in the execution of a program, the program counter 
and all the data registers hold natural numbers, with all but finitely 
many of the data registers holding 0. The contents of these registers 
may change during execution of a program. The program counter Ro 
contains the index of the next instruction to be executed, and is initially 
set to 0 so that the program starts with the instruction I 0 • 

The RM recognizes the following five kinds of instructions: 

(H) Halt Instruction: There is a single halt instruction H which 
causes the RM to stop execution. 

(Z) Zero Instructions: For each n = 1, 2, ... there is a zero instruc­
tion (Z, n) which causes the RM to set the contents of register Rn 
to 0, and to increment by 1 the contents of the program counter 
Ro, leaving the other registers unaltered. 

(S) Successor Instructions: For each n = 1, 2, ... there is a succes­
sor instruction ( S, n) which causes the RM to increment by 1 the 
contents of the register Rn, and to increment by 1 the contents 
of the program counter Ro, leaving the other registers unaltered. 

(T) Transfer Instructions: For each m = 1, 2, ... and n = 1, 2, ... 
there is a transfer instruction (T, m, n) which causes the RM to 
replace the contents of the register Rn by the contents of the 
register Rm (i.e. transfer Rm to Rn ), and to increment by 1 the 
contents of the program counter Ro, leaving the other registers 
(including Rm) unaltered. 

(J) Jump Instructions: For each m = 1, 2, ... , each n = 1, 2, ... , and 
each q = 0, 1, 2, ... there is a jump instruction (J, m, n, q) which 
causes the RM to put the number q into the program counter Ro 
(resulting in a jump to the q-th instruction) if the contents of the 
registers Rm and Rn are equal, and to increment by 1 the contents 
of the program counter Ro otherwise. A jump instruction does 
not alter any data registers Rn, n 2:: 1. 

4.3. THE UNLIMITED REGISTER MACHINE 

H 
(Z,n) 
(S,n) 
(T,m,n) 
(J, m,n,q) 

(do nothing) 
rn := 0, ro := ro + 1 
rn := rn + 1, ro := ro + 1 
rn := rm, ro := ro + 1 
if rm = rn then ro := q else ro := ro + 1 

Table 4.1: The RM machine 

An RM-program is a finite sequence 
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of such instructions, with the understanding that all the later instruc­
tions Ip+l' Ip+2 , ••• are halt instructions H . 

. · If a program P is loaded into the RM's program memory, the data 
registers Ri, R2 , ••• are given initial values, an'd the RM is given the 
command to start computing, the RM first puts a 0 in the program 
counter R

0
• It then keeps repeating the following procedure: Look up 

the number r
0 

currently in the program counter Ro, and execute the 
corresponding instruction Iro, modifying the appropriate data registers 
and program counter as required. It continues this process until it 
encounters a halt instruction, at which point the RM stops. 

It is possible (even likely) that a program will not stop at all (for ex­
ample, the program consisting of the single instruction Io = ( J, 5, 5, 0)) · 

The RM instructions are summarized in Table 4.1. In this table the 
column on the left gives the instruction and the column on the right 
gives the result of executing the instruction in conventional program­
ming notation. Here the lower case letter rn indicates the contents of 
register Rn and r0 indicates the value of the program counter. 

Note that program memory is indexed starting at 0, i.e. the instruc:­
tions are numbered Io, Ii, I2, ••• whereas the data memory is indexed 
starting at 1, i.e. the data registers are numbered Ri, R2, ... , reserving 

Ro for the program counter. , 
Each particular RM program P uses only finitely many data regis-

ters. If I! is the largest data register index mentioned in the program 
instructions, then the program will never use the data ,registers Rn; f~r 
m > I!, no matter what the initial register contents were. That is, if 
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m > I!, then the contents of Rm will never change and will never affect 
the contents of another register during program execution. 

For a given program P, the state of the register machine is a se­
quence of natural numbers (r0 , ri, r 2, ••• , rt) where r0 is the program 
counter contents, f, is the highest data register index which appears in 
the program instructions, and ri, ... , rt are the contents of the data 
registers Ri, ... , Rt. Since the program begins execution with instruc­
tion 10 , the initial state is a sequence (0, ri, ... , rt) with zeroth term 0. 
The state at time t + 1 is completely determined by the state at time 
t. It is sometimes useful to think of the program as a rule for changing 
from one state to another. Thus the program P gives rise to a function 

NXSTATEp : NH1 ~ NH1 

where (ro, ri, ... , rt) E NH1 is the state before instruction lr0 is exe­
. cuted, and NXSTATEp(ro, ri, ... , rt) is the state after execution. This 
function is· sometimes called the next state function. 

We do not count the infinite sequence of halt instructions at the end 
as part of the program, so that a program will be a finite rather than 
an infinite sequence of instructions. We say that two RM programs 

are equivalent if they are the same except for a different finite number 
of halt instructions at the end; that is, if p ~ q, 

Io = Jo, ... , IP = Jp, and Jp+l = H, ... , Jq = H. 

Two equivalent RM programs will have exactly the same computations 
and will be displayed alike by GNUMBER. Given an RM program P, 
the smallest RM program which is equivalent to P is the program con­
sisting of all instructions of P up through the last nonhalt instruction. 
We regard the empty sequence as an RM program equivalent to an RM 
program which has only Halt instructions. · 

4.4 RM computability 

In this section we study functions which are computed by register ma-
chine programs. . 
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Register machines have no special provision for input or output. 
Instead we consider the input to the RM to be the sequence of values 
in the registers Ri, R2 , ••• when the RM starts, and the output from 
the RM to be the value in the register R1 if and when the RM halts. 
(Sometimes we allow two outputs, say R1 and R2, although this should 
really be regarded as computing two different functions at the same 
time, or as computing one function with values in N 2 

.) 

We now give a formal definition of RM computable functions and 
relations. In the sequel, we shall say that an RM program P halts 
on some input when we actually mean to say that when running the 
program P with the given input, the RM eventually halts. 

An RM program P computes an n-ary partial numerical function 

<I>~) as follows: 

• The domain Dom( <I>~)) of <I>~) is the set of all n-tuples 

(a1,a2, .. . ,an) E Nn 

such that the program P eventually halts if it is started with 
register Rj set to a j for j = 1, 2, ... , n and all. other registers set 

to 0. 
' ( ) 
o For any n-tuple ( a1, a2, ... , an) E Dom( <I>{: ) the value 

<I>~) ( ai, a2, ... , an) 

is the number in register R1 when the program P halts (after it 
has been started as above). 

Recall that the characteristic function of an n-ary relation R on 
N is the total function CR from Nn into the set {O, l} defined by 

CR(Xi, ... , Xn) = 1 if R(xi, ... , Xn) is true, 
CR( Xi, ... , Xn) = 0 if R( Xi, ... , Xn) is false. 

Definition 4.4.1 An n-ary numerical function f is called RM com­
putable if there is an RM program P which computes f; that is, if 

there is a program P with 

f - ;r,.(n) - ~p. 

An n-ary relation R is called RM computable if its characteristic func­

tion CR is RM computable. 
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4.5 Examples of RM-Computable Func­
tions 

In this section we give some simple examples of RM-computable func­
tions. 

Example 4.5.1 The addition function Add is defined by 

Add(x,y) x + y 

for (x,y) E N 2 = Dom(Add'). It is RM-computable. 

Example 4.5.2 The multiplication function Mult is defined by 

Mult(x, y) = x * y 

for (x, y) E N 2 = Dom(Mult). It is RM-computable. 

Example 4.5.3 The predecessor function Pred is defined by 

{ox -1 if x > 0 
Pred(x) if x = 0 

It is RM-computable. 

Example 4.5.4 The cut-off subtraction function DotMinus is defined 
by 

DotMinus(x,y) = {Ox Y ~f Y ~ x 
If X < y 

for. (x, Y) E N
2 = Dom(DotMinus). It is RM-computable. We often 

write x-y for DotMinus(x,y): 

x..:..y = DotMinus(x, y). 

Example 4.5.5 The functions Div and Remain are defined by 

Div(x,y) q, Remain(x,y)=r, 

if 

x = qy + r, where 0 ~ r < y 

for (x, y) E N 2 
and y i- 0. They are undefined when y = 0. Both 

functions are RM-computable. 
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We now proceed to the RM programs to compute the functions in 
the above list. Each program is presented in three forms: in "pseu­
docode," in "assembly code," and in "machine code." 

Pseudocode is useful for writing a first version of a program. It 
lists the main steps of a program in English, and may contain loops and 
if-then tests. Certain conventions will be followed. The letters a, b, c, 
... will correspond to the contents of the first registers R1, R2, R3, .. .. 
Other "variables" correspond to other register contents and have names 
which suggest how they are used in the program. A pseudocode listing 
will begin with the program name and the intended input and output 
of the program. Sometimes the name of an earlier RM program with 
indicated inputs will appear as a line within a new program .. The start 
of a loop will be indicated by a line such as 

do until s = t, 
and the end of the loop will be indicated by a single line 

loop. 

The program will repeat the intervening sequence of steps (the loop) 
until s = t becomes true, and will then go on to the line after the 
loop. If s = t is already true the first time the loop is encountered, 
the loop is never executed. Ifs = t never becomes true, the loop will 
be repeated forever and the computation will never halt. 

The assembly code for a program matches the final RM program 
line by line, but uses descriptive names instead of numbers for the 
register contents and the targets of jurp.p instructions. The assembly 
code has two kinds of jump instructions, the ordinary jump with three 
arguments as in an RM program, and an unconditional jump with just 
one argument, which always causes the program to jump to the target 
line. The final RM program in machine code is listed next to the 
assembly code. . · 

The assembly code is translated into machine code (the final RM 
program) in a routine manner. For example, let us go through this 
translation for the ADD program. The labels "LOOP" .and "DONE" 
stand for two of the instruction numbers: 

LOOP= l,DONE = 5. 



202 CHAPTER 4. COMPUTABLE FUNCTIONS 

(The only instructions which need labels are those which appear some­
. where in the program as jump targets). The labels "a," "b," and 
"count" in the assembly code stand for register numbers. Choose a 
register number for each of these labels: 

a= 1, b = 2, c = 3. 

To form the machine code RM program, first write down the instruc­
tion numbers 0 through 5, then copy the instruction letters from the 
assembly code, then insert a pair 1 1 after each unconditional jump in­
struction to make it into an ordinary RM jump instruction, and finally 
replace each label by the corresponding jump target or register number. 
(A different choice of register numbers would give another RM program 
which does the same thing but in different registers.) 

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 

ADD 

program ADD(a,b) 
input: a= x, b = y 
output: a= x + y 

let count = 0 
do until count = b 

let a = a + 1 
let count = count + 1 

loop 
end of program ADD 

z count 
LOOP J count,b, DONE 

s a 
s count 
J LOOP 

DONE H 

0: z 3 
1: J 3 2 5 
2: s 1 
3: s 3 
4: J 1 1 1 
5: H 
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Figure 4.1: Pseudocode, assembly code, machine code for ADD 
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MULT 

program MULT(a,b) 
input: a= x, b = y 
output: a = x * y 

let accum = O 
let i = 0 

do until i = b 
let i = i + 1 
ADD(accum,a) 

loop 
let a=accum 

end of program MULT 

LOOP 

ALO OP 

ADO NE 
DONE 

z 
z 
J 
s 
z 
J 
s 
s 
J 
J 
T 
H 

accum 
1 

b,i, DONE 
1 

count 
count, a, ADONE 
accum 
count 
ALO OP 
LOOP 
accum,a 

0: z 3 
1: z 4 
2: J 2 4 10 
3: s 4 
4: z 5 
5: J 5 1 9 
6: s 3 
7: s 5 
8: J 1 1 5 
9: J 1 1 2 

10: T 3 1 
11: H 

Figure 4.2: Pseudocode, assembly c9de, machine code for MULT 

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 

program PRED (a) 
input: a = x 

PRED 

output: a = x - 1 if x > 0, 
a= 0 if x = O.· 

if a = 0 then halt 
let prev = 0 
let next = 1 
do until a = next 

let next = next + 1 
let prev = prev + 1 

loop 
let a = prev 

end of program PRED 

z prev 
J a,prev,DONE 
z next 
s next 

LOOP J a,next,DONE 
s next 
s prev 
J LOOP 

DONE T prev,a 
H 

0: z 2 
1: J 1 2 8 
2: z 3 
3: s 3 
4: J 1 3 8 
5: s 3 
6: s 2 
7: J 1 1 4 
8: T 2 1 
9: H 
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Figure 4.3: Pseudocode, assembly code, machine code for PRED 
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DOTMINUS 

program DOTMINUS(a,b) 
input: a= x, b = y 
output: a = x-y if x>y 

a = 0 otherwise 

let count = 0 
do until count = b 

PRED(a) 
let count = count + 1 

loop 
end of program DOTMINUS 

z count 
LOOP J count,b, DONE 

z prev 
J a,prev,PDONE 
z next 
s next 

PLO OP J a,next, PDONE 
s next 
s prev 
J PLO OP 

PD ONE T prev, a 
s count 
J LOOP 

DONE H 

0: z 3 
1: J 3 2 13 
2: z 5 
3: J 1 5 10 
4: z 4 
5: s 4 
6: J 1 4 10 
7: s 4 
7: s 5 
8: J 1 1 6 
9: T 5 1 

10: s 3 
11: J 1 1 1 
12: H 

Figure 4.4: Pseudocode, assembly code, machine code for DOTMINUS 

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 

DIVREM 

program DIVREM(a,b) 
input: a= x, b = y 
output: a= q, b = r where 

x = qy + r and 0 <= r < y. 
(undefined if y=O) 

if b = 0 then hang 
let (count, q, r) = (0,0,0) 
do until count = a 

if r = b then let (q, r) 
else let r = r+1 
let count = count+! 

loop 
let (a,b) = (q,r) 

end of program DIVREM 

z count 
HANG J b,count, HANG 

z q 
z r 

·TEST J r,b, INCQ 
J count,a, DONE 
s r 
s count 
J TEST 

INCQ s q 
z r 
J TEST 

DONE T q, a 
T r, b 

0: 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

z 
J 
z 
z 
J 

J 
s 
s 
J 
s 
z 
J 
T 
T 

5 
2 
3 
4 
4 
5 
4 
5 
1 
3 
4 
1 
3 
4 

(q+1, 0) 

5 1 

2 9 

1 12 

1 4 

1 4 
1 
2 
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Figure 4.5: Pseudocode, assembly code, machine code for DIVREM 
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4.6 Godel Numbers, Extract, and Put 

In this section we introduce a way of representing finite sequences of 
natural numbers by single natural numbers. This scheme is called a 
Godel numbering scheme, and will be used in the construction of a 
universal RM program. The GNUMBER program has a built-in Godel 
numbering scheme which uses the even decimal positions (starting from 
0 on the left) as markers to show where a new term begins, and uses 
the odd decimal positions for the digits of the terms in the sequence 
to be coded. A 2 marker means that a new term is beginning, and a 
1 marker means that the old term is continuing. We take 0 to be the 
Godel number of the empty sequence. For example, the Godel number 
(or G.N.) of the sequence 

(54,6,217) 

is (with the original digits in large type) 

2 5 1 4 2 6 2 2 1 1 1 7. 

This is the Godel number in standard form, or the standard 
Godel number. In order to make every number a Godel number of 
some sequence, we adopt the convention that any single digit number, 
0 through 9, is taken to be a Godel number of the empty sequence. 
For numbers with two or more digits, we treat every digit in an even 
position (starting from 0 on the left) as a marker. The initial digit can 
be any digit except 0 and is the first marker. Any marker > 2 has the 
same effect as a 2 and starts a term of the sequence. Any 0 marker has 
the same effect as a 1 and continues a term. An extra marker at the 
end is ignored. After computing the sequence, any initial zeros which 
may appear in a term are ignored. For example, the natural number 

1 5 1 6 3 0 1 0 1 9 0 7 4. 

is a Godel number of the sequence 

(56, 97). 
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Let N* denote the set of all finite sequences of natural numbers: 

00 

N* = LJ Nn 
n=O 

where Nn is the set of sequences of length n (and N° is the singleton 
whose only element is the empty sequence). Define two functions 

#: N*-+ N, seq: N-+ N* 

where #( u) is the standard Godel number for the sequence. u and .seq( n) 
is the sequence u having n as a Godel number. The function# is one­
one (two sequences having the same standar?. God:l number are equal) 
and the function· seq is onto (every number 1s a Godel number of some 
sequence). Moreover, seq is a left inverse to #: 

seq(#(u)) == u 

for every finite sequence u E N*. Thus each fin~te seq~:nce of natur~l 
numbers has several Godel numbers but a umque Godel numbe_r m 
standard form, and each natural number is a Godel number of a umque 
finite sequence of natural numbers. . 

Godel numbers of RM programs are especially important, because 
they are central to our goal of using RM programs to study RM .pro­
grams. The first step in assigning Godel numbers to programs is to 
introduce a numerical code (called an opcode) for each of the five RM 
instructions letters. w~ use the natural numbers 1, 2, 3, 4, 5 as codes 
for the RM instruction letters H, Z, S, T, and J, respectively: When 
we replace the RM instruction letters by their codes, each RM mst:~cl 
tion becomes a sequence of from 1 to 4 natural numbers. By the Go e 
number #(1) of an RM instruction I we mean the Godel number of 
that sequence. For example, the Godel number #(T, 5, 43) of the RM 

instruction (T, 5, 43) is given by 

#(T, 5, 43) == #( 4, 5, 43) == 2 4 2 5 2 4 1 3. 

Finally, each RM program is a finite sequence 
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of instructions, and the Godel number #(P) of the program Pis defi~ed 
· to be the Godel number 

#(P) =#(#(Io), #(11), ... , #(Ip)) 

of the sequence of the Godel numbers of the instructions of the program. 
For example, the Godel number of the program 

T 5 43 

s 6 

z 1 

is the Godel number of the sequence 

(2 4 2 5 2 41 3,2 3 2 6, 2 2 2 1 ), 

which is 

2 2 14 12 15 12 14 1l1322 13 12 16 2 2 12 1211. 

We shall now introduce two new total functions, 

Extract(x, y ), Put(x, y, z) 

and show that they are RM computable. 
Extract( x, y) is the y-th term of the sequence with Godel number 

x, with Extract( x, y) = 0 if this sequence has fewer than the y terms 
needed. (The Godel number x need not be in standard form). 

Put( x, y, z) is equal to the standard Godel number. of the sequence 
which is formed by putting x into the y-th term of the sequence with 
Godel number z, ·first adding as many 0 terms as necessary if the se­
quence with Godel number z has fewer than y ·terms. These functions 
are useful in manipulating Godel numbers, but have rather long and 
slow RM programs. 

The following functions: 

Length(x), Digit(x,i), Terms(x), Start(x,y), PutEnd(x,y) 

defined below are RM computable. Using pseudocode, we shall de­
scribe RM programs LENGTH, DIGIT, TERMSO, START, and PU­
TEND which compute them. These programs will be used only to 

4.6. GODEL NUMBERS, EXTRACT, AND PUT 211 

show that the two functions Extract( x, y) and Put( x, y, z) are RM com­
putable. (The RM program which computes Terms(x) will be denoted 
by TERMSO to distinguish it from the shorter Advanced RM program 
TERMS which is on the distribution diskette.) 

At this point the reader should be convinced that given pseudocode 
·for a new function in terms of old functions, and given RM programs for 
the old functions, one can routinely construct an RM program for the 
new function. For convenience, we include with each of the functions 
below a short algorithm for computing it; each such algorithm briefly 
describes the behavior of its corresponding pseudocode program. 

(1) Length(x) number of decimal digits in x. 

For example, 

Length(O) = Length(l) = Length(9) 1, 
Length(lO) = Length(ll) Length(99) = 2, 

Length(lOO) = Length(lOl) = Length( 999) 3, 

and so on. 

Short Algorithm: Successively divide x by 10, using Div, until 0 
is reached. Output the number of divisions required. 

(2) Digit(x,i) thei-thdecimaldigitofx ifi < Length(x), Digit(x,i) 
0 otherwise. 

We start counting with i = 0 on the left. For example, 

9, Digit( 907, 0) 

Digit(907, 1) = 0, 

Digit(907, 2) 

Digit(907, n) 
7, 
0 for all n ~ 3. 

Short Algorithm: If i ~ Length(x), output 0. Otherwise, succes­
sively divide x by 10 using Div so that the i-th digit d is moved 
to the one's place (Div is applied Length( x) - i times). Apply 

·Remain(·, 10) to the result to output d. 
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(3) Terms(x) =number of terms in the sequence with G.N. x, with the 
empty sequence having 0 terms. 

For example, 

Terms( 2 5 1 4 2 6 2 2 1 1 1 7)=3, 

Terms(l 5 0 4 3 6 4 2 1 1 0 7 9)=3. 

Short Algorithm: If x has an odd number of digits, use Div to 
drop the last digit. Use a counter to keep track of how many terms 
are in the sequence. If x > 0, initialize the counter at 1 because 
the zeroth (leftmost) digit is a marker which starts a term of the 
sequence, regardless of its value. Search the even-pl~ced digits of 
x excluding the zeroth digit, and increment the counter whenever 
a marker> 1 is found; output the number in the counter after all 
evell'-placed digits have been tested. 

( 4) Start( x, y) = the position of marker for the start of they-th term in 
the sequence with G.N x if y < Terms(x), undefined otherwise. 

Count terms from 0 on the left. For example, 

Start(2. 5 14 2 6 2 2 1 1 1 7,0)=0, 

Start(2 5 1 4 2. 6 2 2 1 1 1 7,1)=4, 

Start(2 5 1 4 2 6 2. 2 1 1 1 7,2)=6. 

Sho:t Algorithm: If y 2:: Terms( x ), do not output anything; oth­
erwise check the even-placed digits for markers> 1; use a counter 
to keep track of how many such markers are found, and another 
~ounter to record the position of each. When the yth such marker 
1s found, output its position. 
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( 5) PutEnd ( x, y) = the standard G.N. of the sequence formed by adding 
y as one more term to the end of the sequence with G.N x if x is 
a G.N. in standard form. Don't care otherwise. 

For example,, 

PutEnd(251426221117, 98) = 2514262211172918 

Short Algorithm: If xis not a standard Godel number, the output 
can be anything. Otherwise, adjoin a 2 to the end of x (i.e., let 
x' x * 10 + 2) and then use a loop to successively adjoin to the 
end of this new value of x the zeroth digit of y, then a 1, then 
the first digit of y, then a 1, etc., until the last digit of y has been 

ad.joined. 

(6) Extract(x, y) they-th term of the sequence with G.N. x if Y < 
Terms( x). Extract( x, y) = 0 otherwise. 

Following the precedent set in defining the function Digit,. we 
make Extract a total function by giving it the value 0 when y 2:: 
Terms( x). For example, 

Extract(251426221117, 0) = 54 

Extract(251426221ll7, 1) = 6 

Extrac.t(251426221117, 2) = 217 

Extract(251426221ll7, 3) = 0 

Short Algorithm: Record the digit din the Start( x, y )+ 1 position, 
and use a loop to successively adjoin to the end of d the digits in 
positions Start(x,y) + 3, Start(x,y) + 5, ... and so forth. Stop the 
process when the next even-numbered position is occupied by a 
marker> 1; output the number that has been obtained from this 

loop. 

(7) Put(x,y,z) =the standard G.N. of the sequence formed by p~tting 
x into the y"-th term of the sequence with G.N. z, first adding as 
many 0 terms as necessary if z has fewer than Y terms. 



214 CHAPTER 4. COMPUTABLE FUNCTIONS 

For example, 

Put(99, 2, 251426221117) 

Put(99, 5, 251426221117) 

2514262919 

25142622111720202919 

Note that Put( x, y, z) is always a Godel number in standard form; 
thus, it not only replaces the yth term of the sequence coded by 
z, but ·also changes the markers for the other terms to l's and 2's 
as appropriate. 

Short Algorithm: To change the markers which occur before the 
yth term of z to 1 's or 2's, use a loop which successively ap­
plies Extract and PutEnd to the zeroth, first, second, ... terms of 
(the sequence coded by) z (remembering to adjoin 0-terms if 
Terms(z) < y), thereby obtaining a code u for a sequence of 
y terms. Now use PutEnd to adjoin to u a yth term x. Finally, if 
Terms( z) > y + 1, repeat the process above of applying Extract 
and PutEnd to change all markers after the yth to 1 's and 2's, as 
appropriate. 

Here are pseudocode descriptions of programs computing each of 
these functions. The RM programs for Length and Digit are assigned 
as exercises for the student. These functions can be tested with the 
GNUMBER program and do not take too much time when applied 
to numbers with fewer than six digits. The other functions are more 
difficult optional exercises. It is still possible to write RM programs for 
them with. the GNUMBER editor, but the Extract and Put functions 
are too slow to be tested out. 
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program LENGTH(a) 
input: a = x 
output: a= number of decimal digits in x 

let len = 1 
let num = a 
let num = Div(num,10) 
do until num = 0 

let num = Div(num,10) 
let len = len+1 

loop 
let a = len 

.end of program LENGTH 

program DIGIT(a,b) 
input: a= number, b =position 
output: a= Digit(number,position) 

let place = Length(a) 
DDTMINUS(place,b) 
if place = 0 then let a = 0 
PRED(place) 
let num = a 
let times = 0 
do until times = place 

let num = Div(num,10) 
let times = times + 1 

loop 
let a= Remain(num,10) 

end of program DIGIT 
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program TERMSO(a) 
input: a = x 
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output: a = number of terms in the sequence 
with Godel number x. 

let count = 0 
let pos = 0 
do until pos + 2 > Length(a) 

let d = Digit(a,pos) 
if (count = 0 or d >1) then let count = count + 1 
let pos = pos + 2 

loop 
let terms = count 

end of program TERMSO 

program START(a,b) 
input: a= x, b = i 
output: a = the position of the start marker of the term of x 

with index i. Undefined if· i >= Terms(x). 

let pos = 0 
let count = 0 
do until count >= b 

let pos = pos + 2 
let d = Digit(a,pos) 
if d >1 then let count = count + 1 

loop 
let a = pos 

end of program START 
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program EXTRACT(a,b) 
input: a= source, b = i 
output: c = the i-th term of the sequence 

with Godel number source if 
i < Terms(source), 0 otherwise. 

if b >= Terms(a) then 
let c = 0, halt 

let position = Start(a,b) 
let term = 0 
let marker = 0 
do until marker > 1 

let position = position + 1 
let d = Digit(a,position) 
let term = 10 * term + d 
let position = position + 1 
let marker = Digit(a,position) 

loop 
let c = term 

end of program EXTRACT 
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program PUTEND(a,b) 
input: a= a standard G.N. x, b = y 
output: a= the standard Godel number 

of the sequence formed by 
putting the number y onto the end of 
the sequence with Godel number x. 

let ab = a*10 + 2 
let place = 0 
let len = Length(b) 
do until place = len 

let d ~ Digit(b,place) 
let ab = ab*10 + d 
let place = place+1 
if place < len then let ab = ab*10 +1 

loop 
let a = ab 

end of program PUTEND 
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program PUT(a,b,c) 
input: a= source, b = i, c =target 
output: c =the standard Godel number 

of the sequence formed by 
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putting the number source into the i-th term 
of the sequence with Godel number target. 

let inarray = c 
let outarray = 0 
let index = 0 
do until index = b 

let term= Extract(inarray,index) 
let outarray = Putend(outarray,term) 
let index = index + 1 

loop 
let outarray = Putend(outarray,a) 
let index = index + 1 
do until index >= Terms(inarray) 

let term= Extract(inarray,index) 
let outarray = Putend(outarray,terrn) 
let index = index + 1 

loop 
let c = outarray 

end of program PUT 
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4. 7 The Advanced RM 

The advanced RM machine, or ARM, is formed by adding to the or­
dinary RM machine the two new instructions E for Extract and P for 
Put. 

(E) Extract Instructions: For each m = 1, 2, ... , each i 1, 2, ... , 
and each n = 1, 2, ... , there is an Extract instruction (E, m, i, n) 
which causes the ARM to replace the contents of register Rn by 
Extract( rm, ri) leaving the other registers unchanged. Here ri and 
rm are the contents of registers Ri and Rm respectively, before 
the instruction is executed. 

(P) Put Instructions: For each m = 1, 2, ... , each i 1, 2, ... , 
and each n = 1, 2, ... , there is a Put instruction (P, m, i, n) 
which causes the ARM to replace the contents of register Rn by 
Put( rm, ri, rn) leaving the other registers unchanged. Here rm, ri, 
and rn are the contents of registers Rm, Ri and Rn respectively 
(before the instruction is executed). 

Since the functions Extract and Put are RM computable, ahy func­
tion which is computable by an advanced RM program is already com­
putable by an RM program in the original sense, using only the in­
structions H, Z, S, T, and J. We make this precise in Theorem 4. 7 .1 
below. 

An ARM program is a sequence 

of ARM instructions. As for the RM each program and each n de­
termine a partial function ~~) defined on a subset Dom(~~)) of Nn. 
Just as in Section 4.3, an ARM program P determines a nextstate 
function 

NXSTATEp : N.e+1 ---+ N.e+i 

where f is the highest number of a register mentioned in the program P, 
(ro, ri, r2, ... , r.e) E NH1 is the state before instruction Iro is executed, 
and NXSTATEp(r0 , r 1 , r 2 , ... , re) is the state after execution. 

4. 7. THE ADVANCED RM 

H (do nothing) 
( Z, n) rn := O, ro := ro + 1 
(S, n) rn := rn + 1, ro := ro + 1 
(T,m,n) rn :=rm, ro := ro + 1 
(J, m, n, q) if rm= rn then ro := q else ro := ro + 1 
(E, m, i, n) rn := rm[ri], ro := ro + 1 
(P, m, i, n) rnh] :=rm, ro := ro + 1 

Figure 4.6: The ARM machine 
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The ARM-instructions are summarized in Figure 4.6 .. In this figure, 
a[x] denotes the x-th element of the sequence with Godel number a. 
The column on the left gives the instruction and the column on the 
right gives the result of executing the instruction in conventional pro­
gramming no.tation. Here thelower case letter rn indicates the contents 
of register Rn and r0 indicates the value of the program counter. 

Theorem 4. 7 .1 A function is ARM computable if and only if it is RM 
computable. 

Proof: Clearly an RM computable function is ARM computable since 
every RM program is an ARM program. The converse is true because 
we may always transform an ARM program to an RM program which 
behaves in the same way. We simply replace every Extract instruction 
(E, m, i, n) by an RM program which computes the Extract function 
Extract( rm, ri) (with inputs rm, ri the contents of Rm, Ri) and puts the 
result in Rn, and every Put instruction (P, m, i, n) by an RM program 
which compute the Put function Put( rm, ri, rn) (with inputs rm, ri, rn 
·the contents of Rm, Ri, Rn) and put the result in Rn. We must take 
care that these inserted programs do not change any registers (other 
than Rn) used by the original ARM program. 

The advanced GNUMBER program replaces the Extract and Put 
functions by extra instructions E and P. In principle, any "advanced" 
RM program with the E and P instructions can be replaced by an 
ordinary RM program which computes the same function. However, 
RM programs which involve computations of Godel numbers are often 

·so long and slow without the extra E and P instructions that nobody 
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will live long enough to see the output. The extra instructions are a 
·pragmatic compromise which will allow us to experiment with some 
important programs involving Godel numbers. 

The Godel number of an advanced RM program is defined in the 
same way as for an ordinary RM program, with the two new instruc-. 
tion letters E and P having the opcodes 6 and 7. In the sections which 
follow we shall use the advanced RM machine to build programs which 
manipulate Godel numbers of programs. As an- aid in the testing of RM 
programs which manipulate Godel numbers of RM programs, GNUM­
BER has a command which places the standard Godel number of the 
current RM program in a given register, and a command which replaces 
the current RM program with the RM program whose.Godel number 
(not necessarily in standard form) is in a given register. 

4.8 Closure Theorems 

One of the easiest ways to show that a complicated function is RM com­
putable is to show that it can be built up using operations which pro­
duce RM computable functions from other RM computable functions. 
In this section several common operations are discussed: composition, 
primitive recursion, course of values recursion, parametrization, and 
unbounded minimalization. We shall prove several theorems showing 
that if the original function is RM computable then the new function 
is also RM computable. Such theorems are called closure theorems; 
because they say that the set of all RM computable functions is closed 
under the operation used to form a new function. 

Throughout this section, all partial function_s mentioned will be un­
derstood to be numerical functions. Remember that if we say that f 
is a partial function, we do not exclude the possibility that f might be 
total. Every total function is a partial function, but there are many 
partial functions which are not total. To simplify the exposition, we 
shall state the closure theorems for partial functions of one variable, 
with the understanding that results for n variables can be proved in 
a similar way. Since the RM computable functions are partial func­
tions, we define composition, primitive recursion, and other operations 
on partial rather than total functions. 
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Composition: Let 9i, .. . , 9m be k-ary functions and let h be an m-ary 
function. The composition h(9i, ... ,9k) is the new k-ary function f 
defined by 

f ( a1, ... , ak) h(g1 ( ai, ... , ak), ... , 9m ( ai, ... , ak)), 

where f ( a1 , ... , ak) is undefined if any part of the right side of the equa­
tion is undefined. In the case of one variable, if 9 and h are unary partial 
functions, then their composition go h is the unary partial function f 
such that 

f(x) = 9(h(x)) 

whenever both h(x) and g(h(x)) are defined, and f(x) is undefined 
otherwise. If 91 and g2 are unary partial. functions and h is a binary 
partial function, the composition h(gi, 92 ) is the unary partial function 
f such that . 

J(x) = h(91(x),92(x)) 

whenever g1(x), 92(x) and h(91(x),g2(x)) are all defined, and f(x) is 
undefined otherwise. 

Primitive Recursion: Let h be a binary partial function. The partial 
function obtained from h by primitive recursion is the unary partial 
function f such that 

f(O) = 1 

and for all x, 
J(x + 1) = h(f(x),x) 

if J(x) and h(f(x),x) are both defined, and f(x + 1) is undefined oth­
erwise. 

Note that in this definition, if f ( x) is undefined then all later values 
f (y ), y > x will be undefined. Thus f will either be total, i.e. defined 
for all x, or the domain off will be a finite initial segment {O, 1, ... , n} 
of the natural numbers. 

Course of Values Recursion: Let h be a binary partial function. 
The partial function obtained from h by course of values recursion is 
the unary partial function 9 such that 

9(0) 1 



224 CHAPTER 4. COMPUTABLE FUNCTIONS 

and for all x, 

g(x + 1) h(#=(g(O),g(l), ... ,g(x)),x) 

if g(O), ... ,g(x) and h(#=(g(O),g(l), ... ,g(x)),x) are all defined, and 
g(x+l) is undefined otherwise. In this definition, #=(g(O),g(l), ... ,g(x)) 
stands for the standard Godel number of the sequence (g(O), ... ,g(x)) 
in the notation of Section 4.6. 

Again, if g(x) is undefined then all later values g(y), y > x will be 
undefined. Thus g will either be total or Dom(g) will be a finite initial 
segment {O, 1, ... , n} of the natural numbers. 

Parametrization: Let f be a binary partial function. The parametriza­
tion of f is the sequence of unary partial functions fn, n = 0, 1, ... 
defined by 

fn(x) = f(x,n). 

Unbounded Minimalization: This is a way of getting a unary partial 
function from a binary relation. Let R be a binary relation. The partial 
function obtained from R by unbounded minimalization is the unary 
partial function 

f(x) = µy R(x, y) 

where f(x) is the least y such that R(x,y) if 3yR(x,y), and f(x) is 
undefined otherwise. 

The symbol µy is read "the least y such that." It is called the 
unbounded minimalization operator. 

Definition 4.8.1 We say that a set F of partial functions is closed 
under composition if any partial function obtained from partial func­
tions· in F by composition belongs to the set F. Closure under primi­
tive recursion, course of values recursion, and parametrization 
are defined in a similar way. A set F of partial functions is closed 
under unbounded minimalization if for any relation R whose char­
acteristic function belongs to F, the partial function obtained from R 
by unbounded minimalization belongs to F. 
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In this section we shall prove the 

Theorem 4.8.2 (Closure Theorem) The set of RM computable func­
tions is closed under composition, primitive recursion, course of values 
recursion, parametrization, and unbounded minimalization. 

Before starting on the proof of the Closure Theorem, we need to 
develop an efficient way of combining two RM or ARM programs. 

If P is an ARM program, the length of P-denoted n(P)-is the 
number of instructions in P, not counting halt instructions at the end. 
The empty program is the program consisting entirely of halt instruc­
tions, and has length zero. Since the instructions of an ARM program 
are numbered beginning with 0, if P is not the empty program then 
the (n(P) - l)th instruction is the last nonhalt instruction in P. 

The total function f, where f ( x) is the length of the ARM program 
P with Godel number x, is RM computable. To make an ARM program 
which computes f, start with the program TERMS 1

, which gives the 
number of instructions in P, and then add a loop which will subtract 
1 from the output for each halt instruction at the end of P. 

Given two ARM programs P and Q, their join PQ is the new ARM 
program consisting of the program P followed by the program Q, with 

· Q starting immediately after the last nonhalt instruction of P, and 
with each instruction number and each jump target in Q increased by 
the length of P. 

There is an ARM program called JOIN2 which is a useful building 
block for other programs,· and computes the Godel number of the join 
of two ARM programs P and Q from the Godel numbers and lengths 
of P and Q. If the Godel numbers of P and Q are placed in registers 
Ri and R2 , the program lengths n(P) and n(Q) are placed in registers 
R3 and R4 , and the numbers 0 - 5 are placed in registers R20 Rzs the 
program JOIN will eventually halt with the Godel number of the join 
P Q in register R1 • 

Lemma 4.8.3 Let c(x, y) be the total function defined as follows. If x 
and y are Godel numbers of ARM programs P and Q, then c( x, y) is 

1 Included on the problem diskette for the advanced RM machine 
2Included on the problem diskette for the advanced RM machine 
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the Godel number of the join PQ. Otherwise c(x, y) = 0. The function 
c is RM computable. 

Proof: An ARM program to compute c can be pieced together us­
ing the TERMS and JOIN. programs given in the problem diskette. 
End of Proof. 

If P and Q are sufficiently well designed, the join PQ will compute 
the composition go f of the unary partial function g computed by Q 
and the unary partial function f computed by P. 

For example, let P be the program 

0: s 1 
1: s 1 

and let Q be the program 

0: T 1 2 
1: z 3 
2: J 2 3 6 
3: s .1 
4: s 3 
5:. J 1 1 1 

Here, P computes the function f ( x) = x + 2 and Q computes the 
function g( x) = 2x. Then the join PQ is the following program, which 
computes the function g(f(x )) == 2x + 4: 

0: s 1 
1: s 1 
2: T 1 2 
3: z 3 
4: J 2 3 8 
5: s 1 
6: s 3 
7: J 1 1 3 

In this example, the join PQ has the effect of first executing the 
program P, ending up at the initial instruction of Q with the output 
of P in register R1 , and then executing Q. 
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We shall now introduce conditions under which the join of two pro­
grams will compute the composition of two partial functions, as in the 
example. We first define the regular programs, which behave well as 
the first part of a join, and then define the neatly computing programs, 
which are regular and also behave well as the second part of a join. 

Definition 4.8.4 We will call an ARM program P regular if P has 
no halt instructions before the last nonhalt instruction, and no target 
of a jump instruction in P is greater than the program length n(P). 

The three programs listed above are regular. 
Let us consider a joined program PQ whose first part P is regular. 

Suppose P and Q are ARM programs and P is regular. Then the join 
program PQ will stay within the first n(P) instructions and therefore 
.do exactly the same thing as P does until P halts. If P never halts 
with input x1 , x 2 , •• • , then PQ never halts with input xi, x 2 , •• •• If P 
with input x1 , x 2 , ••• halts at step t, then PQ with input xi, x 2 , •.• will 
have the same state as P at time t, with the program counter at n(P) 
where the Q part of the join program begins. 

There is one more problem to be dealt with. The program P might 
place nonzero data in registers R2 , R3 , ••• while computing its output 
in R1 . In order to be sure that PQ computes the composition, we must 
know that the output of Qin R1 depends only on the initial contents of 
R1 and is not affected by the initial contents of the other data registers. 

Definition 4.8.5 An RM program P is said to neatly compute 
an n-ary function f if P is regular and computes f in the following 
sense: if the registers of the RM are initialized so that the registers 
R1 through Rn hold the numbers a1 through an, and the program P 
is loaded into the machine and executed (starting with instruction Io), 
then, no matter what the other registers contain initially) 

" if ( ai, a2 , ••• , an) E Dom(!), then the program eventually halts 
with register R1 holding the value J( a1 , a2 , ••• , an) of the function; 
and 

~if (a1 , a2 , . . ·.,an) tf.· Dom(!), then the program never halts, i.e. 
computes forever. 
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In other words, P neatly computes the n-ary function f if and only 
if P is regular and for any m 2 n and any numbers a1 , a2, ... , am we 
have both the condition 

and the condition that 

for (a1, a2, ... , am) E Dom(cI>~m)). 
Again, the functions in our example above are neatly computed by 

their ARM programs. We now show that joins of neatly computing 
programs neatly compute compositions of partial functions. 

Lemma 4.8.6 Suppose that P and Q neatly compute the unary partial 
functions f and g. Then the join PQ neatly computes the composition 
go f. 

Proof: Let h be the unary partial function computed by PQ. Start 
with x in R1. Since Pis regular, P and PQ will do exactly the same 
thing until P halts. Thus if f(x) is undefined, then both P and PQ 
will go on forever, so h( x) is undefined. 

Suppose that f ( x) is defined. Then P will halt at some time t with 
f(x) in R1, so PQ at time twill have f(x) in R1 and the program 
counter at n(P) where Q begins. Since P neatly computes f, this hap­
pens no matter what the initial contents of the other registers Rn, n > 1 
were. 

The program PQ will now do the same thing as Q would do starting 
from the data register contents left by P at time t. Since Q neatly 
computes g, the output of PQ in R1 depends only on the contents of 
R1 at time t, not on the other data registers. If g(f ( x)) is undefined, the 
program PQ will never halt, so h(x) is undefined. If g(f(x)) is defined, 
the program PQ will eventually halt with g(f(x)) in R1, so h(x) = 
g(f(x)). Thus PQ neatly computes h, and h =go f. End of Proof. 

The following proposition shows that there are enough neatly com­
puting programs to capture all RM computable functions. 
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Proposition 4.8. 7 If an RM program P computes an n-ary partial 
function f, then there is a program Q which neatly computes the same 
partial function f. 

Proof: To make the computation neat, first add additional steps at the 
beginning of the program P which put zero in all the registers which 
are used in the program except for the first n registers. Let m be the 
length of this adjusted program. Renumber the targets of the jump 
instructions by increasing each by m. 

To make the program regular, decrease to m any targets of jump 
instructions in this new program which exceed m. Replace all halt in­
structions by the instruction (J, 1, 1, m). The new program Q computes 
f neatly, and is clearly regular as well. End of Proof. 

We now prove the composition part of the Closure Theorem. We 
shall prove even more, that the Godel number of a program for the 
composition is given by an RM computable function. 

Theorem 4.8.8 (Closure Under Composition) If g and hare RM 
computable functions of one variable, then the composition go h is RM 
computable. Moreover, there is an RM computable total function c of 
two variables such that whenever x and y are the Godel numbers of 
ARM programs which neatly compute g and h respectively, then c( x, Y) 
is the Godel number of an ARM program which neatly computes go h. 

Proof: The first part of the theorem follows from Lemma 4.8.6, which 
shows that if P neatly computes g and Q neatly computes h, then the 
join PQ neatly computes the composition go h. It now follows that 
the function c given in Lemma 4.8.3 does the job 3

. 

Theorem 4.8.9 (Closure Under Primitive Recursion) If h is an 
RM computable function of two variables, then the partial function f 
of one variable given by the rule 

f(O) = 1, f(n + 1) = h(f(n), n) 

function c will be computed by the ARM program COMPOSE assigned in 
· computer problem set GN6. · 
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is RM computable. Moreover, there is an RM computable total function 
r of one variable such that for all x, if x is the Godel number of an RM 
program which neatly computes h then r( x) is the Godel number of an 
RM program which neatly computes the new partial function f given by 
the above rule. 

Proof: We sketch the proof of the first part of the theorem. Let P 
neatly compute h. Take m large enough so that P does not use any 
register beyond Rm, that is, no register number larger than m appears 
in the instructions of P. We describe a new program Q which neatly 
computes f. First, Q saves the original input a in Rm+i, and puts a 
zero in Rm+2· The number in Rm+i, which we shall call x, will be used 
as a counter which works its way from 0 to a. Q then puts a 1 in R1 • 

Now Q checks whether a = x. If so, Q halts. Otherwise, Q puts x 
into R2, runs the program P, and increases x by 1. It then repeats the 
process given in the current paragraph. 

The program Q can be built by joining a few instructions before 
and after P 

_ To prove the second part of the theorem, an ARM program must 
be produced which computes the total function r 4

• End of Proof. 

Theorem 4.8.10 (Closure Under .Course of Values Recursion) 
If h is an RM computable function of two variables, then the partial 
function g of one variable given by the rule 

g ( 0) == 1, g ( n + 1) = h ( # ( (g ( 0), ... , g ( n)), n) 

is RM computable. Moreover, there is an RM computable total function 
r of one variable such that for all x, if x is the Godel number of an RM 
program which neatly computes h then r( x) is the Godel number of an 
RM program which neatly computes the new partial function g given by 
the above rule. 

Again, this can be proved by producing an appropriate RM pro­
gram. 5 

4This is assigned as the problem RECUR in computer problem set GN6. 
5This is assigned as the problem CVREC in problem set GN6. 
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Theorem 4.8.11 (Parametrization) If f is an RM computable func­
tion of two variables, then for each natural number n, the one variable 
partial/unction fn(x) = f(x,n), obtained by holding the second argu­
ment fixed at n, is RM computable. Moreover, there is an RM com­
putable total function p of two variables such that for all x and y, if x 
is the Godel number of an RM program which neatly computes f then 
p( x, y) is the Godel number of an RM program which neatly computes 

fy· 

The first part is proved as follows. Let P be an RM program which 
neatly computes f. For each n, let Qn be the program which has one 
instruction (Z, 2) followed by n copies of the instruction (S, 2). Then 
the join QnP computes the partial function fn, because it puts n in 
register 2 and then executes P. The second part is proved by producing 
the RM program PARAM which does the job.6 If PARAM is executed 
with the Godel number of an RM program P as the first input and n 
as the second input, it will halt with the Godel number of the program 
QnP as output. 

Theorem 4.8.12 (Closure Under Unbounded Minimalization) 
Let R be an RM-computable binary relation. Then the partial unary 
function f defined by 

f(x) = µy R(x, y) 

is RM-computable. Moreover, there is an RM computable total function 
r of one variable such that for all x, if x is the Godel number of an RM 
program which neatly computes the characteristic function of R then 
r(x) is the Godel number of an RM program which neatly computes the 
new partial function f given by the above rule. 

To prove the theorem, an RM program must be produced which 
computes the total function r.7 

6 Included on the problem diskette as an example .. 
7This is assigned as the problem UBMIN in computer problem set GN6. 
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4.9 Universal RM Programs 

An RM program U is universal for one input if for all RM programs 
P with one input there is a number e such that for all x the output of U 
computing on input ( e, x) is the same as the output of P computing on 
input x. (The program U never halts on ( e, x) just in case P never halts 
on x.) We sometimes call P the simulated program with index e. 
More generally, an RM program U is universal for n inputs if for 
all RM programs P with n inputs there is a number e such that for all 
Xi, ... , Xn the output of U computing on inputs ( e, x1, ... , xn) is the 
same as the output of P computing on inputs (x1 , ••• , Xn)· 

Theorem 4.9.1 (Universal Machine) For every n there is an RM 
program which is universal for n inputs. 

We shall prove this theorem in case n = 2 by producing a universal 
RM program UNIV for two inputs. We leave the problem of modifying 
the program to produce a universal program on n inputs as an exercise 
for the reader (Exercise 11). The following remark takes care of the 
case of one input. 

Remark 4.9.2 If UNIV is a universal RM program for two inputs, 
then the program UNIVl formed by joining the single instruction (Z, 3) 
to the beginning of UNIV is a universal RM program for one input. 

This is because, by definition, the output of an ARM program com­
puting on n inputs is obtained by starting the program with the given 
inputs in the first n registers and zero in all other registers. 

To make the task of producing a universal program easier, we shall 
use the advanced RM instructions. (It follows'from Theorem 4.7.1 that 
there is also an ordinary RM program which does the job.) To keep 
things balanced, the universal program will simulate advanced as well 
as ordinary RM programs. The ARM program UNIV listed below is 
the same as the one supplied on the diskette. 

UNIV will use several Godel numbers of sequences of numbers. We 
identify the instructions H, Z, S, T, J, E, and P with the natural 
numbers 1,2,3,4,5,6,7. An ARM instruction is then a sequence of at 
most 4 natural numbers, and an ARM program Pis a finite sequence of 
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instructions. The state of an ARM program P during a computation is 
another finite sequence of natural numbers, giving the contents of each 
register used in the program. 

UNIV accepts as input a triple e, x, y in registers Ri, R2 and R3. 
The number e is interpreted as the Godel number of an ARM program 
P. (If the sequence display is used in the GNUMBER program, e will· 
appear as a finite sequence of Godel numbers for the instructions of 
P.) The output of UNIV will be the same as the output of the pro­
gram P with input x, y. UNIV works by simulating an ARM machine 
running the program P. The contents of the registers of Jhe simulated 
machine are coded as a Godel number for a single finite sequence of 
natural numbers, which is held in register R4 (the fourth register of the 
universal machine). The zeroth term of the sequence coded in R4 is 
the program counter of the simulated machine. For n ~ 1, the n-th 
term of the sequence coded in R4 is then-th register of the simulated 
machine. UNIV begins by initializing constants and clearing register 
R4 to zero. It then places x and y into the simulated registers one and 
two. It does this by using the Put command to make the first term of 
the sequence coded in R4 equal to x and the second term equal to y. 
At this point the simulated program counter, which is the zeroth term 
of the sequence coded in R4 , contains a zero. UNIV next analyzes the 
zeroth simulated instruction, whose Godel number is ·the zeroth term 
of the sequence coded by the input e in register Ri, and performs the 
indicated operation on the contents of the simulated program counter 
and registers coded in R4 • It then repeats the process, extracting the 
simulated program counter from the zeroth term in R4 , and the sim­
ulated instruction from R1 • In this way, UNIV does the same thing 
to the simulated registers in R4 that the program P would do to its 
registers. 

For example, suppose that the simulated program counter, which is 
the zeroth term in R4 , is 5, and the fifth simulated instruction is Z3. 
We identify Z3 with the sequence (2, 3), whose Godel number 2223 
would be the fifth term in R1. UNIV will use the Put command to 
place a zero in the third simulated register, which is the third term in 
R4. 

Here is a list of the registers used in the program UNIV. For each 
·register, we give a name for the contents to use in comments, and a 
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verbal description. 

R1 : a. The input e, a Godel number of the simulated program P. (In 
the sequence display, e is shown as a sequence of Godel numbers 
of instructions of P. Each instruction is itself a sequence of from 
one to four numbers.) The output of the program also goes here. 

R2 : b. The input x. 

R3 c. The input y. 

R4 reg. A Godel number for the state of the simulated machine, 
i.e. the finite sequence consisting of the contents of the simulated 
program counter and the simulated registers. 

R5 pc. The simulated program counter, which is the zeroth term 
coded in reg. 

Re, quad. The Godel number of the pc-th simulated instruction, 
which is a sequence of from one to four numbers. quad is the 
pc-th term of the simulated program e in R1 • 

R7 op. The zeroth term of the simulated instruction quad. This term 
is an opoode for one of the commands H,Z,S,T,J,E,P. 

R8 s 1. The first term of the simulated instruction quad (or zero if 
the instruction is of length 1). 

R9 s2. the second term of the simulated instruction quad (or zero if 
the instruction is of length < · 3). 

R10 : s3. The third term of the simulated instruction quad (or zero if 
the instruction is of length < 4). 

R11 : vi. The contents of simulated register number s1, i.e. the s1-th 
term of reg. 

R12 : v2. The contents of simulated register number s2, i.e. the s2-th 
term of reg. 
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R13 : v3. The contents of simulated register number s3, i.e. the s3-th 
term of reg. (Note that in case the simulated instruction number 
pc is a jump instruction, then s3 is another instruction number 
and not a register number). 

Rt4 : Unused. 

R15 : time. The time for the simulated program. (This is not needed, 
but is helpful when experimenting with the program). 

R20 : zero. The constant 0. 

R21 : one. The constant 1. 

R22 : two. The constant 2. 

R23 : three. The constant 3. 

R24 : four. The constant 4. 

R2s : five. The constant 5. 

R26 six. The constant 6. 

R21 seven. The constant 7. 

We first give a pseudocode description of UNIV, using the "variable" 
names in the preceding list for the contents of the registers used by 
UNIV. 
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program UNIV(a,b,c) 
input: a= e, b = x, c = y 
output: a= P(x) 
let zero 0, one = 1, ... , seven= 7 
let time = 0 
let reg = 0 
let reg[one] = b, reg[two] = c 
let pc = 0 
let op = 0 
do until op = H 

let quad= inst[pc] 
let op = quad[zero] 
let s1 = quad[one], v1 = reg[s1] 
let s2 = quad[two], v2 = reg[s2] 
let s3 quad[three], v3 = reg[s3] 
if op = Z then 

let reg[s1] = zero, pc = pc+1 

reg [s1] = v1, 

v1, pc = pc+1 

pc = pc+1 

else if op = S then 
let v1 = v1 + 1, 

else if op = T then 
let reg [s2] = 

else if op = J then 
if v1 = v2 then 

else if op = E then 
let v3 = v1 [v2], 

else if op = P then 

let pc= s3 else let pc 

let v3 = v1 [v2], 
else let op = H 
let reg[zero] = pc 
let time = time + 1 

loop 
let a = reg [one] 

end of program UNIV 

reg[s3] 

reg[s3] 

=v3, pc = pc+1 

= v3, pc = pc+1 

= pc+1 
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The listings in figures 4. 7 and 4.8 give "assembly code" for the uni­
versal program. Adjacent to the assembly code is the actual "machine 
language" which the assembly code describes. The program could be 
shortened by several steps, but instead is designed to match the pseu­
docode listing. Here's an outline: 

Initialization. Instructions 00-14 initialize the constants zero through 
seven. Instructions 15-20 initialize the simulated time counter 
time, program counter pc, and register sequence reg. 

Main Loop Instructions 21-29 initialize the main loop by extracting 
the opcode op of the instruction to be executed, the registers 
s1, s2, s3 used in this instruction, and the values v1, v2, v3 
held in this registers. Instructions 30-37 jump to the appropri­
ate interpreter subroutine. Instructions 57-58 increment the time 
counter and restart the loop. 

Action Instructions 38-56 contain the interpreter subroutines. 

Output Instructions 59-60 place the output in R1 and halt. 
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z zero 0: z 20 
T zero, one 1: T 20 21 
s one 2: s 21 
T one, two 3: T 21 22 
s two 4: S· 22 
T two, three 5: T 22 23 
s three 6: s 23 ZERO p zero, sl, reg 38: p 20 8 4 
T three, four 7: T 23 24 J NEXT 39: J 1 1 53 
s four 8: s 24 succ s vl 40: s 11 
T four, five 9: T 24 25 p vl, sl, reg 41: p 11 8 4 
s five 10: s 25 J NEXT 42: J 1 1 53 
T five, six 11: T 25 26 TRANS p vl, s2, reg 43: p 11 9 4 
s SlX 12: s 26 J NEXT 44: J 1 1 53 
T six, seven 13: T 26 27 JUMP J vl, v2, SETPC 45: J 11 12 55 
s seven 14: s 27 J NEXT 46: J 1 1 53 
z time 15: z 15 EXTR E vl, v2, v3 47: E 11 12 13 
z _,reg 16: z 4 p v3, s3, reg 48: p 13 10 4 
p b, one, reg 17: p 2 21 4 J NEXT 49: J 1 1 53 
p c, two, reg 18: p 3 22 4 PUT p vl, v2, v3 50: p 11 12 13 
z pc 19: z 5 p v3, s3, reg 51: p 13 10 4 
z op 20: z 7 J NEXT 52: J 1 1 53 

LOOP J op,one,EXIT 21: J 7 21 59 NEXT s pc 53: s 5 
E a, pc, quad 22: E 1 5 6 J DONE 54: J 1 1 56 
E quad, zero, op 23: E 6 20 7 SETPC T v3, pc 55: T 10 5 
E quad, one, sl 24: E 6 21 8 DONE p pc, zero, reg 56: p 5 20 4 
E quad, two, s2 25: E 6 22 9 s time 57: s 15 
E quad, three, s3 26: E 6 23 10 J LOOP 58: J 1 1 21 
E reg, sl, vl 27: E 4 8 11 EXIT E reg, one, a 59: E 4 21 1 
E reg, s2, v2 28: E 4 9 12 H 60: H ! 

! 
E reg, s3, v3 29: E 4 10 13 \ 

( 

J op, two, ZERO 30: J 7 22 38 Figure 4.8: Subroutines for the Universal Program l 
!t 

J op, three, SUCC 31: J 7 23 40 11 
·~ 

J op, four, TRANS 32: J 7 24 43 :i 
~ J op, five, JUMP 33: J 7 25 45 
~ J op, six, EXTR 34: J 7 26 47 '! 

J op, seven, PUT 35: J 7 27 50 l 
T one, op 36: T 21 7 :! 

i 

J DONE 37: J 1 1 56 l 

Figure 4.7: The Universal Program (Assembly Code) 
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4.10 Church's Thesis 

We introduced our RM computer as an attempt to capture the notion 
of an algorithm. And certainly every partial function which is RM 
computable is computable by an algorithm (using the program itself as 
the desired algorithm). But what about the converse? (Is every partial 
function computable by an algorithm in fact RM computable?) Until a 
generally accepted formal definition of "algorithm" is designed, no for­
mal proof of the converse is possible. However, every known attempt to 
describe the class of algorithmically computable functions - using com­
puting machines (like our RM computer), formal systems (like Weak or 
Peano Arithmetic), recursiveness, and others -.has resulted in exactly 
the same class of computablefonctions. In Chapter 5 we shall make use 
of two of these alternative characterizations of the class of computable 
functions, the recursive functions and the functions which are repre­
sentable in Weak Arithmetic. This confluence of ideas suggests that 
the class of RM computable functions is both natural and comprehen­
sive. Secondly, no one has ever described an (intuitively) algorithmic 
function which didn't turn out· to be RM computable. These consider­
ations have led mathematicians to accept the following statement: 

CHURCH'S THESIS 

Every partial or total function which can be computed by an 
algorithm is an RM computable partial or total function. 

Let us emphasize that Church's Thesis is not a theorem but rather 
is a heuristic principle for which there is a great deal of evidence. 
The reason Church's Thesis is only a heuristic principle is that we do 
not have a mathematically rigorous definition of the word "algorithm." 
We can agree that many particular examples are algorithms, but state­
ments about the class of all algorithms are hard to make precise. Using 
Church's Thesis frequently makes the job of verifying that certain par­
tial functions are RM computable much easier, since it allows us to 
point to a simple algorithm rather than a tedious RM program to es­
tablish RM computability. Actually, we already began using a form 
of Church's Thesis in Section 4.6 when we claimed that the functions 
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Length , Digit , etc. were RM computable after exhibiting only pseu­
docode programs for them. The task of actually writing RM programs 
in place of these pseudocode programs has been left to the exercises. 
The proof in this book that every ARM computable function is RM 
computable used Church's Thesis to show that these pseudocode pro­
grams can be replaced by actual RM programs. When this proof is 
supplemented by the actual RM programs required by the exercises, 
we obtain a rigorous proof that every ARM computable function is 
RM computable. 

The theorem that there exists a universal ARM program for one 
input is a good example of a theorem which can be proved more easily 
if one uses Church's Thesis. In this chapter we gave an explicit exam­
ple of ~ universal ARM program, without relying on Church's thesis. 
The following proof uses Church's Thesis to show very quickly that 
there exists a universal ARM program without actually producing· the 
program. 

Proof that there is a universal ARM program (using Church's 
Thesis): We show that the partial function Univ given by 

Univ( e, x) fe( x ), 

where f is the partial function computed by the ARM program with 
Godel number e, is.RM computable. By Church's Thesis, all we have 
to do is describe an algorithm which computes this partial function. 
Here it is: Write down the ARM program which has Godel number 
e, Run that program with input x in register Ri and 0 in all other 
registers. If the computation eventually halts, Univ( e, x) = a where 
a is the number in register R1 at the halt. Otherwise, Univ( e, x) is 
undefined. End of Pro of. 

In the next chapter we shall use Church's Thesis to show that the 
some of the central notions of predicate logic are RM computable. 

Whenever we use Church's Thesis in a proof in this book, it is 
possible to give a completely rigorous proof without Church's Thesis. 
In cases where these rigorous proofs are long and bereft of new ideas, 

. it is better to accept Church's Thesis and use the extra time elsewhere. 
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4.11 The Halting Problem 

Recall from page 199 that a numerical relation R in n variables is said 
to be RM computable8 if there is an RM program which produces 
the output 1 (for yes) if the input satisfies the relation, and produces 
the output 0 (for no) if not. Such a program is said to compute 
the relation R. A relation R which is not RM computable is said to 
be undecidable; we also say that the decision problem for R is 
undecidable. According to Church's thesis, if a relation is undecidable, 
then it is impossible to design an algorithm which, given any input, 
will always produce the answer yes if the input belongs to R and the 
answer no if the answer does not belong to R. One of the main purposes 
of the RM machine is to show that various interesting relations are 
undecidable. In this section we shall use the universal RM program 
to give a first example of an interesting undecidable relation. Other 
examples will be given in 5.10 and Exercise 17. 

Theorem 4.11.1 (Halting Problem) Let UNIV1 be the universal 
program for RM programs with one input. Let R( x, y) be the set of 
all pairs x, y of natural numbers such that UNIV1 computing on inputs 
x, y eventually halts. The relation R is undecidable1 i.e. it is not RM 
computable. 

Proof: The proof is by contradiction. Suppose that R is RM com­
putable. Then there is an RM program P which computes the relation 
R. Let u be the partial function of two variables computed by UNIVL 
By joining the program P with UNIV! and doing some easy house­
keeping, we can form an RM program Q which, when computing on 
input x, halts with output 0 if R(x, x) is false and halts with output 
u( x, x) + 1 if R( x, x) is true. Let n be Godel number of Q. The pro­
gram Q will eventually halt with any input because it computes a total 
function. The program UNIV! computing on input n, n will eventually 
halt with the same output as Q computing on input n. But UNIV! 
computing on input n, n will have output u(n, n), and by the definition 
of Q, Q computing on input n will halt with output u( n, n) + 1. Thus 

8 The word decidable is often used as a synonym for computable. 
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u(n, n) = u(n, n) + 1, which is a contradiction: Therefore R cannot be 
RM computable. · End of Proof. 

There is a striking resemblance between the preceding proof and the 
arguments used in the proofs of each of the following: Russell's result 
that the common notion of "set" is self-contradictory (i.e., Russell's 
paradox - Exercise 2.46); Cantor's Theorem that there can be no func­
tion from· a set X onto the set of all subsets of X (Theorem A.6 in the 
Appendix); and the result that there is an RM computable function 
which is not primitive recursive (Exercise 4.31). 

The powerful technique common to these arguments is known . as 
Cantor's diagonal method. The idea is to prove that a certain binary 
relation R( x, y) cannot have some property by looking at the diagonal 
relation R( x, x) in two different ways. The diagonal method will be used 
again in the next chapter to prove Godel's Incompleteness Theorems. 

4.12 Church's Theorem 

Church's theorem says that we cannot program a computer to accept 
as input a wff of predicate logic and produce as output a zero or one 
according to whether or not the input wff is valid. We will prove this by 
contradiction; under the (false) assumption that such a program exists, 
we will show how to construct another program which solves the halting 
problem~ Since the latter program does not exist (by Theorem 4.11.1) 
neither does the former. 

A vocabulary sufficient for describing the behavior of an RM pro­
gram P which uses only the registers 

(where Ro is the program counter), contains the equality symbol ==, 
a constant symbol 0 for the number zero, a unary function symbol s 
for the successor function, and an ( f, + 1 )-ary predicate symbol R. As 
in Section 3.7 every non-negative integer n has a name n called the 
numeral which denotes n. For example, 

3 = s(s(s(O))). 
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Theorem 4.12.1 For every RM program P which uses only the regis­
. ters Ro, ... , Rt there is a wff 

with free variables (xi, x2 , ••• , Xt) such that for all £-tuples ( ai, a2 , ••• , at) E 
Ni the sentence 

Ap(a1, a2, ... , at) 

is valid if and only if the program P halts on input ( ai, ... , at). 

Proof: The intended interpretation of the wff R(x0 , x1 , x2 , ••• , Xt) is 
that the state of a register machine running the program Pis (x0 , x 1 , ••• , Xt); 
that is, the register Rj holds the value Xj· We shall be more precise 
about this below. It is important to remember that when the register 
machine is running, the register Ro plays a special role: it holds the 
index of the next instruetion to be executed. 

Suppose that the program P is given by 

We may assume without loss of generality that the program Pis regular. 
Thus Ip= Hand if Ij (J, m, n, q) then q ~ p. 

To each instruction Ij (j = 0, 1, ... ,p) of the program P we asso­
ciate a wff Ij as follows. 

• If Ij = (Z, n) then Ij is the wff 

R(j, Yi, ... , Yn, ... , Yt) => R(s(j),.Y1, ... , 0, ... , Yt). 

• If Ij (S, n) then Ij is the wff 

R(j, Yi, ... , Yn, ... , Yt) => R(s(j), yi, •.. , s(yn), ... , Yt)· 

• If Ii= (T, m, n) then lj is the wff 

R(j, ... , Yn, ... , Ym, .. . ) => R(s(j), ... , Ym, ... , Ym, .. . ). 
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• If lj = (J, m, n, q) then lj is the wff Ij /\ l'J where Ij is · 

[Ym = Yn /\ R(j, Y1, ... 'Yt)] => R( q, Y1, ... 'Yi)· 

and I'! is 
J 

Denote by Cp the sentence 

(recall that Ip is a halt instruction). Denote by B the sentence 

\fx •s(x) = 0 /\ \fx\fy [s(x) = s(y)::::} x = y], 

and by Ap(xi, ... , Xt) the wff 

[B /\ Cp /\ R(O, x1, ... , Xt)] => 3z1 ... 3ztR(p, Zi, ... , Zn)· 
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We must prove that for each (a1 , ... , at) E Ni the following are equiv­
alent: 

(I) The sentence Ap(a1, ... , at) is valid, 

(II) The RM program P halts on the input ( ai, ... , am), that is, 

( ai, ... , ai) E Dom( <.P~)). 

Choose (ai, ... , at) E Ni. For k = 0, 1, ... ,£ and t = 0, 1, 2, ·: · 
let rk( t) denote the value in register Rk after t steps when the RM is 
running program P from the initial state (0, a1 , •.• , at)· In terms of 
the notation introduced on page 198 this means that rk(t) is defined 
inductively by 

(r0 (0), r1(0), ... , rt(O)) = (0, ai, ... ";at) 

and 

·(r0 (t + 1), r1 (t + 1), ... , rt(t + 1)) = NXSTATEp(ro(t), ri(t), · · ·, rt(t)), 
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where NXSTATEp is the next state function of the program P. For 
each t = 0, 1, 2, ... let Dt denote the sentence 

ll(ro(t),r1(t), ... ,rt(t)) 

which results from R(xo, x1 , ••• , xt) by replacing each Xk by the numeral 
rk(t) which denotes the number rk(t). The next state function returns 
its input unchanged if .Ro points to a halt instruction (or contains a 
value larger than p) so, if P halts on the input (a1 , a2, .•• , at) then the 
list 

(1) 

terminates in the sense that DT DT +1 • · · for sufficiently large T. 
We are now ready to prove the theorem, that is, to prove that (I) 

and (II) are equivalent. Assume (I). Define a model M with universe 
N, the natural numbers, by taking sM(n) = n + 1, OM = 0, and 

iff ll(ho, hi, ... hn) appears in the list ( 1). Now 

because each of these sentences asserts that if some state occurs during 
the computation, some other state occurs at the next step. Hence 

MI= Cp. 

M I= B because in the model M the successor function and zero have 
their usual interpretations. Moreover, M I= R(O, ai, ... , at) since this 
sentence is D 0 , the first sentence in the list (1 ). Thus 

(2). 

Since we are assuming that Ap( ai, ... , at) is valid this sentence holds 
(in particular) in the model M: 

(3) 
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But we have seen that the antecedent of Ap holds in M so the conse­
quent must holds as well: 

(4) 

In other words there are numbers b1, b2 , ••• , bt E N such 

(5), M f= ll(p, hi, ... , ht) 

so that the sentence 
R(p, hi, ... , ht) 

occurs in the list (1). But this means that P halts. 
Now we prove the converse. Assume II, that is, that the compu­

tation halts. We must show that the sentence Ap(a1 , ... , at) is valid. 
To do this we choose a model M and prove (3). If (2) is false then (3) 
follows trivially. Assume (2). Then by induction on t we have that 

fort= 0, 1, 2, .... Since the computation halts, the sentence 

R(p, hi, ... , ht) 

appears in the list (1). Therefore this sentence holds in M, that is, (5) 
holds. It follows that ( 4) holds, and therefore (3) holds. End of Proof. 

Church's theorem says that we cannot program a computer to ac­
cept as input a wff of predicate logic and produce as output a zero or 
one according to whether or not the input wff is valid. To make this 
precise we must assign a Godel number #(A) to each wff A of predicate 
logic. There are many ways of defining such a Godel numbering. The 
scheme we shall use here takes advantage of the Godel numbering of 
finite sequences of natural numbers already developed in this chapter. 

The first step is to assign a natural number, called a code, to each 
symbol s of the full predicate logic with vocabulary 0, s, R}, where 
R is an (£ + 1)-ary predicate symbol. Let 
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be a list of all the variables of first order logic. We shall assign the even 
number 2n as the code of the nth variable Vn, and assign odd numbers 
as codes of the other symbols, including brackets and parentheses, as 
follows: , 

symbol =? ~ 3 \:/ _.'._ 

code 1 
/\ 
3 

v 
5 7 9 11 13 15 

symbol 
code 

[] () 0 s R 
17 19 21 23 25 27 29 31 

Next we. define the Godel number #(T) of a string T of symbols 
to be the Godel number of the sequence of codes of the symbols. For 
example, 

#(0 +Vs= s(vo)) = #(25, 29, 10, 15, 27, 21, O, 23). 

Each term and each wff, being a string of symbols, now has a Godel 
number. 

Lemma 4.12.2 Let B be a wff in a full predicate logic with the vo­
cabulary { =, 0, s, R}, and let f3B be the total function from N2 into N 
defined by 

f3B(a, b) #(B(a, b)) 

where B( a, b) is the wff obtained from B by replacing all free occur­
rences. of the the variable x 1 by the numeral a and all free occurrences 
of the the variable X2 by the numeral b. Then f3B is RM computable. 

Proof: By Church's Thesis, it is enough to describe an algorithm with 
input (a, b) which computes f3B(a, b). We sketch such an algorithm. 
The first step is to build a parsing sequence for B. This can be done 
using an exercise from Chapter one, that each wff either starts with 
a negation symbol or quantifier, or has a main connective which is 
the unique binary connective preceded by one more left bracket than 
right bracket. Working through the parsing sequence, underline each 
bound occurrence of each variable. This can be done by underlining 
all occurrences of a variable which come from underlined occurrences 
ear lier in the parsing sequence, and also underlining all occurrences of 
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x in a wff starting with \Ix or 3x. Form the string b consisting of b s 
symbols followed by one 0 symbol, and do the same for a. Then replace 
in B all nonunderlined occurrences of x 1 by a and all nonunderlined 
occurrences of x 2 by b. This results in the wff B( a, b ). Finally, compute 
the Godel number of this wff as the output. End of Proof. 

Recall from page 199 that a subset V C N is called computable 
iff its characteristic function cv is RM computable (See page 193.) The 
set V is undecidable iff it is not RM computable. 

Theorem 4.12.3 (Church's Theorem) Let ('P,:F) be a vocabulary 
containing at least the symbols { =, 0, s} and an f-ary predicate symbol 
for each l. Then the set 

V = {#(C) :f= C} 

. of Godel numbers of valid sentences in the full predicate logic with vo­
cabulary ('P, :F) is undecidable. 

Proof: As in Theorem 4.11.1 let S denote the set of pairs (a, b) such 
that the universal machine UNIVl halts on the input (a, b). Theo­
rem 4.11.1 says that S is undecidable (i.e. not computable). Under 
the assumption that V is computable we shall derive the contradiction 
that Sis RM computable. Denote by U(xi, x2) the wff 

AuN1v1(xi, x2, 0, O, ... , 0) 

which results from the wff AuNIVI by substituting 0 for the free vari­
ables other than x1 and x2• By Theorem 4.12.1 we have 

S = {(a,b): U(a, b) is valid}. 

In other words 

(a, b) ES ~ #(U(a, b)) EV 

or 
cs( a, b) = cv(f3u(a, b)). 

By the preceding Lemma, the right hand side is an RM computable 
function of (a, b). under the assumption that cv is RM computable. But 
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this says that cs is RM computable which contradicts Theorem 4.11.1. 
End of Proof. 

We can see from the proof of Church's Theorem that we did not 
really need to assume that the vocabulary has an £-ary predicate symbol 
for each £. Instead, we only needed a single £-ary predicate symbol 
R where Re-I is the last register used by the universal RM program 
UNIVl. In fact, it can be shown that in any predicate logic with at 
least one predicate symbol which is binary or larger, the set of Godel 
numbers of valid sentences is undecidable. 

4.13 Simple Gnumber Problems (GNUM5) 

This is the first of two problem sets using the GNUMBER or GNUMWIN 
program. In this assignment you only need the SIMPLE form of the 
program, which you start by hittingthe Sor RETURN key when you 
see the title screen. 

The following sample register machine programs are located in di­
rectory GNUM5 on the distribution diskette. The SETUPDOS or SE­
TUPWIN program will put them in a subdirectory called GNUM5 on 
your hard disk. The RM programs 

ADD, MULT, PRED, DOTMINUS, and DIVREM 

are explained in the text, and the commented listings on the distribu­
tion diskette are reproduced in Appendix B. Your problem assignment 
is to type in RM programs which compute the following functions. 
Test your answers out using the·GNUMBER program (for DOS) or the 
GNUMWIN program (for Windows), then file your answers on your 
diskette and give them the names indicated. 

In the formulas, x, y are the numbers in registers R1 , R2 before run­
ning the program, and a, b are the numbers in these registers after 
running the program. 

EQUAL: 
SQUARE: 
ROOT: 

a = 1 if x = y, a = 0 if not x = y 
a= x * x 
a = square root of x if x is a perfect square, 
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LESS: 
FACTRL: 
EXP: 

PRIME: 
LENGTH: 

DIGIT: 

undefined otherwise. 
a = 1 if x < y, a = 0 otherwise. 
a = x! (a = 1 * 2 * ... * x if x > 0, a = 1 if x = 0) 
a = x raised to the y-th power if x > 0, 
a = 0 if x = 0 and y > 0 
undefined if x = y = 0. 
a= 1 if xis prime (2,3,5,7, 11, ... ), otherwise a= 0. 
a = the number of decimal digits in x. 
(For example, 7 402 has length 4). 
a= the y-th digit in x, counting from 0 on the left 
if y < the number of decimal digits in x, a = 0 otherwise. 
(For example, the 0-th digit of 7402 is 7). 

In solving these problems, you may load in the sample programs 
and use them as building blocks if you wish. 

The following functions are optional problems which require longer 
RM programs built up from LENGTH and DIGIT: 

TERMSO: 

START:. 

PUTEND: 

·EXTRACT: 
PUT: 

a= number of terms in the sequence with Godel number x 
(not necessarily in standard form), 
the empty sequence having zero terms. 
a = position of marker for the start of the y-th 
term in the sequence with Godel number x 
(not necessarily in standard form), 
counting from 0 on the left. 
Undefined if Terms(x) ~ y. 
a = the Godel number of the sequence formed by adding y 
as one more term to the end of the sequence with Godel 
number x, 
if x is a Godel number in standard form. 
It doesn't matter what happens if x is not a standard 
Godel number. 
c = Extract(x, y). 
c = Put(x, y, z). 
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Advanced Gnumber Problems ( G NUM6~. 4.14 

This assignment uses the Advanced form of the GNUMBER or GNUMWIN 
program. In the GNUMBER program, you start the advanced form by 
pressing the A key when you see the title· screen. 

The problems in this assignment deal with Godel numbers of register 
machine programs. Each ARM instruction is a sequence consisting of 
an instruction letter and up to four numbers. The instruction letters 
are identified with numbers as follows: L 

H = 1, Z = 2, S = 3, T = 4, J 5, E = 6, P = 7. 

Each instruction, being a finite sequence of numbers, has a Godel 
number. An ARM program P is a finite sequence of instructions 
P1, ... ,Pn· If instruction number m has Godel number gm, then the 
Godel number of the whole program P is the Godel number of the 
sequence g1 , ••• , 9n· 

The following sample advanced register machine programs are lo­
cated in directory GNUM6 on the distribution diskette. The SETUP­
DOS or SETUPWIN program will put them in a subdirectory called 
GNUM6 on your hard disk. These ARM programs are named 

FIVE, TERMS, JOIN, PARAM, NXSTATEO, NXSTATE, and UNIV. 

In the Appendix there are pseudocode listings of these programs, as well 
as a reproduction of the commented listings which are on the diskette. 

The following paragraphs explain the effect of these programs on the 
input and output registers. In the formulas, x, y, z, t are the numbers 
in registers Ri, R2, R3, R4 before running the program, and a, bare the 
numbers in these registers after running the program. 

FIVE: Puts the constants 0 through 5 in registers R20 through R25 • 

(It is uften convenient to place this at the start of a program). 

TERMS: If xis the standard Godel number of a sequence, then a is 
the number of terms of the sequence. Otherwise a is zero. 

JOIN: If x and y are Godel numbers of ARM programs P and Q (not 
necessarily in standard form), z and t the numbers of instructions 

~,:1t 
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in P and Q, and registers R20 through R25 already contain 0 
through 5, then a is the standard Godel number of the ARM 
program P followed by Q with each jump target of Q increased 
by the number of instructions in P. Otherwise the output a can 
be anything. Extra bonus: this program ends with z + t in R9. 

PARAM: If x is the standard Godel .number of an ARM program 
which neatly computes a function f ( ., . ) of two variables, then a 

is the standard Godel number of an ARM program which neatly 
computes the function g(.) = f(y, .) of one variable. Otherwise 
the output a can be anything. 

NXSTATE: If x is a Godel number of an ARM program and y is a 
Godel number of a sequence representing the register state, then 
b will be the standard Godel number of the next state. (y and 
bare in R4 ) The inputs need not be Godel numbers in standard 

form. 

NXSTATEO: If xis a Godel number of an ARM program,.registers 
R20 through R27 hold the constants 0 through 7, and y is a Godel 
number of a sequence representing the register state, then b will 
be the standard Godel number of the next state. (y and b are 
in R

4
) (The program NXSTATE consists of a list of instructions 

which puts 0 through 7 in registers R20 through R21, followed by 
the program NXSTATEO). 

UNIV: The universal program in two variables. If x is a Godel number 
of an ARM program P (not necessarily in standard form), then 
a is the output of the program P with inputs y and z in R1 and 
R2 and zero inputs elsewhere. 

Your problem assignment is to type in register machine programs 
'which compute the following functions. Test your answers out using the 
GODEL and UNGODEL commands in the GNUMBER program, then 
file your answers on your diskette and give them the names indicated. 
The approximate number of steps required for the program is shown. 
When you need small constants, it is recommended that you start your 
program with FIVE to put 0 through 5 in registers R20 through R2s· 
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CON CAT: (7 steps) If x and y are Godel numbers of sequences of 
numbers in standard form, and z and t are the numbers of terms 
in these sequences, ·then a is the Godel number of the first se­
quence followed by the second sequence. (Concatenation of two 
sequences). Otherwise the output a can be anything. 

CONST: (19 steps) a is the Godel number of an RM program which 
puts the constant x in R1• 

STAND: (25 steps) Given an input x, if S is the sequence which has 
x as a Godel numper (not necessarily in standard form), then a 
is the Godel number of S in standard form. 

SUCC: (23 steps) If x is the Godel number of an ARM program in 
standard form which computes a function f(.), then a is the Godel 
number of an ARM program which computes the function f(.)+l. 
Otherwise the output a can be anything. 

TOP REG: (28 steps) If x is the Godel number in standard form of 
an ARM program P, then a is the largest number of a register 
mentioned in the first y instructions of P. Otherwise the output 
a can be anything; 

COMPOSE: (61 steps) If x and y are Godel numbers in standard form 
of ARM programs which neatly compute functions g(.) and h(.) 
of one variable, then a is the Godel number in standard form of an 
ARM program which neatly computes the composition function 
f(.) = g(h(.)). Otherwise the output a can be anything. 

BEFORE: (63 steps) a= 1 if the ARM progr~m with Godel number 
x, inputs y and z in R1 and R2 , and zero inputs elsewhere, halts 
before t steps, and a = 0 otherwise. (Hint: This can be done by 
slightly modifying the ARM program UNIV. UNIV puts the time 
in Register 15) 

RECUR: (90 steps) If x is the standard Godel number of an ARM 
program P which neatly neatly computes a function h(., .), y 
is. the largest register mentioned by P, and z is the number of 
instructions of P, then a is the standard Godel number of an 
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ARM program which neatly computes the function f ( ·) obtained 
from h by primitive recursion in the form 

J(O) = 1,f(u + 1) = h(f(u), u). 

Otherwise the output a can be anything. 

NEAT: (93 steps) If x is the Godel number in standard form of an 
ARM program P which computes a function f in one variable, 
y is the largest register mentioned in P, and z is the number of 
instructions of P, then a is the Godel number in standard form 
of an ARM program which neatly computes f. Otherwise the 
output a can be anything. 

CVREC: (139 steps) If xis the Godel number in standard form of an 
ARM program P which neatly neatly computes a function h(., .), 
y is the largest register mentioned by P, and z is the number 
of· instructions of P, then a is the standard Godel number of an 
ARM program which neatly computes the function f ( ·) obtained 
from h by course-of-values recursion in the form 

J(O) = 1,J(u+ 1) = h(GN((f(O), ... ,f(u)),u). 

Otherwise the output a can be anything. 

UBMIN: ( 165 steps) If x is the Godel number in standard for1:1 ?f 
an ARM program P which neatly computes the characteristic 
function h (., . ) of a binary relation R(., . ) , then a is the standard 
Godel number of an ARM program which neatly computes the 
function f ( x) = µy R( x, y) obtained from R by unbounded mini­
malization. Otherwise the output a can be anything. 

In solving your problems, you may load in the sample programs and 
use them as building blocks if you wish. Remember that the LOAD 
command can load ARM programs from the diskette starting at any 
point· within your current instruction list. 
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4.15 Exercises 

I. (a) Write an RM program which diverges (never halts) for every 
input. 

(b) Write an RM program P such that: P( x, y) never halts if x = y, 
P( x, y) halts with output 0 in register one if x =/= y. 

2. Write an RM program which uses only the instructions Z, S, and 
J, and has the effect of placing the number in register 3 into register 
7, with all other registers left unchanged. (This shows that the T 
command can always be avoided in RM programs). 

3. Show that any finite set, considered as a unary relation, is RM 
computable. 

4. Show that the Fibonacci sequence 

ao = l,a1=l,a2=2,a3 = 3,a4 = 5,a5 =8,a6 =13, ... , 

obtained by the rules 

is RM computable. 

5. Show that the zero function Z, successor function S, and projection 
functions Ii, defined by 

are RM computable. 

Z(x) = 0 
S(x)=x+l 
lf(x1, ... ,xn) =Xi 

6. (a) Write an RM program which computes a one-one onto mapping 
N x N~N. 

(b) Write an RM program which computes a one-one onto mapping 
N ~N xN. 
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7. Suppose instead of using the RM instruction set we use JN, S, 
Z, T, H, where (JN, 1, 2, 6) would mean jump to instruction 6 if the 
contents of register 1 is not equal to the contents of register 2. Prove 
that every computable function is computable in this new sense. 

·s. Suppose we consider programs that only use the instructions S,Z,T,H; 
i.e. no jump instructions at all. 

(a) Show that every function computable in this sense is total. 

(b) Show that not every total computable function is computable in 
this sense. 

9. Write an ARM program which computes the function 

f(x) = the standard Godel number of the sequence (0, 1, ... , x ). 

10. Give a universal ARM program for three inputs. 

11. Prove that for each natural number n, there is a universal ARM 
program for n inputs; 

12. Suppose an RM program P neatly computes a function f of one 
variable and another RM program Q neatly computes a function 9 of ' . 
one variable. Describe an RM program S such that, given inputs x m 
R1 and y in R2, S will halt with output 0 in R1 if f( x) and g(y) are 
both defined, and S will never halt otherwise. 

13. Let UNIV be a universal register machine program for two inputs. 
(That is, if p is the Godel number of a program P, then UNIV wi~h 
inputs p, x, y in registers R1 , R2 , R3 , and 0 in all other registers will 
produce the same output in R1 as program P with inputs x, y in regis­
ters R 1 , R 2 and 0 in all other registers). Let u be the Godel number of 
UNIV. Show that UNIV with inputs u, u, u in registers R1, R2, R3 and 
0 in all other registers will eventually halt with output 0 in R1. 
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14. Let us say that an ARM program U simulates an ARM program 
P which has Godel number p if for all x and b, U with inputs p and x 
in Rl and R2 and zero elsewhere halts with output bin Rl if and only 
if P with input x in Rl and zero elsewhere halts with output b in Rl. 
Suppose that U computes a total function of two variables, and that U 
simulates every ARM program P such that P has n instructions and 
computes a total function of one variable. Prove that U has at least 
n - 1 instructions. (Hint: . use a diagonal argument). 

15. Define a super ARM to be an ARM with an extra instruction N km 
which acts as follows. Before: Rk holds the Godel number of a simple 
RM program P and Rm holds the Godel number of a state S. After: Rm 
holds the God~l number of the new state formed by executing the j-th 
instruction of P where j is the 0-th term of S, and the program counter 
of the super ARM is increased by 1. Write a super ARM program U 
which is universal for RM programs in one input, i.e. which simulates 
every RM program in the sense of the preceding exercise. (Can be done 
in 7 instructions). 

16. Suppose the numerical relation R(x, y) is decidable. Show that the 
relation 

3z[z:::; y A R(x, z)] 

is also decidable. 

17. Show that the following relations are undecidable (Hint: In each 
case, assume the relation is decidable and prove that under that as­
sumption the Halting Problem is decidable, contrary to Theorem 4.11.1): 

(a) The set of all pairs ( e, x) such that e is the Godel number of an 
RM program which never halts with input x. 

(b) The set of all pairs ( e, x) such that e is the Godel number of an 
RM program which outputs 0 with input x. 

( c) The set of all numbers e such that e is the Godel number of an RM 
program which computes a total function. 
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18. Give an example of an RM computable partial function whose 
graph (considered as a binary relation) is not RM computable. 

In the following exercises, we introduce a new kind of machine, the 
LRM machine. It is obtained by modifying the definition of the 
RM machine as follows: The J (jump) instructions are eliminated and 
in their place are added the L (loop) instructions and the N (next) 
instructions. In any legal LRM the L and N instructions occur in 
pairs: for every L instruction there is a corresponding N instruction 
occurring later in the program. The instructions work as follows: 

(Z, S, T, H) The LRM machine has the Z (zero), S (successor), T 
(transfer), and H (halt) instructions which operate in exactly the 
same way as in the RM machine. 

For every n = 1, 2, 3 ... there is a loop instruction (L, n) whose effect 
is to execute the steps between the loop instruction and the cor­
responding next instruction rn times where rn is the value in the 
register Rn when the loop instruction is encountered. After these 
rn repetitions have been performed, the program jumps to the 
step immediately following the corresponding next instruction. 
(If rn = 0, the program immediately jumps to the corresponding 
next instruction.) 

For every q = 0, 1, 2, ... there is a next instruction (N, q). The q­
th instruction in the program must be a loop instruction ( L, n). 
The (N, q) instruction acts like an unconditional jump: (J, 1, 1, q). 
Notice that changing the value of Rn within the loop does not 
affect the number of times the loop is executed. 

A legal LRM program is a finite list of LRM instructions which 
satisfies the following three requirements. 

(1) The L and N instructions all occur in pairs as described above. 
(2) There are no H instructions before the last nonhalt instruction. 
(3) If any loop instruction occurs within a program fragment of the 

form 
((L, n), Ig+ 1 , ••• ,In (N, q)) 

· the corresponding next instruction must also occur in this fragment. 
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Thus the (L, N) pairs may be nested but if one loop starts within 
another loop, it must also end within the other loop . 

A function f (xi, x2, ... , Xn) is LRM computable if there is a legal 
LRM program P which computes it in the following sense: If the pro­
gram is run after the registers are initialized so that for k = 1, 2, ... , n 

the register Rk holds the value Xk and all other registers hold the value 
0, then when it halts the register R1 holds the value J(x 1 , x2 , ••• , xn)· 
We call f(x1, x2, ... , Xn) the n-ary function computed by the LRM 
program P on inputs (xi, x2 , ••• , xn)· 

For any legal LRM program P there is an RM program Q which 
performs in exactly the same way. It can be constructed as follows: 
Each part of the LRM program of the form 

ALOOF L x q: L n 

N ALOOF r: N q 

is replaced by 

z count q z c 
ALOOF J x,count, r+3 q+1: J n c r+3 

s count q+2: s c 

J ALOOF r+2 : J 1 1 q+ 1 

Here c is a register used nowhere else in the program (a different one 
for each ( L, N) pair) and each time the replacement is made all the 
jump instructions ( J, m, k, t) occurring after the L instruction must be 
corrected to ( J, m, k, t + 2). The replacement is repeated un~il no loop 
and next instructions remain. 

19. The following LRM program computes the addition function: 

ALOOF L y o: L 2 
s x 1: s 1 
N ALOOP 2: N o 

Find an equivalent RM program. 

20. The following LRM program computes the multiplication function: 
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z z 0: z 3 

MLOOP L x 1: L 1 

ALO OP L y 2: L 2 

s z 3: s 3 
N ALO OP 4: N 2 
N MLOOP 5: N 1 

T z,x 6: T 3 1 

Find an equivalent RM program. 

21. Write an LRM program which computes the characteristic function 
of the non-zero integers (that is, f(x) = 0 if x = 0 and f(x) = 1 if 

x :f 0.) 

22. Write an LRM program which computes the characteristic function 
-of the set of odd integers. 

23. Write an LRM program which computes cut-off subtraction: 

. { x-y x-y = 
0 

if y ~ x 
if x < y. 

24. Write an LRM program which computes the quotient function: 

qt(x,y) = { ~ if x qy + r 0 ~ r < y 
if y = o. 

25. Write an LRM program which computes the remainder function: 

rm(x,y) = { ~ if x = qy + r 0 ~ r < y 
if y = 0. 

26. Show that if g, h, and p are LRM computable then so is the 

function f defined by 

{ 
g(x) 

J(x) = h(x) 
if p(x) = 0 
otherwise. 
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27. Prove that a legal LRM program always halts (on any inputs). 

28. In this problem the set of primitive recursive functions is defined, 
and you are to show that all primitive recursive functions are LRM 
computable. We mentioned briefly in the text that the primitive re­
cursive functions form the smallest class of numerical functions that 
contains the zero function Z, the successor function S, and the pro­
jection functions Ii (defined in Exercise 5) and that is closed under 
composition and primitive recursion. Here's the precise definition: 

The set of primitive recursive functions is the smallest set of 
numerical functions such that 

(1) The zero function Z is primitive recursive. 

(2) The zero function Sis primitive recursive. 

(3) The projection functions Ii are primitive recursive. 

( 4) If h : Nm -+ N and the m functions 9i : Nn -+ N for i 1, 2, ... , m 
are all primitive recursive then the function f : Nn -+ N defined 
by 

for (xi, x2, ... , xn) E Nn is also primitive recursive. 

(5) if the functions 9 : Nn -+ N and h : Nn+2 -+ N are primitive 
recursive, then the function f: Nn+i -+ N defined by 

f(x1,x2, ... ,xn,O) 
f(x1,x2, ... ,xn,Y + 1) 

is also primitive recursive. 

g(xi, X2, ••• , Xn) 

h(xi, X2, ••• , Xn, y, J(x1, X2, ••• , Xn, y)) 

To prove that every primitive recursive function is LRM computable 
you must show that 

• Z, S, and Ii are LRM computable; 
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• if the functions h, 91 , .•. , 9m are LRM computable, the the func­
tion f obtained from h, 91, .•• , 9m by composition as in ( 4) is also 
LRM computable; 

• if the functions 9 and h are LRM computable, the the function 
f obtained from 9 and h by primitive recursion as in (5) is also 
LRM. computable. 

29. Prove that a function is primitive recursive if and only if it is LRM 
computable. Hint: For j, n = 1, 2, 3, ... denote by 

the contents in register Rj when the LRM program P is run starting 
· with x k in register Rk for k = 1, 2, ... , n and 0 in registers Rn+I, Rn+2, .... 

(According to the definition a function f is LRM computable iff f 
~~n,l)) for some LRM program P.) Prove that these functions are all 
primitive recursive by induction on the length of the LRM program P. 

30. The ALRM machine is obtained from the LRM machine by adding 
the E (extract) and P (put) instructions. Prove that a function is 
ALRM computable if and only if it is LRM computable. 

31. All the total functions we have discussed so far are primitive re­
cursive; In this exercise we construct a total RM computable function 
which is not primitive recursive. The basic idea is to describe a "uni­
versal" LRM program and show that the function computed by this 
program is RM computable but not LRM computable. First, modify 
the notion of Godel number to apply to LRM programs. Prove that for 
every n there is a totally defined, RM computable, ( n + 1 )-ary function 

such that whenever e is the Godel number of a legal LRM prog~am P, 
the number ?j;( e, x1 , x2 , ••• , xn) is the value of the function computed 
by P on inputs (xi, x2 , ••• , xn)· Show ?jJ is RM computable but not 
LRM- computable. Hint: See Exercise 9 on page 183. 
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32. Another total RM computable function which is not primitive 
recursive is the Ackermann function 'lfJ(p, z) defined by 

where 'I/Jo, 'l/J1, 'l/J2, ... is the sequence of primitive recursive functions de:. 
fined inductively by 

'l/Jo(z) z + 1 

and 

For example, 'l/J1(z) = z + 2, 'l/J2(z) 2z + 2, '1jJ3(z) = 2z+2 + 3(2z 1). 
Show that for every n-ary primitive recursive function f there exists p 

such that 
f(x1, X2, ... 'Xn) < t/;p(X1 + X2 + ... + Xn) 

for all (xi, x2, ... , Xn) E Nn. Conclude that 'ljJ is not primitive recursive 
(even though each 'l/Jp is). 9 

33. Write an RM program to compute the Ackermann function. 

34. Definition. The class of partial recursive functions is the 
smallest class of numerical partial functions which contains the zero 
function, the successor function and the projection functions and which 
is closed under composition, primitive recursion, and unbounded mini­
malization. 

Show that every partial recursive function is RM computable. 

~5. Show that every RM computable partial function is partial recur­
sive. 

36. Prove that there are only countably many RM programs, hence, 
only countably many RM computable functions. (Hint: Use the fact 
that every RM program has a Godel number.) 

exercise is tough. If you give up, see Epstein and Carnielli Computability 
Wadsworth & Brooks/Cole (1989) pages 110-114. ' ' 

Chapter 5 

The Incompleteness 
Theorems 

Godel's First Incompleteness Theorem says that there are sentences in 
the language of arithmetic which are true in the standard model N but 
are not provable from Peano Arithmetic. In itself, this result is not so 
surprising. It merely says the set of axioms PA for Peano Arithmetic is 
incomplete meaning that it not sufficiently powerful to enable us to give 
tableau proofs for all the true sentences of arithmetic. At this point one 
can still hope that we can add some additional axioms to PA to obtain 
a system of axioms which truly characterizes the natural nun:ibers. 

However, the proof of Godel's Theorem shows much more: 

No set Hof axioms for arithmetic can have both the proper­
ties that (a) every sentence A which is true in the standard 
model N is a logical consequence of H and (b} there is a 
computer program which decides whether a given sentence 

B is an element of H. 

This means that there are intrinsic limitations on the methods mathe.; 
maticians have used for centuries to arrive at the truth. _Godel's Second 
Incompleteness Theorem is even more devastating: No system satisfy­
ing (b) is powerful enough to prove its own consistency. This means 
that there is no tableau proof from the. hypothesis set H that the set 
H is -not at the root of a contradictory tableau. 

265 
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The Incompleteness Theorems are closely related to the well known 
Liar Paradox. 

Consider the sentence 

This sentence is false. 

If true it must be false - if false it is true. This version has caused a 
few philosophers to loose quite a lot of sleep over the centuries. Godel's 
insight was to construct a sentence of arithmetic whose meaning is 

This sentence cannot be proved. 

If it could be proved it would be false. Hence it cannot be proved. But 
then it is true! 

The construction of Godel's sentence will borrow ideas from Can­
tor's diagonal method, which was discussed in Section 4.11 following 
the Halting Problem. 

5.1 Coding Tableaus 

To construct Godel's sentence we must devise a way to formulate state­
ments about PA within PA. This coding process is something like the 
Godel numbering used in Chapter 4 to define universal machines. 

We shall write #(a1 , ••• , an) for the Godel number in standard form 
of a finite sequence ( a1 , ••. , an) of natural numbers as developed in 
Chapter 4.6, and also write #(t) for the codes which we shall introduce 
for other kinds of objects t. We shall use these codes to show that 
various numerical relations are computable, culminating in the proof 
relation PRFH. 

All of the proofs in this section proceed by giving an intuitive al­
gorithm which computes the characteristic function of a set or relation 
on the natural numbers, and then invoking Church's Thesis to show 
that the relation is computable. A characteristic function is total and 
has the output 1 if the answer is yes and 0 if the answer is no. Thus 
for each input, our algorithms will halt in a finite number of steps and 
have either 1 or 0 as output. 
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The first step is to assign a code #(s) to each symbol s of the 
language of arithmetic. We may do this in the same way as we did 
in Section 4.10 on Church's Thesis in Chapter 4, except that we must 
now give codes to the symbols + and *· We assign the even numbers as 
codes of individual variables, and assign odd numbers as codes of the 
other symbols as follows: 

symbol ..., /\ v ==::- ~ 3 \:/ 
code 1 3 5 7 9 11 13 15 

symbol 
code 

[ ] ( ) 0 s + * 
25 27 29 31 17 19 21 23 

We define the code #(S) of a string S of symbols to be the Godel 
. number of the sequence of codes of the symbols. Each term and each 
wff, being a string of symbols, now has a code. 

Next, we assign to each finite sequence of strings the Godel number 
of the sequence of codes of terms of the sequence, that is, 

#(S1' ... ' Sn) = #( #(S1), ... '#(Sn)). 

Note that a natural number can be used as a code in three ways: as 
a code of a symbol, as a code of a string of symbols, and as a code of a 
finite sequence of strings of symbols. As we continue we will introduce 
other types of codes. Thus when we write #( t) for the numerical code of 
an object t, we must specify whether tis a symbol, a string of symbols, 
a finite sequence of stri!lgs of symbols, or some other type of object. 

We now· show that the sets of codes of terms and of wffs are com­
putable. This will be done using parsing sequences. 

Lemma 5.1.1 The set of codes of parsing sequences of terms is com­
putable. 

Proof: We shall outline an algorithm which, given a natural number c 
as input, outputs 1 if c is the code of a parsing sequence for a term, ~nd 
outputs O otherwise. The lemma will then follow by Church's Thesis. 

First, form the sequence (a0 , ••• , an) of natural numbers with Godel 
number c. Check to see whether the sequence is nonempty and each 
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ai is the code of a string of symbols. If not, output 0 and stop. If 
so, run through i = 0, ... , n and check whether ai is either the code 
of a single variable ·or constant symbol, or is the code of a string of 
symbols obtained from one or two earlier strings in the list by one of 
the rules of formation for terms. If the answer is yes at each step, c 
is the code of a parsing sequence of a term, so we output 1 and stop. 
Otherwise output 0 and stop. The lemma now follows by Church's 
Thesis. End of Proof. 

We say that a string Tis a substring of a string S if Tis a consec­
utive part of S, that is, S = UTV for some (possibly empty) strings 
U and V. 

Theorem 5.1.2 The set of codes of terms is computable. 

Proof: We outline an algorithm which, given a natural number c as 
input, outputs 1 if c is the code of a term, and outputs 0 otherwise. 

Form the sequence (a0 , ••• , an) of natural numbers with Godel num­
ber c. If the sequence is empty or some ai is not the code of a symbol, 
output 0 and stop. Otherwise, c is the code of a string S of symbols. 
We wish to determine. whether S has a parsing sequence. If there is 
a parsing sequence for S, then there is one with no repetitions, and 
each string of the sequence must be a substring of S. There are only 
finitely many sequences of distinct substrings of S. List all of these in a 
systematic way and use the preceding lemma to check whether at least 
one of them is a parsing sequence whose last term is S. Output 1 if 
yes and 0 if no, then stop. Again, the theorem now follows by Church's 
Thesis. End of Proof. 

In the rest of this section, it should always be understood that 
Church's Thesis is to be invoked at the end of the proof. 

Lemma 5.1.3 The set of codes of atomic wffs is computable. 

Proof: Given input c, form the string of S symbols with code c. First 
check to see whether S has exactly one equality symbol. If not, output· 
0 and stop. If so, then S has the form T = U. If both T and U are 
terms, then S is an atomic wff, so we output 1 and stop. Otherwise 
output 0 and stop. End of Proof. 
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Lemma 5.1.4 The set of codes of parsing sequences for wffs is com­

putable. 

Proof: Similar to the corresponding result for terms, but one mu~t 
check that each string in the sequence is either an atomic wff o~ is 
obtained from two earlier strings in the sequence by a rule of formation 

f · ff End of Proof. or w s. 

Theorem 5.1.5 The set of codes of wffs is computable. 

Proof: Similar to the proof that the set of codes of terms is computable. 

End of Proof. 

Since any finite set of natural numbers is computable, and Weak 
Arithmetic is a finite set of sentences called axioms, the set of codes of 
axioms of Weak Arithmetic is computable. Although Peano Arithme~ic 
has an infinite set of axioms, we now show that the set of codes of its 
axioms is also computable. 

Theorem 5.1.6 The set of codes of axioms of Peano Arithmetic is 

computable 

Proof: Given an input c, we first use the preceding theorem to dete:­
mine whether c is the code of a wff A. If not, output 0 and stop. If c IS 

the code of a wff A, we next check whether A is one of the nine axioms 
of Weak Arithmetic. If it is, output 1 and stop. If not, we must che~k 
whether A is a case of the First Order Induction Scheme. We do this 
by systematically running through each of the finitely many subs~rings 
B of A check whether B is a wff, and if so, check whether A is the 

' string 
B(O) /\ Vx [B( x) => B(s(x) )] => Vx B( x )] 

for some variable x. If so, output 1 and stop. If A is neither an axiom 
of Weak Arithmetic or a case of the First Order Induction Scheme, 
output 0 and stop. End of Proof. 

By refining the above arguments, one can show that va~ious rel~tions 
on strings of symbols which are part of the syntax of predicate logic are 

·computable. For example, the set of codes of sentences is computable. 
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We now introduce codes for tableaus. A tableau has :finitely many 
nodes including a root node, a parent function, a finite set of wffs called 
the hypothesis set attached to the root node, and a wff attached to each 
nonroot node. 

For simplicity, we may take the nodes of a tableau T with n + 1 
nodes to be the natural numbers 0, 1, ... , n, with 0 being the root node. 
The tableau can then be completely described by three finite sequences, 
the sequence of numbers 

(7r(l), ... , ?r(n)) 

where ?r(i) is the parent node of the nonroot node i, the sequence 

(B1,, .. , Bk) 

of hypothesis wffs which are attached to the root node, and the sequence 

(~(1), ... , ~(n)) 

where ~(i) is the wff attached to the nonroot node i. 
For each nonroot node i E { 1, ... , n}, the parent node 7r ( i) belongs 

to the set { 0, 1, ... , n} of nodes. Let us assume further that the nodes 
were listed in such a way that for each i E { 1, ... , n}, 7r ( i) < i. This can 
be done for ~ny tableau by listing the nodes in the order in which the 
tableau was built using the extension rules, because a nonroot node is 
always added to a tableau after its parent. Note that the requirement 
that 7r( i) < i for each nonroot node i > 0 guarantees that the root 
node 0 will be reached from any nonroot node i in :finitely many steps 
by repeatedly taking parents. 

Since we already have assigned ·codes to sequences of natural num­
bers and to sequences of strings, we may now take the code of a tableau 
T to be the Godel number of the triple 

#(T) =#(a, b, c) 

where a, b, and c are the codes 

a= #((7r(l), ... , 7r(n)), 

b = #(Bi, ... , Bk), 
and 

c = #(~(1), ... , ~(n)). 
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Theorem 5.1.7 The set of codes of tableaus} and the set of codes of 
tableau confutations} are computable. 

Proof: Given an input t, we first need an algorithm to check whether 
t is the code of a tableau. First, check whether t is the Godel number 
of a triple (a, b, c) of natural numbers. If not, output 0 and stop. If so, 
check whether a is the Godel number of a sequence of some length n 
such that each term of the sequence is a natural number less than n, 
that is, a is the Godel number of a parent function 7r. If not, output 0 
and stop. If so, then check whether 7r(i) < i for each i E {l, ... , n }. If 
the answer is no, output 0 and stop. Otherwise, check whether band 
c are codes of sequences of codes of wffs. If not, output 0 and stop. 
If b and c are sequences of codes of wffs, check whether each nonroot 
node is obtained from an ancestor node using a tableau extension rule. 
This gives an algorithm for checking whether tis the code of a tableau. 
Output 1 if yes and 0 if no, then stop. This shows (by Church's Thesis 
as usual) that the set of codes of tableaus is computable. 

To show that the set of codes of tableau refutations is computable, 
we first determine by the above algorithm whether an input t is the 
code of a tableau. If not, output 0 and stop. If t is the code of a 
tableau T, we can then check whether T is a tableau confutation by 
systematically checking each branch of T to see whether it contains a 
contradictory pair. Output 1 if every branch contains a contradictory 
pair, and output 0 if not, then stop. End of Proof. 

Definition 5.1.8 Let H be a set of wffs in the language of arithmetic. 
The proof relation for H is the binary numerical relation PRFH 
consisting of all pairs ( x, y) such that x is the code of a wff and y is the 
code of a tableau proof of the wff coded by x from H. 

Theorem 5.1.9 Let H be a set of wffs such that the set of codes of 
elements of H is computable. Then the proof relation PRFH for H is 
computable. 

Proof: First check whether the input x is the code of a wff. If not, 
output 0 and stop. If x is the code of a wff A, then check whether y 

· is the code of a. tableau refutation, say T. If not, output 0 and stop. 
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Otherwise, check to see whether each hypothesis attached to the root 
of Tis either an element of Hor the negation of A. In this step we use 
the assumption that the set of codes of elements of H is computable, 
so that we have a procedure for checking whether a number is the 
code of an element of H. If we get a yes answer for each hypothesis, 
then ( x, y) belongs to the relation PRFH, and we output 1 and stop. 
Otherwise (x, y) does not belong to PRFH, so we output 0 and stop. 
End of Pro of. 

5.2 Definability and Representability 

In this section. we introduce two ways in which a formula of arithmetic 
can express a numerical relation- definability in N and representability. 

N is the standard model of arithmetic, whose universe is the set 
of natural numbers N and which has the usual interpretations of the 
symbols 0, s, +, *· Recall from Chapter 3 that for each natural number 
m, the corresponding numeral m is the constant term consisting of m 
successor symbols s followed by the zero symbol 0. In N, each numeral 
m will be interpreted by the element m of N. 

We shall often substitute numerals for free variables in a wff A. 
In most cases it will be clear from the context which numeral goes 
with which free variable, and in such cases we shall write the sentence 
resulting from the substitution in the short form 

A(a1, ... , an) 

instead of the long form 

Remember from Chapter 2 that for each model M with universe 
set M and each formula A with n free variables, the set of all n-tuples 
of elements of M which satisfy A in M is called the graph of A in M. 
We now apply this concept to the standard model N of arithmetic. 

Definition 5.2.1 Let R be an n-ary relation on N and let B be a 
wff in the vocabulary of arithmetic with the free variables xi, ... , Xn· 
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We say that R is the graph of B in N, or that R is defined by B 
in N, if for all a i, .•• , an E N, 

(ai, ... , an) ER~ N t= B(a1, · .. ,an)· 

. We say that R is definable in N if it is defined .by s?me wff B in N. 
Similarly, an n-ary function J : Nn -+ N is said to be defi~ed 

by a wff C with free variables xi, ... , Xn, y if the (n + 1)-ary relation 
f ( ai, ... , an) b is defined by C in N. 

Not all relations on N are definable in N; in fact there are uncount­
ably many relations on N but only countably many definable relations 
on N. For example, Tarski's Theorem, Theorem 5.5.8, shows th~t the 
set of all codes of sentences which are true in N is not definable m N. 

Since the symbols O, s, +, * of arithmetic are interpreted in the ~at­
ural way in N, the zero function, successor function, additio.n function, 
and multiplication function are defined in N by the atom~c form~las 
o = y, s(x) y, x 1 + x2 ::::: y, x 1 * x 2 y. Similarly, the equality relat10n 
is defined by the atomic formula x == Y. · 

Other examples are easy to work out. The order relation::; is de~ned 
in N by the formula 3z x + z y, the square function is defined ~n N 
by the formula x * x y, and the set of even numbers is defined 1Il N 
by the formula :3z x z + z. . 

We shall need another, much stronger, way in which a formula m t~e 
language of arithmetic can express a numerical rel~tion- ~epresentabil­
ity. Let us first recall the nine axioms of Weak Arithmetic. 

Axioms of Weak Arithmetic 

1. Vx-is(x)=O 

2. VxVy [s(x) s(y) => x == y] 

3. Vxx+O == x 

4. VxVyx+s(y) == s(x+y) 

5. Vxx*O == 0 
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7. Vx [x:::;o * x = O] 

8. VxVy [x:=:;s(y) => [x:=:;y V x = s(y)]] 

9. Vx Vy [x:=:;y V y:=:;x]. 

Definition 5.2.2 Let B be a wff with free variables x 1 , ••• , Xn in the 
language of arithmetic and let R be an n-ary relation on N. We say 
that B represents R if for all a1 , ••• , an in N, 

2. If (ai, ... , an) fj_ R, then WA I- :..,B(a1, ... , an)· 

We say that a wff C with free variables xi, ... , Xn, y represents the 
numerical function f of n variables if C represents the relation 

Finally, a relation or function is representable if some wff repre­
sents it. 

We shall call clause (1) in the above definition the "first half" and 
clause (2) the "second half" of representability. 

The value of knowing that a particular n-ary relation R is rep­
resentable is that true statements of the form ( a1 , ••• , an) E R or 
( a1 , ... , an) ~ R can be translated in to provable first-order sentences 
from Weak Arithmetic in which references to R are replaced by the 
representing wff and natural numbers m are replaced by numerals m. 
Important information about a theory (like PA) can often be uncovered 
by showing that the theory is able to "mirror" -via representability­
some well-understood portion of mathematics. The next proposition 
shows that every relation which is representable is definable in N. 

Proposition 5.2.3 If a wff B represents a relation R, then B defines 
R inN. 
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Proof: Since each axiom of WA is true in N, every wff which is prov­
able from WA is true in N. Suppose B represents R, and let a1, ... , an 
be natural numbers. If (a1 , ••• , an) ER then WA I- B(a1, ... , an) and 
hence N f= B(a1, .. .,an)· On the other hand, if (a1, ... ,an) r/:. R, 
then WA~ -.B(a1, ... ,an), so NI= -iB(a1, ... ,an), and hence it is 
not the case that N I= B( a1, ... , an)· This shows that B defines R in 
N. End of Proof. 

We shall see later that there are relations which are definable in 
N but not representable. An example of such a relation is the set of 
all Godel numbers of formulas which are provable from WA. This is 
not easy to see,. and is one of the consequences of the incompleteness 
theorems. 

Functions which certainly ought to be representable are those which 
correspond to function symbols in the language of arithmetic, namely, 
zero, addition, multiplication, and the successor function. We would 
also expect that the relations = and :::; are representable. We have 
already seen that each of these is definable in N. Additional work is 
needed to show that they are representable. To prove that a relation or 
function is represented by a wff, one must show that each of an infinite 
list of other wffs is provable in Weak Arithmetic. To give some idea 
of what is involved, we now show that the relations = and :::; and the 
addition function are representable. 

Proposition 5.2.4 The equality relation is represented by the wff 

x y. 

Proof: For the first half of the definition of representability, suppose 
that a b. Then a and b are the same term, so a = b is provable from 
the empty hypothesis set and hence is provable from WA. 

For the second half we must to show that whenever a< b, WA 1-
•.a= b. This was done for the particular case a= 1, b = 3 in Chapter 
3. The same method can be used in general, but requires an induction 
on natural numbers. We show by induction on n that 

(1) n < m implies WA I- -in= m. 
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Basis Step: Let n 0 and write m = k + 1. Then s(k) = m and 
so by Axiom 1, we have 

WA1- .. o=s(k) 

as required. 
Successor Step: Assuming (1) we show 

(2) n+ 1 < m implies WA I- -is(n) = m. 

Write m = k + 1. Using the fact that n < k and using (1) (with m 
replaced by k) as a hypothesis, we have the following tableau proof 
of (2). Rather than writing out all nine axioms of WA as hypotheses 
for our tableau, only those that are needed in the proof are shown. 

(3) ..., n = k Inductive hypothesis 

(4) VxVy [s(x) = s(y) * x = y] Axiom 2 

(5) -,-.s(n) s(k) -, to be proved 

(6) 
I 

by (5) s(n) = s(k) 

(7) 
I 

by (4) twice s(n) = s(k) ::::} n = k 

(8) I 
by (6) and (7) n=k 

Thus equality is represented by the w:ff x = y. End of Proof. 

We make a few observations about the proof. First of all, what 
lets us use induction when the sentences of the First Order Induction 
Principle are not among the axioms WA? What we have done is to use 
ordinary induction on the natural numbers outside of our formal system 
to obtain an infinite sequence of proofs from WA; for each n < m we 
obtained a proof from WA of the sentence •n = m. This was possible 
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because the superscripts m and n are ordinary natural numbers -not 
formal expressions in WA- and so ordinary induction applies. 

By contrast, the proof of \:fx-,x = s(x) from Peano Arithmetic in 
Example 3.7.4 used the formal induction axiom 

B(O) /\ Vx [B(x) * B(s(x))] * Vx B(x) 

of PA, where B(x) is -,x s(x). Ordinary induction did not apply in 
that case because the x in •x = s(x) is a variable in predicate logic, 
not an ordinary natural number. 

Secondly, notice that we used the induction hypothesis (3) in the 
hypothesis set of our tableau. This is a technique that is very useful 
in working out tableau proofs and is an example of the Learning Rule 
introduced in Section 2.13: Given sentences A and B, if H I- A, then 
by the Learning Rule we can use A on any branch of a tableau with 
hypothesis set H U { -,B} in building a tableau proof of B from H. 
In particular, A can be assumed to be in the hypothesis set of such a 
tableau. 

The extra rules of tableau proofs introduced in Section 2.13 for pure 
predicate logic also hold for full predicate logic. A useful application of 
the Learning Rule in full predicate logic is that if H I- A and H I- a = T, 

then H 1- A (a/ fr), where a and T are terms and T is free for a in A. 

Proposition 5.2.5 The addition function is represented by the wff 

x + y = z. 

Proof: For the first half, we must show that for all m, n, p E N such 
that m + n = p, 

WA 1-m+n p. 

Note that m + n is a different term than p. For example, 2 + 3 is the 
term s(s(O)) + s(s(s(O))), while 5 is the term s(s(s(s(s(O))))). 

A tableau proof is shown in Figure 5.1. It proceeds holding m fixed 
and using an induction on n to show that for each n, there is a tableau 
proof of m + n p from WA where p m + n. 
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B~sis Step (n = 0) We show WA I- m+O = m. 

(1) \Ix x+O = x Axiom 3 

(2) •m+o=m ..., to be proved 

(3) 
I 

by (1) m+o m 

Induction Step Let p = m + n. We assume WA I- m+n = p and 
prove WA I- m+s(n) = s(p). 

(4) m+n::::p Induction hypothesis 

(5) \Ix Vy x+s(y) s(x+y) Axiom 4 

(6) •m+s(n) = s(p) ..., to he proved 

(7) 
I 

by (5) (twice) m+s(n) s(m+n) 

(8) I 
by ( 4), (7) and an m+s(n) = s(p) 

Figure 5.1: A tableau proof of m+n = p 

rule 
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For the second half of representability, we must show that 

m + n =/= r implies WA I- •m+n = r. 

Let p = m + n and assume that p f::. r. By the representability of = we 
have 

WA I- •p:::: r. 

Substituting m + n for p (using the first half of representability and 
the Learning Rule), we have 

WA I- •m+n = r 

as required. End of Proof. 

The following lemma is often useful in proving that things are rep­
resentable. We shall use it in showing that the order relation on N is 
representable. 

Lemma 5.2.6 For any natural number n, 

WA I- \;/ x [ x $n {::.} x = 0 V x 1 V · · · V x n]. 

Proof: We proceed by induction on n. 
Basis step: We must prove from WA that 

(1) \Ix [x $ 0 {:} x 0]. 

Consider any x. If x = 0 then by Axiom 1, x + 0 O, so 3y x + y 0 
and x $ 0. If x $ 0, then x = 0 by Axiom 3. Therefore ( 1) is provable 
from WA. 

Successor step: Assume that 

(2) \Ix [x $ n {:} x = 0 V · · · V x n] 

is provable from WA. We must show that 

(3) \Ix [x $ s(n) {:} x = 0 V .. · V x = n V x = s(n)] 

is provable from WA. By the Learning Rule, it is enough to prove (3) 
from the hypothesis set WA plus the extra hypothesis (2). 
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Consider any x. Assume that x S s(n). By Axiom 8, · 

xsnvx s(n). 

Then by (2), 
x 0 V · · · V x n V x = s(n). 

For the other direction, assume that 

x = 0 V · · · V x = n V x = s(n). 

By (2) again, 
xsnvx=s(n). 

Expanding the abbreviation for x Sy, we have 

:3z x + z = n V x = s(n). 

If x + z = n, then by Axiom 4, x + s(z) = s(n) and hence x s s(n). 
If x s(n) then by Axiom 3, x + 0 = s(n), so again x S s(n). 

We have shown that 

x S s(n) {::} x = 0 V · · · V x = n V x = s(n). 

The required wff (3) follows by the Generalization Rule. End of Proof. 

Proposition 5.2.7 The order relation {(x,y): x:::; y} on N is repre-
sented by the wff x + z = y. 

Proof: We begin with the first half. If m S n, let k be such that 
m + k = n. By Proposition 5.2.5 we have 

WA I- m+k n. 

It follows that 
WA I- 3z m+z = n. 

To establish the second half, assume m f:. n. Then n < m. Since 
the equality relation is represented by the wff x y, for all j S n we 
have 
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Using Lemma 5.2.6 along with each of the above statements in our 
hypothesis set, we have the following tableau: 

(1) 

(2) 

(3) 

(:) 
(n + 2) 

(n + 3) 

(n + 4) 

(n + 5) 

(n + 6) 

Vx [x S n ::::} x = 0 V x = 1 V · · · V x = n] 

•l=m 

mSn::::}m=Ov···Vm=n 

m=OV···Vm=n 

(n + 7) m = 0 m=l m=n 

...., to be proved 

by (n + 11) 

by (10) 

by (n + 5) 

by (n + 5) 

by (n + 6) 

For readability, in step ( n + 7) we applied the [2J rule n time~ simulta­
neously. . End of Proof. 

Here is an example which shows in a simple case what can (and 
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cannot) be done with a relation that is representable. 
In Exercise 6 the reader is asked to verify that the set E of even 

numbers is represented by the w:ff 

E(x) 3zx=z+z. 

Now, consider the following simple property of the even numbers: 

( *) The sum of any odd number· and any even number is an odd 
number. 

This fact can be expressed formally by the w:ff 

B(x, y) 

Because E( x) represents 
all m,n EN 

-.E(x) J\ E(y) => -.E(x + y). 

it is easy to show (see Exercise 6) that for 

WA r B(m,n). 

Thus, this simple property of the even numbers is reflected in the for­
mal setting of WA-with respect to the numerals 0, 1, 2, · · ·. It should 
be emphasized that the notion of representability we are using here 
is not strong enough to guarantee that such properties can always be 
translated and proved in WA without such a restriction on the substi­
tution values. In the present example, ( *) could be translated into the 
following sentence: 

C = VxVy [-.E(x) AE(y) => -.E(x + y)]. 

This sentence makes a much stronger assertion than B ( m, n) for all m 
and n: it states that the property ( *) holds for all possible interpre­
tations of variables in a model of WA, not merely the standard ones. 
As a matter of fact, it can be shown (see Exercise 6) that WA If C; a 
counter-model is given in Example 3. 7.4 in Chapter 3. 

5.3 The Equivalence Theorem 

In the preceding section, we developed a very short list of representable 
functions and relations. The following theorem shows that the set of 
representable relations is richer than one might think from our exam­
ples, and in fact is. the same as the set of all computable relations. 

5.3. THE EQUIVALENCE THEOREM 283 

Theorem 5.3.1 (Equivalence Theorem) 

A numerical relation is representable if and only if it is computable. 
Similarly, a total numerical function is representable if and only if it is 
computable. 

We now prove one half of the Equivalence Theorem using Church's 
Thesis. The other half of the theorem will be proved in the next section. 

Proof, first half: Using Church's Thesis, we prove that every repre­
sentable relation is computable. 

Let the n-ary relation R be represented by the w:ff A. We describe 
an algorithm for computing the characteristic function of R. Consider 
an input (a1 , ••• , an)· Let B be the w:ff A(ai, ... , an)· Repeat the 
following process for each m = 0, 1, 2, ... : Using the computability of 
the proof relation PRFwA, determine whether or not m is the code 
of a tableau proof of B from WA, and if so, then output 1 and stop. 
Otherwise, determine whether or not m is the code of a tableau proof 
of -.B from WA, and if so, output 0 and stop. Since A represents R, 
for each input ( a1 , • •• , an) there will be either a tableau proof of B or 
of -.B, so the algorithm will eventually stop and produce an output. 

This computes the characteristic function of R as required. By 
Church's Thesis, R is computable. 

Now suppose the total function f in n variables is representable, 
and let R be the relation f( x1 , •. • , Xn) y. By definition, the relation 
R is representable, and by the first paragraph its characteristic func­
tion is neatly computable by some RM program P. We shall make a 
new RM program Q which, for an input ( a1 , ••• , a?i), computes in turn 
the characteristic function of (ai, ... , an, b) E R for b = 0, b l, ... , 
continuing until an answer of 1 is found, and then outputs the current 
value of b. To do this, let Rk be a register beyond the last register 
which·is used by P and let p be the length of P. Q is the program 
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0 z k 
1 z k+l 
2 s k+l 
3 p 
p+3 J 1 k+l p+6 
p+4 s k 
p+5 J 1 1 3 
p+6 T k 1 
p+7 H 

For each input, the program Q will eventually halt because the func­
tion f is total, and Q will compute the original function f. End of Proof. 

Note that the Equivalence Theorem as stated only applies to total 
functions. What happens in the case of partial functions? It turns 
out that every representable partial function is computable, but there 
are computable partial functions which are not representable. One 
explanation for this difference is that the class of computable functions 
is closed under unbounded ininimalization (recall Theorem 4.8.2) while 
the class of representable functions is not. Here is an example of a 
partial function which is defined using unbounded minimalization from 
a computable relation (and hence is itself computable) but which is not 
representable. 

Example. Define the ternary relation R by 

{ 

e is the Godel number of an 
. ( e, a, b) E R <==::::> RM program which halts· with input a 

after executing b instructions. 

Define the partial function f by 

f(e,a) µb (e,a,b) ER. 

(As usual, we understand by this definition that f has the same domain 
as the function on the right and agrees with it on this domain.) We 
can compute f with the following RM program Q: With input e, a, Q 
executes UNIVl and halts if and only if UNIVl halts. If UNIVl halts, 
then Q outputs the number of steps needed by the program Pe coded 
bye to halt on input a. (See Advanced GNUMBER problem BEFORE 
in Section 4.14.) 
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To see that f is not representable, first note that by Exercise 5, if a 
partial function is representable, its domain is representable (as a unary 
relation). By Theorem 4.11 on the undecidability of the Halting Prob­
lem, the domain of this particular function f is not computable.. By 
the Equivalence Theorem, all representable relations are computable. 
Then the domain of f, and hence f itself, is not representable. 

In order to represent all computable partial functions, we shall need 
another notion, called weak representability. 

Definition 5.3.2 An n-ary relation Ron N is weakly represented 
by a wff B with free variables Xi, ... , Xn if for all ai, ... , an in N, 

(a1, ... , an) ER¢=::? WA I- B(a1, ... an). 

A function f(x 1 , •.• , xn) is weakly represented by a wff C with free 
variables x1 , ... , Xn, y if the n + 1-ary relation f (x1, ... , xn) = y is 
weakly represented by C. 

Every representable relation or function is weakly representable, 
but a relation can be weakly representable and not representable. The 
incompleteness theorems will show, as an example, that the set of all 
codes of sentences which are provable from WA is weakly representable 
but not representable. 

The difference between representability and weakrepresentability is 
that in the case (a1 , ••• , an)$. R, weak representability merely requires 
that B(a1 , ... , an) is not provable from WA, while representability 
requires that the wff ·B( ai, ... , all.) is provable from WA. 

Here is an Equivalence Theorem for partial functions. 

Theorem 5.3.3 A partial numerical function is weakly representable 
if and only if it is computable. 

As we did for the Equivalence Theorem, we shall now prove ohe half 
of the above theorem using Church's Thesis, leaving the proof of the 
other half for the next section. 

Proof, first half! We prove that every weakly representable function 
is computable. Suppose that f(xi, ... , Xn) is weakly represented by a 
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wff B. Then f can be computed by the following algorithm. We are 
·given an input (ai, ... , an)· Form= 0, 1, 2, ... , systematically list all 

tableaus with at most m nodes, only w:ffs of length at most m, and at 
most the variables v0 , ••. , Vm, whose hypotheses are WA together with 
a wff of the form 

-iB(a1, ... , an, b ). 

Continue until a tableau proof is found, going on forever if a tableau 
proof is never found. If a tableau proof is found, stop with output b 
where the extra hypothesis is 

-iB(a1, ... , an, b). 

End of Proof. 

5.4 Computable Implies Representable 

In this section we prove the second half of the Equivalence Theorem, 
that every total computable function is representable in Weak Arith­
metic. The proof will make use of the notion of a wff being definable 
in N, which was introduced in Definition 5.2.1. The main steps will 
be as follows. 

• Introduce the notion of a E1 w:ff, which is a w:ff with one existential 
quantifier followed by bounded quantifiers. 

• Prove that for each RM program P, the state relation for P, which 
relates the original input, the time, and the register contents at 
that time, is definable in N by a E1 w:ff. 

• Using the state relation, show that every computable function is 
definable in N by a E1 w:ff. 

• Show that every total function which is definable in N by aE1 
wff is representable. 

• Conclude that every computable total function is representable. 
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Along the way, we shall also show that a relation is weakly repre­
sentable if and only if it is definable in N by a E1 w:ff. This shows 
that every computable (partial) function is weakly representable, and 
completes the proof of Theorem 5.3.3. 

Definition 5.4.1 We introduce two abbreviations in the language of 
arithmetic. Let A be a wff and let x, y be distinct variables. 

The bounded existential quantifier: 

(3x ~ y)A means :Ix [x ~ y /\A], 

The bounded universal quantifier: 

(Vx ~ y)A means Vx [x ~ y ==?A]. 

The bounded quantifiers are defined so as to match the usual mean­
ing that one would expect them to have. (3x ~ y)A means that "There 
exists an x which is ~ y such that A holds". (Vx ~ y )A means that 
"For all x such that x ~ y, A holds". 

Definition 5.4.2 A w:ff A is bounded if it can be built up in finitely 
many steps using the following rules of formation: 

(1) Every atomic wff is bounded. 

(2) If A is bounded, so .is -iA. 

(3) If A and B are bounded, so are Ao B where o E {/\, V, 

( 4) If A is bounded, so are (3x ~ y )A and (Vx ~ y )A. 

{:} }. 

Thus a bounded wff is a w:ff all of whose quantifiers may be written 
as bounded quantifiers. 

Several familiar numerical functions and relations are definable in 
N by bounded wffs. 

The equality relation, constant functions, successor function, ad­
dition function, and multiplication function are defined in N by w:ffs 

·which have no quantifiers at all, and hence are bounded wffs. 
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The order relation x ::; y is defined in N by the bounded wff 

(3u::; y)u = x. 

The strict order relation x < y is defined in N by the bounded 
wff 

•x y/\(3u:=;y)u=x. 

The predecessor function Pred(x) = y, where 

y = 0 if x = 0, and y = x - 1 otherwise , 

is defined in N by the bounded wff 

[x = 0 /\ y O] V x s(y ). 

The dotminus function x.:....y = z, where 

z = 0 if x ::; y, and z x - y otherwise , 

is defined in N by the bounded wff 

[x ::; y /\ z O] V x ::::: y + z. 

The remainder function Rem(x,y) = r, where r = 0 if y = 0, 
and r is the remainder when x is divided by y otherwise, is defined in 
N by the bounded wff 

[y = 0 /\ r =OJ V (3q::; x)[x = q * y .+ r /\ r < y]. 

(In the last two examples, x ::; y and r < y are abbreviations for 
the previously given bounded wffs.) 

The predecessor function, dotminus function, and remainder func­
tion are total functions. 

Definition 5.4.3 A wff A is said to be a E1 wff if it has the form 
3x B where B is a bounded wff. A relation or function is E1 definable 
if it is defined in N by a E1 wff. · 

5.4. COMPUTABLE IMPLIES REPRESENTABLE 289 

Thus a E1 wff is formed by putting one existential quantifier in front 
of a bounded wff. 

Any bounded wff A is equivalent to the E1 wff 3v A where v does 
not occur in A. Therefore any function or relation which is definable 
in N by a bounded wff is E1 definable. In particular, the constant, 
successor, addition, multiplication, predecessor, dotminus, and remain­
der functions and the equality, order, and strict order relations are E1 
definable. 

The following lemma is helpful in showing that things are Ei defin-

able. 

Lemma 5.4.4 (i) Suppose C and D are E1 wffs and x, y are distinct 
variables. Then the relations defined by 

CVD, C/\D, (3x ::; y )C, (Vx::; y )C, 3xC 

are E1 definable in N. 
(ii) If a relation R is defined in N by a wff which is built from 

bounded wffs in finitely many steps by repeatedly using V, /\, bounded 
quantifiers, and existential quantifiers in any order, then R is E1 de­
finable. 

Proof: Part (ii) is proved by repeated application of Part (i). We prove 
Part (i). Suppose that C and D are E1 formulas 3u A, 3v B where A 
and B are bounded wffs. 

Let u', v' be new variables which do not occur in C or D and are 
distinct from each other and from x, y. Let A' be the wff obtained 
from A by replacing all occurrences of u by u', and let B' be the wff 
obtained from B by replacing all occurrences of v by v'. By Exercise 9 
in Chapter 2 (but for full rather than pure predicate logic), the wff C 
equivalent to 3u' A' and D is equivalent to 3v' B'. 

We may therefore simplify the problem by taking A and B so that 
the variables u, v, x, y are all distinct, u does not occur in B, and v does 
not occur in A. 

The wff 3x C defines the same relation in N as the E1 wff 

3w (3x ::; w )(3u ::; w )A 
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where w is a new variable, because 

N f= 3x 3u A¢;> (3w (3x s; w)(3u s; w)A]. 

The wff C /\ D defines the same relation in N as the wff 

3u 3v [A/\ B], 

because the wff 

3u3v(A/\B) # (3uA/\ 3vB] 

is tableau provable when u does not occur in B and v does not occur 
in A. By the preceding existential quantifier case, it follows that the 
relation defined by C /\ D is E1 definable in N. 

The C V D case is similar. 
The wff (3x s; y )A defines the same relation in N as the E1 wff 

3u (3x s; y )A, 

because 

3u (3x s; y)A # (3x s; y)3uA 

is tableau provable. 
Finally, the wff ('Vx s; y )A defines the same relation in N as the E1 

wff 

3w ('Vx s; y )(3u s; w )A, 

because 

N f= 3w ('Vx s; y )(3u s; w )A {:::} ('Vx s; y )3u A. 

End of Proof. 

Our next task is to define the state relation for an RM program. 
We shall sometimes write a finite sequence of natural numbers as a 

"vector", 
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Definition 5.4.5 Let P be an RM program and suppose that k is 
the largest register number appearing in the instruction list of P. The 
state of a computation by P at a given time is the finite sequence 
s =(so, s1 , ••• , sk) where the program counter contains the number s0 

and the registers R1 , ••. , Rk contain the numbers s1 , •.. , Sk. 

The state relation of Pis the (2k+3)-ary relation STATEp where 

(a, t, b) E STATEp 

means that an RM machine which starts in the state ( a0, ... , ak) and 
executes the instructions of P will be in the state b after t instructions 
are executed. 

The state relation of P will be obtained from another relation, the 
nextstate relation. 

Definition 5.4.6 Let P be an RM program and suppose that k is 
the largest register number appearing in the instruction list of P. The 
nextstate relation of Pis the (2k+2)-ary relation NXSTATEp where 

(a, b) E NXSTATEp 

means that the a0-th instruction of P will change state a to state b. 

In the above definition, it is to be understood that a halt instruction 
makes no change in the state. 

Lemma 5.4. 7 Let P be an RM program. Then NXSTATEp is E1 

definable. 

Proof: For convenience we assume that the program P is regular, 
so there are no halts before the last nonhalt instruction and no jump 
targets beyond the first halt instruction. Let k be the largest register 
number appearing in the instruction list of P. 

The action of each single RM instruction I involving register num­
bers between 1 and k may be expressed by a boun,ded w:ff 

with 2k + 2 variables, where the instruction I changes a given state x 
to the new state y. We write down these w:ffs for each instruction type. 
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Yo == Xo /\ · · · /\ Yk == Xk. 

Acz,n): 
Yo s( xo) /\ Yt == X1 /\ · · · /\ Yn == 0 /\ · · · /\ Yk == Xk· 

Yo== s(xo) /\ Y1 == X1 /\ · · · /\ Yn == s(xn) /\ · · · /\ Yk = Xk· 

Yo== s(xo) /\ Y1 == X1 /\ · · · /\ Yp == Xn /\ · · · /\ Yk == Xk. 

A ). (J,n,p,q • 

Now let 
J(0),1(1), ... ,J(m) 

be the instruction list for P, where I ( m) is the last nonhalt instruction. 
Then the nextstate relation 

(x, Y) E NXSTATEp 

is defined in N by the following bounded wff: 

[xo == O/\A1(o)]V[xo == l/\A1(1)]V· · ·V[xo == m/\A1(m)]V[m < x 0 /\AH]· 

End of Proof. 

We now wish to show that the state relation of each RM program 
is E1 definable. In order to determine the state of an RM computation 
at some time t, one must go through the entire sequence of states at 
all times less than t. For this reason, we will need a E1 definable 
way of "coding" sequences of natural numbers. We cannot use our 
Godel numbering scheme for this purpose, because it depends on the 
exponential function y 10:~, and we do not yet know that this function 
is E1 definable. Another coding scheme is needed- one which is easier 
to define within arithmetic. Godel found a way to do this using the 
following function, called the Godel beta function. We must take a 
short detour in our development to give this coding scheme. 
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Definition 5.4.8 The Godel beta function is defined by 

f3 ( x, y, z) = Rem( x, y * ( z + 1) + 1). 

Lemma 5.4.9 The Godel beta function is E1 definable. 

Proof: We have seen that the remainder function Rem(x, y) = r is de­
fined in N by a E1 wff R(x, y, z). ·The Godel beta function f3(x, y, z) = v 
is then defined in N by the E1 wff 

R( x, s ( y * ( s ( z))), v). 

End of Proof. 

To use the Godel beta function for coding finite sequences, we need 
a classical theorem in number theory called the Chinese Remainder 
Theorem. Since this theorem can be found in most number theory 
texts, we shall state it withoµt proof. 

Theorem 5.4.10 (Chinese Remainder Theorem) Suppose that 
mi, •.• , mn are positive integers such that mi and mj are relatively 
prime whenever 1 ~ i < j ~ n. If 0 ~ ai < mi for i = 1, ... , n, 

there exists x such that 

Rem(x, mi) = ai for i = 1, ... , n. 

The next lemma uses the Chinese Remainder Theorem to show that 
the Godel beta function can code finite sequences. 

Lemma 5.4.11 For each finite sequence ( ai, . .. , an) of natural num­

bers, there exist b, c such that 

(1) f3(c, d, i) = ai for i 1, ... , n. 

Thus the pair (c;d) "codes" the finite sequence (a1 , .•. , an) using the 

Godel· beta function. 
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Proof: Let M be such that n ~Mand ai ~ M for i = 1, ... , n. Let 
d = M!. For i = 1, ... , n, let mi= d * (i + 1) + 1. Then 

0 ~ ai ~ M ~ d < mi for i 1, ... , n. 

Moreover, for each x and i = 1, ... , n, we have 

(2) (3(x, d, i) = Rem(x, d * (i + 1) + 1) Rem(x, mi)· 

We claim that whenever 1 ~ i < j ~ n, the :numbers mi and mi are 
relatively prime. Suppose not. Then some prime p divides both mi and 
mi. Therefore p divides their difference mi - mi = (j i) * c. Hence 
either p divides j - i or p divides d. But p divides mi d * (i + 1) + 1, 
so p cannot divide d. Therefore p divides j - i. But j - i < n ·~ M, 
so p < M and hence p divides d = M!. This contradiction proves the 
claim. 

By the Chinese Remainder Theorem 5.4.10, there exists c such that 

(3) Rem(c, mi)= ai for i = 1, ... , n. 

The desired conclusion (1) follows from (2) and (3). End of Proof. 

Theorem 5.4.12 For each RM program P, the state relation STATEp 
is E1 definable. 

Proof: For simplicity we again assume that P is a regular program. 
Let k be the largest register number occurring in an instruction of P. 
We must find a E1 w:ff which defines the state relation 

(ii, t, b) E STATEp 

inN. 
The idea is to write a w:ff which says that there exists a finite se­

quence of states (So, ... , St) such that So= ii, (Su, Su+i) E NXSTATEp 
for all u < t, and St b. In order to do this with a E1 w:ff, we replace 
the finite sequence of states by a pair of natural numbers which codes 
a finite sequence of states via the Godel beta function. 

Let A( ii, b) be a E1 w:ff which represents the nextstate relation 
NXSTATEp in N. Let B(c, d, z, v) be a E1 w:ff which represents the 
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Godel beta function (3( c, d, z) = v in N. Since each state has k + 1 
coordinates it will be convenient to combine k + 1 values of z together. 

' 
Let j = k + 1 and let C( c, d, z, v) be the w:ff 

B(c, d,j * z, v0) /\ B(c, d,j * z + 1, v1) /\ · · · /\ B(c, d,j * z + k, vk) 

which defines the relation 

(3(c,d,jz) = v0 /\(3(c,d,jz+1) v1 /\ • • • /\ (3(c,d,jz + k) = Vk· 

Then the state relation 

STATEp(ii, t, b) 

is defined in N by the w:ff 

[C( c, d, 0, ii) A C( c, d, t,b)A 

[u = t V A(x,Y) A C(c,d,u,x) A C(c,d,s(u),Y)]]. 

This w:ff is built from E1 w:ffs using A, V, bounded quantifiers, and exis­
tential quantifiers. By Lemma 5.4.4, the state relation is Ei definable. 
End of Proof. 

Theorem 5.4.13 Every computable function is Ei definable. 

Proof: Let F be a computable (partial) function of n variables. There 
is an RM program P which neatly computes F. By Theorem 5.4.12, 
the relation STATEp is E1 definable. It is defined in N by some w:ff 

A(y, t,Z). 

We may break the sequence of variable y into parts y = ( x, it) where x 
consists of the first n variables in y. Let p be the number of the first halt 
instruction of P. The program P halts when the instruction number is 
p. Then the graph F( x) = v of the partial function F computed by P 
is defined in. N by the w:ff 

3t:Ju 3Z[A(x, u, t, Z) /\ Zo = p /\ v = z1]. 

Thus by Lemma 5.4.4, Fis E1 definable. End of Proof. 

We now make the final step, from E1 definability to representability. 
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Lemma 5.4.14 Each bounded wff A represents the relation defined by 
·A inN. 

Proof: Let S be the set of all wffs A such that the relation defined by 
A in N is represented by A in Weak Arithmetic. We must show that 
every bounded wff belongs to S. 

We have seen that the atomic wffs 

x=y,O y,s(x)=y,x+y=z,x*y=z 

belong to S. Using this fact, it can be shown by induction on terms 
that any wff of the form r = y belongs to S, where y is a variable which 
does not occur in r. 

It then follows that any atomic wff, i.e. equation between two terms, 
belongs to S. For if a, r are terms with all variables replaced by nu­
merals, there are a and b such that N f= a = a and .N f= r = b. 
One can then check that if a = b then WA I- a = r and otherwise 
WA I- •a= r. 

It is a routine matter to check that the set S is closed under each 
propositional connective. 

We now show that the set S is closed under bounded quantifiers. 
We assume A E S and prove that (3x :::; y )A E S. The trick is to use 
Lemma 5.2.6. By that lemma, for each b, it can be proved in WA that 
the wff 

(3x S b)A(x, z) 

is equivalent to 
A(O, z) V · · · V A(b, i'). 

The latter wff is a finite disjunction of members of S, and thus belongs 
to S by the preceding paragraph. It then follows that (3x S y)A ES. 

The bounded universal quantifier case is similar. This shows that 
every bounded wff belongs to S. End of Proof. 

We first take up weak representability, and then representability. 

Theorem 5.4.15 Each E1 wff C weakly represents the relation defined 
by C in N. A relation is weakly representable if and only if it is E1 

definable. 
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Proof: Suppose first that a relation R is defined in N by a E1 wff 
3u A( u, x), where A is a bounded wff. We show that 3u A( u, x) weakly 
represents R. Suppose a ER. Then 

NF= 3uA(u,a). 

Then for some b E N, 
N f= A(b,a). 

By the preceding lemma, 

WA I- A(b, a), 

and hence 
WA I- 3uA(u,a). 

Now suppose 
WA I- 3uA(u,a). 

Then 
N f= 3uA(u,a), 

so a E R. Therefore R is weakly representable. 
Now suppose that R is weakly represented by a wff B(x). Let F 

be the function such that F(a) = 0 if a E R and F(a) is undefined 
otherwise. Then F(x) = y is weakly represented by the wff B(x) /\ 
y = O. By the first half of Theorem 5.3.3, which was proved in the 
last section using Church's Thesis, F is computable., Therefore by 
Theorem 5.4.13, F(x) = y is defined in N by a E1 wff C(x,y). Then 
R is defined in N by the wff 3y C( x, y), and by Lemma 5.4.4, R is E1 
definable. End of Pro of. 

This gives us the second half of Theorem 5.3.3. 

Corollary 5.4.16 Every computable (partial) function is weakly rep­

resentable. 

Proof: Suppose _F is computable. By Theorem 5.4.13, F is E1 defin­
able, so by the preceding theorem, F is weakly representable. End of Proof 
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Theorem 5.4.17 If a relation R has the property that both R and. •R 
· are Ei definable, then R is representable. 

Proof: Suppose R( x) is defined in N by the wff 3u A( u, x) and ·R( x) 
is defined in N by the wff 3v·B( v, x), where A and B are bounded wffs. 
Then 

NF= 3uA(u,x) <=> Vv•B(v,x). 

It follows that R( x) is also defined in N by the w:ff 

C(x) : 3u [A( u, x) /\ (Vv ~ u )•B( v, x)], 

and •R( x) is defined in N by the w:ff 

D(x): 3v [B(v,x) /\(Vu.~ v)•A(u,x)]. 

Both C and Dare w:ffs. We show that C represents R. 
If i1 E R, then by Theorem 5.4.15, 

WA r C(a). 

Now suppose that i1 tJ. R. Then 

WA r D(a). 

Exercise 10 shows that the three sentences 

C(a), D(a), Vu Vv [u ~ v v v ~ u] 

are tableau confutable. The third sentence above is Axiom 9 of WA. 
Therefore 

WA r D(a) =} ·C(a), 

and it follows that 

WA r •C(a). 

This shows that C represents R. End of Proof. 
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Theorem 5.4.18 Every total function F which is E1 definable is rep­
resentable. 

Proof: Let the graph F(x) v of F be defined in N by a E1 w:ff 

3z A(z, x, v) 

where A is a bounded w:ff. Since Fis total, the complement •F( x) = v 
of the graph of F is defined in N by the w:ff 

3z 3w [A(z, x, w) /\ •w == v]. 

By Lemma 5.4.4, the complement of the graph of Fis definable. By 
the preceding lemma, the function F is representable. End of Pro of. 

Putting everything together, we have now completed the proof of the 
Equivalence Theorem, showing that every computable total function is 
E1 definable, and hence representable. 

5.5 First Incompleteness Theorem 

In this section we prove a theorem of Tarski which shows that the set 
of sentences which are true in the standard model N of arithmetic is 
not definable in N. We shall then use Tarski's Theorem to give a proof 
of Godel's First Incompleteness Theorem, which shows that PA is not 
complete. 

Let us first review the notions of a consistent theory and of a com­
plete theory, which were discussed informally in Chapter 3. 

Definition 5.5.l A theory H in the language of arithmetic is con­
sistent if H does not have a tableau refutation. H is complete if H 
is consistent and for every sentence A in the language of arithmetic, 
either H r A or H r •A. 

The proof of Tarski 's Theorem is based on the liar paradox, 

This sentence is false. 



300 CHAPTER 5. THE INCOMPLETENESS THEOREMS 

The idea is to show that if the set of codes of true sentences were de­
·finable, then one could find a sentence which asserts its own falsehood, 
as in the liar paradox. 

Here are the main steps of the proof that PA is not complete. Using 
the· Equivalence Theorem we will show that the set of all codes of 
sentences which are provable from PA is definable in N. Then by 
Tarski's Theorem the set of sentences provable from PA cannot be the 
same as the set of sentences true in N. Since every sentence provable 
from PA is true in N, it follows that there is a sentence B which is 
true in N but is neither provable nor disprovable from PA. 

Godel's original incompleteness proof, which will be given in the 
next section, is somewhat harder than the proof in this section but 
gives important additional information. It not only shows that PA is 
not complete, but actually produces an example of a sentence B which 
is neither provable nor disprovable from PA. 

We introduce two more properties of theories. 

Definition 5.5.2 A theory Hin the language of arithmetic is sound 
if N f= H, that is, every sentence in H is true in the standard model 
of arithmetic. 

Definition 5.5.3 By an axiomatized theory we mean a set of 
sentences Hin the language of arithmetic such that the set of codes of 
elements of H is computable. 

Every sound theory is consistent because it has the model N. If a 
theory H is consistent but not complete, it will have an extension H' 
which is consistent but not sound (Exercise 4). 

We saw in Chapter 3 that Weak Arithmetic is sound but not com­
plete, and that Peano Arithmetic is sound. Any finite theory such as 
WA is obviously axiomatized, and we showed earlier in this chapter 
that PA is axiomatized. In this section we shall see that PA is not 
complete. In fact, we shall show even more, that no sound axiomatized 
theory is complete. 

It will be convenient to introduce a name for the set of all sentences 
which are true in N. 
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Definition 5.5.4 The set of all sentences which are true in a model 
M is denoted by Th(M), and called the theory of M. In particular, 
T h(N) is called complete arithmetic. 

For any model M, the theory Th(M) is automatically complete. A 
·theory His sound if and only if it is a subset of Th(N). 

Given a wff A( v) in the language of arithmetic with one free vari~ble 
v and code a, the sentence A(a) will be called the diagonal sentence 
for A( v ). Thus the diagonal sentence for a wff A is the sentence formed 
by replacing each free occurrence of v by the numeral representing the 
code of A( v ). The diagonal sentence will be used in this section to form 
a sentence which asserts its own falsehood, and in the next section to 
form a sentence which asserts its own unprovability. To construct such 
sentences, we need the following definition: 

Definition 5.5.5 The diagonal relation is the binary relation D 
on N consisting of those pairs (a, b) for which a is the code ofa wff 
A( v) in the language of arithmetic with one free variable v and b is the 
code of the diagonal sentence A( a). 

Lemma 5.5.6 The diagonal relation D is computable. 

Proof: We outline an algorithm which, given an input (a, b), outputs a 
1 if (a, b) E D and a 0 otherwise. First check whether a is the code ~f a 
wff A( v) with one free variable v. If not, output 0 and stop. Otherwise, 
compute the code of the sentence A(a). Output a 1 if this code is equal 
to band output O otherwise, and stop. By Church's Thesis, the diagonal 
relation D is computable. End of Proof. 

We need one more lemma before proving Tarski's Theorem. 

Lemma 5.5.7 In the language of arithmetic, for any wff B(x) with 

one free variable x, there is a sentence C such that 

N f= C ¢? B(c) 

wher:e c is the code of C. 
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Proof: Let D( v, x) be a wff which defines the diagonal relation D in 
N'. Let E( v) be the wff 

V x [D ( v, x) => B ( x)] . 

Let e be the code of E. Let C be the diagonal sentence E( e) of E( v). 
In expanded form, C is 

V x [D ( e, x) => B ( x)] . 

Let c be the code of C. The sentence C {:} B( c) in expanded form is 

(1) V x [D ( e, x) => B ( x)] ¢:> B ( c) . 

Since C is the diagonal sentence of E, (e, c) E D. Therefore c is the 
unique number such that 

N f= D(e, c). 

It follows that the sentence ( 1) is true in N, as required. End of Proof. 

Theorem 5.5.8 (Tarski's Theorem) Let TR denote the set of all 
codes of sentences true in N. Then TR is not definable in N. 

Proof: Assume TR is definable in N by a wff TR( v) with one free 
variable v. By the preceding lemma there is a sentence P with code p 
such that 

N f= P {:} -.TR(p). 

Thus, 

N f= P if and only if NF TR(p) 

But since TR defines TR in N, the right-hand side above is equiv­
alent to N F P. We are left with the contradiction that P is true in N 
if and only if Pis not true in N. We conclude that TR is not definable 
after all. End of Proof. 

In Section 1 we defined the proof relation PRFH for a set H of 
sentences in the language of arithmetic to be the set of all pairs of 
natural numbers ( x, y) such that x is the code of a wff A and y is the 
code of a tableau proof of A from H. Using the proof relation, we can 
carry out the incompleteness proof sketched at the beginning of this 
section. 

5.6. GODEL'S ORIGINAL INCOMPLETENESS PROOF 303 

Theorem 5.5.9 (First Incompleteness Theorem) Let H be a sound 
axiomatized theory. Then H is not complete. 

Proof: Theorem 5.1.9 showed that for each axiomatized theory H, 
the proof relation PRFH is computable. By the EquivaleJ).ce Theo­
-rem 5.3.1, PRFH is representable, and therefore definable in N by 
a formula PH(x, y). Therefore the set of codes of sentences which are 
provable from H is definable in N by the formula 3y PH ( x, y). Then by 
Tarski's Theorem and the soundness of H, the set of sentences provable 
from H must be a proper subset of T h(N). Thus there is a sentence 
B which is true in N but not provable from H. Moreover, -.B is not 
provable from H because it is false in N and His sound. Therefore H 
is not complete. End of Proof. 

. Corollary 5.5.10 The complete theory Th(N) of arithmetic is not ax­
iomatized. 

5.6 Godel's Original Incompleteness Proof 

In this section we shall give another proof of the First Incompleteness 
Theorem, using Godel's original method. 

The central idea is to modify the liar paradox by finding a sentence 
Ac, called a "G sentence." which asserts its own unprovability from 
PA. Thus the Godelian sentence Ac says 

I am not provable from PA. 

Now if Ac is provable from PA, then Ac must be true in N because 
PA is sound, and therefore Ac is not provable from PA. Thus Ac 
cannot be provable from PA. It follows that Ac is true in N, and 
since PA is sound, the negation also is not provable from PA. Hence 
PAis incomplete. 

With these remarks we have in outline form another proof that PA 
is an incomplete theory, and that there are sentences which are true in 
N but not provable from PA. The main technical difficulty is to show 
that the Godelian sentence exists. 

As a starting. point we introduce the concept of a proof formula 
· for a·theory H in the language of arithmetic. 
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Definition 5.6.1 Let H be an axiomatized theory in the language of 
arithmetic. A proof formula for His a wff PRFH which represents 
the proof relation PRFH:. 

Corollary 5.6.2 Let H be an axiomatized theory. Then the proof re­
lation PRFH for H is representable, i.e., H has a proof formula. 

Proof: Theorem 5.1.9 showed that for each axiomatized theory H, the 
proof relation PRFH is computable. 

By the EquivalenceTheorem 5.3.1, PRFH is representable. End of Proof. 

A proof formula for H allows us to express a statement like 

(1) The tableau T is a proof of the sentence A from H. 

formally in arithmetic, by translating it into the wff: 

(2) PRFH(a, t) 

where a is the code of the wff A and t is the code of the tableau T. 
There are several steps involved in this translation. First, form the 
proof formula PRFH(x,y) for H. Then compute the codes a for the 
wff A and t for the tableau T. Finally, form the numerals (which are 
terms) a for a and t fort, and substitute these terms for the variables 
x, yin PRFH(x, y). 

The next result shows that by using an existential quantifier, we 
can express the statement 

( 3) The sentence A is tableau provable from H 

formally in arithmetic by the wff 

( 4) 3y PRFH(a, y) 

where a is the code for the wff A. 
In the incompleteness proof in the preceding section, we used the 

fact that the set of codes of sentences which are provahle from an ax­
iomatized theory H is definable in N. We now prove that this set is 
also weakly representable. 
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Theorem 5.6.3 Let PRFH be a proof formula for an axiomatized the­
ory H, and let PV be the set of all codes of sentences which are provable 

from H, that is, 

PV ={#(A): A E SENT(£) and Hf- A} 

where £ is the vocabulary of arithmetic. Then the wff 3y PRFH( x, Y) 
weakly represents the relation PV and also defines PV in N . . That is, 
for all a EN, 

(i) a E PV if and only if WA f- 3yPRFH(a,y), 

(ii) a E PV if and only if NI= 3yPRFH(a,y). 

Proof: Since PRFH represents PRFH, PRFH defines PRFH in .N 
by Theorem 5.2.3. Both (i) and (ii) are proved by the following list of 
statements. 

If a E PV thenfor some b EN, (a, b) E PRFH· 

If (a, b) E PRFH then WA i- PRFH(a, b). 

If WA f- PRFH(a, b) then WA f- 3yPRFH(a,y). 

If WA f- 3yPRFH(a,y), then NI= 3yPRFH(a,y). 

If N I= 3y PRFH (a, y ), then for some b E N, N I= PRFH( a, b ). 

-If NI= PRFH(a, b), then (a, b) E PRFH. 

If (a, b) E PRFH then a E PV. End of Proof. 

Once we see that statements about proofs can be expressed formally, 
many questions naturally arise about the relationship between this for­
mal version of proof (like (2)) and our usual notion of proof (like (1)). 
For instance, we will be able to investigate questions like: 

( 5) If A is provq,ble, is it provable that A is provable? 

(6) If it's provable that A is provable, must A be provable? 
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(7) Is it provable that if A and B are both provable then A AB is 
provable? 

( 8) If A V B is provable, must one of A and B be provable? Is the 
answer to this question provable? 

We now turn to the First Incompleteness Theorem. 

Definition 5.6.4 If H is an axiomatized theory, a sentence P of 
arithmetic is a Godelian sentence for H if 

where p is the code for P. 

Thus P is Godelian for H if H proves that [P is true if and only if 
P is not provable from H]. A Godelian sentence for H asserts its own 
unprovability from H. 

The following proposition shows that a Godelian sentence quickly 
leads to incompleteness. 

Proposition 5.6.5 Let H be a sound axiomatized theory and let P be 
a Godelian sentence for H. Then P is true in N but not provable from 
H, and H is consistent but not complete. 

Proof: Let p be the code for P. Since P is Godelian for H and His 
sound, we have 

(1) 

We claim that 

(2) N f= 1 :ly PRFH(P, y). 

Suppose (2) fails. Then there exists n such that 

N f= PRFH(p,n), 
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and by Theorem 5.6.3, Hr- P. By soundness, N f= P. Then by (1), 
(2) holds. Thus (2) holds in all cases. 

By (1) and (2), N f= P. By (2) and Theorem 5.6.3, H If P. Since H 
is sound and N f= P, we also have H If ...,p. Therefore H is consistent 
but not complete. End of Proof. 

We now show that theories such as PA have Godelian sentences. 
In the preceding section we defined the diagonal relation D, consisting 
of those pairs (a, b) for which a is the code of a wff A( v) in the lan­
guage of arithmetic with one free variable v and b is the code of the 
diagonal sentence A( a). We showed that D is computable. Since D is 
computable, it is representable. The next lemma shows that there is a 
wff D which does an especially good job of representing D. It will be 
needed in forming a Godelian sentence. 

Lemma 5.6.6 There is a wff D( v, x) such that D represents the diag­
onal relation D and for each (a, b) E D, 

WA r-vx [D(a,x) ~ x = b]. 

Proof: By the preceding lemma, Dis computable. By the Equivalence 
Theorem, Dis represented in WA bysomeformulaB(v,x). Let D(v,x) 
be the wff 

(3) B(v,x)/\Vu[u<x ·B(v,u)]. 

Intuitively, D( a, b) says that bis the first number such that (a, b) E D. 
We first check the second half of representability. If (a, b) ~ D, 

then WA r- ·B(a, b), and therefore WA r- ·D(a, b) because Dis the 
conjunction of B and another wff. 

Suppose that (a, b) E D. To prove (3), work within WA and con­
sider each of the three cases x < b, x = b, b < x. In the first case, 
show that •D(b, x) using the fact that 

WAr-x<b=?x=ov ... vx=b 1 

and for each c <. b, 
WA r- ·B(a, c). 
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The second and third cases use the fact that, since B represents D, 
- WA r B(a, b) but WA r •B(a,c) for all c < b. This gives us D(a,x) 

in the case x =band ·D(a, x) in the case b < x. We have thus proved 
(3). 

The first half of representability follows from (3) and the fact that 

r Vx [D(a, x) # x:::::: b] =:;> D(a, b). 

End of Proof. 

We now prove a stronger form of Lemma 5.5.7. 

Lemma 5.6. 7 (Diagonalization Lemma) In the language of arith­
metic} for any wff B ( x) with one free variable x, there is a sentence 
C such that 

WA r C # B(c) 

where c is the code of C. 

Proof: (To make the idea easier to follow, we shall keep in mind the 
important case where B(x) is a wff which says "x is not provable from 
H".) Let D( v, x) be the w:ff of the preceding lemma. Let E( v) be the 
w:ff 

\fx [D(v, x) =} B(x)]. 

(Intuitively, E( v) says that the diagonal sentence of the w:ff with code v 
is not provable from H). Let e be the code of E. Let C be the diagonal 
sentence E( e) of E( v). In expanded form, C is 

Vx [D(e, x) =} B(x)]. 

(Intuitively, C says that the diagonal sentence of the wff with code e is 
not provable from H, that is, C says that C is not provable from H!). 
Let c be the code of C. The sentence C <=? B( c) in expanded form is 

' ( 4) \fx [D(e,x) =} B(x)J # B(c). 

We must show that ( 4) is provable from WA. Since C is the diagonal 
sentence of E, ( e, c) E D. By the preceding lemma, the sentence 

(5) \fx [D(e,x) # x = c] 
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is provable from WA. One can easily check that_(4) is tableau provable 
from (5) (e.g. by using the TABLEAU program), so (4) is also provable 
from WA as required. End of Proof. 

Corollary 5.6.8 Let H be an axiomatized theory and let PRFH be a 
proof formula for H. Then there is a sentence P such that 

(t), WA r P # 1 3y PRFH(P, y) 

where p is the code of P. 

Proof: Let B(x) be the w:ff •3y PRFH(x, y) (which intuit~vely says 
that "x is not provable from H"). By the Diagonalization Lemma, 
there is a_ sentence P with code p such that 

WA r P # B(p). 

This is ( t). End of Proof. 

Proposition 5.6.9 Let H be a consistent axiomatized theory which in­
cludes WA, and let P be a sentence with property {t) from the preceding 
corollary. Then P is a Godelian sentence for H. Moreover, P is true 

in N but not provable from H. 

Proof: P is Godelian for H because (t) holds and H includes WA. 
We show next that P is not provable from H. Suppose on the contrary 
that H r P. Since P is Godelian for H, 

Hr •3y PRFH(p, y). 

But PRFH is a proof formula for H and H r P, so 

WA r 3yPRFH(p,y). 

Since H includes WA, 

Hr 3y PRFH(P, y). 

This contradicts the fact that H is consistent. We conclude that P is 
not provable from H. 

It follows that the sentence. •3y PRFH(P, y) is true in N. Since 
WA is sound, we conclude from ( t) that Pis true in N. End of Proof. 

We can now_ easily prove the First Incompleteness Theorem. 
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Theorem 5.6.10 (First Incompleteness Theorem) No sound ax­
iomatized theory is complete. In particular, Peano Arithmetic is not 
complete. 

Proof: Suppose H is a sound axiomatized theory, and assume that 
H is complete. Since H is axiomatized, by Corollary 5.6.8 there is a 
sentence P such that ( t) holds. 

For each axiom Q of WA, N ~ •Q, hence by soundness, H If •Q, 
and by completeness, H t-- Q. Thus every axiom of WA is provable from 
H, and hence every sentence provable from HU WA is provable from H 
alone. Since His sound, HUWA is sound. Then by Proposition 5.6.9, 
there is a Godelian sentence P for HU WA. By Proposition 5.6.5, H 
is not complete. End of Proof. 

5. 7 Godel-Rosser Theorem 

The First Incompleteness Theorem in the preceding two sections re­
quires the theory in question to be sound. As reasonable as this prop­
erty may be, it is quite complex from the point of view of computability. 
To check the soundness of a theory, we must decide whether each of its 
sentences is true (in N). As we show in Theorem 5.5.8, no procedure 
which decides the truth of every sentence of arithmetic is even definable 
inN. 

In th,is section we shall prove an improvement of the First I~com­
pleteness Theorem which does not depend on the notion of soundness, 
the Godel-Rosser Theorem: No consistent axiomatized theory which 
includes WA is complete. 

We first need some results about the undecidability of some of the 
relations and theories we have been studying. 

Definition 5. 7.1 A set of sentences His called a decidable theory 
if the set 

{x: 3y PRFH(x, y)} 

of codes of sentences which are provable from H is computable. Theo­
ries which are not decidable are called undecidable. 
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The next theorem shows that PA and WA are undecidable. Thus 
the set of codes of proofs from PA is computable, but the set of codes 
of provable wffs from PA is not computable. 

Theorem 5.7.2 Any consistent theory which includes'WA is undecid­
, able. 

Proof: Assume His consistent, decidable, and includes WA. We shall 
obtain a contradiction. 

Since H is decidable, the set 

PV = {x: 3yPRFH(x,y)} 

of codes of sentences which are provable from H is computable. We 
may assume that every sentence which is provable from H is already 
an element of the set H. Then PV is the set of codes of elements of 
H, so His an axiomatized theory. Let PRFH be a proof formula for 
H. By the Equivalence Theorem, PV is represented by some wff B. 
BAPRFH is also a proof formula for H, because PRFH PVnPRFH 
and B A PRFH represents PV n PRFH. By Corollary 5.6.8 there is 
a wff P such that ( t) holds with B A PRFH in place of PRFH. By 
Proposition 5.6.9, 

H If P. 

Let p be the code of P. Then p ~ PV. Since B represents PV, 
WA t-- •B(p ). Therefore 

WA t-- 1 3y[B A PRFH](p,y). 

It now follows from (t) that WA t-- P, and since WA C H, Ht-- P. 
This is a contradiction and completes the proof. End of Proof. 

For example, the theories WA and PA are undecidable because 
each is a consistent theory which includes WA. 

Th(N) is thus an example of a consistent theory which includes 
WA, and by the preceding theorem, Th(N) is undecidable. Since every 
sentence which is provable from T h(N)) is true in N and vice versa, 
it follows ·that the set of codes of sentences which are true in N is not 
computable. 
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Theorem 5.7.2 says something about theories containing sentences 
which are false in N. (Such theories are called unsound.) For example, 
we might try to make PA a complete theory by adding to PA the axiom 
•P where Pis Godelian for PA. Let PA+= PAU{•P}. SinceN f= P, 
PA+ is unsound. But PA+ is consistent; if not, then every model of 
PA would satisfy P and we would have that PA I- P, contradicting 
Proposition 5.6.5. We can therefore conclude by our last theorem that 
PA+ is an undecidable theory. 

The next lemma shows that any undecidable axiomatized theory is 
also incomplete. It leads to the Godel-Rosser Theorem, which is an 
improvement of the First Incompleteness Theorem. 

Lemma 5. 7.3 Every complete axiomatized theory H is decidable. 

Proof: We describe an algorithm which determines whether an input a 
is the code of a sentence which is provable from H. First, check whether 
a is the code of a sentence of arithmetic. If not, output 0 and stop. 
If a is the code of a sentence A, compute the code b of the sentence 
•A. Now for c 0, 1, 2, ... , check to see whether (a, c) E PRFH, and 
then check whether (b, c) E PRFH. Continue this process until either 
(a, c) E PRFH or (b, c) E PRFH. The process will stop after finitely 
many steps because H, is complete, so either H I- A or H I- •A. If 
(a, c) E PRFH we output 1 and stop, and if (b, c) E PRFH we output 
0 and stop. This shows that His decidable. End of Proof. 

Theorem 5.7.4 (Godel-Rosser Theorem) No consistent axiomatized 
theory which includes WA is complete. 

Proof: Suppose His an axiomatized theory which includes WA and 
assume that His complete. By Lemma 5.7.3, His decidable, contra­
dicting Theorem 5.7.2. End of Proof. 

. The Godel.: Rosser Theorem, like the First Incompleteness Theorem, 
is stated entirely in terms of provability, and does not require the notion 
of a wff being true in N. 

The Godel-Rosser Theorem implies that there is no computable way 
to add axioms one-by-one to PA in order to make it complete - even 
if we are allowed to add infinitely many axioms. (In other words, we 
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cannot find a list of such axioms whose codes are computed by an RM 
program.) To see this, suppose we attempt to add axioms Ao,A1, ... 
using some algorithm. Note that if instead we add the axioms Ao, Ao/\ 
Ai, ... we obtain a theory which has the same consequences as the first, 
only now the codes of the new axioms are arranged in increasing order. 

·By Exercise 2, the set of these codes is computable, and hence so is the 
set of codes of 

PA U {Ao, Ao/\ A1, ... }. 

Thus, by the Godel-Rosser Theorem, the new theory is either inconsis­
tent or incomplete. 

In contrast to the Godel-Rosser Theorem, there are several known 
examples of theories H in the language of arithmetic which are con­
sistent, complete, and decidable. By the theorem, no such theory can 
include WA. A trivial example is the theory Th(M) of all sentences 
true in a finite model M. Two very important examples due to Tarski 
are the theories Th(R) and Th(C) where R is the field of real numbers 
and C is the field of complex numbers. Another important complete 
decidable theory, due to Presburger, is the theory Th(N+) where N+ 
is the standard model of arithmetic in the vocabulary {O, s, +} without 

the multiplication symbol *· 
Using the results of this section, we can give another proof of Church's 

Theorem, which was proved in Chapter 4. 

Theorem 5. 7.5 (Church's Theorem) The empty theory in the lan­
guage of arithmetic is undecidable. That is, the set V of all codes of 
valid sentences in the language of arithmetic is not computable. 

Proof: Suppose the set of codes of valid sentences is decidable and is 
computed by an RM program which we shall call VAL. We shall show 
that WA would t,hen be decidable, thus obtaining a contradiction. The 
proof depends on the fact that WA is a finite set of sentences. Since 
WA is finite, we may form the sentence C which is the conjunction of 
all sentences in the set WA. Then for each sentence A, we have 

WAf=Aifandonlyiff=C A. 

We describe an algorithm which would, under our hypothesis, deter­
mine whether an input a is the code of a sentence which is a valid 
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consequence of WA. First check whether a .is the code of a sentence. 
If not, output 0 and stop. If a is the code of a sentence A, compute 
the code c of the sentence C =? A. Then use the hypothetical program 
VAL to decide whether or not C => A is valid. If so, then WA r A 
and we output 1, and otherwise WA If A and we output 0. This 
shows that WA would be decidable and contradicts Theorem 5. 7 .2. 
Erid of Proof. 

While Church's Theorem shows that the set V of codes of valid 
sentences is undecidable, Theorem 5.6.3, shows that V is definable in 
N and weakly representable. By contrast, the method of truth tables 
shows that the set of codes of valid sentences in propositional logic is 
computable. 

We have seen that the set of codes of sentences true in the standard 
model of arithmetic is not computable. Tarski improved this result by 
showing that the set of codes of true sentences is not even definable in 
N: 

5.8 Provability and Modal Logic 

One of the innovations of the 1970's (forty years after Godel's discovery 
of the Incompleteness Theorems) was an application of a simple kind 
of logic - called modal logic to investigate questions of provability 
in arithmetic. This approach allows one to study the Incompleteness 
Theorems without the rather involved machinery of Godel numbering. 
We shall describe this approach here and use it to prove Godel's Second 
Incompleteness Theorem. 

The rest of this chapter is organized as follows: In this section we 
describe modal logic, an interpretation of modal wffs as sentences of 
arithmetic, and a broad class of theories of arithmetic which are needed 
to define this interpretation precisely. In 5.9 we describe modal tableau 
proofs and discuss various axioms for modal logic which express certain 
essential properties of "provability." In 5.10 we revisit the First Incom­
pleteness Theorem. In 5.11 we prove Godel's Second Incompleteness 
Theorem and discuss several related results. 

We begin our study of modal logic with a language which has as 
its primitive symbols those of propositional logic together with a new 
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symbol D which is a formal counterpart of the predicate "is provable 
from H," where H is some theory in the language of arithmetic, like 
WA or PA. The symbol D will allow us to formulate modal axioms 
which express essential properties of provability without involving us 
in the details of codes. 

We want each propositional symbol in modal logic to stand for a 
sentence in the language of arithmetic, but we will not be concerned 
with the inner structure of the sentences. To accomplish this, we shall 
simply take the sentences in the language of arithmetic themselves to be 
the propositional symbols of our modal logic. We shall use the capital 
boldface letters P, Q, ... to stand for arbitrary propositional symbols of 
modal logic (we shall stop using them for RM programs). Lower case 
boldface letters will be used for numerals. Thus in our modal logic, 
P, Q, ... will stand for sentences in the language of arithmetic, but we 
do not have to specify which sentences. 

Formally, modal logic is obtained by adding a new symbol D, called 
a modal operator, to propositional logic. The vocabulary of modal 
logic consists of a set P of proposition symbols, as in propositional 
logic. The primitive symbols consist of the proposition symbols just 
described, the connectives and brackets of ordinary propositional logic, 
and the symbol D . Any finite sequence of these primitive symbols is 
a string. A modal wff is a finite string obtained by finitely many 
applications of the following rules of formation: 

(Modal:P) 

(Modal:•) 

(Modal:D) 

(Modal:/\, V, =>, {:}) 

Any proposition symbol is a modal wff 

If A is a modal wff, then --iA is a modal wff 

If A is a modal wff, then DA is a modal wff. 

If A and B are modal wffs, then [A*B] 
is a modal wff whenever* E {A, V, =>, {:} }. 

For the set P of propositional symbols we take the set SENT(£) of 
sentences in the vocabulary C of arithmetic. We shall let F denote the 
false· sentence -,Q = 0 of arithmetic. Thus F is a particular proposition 
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symbol of modal logic as well as a sentence of arithmetic. The set of 
all modal wffs will be denoted by WFF('P). 

· Modal wffs and the logic associated with them can be interpreted 
in a variety of ways; originally modal logic arose (starting as far back 
as Aristotle) as an attempt to formalize the idea of necessary truth:. 
Given a proposition P about the world, if P happens to be true, is it 
necessarily true? Around 1910, C.I. Lewis introduced the symbol D 
as a new operator in propositional logic to give formal expression to 
this notion of necessity. Thus, for any proposition P, DP was to be 
understood as saying "it is necessary that P (holds)." Since then, this 
operator has been interpreted in a number of different ways and various 
axiom systems have been developed to formalize these interpretations; 
D has been interpreted as "it is necessary that," "it is provable that," 
and "it is computable that"; in his popularized treatment of the Incom­
pleteness Theorems, Smullyan [1987] interprets D as "it is believable 
that." In this chapter, we shall interpret D as "it is provable from H 
that," where H is a pre-determined set of sentences of arithmetic. 

We now take up the question of how to assign meaning to our modal 
wffs, i.e., the question of semantics'. In the logics we considered in 
earlier chapters, the question was answered by developing a theory of 
models for the particular logic we were studying. A similar approach 
(see Boolos [1979] or Smorynski [1985]) could be carried out here but is 
unnecessary for our purposes; another kind of interpretation is already 
suggested by the fact that our proposition symbols denote sentences of 
.arithmetic. We shall show that we can inductively assign a sentence 
of arithmetic to each modal wff in such a way that connectives are 
preserved and the symbol D has our intended meaning "provable from 
H." We shall call this association an arithmetical interpretation 
of modal logic. This interpretation will depend only on the choice 
of a proof formula PRFH for H. Each modal wff A will have an 
interpretation J(A) which is a sentence the language of arithmetic, and 
the proof formula for H will play a special role in this interpretation. 

Because of the inductive nature of the definition of the arithmetical 
interpretation, we need an Inductive Definition Principle for modal wffs 
and, as usual, this requires a Unique Readability Theorem. The proofs 
of these are virtually the same as their analogues in propositional logic; 
proofs at the D-stage of each argument proceed like the •-stage of the 
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corresponding proof in propositional logic. We leave the details to the 
reader; see Exercise 12. 

Definition 5.8.1 Let H be an axiomatized theory with a proof for­
mula PRFH. By the arithmetical interpretation of modal logic by 
PRFH we mean the function 

I : WFF('P) ~ SENT(£), 

where[, is the vocabulary of arithmetic, defined recursively as follows. 

Basis For each proposition symbol P, I(P) = P. 

Negation J(•A) •l(A). 

·Binary connective For each binary connective*, 

J([A * B]) = [J(A) * J(B)]. 

Modal operator J(DA) = 3y PRFH(a, y), 

where a= #(I(A)) is the code of the sentence J(A). 

From now on, it will be understood that I is an arithmetical inter­
pretation of modal logic by PRFH, where H is a given axiomatized 
theory and PRFH is a given proof formula for H. 

Definition 5.8.2 Let H be an axiomatized theory and let PRFH be 
a proof formula for H. We say that a modal wff C holds for PRFH 
if its arithmetical interpretation J(C) by PRFH is true in N. If the 
proof formula PRFH is clear from the context, we say that C holds 
for H if it holds for PRFH. 

The following corollary shows that DA has our intended meaning 
under the arithmetical interpretation by PRFH. 

Corollary 5.8.3 (Arithmetical Interpretation Theorem) Let 
. PRFH be a proof formula for H. For every modal wff A, the following 

are equivalent: 
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. (i) DA holds for H, i.e. N f= J(DA). 

(ii) J(A) is provable from H, i.e. Hr- J(A). 

(iii) J(DA) is provable from WA, i.e. WA r- !(DA). 

Proof: Let a be the code of the wff J(A). Then !(DA) is the sentence 
3y PRFtt(a, y). By Theorem 5.6.3, conditions (i)-(iii) are equivalent. 
End of Proof. 

The Arithmetical Interpretation Theorem can be used to translate 
a statement saying that a modal wff holds for H to a statement about 
provability from H. If A is a simple modal wff where there are no boxes 
within boxes, the translation is done by replacing each DP within A by 
"H r- P." To make the translation more readable, we shall sometimes 
write H r- P in either of the long forms 

"H proves P" 

or 

"P is provable from H." 

Example. Consider the modal wff 

A: DP/\ D[P =? Q] =? DQ. 

"A holds for H" translates into: 

If H r- P and H r- [P =? Q] then H r- Q. 

This is the Rule of Modus Ponens, which is true for any theory H by 
the Completeness Theorem. 

If the modal wff A has nested boxes, the translation is more difficult 
and involves codes and the proof formula for H. 

Example. Consider the modal wff DDP. Intuitively, DDP says "H 
proves that P is provable from H.'' By the Arithmetical Interpretation 
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Theorem, DDP holds for H if and only if H proves J(DP). We shall 
c~mpute!(DP) and J(DDP). Let p be the code of P. Then 

J(DP) = 3y PRFtt(P, y ). 

Therefore D DP holds for H if and only if 

Hr- 3y PRFtt(p, y). 

Now let c be the code of 3y PRFtt(p, y). Then c is the code of J(DP), 
so 

J(DDP) = 3y PRFtt(c, y). 

5.9 Modal Systems and Tableaus 

·We now embark on a discussion of those properties which hold for prov­
ability, and formulate them as axioms for a modal logic. One property 
of provability in both propositional and predicate logic is that for any 
hypothesis set H, if H r- A and H r- [A =? B], then H r- B. This is 
called the Rule of Modus Ponens and follows from the Completeness 
Theorem. Thus, we treat the following list of modal wffs as axioms: 

DA/\ D[A ::::> B] =? DB, for any modal wffs A, B. 

Another property of provability that we wish to formalize is that all 
propositional tautologies are provable. Thus, we would like to say that 
DA is an axiom for each modal wff A such that A is a "tautology." 
In our modal language, what we mean by a tautology is a modal wff 
having the form of an ordinary tautology of propositional logic. For 
instance, 

[P /\ Q] =? p 

is a tautology of propositional logic, so 

DA/\ [DAV DDB] =? DA 

is a modal tautology. (Here, we have replaced P with DA and Q with 
DAV DOB.) . 

Here is a formal definition of modal tautology. 
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Definition 5.9.1 A modal tautology is a modal wff C such that 
for some tautology D of ordinary propositional logic with the proposi­
tion symbols Pi, ... , P n and some list of modal wffs Ai, ... , An, C is 
obtained by replacing each occurrence of Pi in D by Ai for i 1, ... , n. 

We remark that neither of the wffs 

D[P V •P], DP V o-,p 

is a modal tautology, (although DP V ,op is). The first of these 
modal wffs is "true," that is, /(D[P V 1 P]) is true for any P under any 
arithmetical interpretation of modal logic, because for any H, P V ,pis 
provable from H, but the wff does not satisfy the criterion for a modal 
tautology. The second wff, however, is not even true in general. For 
example, let us take H to be WA and P to be the proposition symbol 
which stands for the sentence Vx 0 * x = 0. We have seen in Chapter 3 
that the sentence Vx 0 * x = 0 is true in some models of WA and false 
in others, so that neither P nor ,p is provable from WA. Thus the 
sentence J([DP V D·P]) is false for the arithmetical interpretation of 
modal logic by PRFwA· 

In this and the next section we shall study four axiom systems for 
modal logic, called Mod(O), Mod(l ), Mod(2), and Mod(3). Other 
systems will;be introduced in the exercises. The axioms will express 
properties which "ought" to be true about provability. The first of 
these axiom systems, Mod(O), has an axiom expressing the fact that 
each modal tautology is provable and an axiom expressing the rule of 
modus ponens. The other systems add more axioms which we shall 
discuss later oii. We shall list all four systems here so they will be easy 
to look up, even though we shall need only the first system Mod(O) at 
this time. 

Definition 5.9.2 1 The modal system Mod(O) has the following two 
axiom schemes. 

(tt) DC for every modal tautology C. 

the literature, the modal system having axiom schemes (tt), (mp), (n), and 
(fmp) is known as (I_Ilodal system) I<. Mod(3) is known as J<4 • 
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(mp) DA/\ D[A => B] =>DB for all modal wffs A and B. 

The modal system Mod(l) has as axioms those of Mod(O) together 
with the axiom scheme 

(n) DA=> DOA for every modal wff A. 

The modal system Mod(2) has as axioms those of Mod(l) together 
with the axiom scheme 

(s) DOA* DA for all modal wffs A. 

The modal system Mod(3) has as axioms those of Mod(l) together 
with the following axiom schemes for all modal wffs A and B: 

(fmp) D[[DA /\ D[A => B)] =?DB]. 

(fn) D(DA => ODA). 

(tt) stands for tautology, (mp) for. modus ponens, (n) for nor­
mal, and ( s) for soundness. ( fmp) stands for formalized mod us 
ponens and (fn) for formalized normal. 

Each of the· above modal axiom schemes is actually an infinite list 
of modal wffs. Each of these individual wffs is an axiom of the corre­
sponding modal logic, and is called an instance of the axiom scheme. 
Note that axiom (s) is included among the Mod(2) axioms, but is not 
included among the axioms of Mod(3). We have 

, Mod(O) c Mod(l), Mod(l) c Mod(2), Mod(l) C Mod(3). 

Definition 5.9.3 For each modal system Mod(k), k = 0, 1, 2, 3, we 
define a Type k theory to be an axiomatized theory H in the language 
of arithmetic with a proof formula PRFH such that Mod(k) holds for 
H, that is, the arithmetical interpretation of each Mod(k) axiom by 
PRFH is true in N. 

Proposition 5.9.4 Every axiomatized theory is a Type 0 theory. 
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Proof: Suppose that H is an axiomatized theory. First let C be a 
modal tautology, so that DC is an instance of axiom scheme (tt). Then 
C is obtained from a tautology D of propositional logic by replacing 
propositional symbols P 1 , •.• , P n by modal wffs A 1 , •.. , An. By the 
Completeness Theorem for propositional logic, D has a propositional 
tableau proof T. By replacing each propositional symbol Pi by the 
modal wff Ai in T, we obtain a modal tableau proof T' of C using only 
the propositlonal tableau rules. Replacing each modal wff B in T' by 
the wff I(B), we obtain a tableau proof of I(C). Thus I(C) is tableau 
provable from the empty set of hypotheses, and hence tableau provable 
from ,H. By the Arithmetical Interpretation Theorem, !(DC) is true 
inN. 

Now consider an instance DA/\ D[A ::::> B] ::::> DB of axiom 
scheme (mp}. We have 

/([DA/\ D[A =? B]) =?DB) 

[!(DA)/\ /(D[A =? B])] ::::> !(DB). 

Suppose that /(DA) and I(D[A =? B]) are. true in N. By the 
Arithmetical Interpretation Theorem, both I(A) and I(A =? B) are 
tableau provable from H. Moreover, 

I([A B]) = [I(A) =? I(B)]. 

Therefore by the Completeness Theorem 3.5.2, I(B) is tableau prov­
able from H. Thus by the Arithmetical Interpretation Theorem, !(DB) 
is true in N. This shows that /([DA/\ D(A ::::> B]] ::::> DB) is true in 
N as required. End of Proof. 

To prove consequences of Mod(k), we again use the tableau method. 
A modal tableau of type k, or Mod(k) tableau, is defined as 

in propositional logic except that we add to the usual list of tableau 
extension rules the following rule: 

Any axiom of Mod(k) can be added at the end of a branch 
(where k 0, 1, 2, or 3). 
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(We have seen this sort of tableau rule before; the Equality Rule I =3 I 
similarly allows any node to be extended by an axiom.) As before, we 
declare a branch of a tableau to be contradictory if for some modal wff 
A, both A and -iA occur on the branch; a Mod(k) tableau proof is 
then defined in the usual way. If there is a Mod(k) tableau proof of 
the modal wff A, we write 

1-k A. 

Likewise, if J is a set of modal wffs and there is a Mod(k) tableau 
proof of A from J, we write 

JhA. 

In this book, we shall only consider finite modal tableaus. 
The TABLEAU program is equipped to accept modal wffs and exe­

cute the Axk rules. To run the modal logic version of the TABLEAU 
program, c oose "start a MODAL tableau" at the title screen. You will 
then be able to enter wffs of modal logic as hypotheses and as formulas 
to be proved, and to use the axioms of modal logic in tableau proofs. 
To enter a D as part of a modal wff, you can either hit the# key, type 
in the word BOX, or hold the Ctrl key down and hit B. To use a modal 
axiom in a tableau, hit the A key at the end of a branch in Tableau 
mode, and then choose the desired axiom scheme from the menu. 

What information do tableau proofs in modal logic give us? In 
propositional and predicate logic, the tableau method provided a con­
venient procedure for checking whether a sentence was a semantic con­
sequence of a given hypothesis set. Modal proofs can also be under­
stood in this way by introducing a notion of a model for modal logic. 
Instead, we shall understand modal proofs by going back to our arith­
metical interpretation of modal logic. The following proposition is like 
the Soundness Theorem for propositional logic, and can be proved by 
induction on the number of nodes of a tableau. 

Proposition 5.9.5 If there is a tableau proof of a modal wff C i~ the 
·modal system Mod(k), then for any Type k theory H, C holds for H. 
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Thus a Mod(k) tableau proof tells us that a modal wff holds for all 
·Type k theories. By Proposition 5.9.4, a Mod(O) tableau proof tells 
us that a modal wff holds for all axiomatized theories. 

A corresponding completeness theorem can also be formulated; ·see 
Exercise 24. 

We shall now use modal tableaus to prove some lemmas which will 
be used later for the incompleteness theorems. In most cases we shall 
only sketch the main steps of the proof, and leave the construction of 
a formal tableau proof as a problem using the TABLEAU program. 

We state our first lemma formally in modal logic, and then give an 
English translation in terms of provability from an axiomatized theory 
H. Since this is our first lemma, the full tableau proof will be given in 
the text. 

Lemma 5.9.6 f- 0 D[P /\ Q] => [DP/\ DQ] 
IJH f- P /\ Q, then Hf- P and Hf- Q. 

Proof: Here is an informal proof expressed in terms of provability 
from H. Suppose H f- P /\ Q . Since P /\ Q => P is a tautology, it 
is provable from H. By Axiom Scheme (mp), Hf- P . Likewise, since 
H f- P /\ Q => Q , H f- Q . The formal modal tableau proof appears 
on the next page. 
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(1) •[D[P /\ Q] =>[DP/\ DQ]] 

I 
D[P /\ Q] 

II 

(2) 

(3) •[DP/\ DQ] 

(4) •DQ 

I 
D[P /\ Q:::;. Q] 

( 4') .op 

I 
D[P/\Q::::>P] 

I 

(5') (5) 

(6)D[P /\ Q] /\ D[P /\ Q => P] =? DP 

D[P /\ Q] /\ D[P /\ Q => Q] => DQ (6') 

(7) •[D[P /\ Q] /\ D[P /\ Q => P]] DP 

•[D[P /\ Q] /\ D[P /\ Q => Q]] DQ (7') 

(8) 0 D[P /\ Q] ·D[P /\ Q:::;. P] 

·D[P /\ Q] ·D[P /\ Q => Q] (8') 
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Justification of nodes: (1): negation of the formula to be proved. 
(2) and (3): by (1). (4) and (4'): by (3). (5) and (5'): by (tt). (6) and 
(6'): by (mp). (7): by (6). (7'): by (6'). (8): by (7). (8'):by (7'). 
End of Proof. 

Remarks (a) First of all, notice that the availability of the I Ax0 j rule 
allows us to start with an empty hypothesis set: Since we are allowed to 
introduce any instance of our axiom schemes at any node, we are saved 
the inconvenience of having to figure out in advance which axioms to 
use as our hypothesis set. 

(b) The tableau proof above exhibits a pattern which will recur 
in future proofs: We begin the tableau construction by using all the 
usual tableau extension rules for p.ropositional logic until each node 
is occupied by a 0-wff (i.e. a modal wff of the form DC). Since a 0-
wff cannot be broken down further using propositional tableau rules, we 
must come up with an instance of one (or possibly several) of our modal 
axiom schemes that can be used in conjunction with further applica­
tions of propositional tableau rules to extend the branch in question. 
We continue extending branches until we reach another D-wff, and then 
we repeat the process (unless the branch we are on is contradictory, in 
which case we move, as usual, to another branch). 

Often, the difficult part in the construction is to find the right tau­
tology so that Axiom Scheme ( tt) can be used. Recall that in Chapter 
1, two methods were developed to show that a propositional wff is a 
tautology - the truth table method and tableau proofs. These methods 
can now be used to verify that the ( tt) axiom is being used correctly in 
a modal tableau proof. First, check that the original propositional wff 
is a tautology either by using truth tables, tableaus, or by finding the 
wff in one of the lists of particular tautologies developed in Chapter 1. 
Then make a substitution to get a modal tautology C, and conclude 
that DC is an instance of Axiom Scheme (tt). 

The TABLEAU program makes sure that the (tt) axiom is used 
correctly. Before adding a wff DC as an instance of (tt) in a modal 
tableau, you must show that C is a propositional tautology. The pro­
gram automatically starts a temporary tableau with root ....,c for this 
purpose. 
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The next lemma is the converse of Lemma 5.9.6. 

Lemma 5.9. 7 1--o [DP /\ DQ] =} D[P /\ Q] 
If each of P and Q is provable, so is P /\ Q. 

Proof: Use the tautology 

p =} [Q =} [P /\ Q]] 

to apply Axiom Scheme ( tt). Then apply Axiom Scheme (mp) twice, 
once with A = P and B = [Q =} [P /\ Q]], and once with A = Q and 
B = [P /\ Q]. The Computer. Problem 1. TBM asks for a tableau proof. 
End of Proof. 

The next lemma gives an analogue of Lemma 5.9.6 for the connective 
and an analogue of Lemma 5.9.7 for V. 

Lemma 5.9.8 (a) 1--0 D[P Q] =}[DP=} DQ] 
IfH I- P =} Q and HI- P, then HI- Q. 

{b) l-- 0 [DP V DQ] =} D[P V Q]. 
/ 

I 

lfH I- P or HI- Q, then H 1-- P V Q. 

Proof: To prove (a), use the tautology 

[P =} [ Q =} R]] 9 [[P /\ Q] R] 

and Axiom Scheme (mp). The formal tableau proof is left for the 
student as Computer Problem 2.TBM. 

To prove {b ), use the tautologies 

P P V Q and Q =} P V q. 

The formal tableau proof is computer problem 3. TBM. End of Proof. 

Example. The converses of the statements in Lemma 5.9.8 do not 
follow from the axioms of Mod(O). We have already seen that if H is 
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the axiomatized theory WA, P is the sentence Vx 0 * x = 0 and Q is 
,p, then the sentence · 

J(D[P V Q] =:;,.[DP V DQ]) 

is false in N. Thus the modal wff 

D[P V Q] =:;,. [DP V DQ) 

cannot have a Mod(O) tableau proof. 
The verification that the converse of part (a) is also false is left to 

the reader as Exercise 15. 

We plan to use the modal wffs from the preceding lemmas as hy­
potheses in later modal tableau proofs. To justify this, we need the 
following theorem, which is the modal form of the Learning Theorem 
from Chapter 2. 

Theorem 5.9.9 (Learning Theorem) Let J be a finite set of modal 
wffs and let A be a modal wff. For each of our modal systems Mod(k) 
if h C for each C E J and J h A then h A. ' 

Proof: Let K be the set of all Mod(k) axioms B such that for some 
C E ~' either B is used in the modal tableau proof for h C, or B is 
used m the modal tableau proof for J I-k A. By moving all the nodes 
containing these axioms up into the root node, we obtain ordinary 
propositional tableau proofs for K I- C, all C E J, and for J UK I- A. 
As we saw in Exercise 24 in Chapter 1, there is a propositional tableau 
proof for K I- A. Moving the modal axioms K back down from the 
root node, we obtain a Mod(k) tableau proof for h A as required. 
End of Proof. · · 

The following theorem is often useful in combination with the Learn­
ing Theorem as an aid in proving new results from old results. 

Theorem 5.9.10 (Modal Substitution Theorem) Suppose a 
modal wff C has a Mod(k) tableau proof from a set of modal wffs J. 
Let A1, ... , An be modal wffs and let C', J' be formed from C and J 
by replacing each occurrence of the propositional symbols P 1 , •.. , P n by 
the wffs Ai, ... , An. Then C' has a Mod(k) tableau proof from J'. 
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We leave the proof of this theorem as Exercise 14. The main steps are 
to check that if C is a modal axiom then C' is a modal axiom, and that 
if T is a modal tableau proof of C from J, then T' is a modal tableau 

proof of C' from J'. 
Most of the modal wffs proved in our lemmas contain one or two 

propositional symbols P and Q. The Modal Substitution Theorem 
shows that the same wffs with P and Q replaced by arbitrary modal wffs 
A and B are also provable in modal logic. For example, Lemma 5.9.6 
combined with the Modal Substitution Theorem shows that 

l-0 D[A AB) :::} [DA A DB) 

for any modal wffs A and B whatever. Now by the Learning Theorem·, 
any modal wff C which has a Mod(O) tableau proof with the above wff 
as a hypothesis also has a Mod(O) tableau proof with no hypotheses 

at all. 

We now turn to the modal system Mod(l). Recall that the modal 
system Mod(l) has as axioms those of Mod(O) together with the 

axiom scheme 

(n) DA=:;,. ODA (for every modal wff A). 

The Axiom Scheme ( n) expresses another reasonable property of 
provability: if a sentence is provable from H, it ought to be provable 
from H that it is provable. 

The next result shows that WA and PA are Type 1 theories. 

Proposition 5.9.11 Any axiomatized theory which contains all the ax­
ioms of WA is a Type 1 theory. 

Proof: Given an axiomatized theory H, we must $how that the modal 
axiom scheme (n) holds for H. Let A be any modal wff. Thus for each 
modal wff A, we must show that J(DA =:;,. ODA) is true in N. We 
have . 

J([DA ODA))= [J(DA) =:;,. J(DDA)). 
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Suppose that J(DA) is true in N. By the Arithmetical Interpretation 
Theorem, the sentence J(A) is tableau provable from H. Let a be the 
code of J(A). By Theorem 5.6.3, 

WA l- 3yPRFH(a,y). 

Under the arithmetical interpretation by PRFH, we have 

J(DA) = PRFH(a,y). 

Since H contains all the axioms of WA, H l- J(DA). Now by 
the Arithmetical Interpretation Theorem again, J(DDA) is true in N. 
Therefore J(DA ::::} ODA) is true in N, so the modal axiom scheme 
(n) holds for H. End of Proof. 

We conclude this section with a discussion of the modal system 
Mod(2), which is obtained from Mod(l) by adding the axiom scheme 

(s) DA for all modal wffs A. 

This axiom scheme, called the soundness scheme, says that if H 
proves that P is provable then H proves P. More precisely, H is a 
Type 2 theory if and only if H is a Type 1 theory and for each A, if 
H l- J(DA) then H l- J(A). 

Recall that a theory H is called sound if every sentence which be­
longs to His true in Af. Since WA and PA are sound, the next result 
shows that WA and PA are Type 2 theories. 

Proposition 5.9.12 Every sound Type 1 theory is a Type 2 theory. 

Proof: Let H be a sound Type 1 theory. Consider a modal wff A. 
Suppose J(DDA) is true in N. By the Arithmetical Interpretation 
Theorem, H l- J(DA). Since His sound, J(DA) is true in N. Therefore 
J(DDA::::} DA) is true in N as required. End of Proof. 

In Exercise 23, a strengthening ( ss) of the axiom scheme ( s) is in­
troduced and it is shown that for a Type 1 theory H, His sound if and 
only if ( ss) holds for H. 
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5.10 First Incompleteness Theorem Re­
visited 

In this section we shall revisit the First Incompleteness Theorem from 
the viewpoint of modal logic. The provability operator D in modal 
logic lets us avoid some of the complicated details involving codes of 
proofs in formal arithmetic, and for this reason it helps to illuminate 
the essential ideas in the incompleteness theorems. 

To state the incompleteness theorems in modal logic, we need to 
formalize the statement 

H is consistent 

as well as the Godel sentence Ac. A theory H is consistent if and only 
if the false sentence F is not provable from H. Thus, ConH can be 
formalized by the modal wff 

-.OF. 

A theory H is consistent if and only if ---, DF holds for H. 
As for the Godel sentence Ac, we can formalize the statement "This 

sentence is unprovable" by obtaining a modal proposition symbol P 
for which P {::} ...,op holds (intuitively, "P holds if and only if P is 
unprovable"). For P to be a Godelian sentence for H, the information 
that P asserts its own unprovability must be provable from H. Thus 
the formal version of our Godelian sentence becomes: 

D[P {::} -.DP] 

"H proves that P asserts its own unprovability from H." . 
Using the Arithmetical Interpretation Theorem, we see that each of 

the following conditions is equivalent to P being a Godelian sentence 
for an axiomatized theory H (for a given proof formula PRFH)· 

D[P {::} holds for H, 
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H f- J(P {::} ·DP), 

Hf- P {::} •!(DP). 

We shall break the modal logic form of the First Incompleteness 
Theorem into two parts. We begin with Part I. It is similar to Theo­
rem 5.6.10. However, it avoids the soundness assumption and involves 
only the notion of provability, and thus can be expressed in our modal 
logic and formalized in arithmetic. 

Theorem 5.10.1 (First Incompleteness Theorem, Part I) 

f-i D(P {::} ....,op] => [DP => DF). 

If P is Godelian for a Type 1 theory H and H proves P, then H is 
inconsistent. 

Proof: Here is an informal proof. Assume D[P {::} ....,op] and DP. 
Then o--.op by (mp). Also, DDP by (n). Thus DDP an:d o....,op, and 
so DF. 

A rigorous proof in modal logic is given by two tableau problems. 
Problem PARTLTBM gives a Mod(l) tableau proof of the desired w:ff 

D[P {::} ....,op] => [DP => DF] 

from the two hypotheses 

D[P {::}·DP]=> D[P =>·DP], 

[DDP /\ D1DP] => D[DP /\·DP]. 

Problem 4.TBM gives a Mod(O) tableau proof of the first hypothesis. 
The second hypothesis is Mod(O) tableau provable by Lemma 5.9.7 
and the Modal Substitution Theorem. Then by the Learning Theo­
rem, the conclusion is Mod(l) tableau provable with no hypotheses. 
End of Proof. 

Part II of the First Incompleteness Theorem says that we can replace 
the strong hypothesis of soundness in Theorem 5.6.10 by the (weaker) 
axiom scheme (s) and arrive at the same conclusion. Moreover, like 
Part I, Part II can be formalized in arithmetic; see Exercise 29. 
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Theorem 5.10.2 (First Incompleteness Theorem, Part II) 

f- 2 D[P {::} 1DP] => [D•P => DF]. 

If P is Godelian for a Type 2 theory H, and H proves ....,p, then H 
is inconsistent. 

Proof: We first give an informal proof. 
Assume that D[P {::} ·DP] and D--.P. Since [P {::} 1 DP] implies 

[•P {::} DP] using only propositional logic, D[1 P => DP]. By (mp), 
DDP. By Axiom Scheme (s), DP, and by Part I of the First Incom­
pleteness Theorem, DF. 

For a rigorous proof in modal logic, Computer Problem PART2. TBM 
. gives a Mod(2) tableau proof of the desired conclusion 

D[P {::}....,op]=> [D•P => DF]. 

from the two hypotheses 

D[P ¢:>-.op]=> [DP=> DF], 

D[P <=>--,DP) => D[·P => DP]. 

The first hypothesis is Part I of the First Incompleteness Theorem, 
and Computer Problem 5. TBM shows that the second hypothesis has 
a Mod(O) tableau proof. End of Proof. 

Corollary 5.10.3 No consistent Type 2 theory is complete. 

Proof: Let H be a consistent Type 2 theory. Then there is a Godelian 
sentence P for H. Since His consistent, DF does not hold for H. Using 
both parts of the First Incompleteness Theorem, we see that neither 
DP nor o.p holds for H, so that H If P and H If •P.· Therefore H 
is not complete. End of Proof. 
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5.11 Second Incompleteness Theorem 

We now turn to Godel 's Second Incompleteness Theorem. This theorem 
tells us that one of the sentences which is not provable from PA is 
"PA is consistent"! Now since arithmetic is the basis for so much of 
mathematics, one would hope that PA is consistent. Of course, once 
we know that N f= PA, we know PA is consistent; but Godel's Second 
Incompleteness Theorem tells us that the statement "N f= PA" cannot 
be formalized and proved within PA. But then how does one ever 
prove "N f= PA" formally? In particular, how does one construct the 
model N formally? (Once the model is constructed, it is easy to see 
that it satisfies PA). A reasonable approach is to formalize arithmetic 
and the notion of a model of arithmetic within set theory, say ZFC. 
Then the formal statement corresponding to "N f= PA" can be proved 
in ZFC; hence, according to ZFC at least, PA is consistent. But, is 
ZFC consistent? Godel's proof of the Second Incompleteness Theorem 
can be adapted to show that no proof of the consistency of ZFC can be 
formalized within ZFC! (See Enderton [1972].) One can, however, work 
within an even more powerful theory than ZFC to prove formally the 
consistency of ZFC, but again the consistency of this stronger theory 
remains problematic. More significantly, the proof of consistency for 
each of the theories mentioned becomes progressively more difficult 
and requires more and more machinery. 

The moral of these remarks is that the truly endless search for an 
all-embracing formal system in which all mathematics can be proved 
consistent is doomed to failure: once a system is rich enough to prove 
the Peano axioms, it is rich enough for Godel's Second Incompleteness 
Theorem to apply. 

It would seem that Godel's incompletenes.s theorems force us to the 
viewpoint that any answer to the question 

Is mathematics consistent? 

must rely in part on non-formal methods. "Mathematical intuition" is 
an example of such a method: It is a widespread belief among math­
ematicians that certain mathematical structures are so natural that 
they need not be formally constructed in order for us to be certain of 
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their mathematical soundness. Nearly all mathematicians agree that 
small natural numbers (that can be computed on a computer, say) and 
computable operations on them can safely be assumed without intro­
ducing inconsistency. A slightly stronger claim is that the existence of 
the standard model N of arithmetic is a self-evident truth. Nearly all 

·working mathematicians make this assumption in their mathematical 
practice (whether or not they speak of this philosophical stance, their 
work reflects this assumption). Once this position is granted, of course, 
we have the consistency of PA given to us - not formally - but by an 
"a priori mathematical intuition" of the model N. Still stronger is 
the claim that ZFC is consistent; again the justification is the belief 
in a certain fairly natural model of the ZFC axioms (in Exercises 2.51 
and 2.52, the first few levels of this model are constructed). A milder 
claim is that while ZFC as a whole may be inconsistent, at least that 

· finite fragment of it which has been used to prove the theorems of our 
present-day mathematics is consistent. 

We do not raise these issues here with the intention of providing 
a final answer; philosophies among both mathematicians and philoso­
phers regarding these questions vary widely. Our discussion is intended 
mainly to offer the reader a sense of the tremendous foundational im­
pact of Godel's work. 

The proof of the Second Incompleteness Theorem is essentially a 
formalized version of the first part of the First Incompleteness Theorem: 
In part I of the First Incompleteness Theorem, the wff 

DP=? DF 

is proved in Mod(l), assuming P is Godelian. The Main Lemma for 
the Second Incompleteness Theorem will prove the wff 

D[DP ==? DF], 

in the stronger modal system Mod(3), again assuming P is Godelian. 
Intuitively, this can be accomplished by showing that each step of the 
proof of ( *) can be formalized. For this kind of proof to work, we 
need to assume as axioms formalized versions of our Mod(l) axioms. 
Thus· we are led to postulate formalized versions of Axiom schemes of 
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Modus Ponens (mp) and Normality (n) as the two new axiom schemes 
·of Formalized Modus Ponens (fmp) and Formalized Normality (fn). 

We recall that the axioms for the modal system Mod(3) consists 
of the axioms of Mod(l) together with these two axiom schemes, 

(imp) D[(DA /\ D(A =>BJ]=> DB); 
(Jn) D[DA => ODA]. 

Note that Mod(3) does not contain the Soundness axiom scheme (s). 
It can be shown that PA is a Type 3 theory, but the details are 

beyond the scope of this book. We state without proof a theorem 
which gives us a rich collection of Type 3 theories. 

Theorem 5.11.1 Any axiomatized theory H which contains all the ax­
ioms of PA is a Type 3 theory. 

One interesting feature of Mod(3) is, as Smullyan [1987] describes 
it, a kind of "self-awareness" - Mod(3) "knows" that it satisfies its 
own axioms in the sense that for each axiom A of Mod(3), DA is 
also provable in Mod(3). This makes Mod(3) an especially natural 
system in which to prove formalized versions of modal theorems. We 
now prove a theorem showing that Mod( 3) is even more self aware -
it "knows" that each of its theorems is provable. This theorem is a 
precise form of the intuitive principle that every Mod(3) tableau proof 
can be formalized in Mod(3). 

Theorem 5.11.2 (Self-Awareness Theorem) If A is a modal wff 
and h A, then DA. 

Proof: We first show that r 3 DK for each axiom K of Mod(3). 
(mp): Let K be the axiom DA/\ D[A => B] =>DB. Then DK is an 

instance of the Axiom Scheme (fmp) and thus has a Mod(3) tableau 
proof. 

(n): Let K be the axiom DA => ODA. Then DK is an instance 
Axiom Scheme (fn) and hence has a Mod(3) tableau proof. 

(tt), (fmp) and (fn): Let K be an instance of one of these three 
axiom schemes. In each case, K has the form DC for some modal wff 
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C. Therefore DK is DOC, which has a Mod(3) tableau proof using 
the two axioms DC and DC => DOC . 

Now let A be any modal wff such that A. Then there is a 
Mod(3) tableau proof of A. Let J be the finite set of modal axioms 
which are used in this proof. By moving these axioms up to the root 
of the tableau, we obtain a tableau proof of A from J which only uses 
the tableau rules of propositional logic. Let E be the conjunction of all 
the wffs in the set J. Then E => A is a modal tautology. Therefore 
D[E => A] is a modal axiom (an instance of (tt)). Since each K E 
J is a modal axiom, we have r 3 DK for each K E J. Using 5.9. 7 
finitely many times, we see that r 3 DE. Finally, using the (mp) axiom 
DE/\ D[E =>A]=> DA, we obtain the desired conclusion that h DA. 
End of Proof. 

The Self-Awareness Theorem may be combined with the Learning 
and Modal Substitution Theorems to simplify Mod(3) tableau proofs. 
All previous modal lemmas may now be used with a D in front. For 
example, the Self-Awareness Theorem applied to Lemma 5.9.8 (a} gives 

r3 D[D[P => Q] => [DP => DQ]]. 

(It is provable that if P => Q is provable, then whenever P is 
provable, Q is also provable.) 

The Learning Theorem allows us to add this wff as an extra hypoth­
esis in a Mod(3) tableau. Computer Problem 6.TBM asks for a formal 
Mod(3) tableau proof of this wff (without using the Self-Awareness 
Theorem). 

Before proving the main lemma for the Second Incompleteness The­
orem, we need the following strengthening of Lemma 5.9.8 (a): 

Lemma 5.11.3 

r3 D(P => Q] => D[DP => DQ). 

If a Type 3 theory H proves P => Q, then H also proves that {if H 
proves P then H proves Qj. 

Proof: Here is an informal proof. Assume D[P => Q]. By (n), 
. DD[P =} Q]. We use the Self-Awareness Theorem to show that Lemrna 5.9.8 
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with a D in front is Mod(3) tableau provable, so we have 

D(D[P :::} Q] :::} (DP :::} DQ]]. 

By (mp), it follows that D[DP:::} Q]. 
Computer Problem 7.TBM gives a Mod(l) tableau proof of the 

conclusion 
D[P =? Q]:::} D(DP =? DQ] 

from the two hypotheses 

D[D[P :::} Q] =? (DP =? DQ]], 

D (D (P Q] :::} (DP :::} DQ]] :::} [DD [P :::} Q] :::} o (DP :::} D Q]]. 

The first hypothesis is Mod(3) tableau provable by Lemma 5.9.8 and 
the Self-Awareness Theorem. The second hypothesis is Mod(O) tableau 
provable by Lemma 5.9.8 and the Modal Substitution Theorem, because 
it is 

D(A =? B] :::} (DA DB] 

with A D[P =? Q] and B =[DP:::} DQ]. End of Proof. 

We now come to the Main Lemma. 

Lemma 5.ll.4 (Main Lemma) 

h D[P {:} •DP] D(DP :::} DF]. 

If P is Godelian for a Type 3 theory H, then H proves that if H proves 
P then H is inconsistent. 

Proof: Here is an informal proof. Assume that D[P {:} ·DP]. By 
Lemma 5.11.3, we have D[DP =? D0 DP]. Axiom Scheme (fn) gives us 
D[DP :::} DDP]. Now (fmp) can be used to prove that D[DP :::} OF]. 

Computer Problem MAIN.TBM gives a rigorous Mod(O) tableau 
proof of the desired conclusion 

D[P {:} -.DP] :::} D(DP:::} OF] 

from the three hypotheses 

D(P {:} -.DP] :::} D[P :::} ·DP], 
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D(P ::} ·DP] :::} D(DP ::} D·DP], 

D[[DP:::} 0-,DP] =?[DP=? DF]]. 
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The first hypothesis· is proved in the system Mod(O) in Computer 
Problem 4.TBM. The second hypothesis is Lemma 5.11.3 with ,op for 
Q. The wff after the D in the third hypothesis is proved in the system 
Mod(l) in Computer Problem 8.TBM. The Self-Awareness Theorem 
now shows that the third hypothesis has a Mod(3) tableau proof. Thus 
by the Learning Theorem, the conclusion has a Mod(3) tableau proof. 
End of Proof. 

Now, at long last, we are ready to prove Godel's Second Incomplete­
ness Theorem. 

Theorem 5.11.5 (Second Incompleteness Theorem) 

h D [P {:} ·DP] =? (D·DF =? DF] 

If P is Godelian for a Type 3 theory H, and H proves its own 
consistency, then H is inconsistent. 

Proof: Here is an informal proof. Assume Pis Godelian and D1 DF. 
By the Main Lemma, D[DP =} DF]. Computer Problem 9.TBM shows 
that this implies D[·DF ::} ·DP]. Then by (mp) we have D1 DP. 
Since Pis Godelian, it follows that D[·DP:::} P]. By (mp) again, DP. 
By the First Incompleteness Theorem Part I, DP =? DF. Therefore 
DF as required. 

For a modal tableau proof, Computer Problem SECOND.TBM gives 
a Mod(O) tableau proof of the desired conclusion 

D[P {:}-,DP] =? [D·DF :::} DF] 

from. the hypotheses 

D[P {:} -.DP] =? D(DP =? DF], 

D[P {:}·DP] :::} D(·DP:::} P], 

D[P {:},op] =? (DP=? DF], 

D(DP:::} DF] =} D(·DF =?·DP]. 
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The Main Lemma says that the first hypothesis has a Mod(3) 
tableau proof, the second hypothesis has an easy Mod(O) tableau proof 
similar to the Computer Problems 4. TBM and 5. TBM, the third· hy­
pothesis is Part I of the First Incompleteness Theorem, and Computer 
Problem 9.TBM gives a Mod(O) tableau proof of the third hypothesis. 
Since each hypothesis has a Mod(3) tableau proof, the conclusion is 
Mod(3) tableau provable by the Learning Theorem. End of Proof. 

We conclude this section by mentioning several additional results 
which are worked out in the exercises. 

First, we have shown that if P is Godelian for a Type 3 theory H 
and if H is consistent, then H neither proves P (First Incompleteness 
Theorem) nor •J(DF) (Second Incompeteness Theorem). We could 
have proved the second of these from the first by proving the remarkable 
fact that for such H, P and 1 J(DF) are provably equivalent! That is, 

r3 D(P {:} 1DF). 

This tells us that all Godelian sentences are equivalent! In other words, 
if P and Q are both Godelian for a Type 3 theory H, then 

Hr P {:} Q. 

See Exercise 22. 
The Second Incompleteness Theorem says that consistent Type 3 

theories with a Godelian sentence cannot prove their own consistency. 
But what about weaker theories? If we are content to replace consis­
tency with soundness, it can be shown that no sound axiomatized theory 
with a Godelian sentence can prove its own soundness; see Exercise 24. 

We have seen that the First Incompleteness Theorem tells us that 
for sound Type 1 theories, a sentence which provably asserts its own 
unprovability is unprovable, but true. What can be said about a sen­
tence which provably asserts its own provability? In other words, what 
conclusions can be drawn from the modal wff 

D[P {:}DP]? 

Such a wff is called a Henkin sentence. The Diagonalization Lemma 
shows that PA (and many other theories as well) has a Henkin sentence, 
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and a result known as Lob's Theorem demonstrates that such sentences 
are always provable in PA (hence true). These matters are taken up 
in Exercises 25 and 27. 

As we observed earlier, the proof of the Second Incompleteness The­
orem is largely a formalization of the proof of the first half of the First 
Incompleteness Theorem. Can a formalized version of the second half of 
the First Incompleteness Theorem be proved? What about a formal­
ized version of the Second Incompleteness Theorem? We investigate 
these questions in Exercise 29. 

Our proof of Godel's First Incompleteness Theorem depended on the 
construction of some version of a Godelian sentence. As we explained 
earlier, Godelian sentences express in the formal language of arithmetic 
the proposition "I am unprovable." The original form of this latter 
proposition is known as the Liar Paradox: "This sentence is false." It 
has the property that it's true if and only if it's false, and is therefore a 
primitive version of a Godelian sentence. It is possible to prove versions 
of the First Incompleteness Theorem using a formalized translation of 
another famous paradox Berry's Paradox - quite different in spirit 
from the Liar Paradox and its variations. 

Berry's Paradox arises from the following consideration: Suppose 
you are asked to make a list of all natural numbers which can be de­
scribed using fewer than 100 keystrokes on a typewriter. The first few 
natural numbers could be described by simply typing out the usual 
base 10 numerals 0, 1, ... , 100, 101, ... , 10, 000, .... However, once we 
reach numbers which have 100 or more digits, we might resort to En­
glish sentences which describe a procedure that would "compute" these 
larger numbers. Thus, for example, "1 followed by 99 zeroes" describes 
a number whose base 10 numeral is too long to type out. Now notice 
that if we are allowed at most 99 keystrokes in a description, and our 
typewriter has only, say, 70 keys, then only finitely many descriptions 
are possible. Thus there is a natural number which cannot be described 
using fewer than 100 keystrokes; and if there is such a number at all, 
there must be a least such number n. Thus, 

( *) n is the smallest natural number which cannot be described 
using fewer than 100 keystrokes. 

. But now ( *) is a description of n which uses fewer than 100 keystrokes! 
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The paradox is partially resolved by the fact that we have not been 
very clear about which expressions count as "descriptions" of natural 
numbers. The notion of "description" can, however, be made rigorous; 
in fact, we gave a definition of what it means to "name" a natural 
number in Exercise 3.9. Using this definition, Berry's Paradox has 
a formal version which leads to a proof of the First Incompleteness 
Theorem. In Exercise 30, we outline a proof (due to Boolos see 
Boolos [1989]) of the First Incompleteness Theorem which uses this 
formal version of Berry's Paradox. 

For the reader who would like to do further reading in this area, we 
recommend Smullyan [1987], Boolos [1979], and Smorynski [1985]. 

5.12 Modal Tableau Problems (TAB7) 

In these problems the reader is asked to use the TABLEAU program to 
work out the indicated proofs. The modal system is given. The problem 
files are located in directory TAB7 on the distribution diskette, and the 
install program will put them in a subdirectory called TAB7 on your 
hard disk. 
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1.TBM Hypotheses: none 
To be proved: (DP A DQ] => D(P A Q] 
Modal System: Mod(O) 
Can be done in 15 nodes. 

2.TBM Hypotheses: none 
To be proved: D[P => Q] =>(DP=> DQ] 
Modal System: Mod(O) 
Can be done 9 nodes. 

3.TBM Hypotheses: none 
To be proved: (DP V DQ] => D(P V Q] 
Modal System: Mod(O) 
Can be done in 16 nodes. 

4.TBM Hypothesis: D[P? ·DP] 
To be proved: D(P -,DP] 
Modal system: Mod(O) 
Can be done in 6 nodes. 

5.TBM Hypothesis: D(P? ·DP] 
To be proved: D[-,p =>DP] 
Modal· System: Mod(O) 
Can be done in 6 nodes. 

6.TBM Hypotheses: none 
To be proved: D(D[P => Q] =>(DP=> DQ]] 
Modal system: Mod(2) 
Can be done in 7 nodes. 
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7.TBM Hypotheses: [D[D(P =? Q] =? (DP =? DQ]) 
D(D(P =? Q] =? (DP =? DQ]) =? (DD(P =? Q] =? D(DP =? Q]] 
To be proved: D(P =? Q] =? D(DP =? DQ] 
Modal System: Mod(l) 
Can be done in 9 nodes. 

8.TBM Hypotheses: none 
To be proved: [DP =? D-.DPJ => (DP => DF) 
Modal System: Mod(l) 
Can be done in 22 nodes. 

9.TBM Hypothesis: D(DP => DF] 
To be proved: D[-.DF =? -.DP) 
Modal System: Mod(O) 
Can be done in 6 nodes. 

10.TBM Hypotheses: None 
To be proved: D (P {:} Q] =? (DP {:} DQ] 
Modal System: Mod(O) 
Can be done in 28 nodes. 

PARTl.TBM Hypotheses: D[P {::} -.DP] =? (DP =? -.DP] 
DDP /\ 0-.DP =? D(DP /\ 

To be proved: D[P {:}-.DP] =? [DP =? DF] 
Modal System: Mod(l) 
Can be done in 24 nodes. 

PART2.TBM Hypotheses: D[P {:}-.DP] =? (DP=? DF] 
D(P {:} -.DP) => D(-.P =? DP] 

To be proved: D[P {:} 1DP] => [D-.P => oF]. 
Modal System: Mod(2) 
Can be done in 18 nodes. 
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Hypotheses: 

To be proved: 
Modal System: 
Can be done in 11 nodes. 

ECOND.TBM Hypotheses: 

To be proved: 
Modal System: 
Can be done in 24 nodes. 
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D[P {:}-.DP)=? D[P::::} -.DP] 
D[P, =? 1DP] =? D[DP =? D1DP) 
D((DP =? D-.DP] =? [DP =? DF]) 
D(P {:}-.DP] =? D[DP =? DF] 
Mod(O) 

D[P {:}-.DP] =? D(DP =? DF] 
D[P =? 1DP] =? D(-.DP =? P] 
D[P =? 1DP] =? [DP=? DF] 
D((DP =? OF) ::::} D(-.DF =? -.DP]] 
D[P {:} -.DP] =? [D1DF => DF) 
Mod(O) 

In the exercises for this chapter, all wffs are understood to be in the 
language of arithmetic. 

In Exercises 1 .. 3 below, the reader is asked to use Church's Thesis 
to verify that certain functions associated with syntax are computable. 

1. Use Church's Thesis to show that the partial function which sends 
the code #(A) to the code #(•A), for each wff A, is computable. 

2. Suppose f is a computable function and for all n, f( n) is the code 
of a wff An. Suppose h is defined by 

Show that h is computable. (Hint: Show that h is obtained from the 
function (#(A), #(B)) 1-t #(A/\ B) by primitive recursion and use 
Church's Thesis to show that the latter is computable.) 

3. Use Church's Thesis to prove that the function which takes a pair 
. (m, n), to #(A(n)) if m = #(A(v)) and n EN, and takes (m, n) to 0 

. ·otherwise, is computable. 
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4. Prove that every theory H in the language of arithmetic which is 
·consistent but not complete has an extension H' which is consistent 
but not sound. 

5. 

(a) Suppose that f is a unary weakly representable partial function, 
and the domain of f is representable (as a unary relation). Prove 
that f is representable, and that f can be extended to a total 
computable function. 

(b) Give an example of a unary representable partial function f such 
that f can be extended to a total computable function but the . 
domain of f is not representable. 

6. 

(a) Show that the unary relation 

E = { n : n is an even natural number} 

is representable. Hint: Show that E is represented by the wff E, 
given by 

E(x) = ::=;xAx=z+z]. 

(b) Let B( x, y) be the wff given by 

B(x,y) = -iE(x) A E(y) => -iE(x + y). 

Intuitively, B says that if x is odd and y is even, then x + y is 
odd. Show that for all m, n E N, 

WA f- B(m,n). 

( c) Let C be the sentence given by 

C = VxVy [•E(x) A E(y) =? -iE(x + y)]. 

Intuitively, C also says that an odd plus an even is an odd. How­
ever, because no restriction has been placed on how the variables 
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x and y are interpreted, the sentence C-unlike the wff B(x, y)­
asserts that this property must hold even for the most bizarre 
interpretations of x and y in nonstandard models. Not surpris­
ingly, the assertion cannot be proved in WA; prove this; i.e., 
prove that 

WA If C. 

(Hint: a counter-model is given in Example 3.7.4.) 

7. Show that the following relations are representable: 

(a) the binary relation consisting of those pairs (a, b) of natural num­
bers for which b is divisible by a (assume that 0 is divisible by 
every number); 

(b) the unary relation consisting of all prime numbers (recall that p is 
prime if p > 1 and the only divisors of pare 1 and p itself). 

8. Show that the Fibonacci sequence F (considered as a unary (total) 
function) is representable, where F is given by the following data: 

F(O) 1, F(l) 1 

F(n + 2) F(n + 1) + F(n). 

(Thus, F can be expressed as the sequence 1,1, 2, 3, 5, 8, 13, .... ) 

9. In this exercise, we discuss a stronger kind of representability of a 
relation in a theory than was considered in the text. We will use the 
results of this exercise in Exercise 30. Suppose R is a finite subset of 
N, say R = {r1, r~, ... , rk}· 

(a) Give an example of a wff A( x) which represents R. 

(b) Suppose we are given a wff A(x) which represents R. Show that, 
although it is true that R consists precisely of those natural num­
bers n for which 
WA f- A(n), this information may not be available from within 
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WA; i.e., show that there may not be a tableau proof from WA 
of the sentence 

Vx [A(x):::} [x ri V x r2 V ... V x = rk]]. 

(Hint: Consider the case in which R = {1}. Design a wff A which 
represents R but for which the sentence 

B Vx [A(x):::} x:::::: s(O)] 

is independent of WA. Use the standard model N to show that 
there is a model of WA which satisfies B; then use one of the 
other models of WA given in the text to· show that •B is also 
consistent with WA.) 

( c) In light of part (b ), we make the following definition: 

Definition. A wff A(x) with just one free variable x names the 
finite set R {r1 , r 2 , ••• , rk} in the theory H if 

Ht- Vx [A(x) {:;> [x ri V x = r2 V ... V x = rk]]. 

In the special case in which R has only one element n, we say 
that A(x) names the natural number n in H. Thus, A(x) 
names n in H if 

Ht- Vx [A(x) ¢} x = n]. 

For each n, give a wff which names n in WA .. 

( d) Show that if a wff A names n in WA, then A represents the 
relation R =· { n}. 

10. Prove that for any wffs A( u) and B( v) where u is not free in Band 
v is not free in A, the following set of three wffs is tableau confutable. 

3u [A(u) /\ (Vv:; u)..,B(v)], 

[B(v) /\(Vu:; v)•A(u)], 
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Vu Vv [u :::; v V v :; u]. 

11. (Recursively Enumerable Sets). 
Definition A subset AC N is recursively enumerable (or r.e.) 

if A = 0 or A is the range of a total computable function (i.e. there is a 
total computable function f such that for each a EA there is a number 
n such that f ( n) = a). The r.e. relations are defined in a similar way. 

(a) Show. that the following are equivalent for a subset A C N: 

(i) For some computable binary relation R, a E A if and only if 
there is b such that (a, b) · E R. 

(ii) A is the domain of a computable partial function. 

(iii) A is recursively enumerable. 

(iv) A is weakly representable. 

(b) Prove that a subset A c N is computable if and only if both A 
and its complement N\A = {x E N I x tJ. A} are recursively 
enumerable. 

( c) We say that a total function f : N -+ N is increasing if whenever 
m < n, f(m) < f(n). Show that a subset AC N is computable 
if and only if either A is finite or A is the range of an increasing 
computable function. 

12. Formulate and prove a Unique Readability Theorem and an In­
ductive Definition Principle for modal wffs. 

13. Show that the following are modal tautologies. 

(a) D[P =:::> Q] =:::> ((DP V DQ] :::} D(P =:::> Q]] 

(b) D[P /\ DQ ¢} R] V ·D(P /\ DQ ¢} R] 

(c) [D[P V DQ] :::} DF] /\ (•O(P V OQ] =:::> OF] :::} OF. 
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14. Prove the Modal Substitution Theorem. 

15. 

(a) Show that the converse of part (a) of Lemma 5.9.8 is not generally 
true by finding a suitable axiomatized theory H and suitable w:ffs 
P,Q. 

(b) Prove or disprove: 

(i) 1-o (DP {:;> DQ] =? D(P {:;> Q] 

(ii) 1-o D(P {:;> Q] =? (DP {:;> DQ]. 

16. Show that if an axiomatized theory His consistent with WA (i.e., 
H U WA is consistent), then H is incomplete. 

17. Show that any axiomatized theory which is consistent with WA is 
undecidable. 

The next two exercises give two alternative proofs that PA is in­
complete. Note that by Theorem 5.7.3, it suffices to show that PA is 
undecidable. 

18. 
Definition Suppose A and B are disjoint recursively enumerable 

sets of natural numbers (see Exercise 11). Then A and B are recur­
sively inseparable if there is no computable set C such that A ~ C 
and BnC 0. 

In this problem, PA is shown to be undecidable from the fact that 
the sets P1 = {#(A) : PA I- A} and P0 {#(A) : PA I- •A} are 
recursively inseparable. 

(a) Show that the sets P0 and P1 described above are recursively in­
separable. 

(Hint: Suppose C is a computable set such that A~ C and B n 
C = 0. C is representable by a w:ff C(x). By the Diagonalization 
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Lemma, there is a sentence P with code p such that 

PA I- [P {:;> -.C(p)]. 

Get a contradiction by considering whether p E C.) 

(b) Use part (a) to show that neither Po nor P1 is computable; conclude 
that PA is an undecidable theory. 

19. In this exercise, the undecidability of PA is proved from the unde­
cidability of the Halting Problem. Let Ko be the set of all ( x, y) such 
that x is the Godel number of a program P x which halts on input y. 

(a) Let B be the set of all quadruples (x, y, z, t) such that x is the 
Godel number of a program P x which on input y outputs .z after 
P x has executed fewer than t steps. Show that Bis a computable 
4-ary relation. 

(b) Using the Equivalence Theorem, we can find a w:ff B(x,y,z,w) 
which represents B. Prove that the w:ff 

A(x, y) = 3z 3w B(x, y, z, t) 

weakly represents Ko. 

( c) Prove that if PA is decidable, so is Ko; i.e., decidability of PA im­
plies the decidability of the halting problem. The same argument 
works for any sound theory H :>WA in place of PA. 

20. (Another form of the Self-Awareness Theorem.) Prove that 
if J h A then DJ 1-3 DA, where DJ denotes the set of w:ffs 

{DC: CEJ}. 

21. Suppose a Type 2 consistent theory H proves a sentence of the 
form P {:;> J(D•P) (notice that this sentence is not quite in the form 
that makes P Godelian for H). Show that 
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(a) H If P and H If •P; 

(b) P actually is Godelian for H; i.e. HI- P ¢? •l(DP)). 

2 2. Prove that if P is Godelian for a Type 3 theory H (not necessarily 
consistent) then P is provably equivalent to ..., DF; i.e. show 

l-3 D[P ¢?·DP] D[P ¢? -iDF). 

Then show that it follows that all Godelian sentences for such a theory 
are equivalent, i.e., 

h [D[P ¢?·DP)/\ D[Q ¢? ·DQ]] =} D[P ¢? Q]. 

23. Suppose His a sound axiomatized theory. Then for all modal wffs 
A, 

if HI- J(A) then N f= J(A), 

i.e. provability of A implies A is true. Thus, if P is Godelian for 
H, not only is P ¢? •l(DP) provable in H, but it is actually true. 
These observations lead us to a somewhat different proof of Part l of 
the ~irst Incompleteness Theorem for sound theories. We begin by 
defimng a modal system Mod( 4) : Mod( 4) has as axioms those of 
Mod(O) together with the axiom scheme 

(ss) DA=?- A, for all modal wffs A. 

(Here, "ss" stands for "strong soundness.") 

(a) Prove that an axiomatized theory is Type 4 if and only if it is a 
sound theory. · 

· (b) Prove 
h [P ¢? 1 DP) =}...,op, 

(If P truly asserts its own unprovability from H, then P is un­
provable from H.) 
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(c) Prove 
l-4 [P ¢? .op] => .o...,p. 

(If P truly asserts its own unprovability from H, then ...,p is 
unprovable from H.) 

Parts (a) - (c) together show that no Type 4 theory is complete. 

( d) Show that ( ss) is really a strengthening of ( s) by proving that for 
all A, 

h ODA=} DA, 

and noting that there is a Type 4 theory for which ( ss) does not 
hold. (Hint: For the second half, try an inconsistent theory.) 

Putting (a) - (cl) together, we conclude: 

Theorem. A theory H is incomplete whenever H is sound and there 

is a sentence P such that 

N f= P if and only if H If P. 

24. While PA is Type 3 and satisfies (ss), PA does not satisfy a 

formalized version of ( ss): 

(f ss) : D[DA => A] for all modal wffs A. 

In fact, as is shown in this exercise, no sound axiomatized theory which 
satisfies Axiom Scheme (fss) has a Godelian sentence. Prove this by 
carrying out the following steps: 

(a) Prove 
J 1-0 D [P ¢? ...,op] =?- DP 

where ·J {D[DP =} P]}; in other words, J contains a single 
instance of (fss) where A P. 

(b) Show 
J h D[P =?- ·DP] =?- F. 
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( c) Conclude that if H is a sound axiomatized theory which satisfies 
(fss), then H has no Godelian sentence. Hence PA does not 
satisfy ( fss). 

25. (Lob's Theorem.) Although many instances of ( fss) must fail in 
most "reasonable" theories of arithmetic, there are some instances of 
(fss) which hold in every axiomatized theory of arithmetic; for instance, 
if P is a tautology, Hr J(DP) =} P. More generally, if Hr P, then 
H r [J(DP) :::} P]. 

In this exercise, the reader is asked to show that in PA, the only 
sentences P for which 

PA r J(DP) =} P. 

are those provable from PA, i.e., for all sentences P, 

PA r J(DP) =} P implies PA r P 

where I is the interpretation function relative to PRp.A_. The statement 
( *) is called Lob's Theorem .. We state this theorem in a more general 
form and outline the steps of proof in parts (a) - ( c) below. 

Lob's Theorem. Suppose H is a Type 3 theory. Then for each sen­
tence Q, 

H r J(DQ) =} Q, if and only if H r Q. 

In particular, ( *) holds. 

(a) Prove the implication from right to left for any axiomatized theory 
using modal tableaus; i.e., show 

ro DQ (DDQ =} DQ]. 

(b) Use the Diagonalization Lemma to show that any axiomatized the­
ory H which includes WA has the following property (L): 

(L) for every sentence Q, there is a sentence P such that 
Hr P ¢? (J(DP) =} QJ. 
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( c) Prove 
J D[DP =} Q], 

where J consists of the modal wffs 

D(P 9 (DP =} Q]] 

D(DQ =} Q]. 

( d) Using the result of part ( c), prove 

K r3 DQ, 

where K consists of the modal wffs 

D(P 9 [DP =? Q]] 

D(DP =} Q] .. 

( e) Put parts (a) - ( d) together to prove Lob's Theorem. 
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Lob's Theorem gives us another property of provability: Let Mod( 5) 
be the modal system whose axioms are those of Mod(3) together with 
the axiom scheme 

(g) D(DA A] =} DA for all modal wffs A 

("g" stands for "Godel.") As the previous exercise shows, the axioms 
of Mod(5) hold for PA. Remarkably, if lf5 DA for some A, then 
there is a way to assign the. modal proposition symbols to sentences 
of arithmetic so that the translation of A as a sentence of arithmetic 
is not provable from PA! Thus Mod(5) "captures" PA in a modal 
fashion and is an important modal system for studying arithmetic (see 
Boolos [1979] for more discussion). In the following two exercises, we 
use Mod(5) to establish several interesting facts about PA. 

26. In this exercise, the reader is led to a modal proof that any Type 5 
theory has a Godelian sentence. 
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(a) Show that if A, B, and C are ordinary propositional wffs, then 

A=? BI- [A=? CJ=? [B =? C]. 

(b) Show that for any modal wff A, 

(*) 1-s D([DA =?A)-¢:;> [D[DA =?A)=? A]]. 

(Note: Because we have a new axiom (g) in Mod(5), the Self­
A wareness Theorem is not. guaranteed to hold; it can be proved, 
however, and the reader may wish to assume it in working this 
problem. The more thorough reader, after proving ( *) with the 
leftmost 'D' removed, will want to check that each step of his proof 
can be formalized, so that ( *) is established without assuming the 
Self-Awareness Theorem.) 

( c) Show that 

27. 

I- s D [B -¢:;> -. DB] 

where Bis the modal wff DF => F. 

(a) Assume that PA is a Mod(5) theory. Suppose P provably asserts 
its own provability, or, somewhat more generally, assume 

PA I- P =? J(DP). 

Show that PA 1- P and hence that P is t'rue. (Use Lob's Theo­
rem.) 

Such a sentence is called a Henkin sentence for PA. 

(b) Show that any axiomatized theory including WA has a Henkin 
sentence. (Hint: Use the Diagonalization Lemma.) 

28. 
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(a) Give an example of a axiomatized theory H and a sentence P to 
demonstrate that 

lf0 -.DP =? D-.P. 

(b) As in (a), show 
lfo D[ ...,op =? D-iP]. 

( c) Show that if H is a sound Type 3 theory satisfying ( s) and having 
a Godelian sentence P, and if Q = [-.DP=? 0-.P], then 

is false (in N). 

29. (Formalizations.) In this exercise, we present the formalized ver­
sions of several of the important theorems discussed in the text. 

(a) (Part II of the First Incompleteness Theorem) Show that 

D[P #-.DP) =? D[(-.DF A (DDP =? DP])=? ...,o...,P). 

(Hint: First prove h D[P ~-.DP] =? [-.D-.P => -.ODP]). 

(b) (Second Incompleteness Theorem) Prove 

1-3 D(P # -.DP) =? D(D-iOF =? DF). 

(c) (Lob's Theorem) Formulate a formalization of Lob's Theorem and 
prove it in the modal system Mod(5). 

30. This exercise outlines Boolos' proof [1989] of (a versi~n of) Godel's 
First Incompleteness Theorem, namely, that no sound recursively enu­
merable theory of arithmetic is complete. 

Recall from Exercise 3.9 that a wff A( x) having x as its only free 
variable names a natural number n in an axiomatized theory H if 

HI- 'v'x [A(x)-¢:;> x = n]. 
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(a) Let H be a sound axiomatized theory. Show that for each natural 
number m, there is a least natural number nm which cannot be 
named in H by any w:ff having:::; m symbols and whose variables 
(bound or free) lie in the set {xi,x2, ... , xm}· (In the present con­
text, the number of symbols in a w:ff is the length of the sequence 
obtained by thinking of the w:ff as simply a string of symbols; 
more formally, if A is a wff and z = #(A), then the number of 
symbols of A equals Terms( z). 

(b) Suppose H is a sound axiomatized theory. Show that the following 
relations are r.e. 

% = {(n,a): 
the number n is named in H } 
by the w:ff coded by a . 

QH = {(n,b): 
the number n is named by a w:ff having } 
exactly b symbols and whose variables . 
(bound or free) are among x1 , x 2 , ••• , Xb 

( c) Recall from part ( e) of Exercise 11 that the relation QH in part 
(b) - being r.e. - is weakly represented by some w:ff A. Use 
A to build another w:ff B which weakly represents the following 
relation: 

n is the least natural number n. ot named by l 
any w:ff that contains fewer than d symbols 
and whose variables (bound or free) are · 
among x1,x2, ... ,xd 

( d) Let B be as in ( c); let k be the number of symbols in B. Why may 
we assume that all variables (bound or free) which occur in Bare 
among xi,x2, . .. , Xk and that the only variables which occur free 
in B are x1 and x 2? 

(e) Continuing part (d), define the following w:ff C(x1 ): 
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Using part (a), let n = nm where m = 10 * k. First show that 
C(x1 ) does not name the number n in H, i.e., that 

(Hint: Count the number of symbols in C.) 

Then show that 

Thus, show that there is a sentence, true in N, which can neither 
be proved nor disproved from H. 

In addition to giving a new proof of the First Incompleteness Theorem, 
this problem suggests a resolution of Berry's Paradox (as formulated at 
the end of Section 5.9): As we mentioned in the text, the paradoxical 
nature of the fact that the sentence 

( *) n is the smallest natural number which cannot be 
described using fewer than 100 keystrokes. 

"describes" the number n may hinge on a lack of preciseness in our 
account of which strings of keystrokes actually count as "descriptions." 
Indeed, in the above problem the paradox dissolves once we make it 
clear that a natural number n is "described" by a formula if and only if 
n is named by the formula in the theory at hand, say PA; for then the 
formal version of ( *) - namely, C(x1 ) - does not actually "describe" 
(name) the number n, although it does weakly represent it. It may be 
that our experience with this problem generalizes to any attempt to be 
precise about the meaning of "description" in Berry's Paradox: Perhaps 
( * ), because it uses the notion of "description" in "describing" n, is 
a description of an inherently different kind from strings of keystrokes 
(like '100') which do not refer to the notion of "description" at all. Thus, 
one might reasonably conjecture at this point that any formalization 
of Berry's Paradox - and in particular, of the notion of "description" 
- would result in the conclusion that ( *) does not describe n in the 
formal sense, and the paradox is thereby resolved. 



Appendix A 

Sets and Functions 

In this section of the appendix we discuss some of the basic notions of 
what is sometimes called - naive set theory; these include the notions 

of set, subset, set operations (union, intersection, etc.), functions, car­
dinality, finite sequences, and permutations. Although these concepts 
are fairly easy to grasp, very little of higher level mathematics could be 
developed without them. Probably because of its simplicity, naive set 
theory is rarely taught explicitly in third and fourth year undergraduate 
courses; students at this level are generally expected to "pick it up" as 
they go along. Unfortunately, however, it often happens that areas of 
confusion in courses like abstract algebra and analysis arise from.a too 
fragile grasp of the ideas to be discussed here. Our intention here is to 
provide a straightforward development of these concepts, to be used by 
the reader as necessary to supplement his knowledge. 

A.1 Sets 

Intuitively speaking, a set X divides the mathematical universe into 
two parts: those objects x which belong to X and those which don't. 
The notation x E X means x belongs to X, the notation x ¢:. X means 
that x does not belong to X. The objects which belong to X are 
called the elements of X or the members of X. Other words which 
are roughly synonymous with the word set are class, collection, and 
aggregate. These longer words are often used simply to avoid using the 

361 
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word set twice in one sentence. (The situation typically arises when an 
author wants to talk about sets whose elements are themselves sets· he 

' 
might say " the collection of all finite sets of integers" rather than "the 
set of all finite sets of integers.") Authors typically try to denote sets by 
capital letters (e.g. X) and their elements by the corresponding small 
letters (e.g. x E X) but are not required to do so by any commonly 
used convention. 

The reader who has worked through Section 2.12 should be aware 
that technically speaking, a set is, by definition, a member of a model of 
ZFC (or of some other axiomatic theory of sets); and while the words 
collection and aggregate do not have technical definitions, a class is 
defined to be a collection defined by a predicate. Thus, every set is a 
class, but not conversely. For example, the collection of all even natural 
numbers is (by the AxioJ? of Comprehension) a set, and therefore a 
class; but the collection of all sets is a class (defined by the predicate 
x = x) which is not a set. In general, unless there is some danger that 
the collection of objects at hand is "too big" to be a set (and this does 
happen in some areas of mathematics), the collections referred to by 
mathematicians are to be understood as sets. 

The simplest sets are finite and these are often defined by simply 
listing (enumerating) their elements between curly brackets. Thus if 
X = {2, 3, 8} then 3 E X and 7 r/:. X. Often an author uses dots as 
a notational device to mean "etcetera" and indicate that the pattern 
continues. Thus if . 

A={ai,a2, ... ,an} (A.l) 

then for any object b, the phrase "b E A" and the phrase "b = ai for 
some i 1, 2, ... " have the same meaning; i.e., one is true if and only 
if the other is. Having defined A by (A. l) we have 

b E A {:::::} b = ai or b = a2 or ... or b an, 

where the symbol{:::::} means if and only if In other words, the shorter 
phrase "b EA'' has the same meaning as the more cumbersome phrase 
"b = ai or b = a2 or ... b an." 

The device of listing some of the elements with dots between curly 
brackets can also be used to define infinite sets provided that the context 
makes it clear what the dots startd for. For example we can define the 
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set of natural numbers by 

N = {0,1,2,3, ... } 

and the set of integers by 

z { ... ,-2,-1,0,l,2, ... } 

and hope that the reader understands that 0 E N 5 E N -5 r/:. N, 
3 3 . ' ' 5 rf:_ N, 0 E Z, 5 E Z, -5 E Z, 5 r/:. Z, etc .. 

Certain sets are so important that they have names: 

0 (the empty set) 
N (the natural numbers) 
Z (the integers) 
Q (the rational numbers) 
R (the real numbers) 
C (the co:rnplex numbers) 

These names are almost universally used by mathematicians today, 
but in· older books one may find other notations. Here are some true 
assertions: 0 r/:. ©, t E Q, Vi r/:. Q, Vi E R, x 2 

-/:- -1 for all x E R, and 
x 2 = -1 for some x E C (namely x = ±i). 

If X is a set and P( x) is a property which either holds or fails for 
each element x E X, then we may form a new set Y consisting of all 
x EX for which P(x) is true. This set Y is denoted by 

Y={xEX:P(x)} (A.2) 

and1 called "the set of all x E X such that P( x )." For example, if 
Y {x E N : x 2 < 6 + x }, then 2 E Y (as 22 < 6 + 2), 3 rf:_ Y (as 
32 f.. 6 + 3), and -1 r/:. Y (as -1 r/:. N). 

This is a very handy notation. Having defined Y by ( A.2) we may 
assert that for all x 

x E Y {:::::} x EX and P(x) 

symbol I is sometimes used instead of : here 
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and that for all x E X 

x E Y-{::=:} P(x). 

where the symbol ~ means if and only if Since the property P(x) 
may be quite cumbersome to state, the notation x E Y is both shorter 
and easier to understand. The reader who has worked through Sec­
tion 2.12 will recognize that the collection Y is guaranteed by ZFC to 
be a set (by the Axiom of Comprehension). 

Example A.1.1 Using these notations, the set E of even natural 
numbers may be denoted by any of the following three notations: 

E {0,2,4, ... } 

{ m E N: m is divisible by 2} 

{2n: n EN} 

A set Y is a subset of a set X, written 

YeX 

iff every element of Y is an element of X. 
For example, 

{1,3,4,7} e {0,1,2,3,4,7,9} 

since every element on the left appears on the right. On the other hand, 

{1,3,4,7} ~ {0,1,2,4,7,9} 

since 3 E {1,3,4, 7} but 3 r/:. {0,1,2,4, 7,9}. 
Note the following inclusions: 

Nez 

(every natural number is an integer), 

ZeQ 
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(every integer is a rational number), 

QeR 

(every rational number is a real number), and 

Rec 

(every real number is a complex number). 
The empty set is a subset of every set: 

0 ex 
for every set X. This is because every element x of the empty set lies 
in X - or indeed satisfies any other property since there are no such 
elements x. However, while it is true that the empty set is a subset 
of every set, it is certainly not an element of every set: for instance, 
the set { 1, 2} contains only the numbers 1 and 2 and hence does not 
contain 0 as a member. Also, do not confuse the empty set with the 
set whose only element is 0: 

0 # {O} 

since 0 E {O} but 0 ¢:. 0. 
Let Y and X be two sets. Two sets are equal, written X = Y, if 

X e Y and Y c X, i.e., if every element of Xis an element of Y and 
every element of Y is an element of X. 

Example A.1.2 Let X = {n EN: n2 + 7 < 6n} and Y = {2, 3,4}. 
Then X = Y. In other words, the natural numbers n which satisfy the 
inequality 

n 2 + 7 < 6n 

are precisely n = 2, 3, 4. (This may be proved by graphing the function 
y=x2 +1-6x.) 

It follows from the definitions that a set defined by an enumere;ttion 
is unaffected by the order of the enumeration and by any repetitions in 
the enumeration .. Thus 

{1,3,7} = {3,1,7} {3,1,7,1,3}. 
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The reader who has read Section 2.12 may wish to verify that the 
statement "The sets X and Y are equal if and only if X and Y have 
the same elements" is a theorem of ZFC it follows from the Axiom of 
Extensionali ty. 

A.2 Boolean Operations 

The intersection, X n Y, of two sets X and Y is the set of objects in 
both of them: 

X n Y = {z: z EX and z E Y}. 

X and Y are said to be disjoint if they have an empty intersection, 
i.e., if 

XnY = 0. 

The union,·X UY, of two sets X and Y is the set of objects in one 
or the other qf them: 

X U Y = { z : z E X or z E Y}. 

There is a notation resembling the sigma notation for sums, for the 
intersection and union of a collection of sets. If { Xi}iEJ is a family of 
sets indexed by some index set I, then the intersection of the family is 

and the union is 

n Xi = { z : z E Xi for all i E I} 
iEI 

LJ Xi = { z : z E Xi for some i E I}. 
iE/ 

For example, if I= {1, 2, 3}, then 

n Xi = X1 n X2 n X3, and LJ Xi X1 U X2 U X3. 
iE/ iE/ 

Two special cases of taking unions of indexed collections that occur 
frequently in this book are increasing unions and disjoint unions. 
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Increasing Unions Suppose X 0 , X1, ... , Xi, . .. denote sets such that 
X 0 C X1 C ... C Xi C ... , so that each set is included in the next as 
a subset. Suppose 

x = U xi. 
iEN 

Then X is called the increasing union of the Xi. X has the property 
that for each x EX, there is a natural number k such that for all j 2::: k, 
x E Xi. In other words, not only is each x in X a member of some Xk, 
but x is in every Xj for j 2::: k as well. 

Disjoint Unions Suppose now that {Xi : i E I} is any collection 
of sets, indexed by a set I. Sometimes it is useful to think of the 
elements in all of the Xi as collected together in a single set in such 
a way that members of Xi are distinguishable from members of Xi 
whenever i f= j. If the xi already happen to be pairwise disjoint (i.e., 
for all i f= j, Xi n Xj 0), our goal is easily accomplished by simply 
taking the union of the Xi, as above. But if there is some object x for 
which x E X n Xj, and i f= j, then once we take the union of the Xi, 
x must be thought of as coming from both Xi and Xj, and possibly 
other sets. This situation can be undesirable; for instance, wh~n we 
described the set of all function symbols to be used in full predicate 
logic, we wanted to collect all elements of the Fn, n = 0, 1, .... But if a 
particular function symbol F occurs in both Fn and Fm (and n f= m) 
then this lack of uniqueness causes ambiguity in the use of F in our 
logic, since, for instance, we don't have a unique arity associated with 
it (it's both n-ary and m-ary ). To avoid this complication, we required 
that the union of the Fn be a disjoint union. 

In practice, "taking the disjoint union" of a collection usually means 
that we insist that the sets whose union we will take are already disjoint. 
Thus, in our example above, we can simply define the sets Fn so that 
function symbols occurring in one of these sets do not occur in any 
other. Occasionally however, one is presented with sets whose elements 
one does not wish to redefine. For such (rare) occasions, we define the 
disjoint union as follows: 

Given sets Xi as above, we first replace each Xi by the set Xi of all 
pairs (i, x) for which x E Xi. Now Xi is essentially the same as Xi, only 
now every member x of Xi is "tagged" with the index i. The disjoint 
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union of the xi is then defined to be the union of the xi: 

One other set operation which is often used is the difference X \ Y 
of two sets X and Y, defined by 

X \ Y ={xix EX and x ~ Y}. 

When Y C X, this is also called the complement of Y in X. 

Problem A.2.1 Prove that Y C X if and only if Y \ X = 0. 

Problem A.2.2 Prove DeMorgan's Laws: 

Y\ (uxi) = (nY\xi) 
iEI iEI 

Y\ (nxi) 
iEI 

Problem A.2.3 Write out the elements of the disjoint union of the 
sets {O, 1} and {1,2}. How many elements are in the disjoint union? 
How many are in the (ordinary) union of these two sets? 

A.3 Functions 

A function is a mathematical object f consisting of a set X called the 
domain ·off, a set Y called the codomain off, and an operation 
which assigns to every element x E X a unique value f ( x} E Y. This 
is summarized by the notation 

f:X-7Y 
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(Note that the arrow goes from domain to codomain.) Other words 
which are roughly synonymous with the word function are map, map":"~ 
ping, and transformation2

• When a function f is defined without 
explicit mention of X as above, the domain of f is denoted (in this 
book at least) 

Dom(!). 

The unique value assigned by a. function f to x E X is usually 
denoted by f ( x) but in some contexts other notations such as f x or f x 
are customary. f(x) is sometimes called the value off for argument x. 
In the context of computability theory in which computable functions 
are treated like computing machines (see Chapter 4) f(x) is called the 
output off for input x. We will use this latter terminology frequently 
in this appendix because (we feel) it helps the beginner form a clearer 
picture of the concept of function and its properties. 

The set of all values (outputs) f( x) of a function f is called its 
range and is denoted Ran(!): 

Ran(!) = {f(x): x E Dom(!)}. 

Any numerical expression involving a real variable defines a func­
tion. For. example, the equation 

1 
f(x) = 1 - x 

defines a function f : X -7 R whose domain is given by 

X {xER:x#l} 

and whose range is given by 

Ran(!) = { x E R : x # 0}. 

(In elementary algebra and calculus texts, the domain of a function 
defined by a~ explicit formula in this· fashion is always assumed to be 

2It should be mentioned that in some areas of mathematics, the word "map" (or 
"mapping") is reserved for "structure preserving" functions. For instance, in group 
theory, a map is often understood to be a group homomorphism; in topology, it is 
often taken. to be a surjective continuous function. 
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. the largest set where the formula is meaningful and the codomain is 
assumed to be the set R of real numbers. In more advanced books it is 
customary to specify domain and codomain as part of the definition.) 

Sometimes one wishes to refer to a function without giving it a 
name. A good way to do this is with the symbol r--+. Thus one could 
refer to the function f defined above as the function 

1 
{xER:x:fl}--+R: xr--+--. 

1-x 

One might call this the function which maps the number x to the num­
ber 1/(1 - x). 

Two functions f 1 : X1 --+ Yi and h : X2 --+ Vi are equal if their 
domains and codomains are equal (X1 = X 2 and Yi = Y;), and they 
return the same output for any input: fi(x) = h(x) for all x E X1. 

This may be summarized symbolically by: 

We caution the reader that according to this definition of equality the 
two functions f : N --+ N and g : N --+ E = { n : n is an even natural number 
defined by 

J(n) = g(n) = 2n 

for· n E N are npt equal since their codomains are not equal. It may 
seem like nit-picking to distinguish these two (and indeed until recently 
most authors did not) but failure to make the distinction sometimes 
leads to confusion. For instance, as we shall see below, the function 
g is onto (since its codomain and range are equal) while f is not (3 
is in the codomain of f, but not in its range). Hence, even in this 
simple example, it makes sense to distinguish these functions. (In more 
advanced areas of mathematics, such as algebraic topology and model 
theory, this distinction is at times crucial.) 

Beginners often confuse the function with the formula which defines 
it. This leads to confusion because 

• Not every function is defined by a single formula. For example, 
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the function g : R --+ R defined by 

{ 

x 2 if x > 0 
g(x) = 7 if x = 0 

x 3 if x < 0 

requires three formulas to define it: the formula to use in evalu­
ating the output g(x) depends on the value of the input x. 

• Different formulas can define the same function. For example, the 
formulas 

g(x) = x 2 

and 
h(t) = t 2 

define the same function from R into R. As another example, 
the function Ji : R --+ R defined by 

f1(x) = (x + 1)2 

is the same as the function f2 : R --+ R defined by 

h(x) = x2 + 2x + 1. 

The reason that f 1 = f2 is that the domain of f 1 is the same 
as the domain of f2 (namely R), the co domain of Ji is the same 
as the co domain of f 2 (namely R), and Ji ( x) = h ( x) for every 
x E R. The point is that the formulas (x + 1)2 and x2 + 2x + 1 
are different (simply because they look different) but their values 

are the same for all x. 

Suppose f: X--+ Y. For any subset ACX the set 

f(A) = {f(x) : x EA} 

is called the image of A by f. For any subset B C Y the set 

r 1(B) = {x: f(x) EB} 

is called the preimage of B by f. The image f(X) of the whole space 
X by f is called the range of f (the reader may wish to check that 
this definition is equivalent to the definition of "range" given earlier in 
.the appendix). 



372 APPENDIX A. SETS AND FUNCTIONS 

Problem A.3.1 Show that 

f(LJAi) LJf(Ai) 

f(nAi) c n f(Ai) 

r 1 (LJAi) LJ f- 1 (Ai) 

f(n Ai) nf-1 (Ai) 

Give an example which shows that the second inclusion need not be an 
equality. 

A notation which is often used to define sets is 

Y={f(x):xEX} 

(where f is some function whose domain is the set X) which is to be 
understood as an abbreviation for 

Y = { y : y f ( x) for some x E X} 

so that for ().ny y 

y E Y {:=.:} y = f(x) for some x EX. 

A.4 Composition and Restriction 

Given functions f : X -+ Y and g : Y -+ Z the composition of f and 
g is denoted go f (read " g after f") and defined by go f : X -+ Z 
with 

(g 0 !) ( x) = g (! ( x)) 

for x E X. The operation of composition is associative: 

( h 0 g) 0 f = h 0 (g 0 !) . 

Suppose we are given a function f: X-+ Y and a subset 
Xo C X. The restriction off to X 0 , denoted flX0 , is defined by 

Dom(f IXo) = Xo, 
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(!IXo)(x) f(x) forallxEXo. 

For example, if f: R-+ Risa function whose graph is the straight 
line given by f(x) = 2x, and if [O, 1] denotes the unit interval, then 
fl[O, 1], the restriction off to [O, 1], is a function whose graph is the 
closed line segment from the (0, 0) to (1, 2). 

The opposite of restricting a function to a smaller domain is extend­
ing a function to a larger domain. Suppose g : X -+ Y is a function 
and X C Z. Then any function h : Z -+ Y is called an extension of 
g to Z if hlX = g, i.e., if 

h(x) = g(x) for all x EX. 

Thus, for example, if g is the function defined earlier by g : X -+ R: 
xi-+ I~x with domain X = {x ER: x-=f. 1}, then g has an extension g 
defined by 

g(x) = { o~· if x =f; 1 
if x = 1. 

The reader may recall from a calculus course that the function g de­
scribed above is continuous on its domain X, but has no continuous 
extension to R. In particular, fJ: R-+ R is not continuous. 

Problem A.4.1 Suppose Y and X0 , Xi, ... , Xi, ... are sets such that 
Xo c X1 c ... c Xi c ... and for each i, fi : Xi -+ Y is a function 
such that for all j < i, 

filXj = fj 

i.e., for each j < i, fj is the restriction of fi to Xj. Let X be the increas­
ing union· of the Xi. Show that there is a unique function f : X -+ Y 
which extends each fi, ( i = 0, 1, ... ) to X. 

A.5 ldenti'ty, One-one, and Onto Func­
tions 

A function whose domain and codomain are equal and which returns 
its argument unchanged is. called an identity function; more precisely 
the function . 

Jy :Y-+ y 
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defined by 
Jy(y) = y 

for y E Y is called the identity function of Y. It satisfies the identities 

Jy 0 f = f 

for f : X --t Y and 
g 0 Jy = g 

for g: Y --t Z. 
A function f : X --t Y is called one-one if its output determines 

its input uniquely; 3 i.e., if for all xi, X2 E X we have Xi = X2 whenever 
f(xi) = f(x2). A function f : X --t Y is called onto if every point 
of Y is the output of some input; i.e., if for every y E Y there is an 
x EX such that f(x) = y. A function is called one-one and onto, or 
a bijection, ifit is both one-one and onto. 

Think of the equation y = f ( x) as a pro bl em to be solved for x. 
Then: 

{ 

one-one } 
the function f is . onto 

one-one and onto 

if and only if for every y E Y the equation 

{ 

at most } 
y = f ( x) has at least one solution x E X. 

exactly 

The function 
R --t R: xi-+ x3 

is both one-'one and onto since the equation 

y x3 

possesses the unique solution x = yi E R for every y E R. In contrast, 
the function 

R--t R: x --t x2 

course, for any function its input determines its output uniquely; that is the 
definition of a function. · 
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is not one-one since the equation 

4 x2 

has two distinct solutions, namely x = 2 and x = -2. It is also not 
onto since -4 E R but the equation 

-4 = x2 

has no solution x E R. 
The equation -4 x2 does have a complex solution x 2i E C but 

that is not relevant to the question of whether the function R --t R : 
x i-+ x2 is onto. The functions C --t C : x i-+ x2 and R --t R : x i-+ x2 

are different: they have a different domain and codomain. The function 
C --t C : x i-+ x2 is onto. 

The concepts of one-one and onto can be formulated in other ways. 
For instance, a function f : Y --t Z is called left cancellable if for all 
sets X and· all pairs of functions gi : X --t Y, gz : X --t Y, 

whenever f o gi = f o g2, we have gi = g2. 

Likewise, a function f : Y __, Z is right cancellable if for all sets W 
and all pairs of functions hi : Z --t W, hz : Z __, W, 

whenever hi o f = hz o f, we have hi h2. 

The next proposition demonstrates the connection between these 
concepts; we leave its proof to the reader. 

Proposition A.5.1 Suppose f : X --t Y is a function. 

1. The following are equivalent: 

(a) f is one-one. 

(b) For ally E Ran(!), the set f-i( {y}) has .exactly one element. 

(c) For all subsets X 0 c x,1-i(f(Xo)) Xo. 

( d) f is left-cancellable. 

2. The following are equivalent: 
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A.6 

(a) f is onto. 

(b) f(X) = Y. 
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( c) The range and codomain off are equal. 

( d) For all subsets Yo c Y} f (f-1 (Yo)) = Yo. 

( e) f is right-cancel/able. 

Cardinality 

Two sets X and Y are said to have the same size, or cardinality, if 
there is a one-one, onto function f : X --t Y. This notion is familiar 
when X and Y are finite sets: Given that X {xi, x2, •.• , xk} and 
Y = {yi, Y2, ... , Ym}, then X and Y have the same cardinality if k = m, 
i.e., if they have the same number of elements. 

On the other hand, two infinite sets which may at first appear to 
have different sizes may in fact have the same cardinality. For instance, 
if E = { n : n is an even natural number}, then E and N have the same 
cardinality since the function g : N --t E defined by 

g(n) 2n 

is one-one and onto. 
Formally speaking, a set X is said to be finite if there is a natural 

number n such that X and {O, 1, ... , n} have the same cardinality. X 
is infinite if X is not finite. X is called countable or denumerable 
if X and N have the same cardinality. 

Is every set finite or countable? Or is there some enormous ( un­
countable) infinite set X for which X and N do not have the same car­
dinality? This question plagued Georg Cantor at the end of the 19th 
century; many mathematicians and philosophers of the time found this, 
and related questions about infinite sets, to be outside the proper do­
main of mathematics. Even in present-day universities, some students, 
when confronted with this question, feel somewhat disturbed since, af­
ter all, how could one infinite set be bigger than another? 

Despite the controversy surrounding this and related questions, and 
despite the apparent unlikeliness of the result, Cantor was able to show 
that uncountable sets exist. We a proof of this fact below: 

A.6. CARDINALITY 377 

For any set X let P(X) denote the set of all subsets of X: 

S E P( X) iff S c X. 

The set P(X) is called the power set of X. Note that if Xis a finite 
set having n elements, then P(X) is a finite set having 2n elements. 

Theorem A.6.1 (Cantor's Theorem) There is no onto function 

f : X --t P(X). 

Proof: Suppose such a function f exists. We will derive a contradic­
tion. Define a subset S C X by 

S = {x EX: x ¢ f(x)}. 

Since f is onto and S E P(X) there must be an element y E X with 
S f(y). Now either y E Sor y ¢ S. If y E S, then y E f(y) (as 
S f(y)) soy¢ S. If y ¢ S, then y ¢ f(y) soy ES. Either way we 
get a contradiction, so no such function f exists. End of Proof. 

The method used in the preceding proof, called Cantor's diago­
nal rriethod, resembles several other arguments in this book. (See the 
discussion following the Hal ting Pro bl em in Section 4.11). Using the 
diagonal method, Cantor was also able to show that the set R of real 
numbers is uncountable. In fact, he showed that R and P(N) have 
exactly the same cardinality! · 

Problem A.6.2 Is the set Q of rationals countable or uncountable? 

One question which Cantor was unable to answer is whether there 
is an infinite set X whose size is strictly between that of N and that of 
R; more technically, is there a set X together with one-one functions 
f : N -'I> X and g : X -'I> R such that N and X do not have the 
same cardinality and X and R do not have the same cardinality? The 
assertion that no such set exists - or, stated more positively, that every 
infinite set of reals either has the same cardinality as N or as R is 
known as the Continuum Hypothesis. It was shown nearly 80 years 
after Cantor's time that the Continuum Hypothesis is neither provable 
nor disprovable from any known (reasonable) set theory (i.e., it's an 
·independent sentence for ZFC and many other set theories). 
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A.7 Inverses 

Let f : X ~ Y. A left inverse to f is a function 9 : Y ~ X such that 

gof=Ix. 

Proposition A. 7.1 A function f : X ~ Y is one-one if and only if 
there is a left inverse 9 : Y ~ X to f .. If f is one-one but not onto, 
the left inverse is not unique. 

Proof: If 9: Y ~Xis a right inverse to f the problem y = f(x) has 
at most one solution for .if y = f(x 1 ) = f(x2) then g(y) = 9(f(x1 )) = 
9(f(x2)) whence x1 = x2 since 9(f(x)) = Ix(x) x. Conversely, if 
the problem y = f ( x) has at most one solution, then any function 
9 : Y ~ X which assigns to y E Y a solution x of y = f(x) (when 
there is one) is a left inverse to f. (It does not matter what value g 

assigns to y when there is no solution x.) End of Proof. 

Let f : X ~ Y. A right inverse to f is a function g : Y ~ X 
such that 

f 0 9 Iy. 

Proposition A. 7.2 A function f : X ~ Y is onto if and. only if there 
is a right inverse 9 : Y ~ X to f. If f is onto but not one-one the 
right inverse is not unique. 

Proof: If 9: Y ~Xis a right inverse to f: X ~ Y then x = 9(y) is a 
solution toy= f(x) since f(g(y)) = Iv(y) y. The converse assertion 
that there is a right inverse 9 : Y ~ X to any onto function f : X ~ 
Y may not seem obvious to someone who thinks of a function as a 
computer program: even though the problem y = f ( x) has a solution 
x, it may have many, and how is a computer program to choose? (If 
X C N one could define g(y) to be the smallest x E X which solves 
y f ( x) but this will not work if X = Z for in this case there may 
not be a smallest x.) In fact, this converse assertion is generally taken 
as an axiom: the so called axiom of choice, and cannot be proved from 
the other axioms of mathematics. End of Proof. 
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Let f : X ~ Y. A two-sided inverse to f is a function which is 
both a left inverse to f and a right inverse to f: 

9 of= Ix, f o 9 Iy. 

The word inverse unmodified means two-sided inverse. 
The following easy proposition explains why the two-sided inverse 

is necessarily unique. 

Proposition A. 7.3 If f : X ~ Y has both a left inverse and a right 
inverse, then it has a two-sided inverse f- 1 : Y ~ X, and f-1 is the 
only left inverse off and the only right inverse off 

Proof: Let g: Y ~ X be a left inverse to f and h: Y ~ X be a right 
.inverse. Then 

go f Ix 

and 
foh=Iy. 

Compose on the right by h in the first equation to obtain 

9 of oh= Ix oh 

and use the second to obtain 

Iv oh= Ix oh. 

Now composing a function with the identity (on either side) does not 
change the function so we have 

9=h 

i.e., 9 h) is a two-sided identity. Now if 91 is another left inverse to 
f then this same argument shows that 

91 h 

{i.e., g1 9 ). Similarly h is the only right inverse to f. End of Proof. 
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Proposition A. 7.4 The function f : X ---+ Y is one-one and onto if 
·and only if there is a (necessarily unique) two-sided inverse f- 1 

: Y ---+ 
X to f. This inverse function f- 1 : Y ---+ X is characterized by the 
equivalence 

y = f ( x) {:::::::;> x = r 1 (y) 

for x E X and y E Y. (The symbol {:::::::;> means if and only if.) 

Proposition A.7.5 (1) The identity transformation Ix: X---+ Xis 
one-one and onto and is its own inverse: 

r;1 =Ix 

(2) If f : X ---+ Y is one-one and onto, then so is its inverse f- 1 

y ---+ x' and the inverse of f- 1 is given by 

u-ltl = f. 

(3) If the function f : X ---+ Y is one-one and onto and the function 
g : Y ---+ Z is one-one and onto, then the composite go f : X ---+ Z 
is one-one and onto and its inverse (g 0 n-1 : z ---+ y is given by 

( f) -1 f-1 -1 go = og 

Proof of (1): We have Ix o Ix =Ix since (Ix o Ix )(x) Ix(Ix(x )) = 
Ix(x) for all x EX. End of Proof. 

Proof of (2): The same formulas 

r 1 
o f = Ix) f o f-1 = ly 

which say that f- 1 is the inverse off also say that f is the inverse of 
f- 1

• End of Proof. 

Proof of (3): 

(g 0 f) 0 u-1 0 g-1) = g 0 ]y 0 g-1 = g 0 g-1 ]z 

and 
(f-1 o g-1

) o (go!) = r 1 o Jy = f- 1 of Ix. 

End of Proof. 
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Example A. 7 .6 Let R + denote the set of non-negative real numbers: 

R+ = {x ER: x ~ O} 

and consider the four functions: 

Then 

!1: R---+ R 
h: R---+ R+ 
h: R+---+ R 
f4: R+---+ R+ 

fi(x) = x2 for x ER; 
h(x) = x2 for x ER; 
h(x) = x2 for x ER+; 
f4(x) = x2 for x ER+. 

1 ft is neither one-one nor onto. It is not one-one since fi(3) = · 
f 1 (-3) 9 but 3 =f- -3. It is not onto since f 1 ( x) =f- -4 for 
all x ER. 

2 h is onto but not one-one. It is not one-one for the same reason that 
Ji is not. The reason that f 1 is not onto does not apply to h 

the negative numbers are not in the codomain of f2. The 
function 

given by 
92(Y) vY 

is a right inverse to h : R---+ R+ since h(g2(y)) = y for y ~ 0. 
It is not a left inverse for h since g2(!2(x)) !xi for x ER and 
x Jxl if x < 0. The function 

92: R+---+ R 

given by 
fJ2(Y) = --/Y 

is a different right inverse to f3. 

3 fs is one-o:rie but not onto. It is not onto for the same reason that 
f 1 is not. The reason that f 1 is not one-one does not apply to 
h since the negative numbers are· not in the domain of f3. The 
function 
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defined by 

_ { .jY for y 2 O; 
Y3(Y)- 7fory<O 

is a left inverse to the function h; namely, g3 (f3( x)) = x for 
x ER+. It is not a right inverse for f3(g3 (y)) = 49 f=. y for y < 0. 
(Replacing 7 by some other constant gives a different left inverse 
to f3.) 

4 f 4 is one-one and onto. The function 

given by 

is the (two-sided) inverse to the function f4 

Example A.7.7 Let Y {y E R : -1 ::; y ::; l} and define f 
R Y and g: Y-+ R by f(fJ) = sin(fJ) and g(y) = sin-1 (y). Then 
f(g(y)) = y for y E Y. Thus f is a left inverse for g, g is a right inverse 
for f, f is onto, and g is one-one. However f is not one-one (since 
f (27r) = f (0) although 27r f=. 0) and g is not onto (since g(y) f=. 2 for all 
y E Y). 

Problem A.7.8 What is the value of g(f(fJ)) 
()ER? 

sin-1 (sin( fJ)) for 

The example and exercise point up the fact that it is very impor­
tant to specify the domain and codomain when defining a function. In 
order to define inverses for common functions one often restricts their 
domains. 

Here are some common functions and their inverses. Note how 
carefully the source and codomain are specified. 

1. The linear function 

R -+ R : x r-cr ax + b 
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is one-one and onto if a f=. O; its inverse is the function 

R -+ R : y r-cr (y - b )/a. 

For x,y ER: 

y =ax+ b {=:} x = (y - b)/a. 

2. The cube function 
R -+ R : x r-cr x3 

is one-one and onto; its inverse is the cube root function 

R 
1 

R: y r-cr y3. 

For x,y ER: 
1 

ya y = x3 
{=:} x 

3. The exponential function 

R -+ R + \ {O} : x r-cr ex 

is one-one and onto; its inverse is the natural logarithm 

R+ \ {O}-+ R: y r-cr ln(y). 

For x, y E R with y > 0: 

y ex{=:} x = ln(y). 

4. The restricted sine function 

sin: {fJ ER: -~ < () < 7r -+ {y ER: -1 < y < l} 2 - - 2 - -

is one-one and onto; its inverse is the inverse sine function 

7r 7r 
sin - 1 

: { y E R : -1 ::; y ::; 1} -+ { fJ E R : - 2 ::; B ::; 2} · 

For ::; B::; ~}and -1::; y::; 1: 

y = sin(fJ) {=:} e = sin-1 (y). 

The inverse sine function is sometimes called the arcsine and de­
noted arcsin. 
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A.8 Cartesian Product 

Let X and Y be sets. The Cartesian product of X and Y is the set 
of all ordered pairs (x, y) with x EX and y E Y: 

Xx Y {(x,y): x EX, y E Y}. 

The Cartesian product is also called the direct product. 
In certain contexts the word operation is often used in place of the 

word function; thus a unary operation on a set X is a function with 
domain and codomain X and a binary operation on Xis a function 
with domain X x X and codomain X. 

An example of a unary operation is the operation of negation of a 
real number: 

R ---+ R : x 1--t -x 

and an example of a binary operation is the operation of addition of 
real numbers: 

Rx R---+ R: (x,y) 1--t x + y. 

Sometimes the value of a function for given inputs is denoted in 
other ways. For example, we write x + y rather than +(x, y) Here, 
parentheses play the crucial role of indicating the order· in which the 
operations are performed (x-(y+z) f:. (x-y)+z) and when parentheses 
are omitted this order is determined according to some convention (e.g. 
x - y + z means ( x - y) + z and not x - (y + z)). 

The notation where the name of a binary function is placed between 
(rather than in front of) the arguments is called infix notation. Occa­
sionally, the name of the function is placed after the operation - one 
writes (x,y)f rather than f(x,y).-this is called postfix notation. The 
notation f(x, y) is thus called prefix notation. It is possible to omit 
parentheses unambiguously when using postfix (or prefix notation) and 
some calculators (e.g., those made by Hewlett-Packard) and program­
ming languages (e.g., APL) do this. (Thus X-'-Y + z is denoted xy- z+ 
in postfix notation.) 4 

4The observation that parentheses are not needed with prefix. (or postfix) nota­
tion is due to a Pole named Lukasiewicz so parentheses-free notation is sometimes 
called Polish (or reverse Polish) notation. 

A.9. GRAPHING FUNCTIONS 

A.9 Graphing Functions 

For any function 
f:X-+Y 

we may define its graph to be the set 

G(f) {(x,y) EX x Y: y = J(x)} 

of all pairs ( x, y) such that y = f ( x). 
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(1) A subset G c X x Y is the graph of some function f if and only if 
for every x EX there is a unique y E Y (namely y = f(x) with 
(x, y) E G(f). 

(2) function f is one-one if and only if for every y E Y there is at 
most one x EX with (x, y) E G(f). 

( 3) The function f is onto if and only if for every y E Y there is at 
least one x EX with (x,y) E G(f). 

(4) function f is one-one and onto if and only if for every Y . E Y 
there is exactly one x E X with (x, y) E G(f). 

Suppose that both sets X and Y are intervals in the set R of real 
numbers. For example, 

X {x ER: a1 :s; x :s; a2}, Y {y ER: b1 :s; x :s; b2}. 

We may plot points in the usual fashion with the set X represented 
by an interval on the horizontal axis and the set Y represented by an 
interval on the vertical axis. The set X x Y will be a rectangle and the 
graph G(f) of f will be a subset of the rectangle X x Y. Then 

(1) A subset G c X x Y is the graph of some function f if and only if 
every vertical line through X intersects G in exactly one point. 

( 2) The function f is one-one if and only if every horizontal line through 
Y intersects G(f) in at most one point. 
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( 3) The function f is onto if and only if every horizontal line through 
Y intersects G(f) in at least one point. 

( 4) The function f is one-one if and only if every horizontal line through 
Y intersects G(f) in exactly one point. 

Problem A.9.1 For each of the following sets G specify whether or 
not it is the graph of a function f: X ~ Y. 

1. G = {(x,y) E R 2
: x2 +y2 =1}, 

X = {x ER: -1 ~ x ~ 1}, 
Y = {y ER: -1 ~ y ~ l}. 

2. G={(x,y)ER2 :x2 +y2 =1, y~O}, 
X = {x ER: -1~x~1}, 
Y = {y E R : -1 ·~ y ~ 1}. 

3. G={(x,y)ER2 :x2 +y2 =1, x~O}, 
X = {x ER: -1 ~ x ~ 1}, 
Y = {y ER: -1~y~1}. 

4. G = {( x, y) E R 2 
: x 2 + y2 = 1, y ~ 0}, 

X = {x ER: -1 ~ x ~ 1}, 
Y={yER:O~y~l}. 

5. G = {(x, y) E R2
: y = x3 

- x, -1 ~ x ~ 1}, 
X = {x ER: -1~x~1}, 
Y = {y E R : -9 ~ y ~ 9}. 

6. G = { ( x, y) E R 2 
: y = x3 + x, -1 ~ x :::; 1}, 

X = {x ER: -1~x~1}, 
Y = {y E R: -9 ~ y ~ 9}. 

7. G = { ( x, y) E R 2 
: x = y3 

- y, -1 ~ y ~ 1}, 
X = {x ER: -9 ~ x ~ 9}, 
Y = {y ER: -1 ~ y ~ l}. 

8. G = {(x, y) E R2
: x = y3 + y - 1 ~ y ~ 1}, 

X = {x ER: -9 ~ x ~ 9}, 
Y = {y E R : -1 ~ y ~ 1 }·. 
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Problem A~9.2 Graph each of the following functions f : X ~ Y 
and specify whether or not it is one-one or onto or both. If the function 
is not one-one, draw a horizontal line which intersects its graph at least 
twice. If the function is not onto, draw a horizontal line which does not 
intersect its graph. 

1. X={xER: -1 ~x~l}, 
Y = {y ER: -1 ~ y ~ 1}, 
f(x)=~. 

2. X = {x ER: -1~x~1}, 
Y = {y ER: 0 ~ y ~ 1}, 
f(x)=~. 

3. X={xER: O~x~l}, 
Y = {y ER: -1~y~1}, 
f(x)=~. 

4. X = { x E R: 0 ~ x ~ 1 }, 
Y = {y ER: 0 ~ y ~ 1}, 
f(x)=~. 

5. X={xER: -l~x~l}, 
Y = {y E R: -2 ~ y ~ 2}, 
f(x) = x3 

- 1. 

6. X = {x ER: -1~x~1}, 
Y = {y ER: -2 ~ y ~ 1}, 
J(x) = x3 

- 1. 

7. X={xER: -1 ~x~l}, 
Y = {y E R : -2 ~ y ~ 2}, 
f(x) = x 3 + 1. 

8. X= {x ER: -1 ~ x ~ 1}, 
Y = {y E R ·: 0 ~ y ~ 2}, 
f(x) = x3 + 1. 
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A.10 Finite Sequences 

A sequence of length n is a list 

of objects; Xi is called the i-th element of the finite sequence x. Two 
sequences 

and 
g (yi, Y2, .. ·, Ym) 

are equal if m = n and Xi Yi for i = 1, 2, ... , n. 
It is important to remember that for sequences the order is impor:­

tant. Thus the sequences x ( 4, 7, 9) and y (7, 4, 9) are distinct (for 
X1 = 4 =/:- 7 = Y1) while the sets { 4, 7, 9} and {7, 4, 9} are the same. 
Similarly, for sequences repetition matters, whereas this is not so for 
sets. Thus 

{1,2,3,1,2} = {1,2,3} 

but 
(1,2,3,1,2) =I- (1,2,3) 

since the two sequences have different length. 
The set of all finite sequences of elements of X of length n is denoted 

by xn so that 

xn = {(xi, X2, •.• 'Xn) : Xi, X2, .•. 'Xn EX}. 

It is also customary not to distinguish between a sequence of length 
one and its sole element: ( x) = x. In other words, we identify the set 
X 1 of sequences of length one of elements of X with the set X itself: 

X 1 =X. 

A sequence of length n is also called an n-tuple. Thus a 2-tuple is 
a pair, a 3-tuple is a triple, a 4-tuple is a quadruple, etc .. 

Proposition A.10.1 Suppose f is an n-tuple of elements of {1, 2, ... , m}, 
that is, 

f: {1,2, ... ,n}--+ {1,2, ... ,m}. 
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1. If f is one-one, then n ::; m. 

2. If f is onto, then n ~ m. 

3. 1/ f is one-one and onto, them n = m. 

There are m n functions 

f: {1,2, ... ,n}--+ {1,2, ... ,m} 

from a finite set with n elements to a finite set with m elements: in 
other words, there are m n ways to form a sequence of length n (possibly 
with repetitions) from a set of m objects. For example there are 8 = 23 

functions 
J j : { 1, 2, 3} --+ { 1, 2} for j = 1, 2, ... , 8 

from a three element set to a two element set. Let's list them and their 
values in a table: 

1 1 2 3 
Ji( i) 1 1 1 
h(i) 1 1 2 
/3(i) 1 2 1 
/4(i) 1 2 2 
Is( i) 2 1 1 
/e(i) 2 1 2 
f1(i) 2 2 1 
/s(i) 2 2 2 

None of these is one-one since 2 < 3. For example f4 is not one-one 
since f4(2) = / 4(3) = 2 but 2 =f. 3. On the other hand all but /1 and /s 
are onto. For example /2 is onto since /2(1) = 1 and f2(3) 2. There 
are two right inverses g and h to /2; one of them is defined by g(l) = 1, 
g(2) 3 and the other by h(l) 2, h(2) = 3: f(g(y)) f(h(y)) = Y 
for y l, 2. On the other hand, / 1 is not onto since the equation 
f 1 (x) = 2 has no solution x E {1,2,3}. 

Problem A.10.2 For each f: {1,2,3}--+ {1,2} which is onto, give 
·all of its right inverses. 
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Problem A.10.3 Make a table of the 9 = 32 functions 

f: {1, 2} ~ {1, 2, 3}. 

For each f say whether it is one-one. If it is give all its left inverses. If 
it is not, find_ xi, x2 with f ( x1) = f (x2) but x1 f=. x2. 

A.11 Permutations 

Now we deal with the case where m = n. Let 

f: {1,2, ... ,n} ~ {1,2, ... ,n} 

be a function from a finite set with n elements to itself. The function 
f is called a permutation if f is one-one and onto. 

Proposition A.11.1 Suppose f is a function from a finite set with n 
elements to itself. Then the following conditions are equivalent: 

• f has a left inverse. 

• f is one-one. 

• f has a right inverse. 

• f is onto. 

• f is a permutation. 

• f has a two-sided inverse f- 1; i.e., there is a function 

f-1
: {1,2, ... ,n} ~ {1,2, ... ,n} 

satisfying f(f- 1(y)) = y and f- 1(f(x)) = x for x, y = 1, 2, ... , n. 

Moreover, if f satisfies any of these conditions, f- 1 is the only left 
inverse to f and f- 1 is the only right inverse to f. 

Of the nn functions from {1, 2, ... , n} to itself exactly n! = n · ( n -
1) · ( n - 2) · · · 3 · 2 · 1 of these are permutations. (This is the number of 
ways we can rearrange n things·without repetitions.) 
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Problem A.11.2 There are 27 = 33 functions 

f: {1,2,3} ~ {1,2,3} 

and 6 of them are one-one and onto. For each of these 6 give its inverse. 
Select one of the remaining 21, by specifying the three values f(l), f(2), 
f(3). Show that this f is not one-one by finding xi, x 2 E {1, 2, 3} with 
X1 f=. x2 and f(x 1) = f(x 2). Show that this f is not onto, finding 
y E {1,2,3} such that f(x) f=. y for x = 1,2,3. 

A.12 Induction 

The set of natural numbers 

N = {0,1,2,3, ... } 

is one of the starting points for mathematics. 
An infinite sequence is a function whose domain is the set of 

natural numbers. Infinite sequences are often written with the three 
dot notation, 

A= (Ai, A2, A3, ... ). 

The induction principle is a basic property of the natural num­
bers, and plays a central role in many of the proofs in this course. 

INDUCTION PRINCIPLE 

To prove that all natural numbers have a given property R: 

(Basis step) Show that 0 has the property R. 

(Successor step) Show that for every natural number n, 
if n has property R, then n + 1 has property R. 

We may write R( n) to mean that n has property R. The induction 
principle is intuitively plausible because one can prove R( k) for a par­
ticular natural number k by first using the basis step to prove R(O), 
then using the successor step to prove R( 1), then using the successor 
step again to prove R(2), and repeating the process k times to form a 
·proof of R(k ). 
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Infinite sequences are often defined by induction on the natural 
numbers. Such definitions are justified by the following principle. 

INDUCTIVE DEFINITION PRINCIPLE 

A sequence A = (Ai, A2, A3 , ••• ). can be defined uniquely by 
giving: 

(Basis rule) A value A 0 ; 

(Successor rule) For each natural number n, a rule for 
computing a value An+1 given n and values A0 , •.• , An. 

·Appendix B 

Listings 

B.1 Simple GNUMBER Programs 

In this section the simple register machine programs on the distribution 
diskette are reproduced. 

ADD.GN 

0: z 3 -ADD- let count = 0 
1: J 3 2 5 -LOOP- if count = b, jump to DONE 
2: s 1 let a = a+1 
3: s 3 let count = count+1 
4: J 1 1 1 jump to LOOP 
5: H -DONE-

MULT.GN 

0: z 3 -MULT- let accum = 0, 

1: z 4 let i = 0 

2: J 2 4 10 -LOOP- if b = i, jump to DONE 
3: s 4 let i = i + 1 
4:. z 5 -ADD(accum,a)- let count = 0 
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5: J 5 1 
6: s 3 
7: s 5 
8: J 1 1 
9: J 1 1 

10: T 3 1 
11: H 

0: z 2 

1: J 1 2 
2: z 3 
3: s 3 
4: J 1 3 
5: s 3 
6: s 2 
7: J 1 1 
8: T 2 1 
9: H 
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9 -ALOOP- if count = a, jump to ADONE 
let accum = accum+1 
let count = count+1 

5 jump to ALOOP 
2 -ADONE- jump to LOOP 

-DONE- let a = accum 

PRED.GN 

-PRED- let prev = 0 
8 if a= prev, jump to DONE 

let next = 1 
8 -LOOP- if a = next, jump to done 

let next = next + 1 
let prev = prev + 1 

4 jump to LOOP 
-DONE- let a = prev 

DOTMINUS.GN 

0: z 
1: J 
2: z 
3: J 
4: z 
5: s 
6: J 

3 -DOTMINUS- let count = 0 
3 2 13 -LOOP- if count = b, jump to DONE 
5 -PRED(a)- let prev = O 
1 5 10 if a= prev, jump to PDONE 
4 

4 let next = 1 
1 4 10 -PLOOP- if a = next, jump to PDONE 

7: s 4 

8: s' 5 
9: J 1 t 

let next = next+1 
let prev = prev+1 

6 jump to.PLOOF 

B.2. ADVANCED RM PROGRAMS 

10: T 5 

11: s 3 
12: J 1 
13: H 

0: z 5 
1: J 2 
2: z 3 
3: z 4 
4: J 4 
5: J 5 
6: s 4 
7: s 5 
8: J 1 
9: s 3 

10: z 4 
11: J 1 
12: T 3 

1 

1 

-PDONE- let a = prev 
-END PRED- let count = count+l 

1 jump to LOOP 
-DONE-

DIVREM.GN 

-DIVREM- let count = 0 
5 1 -HANG- if b = count, jump to HANG 

let q = 0 
let r = 0 

2 9 -TEST- if r = b, jump to INCQ 
1 12 if count = a, jump to DONE 

let r = r+1 
let count = count+1 

1 4 jump to TEST 
-INCQ- let q = q+1 
let r = 0 

1 4 jump to TEST 
1 -DONE- let a = q 

13: T 4 2 
14: H 

let b = r 

B.2 Advanced RM programs 
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This section contains pseudocode and register machine listings for the 
advanced RM programs on the distribution diskette. 

0: z 20 
1: T 20 21 
2: s 21 

FIVE.GN 

-FIVE- let zero = 0 

let one = 1 
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3: T 21 22 
4: s 22 let two = 2 
5: T 22 23 
6: s 23 let three = 3 
7: T 23 24 
8: s 24 let four = 4 
9: T 24 25 

10: s 25 let five = 5 
11: H 

TERMS.GN 

program TERMS(a) 
input: 
output: 

a= x, the G.N. of a sequence S 
a = number of terms in S 

let count = 0 
let b = a 
do until not b = a 

let c = a[count] 
let b[count] = c 
let count = count + 1 

loop 
let a = count 

end of program TERMS 

0: z 4 -TERMS- let count ~ 0 
1: T 1 2 let b = a 
2: E 1 4 3 -LOOP- let c = a[count] 
3: p 3 4 2 let b[count] = c 
4: J 1 2 6 if a = b, jump to NEXT 
5: J 1 1 8 jump to DONE 
6: s 4 -NEXT- let count = count 
7: J 1 1 2 jump to LOOP 
8: T 4 1 -DONE- let a = count 

+ 1 

B.2. ADVANCED RM PROGRAMS 

9: H 

JOIN.GN 

program JOIN(p,q,psize,qsize) 
input: p = a G.N. of a program P 

q = a G.N. of a program Q 

psize = number of instructions of P 
qsize = the number of instructions of Q 
zero= 0, ... , five= J = 5 

output: a= the G.N. of the join PQ 

let ans = p 
let pos = psize 
let count = 0 
do until qsize = count 

let quad = q[count] 
let op = quad[zero] 
if op = J then 

let quad[three] = quad[three] + psize 
let ans[pos] = quad 
let pos = pos + 1 
let count = count + 1 

loop 
let a = ans 

end of program JOIN 

0: T 1 5 -JOIN- let ans = a 
1: T 2 6 let q = b 
2: T 3 7 let psize = c 
3: T 4 8 let qsize = d 
4: T 3 9 let pos = psize 
5: z 10 let count = 0 
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6: J 8 10 23 -MAIN- if qsize = count, jump to DONE 
7: E 6 10 11 let quad = q[count] 
8: E 11 20 1 let op = quad[zero] 
9: J 1 25 14 if op= 5, jump to SETJUMP 

10: P 11 9 5 -CONTINUE- let ans[pos] = quad 
let pos = pos + 1 
let count = count + 1 

6 jump to MAIN 

11: s 9 
12: s 10 
13: J 1 
14: E 11 
15: T 7 

1 
23 

2 

1 -SETJUMP- let a = quad[three] 
let b = psize 

16: z 
17: J 
18: s 
19: s 
20: J 
21: p 

22: J 
23: T 
24: H 

B.3 

let c = 0 3 
2 
1 

3 21 -LOOP- let a = a + psize, jump to AFTER 
let a = a + 1 

3 let c = c + 1 
1 1 17 jump to LOOP 
1 23 11 -AFTER- let quad[three] 
1 1 10 jump to CONTINUE 
5 1 -DONE- let a = ans 

Pseudocode for P ARAM 

= a 

The PARAM program is an example of how the simpler programs 
FIVE, TERMS, and JOIN can be combined to form programs which 
build Godel numbers of new programs from Godel numbers of old pro-
grams. 

program PARAM(a,b) 
input: a = x, the G.N in standard form of an 

ARM program P which neatly computes 
a function f(.,.) of two variables, 
b = y, which goes in the first place of f 

output: a= the G.N. of an ARM program Q 
which neatly computes the function 
g ( . ) = f (y' . ) . 
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FIVE 
let p = a 
let n = b 
let count = 0 
let const = 0 
let instr= G.N. of (Z,2) 
let const[O] = instr 
let instr= G.N. of (S,2) 
do until n = count 

let count = count + 1 
let const[count] = instr 

loop 
let d = Terms(p) 
let a = const 
let b = p 
let c = n + 1 
JOIN(a,b,c,d) 

end of program PARAM 

B.4 PARAM.GN listing 

0: z 20 -PARAM- -FIVE- let zero 
1: T 20 21 
2: s 21 let one = 1 
3: T 21 22 
4: s 22 let two = 2 
5: T 22 23 
6: s 23 let three = 3 
7: T 23 24 
8: s 24 let four = 4 
9: T 24 25 

10: s 25 let five = 5 
11: T 1 5 -end of FIVE- let p = a, 
12: T 2 6 let n = second input b 
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13: z 7 let count = 0 
let const = 0 
let instr = 0 

. 14: z 8 

15: z 9 
16: p 22 20 
17: p 22 21 
18: p 9 20 

9 let instr[zero] = Z 
9 this makes instr = G.N. of (Z,2) 
8 let const[zero] = instr 

19: p 
20.: J 

21: s 
22: p 

23: J 
24: z 
25: T 
26: E 
27: p 

28: J 
29: T 
30: J 
31: s 

23 20 9 this makes instr= G.N. of (S,2) 
6 7 24 -LOOP- if n = count, jump to TERMS 
7 let count = count + 1 
9 7 8 let const[count] = instr 
1 1 20 jump to LOOP. const = GN of (Z,2), n (S,2)' 
4 -TERMS- let d = 0 
1 2 let b = a 
1 4 3 -TLOOP- let c = a[d] 
3 4 2 let d[b] = c 
1 2 31 if a = b, jump to NEXT 
4 1 let a = d 
1 1 33 jump to TOONE 
4 -NEXT- let d = d + 1 

32: J 1 
33: T 1 
34: T 8 
35: T 5 
36: T 6 
37: s 3 
38: T 1 

1 26 jump to TLOOP, a= #terms of P 
4 -TOONE- d = # terms of P 
1 let a= const, the GN of (Z,2), n (S,2)'s 
2 let b = p, the G.N. of program P 
3 let c = n 

let c = n + 1 = size of const 
5 -JOIN- let ans = a 

39: T 
40: T 
41: T 

42: T 

43: z 
44: J 
45: E 
46: E 
47: J 
48: p 
49: s 

2 6 
3 7 
4 8 
3 9 

10 
8 10 61 
6 10 11 

11 20 1 
1 25 52 

11 9 5 
9 

let q = b 
let psize = c 
let qsize = d 
let pos = psize 
let count = O 
-MAIN- if qsize = count, jump to DONE 
let quad = q[count] 
let op = quad[zero] 
if op = 5, jump to SETJUMP 
-CONTINUE- let ans[pos] = quad 
let pos = pos + 1 
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50: s 
51: J 

52: E 
53: T 
54: z 
55: J 
56: s 
57: s 
58: J 
59: p 

60: J 
61: T 
62: H 

B.5 

10 
1 

11 
7 
3 
2 

1 
3 

1 
1 
1 
5 

let count = count + 1 
1 44 jump to MAIN 

23 1 -SETJUMP- let a = quad[three] 
2 let b = psize 

let c = 0 

3 59 -JLOOP- let a = a + psize, jump to AFT 
let a = a + 1 

1 55 
23 11 

1 48 
1 

let c = c + 1 
jump to JLOOP 
-AFT- let quad[three] = a 
jump to CONTINUE 
-DONE- let a = ans 

Pseudocode for NXSTATE and UNIV 

Section 4.9 contains a pseudocode description of UNIV, the universal 
ARM program for two variables. Here we shall give an alternate ex­
planation of this program. We first describe the program NXSTATEO 
which is on the distribution disk. Once we have NXSTATEO, UNIV is 
built in a very simple way by calling NXSTATEO repeatedly in a loop. 
The program NXSTATE on the distribution disk starts with 14 steps 
where the registers R20 through R27 are given the constant values 0 
through 7. UNIV will use the following simpler program NXSTATEO 
where these 14 initial steps are left out. 

Let P be an ARM program which uses at most the registers Ri 
through Rn. By the state of an ARM machine at a particular stage 
in a computation on P we mean the finite sequence of length n + 1 
consisting of the contents of the program counter and the registers Ri 
through Rn. NXSTATEO takes as inputs a Godel number inst of a 
simulated ARM program P and a Godel number reg of the state of 
P. (These Godel numbers do not have to be in standard form). Its 
output is the Godel number of the next state of P which results after 
the execution of the instruction of P given by the program counter. 

The variable pc stands for the simulated program counter, which 
is the number of the instruction to be executed. quad stands for a 
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Godel number of a simulated instruction. op stands for the zeroth 
term of the sequence coded by quad and is an opcode for one of the 
instruction letters H,Z,S,T ,J ,E,P. s 1, s2, s3 are the remaining terms 
of the sequence coded by quad, and v1, v2, v3 are the values of the 
simulated registers numbered s 1, s2, s3. 

To make NXSTATEO easier to use in a loop, we regard the opcode 
variable op as a second output which will be used by UNIV to determine 
whether the simulated program has halted. 

Since NXSTATEO and UNIV are ARM programs, the Extract and 
Put commands are available. To emphasize the meaning of these com­
mands for sequences, we write Extract (x, y, z) as z=x [y] and Put (x, y, z) 
as z [y] =x. 

By replaci~g the Extract and Put commands by the simple RM pro­
grams EXTRACT and PUT, NXSTATEO and UNIV can, in principle, 
be written as programs for the simple RM. Such programs would be 
long and too slow to use in practice. 

program NXSTATEO(inst,reg,op) 
(Nextstate with constants 0-7 aready given) 
input: inst = a G.N. of instruction list, 

reg= a G.N. of old state 
zero = 0, one = 1,two = 2, three = 3 
H = 1, Z = 2, S = 3, T = 4, J = 5, E = 6, P = 7 

output: reg= the G.N. of new state, 
op = opcode of instruction 

let pc = reg[zero] 
let quad= inst[pc] 
let op = quad[zero] 
let s1 = quad[one], s2 = quad[two], s3 = quad[three] 
let v1 = reg[s1], v1 = reg[s2], v3 = reg[s3] 
if op = Z then 

let reg[s1] = zero, pc = pc + 1 
else if op = S then 

let v1 = v1 + 1, reg[s1] = v1, pc = pc + 1 
else if op = T then 

let reg[s2] = v1, pt = pc + 1 
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else if op = J then 
if v1 = v2 then let pc s3 
else let pc = pc + 1 

else if op = E then 
let v3 = v1 [ v2] , reg [s3] = v3, pc = pc + 1 

else if op = P then 
let v3 [v2] = v1, reg [s3] = v3, pc = pc + 1 

else let op = H 
let reg[zero] = pc 

end of program NXSTATEO 
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Here is a pseudocode description of the universal program UNIV 
which uses NXSTATEO in its main loop. UNIV has three inputs, a 
Godel number of an ARM program P (not necessarily in standard 
form), and two numbers x and y. The output of UNIV is the out­
put of P computing on inputs x and y. 

program UNIV(a,b,c) 
(Universal ARM program) 
input: a= a G.N. of an ARM program P 

b = x, c = y 
output: a= P(x,y) 

let zero = 0, one = 1, ... , seven= 7 
let time = 0 
let reg = 0 
let reg[one] = b, reg[two] = c 
let op = 0 
do until op = H 

NXSTATEO(a,reg,op) 
let time = time + 1 

loop 
let a = reg [one] 

end of program UNIV 

B.6. NXSTATEO.GN LISTING 

B.6 

0: E 
1: E 
2: E 
3: E 
4: E 

5: E 
6: E 
7: E 
8: E 
9: J 

10: J 
11: J 
12: J 
13: J 

NXSTATEO.GN listing 

4 20 
1 5 

5 -NXSTATEO- let pc = reg[zero] 
6 let quad = instr [pc] 

6 20 
6 21 

7 let op = quad[zero] 
8 let s1 = quad[one] 

let s2 quad[two] 
let s3 = quad[three] 
let v1 = reg [s 1] 

6 22 9 
6 23 10 
4 8 11 
4 9 12 let v2 = reg[s2] 
4 10 13 
7 22 17 
7 23 19 
7 24 22 
·1 25 24 
7 26 26 

let v3 = reg [s3] 

14: J 7 27 29 
15: T 21 7 

if op = two, jump to ZERO 
if op = three, jump to SUCC 
if op = four, jump to TRANS 
if op = five, jump to JUMP 
if op = six, jump to EXTR 
if op = seven, jump to PUT 
let op = one 

16: J 1 1 35 
17: p 20 8 4 
18: J 

19: s 
20: p 

21: J 
22: p 

23: J 
24: J 

25: J 

1 
11 
11 

1 
11 

1 
11 

1 
26: E 11 
27: p 13 
28: J 
.29: p 

30: p 

31: J 
32: s 
33: J 
34: ·T 

1 
11 
13 

1 
5 
1 

10 

1 32 

8 4 

1 32 
9 4 
1 32 

12 34 
1 32 

12 13 
10 4 

1 32 
12 13 
10 4 

1 32 

1· 35 
5 

jump to DONE 
-ZERO- let reg[s1] = 0 
jump to NEXT 
-SUCC- let v1 = v1 + 1 
let reg[s1] = v1 
jump to NEXT 
-TRANS- let reg[s2] = v1 
jump to NEXT 
-JUMP- if v1 = v2, jump tc SETPC 
jump to NEXT 
-EXTR- let v3 = v1[v2] 
let reg[s3] = v3 
jump to NEXT 
-PUT- let v3[v2] = v1 
let reg[s3] = v3 
jump to NEXT 
-NEXT- let pc = pc + 1 
jump to DONE 
-SETPC- let pc = s3 

405 
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35: p 5 20 4 -DONE- let reg[zero] = pc 31: J 7 23 40 if op = three, jump to SUCC 
36: H 32: J 7 24 43 if op = four, jump to TRANS 

33: J 7 25 45 if op = five, jump to JUMP 
34: J 7 26 47 if op = six, jump to EXTR 

B.7 UNIV.GN listing 35: J 7 27 50 if op = seven, jump to PUT 
36: T 21 7 let op = one 

O: z 20 -UNIV- let zero = 0 37: J i i ·56 jump to DONE 
i: T 20 2i 38: p 20 8 4 -ZERO- let reg[si] = 0 
2: s 2i let one = i 39: J i i 53 jump to NEXT 
3: T 2i 22 40: s 11 -succ- let vi = vi + i 
4: s 22 let two = 2 4i: p ii 8 ·4 let reg[si] = vi 
5: T 22 23 42: J i i 53 jump to NEXT 
6: s 23 let three = 3 43: p 11 9 4 -TRANS- let reg[s2] = vi 
7: T 23 24 44: J i i 53 jump to NEXT 
8: s 24 let four = 4 45: J ii i2 55 -JUMP- if vi = v2, jump to SETPC 
9: T 24 25 46: J i i 53 jump to NEXT 

iO: s 25 let five = 5 47: E 11 i2 i3 -EXTR- let v3 vi [ v2] 
ii: T 25 26 48: p i3 iO 4 let reg[s3] = v3 
i2: s 26 let six = 6 49: J i i 53 jump to NEXT 
i3: T 26 27 50: p ii i2 i3 -PUT- let v3[v2] = vi 
i4: s 27 . let seven = 7 5i: p i3 iO 4 let reg[s3] = v3 
i5: z i5 set time counter to 0 52: J i i 53 jump to NEXT 
i6: z 4 simulated register list, let reg = 0 53: s 5 -NEXT- let pc = pc + i 
i7: p 2 2i 4 let reg[one] = b 54: J i i 56 jump to DONE 
i8: p 3 22 4 let reg [two] = c 55: T iO 5 -SETPC- let pc = s3 
i9: z 5 let pc = 0 56: p 5 20 4 -DONE- let reg [zero] = pc 
20: z 7 let op = 0 57: s i5 increment time counter 
2i: J 7 2i 59 -LOOP- if op = one, jump to EXIT 58: J i i 2i jump to LOOP 
22: E i 5 6 -NXSTATEO- let quad = instr[pc] 59: E 4 2i i -EXIT- let output = reg[one] 
23: E 6 20 7 let op = quad[zero] 60: H 
24: E 6 2i 8 let si = quad[one] 
25: E 6 22 9 let s2 = quad[two] 
26: E 6 23 iO let s3 = quad[three] 
27: E 4. 8 ii let vi = reg[si] 
28: E 4 9 i2 let v2 = reg [s2] 
29: E 4 10 13 let v3 = reg[s3] 
30: J 7 22 38 if op = two, jump to ZERO 



Appendix C 

The Logiclab Package 

Logiclab is a package of four programs which are included with and 
keyed to the book. The diskette has the main programs, documentation 
files, problem files, and DOS and Windows (R) setup programs. 

The DOS setup program, SETUPDOS.EXE, will create a directory 
of your choice for the Logiclab package on the hard disk, copy the 
DOS versions of the programs to the directory, and copy each problem 
set to a different subdirectory. The Windows setup program, SETUP­
WIN .EXE, does the same thing but works within Windows and copies 
the Windows versions of the programs instead of the DOS versions. 
Neither setup program does anything else. 

To install the DOS version of Logiclab on a hard disk, put the 
diskette in a drive slot (say drive A:), type A:SETUPDOS, and follow 
the directions on the screen. 

To install the Windows version of Logiclab on a hard disk, put 
the diskette in a drive slot (say A:), run A:SETUPWIN from within 
Windows, and follow the directions on the screen. 

The programs can be used for the problem sets and for classroom 
demonstrations. There are two versions of each program, one for DOS 
and one for Windows. The DOS versions of the four programs are 
TABLEAU, COMPLETE, PREDCALC, and GNUMBER. The Win­
dows versions, which work with either Windows 3.0 or later, or Win­
dows 95, are TABWIN, COMPWIN, PREDWIN, and GNUMWIN. 
These Windows versions have built-in tutorials which can be selected 
when the program is started and give quick introductions. The follow-
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ing appendices are manuals which tell you how to use these programs. 
The programs are designed so that you can load in problems, save your 
solutions in files on a diskette, and hand them in to the instructor. 

It may be helpful for the instructor to demonstrate the programs 
to the class before assigning problem sets, perhaps using a screen pro­
jector. The student will want to know which key has been pressed at 
each step. For this purpose, the DOS versions of all the programs have 
the option of displaying the last key pressed in the upper right corner 
of the screen. This option is turned on or off by hitting the control key 
and the K key together. 

TABLEAU is a Semantic Tableau Editor. It helps you to construct 
a formal tableau proof in either propositional or predicate logic. You 
have to do the thinking and tell the program which proof steps and 
substitutions to make at each time. The program takes care of the 
routine tasks of writing down formulas, making sure that each step is 
legal, and checking for contradictory branches. The problems give you 
a list of hypotheses and a formula to be proved, and your task is to 
build a tableau proof. 

The COMPLETE program automatically extends a propositional 
tableau to a finished tableau. It is designed for classroom demonstra­
tions and experimentation by the student, and illustrates the main part 
of the proof of the Completeness Theorem for propositional logic. 

PREDCALC illustrates the semantics of predjcate logic. It acts 
like a reverse Polish notation calculator, but operates on w:ffs instead 
of numbers, and displays both the formulas and their graphs at each 
step. The problems show you the graph of an unknown wff, and your 
task is to build a wff which has that graph. 

GNUMBER simulates either a simple or advanced register machine, 
and has extra capabilities which let you experiment with Godel num­
bers of w:ffs. The problems describe computable functions, and your 
task is to build register machine programs which compute them. The 
GNUMBER program can be used to check your program, and also to 
experiment with advanced programs such as the universal ARM pro­
gram. 

The programs are copyrighted by the authors of this book and are. 
part of the public domain. The package fits on one high density 3.5" 
diskette. Here is a list of the files which are included with the book. 
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READ.ME: Installation instructions and list of files on the diskette 

SETUPDOS.EXE: The program for installing the DOS package on 
a hard disk 

SETUPWIN .EXE: The program for installing the Windows package 
on a hard disk 

TABLEAU .EXE: The Semantic Tableau Editor 

TABLEAU.DOC: Manual for the TABLEAU program 

TABWIN.EXE: The Windows version of TABLEAU 

TABWIN.DOC: Manual for the TABWIN program 

*.TBU: Problem files for TABLEAU or TABWIN, located in the di­
rectories TABl, TAB3, and TAB4 

*.TBM: Modal logic problem files for TABLEAU or TABWIN, lo­
cated in the directory TAB7 

TABPROB.DOC: Discussion of TABLEAU problems 

COMPLETE.EXE: Tableau Completer for Propositional Logic 

COMPLETE.DOC: Manual for the COMPLETE program 

COMPWIN.EXE: Windows version of COMPLETE 

COMPWIN.DOC: Manual for the COMPWIN program 

PREDCALC.EXE: The Predicate Calculator program 

PREDCALC.DOC: Manual for the PREDCALC program 

PREDWIN .EXE: The Windows version of PREDCALC 

PREDWIN.DOC: Manual for the PREDWIN program 

*.PRC: Problem files for the PREDCALC or PREDWIN, located in 
the directory PRED2 
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PREDPROB.DOC: Discussion of PREDCALC problems 

GNUMBER.EXE: Register Machine Program with Godel Numbers 

GNUMBER.DOC: Manual for the GNUMBER program 

GNUMWIN.EXE: Windows version of GNUMBER 

GNUMWIN.DOC: Manual for the GNUMWIN program 

*. G N: Sample register machine programs for GNUMBER or G NUMWIN, 
located in the directories GNUM5 and GNUM6 

GNUMPROB.DOC: Discussion of GNUMBER problems 

Appendix D 

TABLEAU - Tableau Editor 
for DOS 

D.1 Introduction 

TABLEAU, the Tableau Editor for Predicate Logic, helps you write 
down a tableau proof. It will run on an IBM PC or compatible computer 
with at least 320K memory and one disk drive. With more memory, 
you will have room to build a larger tableau, up to 1500 nodes. 

TABLEAU has a top level title screen and three m9des of operation: 
Hypothesis Mode builds the formula to be proved and a list of hypothe­
ses. The program will only allow well-formed formulas to be entered. 
Tableau Mode builds a semantic tableau, and shows the current branch 
and its two neighbors. The program will only allow trees which follow 
the rules for a semantic tableau. Map Mode shows the whole semantic 
tableau but with abbreviated formulas. 

There are two forms of the TABLEAU program, which you select 
at the title screen. The ordinary form of the program builds tableaus 
for propositional and predicate logic, and is used for the first three 
TABLEAU problem sets. The alternative MODAL form of the program 
builds tableaus for modal logic, and is used in the last problem set which 
deals with the modal logic forms of the Godel incompleteness theorems. 
The modal form of the tableau program will be discussed at the end of 
this manual. 
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The program starts with the title screen, and then goes to the Hy­
pothesis Mode. You can change from one mode to another with the 
commands H, T, and M. The command Q is used to quit the program. 
To protect against accidental quitting, the first Q returns you to the 
title screen, and the program asks you to type Q a second time to be 
sure you really meant to quit. At the title screen you can return to the 
previous tableau or start a new tableau instead of quitting. 

D.2 Getting Started 

The program can be run from either a :floppy diskette or a hard disk. 
With a diskette, put a diskette with the TABLEAU.EXE program file 
in the currently active drive. With a hard disk, either install the pro­
gram as part of the Logiclab package by typing SETUP DOS.EXE at the 
DOS prompt, or copy the TABLEAU.EXE file and the TABl, TAB3, 
TAB4, and TAB7 subdirectories to a hard disk directory entitled LOG­
ICLAB (or another name of your choice.) If you have a color display, 
type TABLEAU and hit Enter at the DOS prompt. If you have a 
monochrome display, type TABLEAU M and hit Enter. 

D.3 Title Screen 

The title screen appears when you initially start the program and when 
you use the Q command from within the program. At the initial title 
screen, you have the following choices: 

Enter key or T : Start the TABLEAU program. 

D : Change the Drive or Directory from which the problems and solu­
tions are loaded and saved. 

If you plan to work on problem files in the TABl, TAB3, TAB4, or 
TAB7 directories, you should type D at the title screen, and then 
specify the problem directory when you see "Enter new path". 
For example, if you are working from a diskette in the A: drive 
and wish to work on the problems in TABl, typeA:\TAB1 andhit 
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Enter. If you are working from hard drive C and wish tq work on 
the problems in TABl, type C:\LOGICLAB\TAB1 and hit Enter. 

M : Start a MODAL tableau. 

Q : QUIT the program. 

When you return to the title screen from within the program, you have 
the following choices: 

Enter key : Return to the current tableau without change. 

D : Change the drive or directory from which the problems and solu­
tions are loaded and saved. 

M : Start a new MODAL tableau. 

T : start a new TABLEAU. 

Q : Quit the program. 

If your current work has not been filed, you will be given a warning 
and another chance to file the tableau by hitting the F key. 

D.4 Hypothesis Mode 

In this mode you can enter the formula to be proved and/ or a list of 
hypotheses. You can either type these formulas in at the keyboard or 
load them from the problem disk. Use the up and down Arrow keys 
and the Page Up and PageDown keys to move the cursor among the 
lines on the screen. 

D.4.1 Commands in Hypothesis Mode 

The currently available commands are listed in the window at the bot­
tom of the screen. Capital or lowercase letters may be used interchange­
ably. The E( <lit), K(ill), and P(ull) commands are available only before 
a tableau has been started. The F(ile), L(oad), Q(uit), and ?(help) 
comm.ands are available in all three modes. 
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E : Edit. Before starting the tableau, you may add new formulas to 
the hypothesis list and edit old formulas. Go to the line you 
want to change and hit the E key. The computer will say "new" 
or "here" if the line is empty, "w:ff" if the line contains a Well 
Formed Formula, and "bad" otherwise. When you have a w:ff or 
an empty line, you go back to the main program or to another 
line by hitting the Enter key, the up or down arrow key, or the 
PageUp or PageDown key. When the computer says "bad," the 
? or Fl key will tell you what is wrong with the formula. 

F : File. Saves the hypothesis list and tableau in its present state into 
a file on the disk. A box will appear with either a blank file name 
or with the name you used last time you filed the current tableau. 
The file name has the form XXXXXXXX.TBU. Use the keyboard 
to enter or change the file name. (You should not enter the suffix 
".TBU"; the computer will add it automatically). When you have 
the name you want, hit the Enter key to save the tableau. You 
are warned if you try to use a file name which already exists. The 
Esc key cancels the File command, and goes back to the program 
. without saving. 

The F command can also be used to erase an unwanted TBU 
file. To ERASE a TBU file, Quit and start an empty tableau 
(no hypotheses and no formula to be proved), hit F for the File 
command, and type the name of the file you want to erase. 

K Kill. The formula in the present line will be removed from the 
hypothesis list. 

L Load. Use this command to load a problem set or a previously 
saved tableau. The list of *.TBU files in the current directory is 
displayed. Type the name of one of these files and press the Enter 
key. You should not enter the "TBU" suffix, only the name as 
it appears in the window. If you wish to change directories, you 
must hit Q to return to the title screen and follow the instructions 
in Section D.3 above. 

P Pull. The hypothesis in the current line is pulled from its present 
position and put at the end of the hypothesis list. You can use 
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conjunction 
disjunction 
negation 
implication 
equivalence 
universal quantifier 
existential quantifier 
infix relations 
infix functions 

& or/\ 
I or\/ 
- or • (Ctrl N) 
-> 
<-> 
A (Ctrl A) 
E (Ctrl E) 
= < <= > >= 
+ - * 

AND 
OR 
NOT 
IMPLIES 
IFF 
ALL 
EXIST 

Table D.l: Symbols Used by the Tableau Program 
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this command to easily change the order in which the hypotheses 
are listed. 

M : Change to Map Mode. 

Q : Quit. This command returns you to the title screen. From the title 
screen you can either quit the program, return to the current state 
without change, change the drive or directory where the tableau 
files are loaded and saved, or start a new tableau. 

T : Change to Tableau Mode. 

? or Fl key : Brings up a HELP screen which summarizes the com­
mands. 

D .4.2 Propositional Logic 

The symbols which are allowed in formulas are the propositional con­
nectives shown in table D.1 and the brackets [ and ] for punctuation. 
The computer will accept either the symbols or words as shown in the 
table.1 Any other string of letters and numbers which begins with a 
letter can be used as a propositional symbol. 

1The words IFTHEN and ONLYIF may also be used as synonyms for IMP.LIES. 
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D.4.3 Predicate Logic 

In addition to the symbols used in propositional logic, the quantifiers, 
infix relation symbols, and infix function symbols shown in table D .1 
are allowed. The parentheses and comma are also used for punctuation. 
Any other string of letters and numbers which begins with a letter can 
be used as a variable, relation symbol, or function symbol. The type of 
symbol and the number of argument places are determined by the first 
use of the symbol. A string which begins with a number can be used 
only as a constant symbol. 

Note: You must put a space between a variable in a quantifier and 
an atomic formula to tell the computer where the variable ends. For 
example, Ax p (x) is a wff, ~ut Axp (x) is bad because the computer 
will interpret xp as a single variable. 

D.4.4 Moving Within a Formula 

You can move within a formula using the Right and Left arrow keys. 
New symbols are inserted at the cursor position. The Backspace and 
Del keys can be used to erase symbols as usual. The Home key will 
jump to the beginning of the line and the End key will jump to the end 
of the line. The Esc key will erase· the entire line. 

D.4.5 Size Limit for Formulas 

The size limit for a formula typed in at the keyboard is 70 characters, 
which reaches to the end of the line on the screen. Additional characters 
beyond this limit will be ignored. Propositional symbols, predicate 
symbols, function symbols, and constant symbols have a maximum 
length of 20 characters. If a longer symbol is entered, the computer 
will use only the first 20 characters. 

D.5 Tableau Mode 

In this mode you can build a semantic tableau. The tableau is a tree 
which has a formula at each node. The top node has the negation of 
the formula to be proved, and the next nodes have the hypotheses. If 
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every branch through a node is contradictory, the formula is shown in 
red (or enclosed in ":" symbols on a monochrome screen). When every 
node of the tableau is red, the tableau is a completed proof. On a 
color display, colored text will often be used. These colors will not be 
visible on a monochrome display, except for the red formulas which are 
enclosed in ":" symbols. 

Your current location in the tableau is the node which has the blink­
ing cursor and blue background (or reversed text on a monochrome 
screen). The tableau is built one step at a time. To extend the tableau, 
you move the cursor to a formula, type G to Get the formula into a box 
in the window at the bottom of the screen, move the cursor to the end 
of a branch, and then type E to Extend the tableau. The program will 
only allow tableau extensions which are legal according to the formal 
definition of a tableau in the text. 

D.5.1 Moving Within the Tableau 

The screen shows the current branch of the tableau and the neighboring 
branches to the right and left. If the tree is too large, only part of the 
tableau can be seen on the. screen at one time. The cursor can be moved 
within the tableau using the arrow keys in the following ways: 

Up arrow : Move up one line. 

Down arrow : Move down one line along the current branch. 

Right arrow : Move down one line and bear to the right. 

Left arrow : Move down one line and bear to the left. 

Home : Move to the top of the tableau. 

End : Move to the end of the current branch. 

Page Up : Move up one screen (9 lines) . 

PageDown : Move down one screen (9 lines). 
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D.5.2 Mouse 

The program checks to see whether a mouse is installed. If a mouse is 
installed, you have can use either the mouse ball o~ the arrow keys to 
move within the tableau. The left mouse button can be used instead 
of the G key to get a formula into the box, and the right button can 
be used instead of the E key to extend the tableau. . 

D.5.3 Commands in Tableau Mode 

The list of commands is shown in the window at the bottom of the 
screen. (Only the currently available commands are listed.) 

D .5 .4 Propositional Logic 

E : Extend. The tableau is extended using the tableau rule for the 
formula in the "Get" box. This command is available only when 
the cursor is at the bottom of a branch. Nothing happens if the 
"Get" formula is atomic or negated atomic. 

F : File. This is the same as the F command in Hypothesis Mode. 

G : Get. The formula at the cursor is put into the green "Get" box in 
the bottom window. (If the formula is not red, it is also shown 
in green in the tableau). If you later change branches above that 
formula, it will drop out of the box. This makes sure that the 
formula can only be used below the place where it appears in the 
tableau. . 

H Change to Hypothesis Mode. 

K Kill. This command erases everything below the cursor, and is 
used to correct mistakes. 

L : Load. This is the same as the L command in Hypothesis Mode. 

M : Change to Map Mode. 
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P : Print the current branch of the tableau. The printer must be 
connected and turned on. The logical symbols ALL, EXIST, and 
NOT will be printed as A, E, and - . 

Q Quit. Same as the Q command in Hypothesis Mode. 

U Undo. This command undoes the last Kill or Extend command, 
and goes back to the previous position. 

W : Why. This command tells you which formula was used to add the 
current formula to the tableau. It does this by putting the formula 
which was used into the "Get" box, and writing the formula in 
green in the tableau. 

? or Fl : Brings up a HELP screen which summarizes the commands. 

D.5.5 Predicate Logic 

When the tableau is extended using a quantified formula, the variable 
in the quantifier is replaced by a term. In this program, you must tell 
the computer which term to use. This is taken care of by an extra 
provision in the Extend command. 

E : Extend (continued). If the formula in the "Get" box starts with 
a quantifier or negated quantifier, the bottom window turns red 
(on a color display) and asks you for a term to substitute for 
the quantified variable. The rules for entering terms here are the 
same as the rules for entering formulas in Hypothesis Mode. The 
computer will not let you enter a bad term and will explain what 
is wrong when you hit the ? or Fl key. Hit the Enter key when 
you are finished entering the term. 
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D.5.6 Predicate Logic with Equality 

A second box, the "Sub" box, is added in the bottom window to provide 
for the equality substitution rule. A new command is added which puts 
a formula into this box. 

S : Substitution. This command is available only when the current 
formula. is an equation. The bottom window turns red and you 
are asked to either accept the equation as given (Enter key), or 
to reverse it (Right arrow key). The equation will then appear in 
the "Sub" box. If the formula is not red, will be written in cyan 
(blue-green) in the tableau. 

E Extend (continued). If the formula in the "Get" box is an atomic 
or negated atomic formula, the equality substitution rule will be 
used. do this the "Sub" box must contain an equation between 
two terms. The new formula is formed by taking the "Get" for­
mula and replacing the first term in the "Sub" box by the second 
term in the "Sub" box. Nothing will happen if there. is no possi­
ble substitution. If there is exactly one possible substitution, the 
computer will highlight the substitution position, and you will be 
asked to accept (Enter key) or cancel (Esc key). If there is more 
than one place to substitute, the computer will highlight the first 
one and ask you to accept, cancel, or go to the next place (Right 
arrow key). 

W : Why (continued). If the current formula was added to the tableau 
by an equality substitution, the substitution equation will be put 
into the "Sub" box and written in cyari in the tableau, and the 
target of the substitution will be put into the "Get" box and 
written in green in the tableau. 

Equality Extend the formula by adding an equation of the 
form t t. The bottom window will ask you to type in the term 
t followed by the Enter key. You can cancel this command by 
typing the Esc key. This command is available only if there is an 
= symbol in the hypothesis list. 
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D.5. 7 Size Limit for Substitutions 

The maximum length of a term entered at the keyboard during a sub­
stitution is 70 characters, which reaches to the end of the line on the 
screen. Additional characters beyond this limit will be ignored. The 
le·ngth of a formula can increase when a term is sul;>stituted for a vari­
able. The program will accept a substitution which results in a formula 
up to 152 characters long. Beyond that limit, it will give a "long for­
mula" message. 

D.6 Map Mode 

This mode displays the tableau in a smaller scale by showing only the 
main connective of the formulas. If the tableau is too large to fit on the 
screen in Tableau Mode, use the Map Mode to see the big picture. The 
current location in the tableau is again shown by the blinking cursor 
and blue background, and the current formula is displayed in full in 
the bottom window. The current branch is connected by white lines, 
and other branches are connected by yellow lines. You can still use the 
arrow and page keys to move within the tableau. However, you cannot 
change the tableau in Map Mode. Sometimes the tableau is so complex 
that it will not fit on the screen even in Map Mode. A sharp symbol,#, 
is used to indicate a portion of the tableau which is too complicated to 
fit on the screen. The Zoom command can be used to enlarge a portion 
of the tableau to see what is inside the # symbol. 

The commands, shown in the bottom window, are as follows. 

F : File. This is the same as the F command in Hypothesis Mode. 

H : Change to Hypothesis Mode. 

L : Load. This is the same as the L command in Hypothesis Mode. 

Q : Quit. Same as the Q command in Hypothesis, Mode. 

T : Change to Tableau Mode. 

Z : Zoom. This command redraws part of the tableau in a larger scale 
with the present cursor position at the top of the screen. This 
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command is useful when the tableau is so large that it will not 
fit on the screen even in Map Mode, so that # symbols appear 
on the screen. It is best to use this command with the cursor at 
a node which is below the point where the central branch splits 
and above the # symbol. 

? or Fl : Brings up a HELP screen which summarizes the commands. 

If a mouse is installed, you may use the mouse ball instead of the 
cursor keys to move around the tableau in Map Mode. 

D.7 The Modal Logic Option 

The Modal logic form of the tableau program is chosen by hitting the 
M key at the title screen. (Modal Logic is used in Chapter 5 of the 
text to develop the Godel Incompleteness Theorems.) The menus at 
the bottom of the screen will now say ''MODAL." In the modal logic 
form of the program, only propositional symbols are allowed, and there 
are no variables or quantifiers. In addition to the logical connectives, 
there is one extra rule of formation for wffs: 

If A is a wff, then DA is a wff. 

The symbol D is called a modal operator. Intuitively, D means 
"provable" in Chapter 5. It is shown on the computer screen as a solid 
box. It can be entered at the keyboard in either of three ways: type #, 
hold down the Ctrl key and hit B, or type the word BOX. 

There is one new rule for extending a tableau, called Axiom, which 
adds a modal axiom at the end of a branch. In Tableau Mode, if the 
cursor is at the end of a branch and you hit the A key, a menu will 
appear with the following six choices: 

, (I) (mp) 
(2) ( n) 
(3) (!mp) 
(4) (s) 
( 5) ( tt) 
(6) 

DA/\ D[A::::} BJ ::::} DB 
DA::::} DOA 
D[DA /\ D[A::::} BJ ::::} DB] 
DOA::::} DA 
DA, whereAis a modal tautology 
Other modal axiom. 
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If you choose (6), the computer will let you enter any modal wff what­
soever at the end of the branch. This provides flexibility, but is never 
needed in the problem set assigned in the text. If you choose any of (I) 
through (5), you will be asked to type in the wff A, and if needed, the 
wffB. As usual, the line will be labeled "bad" if the string is not yet a 
wff, and "wff" if it is one. At any point, hitting the Esc key will cancel 
the process of adding an axiom, and return to the previous tableau 
position. When you have a wff, you may finish the line by hitting the 
Enter or down arrow key. 

If you had selected one of the axiom schemes ( 1) - ( 4), the wffs 
which you entered for A and B will then by substituted into the axiom 
scheme, and the resulting formula will be displayed at the bottom of 
the screen for your approval. Hit the Enter key to accept the axiom 
and add it to the tableau, and the Esc key to cancel. 

If the axiom scheme which you had selected is number ( 5), Axiom 
( tt), the computer will ask you to show that A is a tautology by building 
a separate tableau proof of A. If you succeed, then DA will be added 
to the main tableau and displayed at the bottom of the screen for your 
approval. But if you fail or give up by hitting the Q key, the main 
tableau will remain unchanged. 

In the Modal form of the TABLEAU program, the letters A and B 
should not be used as proposition symbols, because they are the place 
holders for wffs when entering modal axioms. 

The window at the bottom of the screen in Tableau Mode will show 
which modal axiom schemes have been used in the current tableau. In 
some problems, you will be allowed to use only some of the modal axiom 
schemes. When the ''Why" command is invoked at a modal axiom, it 
will tell you which modal axiom scheme was selected when the wff was 
added to the tableau. 

In the Modal form of the TABLEAU program, the tableaus will 
be filed and lOaded with names of the form XXXXXXXX. TBM, (with 
a .TBM ending instead of .TBU). The .TBM files are found in the 
directory TAB7. (If a *.TBM file is renamed to *.TBU and loaded into 
the regular TABLEAU program, the progran:i will switch to the Modal 
Logic form and continue to run, and vice versa). 
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D.8 Changing Directories 

When you start the program by typing TABLEAU and hitting the 
Enter key, the program will use the currently active drive or directory 
for loading the problem files and saving solutions. You can change 
drives or directories using the D option within the program at the title 
screen. A period "." can be used for the current directory, and a double 
period " .. " for the parent of the current directory. 

You can start the program with another drive or directory for prob­
lem files by typing TABLEAU followed by the desired path name and 
hitting the Enter key. For example, to automatically load the TABl 
directory of .TBU problem files, you would type at the DOS prompt 
TABLEAU TABl and hit the Enter key. This feature may be useful in 
a computer lab setting. The path and the M option for a monochrome 
display can be combined or used separately. 

For example, the instructor may create a batch file called TAB.BAT 
which has the single line 

TABLEAUM A: 

If the student types TAB [Enter key], the program will run with a 
monochrome display and will use diskette drive A: for the problems. 

Appendix E 

TABWIN - Tableau Editor 
for Windows (R) 

E.1 Introduction 

TABWIN is a version of the TABLEAU program which works under 
Microsoft (R) Windows 3.0 or later, and under Windows 95. The TAB­
WIN program can only be started after Windows is running. It can be 
operated with a mouse or with the keyboard, and works like other 
Windows applications. 

The TABWIN.EXE program and the TABl, TAB3, TAB4, and 
TAB7 problem directories can either be copied to your hard disk into a 
directory named LOGICLAB (or any other name you choose), installed 
using the SETUP WIN .EXE program, or accessed directly from the 
diskette. In all of these cases, access the Windows File Manager (in 
Windows 3.0 or later) or My Computer (in Windows 95), select the 
disk drive and directory that contains the program, and then select 
TABWIN.EXE. 

The program will begin with a welcome message in a small window 
with two buttons labeled "Start" and "Tutorial". Click the mouse on 
the "Tutorial" button to get a quick introduction. Click the mouse on 
the "Start" button or hit the Enter key to begin the program in the 
normal way. 

The program helps you write down a tableau proof in either pred-

427 
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icate or modal logic. A set of hypotheses and a formula to be ·proved 
can either be entered at the keyboard or loaded from the disk. Ordi­
nary tableaus use .TBU files, found in the directories TABl, TAB3, 
and TAB4, and modal logic tableaus use . TBM files found in the di­
rectory TAB7. Following your instructions, the computer will display 
a tableau of formulas and inform you when the proof is complete. 

The main menu at the top of the screen has a File menu, a View 
menu, a Nodes command, a Help menu, and other commands which 
are available at different times. 

There are three modes of display which can be selected in the View 
menu: the Hypothesis mode, the Tableau mode, and the Map mode. 
The program starts in Hypothesis mode, where you can enter hypothe­
ses and a formula to be proved from the keyboard. The tableau proof 
tree is built and the current branch is displayed in Tableau mode. The 
Map mode displays the entire tableau in a smaller scale. 

A Tableau problem is a set of hypotheses (possibly empty) and an 
optional formula to be proved. Problems can either be entered at the 
keyboard in Hypothesis mode, or loaded from the disk using the Open ... 
command in the Files menu. 

Your objective is to solve a tableau problem by building a tableau 
proof. This is done in the Tableau mode. When a tableau proof js 
complete, every node in the tableau will be displayed in red. Along the 
way, a single node in the tableau will be shown in red in a color display, 
or enclosed within two % signs in a monochrome display, when every 
branch through that node is contradictory. 

You can see how large your tableau is by selecting the Nodes com­
mand in the main menu. A box will appear showing the number of 
hypotheses, the number of nodes (not counting the root node), and the 
amount of remaining free space in nodes available for extending the 
tableau. 

The Help menu can be reached by using the mouse or the Fl key. 
It contains five lists of topics and an About command which shows . . ' 
the verswn number, copyright notice, and icon. 
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E.2 File Menu 

The New command will start a new tableau. The current tableau 
and hypothesis set will be cleared. You will be warned if your current 
tableau has not yet been saved on disk. 

The Open ... command is used to load a .TBU or .TBM file from the 
disk, containing a tableau problem or solution. You will be warned if 
your current tableau has not yet been saved on disk. Directories TABl, 
TAB3, and TAB4 contain .TBU files, while directory TAB7 contains 
.TBM files. You may either choose a file or new directory from a list, 
or type in the name of a file. If you only give the first part of a file 
name, the . TBU or . TBM extension will be added automatically. 

The Print command will print the current branch and the two 
neighboring branches of the tableau. Red nodes will be printed with ! 
signs before and after the formula, negation signs will be printed as -
symbols, and quantifiers will be printed as A and E. 

The Save command will save the current tableau under the current 
name. The Save command is disabled if there is no name, or if the 
current name is a problem file. In these cases you should use the Save 
As... command instead. 

The Save As... command will save the current tableau under a 
name which you will supply. If you only give the first part of a file 
name, the .TBU extension (or the .TBM extension when the modal 
logic option is in effect) will be added automatically. 

The Exit command will quit the Tableau Editor Program and re­
turn to Windows. You will be given a warning and a chance to save the 
current tableau if it has not been saved on disk since the last change. 

E.3 View Menu 

In this menu you can choose between three display modes: Hypothesis 
mode, Map mode, and Tableau mode, and select different options. 

The Hypothesis mode has an editor for adding or changing hy­
potheses and formulas to be proved. Only full or correctly abbreviated 
well-formed formulas (wffs) will be accepted. After a tableau has been 

· extended, hypotheses cannot be changed or removed, but may still be 
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added. You can use the arrow, home, and end keys or the mouse to 
select a hypothesis. Use the Enter key, e key, doubleclick on a radio 
button, or choose Edit in the main menu to start editing a hypothesis. 

The Map mode displays as much of the tableau as possible in a 
small scale. Only the main symbol of a formula is shown at the node, 
but the current formula is shown in full in a box at the top of the 
window. You can use the arrow, home, and end keys or the mouse to 
move ~round the tableau. 

The Tableau mode displays the current and neighboring branches 
of the tableau, and has the tools needed to build the tableau. The 
program allows only correct uses of the tableau extension rules. Use 
the arrow, home, and end keys or the mouse to move among the nodes 
of the tableau. 

In the View menu you can also choose between Ordinary logic and 
Modal logic, and between Color and Monochrome. 

In the Ordinary Logic option the program accepts formulas of the 
full first order predicate logic with equality. Tableaus should be saved 
in .TBU files. The program starts out in this option. 

In the Modal Logic option the program accepts formulas of modal 
propositional logic. Tab lea us should be saved in . TBM files. 

Use the Color option if you have a color monitor. A node will be 
displayed in red if every branch through it is contradictory. 

Use the Monochrome option if you have a monochrome monitor. 
A node will be enclosed in a pair of % symbols if every branch through 
the node is contradictory. 

E.4 Entering Hypotheses 

Hypotheses and formulas to be proved can be entered from the key­
board in the Hypothesis mode. In this mode the Edit, Cut, and Paste 
commands are available on the main menu. 

There are several ways to start the hypothesis editor: hit the Enter 
key, hit the e key, doubleclick on a radio button, or choose the Edit 
command on the main menu. Use the Ok button or Enter key when you 
are done typing in a hypothesis. Only full or correctly abbreviated wffs 
will be accepted. If you do not yet have a wff, the help button in the 
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hypothesis editor window will tell you why not. Any of the following 
will be accepted as binary connectives: 

and,&, /\; or, I,\/; implies, ifthen, ->; iff, <->. 
Negation and the quantifiers can be entered using the buttons or 

by typing the words not , all, exist. The modal. operator is entered 
by typing #. Strings beginning with a letter can be either variables, 
predicate symbols, or function symbols, depending on first use. All 
strings beginning with a digit are constant symbols. 

The Cut command will delete the current formula and save it for 
later pasting. 

The Paste command will paste the formula saved by the last Cut 
command into the selected hypothesis line. 

.E.5 Viewing Tableaus 

In the Map and Tableau modes, you can look at and move within a 
tableau. You can use the mouse, the arrow keys, the Home, End, 
PageUp, and PageDown keys in the natural way. The Why command 
is available on the main menu in both of these modes, and the Zoom 
command is available in the Map mode. 

Why command shows the node or nodes which were used to 
put the current node in the tableau, by placing them in the Get and 
Sub boxes and coloring them green and blue respectively in the tableau. 

The Zoom command places the current node at the top of the 
display and shows the portion of the tableau below the current node in 
a larger scale. 

E.6 Building Tableaus 

The tableau can be built in the Tableau mode. In this mode, the 
Axiom, Extend, Kill, Undo, and Why commands are available on the 
main menu. The Get and Sub boxes, directly below the main menu, tell 
the computer which formulas to use in extending the tableau. When the 
Get box contains a nonbasic formula and the current node is terminal 
(at the end of a branch), the Extend command will use the formula in 
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the Get box to extend the tableau. When the Get box contains a basic 
formula, the Sub box contains an equation, and the current node is 
terminal, the Extend command will perform the indicated substitution 
on the formula in the Get box and add the result below the current 
node. 

To fill the Get box, click on the Get button with the mouse or type 
Alt G at the keyboard. The formula at the current node will be colored 
green and placed in the Get box, and can be used to extend the tableau. 
The Get box is emptied if you move to a branch which does not contain 
the formula in the box, or ifyou fill the Get box when the current node 
is the HYPOTHESES or TABLEAU label. 

To fill the Sub box, click on the Sub button with the mouse or type 
Alt S at the keyboard. The formula at the current node must be an 
equation. You will be asked to accept or reverse the substitution. The 
equation will be colored blue and placed in the Sub box, and can be 
used to extend the tableau. The Sub box is emptied if you move to a 
branch which does not contain the formula in the box. 

The Axiom command will add a tableau axiom at the current po­
sition. This command is available only at a terminal node. In ordinary 
logic, a box will appear asking you to type in a term t, and the equation 
t t will be added to the tableau. 

In modal logic, a box will appear asking you to choose a modal 
axiom scheme and type in the required formulas. 

The Extend command will extend the tableau at the current po­
sition, using the formulas in the Get and Sub boxes. This command 
is available only at a terminal node. There must either be a nonbasic 
formula in the 'Get box, or a basic formula in the Get box and an equa­
tion in the Sub box. Connective rules will be applied automatically. 
For quantifier and equality substitution rules, a box will appear asking 
for additional information. 

The Kill command deletes all nodes below the current node in the 
tableau. An exception: the next node below the current node will be 
retained if it is connected by a double line because the two nodes were 
built at the same time. If you Kill by mistake, you can undo it right 
away using the Undo menu command. 

The Undo command undoes the most recent change in the tableau, 
which resulted from either an Axiom, Extend, or Kill menu command. 

Appendix F 

COMPLETE - Tableau 
Completer for DOS 

The COMPLETE program is designed for student experimentation and 
classroom demonstrations of finished tableaus in propositional logic. 
Finished tableaus are a key concept in the proof of the Completeness 
Theorem. The program automatically extends a given tableau by ex­
tending every noncontradictory branch in all possible ways, and ends 
up with either a finished or a contradictory tableau. 

If you have a color display, type COMPLETE and hit the Enter 
key at the DOS prompt. If you have a monochrome display, type 
COMPLETE M and hit the Enter key. The title screen will appear. 
Hit S to start the program. 

On a color display, nodes are shown in three colors~ A node is 
shown in red if every branch through the node is contradictory (as in 
the TABLEAU program). A node is shown in blue if it is not red and 
either (1) the node is an atomic or negated atomic formula, or (2) the 
node has previously been used to add nodes below it. All other nodes 
are shown in yellow. The yellow nodes are the nodes which can be used 
to form further extensions of the tableau in a useful way. A tableau is 
finished if it is noncontradictory and has no yellow nodes. 

On a monochrome display, the "red" nodes are enclosed by":" sym­
bols, the "blue" nodes are enclosed by "-" symbols, and the "yellow" 
nodes are shown in high intensity text. 

The program works by using the first yellow node it finds, or a 
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yellow node chosen by you, to extend every branch through the node. 
· This forms a larger tableau, but the yellow node just used is now red 
or blue. This process is repeated, forming larger and larger tableaus. If 
the computer has enough memory, the process must end after finitely 
many steps with a finished tableau. 

COMPLETE works .like the TABLEAU program and uses .TBU 
files created by the TABLEAU program, but with the following differ­
ences. 

(1) There is no Hypothesis mode, only Tableau and Map modes. 

(2) Only propositional rules are recognized. Wffs beginning with quan­
tifiers and atomic wffs are treated as propositional symbols. 

(3) The E(xtend) command uses the current wff to extend every non­
contradictory branch through the current node. 

( 4) There is no G( et) command. 

( 5) The Ent.er key moves the cursor to the next yellow node the com­
puter finds. 

( 6) On a color display,. contradictory nodes are shown in red, non con­
tradictory nodes which are atomic, negated atomic, or already 
used are shown in blue, and other nodes are shown in yellow. 

(7) TBU files can be loaded but cannot be filed. 

( 8) There is no Modal logic option. 

Appendix G 

COMPWIN - Tableau 
Conipleter for Windows (R) 

G.1 Introduction 

COMP WIN .EXE is the Windows version of the .COMPLETE.EXE pro­
gram. It works with Microsoft (R) Windows, Version 3.0 or later, and 
with Windows 95. It can only be started after Windows is running, and 
is accessed in the same way as the TABWIN program. The program 
will begin with a welcome message in a small window with two buttons 
labeled "Start" and "Tutorial." Click the mouse on the "Tutorial" but­
ton to get a quick introduction. Click the mouse on the "Start" button 

. or hit the Enter key to begin the program in the normal way. 
The COMPWIN Program automatically produces finished tableaus 

for propositional logic. A set of hypotheses and formula to be proved 
can be created by the Tabwin program and saved as a . TBU file, which 
may then be loaded by the Compwin Program. The Completer Pro..: 
gram works like the Tableau Editor, but the current formula is extended 
on every noncontradictory branch through it. 

The progi·am can be operated with a mouse or with the keyboard, 
and works like other Windows applications. The main menu at the top 
of the screen has a File menu, a View menu, Extend, Continue, Kill, 
Undo, and Zoom commands, and a Help menu. 

There are two modes of display which can be selected in the View 
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menu. The program starts out in Tableau mode, where the current 
branch is displayed. The Map mode displays the entire tableau in a 
smaller scale. 

A Tableau problem is a set of hypotheses (possibly empty) and an 
optional formula to be proved. Problems can be loaded as *.TBU files, 
which are created by the TABWIN or TABLEAU program, using the 
Open... command in the File menu. The COMP WIN program uses 
only the tableau extension rules for propositional logic. In a formula 
for predicate logic, the scope of a quantifier is treated as if it were an 
atomic formula. 

Your objective is to build a finished tableau, that is, a tableau in 
which every node is either basic (atomic or negated atomic), or is used 
in every noncontradictory branch through it. On a color display, nodes 
which can still be used are shown in yellow, contradictory nodes are 
shown in red, and the remaining nodes are shown in blue. 

In Tableau mode, the boxes at the top of the screen show the formula 
which was used to get the current wff, the number of hypotheses, the 
number of nodes (not counting the root node), the amount of remaining 
free space in nodes available for extending the tableau, and the current 
status of the tableau (Finished, Unfinished, or Contradictory). 

The Help menu can be reached by using the mouse or the Fl key. 
It contains four lists of topics and an About command, which shows 
the version number, copyright notice, and icon. 

G.2 File Menu 

The Open ... command will load a .TBU file from the disk, containing 
a tableau problem or solution. You may either choose a file or new 
directory from a list, or type in the name of the file from the keyboard. 
The .TBU extension will be added by the computer if you omit it. 

The Exit command will Quit the Compwin Program and return to 
Windows. 
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G.3 View Menu 

In this menu you can choose between two display modes, Map mode and 
Tableau mode. The tableau can be extended in either the Map or the 
Tableau mode. You can also choose between Color and Monochrome 
options. 

The Map mode will display as much of the tableau as possible 
in a small scale. Only the main symbol of a formula is shown at the 
node, but the current formula is shown in foll in a box at the top of 
the window. You can use the arrow, home, and end keys or the mouse 
to move around the tableau. 

The Tableau mode will display the current and neighboring branches 
of the tableau. Use the arrow, home and end keys or the mouse to move 
among the nodes of the tableau. 

Use the Color option if you have a color monitor. A node will be 
displayed in red if every branch through it is contradictory. A node is 
shown in yellow if it is noncontradictory, is not a basic formula, and 
can still be used to extend the tableau. All other nodes are shown in 
blue. 

Use the Monochrome option if you have a monochrome monitor. 
A node will be enclosed in a pair of % symbols if every branch through 
the node is contradictory. A node is will be enclosed in a pair of ! signs 
if it is noncontradictory, is not a basic formula, and can still be used to 
extend the tableau. 

G.4 Building a Finished Tableau 

The finished tableau can be built using the Extend and Continue com­
mands in either the Map or Tableau mode. 

The Extend command will extend the tableau on every noncontra­
dictory branch through the current position. The current node must be 
a nonbasic formula. A message box will appear if there is not enough 
room in memory to perform the tableau extensions. 

The Continue command will move to the next unused formula 
(shown in yellow on a color monitor). This command is available only 
when the tableau is unfinished. 
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G.5 ·other Commands 

The remaining commands on the main menu are the Kill, Undo, and 
Zoom command. The Zoom command is available only in Map mode, 
while the other commands are available in both the Map and Tableau 
modes. 

The Kill command will delete all nodes below the current node 
in the tableau. An exception: the next node below the current node 
will be retained if it is connected to the current node by a double line 
because it was added to the tableau at the same time. If you use this 
command by mistake, you can undo it right away using the Undo menu 
command. 

The Undo command will undo the most recent change in the tableau, 
which resulted from either an Extend or Kill menu command. 

The Zoom command is available only in the Map display mode. It 
places the current node at the top of the display and shows the portion 
of the tableau below the current node in a larger scale. 

Appendix H 

PREDCALC - Predicate 
Calculator for DOS 

H.1 Introduction 

PREDCALC, the predicate calculator, is a program which demon­
strates the rules of formation for formulas of first order predicate logic, 
and the corresponding inductive definition of the truth value of a for­
mula. It works like a reverse Polish notation calculator, but operates on 
formulas of predicate logic instead of numbers. There are always four 
formulas in a stack which are visible on the screen, and four additional 
formulas in storage locations not visible on the screen. The formulas 
in the stack are shown both as strings of symbols and as graphs. By 
the graph of a formula we mean the set of all valuations for which the 
formula is true. The Calculator Pad has 15 "buttons" which allow you 
to add an atomic formula to stack location 1, to make a new formula 
by applying a logical connective or quantifier to formulas in the stack, 
or to move a formula to a new location. Problems loaded from the disk 
produce one more formula, called the Goal formula. In some problems 
you can only see the graph of the goal formula, and in others you can 
see both the graph and the string of symbols. Your task is to use the 
calculator pad to make the formula in stack location 1 match the goal 
formula. 

The program runs on an IBM PC or compatible computer with at 
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least 320K memory and one disk drive. It works best with a graphics 
·monitor. 

H.2 Getting Started 

The program can be run from either a floppy diskette or a hard disk. 
With a diskette, put a diskette with the PREDCALC.EXE program file 
and the PRED2 problem directory in the currently active drive. With 
a hard disk, either install the program as part of the Logiclab package 
by typing SETUPDOS.EXE at the DOS prompt, or copy the PRED­
CALC.EXE file and the PRED2 subdirectory to a hard disk directory 
called LOGICLAB (or another name of your choice.) If you. have a 
color display, type PREDCALC and hit Enter at the DOS prompt. If 
you have a monochrome display, type PREDCALC M and hit Enter. 
The title screen will appear. 

H.3 Title Screen 

The title screen appears when you initially start the program and when 
you use the Q command from within the program. As a default, the 
initial universe is the set { 0, 1, 2, 3, 4, 5}. At the initial title screen, you 
have the following choices: 

S : Start the PREDCALC program. 

D : Change the drive or directory from which the problems and solu­
tions are lo.aded and saved. If you plan to work on problem 
in the PRED2 directory, you should type D at the title screen, 
and then specify the problem directory when you see ''Enter new 
path". For example, if you are working from a diskette in the A: 
drive, type A: \PRED2 and hit the Enter key. If you are working 
from hard drive C, type C: \LOGICLAB\PRED2 and hit the 
key. 

U Change the universe. You may select a universe size between 1 
and 8. 
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Q : Quit the program. 

When you return to the title screen from within the program, you 
have the following choices: 

Enter key : Return to the current session without change. 

N : Start a new PREDCALC session. 

D Change the drive or directory from which the problems and solu­
tions are loaded and saved. 

U Change the universe. You may select a universe size between 1 
and 8. 

Q Quit the program. 

If your current work has not been filed, you will be given a warning 
and another r.hance to file the session by hitting the F key. 

H.4 Display Modes 

At all times you can switch back and forth between three display modes, 
called the Text Mode, the Graphics Mode, and the Both Mode. 
program works identically in all three modes. The program starts out 
in the Text Mode. On a text-only monitor, only the Text Mode is 
available, and the program will not let you change to the Graphics or 
Both modes. 

In the Text Mode the formulas in the stack are shown in the usual 
way as strings of symbols. Free and bound variables are shown in 
different colors to make them easier to identify. The graphs of the 
formulas .are not visible in the main Text. Mode display, ·but they can 
be seen in tabular form by using the View command described below. 
The Text Mode corresponds to the syntax of predicate logic. 

The Graphics Mode displays the graphs of the formulas in the stack, 
a.nd the graph of the goal formula if there is one. The graphs on the 
screen have three dimensions, and for this reason only the three vari­
ables x, y, and z are allowed in a formula. On a color display, the 
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graphs are shown in 4 colors. The Graphics Mode corresponds to the 
·semantics of predicate logic. 

The Both Mode displays the formulas in the stack in both text and 
graphics forms at the same time, but the graphs are shown in a smaller 
scale. The screen will be in color on an enhanced or better color display. 
Otherwise the screen will be monochrome. 

H.5 Goals 

When you load a problem file from the disk (using the L command 
described later), a universe set and a goal formula are selected. There 
are two types of goals, text goals and graphics goals. 

A text goal is visible both as a string of symbols and as a graph. 
The object of the problem is to match the goal formula in position one 
of the stack by using the calculator pad. In order to do this, you must 
begin with atomic formulas and build up to the goal formula through 
a parsing sequence. When you succeed, you will be rewarded by the 
appearance of the word "DONE" qn the screen. If the formula in stack 
position 1 has the same graph as the goal formula but is a different 
string, you will get partial credit and the word "PART" will appear. 

A graphics goal is visible as a graph but hidden as a string of sym­
bols. The object of the problem is to think of a formula which has the 
required graph and to get the formula into position one of the stack by 
using the calculator pad. This type of problem is more difficult and re­
quires an understanding of the interpretation of quantifiers in a model. 
If the letters "NC" appear after the word "GOAL" on the screen, you 
are asked to find a formula which has no constant symbols, and will 
only get partial credit if you do use constant symbols. When you suc­
ceed in matching the goal formula graph in stack position 1, you will 
be rewarded by the word "DONE" or "PART" on the screen. 

No goal is shown until a problem file is loaded from the disk. Even 
without a goal, you can use the calculator pad to build and look at 
formulas in either text or graphics form. 
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H.6 The Calculator Pad 

all three display modes, a Calculator Pad with 15 buttons and a 
time counter are shown on the screen. The currently active button on 
the Calculator Pad is enclosed in a double border. The program starts 
with the Atomic button active. To PUSH a calculator button, hit the 
Enter key when the button is active. 

Each button with one or more periods requires additional informa­
tion, either a variable, a constant, or a stack or storage location. If you 
push the button, the computer will wait for you to either cancel the 
push by hitting the Esc key, or to give the required information and hit 
the Enter key. 

H.6.1 The Time Counter 

The number 0 in the lower left corner of the calculator pad, is a Time 
Counter. Each time you use a calculator button to change the formulas 
in the stack, the time counter increases by one. A problem loaded 
from the disk starts with the double border around the time counter. 
However, nothing happens when you push the time counter "button." 

H.6.2 Moving Within the Calculator Pad 

The four arrow keys can be used to move vertically or horizontally to 
another button. The Home, PgUp, End, and PgDn keys move diago­
nally to another button. 

H.6.3 The Help Window 

In Text mode, the lower right part of the screen has a help window 
explaining what the currently active button does. By moving within 
the calculator pad and reading the help messages, you can discover 
what all the calculator buttons do. , 
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H.6.4 Mouse 

The program checks to see whether a mouse is installed. If a mouse is 
installed, you can use either the mouse ball or th~ arrow keys to· move 
within the calculator pad. Either mouse button can be used instead of 
the Enter key to push the currently active calculator button. 

H.6.5 Using the Calculator Buttons 

The three buttons labeled "Atomic," "R( ... )," and ".=h( .. )" are used 
t~ enter an atomic formula in stack location 1. You will usually begin a 
session with the Atomic button. The periods represent argument places 
which must be replaced by variables or constants. The five buttons 
labeled "&," "Or," "- >," "< - >," and "Not" can be used to put 
a new formula in the stack by combining old formulas with logical 
connectives. The "All." and "Exi." buttons can be used to make a 
new formula by applying a quantifier to the formula at location 1 in the 
stack. The "Dup," "Pik.," and "Put." buttons are used to rearrange 
the formulas which are already in the stack. The "Sto." and "Rel." 
buttons store and recall the formula in stack location 1 from a storage 
location. 

When you push the Atomic button, the word "Atomic" disappears 
and the computer waits for additional information. You must type an 
atomic formula of length 3 or 5 which has variables among x, y, and 
z, constants from the universe, the relation symbols =, <, >, and the 
operation symbols +, -, * which stand for addition, subtraction, and 
multiplication modulo the universe size. The second symbol in the 
formula must be a relation symbol. Examples of atomic formulas are 
x = 3, x < z + 2. Hit Enter (or the mouse button) to enter the formula, 
or hit the escape key to cancel. 

The Random Relation button labeled "R( ... )" introduces a new 
predicate symbol with one, two, or three argument places each time it 
is pushed, starting with "A." After pushing the button, you must enter 
one, two, or three arguments, which must be different variables from 
among x, y, and z. When you are done, hit Enter to enter the formula. 
The graph of the relation will be chosen randomly by the computer, 
with the variables you enter. The Random Function button ".=h( .. )" 
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introduces a new operation symbol with one or two argu'ments each time 
it is pushed, starting with "a." Again, its graph is chosen. randomly 
with the variables you enter. 

The binary connective buttons "& " "Or" "- > " and "< - > " ' ' ' . ' ' 
combine the formulas in stack locations 1 and 2 and place the result 
in stack location 1. The formulas in locations 3 and 4 are moved to 
locations 2 and 3, and a false formula is placed in location 4. 

The "Not" button and the quantifier buttons "All." and "Exi." 
change only the formula in stack location 1. For the quantifier buttons 
you must select a variable from among x, y, and z and then hit the 
Enter key. 

The "Dup" button copies the formula in stack location 1 into stack 
location 2, and moves the formulas in stack locations 2 and 3 into 
locations 3 and 4. The formula originally in location 4 is discarded. 
The "Pik." button asks you for a number n between 2 and 4. It moves 
the formula n into stack location 1 and moves formulas 1 through n - 1 
into stack locations 2 through n. The effect is to cycle the formulas 
in locations 1 through n. The "Put'' button also asks you for a stack 
location n and cycles the formulas in the opposite direction, so that 
formula 1 is moved into stack location n. 

The "Sto." button asks you for a number n between 1 and 4. It 
copies the formula in stack location 1 into storage location n. The 
"Rel." button also asks for a number n between 1 and 4. It copies 
the formula in storage location n into stack location 1, and moves the 
formulas in stack locations 1 through 3 into stack locations 2 through 
4. The formula originally in stack location 4 is discarded. 

H.7 The Letter Commands 

On the screen display there is a list of commands to the left of the 
calculator pad. Each of these commands is invoked by hitting a single 
key. You may use either upper- or lowercase letters. 

B Change to the Both display mode. 

C Clear. The current session is cleared and the time counter is set 
back to 0. 
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F : Saves the current PREDCALC session into a file on the 
disk. A box will appear with either a blank file name or with the 
name you used last time you filed the current session. The file 
name has up to eight characters followed by the suffix .PRC. Use 
the keyboard to enter or change the file name. (You should not 
enter the suffix ".PRC"; the computer will add it automatically). 
When you have the name you want, hit the Enter key to save 
the session. You are warned if you try to use a file name which 
already exists. The Esc key cancels the File command, and goes 
back to the program without saving. 

The F command can also be used to erase an unwanted PRC file. 
To erase a PRC file, Quit and start an empty session (no goal 
and time 0), hit F for the File command, and type the name of 
the file you want to erase. 

G : Change to the Graphics display mode. 

H or ? or Fl : Help. Brings up a help screen which summarizes the 
commands. 

L : Load. This command displays a list of files in the current directory 
which contain problems or previously saved PREDCALC sessions. 
If you type the name ,of one of these files and hit the Enter key, 
a new universe and goal or session will be loaded. If you hit 
Enter without a file name, you will return to the program with no 
change. The files have names up to eight characters long followed 
by the suffix ".PRC." You should not enter the suffix, only the 
name as it appears in the window. You can use the File and Load 
commands to save and return to a partially solved problem. 

P Print. Prints the formulas in the stack and storage locations, the 
goal formula, the steps on the Calculator Pad up to the current 
time, and the graphs of the goal formula and the formula in stack 
position 1. The printer must be installed and turned on. 

Q Quit. This command returns you to the Title Screen. You can 
then quit the program by hitting Q again, change the directory 
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where the PRC files are filed and loaded, change the universe size, 
start a new session, or return to the current state. 

R Replay. Starts a replay of the current PREDCALC session begin­
ning with time 0. The calculator pad is now under the control of 
the computer, and the next button is highlighted. You have the 
following five options. 

Hit Nor the key to see the Next step in the replay. When 
you reach the end of the replay, you will regain control of the 
calculator pad. 

Hit P or the backspace key to go back to the Previous step. 

Hit H or the Home key to start the replay over at time 0. 

Hit E or the End or key to jump to the last step before the 
end of the replay. If you now hit N or the Enter key, you will 
regain control of the calculator pad. 

Hit K to Kill the remaining steps of the replay and regain control 
of the calculator pad at the currently displayed time. 

S Storage. Shows the contents of the four storage locations, and the 
Goal formula if there is one. In the Text Mode, the graph of 
one formula is displayed in tabular form, and you can see other 
graphs by hitting the appropriate number key. In the Graphics 
or Both mode, the graphs of the formulas in the storage locations 
are displayed on the top half of the screen, and one level of one 
graph is enlarged in the bottom half of the screen. The arrow keys 
can be used to control which level of which graph is enlarged. 

T : Change to the Text display mode. 

U : Undo. This command undoes the last step from the Calculator 
Pad and decreases ·the time by one, going back to the previous 
state. It will also undo the Clear command if used immediately. 

V View. Shows the contents of the four stack locations, and the 
Goal formula if there is one, in the same format as the Storage 
command above. If you have a text only monitor, you can still 
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· see the graphs of the formulas in the stack in tabular form using 
this command. 

The following two special commands· are intended for instructors 
preparing problems for students. These commands work in the same 
way as the File command, and create PRC files which can be loaded as 
problem files with the L command. 

Ctrl G : File a GRAPHICS goal. This command is called by holding 
the Ctrl key down and hitting the G key. It saves the formula 
which is in stack location 1 as a graphics goal. 

Ctrl T : . File a TEXT goal. This command is called by holding the 
Ctrl key down and hitting the T key. It saves the formula which 
is in stack location 1 as a t'ext goal. 

H.8 Changing Directories 

When you start the program by typing PREDCALC and hitting the 
Enter key, the currently active drive or directory will be used for load­
ing the problem files and saving solutions. You can change drives or 
directories using the D option within the program at the title screen. 
A period "." can be used for the current directory, and a double period 
" .. " for the parent of the current directory. 

You can start the program with another drive or directory for prob­
lem files by typing PREDCALC followed by the desired path name and 
hitting the Enter key. For example, to automatically load the PRED2 
directory of PRC files, type PREDCALC PRED2 at the DOS prompt 
and hit the Enter key. This feature may be useful in a computer lab 
setting. The path and the M option for a monochrome display can be 
combined or used separately. 

For example, the instructor may create a batch file called PRC.BAT 
which has the single line 

PREDCALC M A: 

If the student types PRC [Enter key], the program will run with a 
monochrome display and will use diskette drive A: for the problems. 

Appendix I 

PREDWIN - Predicate 
Calculator for Windows (R) 

1.1 Introduction 

PREDWIN is a version of the PREDCALC program which runs in 
Microsoft (R) Windows, version 3.0 or later, and in Windows 95. 

The PREDWIN program can only be started after Windows is run­
ning. It can be operated with a mouse or with the keyboard, and 
works like other Windows applications. The PREDWIN.EXE program 
and the PRED2 directory can either be copied to your hard disk into 
a directory called LOGICLAB (or another name of your choice), in­
stalled using the SETUPWIN .EXE program, or accessed directly from 
the diskette. In all of these cases, access the Windows File Manager 
(in Windows 3.0 or later) or My Computer (in Windows 95), select 
the disk drive and directory that contains the program, and then select 
PREDWIN.EXE. 

The program will begin with a welcome message in a small window 
with two buttons labeled "Start" and "Tutorial." Click the mouse on 
the "Tutorial" button to get a quick introduction. Click the mouse on 
the "Start" button or hit the Enter key to begin the program in the 
normal way. 

The program demonstrates the rules of formation for formulas of 
first- order predicate logic, and the corresponding inductive definition 
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of the truth value of a formula. It works like a reverse Polish notation 
calculator, but operates on formulas of predicate logic instead of num­
bers. There are always four formulas in a stack which are visible on the 
screen, and four additional formulas in storage locations not visible on 
the screen. The Calculator Pad in the upper left corner of the screen 
has 15 buttons which allow you to add an atomic formula to location 1 
of the stack or to make a new formula by applying a logical connective 
or quantifier to formulas already in the stack. 

The formulas in the stack are shown in the upper right window 
in text form. The universe of the current model is shown in the title 
bar of the window. You can choose a universe size U between 1 and 
8. The .elements of the universe are natural numbers beginning with 0 
and ending with U-1. 

The five lower windows display the graphs of the four formulas in 
the stack and a Goal. (By the graph of a formula we mean the set of 
all valuations for which the formula is true.) The graphs on the screen 
have three dimensions, and for this reason only the three variables x, 
y, and z are allowed in a formula. 

The formula window and each graph window can be moved individ­
ually to any screen location. 

The program runs on an IBM PC (TM) or compatible computer 
under Microsoft Windows (TM) 3.0 or higher. A mouse is not required, 
but will make the program easier to use. Microsoft Windows must be 
running before you start the program. 

The program starts with a Welcome box. When you hit the OK 
button with the mouse, or hinhe Enter key, the program will begin. 

The main menu at the top of the screen has labels for a File menu, 
a View menu, an Options menu, an Undo command, and a Help menu. 

1.2 Goals 

If you wish to load problems from a diskette, put the diskette in drive 
slot A. To load a problem file from the diskette or the hard drive, select 
the File Menu, select the Open ... command, and choose the correct 
directory or problem file from the list shown in the dialog box on the 
screen. When you load a problem file from the diskette, a Goal graph 
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will be shown in a window in the lower ~ight corner of the screen. The 
object of the problem is to think of a formula which has the required 
graph. and to get the formula into location 1 of the stack by using the 
buttons on the calculator pad. In order to do this, you must begin with 
atomic formulas and build up to the goal formula. When you succeed, 
you will be informed by a message on the screen. 

No goal is shown until a problem file is loaded from the disk. You 
can use the calculator pad buttons to build and look at formulas without 
a goal. 

1.3 The Help Menu 

The Help Menu has five categories, each with a list of topics, and an 
About command which displays a box with the program name, version, 
and copyright information. Each topic has a brief note which you can 
view at any time while running the program. The General category 
gives an overview of the program. The Calculator Pad category has 
one topic for each button on the pad. The File category has one topic 
for each command on the File Menu, the View category has one topic 
for each command on the View Menu, and the Options category has one 
topic for each command on the Options Menu. When you choose one of 
the five categories, you are shown a list of topics and four buttons. The 
Next List and Previous buttons change to another help category. 
The Help button shows a small dialog box containing the help note for 
the current topic and new buttons labeled Topics, Next, Previous, 
and Cancel. You can move through the topics in the current list using 
the Next and Previous buttons. The Cancel button or Escape key 
removes the help box and returns you to the main program. At any 
time in the program, the Fl key immediately brings up the General 
Category Help Menu. 

1.4 The Calculator Pad 

You call a calculator pad command by hitting ENTER when the button 
with the command is marked with a dark border, or clicking the left 
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mouse button when the pointer is at the button. Here is a brief overview 
of the calculator pad commands. The three buttons labeled Atomic, 
R( ... ) , and . =h(..) are used to enter an atomic formula in stack 
location 1. You will usually begin a session with the Atomic button. The 
periods represent argument places which must be replaced by variables 
or constants. The five buttons labeled & , \/, ->, <->, and Not can 
be used to put a new formula in the stack by combining old formulas 
with logical connectives. The All .. and Exi.. buttons can be used to 
make a new formula by applying a quantifier to a formula in the stack. 
The Dup, Pik .. , and Put .. buttons are used to rearrange the formulas 
which are already in the stack. The Sto .. and Rel.. buttons store and 
recall the formula in stack location 1 from a storage location. 

When you push the Atomic button, a dialog box appears asking 
for additional information. You can enter an atomic formula of length 
3 or 5 which has variables among x, y, z; constants from the universe; 
the relation symbols=,<, and the operation symbols+,-,* which 
stand for addition, subtraction, and multiplication modulo the universe 
size. The second symbol in the formula must be a relation symbol. 
Examples of atomic formulas are x = 3, x < z + 2. Press the OK button 
to enter the formula, or the Cancel button to cancel the command. 

The random relation button labeled R( ... ) introduces a new pred­
icate symbol with one, two, or three argument places each time it is 
called, starting with A. A dialog box will appear asking you to enter 
the arguments, which must be different variables from among x, y, z. 
The graph of the relation will be chosen randomly by the computer, 
with the variables you enter. The random function button . =h( .. ) 
introduces a new function symbol with one or two arguments each time 
it is called, starting with a. Again, its graph is chosen randomly with 
the variables you enter. The binary connective buttons,· & , \/, ->, 
and <->, combine the formulas in stack locations 1 and 2 and place the 
result in stack location 1. The formulas in locations 3 and 4 are moved 
to locations 2 and 3, and a false formula is placed in location 4. 

The Not button and the quantifier buttons All .. and Exi.. change 
only t'he formula in stack location 1. A dialog box will appear for the 
quantifier buttons asking you to select a variable x, y, or z. 

The Dup button copies the formula in stack location 1 into stack 
location 2, and moves the formulas in stack locations 2 and 3 into 
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locations 3 and 4. The formula originally in stack location 4 is discarded, 
The Pik .. button asks you for a stack location n = 2, 3, or 4. It moves 
formula n into stack location 1 and formulas 1 through n - 1 into stack 
locations 2 through n. The effect is to cycle the formulas in locations 
1 through n - 1. the Put .. button also asks you for a stack location n 
and cycles the formulas in the opposite direction, so that formula 1 is 
moved into stack location n. 

The Sto .. button asks you for a number n = 1, 2, 3, or 4. It copies 
the formula in stack location 1 into storage location n. The Rel.. but­
ton also asks for a number n = 1, 2, 3, or 4. It copies the formula in 
storage location n into stack location 1, and moves the formulas in 
stack locations 1 through 3 into stack locations 2 through 4. The for­
mula originally in stack location 4 is discarded. 

The t 0 display in the lower left corner of the calculator pad is a 
TIME COUNTER. Each time you call a calculator pad command, the 
time counter increases by one. 

The Undo command undoes the last calculator pad command and 
decreases the time by one, going back to the previous state. It will also 
undo a Clear command if used immediately. The Alt+ Backspace key 
combination will invoke the Undo command at any time. 

1.5 The File Menu 

The New command starts a new Predcalc session. All the stack and 
storage locations are cleared, and you are asked to choose the size of 
the universe, ·a number between 1 and 8. The previous session will be 
lost, and you are warned if it has changed since being saved on disk. 

The Open... command loads a problem file or a previously saved 
Predcalc session from the disk. You are shown a list of all files· in 
the current directory with the .PRC extension, and all subdirectories, 
including PRED2, which contains the problem files provided on the 
diskette. A nle or directory may be selected from the list or typed in 
at the keyboard. You can change directories by selecting a directory 
from the list or typing the name of a file in a new directory. The name 
of the new file will appear on the main title bar. Again, the previous 
session will be lost, and you are warned if it has changed since being 



454. APPENDIX I. PREDWIN 

saved on disk. 
The Save command saves the current Predcalc session on the disk. 

If the session was previously loaded or saved, it will be saved with the 
same name in the current directory. Otherwise you will be asked for 
a file name. A name with the .PRC extension, such as CUBE.PRC, 
is recommended. When the file is later loaded, the present goal, stack 
contents, and storage contents will reappear, so you can resume working 
on the problem or show your solution to the instructor. 

The Save As... command asks you for a file name and then saves 
. the current Predcalc session on the disk. 

The Save Goal... command is used to create a new problem file. 
It asks you for a file name and then saves the current graph in stack 
location 1 as a goal. When the file is later loaded in, the graph will 
appear in the goal window and all stack and storage locations will 
contain false formulas. 

The Exit command quits the Predcalc program. You are warned if 
the current session has changed since being saved on disk. 

1.6 The View Menu 

The Arrange Windows command moves all the windows in the Pred­
win program to their original positions. 

The Clear command starts a new session. It clears all the stack 
and storage locations and sets the time back to 0. 

The Replay command starts a replay of the current Predcalc ses­
sion beginning with time 0, with no change in. the random relations and 
functions. Instead of the calculator pad, you see a box with five but­
tons. The Next button causes the replay to go. forward one step. After 
the last step, the calculator pad reappears and the replay is over. The 
Previous button causes the replay to go back one step. The Home 
button chooses new random relations and functions, and jumps back 
to the beginning at time 0. The End button jumps to the end of the 
replay and the calculator pad reappears. The Forget button quits the 
replay in the middle and brings back the calculator pad, forgetting the 
later steps .in the session. 

The View Storage command shows the contents of the four storage 
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locations. They are shown temporarily in place of the stack locations . . ' 
and a dialog box replaces the calculator pad. Nothing else can be 
done until you push the OK button or hit ENTER, at which time the 
contents of the stack locations and the calculator pad will reappear. 

I. 7 The Options Menu 

The New Universe command changes the universe. It preserves the 
time and wffs in the current session, but erases the goal graph if there 
is one. You will be asked for a new universe size between 1 and 8. A 
constant which is outside the new universe will be interpreted as the 
largest element of the universe. 

The three options Capitalize Bound Vars, Monochrome, and Small 
can be turned on and off. The program starts with each option turned 
off. When one of these options is turned on, it is indicated by a check 
mark in the menu. 

When the Capitalize Bound Vars option is on, the wffs are dis­
played with all occurrences of bound variables shown as capital letters 
X,Y,Z. 

You should use the Monochrome option if you do not have a color 
display. When the Monochrome option is on, the graphs of the wffs use 
white for true and black for false. When the option is off, the graphs 
use green for true and red for false. 

When the Small option is on, the graphs of the wffs are shown in a 
smaller size. The original large size will fit on a VGA display with the 
graphs in their original position. 
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GNUMBER - Godel 
Numberer for DOS 

J .1 Introduction 

GNUMBER, the Register Machine Program with Godel numbering, 
simulates a register machine, the basic tool in the study of computable 
functions. The title screen asks you to select either the Simple or 
the Advanced form of GNUMBER. The simple form can be used to 
enter instructions and register values and watch a machine 
program run. The advanced form has additional features which let you 
manipulate Godel numbers of register machine programs and get a close 
look at register machine programs which refer to themselves. Programs 
which refer to themselves lead to the striking results of Godel which 
show that some problems are unsolvable. 

The program runs on an IBM PC or compatible computer with at 
least 320K memory and one disk drive. If there is more memory, the 
program will have room for larger :registers. 

GNUMBER has a top level title screen and four modes of opera­
tion: Instruction editor, Program mode, Register mode, and Execution 
mode. 

The program starts with the title screen, and then goes to the Pro­
gram mode. You can change from one mode to another with the com­
mands E, I, P and S. The command Q is used to quit the program. 
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To protect against accidental quitting, the first Q returns you to the 
title screen, and the program asks you to type Q a second time to be 
sure you really meant to quit. At the title s0reen you can return to the 
previous state or start a new tableau instead of quitting. 

J.2 Getting Started 

The program can be run from either a floppy diskette or a hard disk. 
With a diskette, put a diskette with the GNUMBER.EXE program file 
and the GNUM5 and GNUM6 example directories in the currently ac­
tive drive. With a hard disk, either install the program as part of the 
Logidab package by typing SETUPDOS.EXE at the DOS prompt, or 
copy the GNUMBER.EXE file and the GNUM5 and GNUM6 subdirec­
tories to a hard disk directory entitled LOGICLAB (or another name 
of your choice). If you have a color display, type GNUMBER and hit 
Enter at the DOS prompt. If you have a monochrome display, type 
GNUMBER M and hit Enter. The title screen will appear. 

J .3 Title Screen 

The title screen appears when you initially start the program and when 
you use the Q command from within the program. At the initiai"title 
screen, you have the following choices: 

S : Start the Simple GNUMBER program. 

A : Start the Advanced GNUMBER program. 

D Change the drive or directory from which the examples and solu­
tions are loaded and saved. 

If you plan to use the example files in the GNUM5 or GNUM6 
directories, you should type D at the title screen, and then spec­
ify the problem directory when you see "Enter new path". For 
example, if you are working from a diskette in the A: drive and 
wish to use the examples in GNUM5, type A: \GNUM5 and hit the 
Enter key. If you are working from hard drive C and wish to use 
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the examples in GNUM5, type C: \LOGICLAB\GNUM5 and hit the 
Enter key. 

Q Quit the program. 

When you return to the title screen from within the program, you 
have the following choices: 

Enter key : Return to the current state without change. 

A .= Change to the Advanced GNUMBER program. 

S : Change to the Simple GNUMBER program. 

D : Change the drive or directory from which the examples and solu­
tions are loaded and saved. 

Q Quit the program. 

If your current work has not been filed, you will be given a warning 
and another chance to file the current program by hitting the F key. 

The next few pages first explain what you can do in each mode 
with the simple form of GNUMBER. Then the additional features of 
the advanced form are described. If you are only using the simple form, 
you can skip the material on the advanced form. 

J.4 Execution Mode 

You can get to the Execution mode from the Program or Register modes 
with the E command. The Execution mode is the place where you run 
a register machine program. It has a variety of commands which allow 
you to start and stop the register machine program and control its 
speed. Two columns of 23 instructions without comments and one 
column of 15 registers are visible on the screen. 

The register machine program is started by hitting either the space 
bar or the Enter key. As the register machine program runs at slow or 
one-step speed, the register contents and next instruction number are 
updated at each step. At the same time, the time counter at the top of 
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the screen shows the current number of steps in the run, and the next 
·instruction label is highlighted with a white background. The motion 
of the highlighted label will give an indication of what the program is 
doing. 

While the register machine program is running, it can be interrupted. 
by pressing any key. You can go to another mode and make changes or 
explore the contents of a long register, and then return to the Execution 
mode and continue running the program. 

At fast speed, the time counter is updated every 100 steps, and 
everything is updated when the program is stopped or interrupted. 

J.4.1 Viewing More Instructions or Registers 

The Execution mode initially shows the two columns of instructions 
from 0 to 45. To see the next column of instructions, hold the Ctrl 
key down and hit the right arrow key. To see the previous column of 
instructions, hold the Ctrl key down and hit the left arrow key. To go 
back to the first two columns of instructions, hold the Ctrl key down 
and hit the Home key. In this way you can focus on the part of the 
program where the action is and watch the program execute step by 
step. 

The Execution mode initially shows one column of registers, from 
1 to 15. You can view additional registers by hitting the PageUp or 
PageDown key. 

J .4.2 Execution Mode Commands 

I : Go to the INSTRUCTION Editor. 

P : Go to the PROGRAM Mode. 

R : Go to the REGISTER Mode. 

Enter key or Space Bar : Run the current register machine pro­
gram. 

Q QUIT. This command returns you to the title screen. From the 
title screen, you can quit the program by hitting Q again, change 
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the drive or directory where the example files are loaded and 
saved, change to the simple or advanced GNUMBER program, 
or return to the current state. 

0 : Make the register machine program run ONE step at a time. 

S : Make the register machine program run at SLOW speed. At slow 
speed you can see the changes in the register contents and the 
next instruction marker at each step. 

F : Make the register machine program run at FAST speed. This is 6 
to 20 times faster than slow speed. If you press the U (update) 
key while the program is running at fast speed, all the registers 
will be brought up to date and then the program will continue. 
If you press any other key while running at fast speed, the pro­
gram will stop. (It can then be restarted by pressing the SPACE 
key). At fast speed you cannot see the changes in the register 
contents until you press the U (update) key, the program halts, 
a register overflows, or you stop the program. The time counter 
is updated every 100 steps while running at fast speed, but the 
next instruction marker is not changed. 

T Set the TIME counter and next instruction number to zero. Use 
this to start a program from the beginning. 

J.5 Program Mode 

You always start out in the Program mode, and can get there from 
the Execution mode or Register mode with the P command. In the 
Program mode, you can delete a single line or a whole register machine 
program, open a line for the Instruction editor, load a sample register 
machine program from the disk, or save a register machine program. 
There are places for 501 instructions, numbered from 0 to 500. Any 
instruction beyond 500 is assumed to be a Halt. The next instruction 
number is shown at the top of the screen. On the right side of the screen 
is a help window which has a list of the available commands. The letters 

C D E F H I L 0 P Q R and U are used for these commands. 
' ' ' ' '' ' ' ' ' ' 
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J .5.1 Moving Within the Screen 

The Up, Down, Right, and Left arrow keys, the PageUp and PageDown 
keys, and the Home and End keys can be used to move within the 
register machine instruction area of the screen. The PageUp key goes 
up 23 lines. If you hold the Ctrl key down and press the Page Up key 
the cursor will move to instruction 0. The PageDown key moves down 
23 lines. If you hold the Ctrl key down and press the PageDown key 
the cursor will move to the last nonhalt instruction. The Home key 
moves to the beginning of the· current line, and the End key moves to 
the end of the current line. 

J .5.2 Commands in the Program Mode 

C : CLEAR all instructions to H, and set the time counter and next 
instruction number to zero. 

D : DELETE the current instruction line, move all later lines up one, 
and adjust all J (Jump) instructions accordingly. 

E Change to the EXECUTION Mode. 

F File. Saves the current register machine program in a file on the 
disk. A box will appear with either a blank file name or with the 
name you used last time you filed the current RM program. The 
file name has the form XXXXXXXX.GN. Use the keyboard to 
enter or change the file name. (You should not enter the suffix 
".GN"; the computer will add it automatically). When you have 
the name you want, hit the Enter key to save the program. You 
are warned if you try to use a file name which already exists. 
The Esc key cancels the File command; and goes back to the 
GNUMBER program without saving. 

The F command can also be used to erase an unwanted GN file. 
To Erase a GN file, Quit and start an empty program (with no 
instructions), hit F for the File command, and type the name of 
the file you want to erase. 

H HALT instruction. This command erases the current instruction 
line and replaces it by an H for the Halt instruction. 
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I : Change to the INSTRUCTION Editor. The cursor will remain in 
its current position. 

L LOAD a register machine program. In the bottom window of the 
screen you will see the message 

LOAD A REGISTER MACHINE PROGRAM AT LINE nn 

where nn is the current line of the cursor in the Instruction Menu. 
The computer will show you a list of all files on the disk in the 
current directory whose names have the suffix .GN, and ask you 
to type in a file name and hit the Enter key. The register machine 
program described in the file will then be put into the instruction 
list, starting at the line nn. All old instructions from line nn 
to the end will be moved ahead to the end of the new program, 
and all jump instructions will be adjusted in the correct way. 
The next instruction number and time counter will be set to 0. 
You can get back to the Program Menu without loading a new 
program by hitting the Enter key without a file name. After you 
load a register machine program, its name will be displayed at 
the top of the screen. The name will stay there until you change 
a program instruction, file a program, or load a new program. If 
the file name you type is not on the diskette, or if there is not 
enough room to load the new program starting at line nn, you 
will be informed by a message and will return to the Program 
Menu with no change. 

This command can be used either to load an RM program by 
itself, or to load an RM program somewhere in the middle of an 
old program. To load a program by itself, first press Home to get 
to instruction line 0, then press C to clear out the old instruction 
list, and then press L. To load a new program in the middle or 
at the end of an old program, move the cursor to the line where 
you want the new program to begin and then press the L key. 

0 OPEN a line. This command moves all instructions below the cur­
rent line down one, adjusts all J (Jump) instructions accordingly, 
and writes an Hin the current line. Use this command vyhen you 
want to insert a new instruction at the current line. 
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P : PRINT the current instruction list. (Ignored if no printer is in­
stalled). 

Q QUIT. Same as the Q command in the Execution Mode. 

R Go to the REGISTER Mode. 

U UNDOES the most recent change in the instruction list. The in­
struction list is returned to what is was before the most recent use 
of one of the commands C, D, H, I, L, or 0. Use this instruction 
to recover if you accidentally press the wrong key. 

J .6 Instruction Editor 

You can get to the Instruction editor from any of the other modes with 
the I command. You leave the Instruction Editor by hitting the Enter 
key, which takes you to the Program mode. The Instruction Editor is 
used to type in or change register machine instructions and comments. 
The window on the right of the screen will list the available register 
machine instructions, H, J, S, T, and Z. The Esc key will undo the 
changes on the current line and return it to its previous state. When 
you are finished typing in or changing instructions, press the Enter key 
to return to the Program mode. 

J .6.1 Register Machine Instruction Letters 

The following register machine instructions can be entered in your pro­
grams. The table shows what each instruction does when r, s, and t 
are the numbers following the instruction letter and [r] is the number 
in register r. 

INSTRUCTION 
H (Halt) 
Z r (Zero) 
S r (Successor) 
T r s (Transfer) 
J r s t (Jump) 

EFFECT 
Stop. 
[r] 0. 
[r] [r]+ 1. 
[s] := [r]. 
if [r] = [s], jump to instruction t. 
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J .6.2 Entering Register Machine Instructions 

When you start the GNUMBER program, there is an H command for 
Halt at every position. When you move the cursor to a new line in the 
Editor, the H disappears. You may type in a new instruction letter, a 
number for each place, and a comment of up to 40 characters. In the 
third place of the J command, an instruction number between 0 and 
501 is needed. At any other place, a register number between 1 and 45 
is needed. You can also place "break points" after the instruction letter 
by typing the symbol !. This will cause the register machine program 
to stop when you run the program. 

To finish an instruction line, hit the Enter key to return to the 
Program mode, or the Up or Down arrow key, the PageUp or PageDown 
key, or the Ctrl key with the Page Up or PageDown keY_, to .move to a 
new line. If your instruction is illegal, the computer w1U give you an 
error message. When you get an error message, you have three choices: 
1) Correct the error. 2) Press the Esc key, which will undo·your changes. 
3) Press the Enter key, which will make an H instruction followed by 
your illegal instruction as a comment, and return to the Program mode. 

J .6.3 Register Machine Program Files 

There are two ways to create a register machine program file. You can 
either type in the program with the Instruction Editor and save it with 
the F command in the program mode, or you can use an ordinary word 
processor outside the GNUMBER program. If a word processor is used, 
each line must contain one program instruction letter (capital or lower 
case) ~nd the required register or instruction numbers. A line number 
at the beginning and comments at the end are optional. The file mu~t 
be given a name of the form XXXXXXXX.GN. When a program file is 
loaded with the L command, any illegal instructions will be replaced by 
an H command with a ! symbol and the original command and error 
message as a comment. 



466 APPENDIXJ.GNUMBER 

J .6.4 Advanced Instruction Letters 

Two new 3-placed instruction letters, E and P, are available in the ad­
vanced form of GNUMBER. These instructions allow the manipulation 
of finite sequences of natural numbers. 

By means of a Godel numbering scheme, each natural number is also 
the code of a finite sequence of natural numbers. The Godel numbering 
scheme uses the .even decimal positions (starting from 0 on the left) as 
markers to show where a new term begins, and uses the odd decimal 
positions for . the digits of the terms in the sequence to be coded. A 
2 marker means that a new term is beginning, and a 1 marker means 
that the old· term is continuing. 

For example, the Godel number of the sequence 5034 6 217 is (with 
the original digits underlined) 

This is a Godel number in standard form. In order to make every 
number a Godel number of some sequence, the initial marker can be 
any digit except 0, a marker > 2 is identified with a 2, a 0 marker is 
identified with a 1, and an extra digit at the end is ignored. Any single 
digit number is a Godel number of the empty sequence. 

The E command EXTRACTS the [s]-th term from the sequence 
coded by [r] and places it in register t. (All terms beyond the last term 
of the sequence are considered to be 0). The P command PUTS the 
number [r] into the [s]-th term of the sequence coded by register t. The 
effect of these commands may be summarized symbolically, where ( r) 
denotes the sequence with Godel number [r]. 

INSTRUCTION 
E r s t (Extract) 
P r s t (Put) 

EFFECT 
[t] the [s]:-th term of (r). 
The [s]-th term of (t) := [r]. 

It is possible to change back and forth between the Simple and 
Advanced forms of GNUMBER at the title screen without losing the 
current instruction list. It is also possible to enter the advanced E and 
P instructions even within the Simple Instruction Editor. The simple 
form of GNUMBER will treat an advanced RM program with the E 
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and/ or P instructions in the following way: all E and P instructions 
will be displayed as blinking characters and will be skipped when the 
RM program is executed. 

J. 7 Register Mode 

You can get to the Register mode from the Execution or Program mode 
with the R command. In the Register mode you can put numbers 
into the registers. There are 45 registers, numbered 1 through 45. 
GNUMBER starts with 0 in every register. The help window below 
the registers lists the available commands. 

The screen display of the Execution mode and the Register mode 
are the same except for the help window at the bottom of the screen, 
beginning with instructions 0 to 45 and registers 1to15. In the Register 
mode, you can view additional instructions by holding the Ctrl key 
down and hitting the left or right arrow or Home key. 

J.7.1 Moving Within the Registers 

The PageDown and PageUp keys display the next or previous group 
of 15 registers, 1-15, 16-30, and 31-45. The Up and Down arrow keys 
move the cursor up and down one row, and the Home key moves the 
cursor to register one. You can also get to the NEXT INSTRUCTION 
REGISTER (register 0) by going to register 1 and pressing the up arrow 
key. 

J.7.2 Entering a Number into a Register 

A number is entered into a register by typing the digits 0, ... ,9 as usual. 
You can enter a number into the Next Instruction Register as well as the 
ordinary registers. The backspace key works in the usual way. When 
you are finished entering the number, hit the Enter key, an Up or Down 
arrow, Home, PageUp, PageDown, or one of the commands I, P, or 
Q. You can enter up to 1,000 digits. While you are entering a number 
which is more than one line long, the screen shows you how many digits 
have scrolled off the left edge of the window. 
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J. 7 .3 Exploring a Register 

After you or the computer finish entering a number, its total length 
(measured in digits) is shown at the extreme right of the screen. If a 
register contains more than a full line of digits, you can explore the 
contents of the register by using the right and left arrow keys and the 
End key (which displays the last 39 digits). This will cause the number 
to scroll horizontally and be displayed in white. The Enter, Up, Down, 
Home, PageUp, and PageDown keys and the I, M, and Q commands 
will leave the register and behave in the usual way. 

J. 7.4 Register Mode Commands 

C : CLEAR all registers (put a zero in every register). 

E : Go to the EXECUTION Mode. 

I : Go to the INSTRUCTION Editor. 

P : Go the the PROGRAM Mode. 

Q : QUIT. Same as the Q command in the Execution Mode. 

J.7.5 Advanced Register Mode Commands 

There are four new commands which involve Godel numbers. 
A Godel number is assigned to a register machine program in the 

following way. Each register machine instruction is a sequence con­
sisting of a letter and from 0 to 3 numbers. The instruction letters 
H,Z,S,T,J,E,P are assigned the codes 1 through 7 respectively. This 
makes each register machine instruction a sequence of from 1 to 4 num­
bers, and this sequence is assigned its Godel number. The instruction 
list is considered to end at the last nonhalt instruction. The register 
machine program is a finite sequence of instructions, which gives rise to 
a finite sequence of Godel numbers that in turn has a Godel number. 

G : Put the GODEL number of the register machine program shown 
in the current instruction list into the current register. The Godel 
number will be in standard. form. The RM program is taken to 
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be the list of all instructions through the last nonhalt instruction. 
All the subsequent halt instructions are ignored in com1mting the 
Godel number. A program which has only halt instructions has 
Godel number zero. This command also sets the time counter and 
next instruction to 0, and leaves all other registers unchanged. 

U : (UN GODEL) Put the register machine program whose Godel num­
ber (not necessarily in standard form) is in the current register 
into the instruction list. A term in the current register sequence 
which is not a Godel number of an instruction is treated as the 
end of the instruction list, and all later terms will be ignored. 
This command also sets the time counter and next instruction 
register to 0, and leaves all other registers unchanged. 

S : Change to SEQUENCE display. This command causes any number 
which has more than 3 digits and is the Godel number of a se­
quence in standard form to be displayed as a sequence of numbers 
separated by commas. All other numbers will still be displayed 
in the ordinary way. When you explore a register containing a 
sequence, the right and left arrow keys move to the beginning 
of the next or preceding term of the sequence, and the· End key 
moves to the beginning of the last term of the sequence. 

In the Advanced Register mode you can enter numbers into reg­
isters in sequence form as well as in number form. To enter a se­
quence into a register, first type the left parenthesis "(" and then 
type in the terms of the sequence separated by commas. When 
you are finished entering the sequence, type either the right paren­
thesis ")",the Enter key, an Up or Down arrow, Home, PageUp, 
PageDown, or one of the commands E, I, P, or Q. The register 
will contain the Godel number of the sequence. 

N Change to NUMBER display. This command causes the num­
bers in all registers to be displayed in the usual way as ordinary 
numbers. 

The last line in the help window tells you whether the Number or 
Sequence di,splay is being used. 
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The next to the last line in the help window displays more informa­
tion about the current register. If the computer has enough memory, 
the first few registers will have room for 15,000 digits instead of 1,000 
digits. The amount of room in the current register is reported. If you 
are exploring a register in a number display, the number of digits and 
the place of the first visible digit are reported. If you are exploring a 
register in a sequence display, the number of terms, the place of the 
first visible term, and the length (number of digits) of the first visible 
term are reported. 

J.8 Changing Directories 

When you start the program by typing GNUMBER and hitting the 
Enter key, the program will use the currently active drive or directory 
for loading the example files and saving solutions. You can change 
drives or directories from within the program at the title screen by 
following the directions in Section J .3. A period "." can be used for 
the current directory, and a double period " .. " for the parent of the 
current directory. 

You can start the program with another drive or directory for exam­
ple files by typing GNUMBER followed by the desired path name and 
hitting the Enter key. For example, to load the GNUM5 directory of 
GN files, you would type GNUMBER GNUM5 M at the DOS prompt 
and then hit the Enter key. This feature may be useful in a computer 
lab setting. The path and the M option for a monochrome display can 
be combined or used separately. 

For example, the instructor may create a batchfile called GNU.BAT 
which has the single line 

GNUMBERM A: 

If the student types GNU [Enter key], the program will run with a 
monochrome display and will use diskette drive A: for the example 
files. 

Appendix K 

G NUMWIN - Godel 
N uinberer for Windows (R) 

K.1 Introduction 

GNUMWIN is the version of the GNUMBER program which works 
with Microsoft (R) Windows, Version 3.0 or later, and with Windows 
95. 

The GNUMWIN program can only be started after Windows is 
running. It can be operated with a mouse or with the keyboard, and 
works like other Windows applications. The GNUMWIN.EXE program 
and the GNUM5 and GNUM6 directories can either be copied to your 
hard disk into a directory called LOGICLAB (or another name or your 
choice), installed using the SETUPWIN.EXE program, or accessed ~i­
rectly from the diskette. In all of these cases, access the Windows File 
Manager (in Windows 3.0 or later) or My Computer (in Windows 95), 
select the disk drive and directory that contains the program, and then 
select GNUMWIN.EXE. 

The program will begin with a welcome message in a small window 
with two buttons labeled "Start" and "Tutorial". Click the mouse on 
the "Tutorial" button to get a quick introduction. Click the mouse on 
the "Start" button or hit the Enter key to begin the program in the 
normal way. · 

There are two main windows, a program window with instructions 
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0 to 999, and a register window with registers 0 to 99. Register 0 is the 
program counter, and the others are data registers. Each data register 
can hold a natural number with up to 20,000 digits. 

The main menu at the top of the screen has a File menu, a Program 
menu, a Registers menu, a Windows menu, an Options menu, a Step 
command, a Go menu, and a Help menu.· 

The program counter, register 0, holds the number of the next in­
struction to be executed. It can always be seen at the top of the registers 
window. A register machine (RM) program starts with a 0 in the pro­
gram counter. During the execution of an RM program the contents of 
the program counter and the data registers change but the instructions 
remain fixed. 

The labels of the next instruction (in the program counter) and one 
register are marked in reverse video. They can be changed by clicking 
the mouse button on a new label, or by using the arrow, Page Up or 
Down, Home, or End keys. The tab key switches the arrow key action 
between the two windows. The scroll bars move the window up or 
down without changing the marked label. The Enter key moves both 
windows to the marked label. 

The simple register machine has 5 instruction types, H (halt), Z 
(zero), S (successor), T (transfer), and J (jump). When one of these 
instructions (other than halt) is executed, it causes a change in the 
contents of the program counter holding the next instruction, and may 
change the contents of a data register. 

The advanced register machine has two additional instructions, E 
(extract) and P (put). These instructions manipulate the contents of 
the data registers as Godel numbers of finite sequences. 

The time display at the top of the Program window is set to 0 at 
the start of execution, and increases by 1 at each RM program step. 
It shows you how long an RM program has been running. An RM 
program will run until a halt instruction is encountered, a data register 
overflows, or the user intervenes. 

The Help menu can be reached by using the mouse or the Fl key. 
It contains five lists of topics and an About command, which shows 
the version number, copyright notice, and icon. 
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K.2 Program Execution 

The initial values in the data registers can be entered by hand or with 
the Godel command. The RM instruction list can be entere.d by hand, 
loaded from the disk, or created with the unGodel command. You can 
then begin execution. The step command on the main menu executes 
a single instruction. The Go menu has several choices for starting 
automatic execution. 

You can stop the automatic execution of an RM program by hitting 
any key except U, or by hitting the left mouse button in either the 
Program or R~gisters window. Before starting automatic execution, 
you can set a stopping time, or set a break point by entering a ! sign 
after an instruction letter in the Program window. You cannot exit the 
GNUMWIN program while automatic execution is in progress. 

The standard Godel number of a finite sequence of natural numbers 
is a single natural number which codes the whole sequence. Exam­
ple: The sequence (345,8008,7) has Godel number 2314152810101827. 
(Every other digit is a marker.) A single instruction is a sequence of 
at most four numbers, (replacing the letters H, Z, ... ,P by 1 through 
7). Each instruction thus has a Godel number. The· Godel number of 
a whole RM program is the Godel number of the sequence of Godel 
numbers of its instructions. 

K.3 Register Machine Instructions 

Halt: H stops the RM program. 
Zero: (Z i] places a 0 in register i and increments the program 

counter by 1. 
Successor: [S i] increments register i by 1 and increments the pro­

gram counter by 1. 
Transfer: [T i j] places the contents ofregister i into registerj and 

increments the program counter by 1. 
Jump: [J i j k] places k into the program counter if the contents 

of registers i and j are equal, and otherwise increments the program 
counter by 1. 

Extract: [E i j k] If register i contains the Godel number of a 



474 APPENDIX K. GNUMWIN 

sequence I and register j contains the number J, then the Jth term of 
the sequence I is placed in register k. (If I has no Jth term, 0 is placed 
in register k.) Then the program counter is incremented by 1. 

Put: [P i j k] If registers i and j contain numbers I and J, and register 
k contains the Godel number of a sequence K, then the standard Godel 
number of the sequence L formed from K by replacing the Jth term of 
K by I is placed in register k. (If K has fewer than J - 1 terms, extra 0 
terms are added to the end of K before forming L. Then the program 
counter is incremented by 1. 

K.4 File Menu 

The New command starts a new RM program. The current instruction 
list and all registers will be cleared. You will be warned if the current 
RM program has not yet been saved on disk since the last change. 

The Open ... command loads a .GN file from the disk, containing 
an RM instruction list. You will be warned if the current RM program 
has not yet been saved on disk. You will see a list of .GN files and of 
directories, which may include the parent directory called " .. " and the 
GNUM5 and GNUM6 directories which contain example files. Choose 
a file or new directory from the list, or type it on the screen. The loaded 
instructions will be joined with the current RM program at the marked 
instruction. The window takes the loaded file name as its title if you 
load at 0 over an empty instruction list, but will drop this title when 
the instruction list is changed. 

The Save command will save the current RM program under the 
current title which appears in the main window caption. If the program 
is [untitled] you should use the Save As command instead of the Save 
command. 

The Save As ... command will save the current RM program under 
a name which y_ou will supply. The window takes this name as its title, 
which will be used for subsequent save commands. If you only give the 
first part of a file name, the . GN extension will be added automatically. 

The Print command will print the current RM program. The be­
ginning and end of the RM program will be marked with a row of dots. 
You will be warned if the printer is not ready. 

.k 
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The Exit command will quit the GNUMWIN Program and return 
to Windows. You will be given a warning and a chance to save the 
current RM program if it has not been saved on disk since the last 
change. 

K.5 Program Menu 

The Edit an Instruction command opens a box in which you can 
type in an RM instruction and a comment to be placed at tlie marked 
position in the instruction list. You can also do this by double clicking 
with the left mouse button on the instruction label. 

The Clear an Instruction command replaces the marked instruc­
tion by a Halt. 

The Delete an Instruction command removes the marked in­
struction, and closes up the gap by moving all lower instructions up 
one position and fixing the jump targets as necessary. 

The Insert an Instruction command moves the marked instruc­
tion and all later instructions down one position, fixing the jump targets 
as necessary, and inserts a Halt at the marked place. 

The Clear All Instructions command replaces all instructions in 
the current list by Halts. You will be warned if the current list has not 
been saved since the last change, and given a chance to save it. This 
command is useful when you want to load a new RM program on a 
clean slate. 

The Undo command undoes the last change in the instruction list 
and moves the marked instruction and program counter to the position 
at the time of the last change. This command does not affect the 
contents of the data registers. 

K.6 The Registers Menu 

The Edit a Register command opens a box in which you can enter 
or change the contents of the marked data register (or the program 
counter). You can also do this by double clicking the left mouse button 
on the register label. 
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The View a Register command opens a box with a horizontal 
scroll bar in which you can view the entire contents of the marked 
register. 

The Clear a Register command places a 0 in the marked register. 

The Clear All Registers command places a 0 in every register. 

The Godel command places the Godel number of the current RM 
program in the marked register. This command can be used to test RM 
programs which take Godel numbers of other RM programs as inputs: 

The Un Godel command replaces the current instruction list by 
the RM program whose Godel number is in the marked register. This 
command can be used to test the action of RM programs which compute 
Godel numbers of other programs. 

K.7 Windows Menu 

The Vertical Tile command arranges the windows with the Program 
window on the left with its current width, and the Registers window 
taking up the remaining space on the right. Each window gets at 'least 
1/5 of the total available space. 

The Horizontal Tile command arranges the windows with the 
Program window on the top with its current height, and the Registers 
window taking up the remaining space on the bottom. Each window 
gets at least 1/5 of the total available space. 

The Move Program command lets you move the Program Window 
with the keyboard or mouse. 

The Size Program command lets you change the size of the Pro­
gram Window with the keyboard or mouse. 

The Move Registers command lets you move the Registers Win­
dow with the keyboard or mouse. 

The Size Registers command lets you change the size of the Reg­
isters Window with the keyboard ·or mouse. 
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K.8 Options Menu 

In this menu you can choose between the Numbers and Sequences op­
tions and between the Show Comments and Compress Instructions 

' options. 
With the Numbers option, the data registers are displayed in the 

usual way as numbers. The GNUMWIN program starts out with this 
option. 

With the Sequences option, the data registers which contain stan­
dard Godel numbers of sequences, and at least 3 digits, are displayed 
as sequences. The other data registers are displayed as numbers in the 
usual way. 

With the Show Comments option, the comments are shown next 
to the instructions in the Program window. _The GNUMWIN program 
starts out with this option. The Compress Instructions option hides 
the comments in the Program window and instead uses the space to 
show as many columns of instructions as possible. 

K.9 Step Command and Go Menu 

The Step command will execute the next RM instruction only. 
The Go menu controls automatic execution of the current RM pro­

gram. The Slow, Medium, and Fast commands start automatic execu­
tion, and any key or the left mouse button will stop it. You must sto? 
automatic execution to change from one speed to another, or to exit 
the GNUMWIN program. During automatic execution, you can mini­
mize the GNUMWIN program and turn to other tasks. You will see a 
changing icon which displays the first 6 digits of time during automatic 
execution. The normal icon reappears when automatic execution stops. 

The Restart command will change the time and program counter to 
0. This prepares for restarting the current RM program at instruction 

0. 
The Stopping Time command will let you enter g, stopping time. 

The next autom~tic execution will stop when the time reaches the stop-

ping time. 
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The Slow command will begin automatic execution of the current 
RM program at the slow rate of about two steps per second. 

The Medium command will begin automatic execution of the cur­
rent RM program as fast as possible while still displaying all changes 
in the data registers and the marked next instruction label. The speed 
will depend on the capabilities of your computer. 

The Fast command will begin automatic execution, gaining speed 
by not updating the Registers window, hiding the next instruction 
mark, and showing the time only in multiples of 1000. The Regis­
ters window will be updated without stopping execution when the U 
key is hit. The commands in the Program menu are disabled. during 
fast automatic execution. Again, the speed depends on your computer. 
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