
Schaum's Solved Problems Series
Each title in this series is a complete and expert source of solved problems with
solutions worked out in step-by-step detail.

Titles on current list include:

3000 Solved Problems in Calculus

2500 Solved Problems in Differential Equations

2000 Solved Problems in Discrete Mathematics
3000 Solved Problems in Linear Algebra

2000 Solved Problems in Numerical Analysis

3000 Solved Problems in Precalculus

BOB MILLER'S MATH HELPERS

Bob Miller's Cale I Helper

Bob Miller's Cale II Helper

Bob Miller's Precalc Helper

McGRAW-HILL PAPERBACKS

Arithmetic and Algebra ... Again

How to Solve Word Problems in Algebra
Mind Over Math

Available at most college bookstores, .or for a complete list of titles and prices, write to:

Schaum Division
The McGraw-Hill Companies, Inc.
11 West 19th Street
New York, NY 10011

MATHEMATICAL LOGIC
AND

COMPUTABILITY

H. Jerome Keisler

Joel Robbin

Contributors:

Arnold Miller
Kenneth Kunen
Terrence Millar

Paul Corazza

The Wisconsin Logic Group·
University of Wisconsin, Madison

The McGraw-Hill Companies, Inc

New York St. Louis San Francisco Auckland Bogota Caracas Lisbon
London Madrid Mexico City Milan Montreal New Delhi

San Juan Singapore · Sydney Tokyo Toronto

~ McGraw-Hill ~
A Division ofTheMcGraw·HfUCompanies

MATIIEMATICAL LOGIC AND COMPUTABILITY

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the
United States Copyright Act of 1976, n~ part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval
system, without prior written permission of the publisher.

This book is printed on acid-free paper.

1234567890 DOCDOC 9098765

PIN 033939-2
PART OF
ISBN 0-07-912931-5

The editor was Jack Shira;
the production supervisor was Paula Keller.
R.R. Donnelley & Sons Company was printer and binder.

Library of Congress Catal.og Card Number: 95-80649

1:

Contents

Preface

1 Propositional Logic
1.1 Introduction
1.2 Syntax of Propositional Logic
1.3 Induction on Length of Wffs .
1.4 Main Connective
1.5 Semantics of Propositional Logic
1.6 Truth Tables and Tautologies
1. 7 Tableaus . . .
1.8 Soundness . .
1. 9 Finished Sets
1.10 Completeness
1.11 Compactness
1.12 Valid Arguments
1.13 Tableau Problems (TABl)
1.14 Exercises

2 Pure Predicate Logic
2.1 Introduction
2.2 Syntax of Predicate Logic
2.3 Free and Bound Variables
2.4 Semantics of Predicate Logic .
2.5 Graphs ..
2.6 Tableaus ...
2. 7 Soundness . ~

2.8 Finished Sets

vii

1
1
5
7

10
13
17
19
30
32
34
38
42
46
50

61
61
64
68
71
78
79
85
88

2.9 Completeness
2.10 Equivalence Relations .
2.11 Order Relations
2.12 Set Theory
2.13 Tableaus and Mathematical Proofs
2.14 PREDCALC Problems (PRED2)
2.15 Tableau Problems (TAB3)
2.16 Exercises

3 Full Predicate Logic
3.1 Syntax ..
3.2 Semantics
3.3 Tableaus .
3.4 Soundness
3.5 Completeness
3.6 Theory of Groups .
3. 7 Peano Arithmetic .
3.8 Some Applications of Compactness
3.9 Tableau Problems (TAB4)
3.10 Exercises

4 Computable Functions
4.1 Introduction
4.2 Numerical Functions and Relations
4.3 The Unlimited Register Machine ..
4.4 RM computability
4.5 Examples of RM-Computable Functions
4.6 Godel Numbers, Extract, and Put ..
4. 7 The Advanced RM
4.8 Closure Theorems
4.9 Universal RM Programs
4.10 Church's Thesis
4.11 The Halting Problem ..
4.12 Church's Theorem ...
4.13 -Simple Gnumber Problems (GNUM5) .
4.14 Advanced Gnumber Problems (GNUM6)
4.15 Exercises

11

91
94

. 100

. 101

. 104

. 113

. 116

. 124

143
. 143
. 146
. 148
. 154
. 154
. 160
. 163
. 175
. 177
. 182

191
. 191
. 193
. 195
. 198
. 200
. 208
. 220
. 222
. 232
. 240
. 242
. 243
. 250
. 252
. 256

. 5. The Incompleteness Theorems
5.1 Coding Tableaus
5.2 Definability and Representability
5.3 The Equivalence Theorem
5.4 Computable Implies Representable
5.5 First Incompleteness Theorem ...
5.6 Godel's Original Incompleteness Proof
5. 7 Godel-Rosser Theorem
5.8 Provability and Modal Logic
5.9 Modal Systems and Tableaus ·
5.10 First Incompleteness Theorem Revisited
5.11 Second Incompleteness Theorem.
5.12 Modal Tableau Problems (TAB7)
5.13 Exercises

A Sets and Functions
A.I Sets
A.2 Boolean Operations .
A.3 Functions
AA Composition and Restriction .
A.5 Identity, One-one, and Onto Functions
A.6 Cardinality
A.7 Inverses
A.8 Cartesian Product . .
A.9 Graphing Functions .
A.10 Finite Sequences
A.11 Permutations
A.12 Induction

B Listings
B.1 Simple GNUMBER Programs
B.2 Advanced RM programs
B.3 Pseudocode for PARAM
B.4 PARAM.GN listing

. .\

B.5 Pseudocode for NXSTATE and UNIV.
B.6 NXSTATEO.GN listing
B~7 UNIV.GN listing ...

iii

265
. 266
.·272
. 282
. 286

.. 299
. 303
. 310
. 314
. 319
. 331
. 334
. 342
. 345

361
. 361
..366
. 368

.. 372
. 373
. 376
. 378
. 384
. 385
. 388
. 390
. 391

393
.·393
. 395
. 398
. 399
. 401
. 405
. 406

C The Logiclab Package

D TABLEAU - Tableau Editor for DOS
D.1 Introduction ..
D .2 Getting Started
D.3 Title Screen ...
D.4 Hypothesis Mode

D .4.1 Commands in Hypothesis Mode
D.4.2 Propositional Logic
D.4.3 Predicate Logic
D.4.4 Moving Within a Formula
D.4.5 Size Limit for Formulas ..

D.5 Tableau Mode
D.5.1 Moving Within the Tableau
D .5.2 Mouse
D.5.3 Commands in Tableau Mode .
D.5.4 Propositional Logic
D .5.5 Predicate Logic
D.5.6 Predicate Logic with Equality
D.5.7 Size Limit for Substitutions

D.6 Map Mode
D. 7 The Modal Logic Option
D .8 Changing Directories

E TABWIN - Tableau Editor for Windows (R)
E.l Introduction .
E.2 File Menu
E.3 ViewMenu
E.4 Entering Hypotheses
E.5 Viewing Tableaus .
E.6 Building Tableaus . .

F COMPLETE - Tableau Completer for DOS

G COMPWIN - Tableau Completer for Windows (R)

G .1 Introduction .
G.2 File Menu ..

lV

409

413
. 413
. 414
. 414
. 415
. 415
. 417
. 418
. 418
. 418
. 418
. 419
. 420
. 420
. 420
. 421
. 422
. 423
. 423
. 424
. 426

427
. . 427

. 429

. 429

. 430

. 431

. 431

433

435
. 435
. 436

G.3 View Menu
G .4 Building a Finished Tableau . .
G.5 Other Commands

H PREDCALC - Predicate Calculator for DOS
H. l Introduction ·
H.2 Getting Started
H.3 Title Screen ..
H.4 Display Modes .
H.5 Goals "'
H.6 The Calculator Pad

H.6.1 The Time Counter
H.6.2 Moving Within the C~lc~ia~o~ P~d·
H.6.3 The Help Window
H.6.4 Mouse
H.6.5 Using the Calculator Buttons

H. 7 The Letter Commands
H.8 Changing Directories . : : : : : : : : :

... 437
. 437
. 438

439
. 439
. 440
. 440
. 441
. 442
. 443
. 443
. 443
. 443
. 444
. 444
. 445
. 448

I PREDWIN - Predicate Calculator for Windows (R)
I.l Introduction ..
I.2 Goals

449
. 449
. 450
. 451
. 451
. 453
. 454
. 455

I.3 The Help Menu : : : : : : : : : : : ..
I.4 The Calculator Pad
I.5 The File Menu
I.6 The View Menu
I. 7 The Options Menu

J GNUMBER - Godel Numberer for DOS
J.1 Introduction
J .2 Getting Started
J .3 Title Screen
J .4 Execution M~d~

J.4.1 Viewing M~r~ in~t~u~t.io~~ ~r
0

Re~i~t~r~
J.4.2 Execution Mode Commands

J .5 Program Mode
J.5.1 Moving Within the Screen

v

457
. 457
. 458
. 458
. 459
. 460
. 460
. 461
. 462

J .5.2 Commands in the Program Mode ..
J .6 Instruction Editor · · · · · · · ·

J .6.1 Register Machine Instruction Letters
J .6.2 Entering Register Machine Instructions
J .6.3 Register Machine Program Files
J .6.4 Advanced Instruction Letters

J. 7 Register Mode ·
J. 7 .1 Moving Within the Registers . .
J.7.2 Entering a Number into a Register
J. 7-.3 Exploring a Register · ·
J. 7.4 Register Mode Commands · ·
J. 7.5 Advanced Register Mode Commands

J .8 Changing Directories · · · ·

K GNUMWIN - Godel Numberer for Windows (R)
K.l Introduction
K.2 Program Execution
K.3 Register Machine Instructions
K.4 File Menu
K.5 Program Menu ...
K.6 The Registers Menu.
K. 7 Windows Menu . . .
K.8 Options Menu
K.9 Step Command and Go Menu

Bibliography

Index

Vl

. 462

. 464

. 464

. 465

. 465

. 466

. 467

. 467

. 467

. 468

. 468

. 468

. 470

471
. 471
. 473
. 473
. 474
. 475
. 475
. 476
. 476
. 477

479

480

-Preface

This course is concerned with the two broad topics of logic and com­
putability and the relationship between them. Classical propositional
and predicate logic is the topic for the first three chapters of the text,
the theory of computable functions occupies the fourth chapter, and
the relationship between the two, as embodied in the Incompleteness

· . Theorems of Godel, comprises the fifth chapter .
A package of computer programs called Logiclab is included with

this book. The package contains both DOS and Windows versions
of four programs. The DOS versions are TABLEAU, COMPLETE,
PREDCALC, and GNUMBER, and the Windows versions are TAB­
WIN, COMPWIN, PREDWIN, and GNUMWIN. These programs are
keyed to the book and are desig,ned to be used for problems, student ex­
perimentation, and classroom demonstrations. They work on an IBM
PC or compatible personal computer. Many of the problem sets in
this book use the Logiclab programs. The Windows versions work with
Windows 3.0 or later, and with Windows 95, and have built-in tuto­
rials which will quickly show you how to use the programs. Complete

·-~--,:.-.:'"··"'·-_,, •--··---·--·ln for the programs are included in the appendices at the end
of the book.

While there are no specific mathematical prerequisites for the book,
some experience with abstract mathematical proof is crucial. Some ba­
sic mathematical concepts used in this text are explained in Appendix
A .. The material of Chapters 2 and 3 will be more meaningful to the
student who has had a course in linear algebra or abstract algebra.

vu

About the Authors

Jerome Keisler, Kenneth Kunen, Terrence Millar, Arnold Miller, and Joel
R9bbin are Professors of Mathematics at the University of Wisconsin in
Mad}son. Kenneth Kunen is also a Profes$or of Computer Science, and
Terrence Millar is also a Dean in the Graduate School. Paul Corazza has taught
at the University of Wis~onsin and is a Professor of Mathematics at Maharishi
International University. The authors have published numerous textbooks and
research articles -in mathematical logic and other areas of mathematics. Jerome
Keisler received his Ph.D. degree from the University of California at Berkeley,
Paul Corazza from Auburn University, Kenneth Kimen from Stanford·
University, Terrence Millar from Cornell University, Arnold Miller from the
University of California at Berkeley, and Joel Robbin from Princeton
University.

MATHEMATICAL LOGIC AND COMPUTABILITY

Chapter 1

Propositional· Logic

This book is about formal languages which are powerful enough for the
development of mathematics. Unlike natural languages such as English,
formal languages have a precise set of rules for forming sentences. This
set of rules is called the syntax of the language.

In this chapter we study a very simple formal language called propo­
sitional logic. The main topics will be well formed formulas (or wffs),
formal tableau proofs, and models. These concepts will be tied together
at the end of the chapter with the Completeness Theorem. At the end
of the chapter there are two problem sets. One problem set uses the
TABLEAU program and is done on a computer. It gives the student a
set of examples of formal tableau proofs, and some experience in build­
ing such proofs. The other problem set is a collection of pencil and
paper problems.

1.1 Introduction

In propositional logic one can build new statements out of old state­
ments using propositional connectives. These connectives are not,
and, or, if,. and if and only if We are only concerned with the common
mathematical meanings of these connectives. In some cases the math­
ematical meaning is slightly different from the meaning in everyday
English. We now explain these meanings.

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

NEGATION. A sentence of form 'not p' is true wh:n pis ~alse, and
is false when pis true. The symbol used in mathematical logic for not
is ...,, Of the two sentences

-i2+2=4

-i2+2=5

the first is false while the second is true. The sentence -ip is called the
negation of p.

CONJUNCTION. A sentence of form 'p and q'is true exac~ly when
both p and q are true. The mathematical symbol for and 1s /\ (or
sometimes &) . Of the four sentences

2+2 4 A 2+3 5

2+2=4 A 2+3=7

2+2=6 A 2+3=5

2+2=6 A 2+3=7

the first is true and the last three are false. The sentence p A q is called
the conjunction of p and q. . .
. The words and and but have the same meanmg for the mathemati­
cian. For example, the statement

"11' > 3 but 11' < 3.2"

has the same mathematical meaning as· the statement

· "11' > 3 and 11' < 3.2."

DISJUNCTION. A sentence of form 'p or q' is true exactly when
at least one of the sentences p, q is true.

The symbol used in mathematical logic for or is V. Of the four
sentences

2+2 4 v 2+3 = 5

2+2=4 v 2+3=7

2+2=6 v 2+3=5

2+2=6 v 2+3=7

1.1. INTRODUCTION
3

the first three are true while the last is false. The sentence p V q is
called the disjunction of p and q.

In everyday usage, the phrase soup or salad included in a restau­
rant menu means that the customer can have either soup or s~lad with
his/her dinner at no extra cost but not both. This usage of the word
or is called exclusive (because it excludes the case where both compo­
nents are true). On the other hand, the question Do you want cream
or s.ugar with your coffee? means cream or sugar or both. This is the
inclusive meaning of the word or, and is sometimes written and/orin
English. Mathematicians 'always use the inclusive meaning; when they
intend the exclusive meaning they say so explicitly as in p or q but not
both.

IMPLICATION. 'p implies q' is false exactly when p is true but
q is false. The mathematical symbol for "implies" is *· Of the four
sentences

2+2 4 =} 2+3 5
2+2==4 =} 2+3=7
2+2 6 =?- 2+3=5
2+2=6 * 2+3=7

the second is false and the first, third and fourth are true.
The forms 'p implies q', 'if p, then q', 'q, if p', 'p only if q', and 'q

whenever p' all have the same meaning for the mathematician.
This usage is in sharp contrast to the usage in everyday language.

In common discourse a sentence of form if p then q or p implies q
suggests that there is a causal relationship between p ·and q. Consider
for example the sentence

If Columbus discovered America, then Aristotle was a Greek.

. Since Aristotle was indeed a Greek this sentence either has form If true
then true or If false then true and is thus true according to the meaning
of implies we have adopted. However, common usage would judge this
sentence either false or nonsensical because there is no causal relation
between Columbus's voyage and Aristotle's nationality.

4 CHAPTER 1. PROPOSITIONAL LOGIC

The mathematical usage of p implies q is much simpler than· the
everyday usage. The main advantage of the mathematical usage is
that the truth value of p implies q depends only on the truth values of
p and q, and not on other aspects of p and of q.

EQUIVALENCE. The forms 'p if and only if q', 'pis equivalent to q',
and 'p exactly when q' all have the same meaning for the mathematician:
they are true when p and q have the same truth value and false when
p and q have different truth values.

Sometimes iff is used as an abbreviation for if and only if The
mathematical symbol for if and only if is{::}. Equivalence is the equality
of propositional logic, because p {:} q says that the truth values of p
and q are equal to each other.

Of the four sentences

2+2=4 {::} 2+3=5
2+2 4 {::} 2+3 7

2+2=6 {::} 2+3=5
2+2 6 {::} 2+3=7

the first and last are true while the other two are false.
The statement p if and only if q has the same meaning as if p then

q and if q then p.
For each of the connectives which we have introduced, the truth

value of the new sentence depends in a simple way on the truth values
of the original sentences. The rules for truth values are summarized in
the following tables.

A B A/\B AVB A=}B A{::}B
T T T T T T
T F F T F F
F T F T T F
F F F F T T

1.2. SYNTAX OF PROPOSITIONAL LOGIC 5

1.2 Syntax of Propositional Logic

In this section we give the grammatical rules for propositional logic.
A vocabulary for propositional logic is a non-empty set Po

of proposition symbols, which are denoted by lower case letters
p, q, r, s,pi, qi,.... The proposition symbols will stand for proposi­
tions, which are simple statements which may be combined to form
other statements. Propositional logic is not concerned with any in­
ternal structure these propositions may have; indeed, for us the only
meaning a proposition symbol may take is a truth value either true
or false.

We start our development of propositional logic by giving a list of
primitive symbols which includes the vocabulary, the connectives, and
two brackets which will be used in the same way that parentheses are
used in algebra.

The primitive symbols of the propositional logic are:

• proposition symbols p, q, r, ... from Po

• the negation sign --,

• the conjunction sign /\

• the disjunction sign V

• the implication sign =>

• the equivalence· sign {::}

• the left bracket [

• the right bracket] .

Any· finite sequence of these symbols is called a string. Here are
some examples of strings:

[p /\ q] p /\ q]] [pl\]] /\ /\.

Our first task is to specify the syntax of propositional logic: 'we
. must say which strings are grammatically correct. These strings are

6 CHAPTER 1. PROPOSITIONAL·LOGIC

called well-formed formulas, or more briefly, wffs. If we wish to be
specific about exactly which proposition symbols may appear in a w:ff
A we say it is a wff i~ the vocabulary P0•

Definition 1.2.1 Let Po be a set of proposition symbols. A wff
of propositional logic with the vocabulary Po is a string which can
be obtained by finitely many applications of the following rules of
formation:

(W:Po) If p E Po, then pis a wff;

(W :-i) If A is a w:ff, then •A is a w:ff;

(W:/\) if A is a w:ff and B is a wff, then [A/\ B] is a w:ff;

(W:V) if A is a w:ff and Bis a w:ff, then [AV B] is a w:ff;

(W :=>) if A is a w:ff and B is a w:ff, then [A =} B] is a w:ff;

(W:~) if A is a w:ff and Bis a w:ff, then [A~ B] is a w:ff ..

For example the string [pVq] can be built using the rules of formation
and hence is a w:ff.

However, the strings pV q, [p] V [q], Vpq (which correspond to [pV q]
in other treatments of propositional logic) cannot be built up in this
way and are not w:ffs.

We can show that a particular string A is a w:ff by using the rules
of formation repeatedly in a step by step manner. When we do this we
get a sequence of strings, called a parsing sequence for A. A string
which is not a. w:ff cannot have a parsing sequence.

For example, we show that the string [..,p => . [q /\ p]] is a w:ff by
giving a parsing sequence.

(1) pis a wff by (W:P0).

(2} q is a w:ff by (W:P0).

(3) [q /\ p] is a wff by (1), (2), and (W:/\).

(4) -ip is a w:ff by (1) and (W:•).

1.3 .. INDUCTION ON LENGTH OF WFFS 7

(5) [•p => [q /\ p]] is a wff by (3), (4), and (W:=>).

Most wffs have several different parsing sequences. We must always
start with one of the proposition letters, build up in some order from
simpler to more complex wffs, and end with the string which we want to
show is a wff. Here is another parsing sequence for the wff [•p => [q /\p]].

(1) q is a wff by (W:P0).

(2) pis a wff by (W:P0).

(3) •p is a w:ff by (2) and (W:•).

(4) [q /\ p] is a wff by (1), (2), and (W:/\).

(5) [•p=? [q/\p]] is awffby (3), (4), and (W:=>).

· As the example illustrates, a parsing sequence for a string S is a
finite sequence of strings Si, ... , Sn such that the last string Sn is S,
and each string Si in the sequence is either a proposition symbol, is
the negation of an earlier string in the sequence, or is built from two
earlier strings in the sequence using a binary connective. By applying
the definition of a w:ff at each step, we see that each string Si in the
sequence is a w:ff, and hence the final string S is a wff.

To parse a wff is to find a parsing sequence for the wff.
We shall use bold-face upper-case letters near the beginning of the

alphabet like A, B, C to denote arbitrary wffs. Other bold-face upper­
case letters like S, U will denote strings which might or might not be
wfu. ·

1.3 Induction on Length of Wffs

Many times in this book we shall use the idea of the length of a wff.
The length of a string of symbols ·

S = S1 ••. Sm

is the number m. The empty string has length zero. The only wffs of
. length one are the propositional symbols.

8 CHAPTER 1. PROPOSITIONAL LOGIC

Quite often we shall prove some fact about w:ffs by induction on the
length of wffs. We illustrate this method with a simple example. It
~ill be useful to use an asterisk * to stand for one of the four binary
connectives /\, V, *' ¢?.

Proposition 1.3.1 Every wff has the same number of left brackets as
right brackets.

Proof: Let us call a wff balanced if it has the same number of left as
right brackets. Every wff of length one is balanced because the only
wffs of length one are propositional symbols, which have no brackets.
Assume that every wff of length at most n is balanced. Let A be a wff
of length n + 1. There are two cases:

Case 1: A = •B. B is a wff of length at most n and hence is
balanced. A has the same brackets as B, so A is also balanced.

Case 2: A = [B * C] where * is a binary connective. B and C
are wffs of length at most n and hence are balanced. The number of
left brackets in A is. equal to the number of left brackets in B plus the
number of left brackets in C plus one, and the number of right brackets
in A is the same, so A is balanced.

We have assumed that all wffs of length at most n are balanced, and
proved that all wffs of length at most n + 1 are balanced. By induction,
all wffs are balanced. End of Proof.

The following fact turns out to be very useful and will be proved by
a somewhat harder induction on the length of a wff.

Proposition 1.3.2 If C is a wff of propositional logic, then no string
which is obtained by removing one or more symbols at the end of C is
a wff.

Before giving the proof, we shall rephrase the proposition and give
an example.

A string T is said to be an initial part of a string S if T is formed
by removing one or more symbols at the end of S.

We shall often use the notation TU to mean the string T followed
by the string U. If T is a string of length m and U is a string of length
n, then TU will be a string of length m + n.

1.3. INDUCTION ON LENGTH OF WFFS 9

Thus T is an initial part of S if S = TU for some string U which
is not empty. ·

Proposition 1.3.2 says that: no initial part of a wff of propositional
logic is a wff.

Here is an example. The initial parts of the wff

[[p =} [q /\ p]] =} q]

are the empty string and the strings

[, [[, [[p, [[p [[p * [, [[p =} [q, [[p * [qi\,
[[p * [q /\ p, [[p * [q /\ p], [[p =} [q /\ p]], [[p * [q /\ p]] *,
[[p * [q /\p]] * q.

None of these initial parts are wffs. The whole wff has length 13, and
the initial parts have lengths 0 through 12.

Proof of Proposition 1.3.2: We prove by induction on n that no
initial part of a wff of length at most n is a wff. This is true for n 1
because the only initial part of a wff of length 1 is the empty ·string,
which is not a wff. Assume that no initial part of a wff of length at
most n is a wff. Let A be a wff of length n + 1. We must prove that
no initial part of A is a wff. There are two cases:

Case l: A is •B. We assume that an initial part D of A is a wff
and get a contradiction. We have A = DT where T is not empty.
D is a wff starting with •, so D = •E where E is a wff. Removing
the initial • symbols from A= DT, we get B =ET. But then B is
a wff of length at most n which has a wff E as an initial part. This
contradicts our inductive hypothesis. Therefore no initial part of A is
a wff.

Case 2: A is [B * C] where * is a binary connective. We assume that
an initial part D of A is a wff and get a contradiction. A= DT where
Tis nonempty. Dis a wff starting with[, so D = [EoF] for some binary
connective o and some wffs E and F. Then B * C] = E o F]T. Both
B and E are wffs of length at most n. By our inductive hypothesis,
neither of B, E can be an initial part of the other. Since B and E
start at the same place within A, they must be the same, B = E.

10 CHAPTER 1. PROPOSITIONAL LOGIC

Therefore B * C] =Bo F]T, so*= o and C] = F]T. But then t~e
wff F is proper initial part of the wff C of lengt~ ~t. most n. Th:s
contradicts our inductive hypothesis. Therefore no m1tial part of A is
a wff. End of Proof.

1.4 Main Connective

In order to assign meanings to wffs we need to know that each wff
can be read in exactly one way. This will be shown by the Unique
Readability Theorem, which will be proved rather easily from the
preceding proposition. · . .

Each wff is either a propositional symbol, starts with a negat10n
symbol, or starts with a left bracket. A wff -,A is the negation of th.e
shorter wff A. Wffs which start with a left bracket are more compli­
cated, but they are also built up from shorter wffs. We shall see that
every wffwhich is not already a proposition symbol can be broken down
into shorter wffs in a unique way.

Consider a wff C which starts with a left bracket. C must have
been built from two other wffs using a binary connective. This binary
connective must be introduced in the last step of a parsing sequence,
and is called the main connective of C. It is clear that C has a
main connective. The Unique Readability Theorem will show that C
has only one main connective. This is the key fact we need in order to
break each wff down into simpler wffs in a unique way.

For example, the main connective of the wff

[[p [q /\ p]] :::} q]

is the second occurrence of :::} . The given wff is built from the two
shorter wffs

[p :::} [q /\ p]], q

using the connective :::} .
In this example, the connective :::} occurs twice in the wff, but only

the second occurrence counts as the main connective.

1.4. MAIN CONNECTIVE
11

Definition 1.4.1 We say that an occurrence of a binary connective
* is a main connective of a wff C if C [A* B] where A and B are
wffs.

Theorem 1.4.2 (Unique Readability) Each propositional wff C
which begins with a left bracket has exactly one main connective.

· Proof: We consider the case where A is a wff of the form [B *CJ for
some wffs B and C and binary connective *· Suppose that A is also
equal. to [Do EJ where D and E are wffs and o is a binary connective.
The wffs B and D are strings which both start at the same place, right
after the first left bracket in A. By Proposition 1.3.2, one of B, D
cannot be an initial part of the other. Therefore B D. It follows
that * o and C E! End of Proof.

Exercise 4 gives a useful rule for finding the main connective of a
wff C: An occurrence of a connective* is the main connective of C if
and only if C has the form [S * T) where S has the same number of left
brackets as right brackets.

To make our wffs more readable, we shall introduce abbreviated
wffs. These are strings which are not wffs according to our definition,
but are usually shorter and easier for people to read, and can always
be translated into a full wff.

Rules for Abbreviating Wffs

• The outermost brackets of a wff need not be written. For example,
we may write pV q as an abbreviation for the wff [pV q], and write
p ~ [q V r] as an abbreviation for the wff [p ~ [q V r]).

• We define the precedence of the binary connectives by the list

with /\ being of highest precedence and ¢:?- lowest. If* and o are
two binary connectives with * having higher precedence than o,
and A, B, Care wffs, then A* Bo C means [[A* BJ o C), and
Ao B * C means [Ao [B * C]].

12 CHAPTER 1. PROPOSITIONAL LOGIC

For example, p /\ q V r is an abbreviation for [[p /\ q] V r] rather than
for [p /\ [q V r]] , since /\ has a higher precedence than V.

The string which is. obtained from a wff C by using the preceding
rules whenever possible is called the standard abbreviation of C.
The standard abbreviation of a wff is usually easier to read than the
full wff. For this reason, the TABLEAU program always displays the
standard abbreviation of a wff.

Proposition 1.3.2 is not true for abbreviated wffs. Abbreviated wffs
frequently have initial parts which are abbreviated wffs or even full
wffs. For example, consider the string S = p V q /\ r. S is ~ot a wff, but
it is an abbreviation for the wff [p V [q /\ r]]. The wff pis an initial part
of A. The string p V q, which is an abbreviation for the wff [p V q] is
another initial part of S. '

Given the standard abbreviation C' of a wff C, it is always possible
to recover the original wff C . Exercise 9 gives an easy way to do this
by finding which symbol of C' corresponds to the main connective of
the original wff C.

In defining the standard abbreviation, we have not changed our
notion of a wff. We shall always use full wffs in the original sense when
proving theorems about wffs, but will often use the abbreviated form
when discussing particular examples.

There are two other conventions which we shall sometimes use to
improve readability. ,

The first of these conventions involves repeated /\ or repeated V
connectives. We may write A/\ B /\ G instead of [A/\ B] /\ C. Similarly,
we may write AV B V C instead of [AV B] V C. Note that [[p /\ q] /\ r]
and [p /\ [q /\ r]] are two different wffs. The string p /\ q /\ r is an
abbreviation for the first wff [[p /\ q] /\ r], but not for the second wff
[pl\ [q /\ r]J. This convention is particularly useful when we wish to write
a conjunction or disjunction of a finite number of wffs, for example,
Ai /\ Az /\ A3 /\ A4 /\As, or A1 /\···/\An.

Our second convention is that we may insert an extra pair of brack­
ets around a wff to make it easier to read.

Notice that in the rules of formation of wffs, no new brackets are
required in forming the negation ·A of a wff A. Instead of the rule
(W:•), _we could have used the rule that if A is a wff, then [•A] is a
wff. This was not done because it would only ad~ an unnecessary extra

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 13

pair of brackets.
According to the rules, •p /\ q means [•p /\ q], and does not mean

•[p /\ q]. To remind us of this fact, we might write [•p] /\ q instead of

•p /\ q.
A string obtained from a wff C using some combination of the con-

ventions in this section will be called an abbreviation of C. Thus
each wff has many abbreviations, but only one standard abbreviation.
The TABLEAU program accepts as input any abbreviation of a wff.
But after you finish typing the abbreviated wff at the keyboard, the
program will display only its standard abbreviated form.

1.5 Semantics of Propositional Logic

In this section we shall assign truth values to wffs of propositional logic.
· We start with the notion of a model, which assigns a truth value to each

propositional symbol. Given a model, we can then compute the truth
value of any wff by a step by step process which parallels the rules for
building wffs.

There are two truth values in propositional logic, T and F. A
model M for propositional logic of type Po is a function which
assigns to each proposition symbol p E Po a truth value which we

denote by PM.
This is the first of many times in this text when we shall use the

mathematic~! concept of a function. In general, a function f from a
set A to a set B is a mathematical object which assigns an element
J(a) E B to each element a E A. We sometimes use the notation
f : A -+ B to indicate that f is a function from A to B. Thus a model
for propositional logic is just a function M : Po-+ {T, F}.

For example, if the vocabulary contains two propositional symbols,
Po= {p, q}, there are 4 different models of type Po, which we may call

Mo ... M3:
PMo = T,qMo = T,

PM1 = T,qM1 = F,

PM2 F,qM2 = T,

PMa = F,qMa = F.

14 CHAPTER 1. PROPOSITIONAL LOGIC

If Po has n propositional symbols where n is finite, there are 2n
different models of type P0 • If Po is infinite then there are infinitely
many models of type P0 •

Figure 1.5 lists the rules for computing the truth value AM of a wff
A in model M.

(M:Po)

(M:-.)

(M:/\)

(M:V)

. (M:=>)

(M:{::})

Truth Value Rules

If A is a propositional symbol p, AM = PMi

[-.ALvi = T
(•A]M=F

if AM .F;
if AM T.

[A/\ B]M = T if AM T and BM = T;
[A/\ B]M = F otherwise.

[AV B]M = T if AM T or BM = T;
[AV B]M = F otherwise.

(A=> B]M = T if AM F or BM = T;
[A => B]M = F otherwise.

[A {::} B]M = T if AM BM ;
[A{::} B]M = F otherwise.

Figure 1.1: Truth Value Rules for Propositional Logic.

1.5. SEMANTICS OF PROPOSITIONAL LOGIC 15

Using these rules, the truth value of each wff in each model can be
computed by choosing a parsing sequence for the wff and applying one
of the rules at each step.

For example, let us compute the value of [p => -iq] => [q V p] for a
model M with PM T and qM = F. We first parse the wff.

(1) pis a wff by (W:Po).

(2) q is a wff by (W:Po).

(3) -.q is a wff by (2) and (W:-.).

(4) [p => •q] is a wff by (1), (3), and (W:=>).

(5) [q V p] is a wff by (i), (2), and (W:V).

(6) [[p => -iq] => [q V p]] is a wff by (4), (5), and (W:=>).

Now we apply the rules for AM:

(1) PM= T.

(2) qM = F.

(3) [-.q]M T by (2) and (M:-i).

(4) [p => -.q]M T by (1), (3), and (M::::}).

(5) [q V P]M T by (1),(2), and (M:V).

(6) ([p => -.q] => [q V p]]M = T by (4),(5), and (M:=>).

The next theorem states a vitally important fact about truth values:
Although a wff can have many different parsing sequences, the truth
value depends only on the model and the wff, and does not depend on
the particular parsing sequence· which was used to construct the wff.

Theorem 1.5.1 ·Given a model M and a wff A, the truth value AM
·is the same for all parsing sequences of A.

16 CHAPTER 1. PROPOSITIONAL LOGIC

This theorem shows that given a model M for P0 , there is a unique
fonction which assigns a truth value AM to each wff A and satisfies all
the rules in Figure 1.5.

We leave the proof of this theorem as an exercise at the end of the
chapter. Hint: the proof uses ideas that we have already developed
in this book, the Unique Readability Theorem and induction on the
length of wffs.

There are several different ways of saying that a wff is true in a
model, which call attention to the model, the wff, or the truth value.

We shall often write the equation AM = T in the alternate form
M f= A. This alternate form uses .the useful "turnstile symbol" f=,
which is read "models," or "is a model of." The following five expres­
sions all mean the same thing:

AM=T
A is true in M
A holds in M.
M f=A
M is a model of A

Similarly, the following are the same:

AM F
A is false in M.
M~A

In the next proposition we write down rules for truth values which
are similar to the rules for tableau proofs in propositional logic which
will be giVen later on in this chapter.

Proposition 1.5.2 Let M be a model for propositional logic and A
and B be wff s. Then:

If M f= ••A, then M f= A.

[EJ If M f= [A/\ BL then M f= A and M f= B.

I•/\ I If M F= •[A/\ BL then M f= -:-iA or M f= •B.

If M F= [AV B], then either M f= A or M f= B.

1.6. TRUTH TABLES AND TAUTOLOGIES 17

I •VI If M F= •[AV B], then M F= •A and M ~ •B.

If M f= [A:::} B], then either M f= ·A or M f= B ..

If M f= ·[A* B], then M f= A and M f= •B.

If M f= [A{:} B), then either both M f= A and M f= B or else
both M f= ·A and M f= ·B.

1-i {:}I If M f= •[A{:} B], then either both M f= A and M F= •B or
else both M f= •A and M f= B.

1.6 Truth Tables and Tautologies

The evaluation of the truth value AM of a wff A in a model M is so
mechanical that we can arrange the work in a table. We first review
our semantical rules in tabular form:

and

A B A/\B AVB A=>B A¢:> B
T T T T T T

T F F T F F

F T F T T F

F F F F T T

Now we can evaluate AM by the following strategy.
We first write the wff A, and then underneath each occurrence of a

proposition symbol we write the symbol's value:

[p :::} -,
T

q] :::} [q v p]
F F T

18 CHAPTER 1. PROPOSITIONAL LOGIC

Then we fill in the value of each wff on the parsing sequence under its
·main connective:

[p :::},
T

T
T

q] :::} [q v p]
F F T

T

T

To save space we may write all the truth values on the same line:

[p :::}, q] :::} [q v p]
TTTFTFTT

A wff A is called a tautology if it is true in every model: M f= A
for every model M. To check if A is a tautology, we can make a truth
table which computes the value of A in every possible model.

Take for the vocabulary Po a finite set of propositional symbols
which contains at least every propositional symbol in A .. The rows
of the truth table will correspond to the models M of type P0 •

columns of the truth table will correspond to the proposition symbols
and connectives in the string A. For example,

[p :::}, q] :::} [q v p]
T F F T T T T T
T T T F T F T T
F T F T T T T F
:F T T F F F F F

The entries in the column under the main connective (the fifth column
in this example) give the values for the whole wff. Since the last of
these values is F, the wff is not a tautology.

Here is a tautology:

...., p :::} [p :::} q]
F T T T T T
F T T T F F
T F T F T T
T F T F T F

1.7. TABLEAUS 19

Note that the same table shows that •A :::} [A :::} B] is a tautology for
any wffs A and B (not just proposition symbols):

...., A =:;.. [A
F T T T
F T T T
T F T F
T F T F

:=;.. BJ
T T
F F
T T
T F

This is because the wffs A and B can only take the values T and F
just like the proposition symbols p and q.

Suppose we have a tautology C built from two proposition symbols
p and q. We will then another tautology D by replacing each p in
C by a wff A and replacing each q in C by a wff B. (A similar remark
holds for wffs with more than two proposition symbols).

1. 7 Tableaus

In ordinary discourse, a wff A is said to follow from another wff B
if, assuming B is true, one can show that A is true by purely logical
reasoning. Similarly, A follows from a list of other wffs B 1, ... , Bn if
one can show that A is true assuming that each of the wffs B 1 , ... , Bn is
true. Truth tables give us one method of showing that one wff follows
from others. In this section we shall introduce a second and more
practical method for doing this, the method of tableau proofs. Tableau
proofs have two major advantages over truth tables. First, a tableau
proof will usually be much shorter than the corresponding truth table
computation. Second, the method of tableau proofs carries over to the
more important predicate logic, while the method of truth tables does
not.

Often one can see very quickly (without computing the full truth
table) whether some particular wff is a tautology by using an indirect
argument. As an example we show that the wff p :::} [q [p /\ q]]
is a tautology. If not, there is a model M for its negation, i.e. (1)
M f= •[p :::} [q :::} [p /\ q]]. From (1) we obtain (2) M f= p and
(3) M f= •[q [p /\ q]. From (3) we obtain (4) M q and (5)

· M f= •[p /\ q]. From (5) we conclude that either (6) M •p or else

20 CHAPTER 1. PROPOSITIONAL LOGIC

(7) M P= -iq. But (6) contradicts (2) and (7) contradicts (4). Thus no
such model M exists; i.e. the wff p ::::} [q ::::} [p /\ q]] is a tautology as
claimed.

We can arrange this argument in a diagram, Figure 1.2, called a
tableau.

(1) -.[p::::} [q::::} (p /\ q]]] (negation of wff to prove)

(2) I
by (1) p

(3)
II

by (1) -.[q::::} [p /\ q]]

(4) I
by (3) q

(5) II by (3) -.[p /\ q]

(6, 7) -ip
/~

by (5) -iq

Figure 1.2: A Tableau Proof.

The steps in the original argument appear at "nodes" of the tableau.
The number to the left of a wff is its step number in the argument; the
number to the right is the number of the earlier step which justified the
given step. The nodes are connected by lines. (Later on we shall explain
why some of these lines are double). The two branches at the bottom of
the tree correspond to the two possibilities in the case analysis. There
are two ways to move from wff (1) down to the. bottom of the diagram:

(1)-(2)-(3)-(4)-(5)-(6) and (1)-(2)-(3)-(4)-(5)-(7);

Along each of these two branches there is a wff and its negation: namely
(2) and (6) for the former branch and (4) and (7) for the latter.

The method of tableaus can also be used to show that one wff
(called the conclusion) follows from one or more other wffs (called the
hypotheses). The tableau in Figure 1.3 shows that the wff p ::::} r
follows from the set of hypotheses p ::::} q and q ::::} r. The first node

1.7. TABLEAUS 21

is the negation of the conclusion, -.[p ::::} r], and the second and third
nodes contain the two hypotheses. On each branch of the tableau there
is a wff and its negation. This shows that it is impossible for both
hypotheses to be true and the conclusion to be false. Thus in any
model in which both hypotheses are true, the conclusion is also true.

(1) -,[p :::} r] (negation of wff to prove)

(2)
I hypothesis p::::} q

(3)
II hypothesis q::::} r

(4)
I by (1) p

(5)
II by (1) -.r

(6,7) -ip
/ ~ by (2) q

(8,9)
/ ~ by (3) 1q r

Figure 1.3: A Tableau Proof with Two Hypotheses.

We shall now extend the "turnstile" notation to apply to sets of
wffs as well as single wffs. This will make it easier to discuss the case
where one wff follows from a set of hypotheses. After that we will be
ready to explain the tableau method in general.

A finite set is a set of the form S = { s0 , ... , sn} where n is a
natural number. A countable set is an infinite set of the form S ==
{so, ... , sn, .. . } where n runs over all natural numbers. The empty set
is also considered to be a finite set.

Let us consider sets whose elements are wffs. In this book we shall
confine our attention to sets of wffs which are either finite or countable.
If H is a set of wffs and M is a model we shall say M models· H (or

. ·Mis.a model of H, or M satisfies H) and write M P= H if M models

22 CHAPTER 1. PROPOSITIONAL LOGIC

every element A of H:

M f= H iff M f= A for all A E H.

Of course, when His a finite set, say H = {A1, A2, ... , An}, then the
notations

and

are synonymous. However, the new notation M f= His handy, espe­
cially when H is an infinite set. A wff A is a tautology if and only if
the set {•A} consisting of the single wff •A has no models. Instead
of trying to show that a given wff is a tautology, the tableau method
tries to show that a given set of wffs has no models.

We now introduce yet another use of the "turnstile" symbol. A wff
A is called a semantic consequence of the set of wffs H, in symbols
H f= A, if every model of His a model of A. Evidently, A is a semantic
consequence of H if and only if the set HU {•A} has no models. The
notation "H f= A" is a formal description of the intuitive idea "A
follows from H."

To sum up, we have introduced three ways to use the "turnstile"
notation. M f= A means that M is a model of the wff A. M f= H
means that M is a model of the set of wffs H. H f= A means that
every model of His a model of A.

The tableau method which we now describe makes the task of de­
ciding whether H f= A holds more manageable, particularly in the case
of first order logic in the next chapter.

As a stepping stone to the mathematical definition of a tableau, we
first introduce the concept of a tree. A tree T is a system consisting
of a finite or countable set of points called the nodes of the tree, a
distinguished node T'T called the root of the tree, and a function 7r, or
7rT, which assigns to each node t distinct from the root another node
7r(t) called the parent oft; it is further required that if we repeatedly
take parents starting from any node t, forming the sequence of nodes

1. 7. TABLEAUS 23

we will reach the root node

in finitely many steps. nodes 1r1(t), 1r
2(t), 7r3 (t), ... are called the

proper ancestors of t; a node t' is an ancestor of t if it is either
t itself or is a proper ancestor of t. Thus the root is an ancestor of
every node, including itself. Conversely, each node s whose parent t
is called a child oft. A node of the tree which has no children is called
a terminal node.

It is customary to draw a tree upside downwith the root at the top,
because it is natural to start at the top of a piece of paper and work
down when building a tableau. Each node is connected to its parent
by a line. For example, in· the tree

a

c

~f

g

the root is a; the parent function is defined by 11" (b) 7r (c) = a, 7r (d)
b, 7r(e) = 7r(f) c, 7r(g) = e; the terminal nodes are d,f, g.

A tree with finitely many nodes, such as the preceding example, is
called a finite tree, and a tree with infinitely many nodes is called an
infinite tree. Infinite trees are possible because, although we required
that a node has only finitely many ancestors, a node can have infinitely
many descendants (children, grandchildren, etc.)

·The simplest example of an infinite tree is the tree of natural num­
bers, with the set of nodes T == {O, 1, 2, ... }, the root node rT 0, and
the parent function 11"(n) n -1. This tree has no terminal nodes, and
every node has exactly one child. Here is a picture.

24 CHAPTER 1. PROPOSITIONAL LOGIC

0

I
1
I
2

I
3

I

A subset r of a tree Tis called a branch of T if the root node rT

belongs to r' the parent of each nonroot node in r is in r' and each
node in r is either a terminal node of T or has exactly one child in r.
We say that a node t is on the branch r if t is an element of the set r .

. By successively taking parents, we see that for every node t on a
branch r, every ancestor of t is also on r. By successively choosing
children, we see that each node of a tree is on at least one branch of
the tree. A terminal node t will be on exactly one branch r, which is
equal to the set of all ancestors oft and is finite. On the other hand, a
node with more than one child will be on more than one branch.

A branch r will either have exactly one terminal node t, in which
case r is finite, or will have no terminal nodes, in which case r is
infinite. The number of nodes on a finite branch r is called the length
of r.

All the branches of a finite tree must be finite. In the above example
of a finite tree, the branches are (d, b, a), (!, c, a), (g, e, c, a).

The infinite tree of natural numbers has just one branch, which is
the whole tree.

Figure 1.2 at the beginning of this section is a tree with a wff at­
tached to each node. This is an example of a labeled tree. By a labeled
tree for propositional logic we shall mean a system consisting of a
tree T, a finite or countable set of wffs H which is called the set of
hypotheses,. and a wff (p(t) attached to each nonroot node t. We shall
say that the wff "A occurs at t" or that "A is t," when A= (p(t). All
the wffs in the hypothesis set H are considered to occur at the root

1.7. TABLEAUS 25

node.
A wff which occurs at a child of a node t will be called a child

wff (or simply child) of t, and we shall use similar terminology for
grandchildren, ancestors, etc. Thus a hypothesis wff is an ancestor of
every node of T.

We are now ready to define tableaus. An example of a tableau is
shown in Figure 1.2 at the start of this section. You will see hundreds
of additional examples of tableaus as you work the problems using the
TABLEAU computer program. The idea is that tableaus are labeled
trees which are built up step by step according to a particular set
of rules, called the tableau extension rules. In this process, we start
with just the root node labeled by the hypothesis set, and at each
step we form a new tableau by adding one or more new nodes with
attached wffs. During this process we form a sequence of larger and

·larger tableaus, called a tableau chain.

Definition 1.7.1 A propositional tableau chain is a finite or
infinite sequence of finite labeled trees To, ... , Tn, ... such that To
consists only of a root node with the set of hypotheses H, and each Tk+1

in the sequence is obtained from Tk by applying one of the following
tableau extension rules at a terminal node t of Tk:

If t has an ancestor ••A, extend Tk by adding the child A oft.

[ZJ If t has an ancestor A /\ B, extend by adding a child A and
grandchild B oft.

I 1/\ I If t has an ancestor •[A/\ B], extend by adding two children •A
and 1B oft.

[2J If t has an ancestor A V B, extend by adding two children A and
B oft.

I •VI If t has an ancestor •[AV B], extend by adding a child •A and
grandchild ·B of t.

I:::} I If t has an ancestor A :::} B, extend by adding two children ·A
.and B oft.

26 CHAPTER 1. PROPOSITIONAL LOGIC

1-. =?I If t has an ancestor -.[A=? B], extend by adding a child A and
a grandchild -.B oft.

I# I If t has an ancestor [A<=> B], extend by adding two children A
and •A oft, a child B of A, and a child -.B of -.A.

1-. #I If t has an ancestor •[A <=> B], extend by adding two children
A and -.A oft, a child •B of A, and a child B of -.A.

In each case, the ancestor wff is said to be used at t and the other
wffs mentioned are said to be added at t.

Definition 1. 7.2 A finite propositional tableau is a labeled tree
T which is the last term Tn of some finite propositional tableau chain
To, ... ,Tn.

Thus a finite propositional tableau has finitely many nodes, but its
hypothesis set H may be either finite or countable.

Definition 1. 7.3 An infinite propositional tableau is a labeled
tree T which is the union of some infinite propositional tableau chain

To, ... ,Tk, ... ,

in symbols, T uk=O Tk.
That is, T is the infinite labeled tree such that t is a node of T if

and only if tis a node of Tk for some k EN, and whenever t E Tk, the
parent 7r(t) and wff d>(t) are the same in T as in Tk.

By a propositional tableau with root ff we shall mean either a
finite or an infinite propositional tableau whose set of hypotheses is H.

The role of a tableau chain in building a tableau is analogous to the
role of a parsing sequence in building a wff 1 • To build a propositional
tableau, start with a tree T 0 consisting of a single node (its root) and
a set H of hypotheses at the root node. Then extend the tableau T 0

1The TABLEAU program makes ~t easy to build a finite tableau. The program
starts with a. tableau. To with only a root node, and forms a new tableau each time
the Extend command is used.

1.7. TABLEAUS 27

to a tableau T 1, and extend T 1 to T 2, and so on. Each extension uses
one of the set of nine rules for extending a finite propositional tableau
Tn. At each stage we choose a terminal node t of Tn and a wff C
which appears on the branch through t, and build Tn+l by adjoining
one, two, or four nodes below t according to the rule determined by the
form of C.

At each stage of the process of building a tableau, we will have
a finite propositional tableau Tk. If the process continues through
all k, the union of the chain of finite tableaus Tk will be an infinite
propositional tableau T.

For reference we have summarized the nine extension rules in Fig­
ure 1.4. This figure shows the node t and a wff C above it; the vertical
dots indicate the branch of the tableau through t so the figure shows
C on this branch. (It is not precluded that C be at t itsdf.) Below t
'in the figure are the wffs at the children oft, and' when appropriate the
grandchildren oft. When both child and gra:O:dchild are added together
in a single rule, they are connected by a double line.

28

t
I

A

AVB

CHAPTER 1. PROPOSITIONAL LOGIC

Tableau Extension Rules

AAB

A~B

t

t
I

A
'II
B

A/ \A
II II

B ·B
[fil

•[A'(B) •[A~ B)

t t
I I

·A A
II II

·B ·B

•[A~ B]

t

I· ~1

A~B

/ "" A ·A
II II
·B B

Figure 1.4: Propositional Tableau Extension Rules.

1.7. TABLEAUS 29

Tableaus will be used in two ways: to build a formal proof of a
wff A from a hypothesis set H, and to build a model of a set of wffs
H. Formal proofs will be finite tableaus, while both finite and infinite
tableaus will be used to build models.

We are now ready to define the notion of a tableau proof. The
tableau in Figure 1.2 at the beginning ~:J this section is an example of a
tableau proof. You will see other examples of tableau proofs when you
solve the problems using the TABLEAU program. Going along with
the idea of proving a wff by showing that its negation has no models,
we shall first define a tableau confutation of a set of hypotheses, and
then define a proof of a wff to be a confutation of the negation of the

wff.
We say that a wff A occurs along, or on, a branch r if A is either a

hypothesis (hence attached to the root node) or is attached to a nonroot
node of r. We call a branch r of a tableau contradictory if for some
wff A, both A and ·A occur along the branch.

Definition 1. 7.4 By a confutation of a hypothesis set H in propo­
sitional logic we mean a finite propositional tableau T with root H
such that every branch of T is contradictory 2

• By a confutation of
a wff A we mean a confutation of the one-element set {A}. By a
tableau proof of a wff A from a hypothesis set H we mean a tableau
confutation of H U-{ 1 A}.

The case that H is the empty set is of particular interest. By a
tableau proof of A we mean a tableau confutation of {·A}. This is the
same thing as a tableau proof of A from the empty set of hypotheses.

The "single turnstile" symbol I- is useful when discussing whether
or not a wff has a tableau proof. The notation

HI-A

means that· there· is a tableau proof of A from H. The notation I- A
means that there is a tableau proof of A.

the TABLE.AU program, one can see at a glance whether or not a finite
tableau with a finite root is a confutation. A node is colored. red .if every branch
through the node is contradictory. In a confutation every node is colored red.

30 CHAPTER 1. PROPOSITIONAL LOGIC

Since tableau confutations are by definition finite tableaus, all tableau
proofs have only finitely many nodes, even when the hypothesis set is
infinite.

In the next few sections yve shall prove the Soundness and Com­
pleteness Theorems, which will clarify the relationship between tableau
proofs and semantic consequences.

1.8 Soundness

In. this section we will prove the

Soundness Theorem

If a propositional wjf has a tableau proof, then it is a tautology.

The main step is the following

Lemma 1.8.1 Let T be a finite propositional tableau with root H. Let
M be a propositional model of the hypothesis set H. Then there is a
branch r such that M I= r J that is, M I= A I or every wff A on r.

Proof: By Definition 1. 7.1 there is a finite propositional tableau chain
To, Ti, ... such that T is the last term Tn. We must show that there
is a branch r of T such that every w:ff A which occurs on r holds in
M. To do this, we shallfind a sequence of branches rk of Tk, k :=:; n,
such that for each k < n , r,c c rk+i, and every w:ff A which occurs
on rk+i holds in M (in symbols, M I= rk+i)· Then r n is a branch of
T and M I= r n as required.

When k = 0 we take r 0 to be the set whose only element is the
root node, so that the w:ffs A on r 0 are simply those of H. Thus the
assumption ,1\lt I= H shows. that M I= r 0 • If Tk+t is obtained from
T k by extending at some node other than the terminal node of r k we

1.8. SOUNDNESS 31

simply take T k = r k+i and there is nothing to prove. Hence assume
that Tk+t is obtained from Tk by extending at the terminal node of rk
by applying one of the nine tableau extension rules to some w:ff Aj in
the list. We use a case analysis and Proposition 1.5.2.

· (1) If Ai is ••A then rk+1 is obtained from rk by adjoining A.

(2) If Ai is [A/\ B] then rk+t is obtained from rk by adjoining A and
B.

(3) If Aj is ·[A/\ BL then rk+l is obtained from rk by adjoining
either •A (if M I= ·A) or ·B (if M I= ·B).

(4) If Ai is [AV B], then rk+t is obtained from rk by adjoining either
A (if M I= A) or B (if M I= B).

(5) If Aj is ·[AV B], then rk+i is obtained from rk by adjoining •A
and •B.

(6) If Ai is [A B], then then rk+t is obtained from rk by adjoining
either ·A (if M I= ·A) or B (if M I= B).

(7) If Ai is •[A B], then then rk+i is obtained from rk by adjoining
A and 1 B.

(8) :If Ai is [A ¢:> B], then rk+1 is obtained from I\ by adjoining
either both A and B (if M I= A and M I= B) or else both •A
and ·B (if M •A and M I= ·B).

(9) If Aj is ·[A ¢:> B], then then rk+i is obtained from rk by adjoining
either both A and ·B (if M I= A and M I= ·B) or else both
·A and B (if M I= ·A and M I= B).

cases (1), (2), (5), and (7) the branch rk+l is the unique branch of
Tk+1 which extends rk; in the remaining cases rk+l is one of the two
branches of Tk+t which extend rk· . End of Proof.

The above lemma actually holds for infinite tableaus as well as finite
tableaus (Exercise 20), but we shall only use the lemma in the finite
case.

32 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.8.2 If a finite or countable set H of propositional wffs has
a tableau confutation, then H has no model.

Proof: Suppose His a hypothesis set and Tis a tableau confutation
of H; if H has a model M, then by the previous lemma, there is a
branch r of Teach of whose wffs holds in M. Since every branch of T
is contradictory, there is a wff A such that both A and •A are on r.
But this is impossible since by Definition 1.5, no model satisfie~ a wff
and its negation. End of Proof.

Theorem 1.8.3 (Extended Soundness Theorem) Suppose H is a
finite or countable set of propositional wffs and A is a propositional wff;
If H f- A then H F A/ in other words, if there is a tableau proof of A
from H, then A is a semantic consequence of H.

Proof: Given H and A and a tableau confutation T of HU {•A}, we
note that by the previous lemma, H U {•A} has no model, that is, no
model of H is also a model of •A. Thus, if M is a model of H, M is
a model of A. It follows that HF A. End of Proof.

A tableau confutation can be used to show that a propositional wff
is a tautology. Remember that a propositional wff A is a tautology if
and only if it is true in every model, and also if and only if -.A is false
in every model. Thus if •A has a confutation, then A is a tautology.
Therefore the Soundness Theorem in the box at the beginning of this
section is a corollary of the Extended Soundness Theorem.

1.9 Finished Sets

In this section we introduce the concept of a finished set of wffs. It will
be used in the proof of the Completeness Theorem in the next section.
The concept will be refined in the next chapter to handle predicate
logic.

By a basic wff we shall mean a propositional symbol or a negation
of a propositional symbol. The basic wffs are the ones which cannot
be broken down into simpler wffs by the rules for extending tableaus.
A set A of wffs is called contradictory iff it contains some wff A

1.9. FINISHED SETS 33

together with the negation •A of that wff. A set A of wffs is called
finished iff it is not contradictory and for each wff C E A either C is
basic or one of the following is true:

[-.-.] C has form -.-.A where A E A;

[/\] C has form [A/\ BJ where both A E A and B E A;

[-./\] C has form -.[A /\ B] where either -.A E A or -.B E A;

[V] C has form [AV B] where either A E A or B E A;

[-.v] Chas form -.[AV B] where both -.A EA and ·B EA;

[=}] C has form [A =? B] where either -.A E A or B E A;

[-. =>] Chas form -.[A=? B] where both A EA and -.BE A;

[{::}] C has form [A {::} B] where either both A E A and B E A or
else both •A EA and ·BE A;

[-. {::}] C has form -.[A{::} B] where either both A E A and -.B E A
or else both ·A EA and BE A.

Notice the similarity between this definition and the tableau extension
rules of Definition 1.7.l. Notice also that in each of these rules, the
new wffs have smaller length than the original wff C.

Here is an example of a finished set of wffs:

p A q,p :=;.. [s v p], s v p,p, q.

The set
p /\ q,p =? [s V p],p, q

is not finished because it does not satisfy rule [=?]. The set

p /\ q,p =? [~ V p],s V p,p

is not finished because it does not satisfy rule [/\]. The set

p /\ q,p::::;.. [s V p], -.p,p, q

is not finished because it is contradictory.

34 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.9.1 (Finished Set Lemma) Let A be a finished set of
wffs. Then A has a model. In fact, any model of the set of basic
wffs in ~ is a model of all the wffs in A.

Proof: Let us first note that the set of basic wffs in A has at least one
model. Let us define N by PN = T if p is in A and PN = F in p is
not in A. Then (because A is not contradictory) PM F if ..,p is in
A. Indeed, any model M in which each p which occurs in A is true,
and each p such that ..,p occurs in A is false, is a model of the set of
basic wffs in A. Given one model of the set of basic wffs in A, another
model of the set of basic wffs in A can be obtained by changing the
truth values of any propositional symbols q such that neither q nor ..,q
occur on A.

Let M be a model of all basic wffs in A. We must show that

M f=A,
that is, that M f= C for each wff CE ~. Now let R(n) be the following
property of a natural number n: For every wff C, if C belongs to A
and Chas length at most n, then M models C.

R(O), R(l), and R(2) are true because every wff of length ::; 2 is
basic, and M models every basic wff in A. Assume R(n). Suppose
that C has length at most n + 1 and belongs to A. By examining each
of the nine cases listed above, we see that since M models every wff in
~ of length at most n, M also models C. This proves R(n + 1). We
conclude by induction that R(n) holds for all n, and thus M models
every wff in A as required. End of Proof.

1.10 Completeness

In this section we will prove the

Completeness T.heorem

If a propositional wff is a tautology, then it has a tableau proof.

1.10. COMPLETENESS 35

The next lemma is the main fact which we shall prove in order to
get the Completeness Theorem.

Lemma 1.10.1 (Finite Main Lemma) Let H be a finite set of
propositional wffs. Either H has a tableau confutation or H has a
model.

We have already shown in Lemma 1.8.2 that H cam~ot have both a
tableau confutation and a model. This, combined with the Finite Main
Lemma above, shows that H has a tableau confutation if and only if
H does not have a model.

Here is the basic idea in proving the Finite Main Lemma. First make
a systematic attempt to find a tableau confutation of H by building a
very rich finite tableau, called a finished tableau. Then show that this

. finished tableau is either a tableau confutation of H, or else has a
branch whose wffs form a finished set which gives us a model of H.

To carry out this basic idea, we first give a careful definition of the
notion of a finished tableau. Then a finished tableau will be built in
the proof of the Tableau Extension Lemma. After that, near the end
of this section, we prove the Finite Main Lemma.

A branch r of a tableau is said to be finished if r is not contradic­
tory and every nonbasic wff on r is used at some node of r 3

• In other
words, a branch r is finished if and only if the set A of wffs which
occur along r is a finished set in the sense of the previous section. A
propositional tableau Tis said to be finished if every branch of T is
either finished or is finite and contradictory.

A confutation is automatically a finished tableau because every
branch is finite and contradictory. A finite finished tableau either has at
least one finished branch or is a confutation. Figure 1.5 is an example of
a finished tableau which is not a confutation. It has two contradictory
branches and one finished branch.

Finished tableaus can be either finite or infinite. In this section
we shall construct a finite finished tableau on the way to proving the

the TABLEAU program, a branch r is finished if its terminal node is yellow
and each node of r is either a basic wff or is shown by the Why command to be

· invoked at some other node of r.

36

(1)

(2)

(3)

(4)

(8,9)

CHAPTER 1. PROPOSITIONAL LOGIC

•[p ==> r]
I

p ==> q

II

q ==> p

I
p

II

(hypothesis)

hypothesis

hypothesis

by (1)

by (1)

by (2)

by (3)

Figure 1.5: A Finished Tableau.

Completeness Theorem. In the next section we shall use infinite fin­
ished tableaus to establish the connection between proofs and semantic
consequences of an infinite set of hypotheses.

A tableau T' is said to be an extension of a finite tableau T if
T' can be obtained from T by repeatedly adding nodes at the ends of
branches.

Lemma 1.10.2 (Tableau Extension Lemma) Every finite propo­
sitional tableau with a finite root H can be extended to a finite finished
tableau (with the same hypothesis set)4.

Proof: We shall call a wff A at a node t in a tableau unused if A
is not a basic wff and there is a noncontradictory branch through t on
which A is not used5 • Note that a tableau is finished if and only if
there are no unused wffs in the tableau.

algorithm for doing this is illustrated by the computer program COM­
PLETE, which is included with this book.

5 In the COMPLETE program, unused wffs are colored yellow, wffs through
which every branch is contradictory are colored red, and other wffs are colored
blue.

1.10. COMPLETENESS 37

Let H be a finite hypothesis set which remains fixed throughout our
proof. Given a finite tableau T with root H, let u(T) be the length of
the longest unused wff in T, with the provision that u(T) = 0 if there
are no unused wffs, that is if Tis finished. Since there are only finitely
many wffs occurring anywhere in T, the number u(T) exists. We prove

·the lemma by induction on u(T).
Let R(n) be the statement that every finite propositional tableau

T with root H and with u(T) < n can be extended to a finite finished
tableau. R(n) asserts that the lemma is true whenever u(T) < n. The
statement R(l) is true, because a tableau T with u(Tr < 1 is already
finished. Assume R(n). Choose a finite tableau T with root H and
u(T) < n+ 1. Extend T to a new finite tableau T' by using every unused
wff A in T once on every noncontradictory branch through A. Each
of the unused wffs in the original tableau T is used in the new tableau

· T'. Moreover, each new wff which was added in forming T' has length
less than u(T), because the added wffs always have smaller length than
the used wffs. Therefore u(T') < u(T) < n + 1, so u(T') < n. By
the induction hypothesis R(n), there is a finite finished extension T"
of T'. T" is also a finished extension of T. This proves R(n + 1) and
completes the induction. End of Proof.

Proof of the Finite Main Lemma: Let H be a finite set of wffs
which does not have a tableau confutation. By the Tableau Extensfon
Lemma, the tableau consisting of only a root node with hypothesis set
H can be extended to a finite finished tableau T. This tableau still has
root H. Since T is not a confutation, it has a finished branch r. By
the Finished Set Lemma 1. 9 .1, the set A of all wffs on r has a model
M. In particular, M is a model of Has required. End of Proof.

Theorem 1.10.3 (Extended Completeness Theorem) If a wff A
is a semantic consequence of a finite set of wffs H, then there is a
tableau proof of A from H. In other words,

H I= A implies H I- A.

Proof: Suppose that A is a semantic consequence of H. Then the set
formed by adding the negation of A to H has no models. By the Finite

38 CHAPTER 1. PROPOSITIONAL LOGIC

Main Lemma, this set has a tableau confutation, which is a tableau
proof of A from H. (The special case where the hypothesis set H is
empty is the Completeness Theorem in the box at the beginning of this
section.) End of Proof.

We reiterate that tableau proofs are finite. Thus in the Extended
Completeness Theorem, if H I= A then there is a finite tableau proof
of A from H. In the next section we see that this still works when the
hypothesis set H is infinite.

1.11 Compactness

In this section we shall show that the Extended Completeness Theorem
and other results of the last section hold for a countable set of hypothe­
ses. We are studying countable sets of hypotheses in this chapter to
prepare the way for predicate logic, where they are of great importance.
Most of contemporary of mathematics is based on two particular count­
able sets of hypotheses in predicate logic, Zermelo Fraenkel set theory,
to be introduced in Chapter 3, and Peano arithmetic, to be introduced
in Chapter 4.

The key result in this section is the following infinite form of· the
Main Lemma.

Lemma 1.11.1 (Main Lemma) Let H be a countable set of propo­
sitional wffs. Either H has a tableau confutation or H has a model.

We first show that each countable hypothesis set has a finished
tableau.

Lemma 1.11.2 For every finite or countable set H of propositional
wffs, there is a finished tableau with root H.

Proof: The Tableau Extension Lemma shows that each finite hypoth­
esis set His the root of a finished tableau. It remains to give the proof
in the case that H is a countable set

H = {A1, ... ,An, ... }.

1.11. COMPACTNESS 39

Let Hn be the finite subset

composed of the first n elements of H. We shall say that a finite
tableau T n with root H is finished for Hn if the tableau T~ which is
the same as Tn except that it has root Hn instead of H is a finished
tableau. Using the Tableau Extension Lemma countably many times,
we obtain a sequence of finite tableaus To, ... , Tn, ... with root H such
that To has only a root node, and for each n > 0, Tn is .an extension
of Tn-l which is finished for Hn. We can also take the Tn to have
the additional property that no contradictory branch r of Tn-i gets .
extended in forming Tn, that is, the terminal node of r in Tn-1 is still
a terminal node of T n.

Let T be the union T Uh::o Tk. Let r be a branch of T. If r is
contradictory, with a contradictory pair A, •A, then there is an n such
that both of the nodes A and ·A belong to T n. Then r n T n is already
a contradictory branch of Tn. By our construction, the contradictory
branch r n T n never gets extended after stage n, so r r n T n and r
is finite.

On the other hand, if r is noncontradictory, then our construction
insures that r is a finished branch. Therefore T is a finished tableau
with root H. End of Proof.

Our next lemma is a general mathemathematical principle which is
useful in a variety of circumstances. We shall use it here to show that
if all the branches of a tableau are finite and contradictory, then the
tableau itself is finite and hence is a confutation.

Theorem 1.11.3 (Konig Tree Theorem) If a tree has infinitely
many nodes and each node has finitely many children,· then the tree
has an infinite branch.

Proof: To prove this, choose an infinite sequence .of nodes to, t1, t2, ...
with the properties

1. t 0 is the root node;

2. tn+l is a child of tn; and

40 CHAPTER 1. PROPOSITIONAL LOGIC

3. each tn has infinitely many nodes beneath it;

Given a node tn with infinitely many nodes beneath it, one of its chil­
dren must also have infinitely many nodes beneath it. This is because
tn has finitely many children and an infinite set cannot be the union of
finitely many finite sets. Let tn+I be any child of tn which has infinitely
many nodes beneath it. The set of nodes { tn : n = 0, 1, 2, ... } is an
infinite branch. End of Proof.

The Ki:>nig Tree Theorem fails if we omit the requirement that each
node have only finitely many children; see Exercise 30.

Corollary 1.11.4 Let T be a finished tableau. Then either T has a
finished branch or T is a· tableau confutation.

Proof: Suppose T has no finished branch. Then every branch of Tis
finite and contradictory. Since every branch of T is finite, T is a finite
tableau by the Konig Tree Theorem. Since Tis finite and every branch
of T is contradictory, T is a tableau confutation. End of Proof.

Proof of the Main Lemma: Suppose that H does not have a tableau
confutation. By Lemma 1.11.2, there is a finished tableau T with root
H. T is not a tableau confutation by assumption, so by the preceding
corollary, T has a finished branch r. By the Finished Set Lemma,
the set of wffs on r has a model M. Finally, since all the wffs in the
hypothesis set H occur on r, M is a model of H. End of Proof.

We now give several consequences of the Main Lemma. Our first
consequence is the Compactness Theorem

Theorem 1.11.5 (Compactness Theorem) Let H be a countable
set of propositional wffs. Suppose that every finite subset of H has a
model. Then H has a model 6 •

Proof: Suppose that H does not have a model. By the Main Lemma,
H has a tableau confutation T. Since each tableau confutation is a

6The Compactness Theorem is actually true even when H is an uncountable set
of wffs. The proof in the general case requires transfinite induction which is beyond
the scope of this book.

1.11. COMPACTNESS 41

finite tableau, the set H' of all wffs in H which are used somewhere
in T is finite. Now let T' be the labeled tree which is the same as T
but with root Ho instead of H. Then T' is a tableau confutation of
H'. By the Extended Soundness Theorem, H' has no models. But this
contradicts the assumption that every finite subset of H has a model.
Therefore H does have a model. End of Proof.

As we mentioned at the beginning of this section, the Extended
Completeness Theorem holds for countable as well as finite hypothesis
sets H. The Soundness Theorem also holds for such hypothesis sets.
We can therefore combine the Extended Soundness, Extended Com­
pleteness, and the Compactness Theorems together into one concise
statement.

Corollary 1.11.6 Suppose H is a finite or countable set of wffs and
A is a wff. Then

Hr A if and only if Hf= A.

Proof: The Extended Soundness Theorem says that if H r A then
H f= A. Suppose that H f= A. Then H U {~A} has no models.
By the Compactness Theorem, there is a finite subset· Ho C H such
that Ho U {·A} has no models. Then Ho -F A. By the Extended.
Completeness Theorem, Ho r A. Therefore H I- A. End of Proof.

Let us say that a set. H of wffs is logically consistent if there is
no wff A for which Hr [A/\ •A]. From the last corollary, we have the
following:

Corollary 1.11. 7 Suppose His a finite or countable ·set of wffs. Then
the fallowing are equivalent:

1. H has a model.

2. H is logically consistent.

3. H has no tableau confutation.

Proof: Exercise 31. End of Proof.

One application of the Propositional Compactness Theorem is that
the Four Color Theorem for finite maps implies the Four Color Theorem
for infinite maps. That is:

42 CHAPTER 1. PROPOSITIONAL LOGIC

If every finite map in the plane can be colored with four
colors so that no two adjacent countries have the same color,
then the same is true for every infinite map in the plane.

Suppose that C is a set of countries on some given map. Introduce
four proposition symbols

1 2 3 4
Pc,Pc,Pc,Pc

for each country c/inC. The proposition symbol p~ is meant to express
the fact that the color of country c is i. We thus define the vocabulary
Po to be the set

,.,.., { 1 2 3 4 • C} ro = Pc, Pc, Pc, Pc · c E ·

Let H be the set of all sentences of the following forms:

1. P! V p~ V p~ V p~ for each c;

2. p~ =>·~for each c and for each i =f. j; and

3. ·[p~ /\ p~,] for each i and for each pair of distinct countries c and
c' which are next to each other.

Now a model M for H corresponds to a coloring of the countries by
the four colors { 1, 2, 3, 4} such that adjacent countries are colored differ­
ently. Ifevery finite submap of the given map has a four coloring, then
every finite subset of H has a model. By the Compactness Theorem H
has a model, hence the entire map can be four colored.

For another application of the Compactness Theorem of this kind,
see Exercise 32. ·

1.12 Valid Arguments

In this section we shall use tableaus to obtain some valid consequence
patterns which arise frequently in mathematical proofs. Here is a first
example.

1.12. VALID ARGUMENTS 43

Modus Ponens. From p and p => q we may conclude q.

p,p => q F= q

In view of the Soundness Theorem, we need only give a tableau proof
of q from the hypotheses p and p => q. Here it is.

•q

I
p

I
p => q

•p q

If, in developing a mathematical proof, we happen to know that cer­
tain statements A 1 , .•• , Ak are all true (they may have already been
proved or they may be assumed as hypotheses) and we know that an­
other statement B is a semantic consequence of Ai, ... , Ak, then we
can conclude that B is also true. Thus, taking Modus Ponens as an
example, if we can establish the truth of p and p => q, then we may
conclude that q is also true.

Laws such as Modus Ponens are called valid argument forms.
They are often used without being mentioned in ordinary mathematical
proofs, and are helpful in understanding the plan of the proof. Here is
a typical example of a mathematical proof which makes use of Modus
Ponens.

Proposition 1.12.1 There is an x in the interval (1, 7r) such that
ln(x) = sin(x), where ln(x) is the natural logarithm of x.

Proof: Let J(x) = ln(x) - sin(x). We must show that there is an
x E (1, 7r) such that J(x) = 0. The Intermediate Value Theorem states
that if f is continuous on a closed interval [a,b] and f(a) < 0 < f(b),

·then there exists x E (a, b) such that f (x) = 0. We note that f is

44 CHAPTER 1. PROPOSITIONALLOGIC

continuous on [1,-rr] and that f (1) < 0 < f (tr). Therefore there exists
x E (1, tr) such that f(x) = 0. End of Proof.

The above proof does not explicitly mention the Law of Modus
Ponens. In fact, Modus Ponens is so familiar that it is rarely mentioned
in a proof and should be understood as implicit in the argument. To see
where Modus Ponens was ·used, let p be the statement "f is continuous
on (1, tr] and J(l) < 0 < f(tr)," and let q be the statement to be proved,
"there exists x E (1, tr) such that f(x) 0.'' We know that p is true,
and the Intermediate Value Theorem gives us p =} q. The statement q
follows from p and p =? q by Modus Ponens.

We shall now use tableaus to find two more valid argument forms,
and illustrate them in actual mathematical proofs.

Indirect Proof. From •p =? [q /\ •q] we may conclude p.

Verbally, the Indirect Proof Law says that in order to prove p, we may
show that •p leads to a contradiction. Here is a tableau proof.

'P

I
-.p :::} q /\ •q

----- -........._ ''P q /\ •q

I
q

II

The proof of Euclid's famous theorem that there are infinitely many
prime numbers can by analyzed as an Indirect Proof.

Proposition 1.12.2 There is no largest prime.

1.12. VALID ARGUMENTS 45

Proof: Suppose there is a largest prime a. Let b = a! + 1. Let c be
a prime number which divides b. Since a is the largest prime, c :::; a.
However, no number d :::; a divides b, so •c :::; a. We conclude that
there is no largest prime. End of Proof.

To see where the Indirect Proof Law was used, let p denote the
sentence to be proved, in this case "a is not the largest prime." Let q
be the statement "c :::; a." In the course of the proof we have shown
that •p => q /\ •q. Using the Indirect Proof Law, it follows that the
desired conclusion pis true.

Here is another commonly used valid argument form and its tableau
proof.

Proof by Cases. From p:::} q and -.p:::} q we may conclude q.

p:::} q, •p:::} q I= q

Verbally, the Proof by Cases Law says that in order to prove q, we may
prove that q holds in each of the two cases p and •p. Tableau proof:

•q

I
p :::} q

I
•p :::} q

~ -----q

We give an example of the Proof by Cases Law from the calculus.

Proposition 1.12.3 (Rolle's Theorem) If a, bare real numbers with
a < b, the function f is continuous on [a, b] and differentiable on (a, b),
and f(a) = f(b) = 0, then there is a number c in (a, b) such that
f'(c) 0.

46 CHAPTER 1. PROPOSITIONAL LOGIC

Proof: We find the desired number c in (a, b) as follows. If for all x in
·(a, b), f(x) = 0, then let c be any such x. If, on the other hand, there
exists x in (a, b) such that f(x) i= 0, then if f(x) > 0 we may take
(c, f(c)) to be a maximum for f by continuity on [a, b], and if f(x) < 0
we may take (c, f (c)) to be a minimum for f again by continuity. We
have shown in each case that a < c < b and f'(c) = 0. End of Proof.

Let us analyze the above proof and see where the Proof by Cases
Law was used. Let q be the sentence to be proved, namely, "There is a
number c in (a, b) such that f'(c) = O," and let p be the sentence "For
all x in (a, b), f(x) = O." We have proved that p * q and -.p * q. It
then follows using Proof by Cases that the· desired conclusion q is true.

In Exercise 1 7 we consider some other valid argument forms which
are commonly used in mathematics.

1.13 Tableau Problems (TABl)

This is the first of three problem sets using the TABLEAU or TAB­
WIN program. In. this assignment you will construct tableau proofs
in propositional logic. The problems are located in directory TABl on
the distribution diskette, and the SETUPDOS or SETUPWIN program
will put them in a subdirectory called TABl on your hard disk. This
directory contains an assignment of seven problems, called CASES,
CONTR, CYCLE, EQUIV, PIGEON, PENT, SQUARE. It also has
the extra files SAMPLE, ASAMPLE, RAMSEY. SAMPLE is a sample
problem and ASAMPLE is its solution. The problem RAMSEY is very
difficult and is described below.

Use the TABLEAU or TABWIN program commands to load each.
problem, do your work, and then save your ·answer on your diskette
or hard drive. Each problem consists of a list of hypotheses and/or a
wff to be proved. Your solution should be a tableau proof, with every
node colored red. The file name of your answer should be the letter A
followed by the name of the problem. (For example, your answer to the
CYCLE problem should be called ACYCLE). Be sure your name is on
your diskette label.

The solutions to these computer problems will be similar to the two
"hand" examples of tableau proofs given at the beginning of Section 1. 7.

1.13. TABLEAU PROBLEMS (TABl)

EXAMPLE 1 A rule for conjunctions of wffs.

Hypotheses: none

To prove: p * [q ~ [p /\ q]]

The solution is given in Figure 1.2 and has 6 nonroot nodes.

EXAMPLE 2 The Transitivity Law.

Hypotheses: p * q, q * r

To prove: p * r

47

The solution is given in Figure 1.3 and also has 6 nonroot nodes.

At the end of this paragraph we list the set of problems in order
of difficulty, with attached comments. For each TABLEAU problem in
this book, an approximate value is given for the number of nodes in the
solution: its par value. There will always be at least one solution with
the suggested number of nodes, and in many cases there are solutions
which use even fewer nodes. You are not required to find a solution
with the suggested number of nodes. The par value is included only
as a guide to the difficulty of the problem. We also list the number
of entries in the truth table for the problem. This number is equal to
2n * m where n is the number of distinct propositional symbols and m
is the number of occurrences of propositional symbols and connectives.
You are not required to build the truth table. Its size is given only so
you can compare it with the size of the tableau proof.

CASES (8 nodes) (88 truth table entries) The rule of proof by cases.

Hypotheses: a=? c, b =? c

.To prove: [a Vb]=? c

CONTR (12 nodes) (36 truth table entries) The law of contraposition.

Hypotheses: none

To prove: [p * q] ~ [•q * •p]

48 CHAPTER 1. PROPOSITIONAL LOGIC

EQUIV (20 nodes) (72 truth table entries) Two wffs which are equiv­
alent to a third wff are equivalent to each other.

Hypotheses: p <=> q, q <=> r

To prove: p <=> r

PIGEON (24 nodes) (88 truth table entries) The pigeonhole principle:
Among any three propositions there must be a pair with the same
truth value.

Hypotheses: None

To prove: [p <=> q] V [p <=> r] V [q <=> r]

CYCLE (26 nodes) (416 truth table entries) Given that four wffs im­
ply each other around a cycle and at least one of them is true,
prove that all of them are true.

Hypotheses: p =? q, q =? r, r =? s, s =? p, p V q V r Vs;

To prove: p /\ q /\ r /\ s

PENT (38 nodes) (55,320 truth table entries) It is not possible to color
each side of a pentagon red or blue in such a way that adjacent
sides are of different colors.

Hypotheses: bl V r 1, b2 V r2, b3 V r3, b4 V r4, b5 V r5, ..., [bl /\ b2],
...,[b2/\b3], ...,[b3/\b4], ...,[b4/\b5], ...,[b5/\bl], ...,[rl/\r2], ...,[r2/\r3],
...,[r3 /\ r4], ...,[r4 /\ r5], ...,[r5 /\ rl)

To prove: A tableau confutation.

SQUARE (58 nodes) (1 7 ,408 truth table entries) There are nine propo-
sitional symbols which can be arranged in. a square:

al a2 a3
bl b2 b3
cl c2 c3

Assume that there is a letter such that for every number the
proposition is true (that is, there is a row of true propositions).
Prove that for every number there is a letter for which the propo­
sition is true (that is, each column contains a true proposition).

1.13. TABLEAU PROBLEMS (TABl)

Hypothesis: [al/\ a2 /\ a3] V [bl/\ b2 /\ b3] V [cl Ac2 /\ c3]

To prove: [al V bl V cl]/\ [a2 V b2 V c2] /\ [a3·v b3 V c3]

49

'RAMSEY (1140 nodes) (8,060,928 truth table entries) The simplest
case of Ramsey's Theorem can be stated as follows. Out of any
six people, there are either three people who all know each other
or three people none of whom know each other. This problem has
15 proposition symbols ab, ac, ... , ef, which may be interpreted
as meaning "a knows b," etc. The problem has a list of hypotheses
which state that for any three people among a, b, c, d, e, f, there
is at least one pair who know each other and one pair who do not
know each other. Ramsey's Theorem says that these hypotheses
are inconsistent and so must have a tableau confutation.

Here is an informal proof of Ramsey's Theorem in the case at
hand. Select one of the people, say a. The five remaining people
may be divided into two sets: those who know a and those who
do not. At least one of these sets must have three people in it.
Hence there are essentially two cases:

1. a knows all the people b, c, d. If none of b, c, d know each
other, then { b, c, d} is a set of three people none of whom
know each other. If two of b, c, d know each other, say b
knows c, then {a, b, c} is a set of three people all of whom
know each other.

2. a does not know any of the people b, c, d. If b, c, d know each
other, then { b, c, d} is a set of three people all of whom know
each other. If two of b, c, d do not know each other, say b
does not know c, then {a, b, c} is a set of three people none
of whom know each other.

The tableau confutation is very long since the rules of proposi­
tional tableaus do not allow us to rename the people as we have
done in the informal proof. This problem is optional, and is in­
cluded mainly to illustrate the power of the tableau method.

50 CHAPTER 1. PROPOSITIONAL LOGIC

1.14 Exercises

1. For a wff A define s(A) to be the number of occurrences of proposi­
tion symbols in A, and b(A) to be the number of occurrences of binary
connectives (/\, V, =>, ¢>) in A. Prove by induction on the length of
wffs that for every wff A,

s(A) = b(A) + 1.

2. Prove by induction pn the length of wffs that every wff has the same
number of left brackets as right brackets.

3. Prove by induction on the length of wffs that an initial part of a
wff is either a string of negation symbols or has more left brackets than
right brackets.

4. Let C be a wff which has the form C = [S * T], where S and T are
strings. Prove that * is the main connective of C if and only if S has
the same number of left brackets as right brackets. ·

5. Show that there is a unique function c from the set of wffs on the
vocabulary Po to the set N of natural numbers such that

(basis) c(p) = 0 for any p E P0 •

(negation) c(•A) = c(A) + 1.

(binary) c([A * B]) c(A) + c(B) + 1
for any binary connective*·

Prove that for any wff A the number c(A) is the number of occurrences
of connectives in A. (A connective is one of the symbols.,/\, V, =>, ¢>.)

6. Show that there is a unique function L from the set WFF(Po) of
wffs to the set N of natural numbers as follows:

(Basis) L(p) = 1 for p E P0 •

1.14. EXERCISES

(Negation) L(•A) = L(A) + 1.

(Binary connective) L([A * B]) = L(A) + L(B) + 3

What information does L(A) give about the wff A?

51

7. Write the standard abbreviations of the following wffs. (You can
use the TABLEAU program to check your answers).

1. [[p =} q] ~ •[r /\ s]]

2. [p =} [q ¢> •[r /\ s]]]

3. •[[p =} q] ¢> [r /\ s]]

4. •[p =} [q ¢> [r /\ s]]]

8. Write the wffs with the following standard abbreviations.

1. p/\qVr=?s

2. p /\ [q V r] =} s

3. p/\qV[r=?s]

4. [p /\ q V r] =} s

5. p/\[qVr=?s]

9. Prove the following rule for finding the main connective of a wff
C given only the standard abbreviation C'. If there is an occurrence
of a binary connective * in C' which is preceded by the same number
of left brackets as right brackets, then * is the main connective of C.
Otherwise, C is either a proposition symbol or C is the negation of a
wff.

(This proof requires a more difficult induction on the length of wffs.)

10. The purpose of this exercise is to show that bad things could
·happen without the Unique Readability Theorem. Let P be a subset

52 CHAPTER 1. PR:OPOSITIONAL LOGIC

of the set of integers Z. Define the set of well formed integers with the
vocabulary P to be the set of all integers which can be obtained by
finitely many applications of the following rules offormation:

- If p E P, then p is a well formed integer.

- If a and b are well formed integers then so is their product ab.

The set of all well formed integers with the vocabulary Pis denoted by
W(P). In the following take P {-1, 2, 5}.

(i) Find all well formed integers a such that -31 ::; a ::; 31.

(ii) Show that the analog of the Unique Readability Theorem fails by
exhibiting well-formed integers ai, a2 , b1 , b2 such that a1b1 = a2 b2

but ai # a2.

(iii) Show that for any function g : P -r Z and any function f : Z x Z -r Z
there is at most one function </> : W(P) -r Z such that

- If p E P, then </>(p) = g(p).

- Ifa, b E W(P) then </>(ab)= f(<f>(a), <f>(b)).

(iv) Show that no such function</> exists when g(p) = p and J(a, b) a.

(v) Show that there is such a function ·</> when g(-1) = -1, g(2) =
g(5) 1, and J(a,b) =ab. What is it?

11. Prove Theorem 1.5.1, that for a given a model M and wff A,
the truth value AM is the same for all parsing sequences of A. (Hint:
Use the Unique Readability Theorem and an induction on the length
of wffs.)

12. Show that the following are tautologies, first by using truth tables
and then using tableaus.

1.14. EXERCISES

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

••p <=> p
[p /\ q] /\ r <=> p /\ [q /\ r]
[p V q] V r # p V [q V r]
p/\q<=>q/\p.
pVq<=>qVp
p /\ [q V r] <=> [p /\ q] V [p /\ r]
p V [q /\ r] # [p V q] /\ [p V r]
p =} [q =} r] <=> [p =} q] =} [p =} r]
·[p v q] <=> •p /\ •q
-,[p /\ q] <=> •p v •q
[[p =} q] =} p] =} p

53

(Double Negation Law)
(Associative Law}
(Associative Law}
(Commutative Law)
(Commutative Law)
(Distributive Law}
(Distributive Law)
(Self-Distributive Law)
(DeMorgan's Law)
(DeMorgan's Law)
(Peirce's Law)

13. Let M be the model for propositional logic such that PM = T
for every proposition symbol p. Prove by induction on length that for
every wff A: Either the • symbol occurs in A, or M f= A.

14. Show that [A =? B] =} A is a tautology if A is p =} p and B
is q, but is not a tautology if A and B are both p =} q. (The aim
of this exercise is to make sure you distinguish between a proposition
symbol p and a variable A used to stand for a wff which may have more
complicated structure.)

15. We say that two wffs A and Bare logically equivalent if the w:ff
A <=> B is a tautology. Show that for any wff A there is a wff B such
that A and B are logically equivalent and the only connectives which
occur in B are • and /\. Do the same for the connectives • and =?.

16. If p is a proposition symbol and C is a propositional wff, then for
each propositional wff A, the wff A(p//C) formed by substituting C
for p in A is defined inductively by:

(a) p(p//C) = C.

(b) If q is a proposition symbol different from p, then q(p//C) = q.

.(c) (:A)(p//C) •(A(p//C)).

54 CHAPTER 1. PROPOSITIONAL LOGIC

(d) For each binary connective*

[A* B](p//C) [A(p//C) * B(p//C)].

For example,

[[p ·<=1,, r]:::} p](p//q /\ p) is [[q /\ p] ¢:> r] ::::}·[q /\ p].

Prove that for any proposition symbol p and wffs A, B, and C,

[B # C]:::} [A(p//B) # A(p//C)]

is a tautology. (Show by induction on the the length of the wff A that
in every model of

B#C,

the two wffs
A(p//B) , A(p//C)

have the same truth value.)

17. Here are some additional valid argument forms which are frequently
used in mathematical proofs. Give a tableau proof for each one.

(i) P * q,-•q F= •p

(ii) PF= q::::} P

(iii) P v q, •p F= q

(iv (Co~traposition Law) •q =? •p f= p =? q

(v) (.Transitive Law) p ::::} q, q :::} r f= p :::} r

(vi) p =? [q V r], q ::::} t, r ::::} t f= p :::} t.

18. In this exercise you are asked to provide a proof of the given
statement using the given argument form.

1.14. EXERCISES 55

(1) "The square root of 2 is irrational."

Use the Indirect Proof Law. (Hint: Assume there is a number
m/n, with m and n integers, whose square is 2 and arrive at a
contradiction.)

(2) "Between any two rational numbers there is an irrational number."

Use the Proof by Cases Law. (Hint: You may first wish to prove
that for any integer k and any prime p, k + (1/ vfP) is irrational;
see part (1) above.)

(3) "If n is an odd integer, then n2 is odd."

Use the Contraposition Law.

(4) "If x,y are real numbers, then x =/= y implies ex =f. eY."

Use the law p:::} [q V r],q =? t,r:::} t ~ p:::} t.

(5) "If 2n - 1 is a prime number, so is n."

Use the Contraposition Law.

19. In this exercise we present several well-known theorems and their
proofs. In each proof, find a valid argument form that is used.

(a) Definition. A function f with domain A is one-one if for all
x,y EA, f(x) = f(y) implies x = y (see also Section A.5 in the
Appendix). A function f is left cancellable if for all sets A and
all 91 : A -+ B, 92 : A -+ B, if f o 91 = f o 92 then 91 = 92. (See
the Appendix for the definition off o 9.)

Theorem. If f is left cancellable, then f is one-one.

Proof. Suppose f with domain Bis not one-one. Then there are
x =f. y with f(x) = f(y). Define 91 : {O} -+ B, 92 : {O} -+ B by
91(0) = x, g2(0) = y. Now f o 91 f o 92 but 91 =f. 92· Thus f is
not left cancellable.

56 CHAPTER 1. PROPOSITIONAL LOGIC

(b) Theorem. (Subgroups of cyclic groups are cyclic.) Suppose A
is a set of integers (recall the set Z of integers consists of the
numbers ... -2, -1, 0, 1, 2, ...) and A is closed under subtraction
(i.e. for all x, y E A, x y E A as well). Then there is an n E N
such that every m E A is a multiple of n.

Proof. Let n be the least positive integer in A. Given
m E A, use long division to write m = nq + r for q, r E Z
and r 2 0, r < n. Now m, nq are in A (why?). Since A is closed
under subtraction, r m - nq E A. Since n is the least positive
integer in A, r 2 0, and r < n, it follows that r = 0. Hence, r = 0
and m = nq, as required.

(c) Theorem. (Fundamental Theorem of Arithmetic) Every com­
posite positive integer (i.e. an integer greater than one which is
not prime) is a product of primes.

Proof. Suppose not, i.e., suppose there is a composite number c
which has no prime factorization. Let k E N be such that 2k > c.
Since c is composite but unfactorable into primes, we can write
c = ci d1 where c1 is composite and also unfactorable into primes.
Similarly, write c1 = c2d2 where c 2 is composite and unfactorable
into primes. Continuing in this way, obtain Ck-i = ckdk. Now
c ci di = c2d2di = · · · = ckdkdk-i · · · di 2 Ck • 2k > c, which is
impossible.

(d) Examine Cantor's Theorem given in Appendix A.6. What is the
argument form?

20. Prove that Lemma 1.8.l holds for infinite tableaus.

21. The .Kill command in the TABLEAU program, works as follows
when it is invoked with the cursor at a node t. If there is a double
line below t, (i.e. t and its child were added together) then every node .
below the child oft is removed from the tableau. Otherwise, every node
below t is removed from the tableau. Using the definition of proposi­
tional tableau, prove that if you have a tableau before invoking the Kill
command, then you have a tableau after using the Kill command.

1.14. EXERCISES 57

22. Prove: If A has a tableau proof then A(p//C) has a tableau proof
with the same number of nodes (in fact, with the same tree but different
wffs assigned to the nodes).

23. Let H be a finite set of propositional wffs. By a strict confutation
·of H we mean a tableau T with root H such that every branch of T
has a contradictory pair of the form { s, -is} where s is a propositional
symboL

(a) Give a strict confutation of the set

H = {[•p V [q /\ r]], •[•p V [q /\ r]]}.

(b) Prove by induction of the length of wffs that for every wff A, the
set H = {A, ·A} has a strict confutation.

(c) Using part (b), prove that every finite set H of wffs which has a
tableau confutation has a strict confutation.·

24. Use the Soundness and Completeness Theorems for propositional
logic to prove that if A has a tableau proof from H and B has a tableau
proof from A, then B has a tableau proof from H.

25. Use the ·soundness and Completeness Theorems to prove that if
[AV B] has a tableau proof from H, C has a tableau proof from A,
and C has a tableau proof from B, then C has a tableau proof from H.

26.

(a) Make a finished tableau with the single hypothesis

[q :::} p /\ •r] /\ [t V r].

(b) Choose one of the finished branches, r , and circle the terminal
node of r.

(c) Using the Finished Set Lemma, find a wff A such that:

58 CHAPTER 1. PROPOSITIONAL LOGIC

1. A has exactly the same models as the set of wffs on the
branch r which you chose, and

2. The only connectives occurring in A are/\ and,.

27. Let T be· a finished tableau with finite hypothesis set H in which
every wff is used at most once on each branch. Prove that each branch
of T has at most 2n+ 1 nodes, where n is the total number of connectives
occurring in wffs in the set H.

28. In this exercise we describe an extremely simple language to give
the reader an easy example of the Soundness and Completeness Theo­
rems.

The vocabulary for "baby logic" is a nonempty set Po of proposition
symbols. The primitive symbols are the proposition symbols from Po
together with the connective -i. A string in this language is a wff if
it is obtained from finitely many applications of the following rules of
formation.

Each p in Po is a wff.

If A is a wff, then -iA is a wff.

Given a model M of type Po, we obtain, as in the text, a uniquely
defined function which assigns a truth value AM to each wff A of baby
logic according to the rules

If A is a propositional symbol p, AM= PM·

Tableaus are also defined as before, but now every tableau has only
one branch.

Without using the Soundness and Completeness Theorems for Propo­
sitional Logic, prove these theorems for baby logic; i.e., prove

(Soundness) If there is a tableau proof of A from H, then H I= A.

(Completeness) If H I= A, there is a tableau proof of A from H.

1.14. EXERCISES 59

(Hint: One approach is to mimic the lemmas used to prove these
theorems for Propositional Logic in the text. This approach will provide
the student with easy special cases of these lemmas. Another approach
is as follows. For any p E Po and natural number n, define,np by
induction with the rules: _,op= p,,n+Ip =,....,np. As a main lemma,
show that there is a tableau confutation of a hypothesis set H if and
only if there are p E Po and natural numbers m, n such that mis even,
n is odd, _,mp E H, and _,np E H.

29. Let X and Y be sets and R be a binary relation between X and
Y, i.e. RC Xx Y. For each x EX define

Rx= {y E Y: (x, y) ER}

Assume

(1) for every finite S C X there exists a one-one function f : S -+ Y
such that f(x) E Rx for x ES;

(2) for every x E X the set Rx is finite.

(a) Show that there exists a one-one function F : X -+ Y such that
F(x) E Rx for all x E X. Hint: For each a E X, and b E Y
introduce a proposition symbol Pab whose intended interpretation
is F(a) = b. Use the Compactness Theorem.

(b) Give an example which shows that hypothesis (2) cannot be dropped.
Hint: The negation of (2) asserts that at least one Rx is not finite.
In the example, there should be no one-one function F : X-+ Y
such that F(x) E Rx for all x EX.

30. Give an example of a tree with infinitely many nodes that has no
infinite branch. Why does this not contradict the Konig Tree Theorem?

31. Prove Corollary 1.11.7

32. Given a countable set of students and a countable set of classes,
suppose each student wants one of a finite set of classes, and e~ch class

60 CHAPTER 1. PROPOSITIONAL LOGIC

has a finite enrollment limit. Prove that if each finite set of students can
be accommodated, then the whole set can. Hint: Use the Compactness
Theorem. Let your ·basic proposition symbols consist of Psc where s is
a student and c is a class: Psc is intended to mean student s will take
class c.

Polish notation for propositional logic is defined as follows. The
logical symbols are {/\, V, •, {:}, => }, and the nonlogical symbols or
proposition symbols are the elements of an· arbitrary set P0 . The well­
formed formulas in Polish notation (wffpn) are the members of the
smallest set of strings which satisfy:

1. Each p E Po is wffpn;

2. If A is w:ffpn, then so is •A;

3. If A is w:ffpn and B is wffpn, then /\AB is wffpn, V AB is wffpn,
{:} AB is w:ffpn, and => AB is w:ffpn.

Note that no parentheses or brackets are needed for Polish notation.

33. Put the wff [p {:} q] ::::} [•q V r] into Polish notation.

34. Construct a parsing sequence for the wffpn

V• => pq {:} rp

to verify that it is wffpn. Write this wff in regular notation.

35. Prove using induction on length that for any w:ffpn A, the number
of occurrences of logical symbols of the kind{/\, V, {:},=>}in A is always
exactly one less than the number of occurrences of proposition symbols.

36. Using induction on length, prove that for any wffpn A and any
occurrence of a proposition symbol pin A except the last, the number
of logical symbols of the kind {/\, V, {:},::::}} to the left of p is strictly
greater than the number of proposition symbols to the left of p.

37. State and prove a Unique Readability Theorem for wffs in Polish
notation.

Chapter 2

Pure Predicate Logic

In this chapter we study the family of languages known as first-order
languages or predicate logics. These languages have the quantifiers
for all and there exists. Instead of propositional symbols they have
predicates. As in the first chapter, we shall develop the concepts of a
wff, a formal proof, and a model, and prove a Completeness Theorem
which ties them together. Predicate logic is rich enough to express the
statements and prove the theorems which arise in ordinary mathemat­
ical practice.

2.1 Introduction

A predicate is a word or phrase like is a man, is less than, belongs to,
or even is which can be combined with one or more names of individuals
to yield meaningful sentences. For example, Socrates is a man, Two
is less than four, This hat belongs to me, He is her partner. Na~es of
specific individuals are called parameters. Symbols called variables
stand for arbitrary individuals. If the variables in an expression are
replaced by parameters the result acquires a meaning. For example, in
the assertion

P(x) : x is less than 4

we understand that the variable x stands for any number in the par­
ticular class of numbers we are studying (e.g. ·the natural numbers,
the. real numbers, etc.). For instance, if x is understood to stand for

61

62 CHAPTER 2. PURE PREDICATE LOGIC

a natural number in this example, and we replace x by the number 1,
the assertion

P(l) : 1 is less than 4

is true, whereas replacing x by 5 yields the false statement

P(5) : 5 is less than 4.

The number of variables associated with a predicate is called the
arity of the predicate. Hence, the predicate

P(x) : x is less than 4

is a 1-ary, or unary predicate;

Q(x, y) : x is less than y

is a 2-ary or binary predicate; and

R(x, y, z) : x is between y and z

is a 3-ary, or ternary predicate.
If P(Xi, ... , Xn) is an n-ary predicate and if ai, .. . , an are values

such that P(ai, ... , an) is true we say that (a1 , ... , an) satisfies P.
Thus in the above examples, 1 satisfies P, (1, 2) satisfies Q, but (1, 2, 3)
does not satisfy R.

The predicate logic developed here will be called pure predicate
logk to distinguish it from the full predicate logic of the next chap­
ter. (Full predicate logic will add to pure predicate logic the expressive
power of constants, functions, and equality).

A unary predicate determines a set of things; namely those things
for which it is true. Similarly, a binary predicate determines a set of
pairs of things - a binary relation - and in general an n-ary pred­
icate determines an n-ary relation. For example, the predicate is a
man determines the set of men and the predicate is west of (when ap­
plied to American cities) determines the set of pairs (a, b) of American
cities such that a is west of b. (For example, the relation holds be­
tween Chicago and New York and does not hold between New York
and Chicago.) Different predicates may determine the same relation
(for example, x is west of y and y is east of x.)

2.1. INTRODUCTION 63

The phrase for all is called the universal quantifier and is de­
noted symbolically by V. The phrases there exists, there is a, and
for some all have the same meaning: there exists is called the exis­
tential quantifier and is denoted symbolically by 3.

The universal quantifier is like an iterated conjunction and the ex­
istential quantifier is like an iterated disjunction. To understand this,
suppose that there are only finitely many individuals; that is the vari­
able x takes on only the values a1 , a2, ... , an. Then the sentence V x P(x)
means the same as the sentence P(a1)/\P(a2)/\ ... /\P(an) and the sen­
tence P(x) means the same as the sentence P(a1)V P(a2)V ... V P(an)·
In other words, if

Vx[x a1 V x a2 V ... V x = an]

then
[VxP(x)] ¢=> [P(a1) /\ P(a2) /\ ... /\ P(an)]

and
[3xP(x)]

Of course, if the number of distinct individuals is infinite, such an in­
terpretation of quantifiers is not possible since infinitely long sentences
are not allowed in predicate logic.

The similarity between V and/\ and between 3 and V suggests many
logical laws. For example, DeMorgan's laws

have the following versions in predicate logic:

•3xP(x) ¢=> Vx•P(x), •VxP(x) ¢=> 3x•P(x).

In sentences of form VxP(x) or 3xP(x), the variable x is called a
dummy variable or a bound variable. The meaning of the sen­
tence is unchanged if the variable xis replaced everywhere by another
variable. Thus the sentences

VxP(x) ¢=> VyP(y), 3xP(x) ¢=> 3yP(y),

are both true. For example, the sentence there is an x satisfying x + 7 =
5 has ex~ctly the same meaning as the sentence there is a y satisfying

64 CHAPTER 2. PURE PREDICATE LOGIC

Y + 7 = 5. We say that the second sentence arises from the first by
alphabetic change of a bound variable. ,

In mathematics, universal quantifiers are not always explicitly in­
serted in a text but must be understood by the reader. For example,
when an q.lgebra textbook contains the equation

x+y y+x

the author means
YxYy x + y = y + x.

(The former equation is called an identity, since it is true for all values
of the variables, as opposed to an equation to be solved where the
object is to find those values of the variables which make the equation
true.)

A precise notation for predicate logic is important because natural
language is ambiguous in certain situations. Particularly troublesome
in English is the word any which sometimes means for all and sometimes
there exists, depending on the context.

2.2 Syntax of Predicate Logic

A vo~abulary P for pure predicate logic consists of a set Pn of n-ary
predicate symbols for each natural number n 0, 1, ... , where at
least one of the sets Pn is nonempty. The 0-ary predicate symbols are
j~st propositional symbols as in propositional logic. The words unary,
binary} ternary mean respectively 1-ary, 2-ary, 3-ary. In the intended
interpretation of predicate logic the predicate symbols denote relations
such as x < y or x + y = z.

In addition to the primitive symbols of propositional logic the fol­
lowing are primitive symbols of pure predicate logic:

• the predicate symbols from P 0 , Pi, P 2 , •• • ;

• an infinite set

VAR= {x, y, z, xo, yo, z0, xi, y1, .. . }

of symbols which are called· variables·
'

2.2. SYNTAX OF PREDICATE LOGIC 65

• a set K,, possibly empty, of symbols which are called parameters;

• the right and left parenthesis and comma (,);

• the universal quantifier Y;

• the existential quantifier 3.

For the syntax, the only difference between a variable and a param­
eter is that the latter may not appear immediately after a quantifier in
a wff. The reason for having parameters is that they will make it much
easier to develop the semantics for predicate logic, beginning in Sec­
tion 2.4. (The parameters will denote particular elements of a model
and the variables will stand for arbitrary members of a model).

Definition 2.2.1 A symbol which is either a variable or a parameter
is called an individual symbol. When we wish to emphasize the
similarity between them, we will sometimes call variables individual
variables, and call parameters individual parameters.

Any finite sequence of symbols of any kind is called a string. Our
first task is to specify the syntax of pure predicate logic; i.e. to spec­
ify which strings are grammatically correct. These strings are called
well-formed formulas. The phrase well-formed formula is often ab­
breviated to wff.

Definition 2.2.2 A wff of pure predicate logic is a string which
can be obtained by :finitely many applications of the following rules of
formation:

(W:Po) Any proposition symbol from Po is a wff;

(W:Pn) If u1, u2, ... , Un are individual symbols (variables or parame­
ters), and p E Pn is an n-ary predicate symbol, then p(u1, u2, ... , un)
is a wff;

(W:-,) If A is a wff, the ..,A is a wff;

(W:/\, V, {:})If A and Bare wffs, then [A/\B], [AVB], [A=? B],
.and [A{:} B] are wffs;

66 CHAPTER 2. PURE PREDICATE LOGIC

(W:V, 3) If A is a wff and x is a variable, then the strings \:/xA and
3xA are wffs.

If we wish to emphasize that the predicate symbols appearing in a
wff A come from.a specific vocabulary P, and that the parameters come
from a set K, we say that the wff is formed from the vocabulary P with
parameters from K. The set of all wffs formed from the vocabulary P
with parameters from K, will be denoted by WFF(P, K).

The wffs obtained from the basic rules (W:P0) and (W:Pn) are called
atomic wffs. Thus the atomic wffs are precisely those wffs in which no
connectives or quantifiers occur.

To show that a particular string of symbols· is a w:ff we construct
a sequence of wffs u~ing this definition. This is called parsing the
wff and the sequence is called a parsing sequence. Although it is
never difficult to tell if a short string is a wff, the parsing sequence is
important for theoretical reasons.

As an example, let us assume that Po contains a propositional sym­
bol q, and that P1 contains a unary predicate symbol P. We first parse
the wff Vx[P(x) =? q] .

(1) P(x) is a w:ff by (W:P1).

(2) q is a wff by (W:Po).

(3) [P(x) =? q] is a w:ff by (1), (2), and (W:=?).

(4) Vx[P(x) q] is a wff by (3) and (W:V).

Now we parse the wff [VxP(x) q].

(1) P(x) is a wff by (W:P1).

(2) VxP(x) is a wff by (1) and (W:V).

(3) q is a wff by (W:Po).

(4) is a wff by (2), (3) and (W:=?).

2.2. SYNTAX OF PREDICATE LOGIC 67

The. two wffs are alike except for the location of the brackets. In
the parsing sequence for the first wff, Vx[P(x) =? q], the =? must be
introduced before the V, but in the parsing sequence for the second wff,
[V x P (x) =} q], the V must be introduced before the =?.

We continue using the abbreviations and conventions introduced in
the propositional logic chapter and in addition add a few more.

• We shall use rather than= for a predicate symbol correspond­
ing to equality in our formal language, to avoid confusion with
the ordinary equality symbol used outside of predicate logic.

• Certain well-known binary predicates like == and < are tradition­
ally written between the variables (for example x < y) rather
than before the variables (for example < (x, y)), and we continue
this practice. Expressions such as x < y are said to be written in
infix notation.

• The three rules (W:•), (W:V), and (W:3) put brackets around
wffs in the same way. Thus •P(x) =? q means [•P(x) =? q] rather
than •[P(x) =} q]. Likewise VxP(x) =? q means [VxP(x) =? q]
and not Vx[P(x) =? q]. Since it is easy to confuse these two, we
may insert extra brackets and write [VxP(x)] =} q for VxP(x) =?

q. Thus, an abbreviated wff can actually contain more brackets
than an unabbreviated wff.

The following lemma is proved in the same way as the corresponding
lemma in propositional logic, by induction on the length of wffs.

Lemma 2.2.3 In pure predicate logic, no initial part of a wff is a wff.

Each wff of pure predicate logic is either an atomic wff, starts with
a negation symbol or quantifier, or starts with a left bracket. As before,
the wffs which start with a left bracket are formed by combining two
other wffs with a binary connective called the main connective.

Theorem 2.2.4 (Unique Readability) Each wff C of pure predi­
cate logic which starts with a left bracket has exactly one main con­
nective * such that C [A* B] where A and B are wffs.

The proof is an easy modification of the Unique Readability Theo­
rem on page 11 and is left as an exercise.

68 CHAPTER 2. PURE PREDICATE LOGIC

2.3 Free and Bound Variables

In predicate logic, an individual symbol x may appear in several differ­
ent places in the same wff A. We shall call each place where a symbol
or string s appears in A an occurrence of s in A. It is important to
distinguish between two kinds of occurrences of a variable in a wff free
and bound occurrences. Informally, the free occurrences of vari~bles
stand for elements of a universe set, and the truth value of a wff will
depend on which element is assigned. to the free occurrences of individ­
ual symbols. On the other hand, the bound occurrences of variables
are dummy variables which appear within quantifiers.

We first declare that every occurrence of an individual parameter
in a wff is free. For individual variables, we shall first define the notion
of a bound occurrence and then declare that all other occurrences are
free.

A wff B is said to be a well-formed part of a wff A if A is SBT
for some strings S and T.

Let x be a variable and Q be a quantifier, either V or 3, such that
Qx occurs in A. Suppose that B is a well formed part of A, so that
A SBT for some strings S and T, and that B begins with Qx.
Thus B is a wff of the form Qx C. B is called the scope of that
occurrence of the quantifier Qin A. We shall show later that the scope
of a quantifier in a wff is unique. Every occurrence of x in the wff
B Qx C (including the occurrence immediately after the Q) is called
a bound occurrence of x in A. Any occurrence of x in A which is
not a bound occurrence is called a free occurrence of x in A.

For example, in the wff

P(x, y) * V x [3y R(x, y) * Q(x, y)],

the first occurrence of x is free, the three remaining occurrences of x

are bound, the first and last occurrences of y are free the second and
third occurrences of y are bound, the wff '

Vx[3yR(x,y) =} Q(x,y)]

is the sco~e of the quantifier Vx and the wff 3yR(x, y) is the sco'pe of
the quantifier 3y. If we make a change of bound variable (say replacing

2.3. FREE AND BOUND VARIABLES 69

all bound occurrences of x by u and all bound occurrences of y by v)

we obtain the wff

P(x,y) =} Vu[3vR(u,v) =} Q(u,y)]

which has exactly the same meaning as the original wff.
Before going further, we shall prove that a quantifier occurrence has

only one scope in a wff.

Theorem 2.3.1 (Unique Scope) For each occurrence Q of a quan­
tifier in a wff A, there is a unique well formed part of A which begins
with Q. This unique well formed part of A is called the scope of that

occurrence of Q.

Proof: We first prove the existence of a scope by induction on the
length of A. Let P(n) be the property. that for each wff A of length
:::; n, each occurrence Q of a quantifier in A is the beginning of at least
one well formed part of A. An easy proof by induction shows that P(n)
is true for all natural numbers n. Thus every occurrence of a quantifier

has at least one scope.
The proof of the uniqueness of the scope uses the lemma that no

initial part of a wff is a wff. Let Q be an occurrence of a quantifier in
a wff A, and suppose B and C are two well formed parts of A which
begin with Q. Since Band C both start at Q and neither one can be
an initial part of the othc=;r, B and C are the same. Thus there is only
one well formed part of A which begins with Q. End of Proof.

We shall d~note by
C(x//y)

the result of replacing all free occurrences of the variable x in C by the
individual symbol y, which may be either a variable or a parameter.
For example, if C is the wff R(x) V [Q(x) =} 3xP(x,z)] then C(xj/u)
is the wff R(u) V [Q(u) =} 3xP(x, z)].

There is a problem with this notation. We would like any wff of the
form

VxC * C(x//y)

70 CHAPTER 2. PURE PREDICATE LOGIC

to be valid (i.e. true in any interpretation), because it says that if C
is true for all x, then it is in particular true when x is y. But consider
the case where C is 3y x < y. In this case we would obtain

V x3y x < y => 3y y < y

which is false for the natural numbers since Vx3y x < y is true (take
y = x + 1) but y < y is false. The problem is that the substitution
of y for x in 3y x < y creates a bound occurrence of y at a position
where there is a free occurrence of x; this problem is called confusion
of bound variables.

We say that the individual symbol y is freely substitutable for
the individual variable x in the wff C if no free occurrence of x in C
occurs in a well-formed part of C which is of the form VyB or 3yB.
Henceforth we will use the notation C(x / / y) only in the case that y is
freely substitutable for x in C. We use free for as an abbreviation for
freely substitutable for, so y is free for x in A means that y is freely
substitutable for x in A. By definition a parameter is always freely
substitutable for a variable x in a wff C.

We shall see later that if y is free for x in C, then the wff

VxC => C(x//y)

is true in all interpretations, which is what we wanted.
By a plain wffwe shall mean a wff which has no parameter symbols.

Thus WFF(P, 0) is the set of all plain wffs formed from P.
A plain wff with no free variables is called a sentence. The set of

all sentences in the vocabulary P is SENT(P, 0).
A sentence .has a meaning (truth value) once we specify (1) the

meanings of all the propositional symbols and predicate symbols which
appear in it, and (2) the range of values which the bound variables
assume. For example, the sentence 3xVy x ~ y is true if :::; has its usual
meaning and the variables x and y range over the natural numbers
(since Vy 0 :::; y) but is false if the variables x and y range over the
integers. By contrast the truth value of a wff which has one or more
free variables depends on the values of the free variables. For example,
the wff x = y is true if x = 2 and y = 2 but is false if x = 2 and y = 3.

2.4. SEMANTICS OF PREDICATE LOGIC 71

A wff A E WFF(P, K) with parameters from K but no free vari­
ables is called a sentence with parameters from K. The set of all
sentences with parameters from K is denoted by SENT(P, K) .

A sentence with parameters from K has a meaning once we specify
(1) and (2) above, and (3) the meanings of all parameter symbols which
appear in it. For example, the sentence Vy 0 :::; y is true if :::; and 0
have their usual meaning, and the variable y ranges over the natural
numbers.

2.4 Semantics of Predicate Logic

In this section we shall introduce models of pure predicate logic, and
then define what is meant by the truth value of a sentence in a model.

Given a natural number n and a set X, an n-ary relation on X
is a subset of the set xn of all length n sequences (xi, X2, ... , Xn) of
elements from X. The set of all n-ary relations on X will be written
RELn(X).

The set X 1 is the same as X, and a 1-ary relation, or unary rela­
tion, on Xis just a subset of X. Similarly, X 2 is the same as Xx X,
and 2-ary relations are also called binary relations.

The 0-ary relations on X correspond in a natural way to truth
values. The only sequence of length 0 is the empty sequence(). The set
X 0 has only one element, the empty sequence(); in symbols, X 0

{()}.

There are two 0-ary relations on X, the empty set 0 which corresponds
to the truth value F, and the set X 0 which corresponds to the truth
value T.

A model for pure predicate logic of type P is a system M
consisting of a non-empty set M called the universe of the model
M, and a function which assigns an n-ary relation qM to each n;.ary
predicate symbol q of P.

We emphasize that only the universe set M of a model M is required
to be nonempty. A unary relation pM may be any subset of M at all,
empty or nonempty. After we define the notion of a truth value of a
sentence in a model, we will be able to use sentences of predicate logic
to express properties of relations. As a simple example, the sentence
·3x p(X.) will be true in a model M if and only if pM is a nonempty

72 CHAPTER 2. PURE PREDICATE LOGIC

subset of M, and the sentence V x p(x) will be true in a model M if and
only if pM = M. As an even simpler example, a propositional symbol q
will be true in M if and only if qM = M 0 , i.e. qM contains the empty
sequence.

To illustrate the concept of a model, suppose the vocabulary P has
only a single unary predicate symbol p. Then a model M of type P ·
consists of a nonempty set M and a subset pM (which may or may not
be empty) of M. Given a nonempty finite set M with n elements, there
are 2n different models of type P with universe M, one for each subset
pM of M. Given an infinite set M, there are infinitely many different
models of type P with universe M.

As a second example, suppose the vocabulary P has two unary
predicate symbokp and q. In this case a model M of type P consists
of a nonempty universe set Mand two subsets pM and qM of M. Given
a nonempty finite set M of size n, there will be (2n)2 different models
of type P with universe M.

Finally, suppose the vocabulary P has one binary predicate symbol
p. In this case a model M of type P consists of a nonempty universe
set M and a subset pM of the set M x M. Given a nonempty finite set
M of size n, there will be 2n

2
different models of type P with universe

M.
Recall that a plain wff is a wff in which no parameters occur. A

wff with parameters from K is a wff all of whose parameters (if any)
are in the set K - in other words, a wff which has no parameters outside
of K. Thus a plain wff is a wff with parameters from K for every set K.

Our next goal will be to assign an appropriate truth value to each
plain sentence in every model for a vocabulary P. The easiest way to do
this is to do even more: given a model M, we shall assign a truth value
to each sentence with parameters from M. Since every plain sentence
is also a sentence with parameters from M, this will accomplish our
goal.

Given a model M, we shall work with the predicate logic whose set
of parameters K is the universe set M of M. SENT(P, M) is the set
of all sentences with parameters from M.

If C is a plain wff of pure predicate logic and x 1 , ••• , Xn are the free
variables of C, we may form a sentence with parameters from M by
choosing ai, ... , an E M and replacing all free occurrences of Xk in C

2.4. SEMANTICS OF PREDICATE LOGIC 73

by ak for k = 1, ... , n. The resulting sentence, called an insta_nce of

C in M, is denoted by

C(xi, ... , Xn//ai, ... ,an)·

As a particular case, if C is a plain sentence then no parameters are
needed, and C already an instance of itself.

Now we define M I= A where A E SENT(P, M). Figure 2.1 gi~es
the rules which determine the truth value AM of a sentence A with
parameters from M. As in propositional logic we sometimes write M
A instead of AM = T, and M ~ A instead of AM = F"

74 CHAPTER 2. PURE PREDICATE LOGIC

Truth Value Rules

(M:'Po) If p E 'Po , PM = T iff () E PM;

(M:•) (•A]M = Tiff AM = F;

(M:A) (A A B]M = T iff AM = T and BM = T;

(M:V) [AV B]M = T iff AM = T or BM = T;

(M:=>) (A B]M =Tiff AM= For BM= T;

(M:{:}) [A{::} B]M = T iff AM = BM ;

(M:V) [ViA]M =Tiff A(x//a)M T for every a EM;

(M:[3) 3xA]M Tiff A(x//b)M = T for some b EM.

Figure 2.1: Truth Value Rules for Predicate Logic.

2.4. SEMANTICS OF PREDICATE LOGIC 75

The following theorem is important for the semantics for pure pred­
icate logic because it shows that' the rules unambiguously determine
a truth value for each sentence in a model. It is the analog of Theo­
rem 1.5.1 for propositional logic.

Theorem 2.4.1 For any model M (of type P} with universe M there
is a unique function which assigns a truth value AM to each sentence
A E SENT(P, M) and satisfies the rules of Figure 2.1.

We shall skip the proof of Theorem 2.4.1, which is again by induction
on the length of wffs using the Unique Readability Theorem.

In the next few examples we illustrate our definition of the truth
value of a sentence in a model with some detailed computations. In
each example, we go step by step through a parsing sequence for the
sentence. Because of the quantifier rules, we shall compute the truth
value of every instance of the wff at each step of the parsing sequence.

Example 2.4.2 We compute the truth value of the sentence

VxP(x) => q

in a model M whose universe is a two element set M {O, 1}, with
qM 0 and pM E REL1 (M) given by

pM = {0}.

We first parse the sentence.

(1) P(x) is a wff by (W:P1).

(2) VxP(x) is a wff by (1) and (W:V). ·

(3) q is a wff by (W:Po).

(4) VxP(x) => q is a wff by (2), (3) and (W:=>).

Now we apply the definition.

(1) P(O)M T and P(l)M = F by (M:'P1).

· (2) [\fxP(x)]M = F by (1) and (M:\f).

76 CHAPTER 2. PURE PREDICATE LOGIC

(3) qM = F by (M:Po).

(4) [\lxP(x) => q]M = T by (2), (3), and (M::::>).

Example 2A.3 We compute the truth value of sentence

\lx[P(x) => q]

in the model M of the previous example.

We first parse the sentence.

(1) P(x) is a wff by (W:P1).

(2) q is a wff by (W:Pa).

(3) P(x) =} q is a wff by (1), (2), and (W::::>).

(4) \lx[P(x) =} q] is a wff by (3) and (W:V).

Now we apply the definition.

(1) M f= P(O) and MF P(l) by (M:Po).

(2) M F q by (M:P0) because qM = F.

(3) M F P(O) => q and M f= P(l) => q by (1), (2), and (M::::>).

(4) M F \lx[P(x) =} q] by (3) and (M:V).

Example 2.4.4 We compute the truth value of

\ly3x x :'.Sy=> 3x\ly x :'.Sy

for a model M whose universe set is the set M N of natural numbers,
and :'.SM is the usual order relation on N:

<M = {(a, b) E N2
: a :'.Sb}.

We first parse the wff.

(1) x :'.S y is a wff by (W:P2).

2.4. SEMANTICS OF PREDICATE LOGIC

(2) 3x x::; y is a wff by (1) and (W:3).

(3) \ly3x x ::; y is a wff by (2) and (W:V).

(4) \ly x ::; y is a wff by (1) and (W:V).

.(5) 3x\ly x::; y is a wff by (4) and (W:3).

(6) [\ly3x x ::; y => 3x\ly x ::; y] is a wff by (3), (5), and· (W::::>).

Now we apply the definition of M f= A to this parsing_ sequence.

(1) M F c ::; d iff c ::; M d .

(2) M f= 3x x ::; d for every d since M f= 0::; d for every d.

(3) M f= \ly3x x :'.S y by (2).

(4) M F Vy c ::; y iff c = 0.

(5) M f= 3x\lyx :'.Sy by (4).

(6) M f= \ly3x x ::; y => 3x\ly x ::; y by (3) and (5).

77

Example 2.4.5 We compute the truth value of the wff of the preced­
ing example for a different model. Take M = Z, the set of integers,
with ::;M the usual order relation on Z:

<M = {(a,b) E Z2
: a::; b}.

(1) M F c :'.S d iff c ::; M d .

(2) M f= 3x x ::; d for every d, since M f= c ::; d if c d.

(3) M f= \ly3x x ::; y by (2).

· (4) M FVyc::;yforeveryc,sinceM F c::;d'ifd = c-1.

(5) M F 3x\ly x :'.Sy by (4).

(6) M F \ly3x x ::; y => 3x\ly x ::; y by (3) and (5).

78 CHAPTER 2. PURE PREDICATE LOGIC

We can now define the notion of semantic consequence as before.
The sentence A is said to be a semantic consequence of a set H
of sentences, and we write H f= A, if every model of H is also a
model of A. If H f= A and H is the empty set, we say that A is a
valid sentence. In other words, a valid sentence is one which holds
in every· model; it is the analog for predicate logic of a tautology in
propositional logic. In Section 2.6 we will again encounter the tableau
method for establishing' semantic consequence and validity of sentences.
To motivate the new tableau rules we give the following extension of
Proposition 1.5.2 from page 16.

Proposition 2.4.6 Suppose M is a model with universe M.

V If M f= VxA and a EM then M f= A(xlla).

1--NI If M f= -NxA then M f= •A(xl lb) for some b EM.

@] If M f= 3xA then M f= A(xl lb) for some b EM.

If M f= •3xA and a EM then M •A(xl la).

2.5 Graphs

The semantics for w:ffs with three or fewer variables can be represented
graphically. Let A be a w:ff with at most the free variables x, y. The
(x, y) graph of A in M is the set of all pairs of elements of M for
which A is true, that is,

GRAPHx,y(A,M) = {(a,b) E M2
: M A(x,y/la,b)}.

If A is a sentence, the (x, y) graph of A in· M is either the whole
plane M 2 or the empty set. This is because A has no free variables,
so A(x, y 11 a, b) is just the original sentence A for every pair a, b. If
M f= A then the (x, y) graph of A is the whole plain M 2 , and otherwise
the graph is the empty set.

If the x axis is horizontal and A is a wff with only x free, then
the (x, y) graph of A in M will be a union of vertical columns in the
M x M plane. This is because the graph of A is the set

{(a, b) .E M 2
: M f= A(xl la)},

2.6. TABLEAUS 79

and two pairs (a, b) and (a, c) in the same column go with the same
instance A(xl la) of A. Similarly, if A has only y free, its (x, y) graph
will be a union of horizontal rows in the M x M plane.

A wff with n free variables can be represented by an n-dimensional
graph. The PREDCALC program gives a graphical representation of
wffs all of whose variables, both free and bound, are among x, y, and
z. A finite universe of the form O, 1, ... , n - 1 of size n must first be
chosen, where n is between 1 and 8. The (x, y, z) graph of a wff is a
subset of a cube with n points on each side. The model in the program
has three binary relations

x = y, x < y, x > y,

and nine ternary relations

x = y + z, x = y - z, x y * z,

x < y + z, x < y z, x < y * z,

x > y + z, x > y - z, x > y * z,

which can be entered using the button for atomic formulas. Here the
addition, subtraction, and multiplication are performed modulo n.
(To add or multiply two numbers modulo n, add or multiply them in
the usual way and then take the remainder after division by n. To
subtract two numbers modulo n, subtract in the usual way and then
add n if the result is negative). There is also a provision for adding
"random" unary, binary, or ternary relations to the vocabulary. By
experimenting with the program, you can see what happens to the
graphs when you combine wffs with connectives and quantifiers.

2.6 Tableaus

Recall that a sentence A of predicate logic is said to be valid if A
is true in every model. In propositional logic it is possible to test
whether a wff is valid in a finite number of steps by constructing a
truth table. This cannot be done in predicate logic. In predicate logic
there are infinitely many models to consider, even when the vocabulary

80 CHAPTER 2. PURE PREDICATE LOGIC

of predicate symbols is finite. Since we cannot physically make a table
of all models, we need another method of showing that a sentence is
valid. To this end, we shall generalize the notion of tableau proof from
propositional logic to predicate logic. As before, a formal proof of a
sentence A will be represented as a tableau confutation of the negation
of A.

Tableaus in predicate logic are defined in the same way as tableaus
in propositional logic except that there are four additional rules for ex­
tending thein. The new rules are the [2J and ~rules for wffs which

begin with quantifiers and the I •VI and rules for the negations
of wffs which begin with quantifiers. As in case of propositional
logic, our objective will be to prove the Soundness Theorem and the
Completeness Theorem. The Soundness Theorem will show that ev­
ery sentence which has a tableau proof is valid, and the Cornpleteness
Theorem will show that every valid sentence has a tableau proof. The
tableau rules are chosen in such a way that if M is a model of the set
of hypotheses of the tableau, then there is at least one branch of the
tableau such that every wff on the branch is true for M .1

A labeled tree for pure predicate logic is a system (T, H, ~)
where T is a tree, His a set of wffs and <I> is a function which assigns
to each nonroot node t of T a wff <I> (t) ·of pure predicate logic. The
definition is exactly the same as for propositional logic, except that the
wffs are now wffs of predicate logic. As in propositional logic, "the wff
A is at the node t" means that "A is <I>(t)." The wffs of Hare said to
be "at the root." We shall use the same terminology (ancestor, child,
parent, etc.) as we did for propositional logic.

Definition 2.6.1 A tableau chain for pure predicate logic is a finite
or infinite sequence of finite labeled trees which is formed using the nine
tableau extension rules for propositional logic (see section 1.7.1) and the
following additional tableau extension rules:

[2J If t has an ancestor VxA, extend by adding a child A(x//a) oft,
where a is an individual symbol which is free for x in A.

1For a precise statement, see Lemma 2.7.2 on page 86 below.

2.6. TABLEAUS 81

I •VI if t has an ancestor •VxA, extend by adding a child •A(x//b} of
t, where b is an individual symbol which does not occur in any
ancestor of t.

If t has an ancestor 3xA, extend by adding a child A(x//b) of
t, where b is an individual symbol which does not occur in any
ancestor of t.

l ·3 l If t has an ancestor •3xA, extend by adding a child •A(x//a) of
t where a is an individual symbol which is free for x in A.

The four new rules are summarized in Figure 2.2, which should be
viewed as an extension of Figure 1.4 on page 28.

Definition 2.6.2 A tableau for predicate logic is a labeled tree
which is either the last term of a finite tableau chain, or the union of
an infinite tableau chain.

82 CHAPTER 2. PURE PREDICATE LOGIC

Tableau Extension Rules

VxA

t

I
A(x//a)

·3xA

t

I
•A(x//a)

a is free for x

3xA

t

I
A(x//b)

•VxA

t

I

·A(x//b)

bis new

Figure 2.2: Tableau Extension Rules for Pure Predicate Logic.

2.6. TABLEAUS 83

Notice that the [2J and I ·3 I rules are similar to each other, and the

[lJ and I •VI rules are similar to each other. The V and I ·3 I rules allow
any substitution at all as long as there is no confusion of free and bound
variables. On the other hand, the@] and I ·VI rules are very restricted,
and only allow us to substitute a completely new symbol b for x. In
an informal mathematical proof, if we know that 3xA is true we may
introduce a new symbol b to name the element for which A(x//b) is
true. It would be incorrect to use a symbol which has already been
used for something else. This informal step corresponds to the 3 rule
for extending a tableau. A similar remark applies to the •V rule.

A tableau confutation of a set H of wffs in predicate logic is a
tableau T with root H such that each branch is contradictory, that
is, each branch has a pair of wffs A and •A. A tableau proof of a wff
A is a tableau confutation of the set {·A}, and a tableau proof of A

· from the hypotheses H is a tableau confutation of the set HU {•A}.
If there is a tableau proof of A from H, we say that A is provable
from Hand write Ht-- A.

The main purpose of tableaus is to give a method for ~showing that a
sentence is valid, or that one sentence is a semantic consequence of a set
of other sentences. For this reason, We shall usually work with tableaus
whose hypothesis set H is a set of sentences, rather than merely a set
of wffs.

We shall see later that if a set of sentences H has a tableau confuta­
tion, it has one such that every individual symbol which occurs freely
on the tableau is a parameter rather than a variable. We shall always
follow the practice of building tableaus with no free variables, because
then we never have to worry about a variable being both free and bound
in a wff. This is done by using individual parameters rather than indi­
vidual variables in the quantifier extension rules.

It is usually much more difficult to find formal proofs in predicate
logic than in propositional logic, because if one is careless, the tableau
will keeg_g;owing forever. One useful rule of thumb is to try to use the
@]and L:~~Jrules, which introduce new individuals, as early as possible.
9.E-ite often, these new individuals will appear in substitutions in the
l!'.J or I •3 I rules later on. This rule of thumb is illustrated in the two
simple examples in Figure 2.3. ,

84 CHAPTER 2. PURE PREDICATE LOGIC

(1) ·3y P(y) • to be proved

(2)
l

3x P(x) hypothesis

(3)
I

P(a) by (2)

(4)
I

•P(a) by (1)

A tableau proof of 3y P(y) from 3x P(x).

(1) •Vy3x P(x, y) • to be proved

(2)
I

3xVy P(x, y) hypothesis

(3)
I

Vy P(a, y) by (2)

(4)
I

1 3x P(x, b) by (1)

(5)
I

P(a, b) by (3)

(6)
I

•P(a,b) by (4)

A tableau proof of Vy3x P(x, y) from 3xVy P(x, y).

Figure 2.3: Two Tableau Proofs in Predicate Logic.

2. 7. SOUNDNESS

2. 7 Soundness

In this section we will prove the

Soundness Theorem

If a sentence of pure predicate logic has a tableau proof, then it
is valid.

85

The proof of the Soundness Theorem for predicate logic is similar
to the proof of the Soundness Theorem for propositional logic, but with
extra steps for the quantifiers. Recall that Lemma 1.8.1 for proposi­
tional logic asserted that if T is a finite tableau with a set H of wffs
at the root and if M is a model for H then· there is a branch T such
that M f= r. Without some qualification this will not be true in pred­
icate logic since the wffs in the tableau proof may have free variables
or parameter symbols which are not elements of M. To make it correct
we must replace the free variables or parameter symbols which occur
in the tableau with suitable parameters from M.

To this end define a valuation in the set M to be a list of pairs

where x1, x2 , ••• xe are distinct individual symbols (variables or param­
eters) and a1 , a2 , • •• ae are elements of M. For any wff A we write A(v)
in place of the more cumbersome

. A(xi, x2, ... xd /ai, a2, ... , ae)

If the list xi, x2, ••• xe contains all the individuar symbols occurring
freely in the wff A then A(v) is a sentence with parameters from M. If
Mis a model with universe Mand r is a set of wffs, then the notation

MF r(v)

86 CHAPTER 2. PURE PREDICATE LOGIC

means that MI= A(v) for each wff A in r. The notation is used only
. when the list X1, X2, ••• Xe contains all the individual symbols which

occur freely in some wff of r.
Recall that a sentence of pure predicate logic is a wff with no free

individual symbols, that is, no free variables and no parameters. To
keep things simple, in this section we shall consider only finite tableaus
T whose hypothesis set H is a finite or countable set of sentences. If
T is such a tableau, then each branch r of T will have only finitely
many wffs in addition to the hypotheses. Since no individual symbols
occur freely in H, only finitely many individual symbols occur freely in
r . In this case, M I= r(v) is meaningful and says that M I= A(v) for
each wff A which occurs along r; i.e. the same notation is used for the
branch and the set of wffs which occur along the branch.

In the exercises we shall see that the results in this section can be
extended to all tableaus by using infinite valuations.

Definition 2.7.1 A wff A is called satisfiable in a model Miff there
is a valuation v in the universe of M such that M I= A(v). A set r of
wffs in which only finitely many individual symbols occur freely is called
simultaneously satisfiable in a model M iff there is a valuation v in
the universe of M such that M I= r(v).

Lemma 2. 7.2 Let T be a finite tableau in predicate logic whose hy­
potheses set H is a finite or countable set of sentences, and let M be a
model for H, that is,

M f=H.
Then there is a branch r of T which is simultaneously satisfiable in M.

Proof: The proof of this lemma is similar to the proof of Lemma 1.8.1
which is the corresponding lemma for propositional logic. The idea is to
carefully choose individual symbols from the model at each step where
the ~ rule or the [YJ rule is used in extending the tableau T.

By definition there is a finite tableau chain T 0 , Ti, ... , Tn with
T = Tn. We will construct inductively a branch rk of Tk and a
valuation

2.7. SOUNDNESS 87

such that the wffs
Ai,A2, ... ,Am

which occur along this branch satisfy M I= Aj(vk) for j 1, 2, ... k.
The first coordinates x1 , x2 , ••• , xek of the pairs in the list v will be
precisely the individual symbols which occur free along rk. The branch
·rk+l will extend the branch rk and the valuation Vk+1 will extend vk.

When k = 0 the wffs Aj are simply those of H so we take v0 to be
empty and the result is the hypothesis M I= H. If Tk+l is obtained
from T k by extending at some node other than the terminal node of r k

We simply take rk = rk+l and Vk Vk+i and there is nothing to prove.
Hence assume Tk+l is obtained from Tk by extending at the terminal
node of r k by applying one of the thirteen tableau extension rules to
some wff Aj in the list. We use a case analysis and Proposition 1.5.2
(page 16).

In case the Tk is extended to Tk+l via one of the nine propositional
tableau extension rules we take Vk+i Vk and argue as in Proposi-
tion 1.8.1. In the remaining cases we argue as follows.

(10) Suppose Aj is VxA and the tableau is extended by adjoining
A(x//y). Take Vk+i = Vk if the individual symbol y appears in
the list x1, ... xe of first coordinates in vk; if not, extend Vk to
Vk+i by adjoining the pair (y, a) where a is any element of M. By
the induction hypothesis M I= VxA(vk) so M I= A(vk+1).

(11) Suppose Aj is -NxA and the tableau is extended by adjoining
-iA(x / / y). In this case the individual symbol y does not occur in
the list of first coordinates in Vk and by the induction hypothesis
M I= -iVxA(vk)· Choose b E M so that M I= -.A(Vk+i) where
Vk+i is defined by adjoining (y, b) to vk.

(12) Suppose Aj is 3xA and the tableau is extended by adjoining
A(x/ /z). Proceed as in (11).

(13) Suppose Aj is -i3xA and the tableau is extended by adjoining
-iA(xi /y). Proceed as in (10).

End of Proof.

As in propositional logic, we have the following lemma which is
proved in essentially the same way:

88 CHAPTER 2. PURE PREDICATE LOGIC

Lemma 2. 7.3 If a finite or countable set H of sentences has a tableau
confutation, then H has no model.

Proof: Suppose His a hypothesis set and T is a tableau confutation
of H; if H · has a model M, then by the previous lemma, there is a
branch r in T and a valuation v in M such that M F r(v). But this.
is impossible since every branch of T is contradictory. End of Proof.

This lemma gives us the Extended Soundness Theorem just as with
propositional logic. Since the proof carries over without change, we
omit the details. The Soundness Theorem in the above box is the
special case where the hypothesis set H is empty.

Theorem 2.7.4 (Extended Soundness Theorem) Suppose that
HU {A} is a finite· or countable set of sentences. If H I- A then H I= A;
in other words, if there is a tableau proof of A from H, then A is a
semantic consequence of H.

As in propositional logic, a tableau confutation can be used to show
that a sentence is valid. This is the special case of the Extended Sound­
ness Theorem in which the hypothesis set H is empty. Thus, if I- A,
then every model (of the empty set of hypotheses) is a model of A;
hence A is valid.

2.8 Finished Sets

By an atomic wff we mean either a propositional symbol alone or a
wff of form p(x1, x2, ... , xn) where pis an n-ary predicate symbol and
xi, x2, ... , Xn are individual symbols. By a basic wff in pure predicate
logic we mean a wff which is either an atomic wff or the negation of an
atomic wff. We call a set A of wffs contradictory if it contains some'
wff A, and its negation •A. A set A of sentences with parameters
from M is a finished set on M if A is not contradictory, and for each·
C E A, either C is a basic wff, C satisfies one of the conditions [••] to
[• {::}] from Section 1. 9 on page 33, or else one of the following is true:

[VJ Chas form VxA where A(x//a) EA for every a EM;

2.8. FINISHED SETS

[•VJ C has form •VxAwhere 1 A(x//b) EA for some b EM;

[3] Chas form.3xA where A(x//b) E A for some b EM;

[•3] Chas form -,:JxA where ·A(x//a) E A for every a EM.

89

The definition of a finished set is parallel to the definition of a tableau.
It should be noted, however, that the [2J and I ·3 I tableau extension ·
rules differ markedly from the [\I] and[•3] clauses in the definition of a
finished set. The latter two rules say that every possible substitution
instance must lie in the finished set, whereas the former two rules say
that the tableau is extended by one substitution.

Lemma 2.8.1 (Finished Set Lemma) Suppose M is a non-empty
set and that A is a set of sentences with parametersfrom M. Assume

. that A is finished set on M. Define a model M for pure predicate logic

as follows:

e The universe set of the model M is the set M.

e For each propositional symbol p E Po, PM = T if and only if

pE A.

• For each n-ary predicate symbol p E Pn

Then M f= A.

Proof: We shall prove that

MI= C if CE A

by induction of the length of C. The pattern of proof is as follows.
First we prove (*) in case C is a basic wff. Then we choose C E A,
assume that (*) is true for all wffs A which are shorter than C, and
prove that M f= C. (This shows that if (*)is true for ali wffs A shorter
than C, then (*) is also true when A is C.) .

First consider' the case where C is basic. If C is p(b1, b2, ... , bn) and
. · p(bi, b2,.;., bn) E A, then M I= C by the definition of M. If C is

90 CHAPTER 2. PURE PREDICATE LOGIC

•p(b1, b2, ... , bn) and C E a, then p(bi, b2, ... , bn) rl. a for otherwise
· the set a would be contradictory and hence not finished. Hence in this
case as well M I= C by the definition of M.

Now choose C E a and assume inductively that (*) is true for all
wffs shorter than C. We have just handled the case where C is basic so
we may assume that C is not basic. Hence C has one of the forms [••],
[/\], ... , [•3] as in the definition of finished set given above. There are
thirteen cases, one for each part of the definition. They are all similar
so we will only prove five of them and leave the rest to the reader.

[••J In this case C has the form ••A. As we have assumed that
C E a the definition of finished set tells us that A E a. By the
induction hypothesis, M I= A. Hence M I= C.

[VJ In this case C has the form AV B. As we have assumed that
C E a the definition of finished set tells us that either A E a or
B E a. By the induction hypothesis, either M I= A or M I= B.
Hence MI= C.

[•VJ In this case Chas the form •(AV B]. As we have assumed that
C E a the definition of finished set tells us that •A E a and
·B E a. By the induction hypothesis, M I= •A and M I= •B.
Hence MI= C.

[V] In this case C has the form VxA. As we have assumed that C E a
the definition of finished set tells us that

A(x//a) Ea for every a EM.

The induction hypothesis tells us that M I= A(x //a) for every
a E M. Hence M I= C.

[•VJ In this case C has the form •VxA. As we have assumed that
C E a, the definition of finished set tells us that

•A(x//b) Ea for some b EM.

The induction hypothesis tells us that M I= A(x//b). Hence
M l=C.

End of Proof.

2.9. COMPLETENESS

2.9 Completeness

In this section we will prove the

Completeness Theorem

If a sentence of pure predicate logic is valid, then it has a
tableau proof.

91

The Completeness Theorem for pure predicate logic uses many of
· the ideas introduced in connection with the Completeness Theorem for

propositional logic. One important difference is that infinite tableaus
are needed even when the set of hypotheses is finite. As with proposi­
tional logic, our main task is to prove the following Main Lemma.

Lemma 2.9.1 (Main Lemma) Suppose H is a finite or countable set
of sentences in pure predicate logic. Either H has a tableau confutation
in which no free variables occur, or H has a model.

As before, the Extended Soundness Theorem shows that H cannot
have both a tableau confutation (with or without free variables) and a
model. To prove the Main Lemma we shall' construct a tableau T in
which every branch is either finished or finite and contradictory. The
tableau T will also have the property that no free variables occur on
T.

The formulation of the Completeness Theorem in the box at the
beginning of this section is a special case of the following. (Take the
hypothesis set H to be empty.)

Theorem 2.9.2 (Extended Completeness Theorem) Suppose H
is a finite or countable set of sentences and A is a sentence in pure
predicate logic. If every model of H is a model of A, then there is a
tableau proof of A from H in which no free variables occur. Thus if
H l=.A, then H ~ A.

92 CHAPTER 2. PURE PREDICATE LOGIC

The proof of the Completeness Theorem from the Main Lemma
carries over from propositional logic without change, and so we omit it
here. Following the pattern which we used for propositional logic, we
shall now state and prove a Tableau Extension Lemma ·for predicate
logic, and then prove the Main Lemma.

We fix a countable set M of new individual parameters which occur
nowhere in H. A branch of a tableau is said to be finished on M if·
the set of wffs on the branch is finished on M. Define a tableau T
to be finished on M if every branch of T is either finished on M or
else both finite and contradictory .. In a finished tableau, the finished
branches, if any, may be either finite or infinite. (A branch will have to
be infinite if M is infinite and a wff of form VxA or •3xA appears on
the branch.) If all the branches of a tableau are finite and contradictory,
then by the Konig Tree Theorem from Chapter 1, the tableau will have
finitely many nodes and hence will be a confutation. Tableau proofs
and tableau confutations are always required to be finite, but finished
tableaus which are not confutations are allowed to be infinite.

Lemma 2.9.3 (Tableau Extension Lemma) Let M be a countable
set {to be used as a set of parameter symbols} and let H be a finite or
countable set of sentences in pure predicate logic. Then there exists a
finished tableau T on M with root H, such that no free variables occur
on T.

Proof: We construct a sequence of finite tableaus

such that T n+l is an extension of T n for each n E N. The finished
tableau will be the union of the tableaus in this sequence. The tableau
To is just the trivial tableau with only the root node and the given set
of sentences H attached to it. Since the set M is countable we may list
its elements:

M = { ai, a2, a3, .. . }.

We also list the elements of the finite or countable set H,

2.9. COMPLETENESS 93

Let Ho be the empty set and Hn = { C1, ... , Cn}, with the understand­
ing that if H is finite with n elements then we instead take Hm = H
when m 2 n.

We shall construct the sequence Tn of tableaus using only the pa-
rameter symbols from M in the quantifier rules. Since each tableau T n

·will have only finitely many nodes, T will contain only finitely many
sentences outside H and hence only finitely many parameters from M
occur in T n. (The finished tableau, however, may well use all the pa­
rameters from M.)

Given the finite tableau Tn we form a finite extension Tn+1 with
the following properties. For any noncontradictory branch r of T n+1
and wff A on r such that either A E Hn or A is a no~root wff T n:

1. If A is of the form VxB then for every i 1, 2, ... , n + 1 the wff
B(x// ai) is on r.

2. If A is of the form •3xB then for every i = 1, 2, ... , n + 1, the
wff ·B(x//ai) is on r.

3. If A is of any other form, then A is used (as the hypothesis of a
tableau extension rule) at least once along r. For example, if A
is of the form 3xB then for some integer k, possibly much bigger
than n, the wff B(x//ak) is on r. As a second example, if A is
of the form B V C then either B is on r or C is on r.

Furthermore, no contradictory branch of T n is extended in forming

Tn+l·
The tableau Tn+l is constructed in .finitely many stages by taking

care of all wffs in Hn and all nonroot wffs of T n one at a time. Now
we claim that the union T = Un T n is a finished tableau on M. Let r
be any branch of T. If r is contradictory then r is finite as before.

If r is not contradictory we must show that a, the set of all wffs
on r, is a finished set. Suppose that A E a. Then for some n, A is
either in Hn or is a nonroot wff of Tn· Since r n Tn+i is a branch of
T n+i, by the construction A has been used. on r n T n+i and hence on
r. Now suppose that A has the form VxB. Then for every m > n and
i :s; m, the wff B(x//ai) is on r n Tm. Hence for every i = 1, 2, ... the
wff B{ x I I ai) is on r. Similarly if A has the form ·3xB' then for every

94 CHAPTER 2. PURE PREDICATE LOGIC

i = 1, 2, ... the wff -.B(x/ /ai) is .on r. The other cases for the wff A
may be dealt with in a similar manner to complete the proof that il is
a finished set. It follows that T is a finished tableau with hypothesis
set H. End of Proof.

Proof of the Main Lemma: The Main Lemma for the Completeness.
Theorem can now be deduced as follows. Let H be a finite or countable
set of sentences in pure predicate logic. By the Tableau Extension
Lemma, there is a finished tableau T on M with root H and no free
variables. By the Konig Tree Theorem, T is either a tableau confutation
of H or T has a non contradictory branch r. In the latter case, the set
of wffs on r is a finished set on M, so by the Finished Set Lemma, H
has a model. End of Proof.

Note that this proof shows that any finite or countable set of sen­
tences of pure predicate logic which has a model has an infinite model,
i.e., one with an infinite universe. This will not be the case for the full
predicate logic (at least if we require our model to respect equality in
the sense explained in the next chapter).

We conclude this section by stating the Compactness Theorem for
pure predicate logic. It is proved from the Main Lemma exactly as in
the propositional logic case.

Theorem 2. 9.4 (Compactness Theorem) Let H be any countable
set of sentences of pure predicate logic. If every finite subset of H has
a model, then H has a model.

2.10 Equivalence Relations

The full predicate logic studied in the next chapter introduces some
rules of logic which deal with equality. The pure predicate logic studied
in this chapter treats the equality symbol like any other binary relation
symbol. However, by adding certain axioms to the hypothesis set of
any tableau, we can assure (without adding any additional logical rules)
that the equality symbol essentially represents true equality. We shall
explain how to do this in this section.

To make it easier to distinguish an equality symbol in our vocab­
ulary P of predicate logic from the ordinary uses of equality outside

2.10. EQUIVALENCE RELATIONS 95

of predicate logic, we shall use the symbol= as an equality symbol in
predicate logic. There is nothing in our definition of model which says
that the value =M of the equality symbol = has to be the equality
relation between elements of M. We say that a model M of type P
respects equality iff for all a, b EM, the universe of M, we have

M f= a = b if and only if a b.

In the next chapter we introduce the term pre-model for a model
which may or may not respect equality, and reserve the term model for
models which do respect equality.

Equality Axioms

(1)
(2)
(3)
(4)

Vxx = x

VxVy[x = y => y = x]
VxVyVz[x = y /\ y z =? x z]

VV!Yf.x ii=> [p(x) {::} P(ii)]]

Definition 2.10.1 The sentences in the box comprise the set E(P)
of equality axioms for the vocabulary P. There is one instance of (4)
for each predicate symbol p. In (4) p denotes an n-ary predicate symbol
and we have used the following abbreviations:

Vx for

Vii for

x =ii for

p(x)· for

p(ii) for

Vx1Vx2 · · · Vxn

Vy1VY2 · · · Vyn

X1 Y1 /\ X2 = Y2 /\ · • • /\ Xn = Yn

p(x1, X2, ... , Xn)

P(Y1,Yz,. · .,yn)·

96 CHAPTER 2. PURE PREDICATE LOGIC

In this section we shall prove the following Soundness and Com­
pleteness Theorem for models which respect equality.

Soundness & Completeness with Equality

A sentence B in the vocabulary P is true in every model for P
which respects equality if and only if Bis tableau provable from
the hypothesis set E(P).

This is a special case of the following theorem:

Theorem 2.10.2 Let H be a set of sentences and A a sentence in the
vocabulary P. Every model of H which respects equality is a. model of
A if and only if there is a tableau proof of A from the hypothesis set
HU E(P).

To ·prove this theorem we need to develop the theory of equiva­
lence relations. We shall use· this theory again in Chapter 3. A bi­
nary relation = on a set X is called an equivalence relation iff the
equality axioms (1), -(2), and (3) above hold in the model M whose
universe is X and where the value :::::M assigned the equality symbol is
=· The equivalence relation is called a congruence relation for the
relation R E RELn(X) iff in addition M models equality axiom (4)
when PM R. In other words an equivalence relation on Xis a binary
relation on X which satisfies the following three laws:

Reflexive Law
Symmetric Law
Transitive Law

x x
x y implies y = x

x = y and y = z implies x = z

for x, y, z EX. An equivalence relation is a congruence relation for
R E RELn(X) iff in addition

(x1, · · ·, Xn) ER and X1 Y1, • · ·, Xn = Yn implies (yi, ... , Yn) ER

2.10. EQUIVALENCE RELATIONS 97

for X1, ... ,yn EX.
The equality relation on any set is an equivalence relation. The

equality relation is a congruence relation for any relation R: equals
may be substituted for equals without changing the meaning. Another
important equivalence relation is equality modulo m. Each positive
integer m determines an equivalence relation on Z denoted =m · The
definition is2

X =m y {::::::} ml (y - X).

The notation mlb is read m divides band means that m =ab for some
integer a. For example 3 : 7 24 while 7 '#3 2. Equality mod m is ·a
congruence relation for each of the ternary relations x + Y = z and
xy = z but not for the binary relation x < y. (See Exercises 34 on
page 135 and 10 on page 183.)

Any function 7r from X to X determines an equivalence relation on
. X via the definition

x =1r y ~ 7r(x) = 7r(y).

For example, define 7r from Z to {O, 1, ... , m -1} by taking 7r(x) to be
the remainder when x is divided by m:

r 7r(x) x = qm+r, 0 ~ r < m.

Then x =m y iff 7r (x) = 7r (y). The following lemma reverses this

process.

Lemma 2.10.3 Let = be an equivalence relation on a: set X and for
each x E X define the equivalence class of x by

[x] = {y EX: x:::: y}.

Then for all x, y E X the following are equivalent:

(i) x y;

(ii) [x] = [y];

98 CHAPTER 2. PURE PREDICATE LOGIC

(iii) [x] n [yJ # 0.

Proof: Assume (i). Choose z E [x]. Then z = x and x = y so z = x
by the Transitive Law. Hence [x] C [y]. Choose z E [y]. Then z = y so
z x by the 'I'.ransitive and Symmetric Laws. Hence [y] C [x]. Hence
[x] = [y]. We have proved (ii).

Assume (ii). Then x E [x] = [y] by the Reflexive Law [x] n [y] -/: 0.
We have proved (iii).

Assume (iii). Then there is a z E [x] n [y]. Hence z = x abd z = y
so x y by the Transitive and Symmetric laws. We have proved (i).
End of Proof.

Lemma 2.10.4 Suppose that = is a congruence relation for a relation
RE RELn(X). Let X denote the set of equivalence classes of=· Then
there is a uniqy,e relation RE RELn(X) such that

(x1, X2, ... , Xn) ER~ ([x1], [x2], ... , [xn]) E fl.

The relation R is called the relation induced by R on the set of equiv­
alence classes X.

Proof: Define R by

R = {([x1], [x2], ... , [xn]) : (x1, X2, ... , Xn) ER}.

Then (xi, x2, ... , Xn) E R implies ([x1], [x2], ••• , [xn]) E R by defini­
tion. If ([x1], [x2], ... , [xn]) E R then (again by definition) there ex-
ist yi,y2, .. . , Yn with [xi] = [yi] and (Y1, y2, ... , Yn) E R. But then
(x1, X2, ... 'Xn) E R by the definition of congruence relation. Unique-
ness is an immediate consequence of the definition of equality of sets.
(Exercise 35 relates to this construction.) End of Proof.

Now assume that P is a vocabulary which contains the equality
symbol and let M be a model for sentences (1), (2), and (3) and all the
sentences (4) where p E P. Let M be the universe of M. Let= be the
binary relation ::::::M which represents the equality predicate symbol =
in the model M. By definition = is a congruence relation for each of
the relations_pM. Let M be the set of equivalence classes and for each
p E P let PM be the relation induced by pM and let M be the model
thus defined.

2.10. EQUIVALENCE RELATIONS 99

Theorem 2.10.5 (Equality Construction) The model M respects
equality. Moreover for any sentence A we have

Proof: The proof is by induction on the length of A. To make the
induction work it is necessary to prove a stronger statement, namely
that

Mf=A(v)~Mf=A(v)

for every vahiation

where x1 , x2 , ••• x.e are distinct individuals, ai, a2, ••• , a.e E M, and

We omit the details.

Proof of Soundness in 2.10.2: Suppose that HU E(P) r A. Let
M be a model of H which respects equality. Then M is also a model
for the set E(P) of equality axioms. Now by the ordinary Soundness
Theorem 2. 7.4, M is a model of A. End of Proof.

Proof of Completeness in 2.10.2: Suppose there is no tableau proof
of A from HUE(P). Then by the ordinary Completeness Theorem 2.9.2
there is a model M of HU E(P) in which A is false. By the Equality
Construction the model M respects equality, and is a model of H in
which A is false. · End of Proof.

Henceforth we assume that all models mentioned in this book
· respect equality.

100 CHAPTER 2. PURE PREDICATE LOGIC

2.11 Order Relations

By an order relation mathematicians usually mean a transitive binary
relation, that is a binary relation S satisfying the transitive law below.
As usual write x S y instead of (x, y) Es, and x < y instead of
[X S y /\ •X :::'.:: y].

Order Axioms

(1) Reflexive Law
(2) Transitive Law
(3) Anti-symmetric Law
(4) Comparability Law
(5) No First Element
(6) No Last Element
(7) Density Law

Vx x s x
VxVyVz[x S y /\ y S z => x S z]
VxVy[x S y /\ y S x => x == y]
V xVy [x S y V y S x]
•3zVx z S x
•3wVx x S w
VxVy[x < y => 3z[x < z /\ z < y]].

A model for axioms (1)-(2) is called a pre-order. A model for axioms
(1)-(3) is called a partial order. A model for axioms (1)-(4) is called
a linear order. An order which satisfies (5) is said to have no first
element; an order which doesn't is said to have a first element.
Similarly for (6). A model for axioms (1)-(7) is called a dense linear
order without first or last element.

Some familiar linear orders include the set R of real numbers, the
set Q of rational numbers, the set Z of integers, and the set N of natural
numbers, all with the usual S relation. Of these R and Q are dense
linear orders without first or last element, Z and N are not dense, Z has
no first or last element, and N has a first element but no last element.
Each a, b ER determines four intervals

[a, b] = {x ER: a S x Sb},

[a, b[= {x ER: as x < b},

]a, b[= {x ER: a< x < b},

] a, b] = { x E R : a < x s b},

2.12. SET THEORY 101

called respectively the closed interval, open interval, and half-open
intervals with endpoints a and b. If a < b these are all dense linear
orders, [a, b] has first and last element,]a, b[has neither first nor last
element, [a, b[has a first but no last element, all:d]a, b] has a last but no
first element. An example of a partial order which is not a linear order
is the set P(X) of all subsets of a set X having more than one element,
where the relation symbol S is interpreted as the subset relation C.

Thus, for example, letting X = N, the set of natural numbers, we can
demonstrate that (4) fails for the model M = (P(X), C) by considering
the two sets

0 { n E N : n is odd}, E { n E N : n is even}.

Any binary relation R on a set X determines a preorder SR called
the transitive closure of R. The definition is that for x, y E X we
have x SR y iff there is a sequence x0 , Xi, x2 , .• . Xn of elements of X

such that x0 = x, Xn = y and

(xk-i,xk) ER fork= 1,2, ... ,n.

The transitive closure is reflexive since sequences of length n = 0 are
allowed. It is transitive since a sequence from x to y may be followed
by a sequence from y to z to given a sequence from x to z. If the set X
is finite we may represent the transitive closure as follows:. Draw a dot
for each element of X and an arrow from x to y if (x, y) E R. Then
x SR y iff x may be connected to y by a path of arrows ..

2.12 Set Theory

In this section we give the axioms for ZST - Zermelo set theory,
which were introduced by Zermelo in 1906 as a foundation for mathe­
matics. Zermelo set theory is a part of a larger and more recent set of
axioms called ZFC Zermelo-Fraenkel set theory with the axiom
of choice. The first-order language in which the sentences of Zermelo
set .theory are formulated has no proposition symbols and has just two
predicate symbols: one for equality (==) and one for membership(E).
The equality axi<?ms are tacitly included in ZST. Thus, when we say

102 CHAPTER 2. PURE PREDICATE LOGIC

that a sentence C is a theorem of ZST we mean that it is provable
from the axioms of ZST and the equality axioms. While the vocab­
ulary of ZST is very simple, it has been shown that the sentences of
(virtually) every mathematical theory can be translated into sentences
of ZST. Much of mathematics, including all the mathematics done in
this book, can be carried within ZST, and (virtually) every theorem of
mathematics can be treated as a theorem of the larger axiom set ZFC.
See A. Levy's book on set theory for a complete list of axioms for the
larger theory ZFC and interesting discussion.

2.12. SET THEORY

Axioms of Zermelo Set Theory

(1) Pairing: VxVy:JzVu[u E z {::} x = u Vy= u]

Translation: If x, y are sets, so is z = { x, y}.

(2) Extensionality: VxVy[x = y {::} Vz[z E x {::} z E y]]

Translation: Two sets are equal iff they have the same
elements.

(3) Empty set: :JxVy[y E x => y f. y]

Translation: There is a set which has no elements.

(4) Union: Vx:JyVz[z E y {::} :Ju[u E x /\ z E u]]

Translation: The union of a set of sets is a set.

(5) Power set: Vx:JyVz[z E y {::} Vu[u E z => u Ex]]

Translation: The collection of all subsets of a set is also a
set.

(6) Infinity: :Ju[0 Eu/\ Vx[x Eu=> x U {x} Eu]]

Translation: There is an infinite set.

(7A) Comprehension: Vx:JyVz[z E y {::} [z Ex/\ A(z)]]

Translation: There is a set y = { z E x : A}.

103

The last item (7 A) is an infinite list of axioms, one for each wff
A(z) in which y does not occur. Together, this infinite list is called the
Comprehension scheme. Given a set x and a wff A(z), the Comprehen­
sion scheme allows us to form the set of all z E x such that A (z). For
example, once we have the set of natural numbers and a wff which ex­
presses the property "z is even", we can use the Comprehension scheme
-to prove that the set of even natural numbers exists.

104 CHAPTER 2. PURE PREDICATE LOGIC

The remaining axioms of ZFC, which are not given here, are also
·sentences of pure predicate· logic with the = and E symbols. Their
names are the Axiom of Regularity, the Axiom of Choice, and an infinite
list of axioms called the Scheme of Replacement.

The Axiom of Infinity deserves some comment. To make the ax­
iom readable, we have expressed it using symbols which are not in the
original vocabulary of Zermelo set theory: 0 for the empty set, and
x U { x} for the union of x and the singleton { x}. These expressions
are abbreviations for notions given to us by the other axioms. So, for
example, 0 E u could be formally expressed by the wff'

:lz[z E u /\ Vy-iy E z].

We leave as an exercise (Exercise 49) the verification that the entire
Axiom of Infinity can be expressed in a formally correct way as a wff
in the vocabulary of Zermelo set theory.

·u is reasonable to translate the Axiom of Infinity as "there is an
infinite set," because it says that there is a set u such that

0 Eu, {0} Eu, {0, {0}} Eu, {0, {0}, {0, {0}}} E u,

2.13 Tableaus and Mathematical Proofs

In composing a "real" mathematical proof, a mathematician is free to
use not only the rules of tableau proofs, but any other rules which are
known to be sound. By a sound set of rules we mean a set of rules
such that any wff which is proved from a hypothesis set H using the
rules is a semantic consequence of H. Real mathematical proofs are
usually written in paragraph form rather than· in tree form. However,
they can be translated into tree form, and can be thought of as tableau
proofs which use extra rules. When extra rules are allowed, proofs
become easier to find and easier to understand. On the other hand, the
concept of a proof is more complicated when more rules are allowed.
When the aim is to study the concept of a proof, as in this book, one
should keep the set of rules as small and simple as possible. But when
the aim is to discover proofs in mathematics, one should make the set
of rules as rich as possible.

2.13. TABLEAUS AND MATHEMATICAL PROOFS 105

In this section we shall make a short detour from our main path and
discuss some of the extra mles of proof in pure predicate logic which
are commonly used in mathematics. Each of these extra rules is easily
seen to be sound .. The Extended Completeness Theorem shows that
any wff which can be proved from a hypothesis set H using the tableau
rules and the extra rules can be proved from H using only the tableau
rules. Often, however, the formal tableau proof will be considerably
longer.

For the sake of simplicity, our presentation in this section will he
less precise than in our main line of development We shall deal with
tableaus in a broader sense which are built using a variety of extra rules
as well as the original tableau extension rules. In order to combine
various rules together, we need to work with hypothesis sets which
contain sentences with parameters from JC. The Extended Soundness
and Completeness Theorems for sentences with parameters from JC are
given in the Exercises.

For each of the extra rules, we shall first display the rule in a box,
and then prove a theorem which says that the extra rule is sound. In
this section we shall always assume that H is a set of sentences with
parameters from JC, and that all tableaus mentioned are finite.

Direct Proof Rule. Color a node of a tableau red if every
branch through it either contains the formula to be provedor.is

Theorem 2.13.1 (Direct Proof Theorem) If there is a tableau T
with root H such that the wff A occurs on every noncontradictory
branch of T, then A is tableau provable from H.

Proof: To get a tableau proof of A from H, simply add -iA to the list
of hypotheses H. This makes each branch of T contradictory, so that
Tis a tableau proof of A from H. End of Proof.

By a direct proof of A from H we mean a tableau with root
H such that A ,occurs on every noncontradictory branch. The Direct

106 CHAPTER 2. PURE PREDICATE LOGIC

Proof Theorem shows that if A has a direct proof from H, then it has a
tableau proof from H. Ordinary tableau proofs, which add •A to the
list' of hypotheses, are called indirect proofs. Sometimes there is an
indire.ct proof of A from H but no direct proof. It is considered good
form in mathematics to give a direct proof if you can find one, because
direct proofs are often easier to follow than indirect proofs.

Learning Rule. If r is a branch in a tableau and B is tableau
provable from some o.r all of the formulas in r' then the tableau
may be extended by adding B to the end of the branch r.

Theorem 2.13.2 (Learning Theorem) Suppose that a wff A has a
proof from H which uses all the tableau rules plus the Learning Rule.
Then A is tableau provable from H.

Proof: Our plan is to prove that the Learning Rule is sound by imi­
tating the proof of the Soundness Theorem, then to use the Extended
Completeness Theorem to prove the Learning Theorem.

Let T be a labeled tree whose root is a set of sentences H which is
built up using the tableau rules and the Leaning Rule. We may assume
that all the w:ffs on T are sentences with parameters in some set K'
which contains K. As in the proof of Lemma 2. 7.2, one can prove by
induction on the number of nodes in T that for any model M of H,
there is a branch r of T and a valuation v such' that M F r(v). The
induction step has one new case corresponding to the Learning Rule.
Suppose B is added to the end of a branch r by the Learning Rule.
Let M F r(v). By the Extended Soundness Theorem for hypotheses
with extra parameters (Exercise 24), M f= B(v). This completes the
induction.

Exactly as in the proof of the Soundness Theorem, we see that if A is
provable from H using the tableau rules and the Learning Rule then A . '
is a semantic consequence of H. Finally, by the Extended Completeness

2.13. TABLEAUS AND MATHEMATICAL PROOFS 107

Theorem, if A is provable from H using the tableau rules and the
Learning Rule, then A is tableau provable from H. End of Proof.

The Learning Rule is quite powerful. There are two ways to. use
it in a mathematical proof. One way is to invoke a previous theorem
during the proof of a new theorem. This makes it possible to build up
a body of knowledge by keeping a record of theorems which have been
proved. The second way is to temporarily stop work on the original
tableau, use a new a sheet of paper to write out ·a tableau proof of a
w:ff A from the formulas on the branch, and then add A to the end of
the branch in the original tableau. One can think of this method in
terms of "windows" which can be opened and used to hold subordinate
tableaus within the main tableau. To use the Learning Rule, "open a
window" at the end of a branch in a tableau. Inside the window, put
a tableau proof of a w:ff A from the formulas on the branch. Then
return to the main tableau and add the new formula A right below the
window. Sometimes there will be windows within windows.

In many cases a w:ff A easily follows from a branch r using only
propositional logic, and one can add A to the end of r by the Learning
Rule. For example, if B and C both occur on a branch, one can add
B /\ C to the end of the branch. Similarly, if A :::> B and B =? A .
both occur on a branch, one can add A ¢:? B to the end of the branch.
Another common example is modus ponens: if B and B :::> C both
occur on a branch, one can add C to the end of the branch. There is
a similar consequence of the Learning Rule which uses an equivalence
instead of an implication: If Band C ¢:? 'B both occur on a branch, one
can add C to the end of the branch. Some other examples are provided
by the valid argument rules given in Chapter 1.

By the Learning Rule, ·any formula which has a tableau proof can
be added at any time to the end of a branch; for example, A V ·A can
always be added.

The Learning Rule may also be used to add the formula 3x A to
the end of a branch whenever a formula of the form,A(x//c) occurs on
the branch. In this way, one can often give a direct proof of a formula
which starts with an existential quantifier.

Each of the next three rules is obtained by combining a theorem
. with the Learning Rule.

108 CHAPTER 2. PURE PREDICATE LOGIC

Deduction Rule. If r is a branch of a tableau and B is tableau
provable from A and some or all of the formulas in r, then
A => B may be added to the end of the branch r.

Theorem 2.13.3 (Deduction Theorem) If B is tableau provable
from H and A, then A => B is tableau provable from H.

Proof: Suppose H, A I- B. By the Extended Soundness Theorem,
H, A f= B. It follows from the truth table for => that H f= A => B.
By the Extended Completeness Theorem, H I- A => B. End of Proof.

To see that the Deduction Rule is sound, we note that it is obtained
by combining the Deduction Theorem with the Learning Rule as fol­
lows. If B is tableau provable from A and a branch r, then A => B is
provable from r by the Deduction Theorem, so we may add A=> B to
the end of r by the Learning Rule.

The Deduction Rule is often used in the following way. To add
A => B to the end of a branch r, open a window and prove B from
A and formulas on r, then return to the main tableau and use· the
Deduction Rule. In a mathematical proof, this is usually expressed by
saying that we temporarily assume A and prove B, then conclude that
A=?B.

Generalization Rule. If r is a branch of a tableau and
A(x//c) is tableau provable from a set of.wffs on r in which
the individual symbol c does not occur free, then Vx A may be
added to the end of the branch r.

Theorem 2.13.4 (Generalization Theorem) Suppose that VxA is
a sentence with parameters from K. If an individual symbol c does not
occur free in H and A(x//c) is tableau provable from H, then Vx A is
tableau provable from H.

2.13. TABLEAUS AND MATHEMATICAL PROOFS 109

Proof: Let T be a tableau proof of A(x//c) from H. By adding
the additional hypothesis -Nx A to T and inserting the wff 1 A(x//c)
immediately below the root of the tableau, we obtain a tableau proof
of Vx A from H. End of Proof.

We can see that the Generalization Rule is sound as follows. If
A(x I I c) is tableau provable from formulas on a branch r in which c
does not occur free, then Vx A is provable from r by the Generalization
Theorem, so we may add Vx A to the end of r by the Learning Rule.

The Generalization Rule is often used in the following way. To add
Vx A to the end of a branch r, open a window, choose a new individual
symbol c, prove A(x / / c) from formulas on r in which c does not occur
free, then come back to the main tableau and use the Generalization
Rule. In a mathematical proof, this is usually expressed by saying that
we let c be arbitrary, prove A(x//c), then conclude that Vx A~

We shall discuss two more extra rules which are used very frequently
in mathematical proofs, the Definition Rule and the Substitution Rule.

Definition Rule. If r is a branch of a tableau, A is a wff with
the free variables x 1 , ..• , xn, and r is an n-a:ry predicate symbol
which does not occur on the branch r or in A, then the formula

(2.1)

be added at the end of the branch.

Theorem 2.13.5 (Definition Theorem) If A and B are wffs with
parameters from K,, A has the free variables x1 , ••. , Xn, r is an n­
ary predicate symbol which does not occur in H, A, or B, and B is
tableau provable from H together with the formula 2.1, then B is tableau
provable from H alone.

The formula 2;1 is called a definition of the predicate r. An appli­
. cation. of the Definition Rule can be easily recognized in a mathematical

110 CHAPTER 2. PURE PREDICATE LOGIC

proof because it is usually signaled by a word such as "define," "let,"
·or "where." The purpose of this rule is to make a proof easier to un­

derstand by replacing a long formula which may appear several times
by an atomic formula with a new predicate symbol. This is especially
helpful if the name of the new symbol is chosen to remind the reader
of its meaning.

There are many examples of the Definition Rule in the proofs in
this book. For instance, during the proof of the Completeness Theo:­
rem for Propositional Logic, the predicates "basic wff," "unused node,"
"finished branch," and "finished tableau" were defined.

Proof of the Definition Theorem: Suppose. that Bis tableau prov­
able from HU {C} where C is the formula 2.1. Let P be the vocabulary
of H, so that P U { r} is the vocabulary of H U { C}. Then any model
of HU {C} in the vocabulary PU {r} is a model of B. Now let M be
a model of H in the original vocabulary P. We may expand M to a
model N of HU { C} in the vocabulary PU { r} by taking r JI to be the
set of n-tuples of elements of M which satisfy the wff A in M. Thus
NI= B. It can by shown by an induction on wffs that for every wff D
in the original vocabulary P and any valuation v in M, M I= D(v) if
and only if N I= D(v). Therefore M I= B, so H I= B. Finally, by the
Extended Completeness Theorem, Ht- B. End of Proof.

The following Substitution Rule is often used in combination with
the Definition Rule.

Substitution Rule. Suppose C is a wff, A and B are wffs with
at most the free variables xi, ... , Xn, A is a well-formed part of
C, and D is the wff obtained from C by replacing the string A
by the string B. If r is a branch which contains the wffs C and

(2.2)

then D may be added to the end of the branch.

2.13. TABLEAUS AND MATHEMATICAL PROOFS 111

Theorem 2.13.6 {Substitution Theorem) Suppose C is a sentence
with parameters from K, A and B are wffs with at most the free vari­
ables xi, ... , xn, A is a well-formed part of C, and D is the wff obtained
from C by replacing the string A by the string B. Then D is tableau
provable from C and Yx1 ... Yxn [A¢:;> B].

The proof is by induction on the length of the wff C, and is left as

Exercise 53.
The Substitution Rule is obtained from the Substitution Theorem

and the Learning Rule as follows. Suppose that C and Yx1 ... Yxn [A ~
B] occur on r. By the Substitution Theorem, D is tableau provable
from r, so by the Learning Rule, D may be added to the end of the
branch. Thus the Substitution Rule is sound.

The Substitution Rule is frequently used in the following way. Sup­
pose a new predicate r is introduced by the definition

using the Definition Rule. Then the Substitution Rule may be used
to replace a well-formed part A within a wff C by the new predicate
r(x1 , ... , xn)· It may also be used to "unravel" the definition by re­
placing a well-formed part r(x1 , ... , Xn) within a wff C by the old wff
A.

Recall that a set of rules is said to be sound if any wff which is proved
from a hypothesis set H using the rules is a semantic consequence of
H. In this section we have introduced several extra rules which are
commonly used in real mathematical proofs. We showed that each of
these extra rules is sound by proving that any tableau proof using an
extra rule can be replaced by an ordinary tableau proof. What we
really need in order to use these extra rules in mathematical proofs is
one grand soundness theorem which says that the set of all the extra
rules together, plus the original tableau rules, is ~ound.

Theorem 2.13. 7 The set of rules consisting of the original tableau
extension rules and the Direct Proof, Learning, Deduction, Generaliza­
tion, . Definition, . and Substitution Rules is sound.

112 CHAPTER 2. PURE PREDICATE LOGIC

Proof: We prove that Lemma 2.7.2 is true for tableau proofs and direct
·tableau proofs which use the extra rules. That is, for every tableau T
for H which uses the extra rules and any model M of H, there is
a branch r of T and a valuation v such that M f= r(v). Like the
ordinary Soundness Theorem, the proof is by induction on the number
of nodes in the tableau. The induction has one new case for each of
the extra rules for extending the tableau. In each case, we need only
repeat the argument used to show that the extra rule by itself is sound.
The soundness of the set of all our extra rules now follows as before.
End of Pro of.

As we mentioned before, mathematical proofs are usually written
in paragraph form rather than in tree form. When the proof is trans­
lated into tree form, a list of "cases" will translate into a node with
two children, as in the V rule and .similar tableau rules. A temporary
assumption in a mathematical proof will often begin an application of
the Deduction Rule, and a phrase such as "consider an arbitrary c" will
begin an application of the Generalization Rule.

Very simple steps in proofs are often omitted or grouped together.
For example, if a hypothesis has the form VxVyVz C, one usually sub­
stitutes for the variables x, y and z all at once rather than using the V
tableau rule three times.

Because of the extra rules, a real mathematical proof translated into
tree form will usually be shorter and have fewer negations and branches
than the corresponding full tableau proof.

Example 2.13.8 We conclude this section with an example of a math­
ematical proof in paragraph form which we shall analyze as a tableau
proof with extra rules.

Hypotheses:
(1) p =} q V r
(2) q=}Vxs(x)
(3) r =} Vyt(y)
(4) Vy [t(y) =} s(y)]

To Prove:
p => Vx s(x)

Proof in paragraph form: Temporarily assume p. By (1), q V r.

2.14. PREDCALC PROBLEMS (PRED2) 113

Case 1: q. By (2), Vxs(x).

Case 2: r. By (3), Vyt(y). Consider an arbitrary a. Then t(a). By
(4), t(a) ::::> s(a): Therefore s(a). Since a was arbitrary, Vxs(x).

Since Vx s(x) in all cases, p =} Vx s(x) as required. End of Proof.

The above proof can be translated into a direct proof which uses the
tableau rules together with the Deduction and Generalization Rules.
The figure on page 114 shows the proof in tree form, skipping the
simpler steps which use the ordinary tableau rules. The large window
contains a direct proof of Vx s(x) from the original hypotheses and the
temporary hypothesis p, and is used for the Deduction Rule. The small
window contains a direct proof of s(a), where a is new, from the wffs on
the branch above the window, and is used for the Generalization Rule.

/ 2.14 PREDCALC Problems (PRED2)

This set of problems uses the PREDCALC or PREDWIN program.
Its purpose is to make the student more familiar with the behavior
of truth values of wffs of predicate logic in a model. There are twelve
problems. They are located in the directory PRED2 on the distribution
diskette, and the SETUPDOS or SETUPWIN program will put them
in a subdirectory called PRED2 on your hard disk. In each problem,
a goal graph will appear on the screen and your task is to use the
"calculator" keys to get an exact copy of the goal in position one of
the stack. If the letters NC appear after the label GOAL, your answer
must use none of the parameter (or constant) symbols 0,1, ... in order
to get full credit. (If you have a text only monitor, you will have to use
the View command to see the goal graph.)

Suggestions: Think of a wff which has the required graph and write
it down, then make a parsing sequence for the wff and build it up step
by step. You always start out with atomic wffs involving=,<,>,+,-,
or *. To see the graph of the goal wff in detail, hit V for View. If
you want to keep part of what you did and change the rest, hit R to
Replay, go as far as you want by pressing the Enter key, then hit K to

114 CHAPTER 2. PURE PREDICATE LOGIC

Hypotheses:

(1)

(2)

(3)

(4)

Proof:

p=}qVr

q=?Vxs(x)

r =}Vy t(y)

Vy[t(y) => s(y)]

Temporary hypothesis: p

I
qVr (by 1)

q r
I

Vxs(x) (by2)
I

Vy t(y) (by 3)
I

t(a)
I

t(a) => s(a)
I

(by 4)

s(a)

I

Vxs(x) (by Gen. Rule)

p=}Vxs(x) (by Deduction Rule)

Figure 2.4: Example 2.13.8 in Tree Form.

2.14. PREDCALC PROBLEMS (PRED2) 115

Kill the remaining steps and make your changes. As in the previous
problem set, you should give your solution the name of the problem
preceded by the letter A. The approximate number of steps needed for
a solution and other comments are given below. You do not have to
find a solution with exactly the suggested number of steps. However,
if you are using many more steps than suggested you are probably on
the wrong track.

POINT. 5 steps. (A graph consisting of one point in the cube).

PLANES. 5 steps. (Three perpendicular planes).

SQRPLUS. 4 steps. (The graph of the equation z y 2 + 1).

TOUGK 3 steps. (A graph which has something to do with divisi-
bility by 3).

DIAG. 3 steps. (The diagonal of the cube from lower front left to
upper back right). No parameters allowed.

TWOLESS. 4 steps. (x is at least 2 less than z). No constants
allowed.

FOUR. 5 steps. (z is divisible by 4). No parameters allowed.

XXX. 5 steps. (A stack of eight X's formed by two vertical planes).
No parameters allowed.

TRUESUM. 6 steps. (z = x +yin the usual way instead of modulo
8). No parameters allowed.

ALLEVEN. 8 steps. (All three variables are even). No parameters
allowed.

SOMEVEN. 8 steps. (At least one variable is even). No parameters
allowed.

SQRSUM. 9 steps. (z is the sum of two squares). No parameters
allowed.

Here are some optional projects using the PREDCALC program.

1. The sentence
VzVx[O < x =} 3yz = X*Y]

116 CHAPTER 2. PURE PREDICATE LOGIC

is true for some universes of size between 1 and 8 but false for
others. Find out when it is true and when it is false.

2. The R(.. .) key in the upper left corner of the PREDCALC key~
pad can be used to add extra predicate symbols with one, two,
or three places to the vocabulary. The computer will randomly
choose models for these predicates. Use this key to experiment
with graphs of a wff in randomly chosen models. By using the
"Replay" command, you can repeat a session with the same wffs
but different randomly chosen models.

3. The . h(..) key also adds extra predicate symbols with two
or three places to the vocabulary. The computer will randomly
choose models in which the first variable is a function of the other
one or two variables.

4. Find a single sentence A which uses only the variables x and y,
+, connectives, and quantifiers, such that A is true in each of
the PREDCALC models of even universe size 2, 4, 6, 8 and false
in each of the models of odd universe size 1, 3, 5, 7.

5. Find eight different sentences A 1, .•. , A 8 which use only the vari­
ables x and y, the predicate symbol <, connectives and quanti­
fiers, such that for each n, An is true in the PREDCALC model
with universe size n, but is false in every other universe size.

2.15 Tableau Problems (TAB3)

This assignment uses the TABLEAU or TAB WIN program. In this
assignment you will construct tableau proofs in predicate logic. The
problems are located in directory TAB3 on the distribution diskette,
and the SETUPDOS or SETUPWIN program will put them in a sub­
directory called TAB3 on your hard disk. There are three groups of
problems in this directory:

1. SHORTl, SHORT2, ... , SHORTS,

2. SETI, SET2, ... , SET6,'

2.15. TABLEAU PROBLEMS (TAB3) 117

3. ORDERl, ORDER2, .. ., ORDER6.

Use the TABLEAU or TABWIN program commands to load the
problem, do your work, and then save your answer on your diskette
or hard drive. The file name of your answer should be the letter A
followed by the name of the problem.

As in the propositional problems, each problem is assigned a sug­
gested number of nodes: its par value. The par value is given only
as a guide; you are not expected to attain it exactly. You should try
problems with smaller par value first.

The first group of problems, called

SHORTLTBU through SHORTS.TBU,

develop some· of the basic properties of quantifiers. You should do
these pro bl ems first by hand on a piece of paper, and then do them
on the computer to check your work. This will help you discover any
misunderstandings you may have.

SHORTl (3 nodes)

Hypothesis: 3x p(x,x)

To prove: 3x 3y p(x,y)

SHORT2 (3 nodes)

Hypothesis: 3y p(y)

To prove: 3y Vx_ p(y)

SHORT3 (4 nodes)

Hypothesis: Vy Vx p(x, y)

To prove: Vx Vy p(x, y)

SHORT4 (6 nodes)

Hypothesis: p /\ 3x q(x)

. To prove: 3x [p /\ q(x)]

118 CHAPTER 2. PURE PREDICATE LOGIC

SHORTS (7 nodes)

Hypothesis: 3x [p(x) /\ q(x)]

To prove: 3x p(x) A3x q(x)

SHORT6 (11 nodes)

Hypothesis: None

To prove: 3x p(x) # -.V x •p(x)

SHORT7 (9 nodes)

Hypothesis: Vx 3y F(x,y)

To prove: Vx 3y 3z [F(x,y) /\ F(y,z)]

SHORTS (23 nodes)

Hypothesis: None

To prove: Vx p(x) /\ Vx q(x) # Vx [p(x) /\ q(x)]

The remaining problems are more difficult, and you need an overall
·picture of your proof so that you will be able to choose useful substitu­
tions for the quantifiers. Before doing the formal proof on the computer,
you should make a sketch of the main steps of the proof with pencil
and paper.

The next group of problems called

SETl. TBU through SET6. TBU

are about sets.

SET! (10 nodes).

Hypothesis:

Vx Vy [subset(x,y) # Vz [in(z,x) =} in(z,y)]]

To prove:
Vx subset(x, x)

2.15. TABLEAU PROBLEMS (TAB3) 119

The predicate in(x, y) means that x is an element of y, and the
predicate subset(x, y) means that xis a subset of y~ The hypoth­
esis defines subset(x, y) in terms of in(x, y). The conclusion states
that every set is a subset of itself.

SET2 (14 nodes)

Hypotheses:

Yx Vy [subset(x,y) # Vz [in(z,x) =} in(z,y)]],

Vx [empty(x) # • 3y in(y,x)].

To prove:
Vx [empty(x) =}Vy subset(x,y)]

The predicate empty(x) means that x is the empty set. The first
hypothesis is the same as before. The second hypothesis defines
empty(x) in terms of in(x, y). The conclusion states that the
empty set is a subset of every set.

SET3 (28 nodes)

Hypotheses:

Vx Vy [subset(x, y) # Vz [in(z, x) =} in(z, y)]],

Vx Vy Vz [union(x,y,z) #Vt [in(t,z) # in(t,x) Vin(t,y)]].

To prove:

Vx Vy Vz [union(x, y, z) =} subset(x, z)]

The predicate union(x, y, z) means that z is the union of x and
y. The hypotheses define subset(x,y) and union(x,y) in terms of
in(x, y). The conclusion states that x is a subset of the union of
x and y.

SET4 (33 nodes)

120 CHAPTER 2. PURE PREDICATE LOGIC

Hypothesis:

Vx Vy [subset(x,y) {:} Vz [in(z,x)::::} in(z,y)]]

To prove:

Vx Vy Vz [subset(x,y) /\ subset(y,z)::::} subset(x,z)]

The hypothesis is again the definition of subset(x, y) in terms of
in(x, y). The conclusion is the transitivity law for subsets, that if
x is a subset of y and y is a subset of z, then x is a subset of z.

SETS (42 nodes)

Hypotheses:

Vx Vy [subset(x,y) {:} Vz [in(z,x):::} in(z,y)]],

Vx Vy [eq(x, y) {:} Vz [in(x, z) =? in(y, z)]],

Vx [single(x) {:} 3y in(y,x)/\Vy Vz [in(y,x)/\in(z,x):::} eq(y,z)]].

To prove:

Vx [single(x):::} Vy [3z [in(z,x) /\ in(z,y)]:::} subset(x,y)]]

The predicate eq(x, y) means that x and y are elements of the
same sets. The predicate single(x) means that x has exactly
one element. The hypotheses define the predicates subset(x, y),
eq(x, y).' and single(x). The conclusion states that if single(x) and
y contams some element of x, then x is a subset of y.

SET6 (51 nodes)

Hypotheses:

Vx Vy [subset(x,y) ¢;. Vz [in(z,x):::} in(z,y)]],

Vx Vy Vz [union(x, y, z) {:}Vt [in(t, z) {:} in(t, x) V in(t, y)]].

2.15. TABLEAU PROBLEMS (TAB3) 121

To prove:

Vx Vy Vz [union(x,y,z):::} Vu [subset(x,u)/\subset{y,u):::} subset(

The hypotheses define the predicates subset(x, y) and union(x, y, z).
The conclusion states that if both x and y are subsets of u, then
the union of x and y is a subset of u.

The next group of problems called

ORDERLTBU through ORDER6.TBU

concern partial orders.

ORDERl (19 nodes)

Hypotheses:
Vx x ~ x,

Vx Vy Vz [x ~ y /\ y ~ z :::} x ~ z].

To prove:

Vw Vx Vy Vz [[w ~ x /\ x ~ y] /\ y ~ z =? w ~ z]

The hypotheses state that ~ is a partial ordering. The conclusion
states that if w ~ x ·~ y ~ z, then w ~ z.

ORDER2 (21 nodes)

Hypotheses:
Vx x ~ x,

Vx Vy Vz [x ~ y /\. y ~ z :::} x ~ z],

VxVyVz[glb(x,y,z) {:} [z ~ x/\z ~ y]/\Vt[t ~ x/\t ~ y =} t ~ z]]~

To prove:
Vx Vy [x ~ y:::} glb(x,y,x)]

122 CHAPTER 2. PURE PREDICATE LOGIC

The predicate glb(x, y, z) means that z is the greatest lower bound
of x and y in the partial ordering s, that is, z is the ·greatest
element which is s both x and y. The conclusion states that if
x s y, then x is the greatest lower bound of x and y.

ORDER3 (27 nodes)

Hypotheses:
Vx x s x,

Vx Vy Vz [x Sy A y S z => x S z],

VxVyVz[glb(x,y,z) {:} [z S xAz S y]AVt[t S xAt Sy=> t S z]].

Tq prove:

Vx Vy Vz Vt [glb(x, y, z) A glb(x, y, t) => z s t]

The hypotheses are the same as for ORDER2. The conclusion
states that if z and t are both greatest lower bounds of x and y,
then z s t. (Since the same reasoning gives t s z, this shows
that any two greatest lower bounds of x and y are equal).

ORDER4 (32 nodes)

Hypotheses:

To prove:

Vx x s x,

Vx Vy Vz [x s y A y S z => x S z],

Vx Vy 3t [x st A y st].

Vx Vy Vz [[x st A y st] A z s t]
The hypotheses state that s is a partial ordering, and that for
any two. elements x, y there is an element t such that x s t and
y s t. The conclusion states that for any three elements x, y, z
there is an element t such that x st, y st, and z st.

ORDERS (36 nodes)

2.15. TABLEAU PROBLEMS (TAB3)

Hypotheses:

To prove:

Vx x s x,

Vx Vy Vz [x s y A y ~ z => x S z],

Vx Vy [x < y {:} x S y A -.y S x].

Vx Vy Vz [x < y A y S z => x < z]

123

The predicate x < y means that x ~ y but not y S x. The
hypotheses state that s is a partial ordering and define the pred­
icate x < y in terms of x s y. The conclusion states that if
x < y s z then x < z.

ORDER6 (104 nodes)

Hypotheses:
Vx x s x,

Vx Vy Vz [x Sy Ay S z => x S z],

VxVyVz[glb(x,y,z) {:} [z S xAz S y]AVt[t S xAt Sy=> t S z]],

V x Vy [eq (x, y) {:} x s y A y ~ x].

To prove:

[[glb(a, b, c)Aglb(b, c, e))Aglb(d, c, J)]Aglb(a, e,g) => eq(f, g)

The predicate eq(x,y) means that x S y and y S x. The hy­
potheses state that s is a partial ordering and define the predi­
cates glb (x, y, z) and eq (x, y) in terms of x s y. The conclusion
is an associative law for greatest lower bounds. If we write x UY·
for the greatest lower bound of x and y, and x = y for eq (x, Y),
the conclusion states that

(a LJ b) Uc= a LJ (b Uc).

124 CHAPTER 2. PURE PREDICATE LOGIC

2.16 Exercises

1. The string
3x [Vy p(x,y)::::} •q(x) V r(y)]

is an abbreviation for a wff in predicate logic.

(a) Change the string into the wff which it abbreviates by inserting
brackets in the correct places.

(b) Write down a parsing sequence for the wff.

(c) For each wff of your parsing sequence, circle every occurrence of a
variable which is bound in that wff.

2. Give an example of a wff A in predicate logic with variables x, y,
and z which satisfies each of the following four conditions at the same
time:

• x is free for y but not for z,

• y is free for z but not for x,

• z is not free for x, and

• z is not free for y.

3. Prove that for each wff A in pure predicate logic, if B and C are
well formed parts of A and the first symbol of C is within B, then the
last symbol of C is within B.

Hint: Use induction on the length of B and Lemma 2.2.3.

4. Which of the following sentences A are valid? For those which are,
give a tableau proof. For those which are not, give a counter-model
(i.e. a model M such that M ~A).

(1) [p11 V P12] /\ [p21 V Pd => [Pi1 /\ P21] V [P12 /\Pd

2.16. EXERCISES

(2) [pu /\ P21] V [p12 /\ P22].=> [pu V pl2] /\ [p21 V P22]

(3) Vx3yp(x,y) => 3y\fxp(x,y)

(4) 3y\fxp(x,y) => Vx3yp(x,y)

5. In the following, N denotes the set of natural numbers,

N = {O,l,2,3, ... }

125

Let N be the model with universe Nin which the predicate symbols=,
and < and the expression x + y = z all have their usual meanings.

Which of the following are true in N?

(I.a) Vx\fy\fz[x + y = z => y + x = z].

(Lb) Vx3y x + y = x.

(2) 3yVx x +y = x.

(3.a) Vx\f z3y x + y = z.

(3.b) Vx\fz[x~z=>3yx+y=z].

(4.a) Vx3y x < y.

(4.b) Vx3yx::; y.

(5.a) Vx3y y < x.

(5.b) Vx3y y ~ x.

(6.a) 3y\fxy < x.

(6.b) 3y\fxy::;x.

(7) Vx[Vy x ::; y ::::} x ::::: OJ.

(8) Vx\fy[[x ::; y /\ y ::; x]::::} x = y].

· (9) \lx\fy[[x < y /\ y < x] => •x = y].

126 CHAPTER 2. PURE PREDICATE LOGIC

(10) Vx3y x < y => 3y 3 < y.

(11) Vx3y x < y =;. 3y y < y.

6. Let Z denote the set of integers:

z { ... ,-2,-1,0,1,2, ... },

and let Z be the model with universe Z and the usual meaning for the
predicate symbols. Which of the sentences of Exercise 5 remain true
when N is replaced by Z?

7. In this problem you are to find a model M for predicate logic with
one binary predicate symbol p. The universe of M is the set {O, 1, 2}
and the relation pM is a subset of the set of pairs (i,j) with i and j
from {O, 1, 2}. Your answer will be counted as correct if and only if the
wff

Vx3y p(x,y) /\ 3x\ly p(x,y) /\ -.3y\lx p(x,y)

is true in your model M. You may specify your model by drawing a 3
by 3 matrix of truth values to indicate the graph of PM.

8. For each positive integer n construct a model M = (M,pM) as
follows:

l'vf {1,2,3, ... ,n- 1},

PM = {(i,j) E l'vf x l'vf: ij = 1 (mod n + l)}.

(Note: x = y (mod k) iff x y is divisible by k.)
Show that M f= Vx3y p(x,y) when n = 6 _but not when n = 5.

9. pure predicate logic, let x and y be variables and let A (x / y)
(with only one slash) be the wff formed by replacing each bound oc­
currence of x in A by y, leaving the free occurrences alone. For example,
(Vz3xp(x,z))(x/y) is Vz3yp(y,z). Prove by induction on wffs that if
A is a wff and y does not occur in A, then the wff [A {::} A(x/y)]
is valid. Hint: Let R(n) be the following property: For every wff C
of length ~ n, every model M, and every instance A of C in l'vf,
M f= A(x/y) whenever y does not occur in A.

2.16. EXERCISES 127

"10. Give a tableau proof of each of the following:

(1) -, V x p(x) {::} 3x -.p(x)

(2) p(x) ¢;> \Ix -.p(x)

(3) V x p(x) {::} -.3x -.p(x)

(4) p(x) {::} -.\Ix -.p(x)

(5) Vxp{x) {::} \lyp(y)

(6) p(x) {::} 3y p(y)

(7) Vx[p(x) /\ q(x)] {::} [Vxp(x) /\ Vxq(x)]

(8) 3x[p(x) V q(x)] ¢=> [3xp(x) V q(x)]

ll. In this exercise [p = q] is to be understood as an abbreviation
for the sentence Vx[p(x) {::} q(x)]. Give a tableau proof of each of the
following:

(1) [p q]=?[Vxp(x){:}\lxq(x)]

(2) [p q] [3xp(x) {:} 3xq(x)]

(3) [p q] =? Vx[-.p(x) {:} -.q(x)]

(4) [p1 qi]/\ [P2 = q2] =? Vx[(p1(x) /\ P2(x)] {::? [q1(x) /\ q2(x)]]

(5) [p1 qi]/\ [P2 = q2] * Vx[(p1(x) V P2(x)J {::} [q1(x) V q2(x)]]

(6) [p1 qi]/\ [p2 = q2] Vx[[p1(x) =? P2(x)] {::} [q1(x) =} q2(x)]]

(7) [p1 qi]/\ [P2 = q2] =? Vx[(p1(x) ¢=> P2(x)] {::? [q1(x) {::? q2(x)]]

12. Which of the following sentences A are valid? For those which are,
give a tableau proof. For those which are not, give a counter-model.
You may specify your counter-model M by writing down the universe

· set M · and one or two subsets pM and qM.

128 CHAPTER 2. PURE PREDICATE LOGIC

. (I.a) 3x[p(x) I\ q(x)] => [3xp(x) I\ 3xq(x)]

(Lb) [3xp(x) I\ 3xq(x)] => 3x[p(x) I\ q(x)]

(2.a) Vx[p(x) V q(x)]:::} [Vxp(x) V Vxq(x)]

(2.b) [Vx p(x) V Vx q(x)] => Vx[p(x) V q(x)]

(3.a) Vx[p(x) => q(x)] => [Vxp(x) => Vxq(x)]

(3.b) [Vx p(x) => Vx q(x)] => Vx[p(x) => q(x)]

(4.a) 3x[p(x) => q(x)] =? [3xp(x) =? 3xq(x)]

(4.b) [3xp(x) =:;. 3xq(x)] =? 3x[p(x) =? q(x)]

(5.a) Vx[p(x) {:} q(x)] =? [Vx p(x) {:} Vx q(x)]

(5.b) [Vxp(x) {:} Vxq(x)] => Vx[p(x) {:} q(x)]

(6.a) 3x[p(x) {:} q(x)] =? [3xp(x) {:} 3xq(x)]

(6.b) [3xp(x) ~ 3xq(x)] => 3x[p(x) {:} q(x)]

(7.a) Vx •p(x) =?·'ix p(x)

(7. b) -N x p(x) => V x •p(x)

(8.a) 3x•p(x)=?•3xp(x)

(8.b) •3xp(x) =? 3x•p(x)

13. Give a tableau proof of each of the following:

(1) Vxp {:} p

(2) 3x p {:} p

(3) Vx[p I\ q(x)] <¢:? [p I\ Vx q(x)]

(4) 3x[pl\q(x)] {:} [pl\3xq(x)]

2.16. EXERCISES

(5) Vx[p V q(x)] {:} [p V Vx q(x)]

(6) 3x[p V q(x)] <¢:? [p V 3x q(x)]

(7) Vx[p =? q(x)] {:} [p =? Vxq(x)]

(8) 3x[p =? q(x)] {:} [p =? 3xq(x)]

(9) 3x[q(x) =? p] {:} [Vxq(x) => p]

(10) Vx[q(x) =? p] {:} [3xq(x) =? p]

129

14. For each pair of wffs (a,b) below, give a tableau proof of one of the
wffs and a countermodel of the other.

(I.a) Vx[p => q(x)] => [p => 3x q(x)]

(1.b) [p => 3xq(x)] => Vx[p => q(x)]

(2.a) 3x[p =? q(x)] =? [p =? Vxq(x)]

(2.b) [p =? Vx q(x)] =? 3x[p =? q(x)]

(3.a) 3x[q(x) =? p] => [3x q(x) => p]

(3.b) [3x q(x) =? p] => 3x[q(x) =? p]

(4~a) Vx[q(x) =? p] => [Vxq(x) =? p]

(4.b) [Vx q(x) =? p] =? Vx[q(x) =? p]

(5.a) Vx[q(x) <¢:? p] * [Vx q(x) {:} p]

(5.b) [Vx q(x) {:} p] =? Vx[q(x) {:} p]

(6.a) 3x[q(x) {:} p] => [3x q(x) {:} p]

(6.b) [3x q(x) {:} p] =? 3x[q(x) {:} p]

130 CHAPTER 2. PURE PREDICATE LOGIC

15. Let r be the set consisting of the two wffs x == y and •x == y.
Construct a model M such that each of these two wffs is satisfiable in
M but the set r is not simultaneously satisfiable in M.

16. Find a finished tableau with the hypothesis set

\Ix p(x' x)' 3x\ly p(x, y), 3x'v'y p(y, x),

3x3y [•p(x,y) /\ •p(y,x)]

and the set of parameters M = {a, b, c, d}.

17. This exercise gives a formal proof of Problem 24 from Chapter 1.
Consider the following four statements.

(1) There exists a tableau proof of A from D.

(2) There exists a tableau proof of B from A.

(3) For all A and all B, there exists a tableau proof of B from A if
and only if for all M, if M models A then M models B.

(4) There exists a tableau proof of B from D.

Statements (1)-(3) are the hypotheses, and statement (4) is the for­
mula to be proved. Statement (3) combines the Soundness and Com­
pleteness Theorems for propositional logic.

Consider the following vocabulary for pure predicate logic.

P2 ={MO},

Let MO(x, y) be interpreted as "x models y," and T P(x, y, z) as "xis
a tableau proof of z from y." Let the individual parameters a, b, and d
be interpreted as the wffs A, B, and D.

Write out the above hypothesis set and formula to prove as sentences
of pure predicate logic with individual parameters a, b, and d. Then
give a tableau proof.

18. Give a formal proof of Problem 25 from Chapter 1 ·analogous to
the preceding exercise. In addition to the predicate symbols MO, T P,

.• ~~; I
·· .. :··:

2.16. EXERCISES 131

another ternary predicate symbol OR is needed, where OR(x, y, z) is
interpreted as "z = [x Vy]." One of the hypotheses should correspond
to the statement:

(0) For all A, B, C and M, if C =AV B then M models C if and
only if M models A or M models B.

19. This exercise gives a formal proof of the Main Lemma for the
Completeness Theorem for propositional logic. Here is a list of five
statements from Chapter 1.

(1) For all H and for all T, T is a finished tableau with hypothesis
set H if and only if T is a tableau with hypothesis set H and for
every r, if r is a branch of T then either r is finished or r is
contradictory ai1d finite.

(2) For all H and for all T, Tis a confutation of H if and only if Tis
a tableau with hypothesis set Hand for every r, if r is a branch
of T then r is contradictory and finite.

(3) For all H ,T and r, if T is a tableau with hypothesis set H and
r is a branch of T and r is finished, then there exists M such
that M models H.

(4) For every H there exists T such that T is a finished tableau with
hypothesis set H.

(5) For all H, either there exists M such that M models H, or there
exists T such that T is a confutation of H.

The hypotheses (1-4) are versions of the definitions of a finished
tableau and a confutation, and of the Finished Set and Tableau Ex­
tension lemmas. Statement (5) is the formula to be proved, the Main
Lemma for the Completeness Theorem.

Consider the following vocabulary for pure predicate logic:

P1 = {F B, CB}, P2 = {F,B,M,T,C}

1

1

(.

(1

(c

2.
aJ

ti;

4.

132 CHAPTER 2. PURE PREDICATE LOGIC

Let F B(x) be interpreted as "xis a finished branch", and CB(x) as "x
is a contradictory finite branch." Let F(x,y) be interpreted as "xis a
finished tableau with hypothesis set y," B(x,y) as "x a branch of y,"
M(x, y) as "xis a model of hypothesis set y," T(x, y) as "xis a tableau
with the the hypothesis set y," and C(x,y) as "x is a confutation of
hypothesis set y."

Write out the above hypothesis set and sentence to prove in pure
predicate logic with this vocabulary. Give a tableau proof.

20. Suppose that T is a finite tableau in predicate logic, that H is the
set of hypotheses of T, that A is a wff whose only free variable is x,
that bis a variable which is free for x in A, and that every branch of T
is either contradictory or contains the wff A(x//b). Describe a simple
way to change T into a tableau proof of 3x A from H.

21. Suppose that H is a finite set of sentences of pure predicate logic,
that· H has at least one model, and that H has a finished tableau with
fewer than 100 nodes. Prove that H has a model whose universe has
fewer than 100 elements.

The next four problems need assignments of infinite sets of individ­
ual symbols. By an assignment of a set S of individual symbols in M
we mean a function v from S into M. Let r be a set of wffs and let S
be the (possibly infinite) set of individual symbols which occur freely
in r. r(v) is the set of sentences with parameters from M obtained by
replacing each free occurrence of an individual symbol x by v(x). r is
said to be simultaneously satisfiable in a model M if M f= r(v) for
some assignment v of Sin M.

22. Prove the analogue of Lemma 2.7.2 for infinite tableaus: If Tis
an infinite tableau whose hypothesis set H is a set of sentences and
M f= H, then some branch of T is simultaneously satisfiable in M.

23. Let T be an infinite tableau whose hypothesis set H is a set of
sen.tences with parameters from JC. Prove that if H is simultaneously
satisfiable in a model M, then some branch of T is simultaneou~ly
satisfiable in M.

2.16. EXERCISES 133

24. Prove the following Extended Soundness Theorem for sentences
with parameters from JC: Let HU {A} be a finite or countable set of
sentences with parameters from JC. If H I- A then H f= A, that is,
for every model M and assignment v of 'JC in M, if M f= H(v) then
M f= A(v).

25. Prove the following Extended Completeness Theorem for sentences
with parameters from 'JC. Let HU {A} be a finite or countable set of
sentences with parameters from 'JC. If H F A then H r A. Hint: To
prove the Main Lemma for sentences with parameters from 'JC, introduce
an infinite set of new parameter symbols M and use the set 'JC UM as
the universe of the model being constructed. .

_26. This exercise indicates why we need to assume that the universe set
of any model of (pure or full) predicate logic is nonempty. Assume we
are working in a logic which has at least one binary predicate symbol·
P. (We will see that, by assumption, every full predicate logic has such
a symbol.)

(a) Show that each of the following sentences is valid by giving a
tableau proof of each using an empty set of hypotheses:

A : VxVy [P(x,y) V -iP(x,y)]

B : A=> [3x3y [P(x,y) V-iP(x,y)]]

(b) Conclude from (a) that for any model M for pure predicate logic,

Mf=A and Mf=B.

(c) Conclude from (b) that for any model M for pure predicate logic,

M f= 3x3y [P(x,y) V-iP(x,y)].

(d) Conclude from (c) that a model of predicate logic must have a
··nonempty universe.

134 CHAPTER 2. PURE PREDICATE LOGIC

It should be mentioned that there are other treatments of logic in
which the universe of a model is allowed to be empty; such treatments
generally require a more restricted definition of "proof" than we have
given in this text.

27. Let A be a finite linearly ordered set (for example the 26 letters of
the Latin alphabet) and A* denote set of all finite sequences (words)
of elements of A. Given two words w, w' E A* we write w ~ w' iff w
precedes w' in alphabetical order. Define this order relation precisely
and prove that it is a linear order. (This order is often called the
lexicographic. order on A*.) Hint: The empty sequence comes first,
and ac precedes acb but not abaaaa.

28. Show that the theory of linear orders with no last element has
infinite models but has no finite models.

29. Let X = {1, 2, 3, 4}. Compute the transitive closure 5:n of each of
the following relations RE REL2(X):

1. R = {(1, 2), (2, 3), (1, 4)}.

2. R = {(1, 2), (2, 3), (3, 1), (1, 4)}.

3. R = {(1, 2), (2, 3), (3, 4)}.

30. Give an example of

(1) a binary relation R1 which is not a pre-order and whose transitive
closure is a pre-order but not a partial order;

(2) a binary relation R2 which is not a pre-order and whose transitive
closure is a partial order but not a linear order;

(3) a binary relation R3 which is not a pre-order and whose transitive
closure is a linear order.

31. For each of the first three order axioms in Section 2.11, give a
model in which it fails but the other two axioms hold.

2.16. EXERCISES

32. Let H denote the following three hypotheses:

•3x 3y [x < y /\ y < x]

\Ix Vy [x < y :::} Vz [x < z V z < y]]

\Ix Vy [x 5: y ~ x < y V x = y]

135

Must 5: be represented by a linear order in any model for H? Give
tableau proofs or a counter-model which respects equality.

33. Show that every equivalence relation is a congruence relation for
itself.

34. Show that the relation x =m y (on Z) is an equivalence relation,
that it is a congruence relation for each of the ternary relations x+y =m
z and xy =m z, but that it is not a congruence relation for the binary
relation x < y.

35. Let 7r be a function from X to X and R be an n-ary relation on
X. In the text we observed that 7r determines an equivalence relation
=11" on X via the definition

x =11" y ¢::::::> 7r(x) = 7r(y).

In Lemma 2.10.3 we saw that every equivalence relation could be de­
fined this way: if an equivalence relation= is given on X and X denotes
the set of equivalence classes [x] and 7r(x) = [x] then= and =11" are th~
same. The n-ary relation R on X. determines an n-ary relation 7r* R
on X via

(a} Show that the relation =11" is a congruence relation for 7r* R.

(b) Show that if X happens to be the space of equivalence classes of
some equivalence relation= and 7r(x) = [x], then R is the relation
induced on X by 7r* R in the sense of Lemma 2.10.4.

136 CHAPTER 2. PURE PREDICATE LOGIC

36. Let ~ be a pre-order on a set X and define a binary relation= on
· X by the rule

x y {==::} x ~ y and y ~ x.

Show that = is an equivalence relation, that it is a congruence relation
for ~, and that the induced relation on the set of equivalence classes is
a partial order.

37. Enumerate the eight subsets X0 , ••• , X7 of {1, 2, 3} in such a way
that

Xi c X; implies i ~ j.

38. Show that for any finite partial order (X, :S;) (i.e. Xis finite) there
is a linear order (X, ~*) which extends ~, i.e. for every a, b E P if
a ~ b :::} a ~* b. Hint: By induction we may assume that

where ai ~ a; :::} i ~ j. Let

L = { x E P : x ~ b, x f=. b}, R = {y E P : b ~ y, x f=. b}.

Argue that there must be an integer k with

39. Show that every partial order on a countable set can be extended
to a linear order.

Hint: Use the previous problem and the Compactness Theorem.

40. Let An be the sentence

3x1 · · · 3xn [[A. xi f=. x5] A Vy [VY == xi]]
t~J i=l

where we have used the abbreviations [/\i~j Xi f=. xi J for

Xt f=. X2 /\ Xt f=. X3 /\ • • ' /\ Xn-1 f=. Xn

2.16. EXERCISES 137

y == Xt V y == X2 V • · · V Y ::::: Xn •

Let H consist of the four sentences:- the sentence An and axioms (1-3)
from Definition 2.10.1 on page 95. The set Hn has an obvious model
Mn which respects equality: its universe consists of the firs.t n posit~ve
integers { 1, 2, ... , n}. Show that for any sentence B contaimng equality
as its only predicate symbol we have Hn f- B if and only if Mn ~ B.

41. Two orders (X, ~)and (X', ~')are said to be isomorphic iff there
is a one-one onto function f : X ~ X' such that for all x, Y E X we
have

x ~ y {==::} f(x) ~' f(y).

Such a function f is called an order isomorphism between the two
orders.

(a) Show that the tangent function is an isomorphism between the
open interval] - 7r /2, 7r /2[and the set R of all real numbers (each
with the usual linear order).

(b) Find real numbers m and c such that the formula

J(x)=mx+c

defines an order isomorphism from the interval [a1) a2] to the in­
terval [bi, b2].

42. Show that any two countable dense linear orders without first or
last element are isomorphic.3 Deduce (using the Completeness Theo­
rem) that if A is any sentence with no parameters and containing only
the relation symbols ~ and:::::, then Q ~A if and only if R ~A.

43. A directed set is a pair (D, <)consisting of a.set D and a binary
relation < on D which models the following axioms:

Studies in Model Theory, ed. by M.D. Morley, MAA Studies in Math,
page 6 if you get stuck.

138 CHAPTER 2. PURE PREDICATE LOGIC

(anti-reflexive law) VxVy[•x < y V •y < x]

(transitive law) VxVyVz[x < y /\ y < z::} x < z]

(maximum law) VxVy3z[x < z /\ y < z]

Which of the following sentences are true for all directed sets?

L Vx •x < x

2. VxVyVz3w[x < w /\ y < w /\ z < w]

3. Vx3y x < y

4. 3yVx x < y

5. Vx3y y < x

For those that are true for all directed sets give a tableau proof with
the three axioms and the negation of the wff to be proved at the root.
For those that are not true for all directed sets give a counterexample.
Can a directed set be finite?

44.

(a) Give a proof of the problem SET2 from the TABLEAU problem
set in paragraph form, and analyze it as a proof using the tableau
rules together with the Direct Proof, Learning, Deduction, and
Generalization Rules.

(b) Do the same for the problem SET4.

45. Show that the first three equality laws (viz. the Reflexive, Sym­
metric, and Transitive Laws) follow from the Axiom of Extensionality.
(You must give three tableau proofs.)

46.

(a) Show that there is no set T such that for all sets x we have

x ET~ x ~ x.

2.16. EXERCISES

(b) Give a tableau confutation of the w:ff

3y Vz [z E y ~ •z E z].

This wff has form

3yVz [z E y ~ A(z)].

and hence is not a case of the Comprehension scheme

Vx 3yVz [z E y ~ [z Ex/\ A(z)]].

The proof of a contradiction is called Russell's paradox.

(c) Russell gave the following analogue of the above paradox:

"Among the citizens of the town of Kenilworth there
is a barber who shaves all and only those citizens of
Kenilworth who do not shave themselves. Who shaves
the barber?"

139

Note that the question as stated is impossible to answer. Can
you think of a way to resolve the paradox?

47. Give a tableau confutation of the following two sentences:

3xVyy Ex

Vx Vz [z E y ~ z E x /\ •z E z]

The second hypothesis is a case of the Comprehension scheme of ZST.
This gives a proof in ZST that the set of all sets does not exist.

48. Let Xo, Xi,X2 , ••• be subsets of N = {O, 1, 2, ... }. Define a subset
Y such that Y -=f. Xn for all n. Conclude that the set of subsets of N is
not countable.

49. Let W (u) be the sentence

0 Eu/\ Vx [x Eu=> x U {x} Eu] .

. The Axiom of Infinity from Section 2.12 is the wff 3u W(u).

140 CHAPTER 2. PURE PREDICATE LOGIC

(a) Write the Axiom of Infinity in a formally correct way, i.e. without
using abbreviations like 0 or x U { x}.

(b) Show any u satisfying W(u) really is infinite. (Describe an infinite
list of elements that the set u mµst contain). Hint: The sets 0
and {0} are different.

50. Let Sl(w) be the wff

\:/x [x E w <*·Vu [W(u) => x E u]]

where W(u) is the wff of the previous exercise and let H be the ax­
ioms (1-7) of ZST in the text. Recall that the notation Hr A means
that there is a tableau proof of A from the hypotheses H. Prove the
following:

• Hr 3w!l(w).

• Hr \:/w\:/w' [Sl(w) A Sl(w') => w:::: w']

• Hr \:/u\:/w[W(u) A Sl(w) => w cu]

(The expression w C u abbreviates \:/x[x E w => x E u].) This exercise
says that there is a unique set w satisfying !1(w) and that it satisfies an
analog of the axiom of induction.

51. In this exercise we describe a model Mo = (M0 , E) for Ax­
ioms (1-5,7) of ZST, given in Section 2.12. A~iom (6), the Axiom of
Infinity, is false in this model.

(a) List the elements of the three sets P(0), P(P(0)), and P(P(P(0))),
where 0 denotes the empty set and for any set X, P(X) denotes
the power set

P(X) = {Y : Y c X}

of all subsets of X.

2.16. EXERCISES 141

(b) Define sets

and natural numbers

as follows:
Vo 0,ko=O.

Vn+l = P(Vn), kn+l = 2kn •

Prove that for all n, Vn has exactly kn elements. (Intuitively,
Vn = P(P(... (0) ...)) where Pis repeated n times).

(c) We now define a model Mo for pure predicate logic with two rela­
tion symbols which will be = and E to suggest equality and set
membership. The universe Mo for Mo is the set

Mo= LJ Vn
nEN

where Vn is defined in part (b). Now let Mo= (Mo, E) where
:::: and E are the equality and membership relations among the
elements of M0 • Prove that Mo is a model of Axioms (lr{5) of
ZST.

(d) Prove that the Axiom of Infinity is· false in Mo.

5 2. In this exercise we build on the preceding exercise to describe a
model of Axioms (1)-(7) of ZST. The idea is to repeat the construction
used in the preceding exercise, but starting with the set M,o instead of
the empty set.

Define a model M for pure predicate logic with' the two predicate
symbols:::: and E as follows. The universe M of Mis defined to be the
union of a sequence of sets

142 CHAPTER 2. PURE PREDICATE LOGIC

where Mo is the set of the previous exercise and Mn+l is defined induc­
tively by:

Mn+l = P(Mn) = {X: x c Mn}

Now, let M =Un Mn and interpret= by equality and Eby membership
among elements of M. Prove that M is a model of each of Axioms (1)­
(6) of ZST.

53. Prove the Substitution Theorem (Theorem 2.13.6). Hint: The
proof is by induction on the formula C. The Unique Scope Theorem
is needed at the quantifier step, and Exercise 3 is needed at the binary
connective step.

Chapter 3

Full Predicate Logic

In this chapter we enrich predicate logic by adding function symbols
and a special symbol for equality. We shall call this enriched language
full predicate logic to distinguish it from the simpler pure predicate
logic developed in the last chapter. Full predicate logic is closer to the
usual language of mathematics. Although it is in principle possible to
express everything in the pure predicate logic of the previous chapter,
in practice it is usually more convenient to develop mathematics in full
predicate logic.

3.1 Syntax

A vocabulary (P, :F) for full predicate logic consists of a list of sets Pn
of n-ary predicate symbols, and sets :Fn of n-ary function symbols,
where n = 0, 1, These sets may or may not be empty, but P 2 always
contains the equality symbol::::.:. The 0-ary predicate symbols in Po are
also called proposition symbols, and the 0-ary function symbols in
:Fo are also called,constant symbols.

In addition to the vocabulary symbols (P, :F), full predicate logic
has all the primitive symbols of pure predicate logic, including the
set VAR of variables, a set K. of parameters, and the universal and
existential quantifiers. As before, the elements of the set VAR U IC
are called individual symbols. The vocabulary constants from :Fo
·are distinct from the individual parameters from IC, and will play a

143

144 CHAPTER 3. PULL PREDICATE LOGIC

different role in the semantics of full predicate logic.
The equality symbol=, which always belongs to P2 in full predicate

logic, plays a special role. Like the propositional connectives and quan­
tifiers, it will be interpreted in a fixed way in all models. We always
write 7 = u in place of the more cumbersome = (u, 7).

Variables, parameter symbols, constant symbols, and function sym­
bols may be combined to form terms. A term is a string which can
be obtained by finitely many applications of the following rules of
formation:

(T: VAR) Any variable is a term.

(T:K) Any element of K is a term.

(T:Fo) Any constant symbol from Fo is a term.

(T:Fn) If f E Fn is a function symbol, where n > 0, and Ti, 7 2 , .•. , 'Tn

are terms, then f(71, 72, ..• , 'Tn) is a term.

These rules are used repeatedly. For example, if y is a variable, c is
a constant, f is binary, and g is unary, then g(f (c, g(y))) is a term.
Terms, like wffs, have parsing sequences. The above example is parsed
as follows:

(1) c is a term by (T:F0).

(2) y is a term by (T: VAR).

(3) g(y) is a term by (2) and (T:F1).

(4) f(c, g(y)) is a term, by (1), (3), and (T:F2).

(5) g(f(c,g(y))) is a term by (4) and (T:F1).

The set TERM(F, K) of variable free terms of type F with pa­
rameters from K consists of those terms which contain no elements of
VAR, that is, which are built without using the (T: VAR) rule;

We continue using the abbreviations and notational conventions in­
troduced earlier and in addition add the the usual mathematical con­
ventions regarding infix notation and parentheses.

3.1. SYNTAX 145

• The familiar binary function symbols +, -, and * are written in
infix notation so that (x + y) is written instead of +(x,y).

• The outer parentheses may be suppressed, so that x + y means
(x+y).

• Multiplication has a higher precedence than addition or subtrac­
tion, so that x + y * z means x + (y * z) and not (x + y) * z.

• Operations of equal precedence associate to the left in the absence
of explicit parentheses, so that x y - z means (x. y) - z and
not x (y - z).

The set of wffs is defined as before except that the argument places
in the predicate symbols may be filled by terms. Here are the rules of
formation.

(W:P0) Any propositional symbol is a wff.

(W:Pn) If p E Pn is a predicate symbol and Ti, 72, ••• , 'Tn are terms,
then p(7 1 , 72, ..• , 'Tn) is a wff.

(W:-i) If A is a wff, then -iA is a wff.

(W:/\, V, {:}) If A and Bare wffs, then [A/\B], (A VB], [A* BJ,
and [A {:} B] are wffs.

(W:V, 3) If A is a wff, and xis a variable, then VxA and ::lxA are wffs.

(If it is necessary to explicitly specify the vocabulary (P, F) used in
the definition of the set of wffs, we shall refer to the wffs defined here
as built using the vocabulary (P,F).)·

Atomic wffs and basic wffs are defined as before except that now
arbitrary terms may occupy the argument positions. Thus atomic
wffs are those constructed by rules (W:Po) and (W:Pn) above, while a
basic wff is a wff which is either an atomic wff or the negation of an
atomic wff.

The Unique Readability Theorem generalizes to full predicate logic.
As in the case of pure predicate logic, an occurrence of a variable x in
·a wff A is a bound occurrence if it is in the scope of a quantifier on

146 CHAPTER 3. FULL PREDICATE LOGIC

x; all other occurrences of individual symbols are called free. As in
· pure predicate logic all occurrences of a variable in a basic wff are free,

because a basic wff has no quantifiers.
In full predic~te logic, the notion of an individual being free for a

variable in a wff is replaced by the notion of a term being free for a
variable in a wff. A term r is said to be freely substitutable for, or
free for, the variable x in a wff A if every variable which occurs in r
is free for x in A. Given a wff A, a variable x, and a term r which
is free for x in A, A(x//r) is the wff obtained by replacing each free
occurrence of x in A by r.

3.2 Semantics

In this section we define the notion of a model for full predicate logic,
and then give the rules which determine the truth value of a sentence
in a model. As in the case of pure predicate logic, the n-ary predicate
symbols will stand. for relations on the universe set of the model. The
n-ary function symbols will stand for functions of n variables on the
universe set.

Recall that for each natural number n > 0, an n-ary relation on a
set Xis a subset of xn, and a 0-ary relation on Xis just a truth value.
RELn(X) is the set of all n-ary relations on X. We now introduce
n-ary functions on a set X. When n > 0, an n-ary function on X is
a function f : xn -+ X from the set xn of n-tuples to the set X. A
0-ary function on Xis just an element of X. FUNn(X) will denote the
set of all n-ary functions on X.

A premodel for full predicate logic of type (P, :F) is a system
M consisting of a non-empty set M called the universe set of M,
and for each n ~· 0 a function which assigns to each n-ary predicate
(or propositional) symbol p an n-ary relation pM on M, and another
function which assigns to each n-ary function (or constant) symbol f
an n-ary function (or constant) fM on M. We say that the premodel
M respects equality if the equality relation of the premodel M is
true equality, that is,

...:..M is { (a, b) E M2
: a = b}.

3.2. SEMANTICS 147

A model for full predicate logic of type (P, :F) is a premodel which
respects equality.

In mathematics, models are more important than premodels. Pre­
models are a convenient tool which allows us to begin proving results
which do not involve the special properties of the equality relation.
Since every model is a premodel, all of our results for premodels will
hold for models as well.

In the next theorem we assign an element of the universe set M as
a value for each variable free term from TERM(:F, M).

Theorem 3.2.1 For each premodel M of type (P,:F), there is a unique
function which assigns an element r M E M to each variable free term
r E TERM(:F, M) such that the following formation rules hold:

(M:M) If u EM, then UM= u.

(M::F0) If c E :Fo, then CM = cM.

(M::Fn) If T1, T2, ... , Tn are terms and f E :Fn is a function symbol,
then

Proof: To justify this definition we need a Unique Readability The­
orem for terms: Every term in TERM(:F, JC) is either an individual
symbol, a constant symbol from :F0 , or can be uniquely read in the
form

f(r1,T2, ... ,rn)

where f E :Fn and r1 , .•• , Tn are terms. We omit the remaining details
of the proof. End of Proof.

We define the set WFF(P, :F, JC) of wffs based on the vocabulary
(P, :F) with additional parameters from the set JC as in pure predicate
logic except that the rule (W:Pn) is modified to allow terms:

(W:Pn) If p E Pn and T1, T2, ... , Tn are terms then p(T1, T2, ... , Tn) E

WFF(P, :F, JC).

148 CHAPTER 3. FULL PREDICATE LOGIC

As in pure predicate logic, SENT(P, :F, JC) is the subset of WFF(P, :F, JC)
· consisting of those w:ffs with no free variables: it is the set of all sen­

tences built from the vocabulary (P, :F) with additional parameters
from the set JC. The following is proved in the same way as the analo­
gous result for pure predicate logic.

Theorem 3.2.2 Given a premodel M of type (P,:F) there is a unique
function which assigns a truth value AM to ·each sentence A with pa­
rameters from M which satisfies the conditions of Theorem 2.4.1, but
with the condition (M:P n) modified to read

(M:Pn) M F p(T1, T2, · · ·, 'Tn) ijf ('T1M, 'T2M, · •.•, 'TnM) E PM•

As usual we have written M F A in place of the more cumbersome
phrase AM= T.

Remark 3.2.3 If the premodel M respects equality, then for all terms

r, a E TERM(:F, M)

we have
M Fr a if and only if 'TM = aM.

3.3 Tableaus

In full predicate logic, a tableau may be formed using all the. rules for
tableaus in propositional logic (see Figure 1.4) plus additional rules for
handling terms and the equality relation. A labeled tree for full
predicate logic is defined as for propositional logic, except that now
the w:ffs are those of full predicate logic.

Definition 3.3.1 A tableau for full predicate logic is defined as
before except that two of the four quantifier rules allow the substitution
of terms, and there are three new equality rules. The new rules are:

[2J If t has an ancestor VxA, extend by adding a child A(x//r) oft,
where r is a term which is free for x in A;

3.3. TABLEAUS 149

1-N I Ht has an ancestor -NxA, extend by adding a child •A(x//b) of
t, where b is an individual symbol which does not occur in any
ancestor oft;

If t has an ancestor 3xA, extend by adding a child A(x//b) of
t, where bis an individual symbol which does not occur in any
ancestor oft;

I •3 I If t has an ancestor •3xA, extend by adding a child •A(x//r) of
t, where r is a term which is free for x in A.

I= 1 I If t has an ancestor [•]p(... r .. .), and another ancestor of form
r = a, extend by adding a child [•]p(. .. a ...) of t.

I = 2 j If t has an ancestor [•]p(. .. r ...) , and another ancestor of form
a = r, extend by adding a child [•]p(... a ...) oft.

Extend by adding a child a== a oft.

In these rules t denotes the terminal node at which the tableau is

extended.
Diagrams for the three equality rules 1 are shown in Figure 3.1.

In the first two equality rules, [•]p(... r .. .) and [•]p(... a ...) denote
basic w:ffs (i.e. atomic w:ffs or negations of atomic w:ffs) such that
[•]p(... a ...) results from [•]p(... r .. .) by replacing one occurrence
of the term r by the term a. The occurrence of r may be a part of
some longer term within the w:ff [•]p(... r .. .).

For example, if r is f (a) and a is ·b, and we take

p(g(J(a)), a, f(a)) for p(... f(a) . ..),

then there are two possibilities for p(. «. b •..) (one for each occurrence
of f(a)). We can either take

p(g(b),a,f(a)) for p(... b ...),

1In the TABLEAU program, the first two equality rules. are invoked by typing
the G key at the node A to put A in the Get box, typing the S key at the node
T ::::: u to put either r ::::: <1 or u r into the Sub box (pressing the right arrow key
toggles between these two), then going to the end of the branch and typing the E

. ·key to extend the tableau. The third equality rule is invoked by typing the = key.

150 CHAPTER 3. FULL PREDICATE LOGIC

or
p(g(f(a)), a, b) for p(... b .. .).

In order to be sure that the string [•]p(. .. u ...) is a wff, one must
prove that whenever T occurs within a term, the string formed by re­
placing one occurrence of r by a is also a term. This is left as an
exercise, with a hint, at the end of this chapter.

The rules and I= 2 J differ only in that in the former the equal-
ity ancestor is r = u while in the latter it is u r.

The equality rules are justified by the fact that sentences

M f= [•]p(... r ...) /\ [r a]=> [•]p(... a ...)

M f= [•]p(... r . ..) /\ [u = r] => [•]p(... u .. .)

M f= a a

will be valid in any model M which respects equality.
The basic definitions are the same as before except for the addi­

tion of the new tableau rules. A branch r of a tableau is said to be
contradictory if r contains some wff and its negation.

The notions of a tableau confutation and a tableau proof are defined
as before. A tableau T is said to be a confutation of a set of sentences
H if Tis a finite tableau with hypothesis set Hand every branch of Tis
contradictory. A tableau proof of A from H is a tableau confutation
of HU {•A}.

3.3. TABLEAUS 151

Tableau Extension Rules

[•]p(. :.r .. .) [•]p(• : • T •••)

t t

I
[•]p(... a ...)

I
[•]p(... O" • ..)

I= 11 ~

t

I
u=a

Figure 3.1: Equality Rules for Full Predicate Logic.

152 CHAPTER 3. FULL PREDICATE LOGIC

Here are two simple examples of tableau proofs in full predicate
·logic. The second example is one of the Equality Axioms from Sec­
tion 2.10. · In Exercise 7 you are asked to give tableau proofs of the
remaining Equality Axioms.

Example 3.3.2 A tableau proof of

VxVy[x == y => f(x) = f(y.)].

(1) 1VxVy[x = y => f(x) f(y)] 1 to be proved

(2) 1Vy[a == y => f(a) = f(y)] by (1)

I
(3) 1 [a == b => f(a) = f(b)] by (2)

I
(4) a=b by (3)

II
(5) 1 f(a) == f(b) by (3)

I
(6) 1 f(b) = f(b) by (4) and (5)

I
(7) f(b) f(b) by equality rule 3

3.3. TABLEAUS 153

Example 3.3.3 A tableau proof of

VxVy\:/z[x = y A y == z => x = z].

(1) 1\:/x\:/y\:/z[x = y A y = z => x = z]. 1 to be proved

(2) 1\:/yVz[a = y A y == z => a= z] by (1)

(3) 1\fz[a = b Ab= z =>a= z] by (2)

(4) 1[a = b A b == c => a = c] by (3)

(5) by (4)

II
(6) by (4)

(7) by (5)

II
(8) by (5)

(9) a=c by (7) and (8)

154 CHAPTER 3. FULL PREDICATE LOGIC

3.4 Soundness

The proof of the Soundness Theorem for full predicate logic is much
as before. The definition of valuation in M (which assigns elements
of M to finitely many individual symbols), satisfiable, and simul­
taneously satisfiable are the same as for pure predicate logic (see
Definition 2.7.1).

Lemma 3.4.1 Let H be a set of sentences of full predicate logic of type
(P, :F). Let T be a tableau in predicate logic with hypothesis set H. Let
M be a model of-H. Then there is a branch r of T such that the wffs
on r are simultaneously satisfiable in M.

Proof: The proof is like that of Lemma 2. 7 .2 except that we must
deal with the three equality rules in the step where we build a branch
r k+1 on T k+i from a given branch r k of a smaller tableau T k. We
have to check that if any of the equality rules were used to extend rk,
the valuation Vk given by the induction hypothesis satisfies the new wff
given by the equality rule. This follows from the fact that the model
respects equality. End of Proof.

Theorem 3.4.2 (Soundness Theorem) Suppose H is a set of sen­
tences in full predicate logic and A is a sentence. If H !- A, then
H f= A, that is, every model of H is a model of A. In particular, if
there is a tableau proof (without hypotheses) of a sentence A, then A
is valid.

This is proved as before: see Theorem 2. 7.~t Both Lemma 3.4.1
and the Soundness Theorem require that M respect equality. They are
true for all models but not for all premodels.

3.5 Completeness

The Completeness Theorem for full predicate logic is similar to the one
for predicate logic, but with some additional twists. As before, we begin
with a main lemma which easily implies the Completeness Theorem.

3.5. COMPLETENESS 155

Lemma 3.5.1 (Main Lemma) Let H be a finite or countable set of
sentences of full predicate logic. Either H has a tableau confutation or
H has a model which respects equality.

Theorem 3.5.2 (Extended Completeness Theorem) Suppose H
. is a finite or countable set of sentences and A is a sentence of full

predicate logic. If H A then H !- A; that is, if every model of H is
a model of A, then there is a tableau proof of A from H. In particular,
a valid sentence has a tableau proof.

As in the Completeness Theorem for pure predicate logic we fix an
infinite set M of new parameters. The set TERM(:F, M) will be used
as the universe set of a model.

We call a set A of wffs closed under the equality rules if any ba­
sic wff obtained from two wffs of A by an equality substitution is again
a element of A; in other words, if for all terms 7 and a in TERM(:F, M)
and all basic wffs [•]p(... 7 •••), the following conditions hold:

[= 1] if [7 = a],[•]p(... 7 ...) EA then [•]p(... a ...) EA.

2] if [a= 7), [•]p(... 7 ...) EA then [•]p(... a ...) EA.

[= 3] [a a] EA

A set A of wffs is called contradictory if it contains some wff and
its negation.

The definition of a finished ·set for full predicate logic on a set M
is verbatim the same as the definition of a finished set of wffs for pure
predicate logic given before except that now

• In the [V] and
M.

rules the set TERM(:F, M) is used in place of

• the set A must be closed under equality rules.

In particular, if a wff VxA is in a finished set A the new version of the
[VJ rule requires that every wff A (x / / 7) with 7 E TERM(:F, M) be an
element of A, not just those where 7 EM.

As in pure predicate logic, a branch of a tableau is finished on M
if the. set of all wffs on the branch is finished on M, and a tableau in

156 CHAPTER 3. FULL PREDICATE LOGIC

full predicate logic is finished on M if every branch is either finished
on Mor else both finite and contradictory.

For the Tableau Extension Lemma we require that the set :F of func­
tion symbols be finite or countable. In this case, the set TERM(:F, M)
is countable (see Exercise 8) and we are able to build a finished tableau
on a countable set of new parameters M as in Chapter 2. We will not
need the assumption that :Fis finite or countable for the Main Lemma
or its consequences.

Lemma 3.5.3 (Tableau Extension Lemma) Suppose that the set
:F of function symbols is finite or countable. Let M be a countable
set, and suppose H is a finite or countable set of sentences. Then H is
the hypothesis set of a finished tableau on M.

Proof: The proof is basically the same as in pure predicate logic ex­
cept that now we must use terms to extend the tableau at nodes with
universal quantifiers and we must make sure that the final tableau is
closed under the equality rules.

As before, we let H = {C1 , C2, ... } and Hn ={Ai, ... , An}·
Since the set TERM(:F, M) is countable, it may be arranged in a

list
TERM(:F,M) {ri,72, ... }.

We build finite tableaus To C T 1 C ... with hypothesis set Has before,
and our final tableau T will be the union of the tab lea us T n. ·We extend
Tn to a finite tableau Tn+l as in the proof of the Tableau Extension
Lemma for pure predicate logic with the following additional features.

If A is either in Hn or at a nonroot node of Tn and A is of the form
VxB or -.3xB, then each noncontradictory branch in Tn+l through A
must have then+ 1 formulas [-.]B(x//7i) for i = 1, ... , n + 1.

To n:ake progress toward closure under the equality rules, each non­
contrad1ctory branch of TnH must have a basic wff p(... 7 ...) whenever
required by the equality rules [= l] or [= 2] using wffs in Hn and/or
wffs at nonroot nodes of Tn. Finally, each noncontradictory branch of
Tn+1 must have the wff 7n+i == 7n+l so that condition 3] will be
satisfied.

We leave the straightforward proof that T is a finished tableau on
M to the reader. End of Proof.

3.5. COMPLETENESS 157

Lemma 3.5.4 (Finished Set Lemma for Premodels) Suppose .A
is a finished set of wffs on a set M. Define a premodel M for full
predicate logic as follows:

• the universe set of the premodel is TERM(:F, M);

• for each propositional symbol p E Po, PM = T iff p E A;

• for each n-ary predicate symbol p E Pn and all 7i, ... , 'Tn E TERM(:F, M)
(7i, ... ,7n)EpM iffp(7i, ... ,7n)EA.

Then M A.

Proof: The proof proceeds as in the Finished Set Lemma for pure
predicate logic except that we need to use induction on the height
rather than the length of wffs. This is because if C E A and C is
of the form VxA then A(x//7) may be longer than VxA. We define
the height h(A) to be the number of occurrences of quantifiers and
connectives in A. Thus atomic wffs have height zero. Now proceed
as in the proof of the Finished Set Lemma for pure predicate logic,
replacing length by height. For example, if C E A and C is of the form
VxA, then A(x//7) E A for all 7. Since A(x//7) is of lower height
than VxA, we have M f= A(x/ /7) for all 7, and hence M f= VxA.
End of Proof.

The Finished Set Lemma for Premodels gives us a premodel which
need not respect equality. To get a model; we need three more lem­
mas. In all three lemmas we assume that A C SENT(P, :F, M) is a
finished set of wffs in the parameters M. We shall call terms 7 and G' in
TERM(:F, M) equivalent (abbreviated 7 = G') if the sentence 7 == G'
is an element of the finished set A. Thus -

7 := (]' iff [7 :::::: (]'] E A.

Lemma 3.5.5 Let A be a finished set of wffs o·n M. Then = is an
equivalence relation on the set of terms in TERM(:F, M). That is, for
7,G',p E TERM(;:,M):

· (reflexivity) 7 7'
'

158 CHAPTER 3. FULL PREDICATE LOGIC

(symmetry) if r = u then u = r;

(transitivity) if r = u and u = p then r = p.

Lemma 3.5.6 Let A be a finished set of wffs on M. Let

and f E :Fn. If

then
f(T1, T2, ..• , Tn) = f(CJ'i, CJ'2, ••• , C!n)·

Lemma 3.5. 7 Let A be a finished set of wffs ~n M. Suppose

and p E Pn. If

then
p(ri, ... ,rn) EA iffp(ui, ... ,un) EA.

Proof: The proofs of these three lemmas are easy consequences of
what it means for the set A to be closed under the equality rules. For
example, the reflexive law in Lemma 3.5.5 follows from part 3] in the
definition.· To prove the symmetry law assume [r = u] E A. By [= 3]
we have [r = r] E b. so we may use 1] with the firsf occurrence of
r in the basic wff r r to conclude that [u = r] E A. To prove the
transitive law assume [r = u], [u == p] E A. Apply 2] to replace
the occurrence of u in the basic wff u == p by r and conclude that
[r = p] E A. Lemma 3.5.6 follows by applying part [= 1] n times to
the basic wff

f('T1, T2, • • ·, Tn)::::: f(T1, T2, ••• , Tn),

(this is an element of A by part [= 3]) to obtain that the wff

f(Ti, T2, ••• , Tn) f(CJ'1, CJ'2, ••• , C!n)

is an element of A. Finally, Lemma 3.5. 7 simply follows by repeated
application of· [= 1] and 2]. End of Proof.

3.5. COMPLETENESS 159

Lemma 3.5.8 (Finished Set Lemma) Let A be a finished set of
wffs on the nonempty set M. Then there is a model N' with an in­
terpretation for each element a E M such that N I= A.

Proof: For each r E TERM(:F, M) let [T] denote the equivalence class
of r:

[r] {u E TERM(:F,M): T =: u}.

By Lemma 3.5.5 we have

[T] ::::: [u] iff T =: CJ'.

We define the universe N of our model N' to be the set of equivalence
classes:

N = {[r] : T E TERM(:F, M) }.

Now by Lemma 3.5.6 each function symbol f E :Fn determines a func­
tion fw E FUNn (N) by the condition

In the case n 0, if c E :F0 then cl"= [c].
This gives the universe set and the operations of a model N.
It follows by induction on lengths of terms that for each term T E.

TERM(:F, M), the element [r] EN is named by r, that is,

[T) =TN.

By Lemma 3.5.7 each predicate symbol p E Pn determines a relation
~ E RELn (N) by the condition

((Ti), [r2], ... , [Tn]) E pN iff p(Ti, T2, ••• , Tn) E A.

For propositional symbols p E Po, PN T if and only if p E A.
This gives the predicates and completes the definition of the model

N. Let M be the premodel defined in the Finished Set Lemma for
Premodels. It can be shown by induction on the height of sentences B
over M that N f= B if and only if M f= B. The details are left as an

. · exercise. Since M f= A, we have N' f= A as required. End of Proof.

160 CHAPTER 3. FULL PREDICATE LOGIC

Proof of the Main Lemma: Let H be a finite or countable set of
·sentences with no tableau confutation. Let :F' be a finite or countable
subset of :F which contains all the function symbols occurring in H. We
may apply the Tableau Extension Lemma to get a finished.tableau.with
hypothesis set Hon a countable set M. Since there is no confutation
of H, at least one branch r of the tableau is finished, and so by the
Finished Set Lemma there is a model M of H of type (P, :F'). The
remaining function symbols which are in :Fn but not in :F', if any, can
now be interpreted by any n-ary function on M at all, making M into
a model of H of the required type (P, :F). End of Proof.

As before, we now easily get the Compactness Theorem and the
Extended Completeness Theorem for full predicate logic.

Theorem 3.5.9 (CompaCtness Theorem) Let H be a countable set
of sentences of full predicate logic. If every finite subset of H has a
model, then H has a model.

3.6 Theory of Groups

A set of sentences in first order logic is sometimes called a first order
theory. In this section we look at an important example of a first order
theory in full predicate logic, the theory of groups. The vocabulary for
our language will consist of one infix binary function symbol * and one
constant symbol e. The axioms of group theory are as follows:

Axioms of Group Theory

(1) Associativity: Vx\:/y\:/z(x*Y)*z == X*(Y*Z)

(2) Identity: \Ix [x*e == x A e*x x]

(3) Inverses: \:/x3y [x*y e /\ Y*X == e]

These axioms will be collectively known as GT. The first axiom says
that the operation is associative; the second says that the constant
symbol e is an identity for the operation; and the third says that every
element of a group has an inverse relative to *·

3.6. THEORY OF GROUPS 161

A model g of these axioms is a group which consists of a universe G
together with interpretations *9 and e9 of the symbols * and e. Instead
of writing the group as Q (G, *9, e9), most textbooks simply identify
a group g with its universe G whenever the operation and identity are

clear from the context.
Examples of groups include
(1) (Z, +, 0) (recall that Z denotes the set of integers);
(2) (Q+, ·, 1) where Q+ denotes the positive rationals and "·" de­

notes multiplication; and
(3) for any set X, the group (S(X), o, Ix) defined as follows: S(X)

is the set of all permutations f of X. (Recall that a permutation of
X is a one-one, onto function from X to X; see Appendix A.) The
operation "o" is composition of functions (see page 372). Finally, Ix
is the identity permutation on X (see Appendix A, Section A.5). The

· reader may wish to verify that the group axioms are satisfied by this

model.

Example 3.6.1 Figure 3.2 gives a tableau proof that in every group,
the identity is unique; in this example, we prove the following sentence

A:
Vx [Vy X*Y == y::::} x == e].

(The sentence actually says that every left identity equals e.) We in­
clude in the hypothesis set only the second axiom since we do not need
the others in the proof. In the tableau problems at the end of this
section, other properties of groups are established.

The groups Z and Q+ mentioned above satisfy the additional prop­

erty
C: Vx\:/yx*Y Y*X

called the commutative law. If we could prove C from GT then by
the Soundness Theorem, C would hold in every group. This is not the
case h~wever, since for any set X with more than two elements, Sx
does not satisfy the commutative law (see Exercise ll). A group in
which C holds is called abelian.

162 CHAPTER 3. FULL PREDICATE LOGIC

(1) Vx[e*x x /\ X*e = x]

(2) -Nx [Vy X*Y = y x = e], to be proved

(3)
I

-i[Vyt*Y:::::: y => t:::::: e] by (2)

I
(4) Vyt*y y by (3)

II
(5) -it= e

(6)
I

t*e e by (4)

I
(7) e*t = t /\ t*e = t by (1)

I
e*t = t by (7)

II
(9) he =t

(10)
I

t=e by (6) and (9)

Figure 3.2: Tableau proof that the identity is unique

3. 7. PEANO ARITHMETIC 163

3. 7 Peano Arithmetic

We now turn to another first order theory, called Peano Arithmetic.
Throughout this book, Mathematical Induction has been one of our

. most important methods in informal proofs. The axioms of Peano
·Arithmetic consist of a group of six basic axioms, and an infinite list
of additional axioms called the First Order Induction Principle which
is the formal counterpart of Mathematical Induction.

The vocabulary for the predicate logic we will use consists of two
infix function symbols + and *, one unary function symbol s, and one
constant symbol 0. The constant symbol 0 is a boldfaced zero to dis­
tinguish it from the usual mathematical symbol 0. (Recall that the
relation is automatically a relation symbol in the vocabulary.) The
full predicate logic with this vocabulary will be called the language
of arithmetic. We let N denote the model of this language which
has universe N, the set of natural numbers, and in which the function
symbols + and * are interpreted as ordinary addition and multiplica­
tion, respectively, of natural numbers; s is interpreted as the successor
function

s(O) 1,s(l) = 2,s(2) 3, ... ;

and 0 is interpreted as the natural number 0. This model N is called
the standard model of arithmetic.

Definition 3.7.1 Peano Arithmetic, or PA, is the collection con­
sisting of the following six basic axioms:

1. Vx,s(x) = 0

2. VxVy [s(x) = s(y) => x = y]

3. Vxx+O = x

4. VxVyx+s(y) s(x+y)

5. Vxx*O = 0

164 CHAPTER 3. FULL PREDICATE LOGIC

together with the all the instances of the

First Order Induction Principle

Vy1 · · · Vyn [B(O) A Vx [B(x) =* B(s(x))] =* Vx B(x)]

In this principle B is a wff in the language of arithmetic and all free
variables of B are among x, y1, ... , Yn To improve readability, we wrote
B(x) for B, B(O) for B(x/ /0), and B(s(x)) for B(x/ /s(x)).

Peano Arithmetic is of fundamental importance in mathematics
because it captures most of the mathematical facts which are know~
about the natural numbers.

Axiom 1 says that O is not the successor of any element. Axiom 2
says that the successor functions is one-one. Axioms 3 and 4 give the
~nduct~ve defin~t~on of+ in terms of 0 ands. Axioms 5 and 6 give the
mductive defimt10n of * in terms of O, s, and +.

The only constant symbol in the vocabulary of Peano Arithmetic
is the zero symbol 0. However, by repeatedly applying the successor
function symbol s to 0 we obtain a constant term for each natural
number. Thus s(O) stands for 1, s(s(O)) stands for 2, and so on. The
term

n == s(s(... s(O) ...))__,__.
with n s's followed by 0 stands for the natural number n. It is called
the numeral of n and is denoted by n. The first few numerals are

0==0,1==s(0),2 s(s(O)), ...

Using the six basic axioms alone, one can prove many equations and
inequalities involving particular numerals.

We give two examples as illustrations.

3.7. PEANO ARITHMETIC 165

Example 3. 7.2 Here is a tableau proof of the sentence

,3==1

from Axioms 1 and 2 ~alone. Of course, everyone already knows this
inequality. Our point here is that there is a tableau proof of it which
uses only the first two axioms of Peano Arithmetic as hypotheses. ·Only

the main steps are shown.

(1) ••s(s(s(O))) == s(O)
(2) Vx •s(x) == 0
(3) VxVy[s(x)=s(y)=?x y]
(4) s(s(s(O))) == s(O)
(5) •s(s(O))::::: 0
(6) s(s(s(O))) == s(O) =? s(s(O)) == 0
(7) s(s(O)) == 0

• to be proved
Axiom 1
Axiom 2
By (1)
By (2)
By (3)
By (4) and (6)

By the same method, for any particular natural numbers m and n
such that m > n, there is a tableau proof of the sentence

•m= n

from Axioms 1 and 2 of Peano Arithmetic.

Example 3. 7 .3 Here is a tableau proof of the sentence

from Axioms 3 and 4 alone, again showing the main steps.

(1) -is(O) + s(s(O)) == s(s(s(O)))
(2) \/xx+ 0 == x
(3) Vx\fyx + s(y) == s(x + y)
(4) s(O) + 0 == s(O)
(5) s(O) + s(O) == s(s(O) + 0)
(6) s(O) + s(O) == s(s(O))
(7) s(O) + s(s(O)) == s(s(O) + s(O)))
(8) s(O) + s(s(O)) == s(s(s(O)))

• to be proved
Axiom 3
Axiom 4
By (2)
By (3)
By (4) and (5)
By (3)
By (6) and (7)

166 CHAPTER 3. FULL PREDICATE LOGIC

Again, by the same method, for any three particular natural num­
·bers m, n and p, if m + n = p then the sentence

m+n::::::p

has a tableau proof from Axioms 3 and 4 of Peano Arithmetic.
In spite of these examples, one cannot go very far with only the six

basic axioms of Peano Arithmetic. The Induction Principle is needed
early and often in the study of the natural numbers.

In a formal tableau proof of a sentence from Peano Arithmetic the
' cases of the Induction Principle which are needed for the proof are

included in the hypothesis list. Many simple and familiar properties
of the natural numbers cannot be proved without induction· that is

' ' there is no tableau proof from the six basic axioms alone, but there is a
tableau proof from the full set of axioms of Peano Arithmetic including
the Induction Principle.

We now give several examples of such sentences. In each example,
we first sketch a tableau proof of the sentence from Peano Arithmetic.
We then show:. that the sentence cannot be proved from the six basic
axioms alone by describing a model of the six basic axioms in which
the sentence is false. It follows from the Soundness Theorem that a
sentence which is false in some model of the six basic axioms cannot
be provable from them. Thus at least one induction axiom is needed in
any tableau proof of the sentence.

Example 3.7.4 The sentence

Ai: Vx•x = s(x)

is provable from Peano Arithmetic but is not provable from the six
basic axioms alone.

Pro of: To prove this sentence from PA, we let B be the wff -, x :::::: s (x),
and prove Ai from the hypotheses

l.Vx•O=s(x)

2. VxVy [s(x) = s(y) =} x = y]

3. 7. PEANO ARITHMETIC 167

3. B (0) /\ V x [B (x) =? B (s (x))] =} V x B (x)

Note that V x B (x) is the same as Ai, the formula to be proved.
By hypothesis 1, •O = s(O), so B(O) holds. Let a be arbitrary and
tempor~rily assume B(a), that is, •a= s(a). By hypothesis 2,

s(a) = s(s(a)) =}a= s(a).

By propositional logic, •s(a) = s(s(a)), that is, B(s(a)).
By the Deduction Rule, B(a) =? B(s(a)), and thus by the General­

ization Rule,
V x [B (x) =? B (s (x))].

By hypothesis 3, it follows that V x B (x), which is the formula to be
proved. End of Proof.

A formal tableau proof of the sentence Ai can be carried out in 12
nodes, and is included in the diskette as PEANO.TBU.

To see that sentence Ai is not provable from Axioms 1-6 alone,
we shall describe a model M of Axioms 1-6 in which the sentence Ai
is false. The uni verse set of the model is the set M = N U { oo} formed
by adding to the set N of natural numbers one extra element called oo.
Among elements of N, the function symbols +, *, s, 0 have their usual
meaning. To complete the definition of the model, we stipulate that

sM(oo)=oo,

X +M 00 = 00 +M X = oo,

O*M OO=OO*M 0=0,

X # 0 =} X *M 00 = 00 *M X = 00.

It can be checked that each of the six basic axioms is true in this model.
However, we see that the sentence Ai is false in the model M by taking
x = 00.

Example 3.7.5 The sentence

A 2 : Vx 0 * x:::::: 0

is provable from Peano Arithmetic but is not provable from Axioms
· 1-6 alone.

168 CHAPTER 3. FULL PREDICATE LOGIC

Proof: Here is a direct proof of A2 from PA in paragraph form. The
following axioms of PA are needed in the proof:

1. Vx x + o:::::: x

2. Vx x * o:::::: o

3. VxVy x * s(y) = x * y + x

4. 0 * 0 = 0 /\ Vx [O * x = 0 ::::? 0 * s(x) = O] ::::? Vx 0 * x = 0.

By hypothesis 1, we have 0 * 0 0. We next prove that

Let a be arbitrary and assume that 0 * a = 0. By hypotheses 3 and 1,

0 * s(a) == 0 *a+ 0 = 0 *a.

Then
O*s(a)=o*a=o.

By the Deduction and Generalization Rules,

Then by hypothesis 4, Vx 0 * x = 0 as required. End of Proof.

The formal tableau proof of A2 from PA is left as Exercise 22.
To see that A2 is not provable from the six basic axioms alone, we

modify the model M in the preceding example by stipulating that

O*M 00=17.

This modified model is still a model of Axioms 1-6. (In fact, we can
give 0 * M ex:: any value at all and still have a model of Axioms 1 ~6.)
To see that the sentence A2 is false in this model, take oo for x.

Example 3. 7.6 The sentence

A3 : Vx [x = 0 V 3y x s(y)]

is provable from Peano Arithmetic but not from Axioms 1-6 alone.

3. 7. PEANO ARITHMETIC 169

Proof: The proof of A3 from PA uses the single induction axiom

1. B (O) /\ V x [B (x) ::::? B (s (x))] ::::? V x B (x)

where B(x) is the wff x = 0 V 3y x = s(y). Note that the formula A3
.to be proved is V x B (x). B (0) is the sentence

0 = 0 V 3y 0 = s(y),

which follows from the equality rule 0 0 by propositional logic. Let
a be arbitrary and assume B(a). The formula B(s(a)) is

s(a) = 0 V 3y s(a) = s(y),

which is easily proved with no hypotheses.
By the Deduction and Generalization Rules,

Vx [B(x)::::? B(s(x))].

Then by the hypothesis 1., Vx B(x), which is the formula to be proved.
End of Proof.

The formal tableau proof of A3 from PA is left as an exercise for

the student.

Example 3.7.7 The sentence

A4 : Vx Vy x + y ·= y + x

is provable from Peano Arithmetic but not from the six basic axioms
alone.

In the computer problem PLUS.TBU, you are asked to give a tableau
proof of A4 frorri PA. To see that neither of the sentences A3 nor A4
is provable from Axioms 1-6 alone, we describe a'-model M of Axioms
1-6 in which each of the sentences A 3 and A 4 is false. The universe
set of M is the set

170 CHAPTER 3. FULL PREDICATE LOGIC

made up of two "copies" of N and one additional element { c}. The
function symbols in M are defined as follows:

and in all other cases the sum is c.

ao * M x = ·x * M ao = ao and a1 * M x = x * M a 1 = x for all x

and in all other cases the product is c. The student can now check that
all the basic axioms of PA are true in the model M. To see that the
sentence A3 is false in M, take b0 for x. To see that the sentence A 4

is false in M, note that

Using the definition given above for + M, one can see that the rela­
tion :::;M orders the elements of M so that

We now introduce the new symbol:::; as an abbreviation as follows:
For any terms a, T of arithmetic, we write a:::;r for the sentence 2

:3z 0-+z =. T

. where z does not occur in a or r.

With this symbol, the four axioms for linear order can be proved
from PA.

2 Note that technically we have not specified a particular sentence since any choice
of z not in <J or T satisfies the condition of the definition. However, as the reader
may easily verify, for any variables x, y not in <J or T, there is a tableau proof of the
sentence [3x <J + x:::::: r] {::} [3 y <J + y =· r]; thus, any choice of z will do.

3. 7. PEANO ARITHMETIC 171

The Reflexive Law Vx x :::; x is an abbreviation for the sentence
Vx3zx +z = x, which follows very easily from Axiom 3 of PA. The
proofs of the other linear order axioms from PA are broken into small
steps which are included in the Exercises at the end of this chapter.

In the remainder of this section we shall briefly discuss two other
forms of arithmetic, one which is much weaker than PA and another
which is much stronger than PA.

Weak Arithmetic, or WA, is a particular list of nine axioms which
are consequences of PA.

Definition 3. 7.8 The axioms for Weak Arithmetic consist of the six
basic axioms for Peano Arithmetic together with the following three
additional axioms;

7. Vx[x:::;o => x = O]

8. Vx Vy [x:::;s(y) => [x:::;y V x = s(y)]]

9. Vx Vy [x:::;y V Y,:::;x].

The three additional axioms 7-9 for Weak Arithmetic use the ab­
breviation :::; but officially are sentences of the language of arithmetic.
Each of these axioms can be proved from PA; the proofs are left to the
student in the Exercises.

Axiom 7 says that no element is less than 0. Axiom 8 says that there
are no elements between x and s(x). Axiom 9 is the Comparability Law
for linear order.

Each of the sentences in Examples 3.7.4, 3.7.5, 3.7.6, and 3.7.7 is
an example of a sentence which can be proved from PA but cannot be
proved from WA. To see this, recall that in each example we proved
the sentence from PA and gave a model of the six basic axioms of PA
in which the sentence is false. In each case, the remaining three axioms
of WA also hold in the same model.

Weak Arithmetic is a useful technical tool in the proof of the Godel
Incompleteness Theorems and the study of computable functions. It
will be developed further in Chapter 5 on the way to the proof of
the Godel Incompleteness Theorem. The above examples show that

· many· familiar facts about the natural numbers cannot be proved from

172 CHAPTER 3. FULL PREDICATE LOGIC

Weak Arithmetic. In spite of this, Weak Arithmetic has two important
advantages. First, it has only finitely many axioms. Second, as we
shall see in Chapter 5, the concepts of a wff and a tableau proof in
full predieate logic can be developed within Weak Arithmetic as well
as within Peano Arithmetic.

We now turn to another induction principle which is more powerful
than the First Order Induction Principle of PA. It cannot be included
in the axiom list of Peano Arithmetic because it is not a wff .of first
order predicate logic.

Second Order Induction Principle

for every subset AC N

0 E A/\ Vn [n E A => (n + 1) E A] :=> Vn n E A.

In this principle the quantifier Vn means Vn E N. The system of
axioms consisting of Weak Arithmetic and the Second Order Induction
Principle is sometimes called Second Order Arithmetic. It is more
powerful than Peano Arithmetic but is not a set of sentences of first
order logic.

Unlike the First Order Induction Principle, the second order version
is a single axiom. However, this axiom quantifies over subsets, rather
than elements, of N, and cannot directly be formalized in the first order
language of arithmetic.

The advantage of this second principle is that, combined with Weak
Arithmetic, it captures the standard model N of arithmetic: If M is
any model of WA having universe M, and, on replacing N by M, the
Second Order Induction Principle is true, then M is isomorphic to
N'; that is, the elements of M can be listed,

M = {rno,mi, ... }

3.7. PEANOARITHMETIC 173

so that if +M, *M, SM, OM are the interpretations of the function and
relation symbols of arithmetic, then we have, for all k, f E N,

OM mo mk+ M mt = mk+i

SM (mk) = mk+1 mk*M mt= m1ct·

(See Theorem 3.7.9 below.)
The disadvantage of the Second Order Induction Principle is that to

formalize it one must introduce a second order logic which has variables
and quantifiers for predicates as well as for individuals. This logic. will
need additional rules· of proof to take care of the quantifiers over the
predicates. There will be just one induction axiom but at the price of
a new list of rules of proof. A logic with quantifiers over predicates
is called second order logic. Second order logic does not have a
completeness theorem, and for this reason it has been less important
than first order logic in the foundations of mathematics.

The First Order Induction Principle is a reasonable attempt to for­
malize the Second Order Induction Principle in our language. The idea
is to "spread out" the Second Order Induction Axiom over infinitely
many distinct sentences to eliminate quantification over subsets. A first
attempt at spreading out this axiom would be to have, for every subset

A of N, an axiom

iA: [OE A/\ Vx [x EA=> s(x) EA]]=} Vx x EA.

If A were represented by a unary relation symbol PA in our vocabulary,
we could then write out IA as the formal sentence

Now, although we have no such relation symbols in our vocabulary, .we
can represent many subsets A of N with wffs rather than with relat10n
symbols. For instance, the set E of even numbers is represented by the
wff B having only the variable x free: ·

3y y+y = x.

We obtain:
E = {n EN N' f= B(x//n)}.

174 CHAPTER 3. FULL PREDICATE LOGIC

In fact, every wff of the language determines a subset of Nin exactly
·the same way. Moreover, if we replace the collection of CA's with
the collection of first order wffs in our formulation of the second-order
axiom we obtain the First Order Induction Principle. Unfortunately,
however, since there are only countably many wffs in the language (see
Exercise 8) and uncountably many subsets of N (see Appendix A.6),
"most" subsets of N are not accounted for by the wffs used in the
first order axiom. Thus we should not expect every model of Peano
Arithmetic to be isomorphic to N. In fact, models which are not iso­
morphic to N (called nonstandard models of arithmetic) can be
constructed using the Compactness Theorem; see Theorem 3.8.3 in the
next section. By contrast

Theorem 3.7.9 (Uniqueness Theorem) Suppose that Mis a model
for weak arithmetic and satisfies the Second Order Induction Axiom in
the sense that if A C M satisfies

OM EA and 'in EM [n EA=:} (n + 1) EA]

then A M. (Here M is the universe of the model M.) Then M
is isomorphic to the standard model N of PA. In particular for any
sentence A we have M . f= A if and only if N f= A.

Proof: The assertion that N and M are isomorphic means that there
is a one-one onto function

¢:N--+M

such that

(1)
and

¢(m + n) = ¢(m) +M ¢(n), ¢(mn) = ¢(m) *M ¢(n). (2)
The equations (1) determine ¢uniquely by induction (on N). Using
induction again and the fact that M f= WA we see that ¢ is one­
one and that equations (2) hold. (See Exercise 25.) Finally apply the
Second Order Induction Principle (for M) to the set

A = { ¢(n) : n E N}.

We see that A = M so that ¢ is onto. End of Proof.

3.8. SOME APPLICATIONS OF COMPACTNESS 175

3.8 Some Applications of Compactness

The Compactness Theorem is one of the most useful theorems in math­
ematical logic. In this section we shall give three applications which
illustrate its usefulness.

Theorem 3.8. l Let H be a finite or countable set of sentences. Sup­
pose that for each natural number n, H has a model whose universe set
has more than n elements. Then H has a model whose universe set is
infinite.

Proof: For each n, let En be the sentence

The sentence En is true in a model M if and only if the universe set of
M has more than n elements. For each n, the set

has a model, namely any model of H whose universe set has more than
n elements. It follows that each finite subset of the countable set of
sentences

HU {Ei,E2, ... }

has a model. By the Compactness Theorem, this set of sentences has
a model M. Then M is a model of H whose universe is infinite, as
required. End of Proof.

The next application involves groups. In the language of group
theory, let xn be the term for x multiplied by itself n times. That is,
x0 is e, x 1 is x, and xn+l is (xn) * x. In a group Q, an element g has
order n if n is the least natural number such that gn = e. An element
g has infinite order if gn =/= e for each natural number n.

Theorem 3.8.2 Let H be a finite or countable set of sentences which
contains all the group axioms. Suppose that for each n, H has a model
Q which has no elements of order ~ n except the element e of order 0.

· Then .fl has a model in which all elements except e have infinite order.

176 CHAPTER 3. FULL PREDICATE LOGIC

Proof: For each n let Dn be the sentence \fx[xn == e =} x == e]. Then
for each n, H has a model in which each of the sentences Dk, k :5 n is
true. Therefore each finite subset of the countable set

has a model. By the Compactness Theorem, this whole set has a model
M. Then M is a model of Hin which all elements except e have infinite
order. End of Proof.

Our third application concerns models of arithmetic. By complete
arithmetic we mean the set of all sentences in the vocabulary of PA
which are true in the standard model N of arithmetic . Thus all the
axioms of PA belong to complete arithmetic. We shall see from the
Godel Incompleteness Theorem in Chapter 5 that there are additional
sentences in complete arithmetic which are not tableau provable from
PA The following application of the Compactness Theorem shows that
complete arithmetic, and hence PA, has nonstandard models.

Theorem 3.8.3 There is a model M of complete arithmetic whose
universe set M contains an element w such that all the sentences

0 :5w;1 :5 w, 2 :5 w, ...

are true in M. (Such an element w is called infinite, and models of
PA which have infinite elements are called nonstandard models of
arithmetic.)

Proof: Add a new constant symbol w to the vocabulary of PA. In this
expanded vocabulary, let H be the union of complete arithmetic and
the set of sentences .

0 :5 w, 1 :5 w, 2 :5 w,

Every finite subset H 0 of H has a model, namely the standard model
N of arithmetic with the extra constant symbol w interpreted by an
element m E N which is greater than any n such that the sentence
n :5 w belongs to Ho. By the Compactness Theorem, H has a model

M. End of Proof.

3.9. TABLEAU PROBLEMS(TAB4) 177

3.9 Tableau Problems (TAB4)

This assignment uses the TABLEAU or TA~WIN program. You will
construct tableau proofs in full predicate logic. The problems are lo­
cated in directory TAB4 on the distr~bution diskette, an? _the SETUP­
DOS or SETUPWIN program will put them in a su~d1te~to? called
TAB4 on your hard disk. There are seven problems m this directory,
called

GRO UPl. TBU, GROUP2. TBU, CALCl. TBU, CALC2. TBU,
CALC3.TBU, ZPLUS.TBU, PLUS.TBU.

You should load in each problem with the TABLEAU or TABWIN
program then make a proof sketch on paper, and finally use your proof
sketch a~ a guide to make a formal tableau proof with the ~ABLE~U

. or TABWIN program. In many cases your sketch will contam a. strmg
of equations. As usual, you should save your answer on your diskette
or hard drive, with the name of the problem p~eceded by ~n A.

These problems use the full predicate logic with funct10n symbols
and equality substitutions. Here are some com:nents on the problems.
You should try the problems with shorter solut10ns (fewer nodes) first.

GROUPl (16 nodes).

Hypotheses:

To prove:

\fa; \fy \fz x * (y * z) = (x * y) * z,

\Ix 3y x * y = e,

\fx x * e = x,

\fx e * x x.

\Ix 3y y * x = e

The hypotheses are axioms from group theory with a binary in­
fix operation.* and a constant symbol e for the identity element.
The first hypothesis is the associative law, the second hypothe­
sis is that every element has a right inverse, and the other two

178 CHAPTER 3. FULL PREDICATE LOGIC

hypotheses state that e is a two-sided identity element (actually
the fourth hypotheses can be proved from the other three). Th~
sentence to be proved is that every element has a left inverse.

GROUP2 (21 nodes).

Hypotheses:

To prove:

VxVyVzx*(Y*Z) = (x*Y)*z,

Vx 3y x * y = e,

Vx x * e = x.

Vx Vy Vz [x * z = y * z =} x = y]

The hypotheses are the axioms for groups. The sentence to be
proved is the cancellation law.

CALCl (6 nodes).

Hypotheses:

To prove:

Vy 3x f(x) = y,

Vx g(f(x)) = x.

Vy f(g(y)) = y

The hypotheses state that the function f is onto and that g is an
inverse function off. The sentence to be proved is that J is an
invers~, function of g.

CALC2 (30 nodes).

Hypotheses:

Vx Vy [x < y =? f(x) < J(y)],

Vx J(x) < c,

Vy [Vx J(x) < y =} c < y V c = y],

..., 3y [x < y /\ y < x],

Vx Vy [x < y => Vz [x < z V z < y]].

3.9. TABLEAU PROBLEMS (TAB4) 179

To prove:

Vy [y < c =? 3x Vz [x < z => y < f(z)]]

This is the theorem from calculus which states that a bounded
increasing real function f (x) approaches a limit as x approaches
infinity. The vocabulary has a constant c, a unary function f, and
a binary infix predicate <. The first hypothesis states that the
function f is increasing, the second and third hypotheses state
that c is the least upper bound of the range of f, and the last
two hypotheses are needed facts about the order relation. The
sentence to be proved states that c is the limit of f (x) as x ap­
proaches infinity.

.CALC3 (64 nodes).

Hypotheses:

Vx Vy Vz [x :::; y /\ y :::; z => x :::; z],

Vx 3y..., y:::; x,

v x [! (x) :::; 0 =} x :::; c],

Vy [Vx [f(x):::; 0 x:::; y] =? c:::; y],

Vx Vy Vz [p(x,y,z) {:> •y:::; x /\ •z:::; y],

VxVuVv[p(u,f(x),v) => 3s3t[p(s,x,t)/\Vy[p(s,y,t) => p(u,J(y),v)]]].

To prove:
f(c):::; 0

This is the main part of the the Intermediate Value Theorem from
calculus. The vocabulary has constants c and 0, a unary function
f, a binary infix predicate :::; , and a ternary predicate p. The first
two hypotheses are facts about the order relation. The next two
hypotheses state that c is the least upper bound of the set of all
x such that f(x) :::; 0. The fifth hypothesis defines the relation
p(x, y, z) to .mean that y belongs to the open interval (x, z). The
long sixth hypothesis uses the relation p to state that the function

180 CHAPTER 3. FULL PREDICATE LOGIC

f (x) is continuous for all x. The sentence to be proved is that
f (c) ::; 0.

(A similar proof will show that 0 ::; f (c). This leads to the
theorem that if f is continuous and J(a) < 0 < J(b) then there
is a point c between a and b with f(c) = 0.)

The problems ZPLUS and PLUS are examples of proofs using the
induction principle for the natural numbers. The vocabulary has a con­
stant 0 for zero, a unary function s for successor, and a binary function
+ (written in infix notation x + y) for the sum. The hypotheses in each
problem give the rules for computing the sum. The other hypotheses
are cases of the induction principle for natural numbers.

ZPLUS (11 nodes).

Hypotheses:
Vx x + 0 = x,

Vx Vy x + s(y) = s(x + y),

O+O =Of\ Vx [O+x x => O+s(x) = s(x)] => Vx O+x = x.

To prove:
Vx 0 + x = x

The third hypothesis is the induction principle for the wff 0 + x =
x in the variable x. The sentence to be proved is that for all x,
o+ x x.

PLUS (38 nodes).

Hypotheses:
Vx x + 0 = x,

VxVy s+s(y)=s(x+y),

VyO+y = y+O/\(Vy·x+y y+x =>Vy s(x)+y y+s(x)]

3.9. TABLEAU PROBLEMS (TAB4) 181

=> V xVy x + y = y + x,

Vx[x + O = 0 + x /\ Vy[x + y = y + x => x + s(y) = s(y) + x]

=>Vy x + y = y + x],

Vx O+x = x.

To prove:
Vx Vy x + y = y + x

The third and fourth hypotheses are the induction principle for
Vy x + y = y + x in the variable x, and the induction ~ri~ciple
for x + y = y + x in the variable y. The last hypothesis is the
sentence proved in the preceding problem. The sentence to be
proved is the commutative law for the sum.

If you get stuck, you may look at the hints below.

HINT FOR GROUPl: If a* b = e and b * c = e then

a = a * e = a * (b * c) = (a * b) * c e * c c,

so that b * a = e.

HINT FOR GROUP2: If a* c b * c and c * d e then

a = a * e = a* (c * d) (a* c) * d = (b * c) * d b * (c * d) b * e = b.

HINT FOR PLUS: If Vy [a+ y = y +a] and ?(a)+ b = b + s(a),

then

s(a) + s(b) s(s(a) + b) = s(b + s(a)) = s(s(b +a)) s(s(a + b)) =

= s(a+s(b)) s(s(b)+a)=s(b)+s(a).

182

3.10

CHAPTER 3. FULL PREDICATE LOGIC

Exercises

1. Let B be the wff

y = s(x) /\ 3y x + y = z.
(a) Write down the wff B(x//O).

(b) Is the term s(x) free for x in B? If it is, write down the wff
B(x//s(x)).

(c) Is the term x * y free for x in B? If it is, write down the wff
B(x//x * y)

(d) Is the term x * y free for y in B? If it is, write down the wff
B(y//x * y).

(e) Write down the sentence B(v) where vis the valuation

v = ((x, 2), (y, 4), (z, 6)).

2. Prove that for each term r and each initial segment· U of the string
r such that the next symbol after U is a function symbol f, there is a
unique term u within r which starts with f, that is, there is a unique
term u such that r = U u V for some V.
· (Hint: Similar to the proof of the Unique Readability Theorem for
wffs).

3. Supposer is a term and u is a term within r, that is, r = UuV for
some strin?s U and V. Prove that for every other term p, the string
Up V obtamed by replacing u by p in r is also a term.

(Hint: Use the preceding Exercise. Hold u and p fixed and argue
by induction on the length of r.)

4. Let A be a wff in full predicate logic and let B be a wff within A
that is, A= UBV for some U and V. Prove that for every wff C th~
string UCV obtained by replacing B by C in A is also a wff. '

3.10. EXERCISES 183

5. Give a tableau proof of the sentence

VxVy3zz = J(x,y)

6. Give a tableau proof of the sentence

Vy [R(y) ¢> 3x [R(x) /\ x::::: y]].

7. In the full predicate logic with a vocabulary consisting of the two
binary predicate symbols =, p, give tableau proofs of each of the Equal­
ity Axioms from Section 2.10. (You may skip the transitive law (3),
which is already proved in the text as an example).

8. Suppose there are only countably many function symbols in the
vocabulary of a full predicate logic and that M is a countable set.
Prove that TERM(:F, M) is a countable set. (Hint: First show that
the set of all finite sequences from a countable set is countable. Then
show that the set S of all symbols except for the predicate symbols is
countable. Finally, show that each term is a finite sequence (or string)
of symbols from S). Then show that WFF(P, :F, M) is countable.

9. Let N = {O, 1, 2, ... } be the set of natural numbers and <Po, </>1, </>2, ...
be a list elements of FUN1(N), i.e. each <Pn: N-+ N. Define a function
f : N -+ N such that f -:/= </>n for all n = 0, 1, 2, Conclude that the
set FUN1 (N) is not countable. Hint: See Exercise 48 on page 139.

10. This exercise gives an example of a premodel which is not a model
and shows how the premodel may be transformed into a model. We use
the logic of group theory whose vocabulary { *, e} consists of one binary
function symbol * and one constant symbol e. We ·build a premodel
Om for each natural number m with the following specifications:

the universe of Om= N

184 CHAPTER 3. FULL PREDICATE LOGIC

where =m, called equality modulo m, is defined by:

x =m y {:::=?- x y is divisible by m.

(For instance, any two even numbers are equal modulo 2, and the fol­
lowing numbers are equal (in pairs) modulo 3 : 2, 5, 8, 11,)

(a) Show that 9m is a premodel satisfying the axioms of group theory,
but that 9m is not a group.

(b) Notice that the elements of 9m can be organized. in an array:

0, 1,
m, m+l,

... '

... '
m 1
2m- l

so that the elements in any column are equal modulo m (but
elements from different columns are not equal modulo m).

Let Zm consist of the elements in the top row of the matrix, i.e.,

Zm = { 0, 1, ... , m 1}.

We interpret * for Zm by the operation +m defined by

. + . _ { the remainder obtained on dividing
i m J - i + j by m

where "i+ J" signifies ordinary addition of natural numbers. Thus, _
for example,

2 3 = 0

3 +6 4 1

Show that Zm = (Zm, +m, 0) forms an abelian group.

3.10. EXERCISES 185

(c) Show that for all m, 9m and Zm satisfy the same first order sen­
tences, i.e., for all sentences A,

(Hint: For each n E N, let n denote the remainder obtained on
dividing n by m. Show that for each wff A with free variables
xi, ... , Xr, and for all natural numbers ni, ... , nr,

9m f=A(ni, ... ,nr) ~ Zm f=A(fii, ... ,fir)·

Do this by induction on the wff A.

(d) Treat Zm as a model of the language of arithmetic by interpreting.
the multiplication symbol * as *m, defined by

. . { the remainder obtained on dividing
i *m J = i * j by m

Does Z satisfy WA? Which axioms are satisfied and which fail?
m h · f ? Wh t · th. " . ht" Does your answer depend on the c 01ce o m. a is e ng

way to define multiplication on 9m so that it too becomes a model
of the language of arithmetic satisfying the same sentences as Zm?

11. Recall from page 161 that (S(X), o, Ix) denotes the permutation
group of the set X. Show that for any set X with more t~an .two
elements, this group is not abelian. (Why must S(X) be abehan if X
has at most two elements?)

12. Prove that every model of the sentence

[\fx •s(x) = 0 /\ \fx\fy [s(x) = s(y) =? x = y]]

of full predicate logic has an infinite universe.

13. Give a tableau proof from PA of the wff

\Ix [x = 0 V 3yx s(y)]

186 CHAPTER 3. FULL PREDICATE LOGIC

(Hint: An informal proof was given in Example 3. 7.6. The tableau
proof involves the use of the induction axiom where B(x) is the wff
x = OV 3yx = s(y).)

14. Show that Axiom 7 of WA,

\:/x [x S 0 => x = O],

is provable from PA, by proving it from the six basic axioms and the
sentence

\:/x [x 0 V 3y x = s(y)]

from the preceding Exercise.

15. Show that Axiom 8 of WA,

\:/x\:/y [x S s(y) => [x S y V x = $(y)]],

is provable from PA by proving it from the six basic axioms and the
sentence from Example 3.7.6.

16. Prove that Axiom 9 of WA, the Comparability Law

\:/x\:/y[x S y Vy S x],

is provable from PA. In addition to the axioms of PA, you may use
the Commutative Law for Addition

\:/x\:/yx + y = y + x

from the computer problem PLUS.TBU and.Axiom 8 which is proved
from PA in the preceding exercise.

1 7. Show that the sentence

\:/x\:/y\:/z[x + y = x + z :::::? y = z)

is provablefrom PA. (Hint: Prove it from the axioms of PA and the
Commutative Law for Addition from computer problem PLUS.TBU).

3.10. EXERCISES 187

18. Show that there is a tableau proof from PA of the associative law

of addition,
\:/x\:/y\:/z (x + y) + z = x + (y + z).

(Hint: First come up with an informal proof from the Peano axioms
using induction. Then translate it into a tableau proof.)

19. Show that the Transitive Law

\:/x\:/y\:/z [x S y /\ y S z:::::? x S z]

is provable from PA. (Hint: Prove it from the Associative Law of

Addition.)

20. Show that the Antisymmetric Law

Vx\:/y [x Sy/\ y S x => x = y]

is provable from PA. (Hint: Prove it from the basic axioms of PA, the
Associative Law of Addition, and the sentence from Exercise 17).

21. Give a tableau proof of the sentence

from the set of hypotheses

\:/x x + 0 = x

\:/x\:/y x * s(y) = x * y + x

22. Give a tableau proof of the sentence

\:/x 0 * x = 0

from Peano arithmetic. Here is a start (showing only the axioms of
Peano arithmetic which are needed for your proof).

-Nx o * x = o

188
CHAPTER 3. FULL PREDICATE LOGIC

'r/x x + 0 = x

Vx x * o:::: o

VxVy x * s(y) x * y + x

0 /\ Vx (0 * x = 0 => 0 * s(x) ==OJ::::} Vx O * x

23. Show that the Distributive Law

VxVyVz (x + y) * z = x * y + x * z

0

is tableau p~ova.ble from PA. You may use extra rules of proof such as
the Gene:al~zat1on and Deduction Rules, as well as the commutative
and ~ssoc1at1ve laws for addition, which were proved from PA i r
exercises. n ear ier

24. Give a tableau proof of the "strong induction principle"

Vx [Vy [y < x => P(y)] => P(x)] => Vx P(x)

from the three hypotheses

Vx-ix < O,

VxVy[x < s(y) /\ -.x < y * x == y],

B(O) /\ Vx [B(x) => B(s(x))] * VxB(x),

where B(x) is the particular wff Vy [y < x * P(y)].

25. Supply the missing details in the proof of Theorem 3. 7.9.

P
26· The ~ollowi?g argument purports to prove that any two models for

eano anthmet1c are isomorphic.

Let M be a model for Peano arithmetic with universe set
M and define a map

f:N~M

3.10. EXERCISES

by induction:

Since
M f= VxVy[s(x) = s(y) => x = y]

it follows by induction that f is one-one. Since oM E f(N)
and s(u) E f(N) whenever u E f(N) and since M models
the Induction Principle, it follows that M = f (N), that is,
that f is onto. Finally the formulas

f(O)
f(s(x))

f(x+y)

f(x * y)

0M

sM(f(x))

f(x)+M f(y)

= f(x) *M f(y)

hold, the first two by definition and the last two by induc­
tion.

189

The argument is wrong: Theorem 3.8.3 provides a counter-example.
Where is the error?

The following four problems use the Compactness Theorem.

27. Prove that for every set P of prime numbers, there is a model M
of complete arithmetic and an element a EM such that

M f= 3xp * x =a

for each prime p E P, and

for each prime p ~ P.

28. Let H be a finite or countable set of sentences in the language of
. ·group ·theory. Suppose that for each natural number n, H has a model

190 CHAPTER 3. FULL PREDICATE LOGIC

which has at least one element of order ~ n. Then H has a model
which has at least one element of infinite order.

29. Let H be a set of sentences which contains the axioms for linear
order. Suppose H has an infinite model. Prove that H has a model M
in which there is a countable strictly increasing sequence of elements
that is, there are elements a1 , a2, a3 , ••• E M such that '

30: Let H be the set of all sentences in the vocabulary {O, 1, ~' +, *}
which are true of the real numbers. Prove that H has a model M with
an element c such that M f= 0 < c but for each natural number n
M f= n * c < 1. (n is the term formed by adding 1 to itself n times).'

Chapter 4

Computable Functions

4.1 Introduction

Consider the following two statements:
1. For any two positive integers m and n, there is a largest integer

g which is a factor of m and n.
2. For any two positive integers m > n, if mis divided by n obtain­

ing a remainder r, and n is divided by r obtaining a remainder s, and
r is divided by s obtaining a remainder t, and so forth, stopping the
first time the remainder is zero, then the last nonzero remainder that
arises in this process is the largest factor of m and n.

The first of these statements merely asserts the existence of the
greatest common divisor (gcd) of any two positive integers; the second

· actually gives a procedure to construct g. Moreover, this procedure is
mechanical in the sense that a computer can be programmed to carry
out these instructions.

The procedure given in the second statement is known as the Eu-
. clidean algorithm. An algorithm is a finite set of instructions which,
when applied to an appropriate input, dictates a unique sequence of
simple operations to be applied to the input. For some inputs, the se­
quence of operations will come to a halt and an output will be given;
for others, the sequence of operations on the given input may never ter­
minate, and there will be no output. The Euclidean algorithm accepts
as input any pair of positive integers m > n and in every case produces

191

192 CHAPTER 4. COMPUTABLE FUNCTIONS

an output (namely, gcd(m, n)).
As another example, consider the following algorithm R: R accepts

natural numbers as inputs; with input n R checks to determine whether
n = 0 and if so, outputs O; if not, R adds 1 to n and repeats the
proc~dure. C~early, R outputs 0 with input 0 and, with input n > O,
contmues addmg 1 to n forever and gives no output at all.

The two algorithms described above define functions in a natu­
ral way. The Euc!idean al~~rit~m defines a total function (m, n) 1-4

gcd(m, n). from pairs of positive mtegers to positive integers. The sec­
ond algorithm defines the following "partial" function J:

f (n) = { 0 if n = 0
undefined if n > 0

'Yhich functions are computed by algorithms? In this chapter we
provi~e an answer to ~ha: questio;i by devising a simple computing
machme, called an unlimited register machine which will execute
p~ograms especially designed to run on this machine; these programs
will be calle~ RM programs. Given a subset S of Nn, a function
f : .s --+ N will be called RM computable if there is an RM program
which. outputs f (ai, ... , an) _when it runs with input (a

1
, ... , an) E S,

and gives no output for any mput lying outside S.
We will find that virtually all functions S --+ N that come up in

mathematical practice are RM computable. In addition we will show
how finite seq.uences and as a result RM programs themselves - can
be c?ded as smgle natural numbers. We will then be able to construct
a umversal RM p.rogram UN~V which will be able to execute every RM
program on any mput: If P is an RM program which is coded by the
number e, t~e program UNIV will accept as input all pairs of numbers
(~, n) and will out~ut ~he number which P outputs on input n (or, if p
gives no output. with mput n, then UNIV gives no output with input
(e, n))- The .umversal RM program will allow us to find examples of
funct10ns which are not RM computable and will provide examples of
"unsolvable" problems. ·

There are three sets of problems at the end of this chapter. The
first two problem sets use the GNUMBER program and are done on a
computer. The third problem set contains ordinary pencil and paper
problems. .

4.2. NUMERICAL FUNCTIONS AND RELATIONS 193

4.2 Numerical Functions and Relations

A numerical function is a function J defined on a set 'of n-tuples of
natural numbers:

Dom(!) C Nn

and taking natural numbers as values:

Ran(!) C N.

The positive integer n is called the arity of the numerical function; it
is the number of inputs x1 , x2, ••• , Xn required to produce an output
J(x1, x2, ... , xn)· A numerical function with arity n is also called an n­
ary numerical function, or simply an n-ary function on N. (This
usage arose from more traditional terminology where unary meant
1-ary, binary meant 2-ary, ternary meant 3-ary, etc.)

If Dom(!) = Nn, f is called a total function; if Dom(!) is a
subset of Nn, f is called a partial function. By "function" we will
mean "total function" although we will occasionally refer to a function
redundantly as a total function if we want to emphasize that its domain
is all of Nn. Since Nn is a subset of itself, every total function is also a
partial function, that is, the set of total functions is a subset of the set
of partial functions.

An n-ary numerical relation is any subset of Nn; note that the
graph of an n-ary function (partial or total) is an n + 1-ary relation. A
relation R is determined by its characteristic function which is the
numerical function CR defined by

if (x1,x2, ... ,xn) ER
if (xi, x 2 , ••• , x n) r/. R

for (x 1, x 2 , ••• , xn) E Nn. An important difference between numeri­
cal functions and numerical relations is that by convention, relations
are always assumed to be totally defined. Therefore the characteristic
function CR of a numerical relation is always· total.·

In qhapter 3 we saw examples of total and partial numerical func­
tions: addition and multiplication are total binary functions; in this
chapter we call these functions Add and Mult , respectively. Also, sub­

. traction and division are partial binary functions ; recall that we denote

194 CHAPTER 4. COMPUTABLE FUNCTIONS

subtraction by Subt and division by Divide . Another useful pair of
partial functions, which we denote by Div and Remain , is given by
the division algorithm as follows:

q = Div(x,y), r = Remain(x,y)

if and only if

x == qy + r, 0 s; r < y

with domain {(x, y) E N2 : y > O}.
We will be interested in extending partial functions to make them

total. We give some examples below; we define

• Cut-off subtraction by

. { x-y x-y =
0

for (x, y) E N 2 •

• The quotient function by

if y s; x

if x < y

t() _ { Div(x, y) q x,y - 0 if y > 0
if y = 0

for (x, y) E N 2•

• The remainder function by

() _ { Remain(x, y) rm x,y -
0

for (x, y) E N 2•

if y > 0
ify=O

WARNING: In the theory of computable functions the domain of a par­
~ial fu~ction plays ~n important role. Typically an n-tuple (x1, x2, ... , xn)
1s not m the domam of some computable function f because the pro­
gram which computes f(x 1, x2, ... , xn) does not terminate normally
when the input is (x1, x2 , ••• , xn): it goes into an infinite loop.

The total functions _:_, rm, and qt in the above examples turn out
to be RM computable. However, it can happen (as we shall see later)

4.3. THE UNLIMITED REGISTER MACHINE 195

that the total function F defined from the partial function f by the
prescription

if (x1, x2, ... , Xn) E Dom(!)
otherwise.

will not be computable, even though f is computable.

4.3 The Unlimited Register Machine

In this section we shall describe an abstract computer called the un­
limited Register Machine or simply register machine (RM). It
differs from real computers in three ways.

e First, the instruction set of an RM is much smaller than that of a
real computer. This makes the RM much easier to study than a
real computer (although it also makes the RM less efficient than
a real computer), but does not in principle restrict the computing
power of the RM; we shall see that the RM can compute anything
a more complicated computer can.

6l Second, the RM has an infinite memory: it has infinitely many
data registers, and infinitely many instruction registers which
hold the program instructions. Moreover each register can hold
an arbitrarily large number. This idealization makes the RM easy
to study and is not as far removed from reality as one might think:
any particular calculation on an RM will use only a finite amount
of memory, so any particular calculation which can be done by
an RM can in principle be performed by a real computer with a
large enough finite memory.

11 Third, program memory is disjoint from data memory.

The register machine has two countable lists of registers, the instruc­
tion registers 10 , Ii, 12 , ... and the data registers Rli R2, R3, In
addition, there is one more register R0 , called the program counter.
Each instruction register In holds an instruction In which is loaded prior

196 CHAPTER 4. COMPUTABLE FUNCTIONS

to the execution of a program and does not change. However, all but
finitely many of the instruction registers hold the halt instruction H.
At any given time in the execution of a program, the program counter
and all the data registers hold natural numbers, with all but finitely
many of the data registers holding 0. The contents of these registers
may change during execution of a program. The program counter Ro
contains the index of the next instruction to be executed, and is initially
set to 0 so that the program starts with the instruction I 0 •

The RM recognizes the following five kinds of instructions:

(H) Halt Instruction: There is a single halt instruction H which
causes the RM to stop execution.

(Z) Zero Instructions: For each n = 1, 2, ... there is a zero instruc­
tion (Z, n) which causes the RM to set the contents of register Rn
to 0, and to increment by 1 the contents of the program counter
Ro, leaving the other registers unaltered.

(S) Successor Instructions: For each n = 1, 2, ... there is a succes­
sor instruction (S, n) which causes the RM to increment by 1 the
contents of the register Rn, and to increment by 1 the contents
of the program counter Ro, leaving the other registers unaltered.

(T) Transfer Instructions: For each m = 1, 2, ... and n = 1, 2, ...
there is a transfer instruction (T, m, n) which causes the RM to
replace the contents of the register Rn by the contents of the
register Rm (i.e. transfer Rm to Rn), and to increment by 1 the
contents of the program counter Ro, leaving the other registers
(including Rm) unaltered.

(J) Jump Instructions: For each m = 1, 2, ... , each n = 1, 2, ... , and
each q = 0, 1, 2, ... there is a jump instruction (J, m, n, q) which
causes the RM to put the number q into the program counter Ro
(resulting in a jump to the q-th instruction) if the contents of the
registers Rm and Rn are equal, and to increment by 1 the contents
of the program counter Ro otherwise. A jump instruction does
not alter any data registers Rn, n 2:: 1.

4.3. THE UNLIMITED REGISTER MACHINE

H
(Z,n)
(S,n)
(T,m,n)
(J, m,n,q)

(do nothing)
rn := 0, ro := ro + 1
rn := rn + 1, ro := ro + 1
rn := rm, ro := ro + 1
if rm = rn then ro := q else ro := ro + 1

Table 4.1: The RM machine

An RM-program is a finite sequence

197

of such instructions, with the understanding that all the later instruc­
tions Ip+l' Ip+2 , ••• are halt instructions H .

. · If a program P is loaded into the RM's program memory, the data
registers Ri, R2 , ••• are given initial values, an'd the RM is given the
command to start computing, the RM first puts a 0 in the program
counter R

0
• It then keeps repeating the following procedure: Look up

the number r
0

currently in the program counter Ro, and execute the
corresponding instruction Iro, modifying the appropriate data registers
and program counter as required. It continues this process until it
encounters a halt instruction, at which point the RM stops.

It is possible (even likely) that a program will not stop at all (for ex­
ample, the program consisting of the single instruction Io = (J, 5, 5, 0)) ·

The RM instructions are summarized in Table 4.1. In this table the
column on the left gives the instruction and the column on the right
gives the result of executing the instruction in conventional program­
ming notation. Here the lower case letter rn indicates the contents of
register Rn and r0 indicates the value of the program counter.

Note that program memory is indexed starting at 0, i.e. the instruc:­
tions are numbered Io, Ii, I2, ••• whereas the data memory is indexed
starting at 1, i.e. the data registers are numbered Ri, R2, ... , reserving

Ro for the program counter. ,
Each particular RM program P uses only finitely many data regis-

ters. If I! is the largest data register index mentioned in the program
instructions, then the program will never use the data ,registers Rn; f~r
m > I!, no matter what the initial register contents were. That is, if

198 CHAPTER 4. COMPUTABLE FUNCTIONS

m > I!, then the contents of Rm will never change and will never affect
the contents of another register during program execution.

For a given program P, the state of the register machine is a se­
quence of natural numbers (r0 , ri, r 2, ••• , rt) where r0 is the program
counter contents, f, is the highest data register index which appears in
the program instructions, and ri, ... , rt are the contents of the data
registers Ri, ... , Rt. Since the program begins execution with instruc­
tion 10 , the initial state is a sequence (0, ri, ... , rt) with zeroth term 0.
The state at time t + 1 is completely determined by the state at time
t. It is sometimes useful to think of the program as a rule for changing
from one state to another. Thus the program P gives rise to a function

NXSTATEp : NH1 ~ NH1

where (ro, ri, ... , rt) E NH1 is the state before instruction lr0 is exe­
. cuted, and NXSTATEp(ro, ri, ... , rt) is the state after execution. This
function is· sometimes called the next state function.

We do not count the infinite sequence of halt instructions at the end
as part of the program, so that a program will be a finite rather than
an infinite sequence of instructions. We say that two RM programs

are equivalent if they are the same except for a different finite number
of halt instructions at the end; that is, if p ~ q,

Io = Jo, ... , IP = Jp, and Jp+l = H, ... , Jq = H.

Two equivalent RM programs will have exactly the same computations
and will be displayed alike by GNUMBER. Given an RM program P,
the smallest RM program which is equivalent to P is the program con­
sisting of all instructions of P up through the last nonhalt instruction.
We regard the empty sequence as an RM program equivalent to an RM
program which has only Halt instructions. ·

4.4 RM computability

In this section we study functions which are computed by register ma-
chine programs. .

4.4. RM COMPUTABILITY 199

Register machines have no special provision for input or output.
Instead we consider the input to the RM to be the sequence of values
in the registers Ri, R2 , ••• when the RM starts, and the output from
the RM to be the value in the register R1 if and when the RM halts.
(Sometimes we allow two outputs, say R1 and R2, although this should
really be regarded as computing two different functions at the same
time, or as computing one function with values in N 2

.)

We now give a formal definition of RM computable functions and
relations. In the sequel, we shall say that an RM program P halts
on some input when we actually mean to say that when running the
program P with the given input, the RM eventually halts.

An RM program P computes an n-ary partial numerical function

<I>~) as follows:

• The domain Dom(<I>~)) of <I>~) is the set of all n-tuples

(a1,a2, .. . ,an) E Nn

such that the program P eventually halts if it is started with
register Rj set to a j for j = 1, 2, ... , n and all. other registers set

to 0.
' ()
o For any n-tuple (a1, a2, ... , an) E Dom(<I>{:) the value

<I>~) (ai, a2, ... , an)

is the number in register R1 when the program P halts (after it
has been started as above).

Recall that the characteristic function of an n-ary relation R on
N is the total function CR from Nn into the set {O, l} defined by

CR(Xi, ... , Xn) = 1 if R(xi, ... , Xn) is true,
CR(Xi, ... , Xn) = 0 if R(Xi, ... , Xn) is false.

Definition 4.4.1 An n-ary numerical function f is called RM com­
putable if there is an RM program P which computes f; that is, if

there is a program P with

f - ;r,.(n) - ~p.

An n-ary relation R is called RM computable if its characteristic func­

tion CR is RM computable.

200 CHAPTER 4. COMPUTABLE FUNCTIONS

4.5 Examples of RM-Computable Func­
tions

In this section we give some simple examples of RM-computable func­
tions.

Example 4.5.1 The addition function Add is defined by

Add(x,y) x + y

for (x,y) E N 2 = Dom(Add'). It is RM-computable.

Example 4.5.2 The multiplication function Mult is defined by

Mult(x, y) = x * y

for (x, y) E N 2 = Dom(Mult). It is RM-computable.

Example 4.5.3 The predecessor function Pred is defined by

{ox -1 if x > 0
Pred(x) if x = 0

It is RM-computable.

Example 4.5.4 The cut-off subtraction function DotMinus is defined
by

DotMinus(x,y) = {Ox Y ~f Y ~ x
If X < y

for. (x, Y) E N
2 = Dom(DotMinus). It is RM-computable. We often

write x-y for DotMinus(x,y):

x..:..y = DotMinus(x, y).

Example 4.5.5 The functions Div and Remain are defined by

Div(x,y) q, Remain(x,y)=r,

if

x = qy + r, where 0 ~ r < y

for (x, y) E N 2
and y i- 0. They are undefined when y = 0. Both

functions are RM-computable.

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 201

We now proceed to the RM programs to compute the functions in
the above list. Each program is presented in three forms: in "pseu­
docode," in "assembly code," and in "machine code."

Pseudocode is useful for writing a first version of a program. It
lists the main steps of a program in English, and may contain loops and
if-then tests. Certain conventions will be followed. The letters a, b, c,
... will correspond to the contents of the first registers R1, R2, R3,
Other "variables" correspond to other register contents and have names
which suggest how they are used in the program. A pseudocode listing
will begin with the program name and the intended input and output
of the program. Sometimes the name of an earlier RM program with
indicated inputs will appear as a line within a new program .. The start
of a loop will be indicated by a line such as

do until s = t,
and the end of the loop will be indicated by a single line

loop.

The program will repeat the intervening sequence of steps (the loop)
until s = t becomes true, and will then go on to the line after the
loop. If s = t is already true the first time the loop is encountered,
the loop is never executed. Ifs = t never becomes true, the loop will
be repeated forever and the computation will never halt.

The assembly code for a program matches the final RM program
line by line, but uses descriptive names instead of numbers for the
register contents and the targets of jurp.p instructions. The assembly
code has two kinds of jump instructions, the ordinary jump with three
arguments as in an RM program, and an unconditional jump with just
one argument, which always causes the program to jump to the target
line. The final RM program in machine code is listed next to the
assembly code. . ·

The assembly code is translated into machine code (the final RM
program) in a routine manner. For example, let us go through this
translation for the ADD program. The labels "LOOP" .and "DONE"
stand for two of the instruction numbers:

LOOP= l,DONE = 5.

202 CHAPTER 4. COMPUTABLE FUNCTIONS

(The only instructions which need labels are those which appear some­
. where in the program as jump targets). The labels "a," "b," and
"count" in the assembly code stand for register numbers. Choose a
register number for each of these labels:

a= 1, b = 2, c = 3.

To form the machine code RM program, first write down the instruc­
tion numbers 0 through 5, then copy the instruction letters from the
assembly code, then insert a pair 1 1 after each unconditional jump in­
struction to make it into an ordinary RM jump instruction, and finally
replace each label by the corresponding jump target or register number.
(A different choice of register numbers would give another RM program
which does the same thing but in different registers.)

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS

ADD

program ADD(a,b)
input: a= x, b = y
output: a= x + y

let count = 0
do until count = b

let a = a + 1
let count = count + 1

loop
end of program ADD

z count
LOOP J count,b, DONE

s a
s count
J LOOP

DONE H

0: z 3
1: J 3 2 5
2: s 1
3: s 3
4: J 1 1 1
5: H

203

Figure 4.1: Pseudocode, assembly code, machine code for ADD

204 CHAPTER 4. COMPUTABLE FUNCTIONS

MULT

program MULT(a,b)
input: a= x, b = y
output: a = x * y

let accum = O
let i = 0

do until i = b
let i = i + 1
ADD(accum,a)

loop
let a=accum

end of program MULT

LOOP

ALO OP

ADO NE
DONE

z
z
J
s
z
J
s
s
J
J
T
H

accum
1

b,i, DONE
1

count
count, a, ADONE
accum
count
ALO OP
LOOP
accum,a

0: z 3
1: z 4
2: J 2 4 10
3: s 4
4: z 5
5: J 5 1 9
6: s 3
7: s 5
8: J 1 1 5
9: J 1 1 2

10: T 3 1
11: H

Figure 4.2: Pseudocode, assembly c9de, machine code for MULT

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS

program PRED (a)
input: a = x

PRED

output: a = x - 1 if x > 0,
a= 0 if x = O.·

if a = 0 then halt
let prev = 0
let next = 1
do until a = next

let next = next + 1
let prev = prev + 1

loop
let a = prev

end of program PRED

z prev
J a,prev,DONE
z next
s next

LOOP J a,next,DONE
s next
s prev
J LOOP

DONE T prev,a
H

0: z 2
1: J 1 2 8
2: z 3
3: s 3
4: J 1 3 8
5: s 3
6: s 2
7: J 1 1 4
8: T 2 1
9: H

205

Figure 4.3: Pseudocode, assembly code, machine code for PRED

206 CHAPTER 4. COMPUTABLE FUNCTIONS

DOTMINUS

program DOTMINUS(a,b)
input: a= x, b = y
output: a = x-y if x>y

a = 0 otherwise

let count = 0
do until count = b

PRED(a)
let count = count + 1

loop
end of program DOTMINUS

z count
LOOP J count,b, DONE

z prev
J a,prev,PDONE
z next
s next

PLO OP J a,next, PDONE
s next
s prev
J PLO OP

PD ONE T prev, a
s count
J LOOP

DONE H

0: z 3
1: J 3 2 13
2: z 5
3: J 1 5 10
4: z 4
5: s 4
6: J 1 4 10
7: s 4
7: s 5
8: J 1 1 6
9: T 5 1

10: s 3
11: J 1 1 1
12: H

Figure 4.4: Pseudocode, assembly code, machine code for DOTMINUS

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS

DIVREM

program DIVREM(a,b)
input: a= x, b = y
output: a= q, b = r where

x = qy + r and 0 <= r < y.
(undefined if y=O)

if b = 0 then hang
let (count, q, r) = (0,0,0)
do until count = a

if r = b then let (q, r)
else let r = r+1
let count = count+!

loop
let (a,b) = (q,r)

end of program DIVREM

z count
HANG J b,count, HANG

z q
z r

·TEST J r,b, INCQ
J count,a, DONE
s r
s count
J TEST

INCQ s q
z r
J TEST

DONE T q, a
T r, b

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:

z
J
z
z
J

J
s
s
J
s
z
J
T
T

5
2
3
4
4
5
4
5
1
3
4
1
3
4

(q+1, 0)

5 1

2 9

1 12

1 4

1 4
1
2

207

Figure 4.5: Pseudocode, assembly code, machine code for DIVREM

208 CHAPTER 4. COMPUTABLE FUNCTIONS

4.6 Godel Numbers, Extract, and Put

In this section we introduce a way of representing finite sequences of
natural numbers by single natural numbers. This scheme is called a
Godel numbering scheme, and will be used in the construction of a
universal RM program. The GNUMBER program has a built-in Godel
numbering scheme which uses the even decimal positions (starting from
0 on the left) as markers to show where a new term begins, and uses
the odd decimal positions for the digits of the terms in the sequence
to be coded. A 2 marker means that a new term is beginning, and a
1 marker means that the old term is continuing. We take 0 to be the
Godel number of the empty sequence. For example, the Godel number
(or G.N.) of the sequence

(54,6,217)

is (with the original digits in large type)

2 5 1 4 2 6 2 2 1 1 1 7.

This is the Godel number in standard form, or the standard
Godel number. In order to make every number a Godel number of
some sequence, we adopt the convention that any single digit number,
0 through 9, is taken to be a Godel number of the empty sequence.
For numbers with two or more digits, we treat every digit in an even
position (starting from 0 on the left) as a marker. The initial digit can
be any digit except 0 and is the first marker. Any marker > 2 has the
same effect as a 2 and starts a term of the sequence. Any 0 marker has
the same effect as a 1 and continues a term. An extra marker at the
end is ignored. After computing the sequence, any initial zeros which
may appear in a term are ignored. For example, the natural number

1 5 1 6 3 0 1 0 1 9 0 7 4.

is a Godel number of the sequence

(56, 97).

4.6. GODEL NUMBERS, EXTRACT, AND PUT 209

Let N* denote the set of all finite sequences of natural numbers:

00

N* = LJ Nn
n=O

where Nn is the set of sequences of length n (and N° is the singleton
whose only element is the empty sequence). Define two functions

#: N*-+ N, seq: N-+ N*

where #(u) is the standard Godel number for the sequence. u and .seq(n)
is the sequence u having n as a Godel number. The function# is one­
one (two sequences having the same standar?. God:l number are equal)
and the function· seq is onto (every number 1s a Godel number of some
sequence). Moreover, seq is a left inverse to #:

seq(#(u)) == u

for every finite sequence u E N*. Thus each fin~te seq~:nce of natur~l
numbers has several Godel numbers but a umque Godel numbe_r m
standard form, and each natural number is a Godel number of a umque
finite sequence of natural numbers. .

Godel numbers of RM programs are especially important, because
they are central to our goal of using RM programs to study RM .pro­
grams. The first step in assigning Godel numbers to programs is to
introduce a numerical code (called an opcode) for each of the five RM
instructions letters. w~ use the natural numbers 1, 2, 3, 4, 5 as codes
for the RM instruction letters H, Z, S, T, and J, respectively: When
we replace the RM instruction letters by their codes, each RM mst:~cl
tion becomes a sequence of from 1 to 4 natural numbers. By the Go e
number #(1) of an RM instruction I we mean the Godel number of
that sequence. For example, the Godel number #(T, 5, 43) of the RM

instruction (T, 5, 43) is given by

#(T, 5, 43) == #(4, 5, 43) == 2 4 2 5 2 4 1 3.

Finally, each RM program is a finite sequence

210 CHAPTER 4. COMPUTABLE FUNCTIONS

of instructions, and the Godel number #(P) of the program Pis defi~ed
· to be the Godel number

#(P) =#(#(Io), #(11), ... , #(Ip))

of the sequence of the Godel numbers of the instructions of the program.
For example, the Godel number of the program

T 5 43

s 6

z 1

is the Godel number of the sequence

(2 4 2 5 2 41 3,2 3 2 6, 2 2 2 1),

which is

2 2 14 12 15 12 14 1l1322 13 12 16 2 2 12 1211.

We shall now introduce two new total functions,

Extract(x, y), Put(x, y, z)

and show that they are RM computable.
Extract(x, y) is the y-th term of the sequence with Godel number

x, with Extract(x, y) = 0 if this sequence has fewer than the y terms
needed. (The Godel number x need not be in standard form).

Put(x, y, z) is equal to the standard Godel number. of the sequence
which is formed by putting x into the y-th term of the sequence with
Godel number z, ·first adding as many 0 terms as necessary if the se­
quence with Godel number z has fewer than y ·terms. These functions
are useful in manipulating Godel numbers, but have rather long and
slow RM programs.

The following functions:

Length(x), Digit(x,i), Terms(x), Start(x,y), PutEnd(x,y)

defined below are RM computable. Using pseudocode, we shall de­
scribe RM programs LENGTH, DIGIT, TERMSO, START, and PU­
TEND which compute them. These programs will be used only to

4.6. GODEL NUMBERS, EXTRACT, AND PUT 211

show that the two functions Extract(x, y) and Put(x, y, z) are RM com­
putable. (The RM program which computes Terms(x) will be denoted
by TERMSO to distinguish it from the shorter Advanced RM program
TERMS which is on the distribution diskette.)

At this point the reader should be convinced that given pseudocode
·for a new function in terms of old functions, and given RM programs for
the old functions, one can routinely construct an RM program for the
new function. For convenience, we include with each of the functions
below a short algorithm for computing it; each such algorithm briefly
describes the behavior of its corresponding pseudocode program.

(1) Length(x) number of decimal digits in x.

For example,

Length(O) = Length(l) = Length(9) 1,
Length(lO) = Length(ll) Length(99) = 2,

Length(lOO) = Length(lOl) = Length(999) 3,

and so on.

Short Algorithm: Successively divide x by 10, using Div, until 0
is reached. Output the number of divisions required.

(2) Digit(x,i) thei-thdecimaldigitofx ifi < Length(x), Digit(x,i)
0 otherwise.

We start counting with i = 0 on the left. For example,

9, Digit(907, 0)

Digit(907, 1) = 0,

Digit(907, 2)

Digit(907, n)
7,
0 for all n ~ 3.

Short Algorithm: If i ~ Length(x), output 0. Otherwise, succes­
sively divide x by 10 using Div so that the i-th digit d is moved
to the one's place (Div is applied Length(x) - i times). Apply

·Remain(·, 10) to the result to output d.

212 CHAPTER 4. COMPUTABLE FUNCTIONS

(3) Terms(x) =number of terms in the sequence with G.N. x, with the
empty sequence having 0 terms.

For example,

Terms(2 5 1 4 2 6 2 2 1 1 1 7)=3,

Terms(l 5 0 4 3 6 4 2 1 1 0 7 9)=3.

Short Algorithm: If x has an odd number of digits, use Div to
drop the last digit. Use a counter to keep track of how many terms
are in the sequence. If x > 0, initialize the counter at 1 because
the zeroth (leftmost) digit is a marker which starts a term of the
sequence, regardless of its value. Search the even-pl~ced digits of
x excluding the zeroth digit, and increment the counter whenever
a marker> 1 is found; output the number in the counter after all
evell'-placed digits have been tested.

(4) Start(x, y) = the position of marker for the start of they-th term in
the sequence with G.N x if y < Terms(x), undefined otherwise.

Count terms from 0 on the left. For example,

Start(2. 5 14 2 6 2 2 1 1 1 7,0)=0,

Start(2 5 1 4 2. 6 2 2 1 1 1 7,1)=4,

Start(2 5 1 4 2 6 2. 2 1 1 1 7,2)=6.

Sho:t Algorithm: If y 2:: Terms(x), do not output anything; oth­
erwise check the even-placed digits for markers> 1; use a counter
to keep track of how many such markers are found, and another
~ounter to record the position of each. When the yth such marker
1s found, output its position.

4.6. GODEL NUMBERS, EXTRAfJT, AND PUT 213

(5) PutEnd (x, y) = the standard G.N. of the sequence formed by adding
y as one more term to the end of the sequence with G.N x if x is
a G.N. in standard form. Don't care otherwise.

For example,,

PutEnd(251426221117, 98) = 2514262211172918

Short Algorithm: If xis not a standard Godel number, the output
can be anything. Otherwise, adjoin a 2 to the end of x (i.e., let
x' x * 10 + 2) and then use a loop to successively adjoin to the
end of this new value of x the zeroth digit of y, then a 1, then
the first digit of y, then a 1, etc., until the last digit of y has been

ad.joined.

(6) Extract(x, y) they-th term of the sequence with G.N. x if Y <
Terms(x). Extract(x, y) = 0 otherwise.

Following the precedent set in defining the function Digit,. we
make Extract a total function by giving it the value 0 when y 2::
Terms(x). For example,

Extract(251426221117, 0) = 54

Extract(251426221ll7, 1) = 6

Extrac.t(251426221117, 2) = 217

Extract(251426221ll7, 3) = 0

Short Algorithm: Record the digit din the Start(x, y)+ 1 position,
and use a loop to successively adjoin to the end of d the digits in
positions Start(x,y) + 3, Start(x,y) + 5, ... and so forth. Stop the
process when the next even-numbered position is occupied by a
marker> 1; output the number that has been obtained from this

loop.

(7) Put(x,y,z) =the standard G.N. of the sequence formed by p~tting
x into the y"-th term of the sequence with G.N. z, first adding as
many 0 terms as necessary if z has fewer than Y terms.

214 CHAPTER 4. COMPUTABLE FUNCTIONS

For example,

Put(99, 2, 251426221117)

Put(99, 5, 251426221117)

2514262919

25142622111720202919

Note that Put(x, y, z) is always a Godel number in standard form;
thus, it not only replaces the yth term of the sequence coded by
z, but ·also changes the markers for the other terms to l's and 2's
as appropriate.

Short Algorithm: To change the markers which occur before the
yth term of z to 1 's or 2's, use a loop which successively ap­
plies Extract and PutEnd to the zeroth, first, second, ... terms of
(the sequence coded by) z (remembering to adjoin 0-terms if
Terms(z) < y), thereby obtaining a code u for a sequence of
y terms. Now use PutEnd to adjoin to u a yth term x. Finally, if
Terms(z) > y + 1, repeat the process above of applying Extract
and PutEnd to change all markers after the yth to 1 's and 2's, as
appropriate.

Here are pseudocode descriptions of programs computing each of
these functions. The RM programs for Length and Digit are assigned
as exercises for the student. These functions can be tested with the
GNUMBER program and do not take too much time when applied
to numbers with fewer than six digits. The other functions are more
difficult optional exercises. It is still possible to write RM programs for
them with. the GNUMBER editor, but the Extract and Put functions
are too slow to be tested out.

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program LENGTH(a)
input: a = x
output: a= number of decimal digits in x

let len = 1
let num = a
let num = Div(num,10)
do until num = 0

let num = Div(num,10)
let len = len+1

loop
let a = len

.end of program LENGTH

program DIGIT(a,b)
input: a= number, b =position
output: a= Digit(number,position)

let place = Length(a)
DDTMINUS(place,b)
if place = 0 then let a = 0
PRED(place)
let num = a
let times = 0
do until times = place

let num = Div(num,10)
let times = times + 1

loop
let a= Remain(num,10)

end of program DIGIT

215

216

program TERMSO(a)
input: a = x

CHAPTER 4. COMPUTABLE FUNCTIONS

output: a = number of terms in the sequence
with Godel number x.

let count = 0
let pos = 0
do until pos + 2 > Length(a)

let d = Digit(a,pos)
if (count = 0 or d >1) then let count = count + 1
let pos = pos + 2

loop
let terms = count

end of program TERMSO

program START(a,b)
input: a= x, b = i
output: a = the position of the start marker of the term of x

with index i. Undefined if· i >= Terms(x).

let pos = 0
let count = 0
do until count >= b

let pos = pos + 2
let d = Digit(a,pos)
if d >1 then let count = count + 1

loop
let a = pos

end of program START

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program EXTRACT(a,b)
input: a= source, b = i
output: c = the i-th term of the sequence

with Godel number source if
i < Terms(source), 0 otherwise.

if b >= Terms(a) then
let c = 0, halt

let position = Start(a,b)
let term = 0
let marker = 0
do until marker > 1

let position = position + 1
let d = Digit(a,position)
let term = 10 * term + d
let position = position + 1
let marker = Digit(a,position)

loop
let c = term

end of program EXTRACT

.217

218 CHAPTER 4. COMPUTABLE FUNCTIONS

program PUTEND(a,b)
input: a= a standard G.N. x, b = y
output: a= the standard Godel number

of the sequence formed by
putting the number y onto the end of
the sequence with Godel number x.

let ab = a*10 + 2
let place = 0
let len = Length(b)
do until place = len

let d ~ Digit(b,place)
let ab = ab*10 + d
let place = place+1
if place < len then let ab = ab*10 +1

loop
let a = ab

end of program PUTEND

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program PUT(a,b,c)
input: a= source, b = i, c =target
output: c =the standard Godel number

of the sequence formed by

219

putting the number source into the i-th term
of the sequence with Godel number target.

let inarray = c
let outarray = 0
let index = 0
do until index = b

let term= Extract(inarray,index)
let outarray = Putend(outarray,term)
let index = index + 1

loop
let outarray = Putend(outarray,a)
let index = index + 1
do until index >= Terms(inarray)

let term= Extract(inarray,index)
let outarray = Putend(outarray,terrn)
let index = index + 1

loop
let c = outarray

end of program PUT

220 CHAPTER 4. COMPUTABLE FUNCTIONS

4. 7 The Advanced RM

The advanced RM machine, or ARM, is formed by adding to the or­
dinary RM machine the two new instructions E for Extract and P for
Put.

(E) Extract Instructions: For each m = 1, 2, ... , each i 1, 2, ... ,
and each n = 1, 2, ... , there is an Extract instruction (E, m, i, n)
which causes the ARM to replace the contents of register Rn by
Extract(rm, ri) leaving the other registers unchanged. Here ri and
rm are the contents of registers Ri and Rm respectively, before
the instruction is executed.

(P) Put Instructions: For each m = 1, 2, ... , each i 1, 2, ... ,
and each n = 1, 2, ... , there is a Put instruction (P, m, i, n)
which causes the ARM to replace the contents of register Rn by
Put(rm, ri, rn) leaving the other registers unchanged. Here rm, ri,
and rn are the contents of registers Rm, Ri and Rn respectively
(before the instruction is executed).

Since the functions Extract and Put are RM computable, ahy func­
tion which is computable by an advanced RM program is already com­
putable by an RM program in the original sense, using only the in­
structions H, Z, S, T, and J. We make this precise in Theorem 4. 7 .1
below.

An ARM program is a sequence

of ARM instructions. As for the RM each program and each n de­
termine a partial function ~~) defined on a subset Dom(~~)) of Nn.
Just as in Section 4.3, an ARM program P determines a nextstate
function

NXSTATEp : N.e+1 ---+ N.e+i

where f is the highest number of a register mentioned in the program P,
(ro, ri, r2, ... , r.e) E NH1 is the state before instruction Iro is executed,
and NXSTATEp(r0 , r 1 , r 2 , ... , re) is the state after execution.

4. 7. THE ADVANCED RM

H (do nothing)
(Z, n) rn := O, ro := ro + 1
(S, n) rn := rn + 1, ro := ro + 1
(T,m,n) rn :=rm, ro := ro + 1
(J, m, n, q) if rm= rn then ro := q else ro := ro + 1
(E, m, i, n) rn := rm[ri], ro := ro + 1
(P, m, i, n) rnh] :=rm, ro := ro + 1

Figure 4.6: The ARM machine

221

The ARM-instructions are summarized in Figure 4.6 .. In this figure,
a[x] denotes the x-th element of the sequence with Godel number a.
The column on the left gives the instruction and the column on the
right gives the result of executing the instruction in conventional pro­
gramming no.tation. Here thelower case letter rn indicates the contents
of register Rn and r0 indicates the value of the program counter.

Theorem 4. 7 .1 A function is ARM computable if and only if it is RM
computable.

Proof: Clearly an RM computable function is ARM computable since
every RM program is an ARM program. The converse is true because
we may always transform an ARM program to an RM program which
behaves in the same way. We simply replace every Extract instruction
(E, m, i, n) by an RM program which computes the Extract function
Extract(rm, ri) (with inputs rm, ri the contents of Rm, Ri) and puts the
result in Rn, and every Put instruction (P, m, i, n) by an RM program
which compute the Put function Put(rm, ri, rn) (with inputs rm, ri, rn
·the contents of Rm, Ri, Rn) and put the result in Rn. We must take
care that these inserted programs do not change any registers (other
than Rn) used by the original ARM program.

The advanced GNUMBER program replaces the Extract and Put
functions by extra instructions E and P. In principle, any "advanced"
RM program with the E and P instructions can be replaced by an
ordinary RM program which computes the same function. However,
RM programs which involve computations of Godel numbers are often

·so long and slow without the extra E and P instructions that nobody

222 CHAPTER 4. COMPUTABLE FUNCTIONS

will live long enough to see the output. The extra instructions are a
·pragmatic compromise which will allow us to experiment with some
important programs involving Godel numbers.

The Godel number of an advanced RM program is defined in the
same way as for an ordinary RM program, with the two new instruc-.
tion letters E and P having the opcodes 6 and 7. In the sections which
follow we shall use the advanced RM machine to build programs which
manipulate Godel numbers of programs. As an- aid in the testing of RM
programs which manipulate Godel numbers of RM programs, GNUM­
BER has a command which places the standard Godel number of the
current RM program in a given register, and a command which replaces
the current RM program with the RM program whose.Godel number
(not necessarily in standard form) is in a given register.

4.8 Closure Theorems

One of the easiest ways to show that a complicated function is RM com­
putable is to show that it can be built up using operations which pro­
duce RM computable functions from other RM computable functions.
In this section several common operations are discussed: composition,
primitive recursion, course of values recursion, parametrization, and
unbounded minimalization. We shall prove several theorems showing
that if the original function is RM computable then the new function
is also RM computable. Such theorems are called closure theorems;
because they say that the set of all RM computable functions is closed
under the operation used to form a new function.

Throughout this section, all partial function_s mentioned will be un­
derstood to be numerical functions. Remember that if we say that f
is a partial function, we do not exclude the possibility that f might be
total. Every total function is a partial function, but there are many
partial functions which are not total. To simplify the exposition, we
shall state the closure theorems for partial functions of one variable,
with the understanding that results for n variables can be proved in
a similar way. Since the RM computable functions are partial func­
tions, we define composition, primitive recursion, and other operations
on partial rather than total functions.

4.8. CLOSURE THEOREMS 223

Composition: Let 9i, .. . , 9m be k-ary functions and let h be an m-ary
function. The composition h(9i, ... ,9k) is the new k-ary function f
defined by

f (a1, ... , ak) h(g1 (ai, ... , ak), ... , 9m (ai, ... , ak)),

where f (a1 , ... , ak) is undefined if any part of the right side of the equa­
tion is undefined. In the case of one variable, if 9 and h are unary partial
functions, then their composition go h is the unary partial function f
such that

f(x) = 9(h(x))

whenever both h(x) and g(h(x)) are defined, and f(x) is undefined
otherwise. If 91 and g2 are unary partial. functions and h is a binary
partial function, the composition h(gi, 92) is the unary partial function
f such that .

J(x) = h(91(x),92(x))

whenever g1(x), 92(x) and h(91(x),g2(x)) are all defined, and f(x) is
undefined otherwise.

Primitive Recursion: Let h be a binary partial function. The partial
function obtained from h by primitive recursion is the unary partial
function f such that

f(O) = 1

and for all x,
J(x + 1) = h(f(x),x)

if J(x) and h(f(x),x) are both defined, and f(x + 1) is undefined oth­
erwise.

Note that in this definition, if f (x) is undefined then all later values
f (y), y > x will be undefined. Thus f will either be total, i.e. defined
for all x, or the domain off will be a finite initial segment {O, 1, ... , n}
of the natural numbers.

Course of Values Recursion: Let h be a binary partial function.
The partial function obtained from h by course of values recursion is
the unary partial function 9 such that

9(0) 1

224 CHAPTER 4. COMPUTABLE FUNCTIONS

and for all x,

g(x + 1) h(#=(g(O),g(l), ... ,g(x)),x)

if g(O), ... ,g(x) and h(#=(g(O),g(l), ... ,g(x)),x) are all defined, and
g(x+l) is undefined otherwise. In this definition, #=(g(O),g(l), ... ,g(x))
stands for the standard Godel number of the sequence (g(O), ... ,g(x))
in the notation of Section 4.6.

Again, if g(x) is undefined then all later values g(y), y > x will be
undefined. Thus g will either be total or Dom(g) will be a finite initial
segment {O, 1, ... , n} of the natural numbers.

Parametrization: Let f be a binary partial function. The parametriza­
tion of f is the sequence of unary partial functions fn, n = 0, 1, ...
defined by

fn(x) = f(x,n).

Unbounded Minimalization: This is a way of getting a unary partial
function from a binary relation. Let R be a binary relation. The partial
function obtained from R by unbounded minimalization is the unary
partial function

f(x) = µy R(x, y)

where f(x) is the least y such that R(x,y) if 3yR(x,y), and f(x) is
undefined otherwise.

The symbol µy is read "the least y such that." It is called the
unbounded minimalization operator.

Definition 4.8.1 We say that a set F of partial functions is closed
under composition if any partial function obtained from partial func­
tions· in F by composition belongs to the set F. Closure under primi­
tive recursion, course of values recursion, and parametrization
are defined in a similar way. A set F of partial functions is closed
under unbounded minimalization if for any relation R whose char­
acteristic function belongs to F, the partial function obtained from R
by unbounded minimalization belongs to F.

4.8. CLOSURE THEOREMS 225

In this section we shall prove the

Theorem 4.8.2 (Closure Theorem) The set of RM computable func­
tions is closed under composition, primitive recursion, course of values
recursion, parametrization, and unbounded minimalization.

Before starting on the proof of the Closure Theorem, we need to
develop an efficient way of combining two RM or ARM programs.

If P is an ARM program, the length of P-denoted n(P)-is the
number of instructions in P, not counting halt instructions at the end.
The empty program is the program consisting entirely of halt instruc­
tions, and has length zero. Since the instructions of an ARM program
are numbered beginning with 0, if P is not the empty program then
the (n(P) - l)th instruction is the last nonhalt instruction in P.

The total function f, where f (x) is the length of the ARM program
P with Godel number x, is RM computable. To make an ARM program
which computes f, start with the program TERMS 1

, which gives the
number of instructions in P, and then add a loop which will subtract
1 from the output for each halt instruction at the end of P.

Given two ARM programs P and Q, their join PQ is the new ARM
program consisting of the program P followed by the program Q, with

· Q starting immediately after the last nonhalt instruction of P, and
with each instruction number and each jump target in Q increased by
the length of P.

There is an ARM program called JOIN2 which is a useful building
block for other programs,· and computes the Godel number of the join
of two ARM programs P and Q from the Godel numbers and lengths
of P and Q. If the Godel numbers of P and Q are placed in registers
Ri and R2 , the program lengths n(P) and n(Q) are placed in registers
R3 and R4 , and the numbers 0 - 5 are placed in registers R20 Rzs the
program JOIN will eventually halt with the Godel number of the join
P Q in register R1 •

Lemma 4.8.3 Let c(x, y) be the total function defined as follows. If x
and y are Godel numbers of ARM programs P and Q, then c(x, y) is

1 Included on the problem diskette for the advanced RM machine
2Included on the problem diskette for the advanced RM machine

226 CHAPTER 4. COMPUTABLE FUNCTIONS

the Godel number of the join PQ. Otherwise c(x, y) = 0. The function
c is RM computable.

Proof: An ARM program to compute c can be pieced together us­
ing the TERMS and JOIN. programs given in the problem diskette.
End of Proof.

If P and Q are sufficiently well designed, the join PQ will compute
the composition go f of the unary partial function g computed by Q
and the unary partial function f computed by P.

For example, let P be the program

0: s 1
1: s 1

and let Q be the program

0: T 1 2
1: z 3
2: J 2 3 6
3: s .1
4: s 3
5:. J 1 1 1

Here, P computes the function f (x) = x + 2 and Q computes the
function g(x) = 2x. Then the join PQ is the following program, which
computes the function g(f(x)) == 2x + 4:

0: s 1
1: s 1
2: T 1 2
3: z 3
4: J 2 3 8
5: s 1
6: s 3
7: J 1 1 3

In this example, the join PQ has the effect of first executing the
program P, ending up at the initial instruction of Q with the output
of P in register R1 , and then executing Q.

4.8. CLOSURE THEOREMS 227

We shall now introduce conditions under which the join of two pro­
grams will compute the composition of two partial functions, as in the
example. We first define the regular programs, which behave well as
the first part of a join, and then define the neatly computing programs,
which are regular and also behave well as the second part of a join.

Definition 4.8.4 We will call an ARM program P regular if P has
no halt instructions before the last nonhalt instruction, and no target
of a jump instruction in P is greater than the program length n(P).

The three programs listed above are regular.
Let us consider a joined program PQ whose first part P is regular.

Suppose P and Q are ARM programs and P is regular. Then the join
program PQ will stay within the first n(P) instructions and therefore
.do exactly the same thing as P does until P halts. If P never halts
with input x1 , x 2 , •• • , then PQ never halts with input xi, x 2 , •• •• If P
with input x1 , x 2 , ••• halts at step t, then PQ with input xi, x 2 , •.• will
have the same state as P at time t, with the program counter at n(P)
where the Q part of the join program begins.

There is one more problem to be dealt with. The program P might
place nonzero data in registers R2 , R3 , ••• while computing its output
in R1 . In order to be sure that PQ computes the composition, we must
know that the output of Qin R1 depends only on the initial contents of
R1 and is not affected by the initial contents of the other data registers.

Definition 4.8.5 An RM program P is said to neatly compute
an n-ary function f if P is regular and computes f in the following
sense: if the registers of the RM are initialized so that the registers
R1 through Rn hold the numbers a1 through an, and the program P
is loaded into the machine and executed (starting with instruction Io),
then, no matter what the other registers contain initially)

" if (ai, a2 , ••• , an) E Dom(!), then the program eventually halts
with register R1 holding the value J(a1 , a2 , ••• , an) of the function;
and

~if (a1 , a2 , . . ·.,an) tf.· Dom(!), then the program never halts, i.e.
computes forever.

228 CHAPTER 4. COMPUTABLE FUNCTIONS

In other words, P neatly computes the n-ary function f if and only
if P is regular and for any m 2 n and any numbers a1 , a2, ... , am we
have both the condition

and the condition that

for (a1, a2, ... , am) E Dom(cI>~m)).
Again, the functions in our example above are neatly computed by

their ARM programs. We now show that joins of neatly computing
programs neatly compute compositions of partial functions.

Lemma 4.8.6 Suppose that P and Q neatly compute the unary partial
functions f and g. Then the join PQ neatly computes the composition
go f.

Proof: Let h be the unary partial function computed by PQ. Start
with x in R1. Since Pis regular, P and PQ will do exactly the same
thing until P halts. Thus if f(x) is undefined, then both P and PQ
will go on forever, so h(x) is undefined.

Suppose that f (x) is defined. Then P will halt at some time t with
f(x) in R1, so PQ at time twill have f(x) in R1 and the program
counter at n(P) where Q begins. Since P neatly computes f, this hap­
pens no matter what the initial contents of the other registers Rn, n > 1
were.

The program PQ will now do the same thing as Q would do starting
from the data register contents left by P at time t. Since Q neatly
computes g, the output of PQ in R1 depends only on the contents of
R1 at time t, not on the other data registers. If g(f (x)) is undefined, the
program PQ will never halt, so h(x) is undefined. If g(f(x)) is defined,
the program PQ will eventually halt with g(f(x)) in R1, so h(x) =
g(f(x)). Thus PQ neatly computes h, and h =go f. End of Proof.

The following proposition shows that there are enough neatly com­
puting programs to capture all RM computable functions.

4.8. CLOSURE THEOREMS 229

Proposition 4.8. 7 If an RM program P computes an n-ary partial
function f, then there is a program Q which neatly computes the same
partial function f.

Proof: To make the computation neat, first add additional steps at the
beginning of the program P which put zero in all the registers which
are used in the program except for the first n registers. Let m be the
length of this adjusted program. Renumber the targets of the jump
instructions by increasing each by m.

To make the program regular, decrease to m any targets of jump
instructions in this new program which exceed m. Replace all halt in­
structions by the instruction (J, 1, 1, m). The new program Q computes
f neatly, and is clearly regular as well. End of Proof.

We now prove the composition part of the Closure Theorem. We
shall prove even more, that the Godel number of a program for the
composition is given by an RM computable function.

Theorem 4.8.8 (Closure Under Composition) If g and hare RM
computable functions of one variable, then the composition go h is RM
computable. Moreover, there is an RM computable total function c of
two variables such that whenever x and y are the Godel numbers of
ARM programs which neatly compute g and h respectively, then c(x, Y)
is the Godel number of an ARM program which neatly computes go h.

Proof: The first part of the theorem follows from Lemma 4.8.6, which
shows that if P neatly computes g and Q neatly computes h, then the
join PQ neatly computes the composition go h. It now follows that
the function c given in Lemma 4.8.3 does the job 3

.

Theorem 4.8.9 (Closure Under Primitive Recursion) If h is an
RM computable function of two variables, then the partial function f
of one variable given by the rule

f(O) = 1, f(n + 1) = h(f(n), n)

function c will be computed by the ARM program COMPOSE assigned in
· computer problem set GN6. ·

230 CHAPTER 4. COMPUTABLE FUNCTIONS

is RM computable. Moreover, there is an RM computable total function
r of one variable such that for all x, if x is the Godel number of an RM
program which neatly computes h then r(x) is the Godel number of an
RM program which neatly computes the new partial function f given by
the above rule.

Proof: We sketch the proof of the first part of the theorem. Let P
neatly compute h. Take m large enough so that P does not use any
register beyond Rm, that is, no register number larger than m appears
in the instructions of P. We describe a new program Q which neatly
computes f. First, Q saves the original input a in Rm+i, and puts a
zero in Rm+2· The number in Rm+i, which we shall call x, will be used
as a counter which works its way from 0 to a. Q then puts a 1 in R1 •

Now Q checks whether a = x. If so, Q halts. Otherwise, Q puts x
into R2, runs the program P, and increases x by 1. It then repeats the
process given in the current paragraph.

The program Q can be built by joining a few instructions before
and after P

_ To prove the second part of the theorem, an ARM program must
be produced which computes the total function r 4

• End of Proof.

Theorem 4.8.10 (Closure Under .Course of Values Recursion)
If h is an RM computable function of two variables, then the partial
function g of one variable given by the rule

g (0) == 1, g (n + 1) = h (# ((g (0), ... , g (n)), n)

is RM computable. Moreover, there is an RM computable total function
r of one variable such that for all x, if x is the Godel number of an RM
program which neatly computes h then r(x) is the Godel number of an
RM program which neatly computes the new partial function g given by
the above rule.

Again, this can be proved by producing an appropriate RM pro­
gram. 5

4This is assigned as the problem RECUR in computer problem set GN6.
5This is assigned as the problem CVREC in problem set GN6.

4.8. CLOSURE THEOREMS 231

Theorem 4.8.11 (Parametrization) If f is an RM computable func­
tion of two variables, then for each natural number n, the one variable
partial/unction fn(x) = f(x,n), obtained by holding the second argu­
ment fixed at n, is RM computable. Moreover, there is an RM com­
putable total function p of two variables such that for all x and y, if x
is the Godel number of an RM program which neatly computes f then
p(x, y) is the Godel number of an RM program which neatly computes

fy·

The first part is proved as follows. Let P be an RM program which
neatly computes f. For each n, let Qn be the program which has one
instruction (Z, 2) followed by n copies of the instruction (S, 2). Then
the join QnP computes the partial function fn, because it puts n in
register 2 and then executes P. The second part is proved by producing
the RM program PARAM which does the job.6 If PARAM is executed
with the Godel number of an RM program P as the first input and n
as the second input, it will halt with the Godel number of the program
QnP as output.

Theorem 4.8.12 (Closure Under Unbounded Minimalization)
Let R be an RM-computable binary relation. Then the partial unary
function f defined by

f(x) = µy R(x, y)

is RM-computable. Moreover, there is an RM computable total function
r of one variable such that for all x, if x is the Godel number of an RM
program which neatly computes the characteristic function of R then
r(x) is the Godel number of an RM program which neatly computes the
new partial function f given by the above rule.

To prove the theorem, an RM program must be produced which
computes the total function r.7

6 Included on the problem diskette as an example ..
7This is assigned as the problem UBMIN in computer problem set GN6.

232 CHAPTER 4. COMPUTABLE FUNCTIONS

4.9 Universal RM Programs

An RM program U is universal for one input if for all RM programs
P with one input there is a number e such that for all x the output of U
computing on input (e, x) is the same as the output of P computing on
input x. (The program U never halts on (e, x) just in case P never halts
on x.) We sometimes call P the simulated program with index e.
More generally, an RM program U is universal for n inputs if for
all RM programs P with n inputs there is a number e such that for all
Xi, ... , Xn the output of U computing on inputs (e, x1, ... , xn) is the
same as the output of P computing on inputs (x1 , ••• , Xn)·

Theorem 4.9.1 (Universal Machine) For every n there is an RM
program which is universal for n inputs.

We shall prove this theorem in case n = 2 by producing a universal
RM program UNIV for two inputs. We leave the problem of modifying
the program to produce a universal program on n inputs as an exercise
for the reader (Exercise 11). The following remark takes care of the
case of one input.

Remark 4.9.2 If UNIV is a universal RM program for two inputs,
then the program UNIVl formed by joining the single instruction (Z, 3)
to the beginning of UNIV is a universal RM program for one input.

This is because, by definition, the output of an ARM program com­
puting on n inputs is obtained by starting the program with the given
inputs in the first n registers and zero in all other registers.

To make the task of producing a universal program easier, we shall
use the advanced RM instructions. (It follows'from Theorem 4.7.1 that
there is also an ordinary RM program which does the job.) To keep
things balanced, the universal program will simulate advanced as well
as ordinary RM programs. The ARM program UNIV listed below is
the same as the one supplied on the diskette.

UNIV will use several Godel numbers of sequences of numbers. We
identify the instructions H, Z, S, T, J, E, and P with the natural
numbers 1,2,3,4,5,6,7. An ARM instruction is then a sequence of at
most 4 natural numbers, and an ARM program Pis a finite sequence of

4.9. UNIVERSAL RM PROGRAMS 233

instructions. The state of an ARM program P during a computation is
another finite sequence of natural numbers, giving the contents of each
register used in the program.

UNIV accepts as input a triple e, x, y in registers Ri, R2 and R3.
The number e is interpreted as the Godel number of an ARM program
P. (If the sequence display is used in the GNUMBER program, e will·
appear as a finite sequence of Godel numbers for the instructions of
P.) The output of UNIV will be the same as the output of the pro­
gram P with input x, y. UNIV works by simulating an ARM machine
running the program P. The contents of the registers of Jhe simulated
machine are coded as a Godel number for a single finite sequence of
natural numbers, which is held in register R4 (the fourth register of the
universal machine). The zeroth term of the sequence coded in R4 is
the program counter of the simulated machine. For n ~ 1, the n-th
term of the sequence coded in R4 is then-th register of the simulated
machine. UNIV begins by initializing constants and clearing register
R4 to zero. It then places x and y into the simulated registers one and
two. It does this by using the Put command to make the first term of
the sequence coded in R4 equal to x and the second term equal to y.
At this point the simulated program counter, which is the zeroth term
of the sequence coded in R4 , contains a zero. UNIV next analyzes the
zeroth simulated instruction, whose Godel number is ·the zeroth term
of the sequence coded by the input e in register Ri, and performs the
indicated operation on the contents of the simulated program counter
and registers coded in R4 • It then repeats the process, extracting the
simulated program counter from the zeroth term in R4 , and the sim­
ulated instruction from R1 • In this way, UNIV does the same thing
to the simulated registers in R4 that the program P would do to its
registers.

For example, suppose that the simulated program counter, which is
the zeroth term in R4 , is 5, and the fifth simulated instruction is Z3.
We identify Z3 with the sequence (2, 3), whose Godel number 2223
would be the fifth term in R1. UNIV will use the Put command to
place a zero in the third simulated register, which is the third term in
R4.

Here is a list of the registers used in the program UNIV. For each
·register, we give a name for the contents to use in comments, and a

234 CHAPTER 4. COMPUTABLE FUNCTIONS

verbal description.

R1 : a. The input e, a Godel number of the simulated program P. (In
the sequence display, e is shown as a sequence of Godel numbers
of instructions of P. Each instruction is itself a sequence of from
one to four numbers.) The output of the program also goes here.

R2 : b. The input x.

R3 c. The input y.

R4 reg. A Godel number for the state of the simulated machine,
i.e. the finite sequence consisting of the contents of the simulated
program counter and the simulated registers.

R5 pc. The simulated program counter, which is the zeroth term
coded in reg.

Re, quad. The Godel number of the pc-th simulated instruction,
which is a sequence of from one to four numbers. quad is the
pc-th term of the simulated program e in R1 •

R7 op. The zeroth term of the simulated instruction quad. This term
is an opoode for one of the commands H,Z,S,T,J,E,P.

R8 s 1. The first term of the simulated instruction quad (or zero if
the instruction is of length 1).

R9 s2. the second term of the simulated instruction quad (or zero if
the instruction is of length < · 3).

R10 : s3. The third term of the simulated instruction quad (or zero if
the instruction is of length < 4).

R11 : vi. The contents of simulated register number s1, i.e. the s1-th
term of reg.

R12 : v2. The contents of simulated register number s2, i.e. the s2-th
term of reg.

4.9. UNIVERSAL RM PROGRAMS 235

R13 : v3. The contents of simulated register number s3, i.e. the s3-th
term of reg. (Note that in case the simulated instruction number
pc is a jump instruction, then s3 is another instruction number
and not a register number).

Rt4 : Unused.

R15 : time. The time for the simulated program. (This is not needed,
but is helpful when experimenting with the program).

R20 : zero. The constant 0.

R21 : one. The constant 1.

R22 : two. The constant 2.

R23 : three. The constant 3.

R24 : four. The constant 4.

R2s : five. The constant 5.

R26 six. The constant 6.

R21 seven. The constant 7.

We first give a pseudocode description of UNIV, using the "variable"
names in the preceding list for the contents of the registers used by
UNIV.

236 CHAPTER 4. COMPUTABLE FUNCTIONS

program UNIV(a,b,c)
input: a= e, b = x, c = y
output: a= P(x)
let zero 0, one = 1, ... , seven= 7
let time = 0
let reg = 0
let reg[one] = b, reg[two] = c
let pc = 0
let op = 0
do until op = H

let quad= inst[pc]
let op = quad[zero]
let s1 = quad[one], v1 = reg[s1]
let s2 = quad[two], v2 = reg[s2]
let s3 quad[three], v3 = reg[s3]
if op = Z then

let reg[s1] = zero, pc = pc+1

reg [s1] = v1,

v1, pc = pc+1

pc = pc+1

else if op = S then
let v1 = v1 + 1,

else if op = T then
let reg [s2] =

else if op = J then
if v1 = v2 then

else if op = E then
let v3 = v1 [v2],

else if op = P then

let pc= s3 else let pc

let v3 = v1 [v2],
else let op = H
let reg[zero] = pc
let time = time + 1

loop
let a = reg [one]

end of program UNIV

reg[s3]

reg[s3]

=v3, pc = pc+1

= v3, pc = pc+1

= pc+1

4.9. UNIVERSAL RM PROGRAMS 237

The listings in figures 4. 7 and 4.8 give "assembly code" for the uni­
versal program. Adjacent to the assembly code is the actual "machine
language" which the assembly code describes. The program could be
shortened by several steps, but instead is designed to match the pseu­
docode listing. Here's an outline:

Initialization. Instructions 00-14 initialize the constants zero through
seven. Instructions 15-20 initialize the simulated time counter
time, program counter pc, and register sequence reg.

Main Loop Instructions 21-29 initialize the main loop by extracting
the opcode op of the instruction to be executed, the registers
s1, s2, s3 used in this instruction, and the values v1, v2, v3
held in this registers. Instructions 30-37 jump to the appropri­
ate interpreter subroutine. Instructions 57-58 increment the time
counter and restart the loop.

Action Instructions 38-56 contain the interpreter subroutines.

Output Instructions 59-60 place the output in R1 and halt.

238 CHAPTER4. COMPUTABLE FUNCTIONS 4.9. UNIVERSAL RM PROGRAMS 239

z zero 0: z 20
T zero, one 1: T 20 21
s one 2: s 21
T one, two 3: T 21 22
s two 4: S· 22
T two, three 5: T 22 23
s three 6: s 23 ZERO p zero, sl, reg 38: p 20 8 4
T three, four 7: T 23 24 J NEXT 39: J 1 1 53
s four 8: s 24 succ s vl 40: s 11
T four, five 9: T 24 25 p vl, sl, reg 41: p 11 8 4
s five 10: s 25 J NEXT 42: J 1 1 53
T five, six 11: T 25 26 TRANS p vl, s2, reg 43: p 11 9 4
s SlX 12: s 26 J NEXT 44: J 1 1 53
T six, seven 13: T 26 27 JUMP J vl, v2, SETPC 45: J 11 12 55
s seven 14: s 27 J NEXT 46: J 1 1 53
z time 15: z 15 EXTR E vl, v2, v3 47: E 11 12 13
z _,reg 16: z 4 p v3, s3, reg 48: p 13 10 4
p b, one, reg 17: p 2 21 4 J NEXT 49: J 1 1 53
p c, two, reg 18: p 3 22 4 PUT p vl, v2, v3 50: p 11 12 13
z pc 19: z 5 p v3, s3, reg 51: p 13 10 4
z op 20: z 7 J NEXT 52: J 1 1 53

LOOP J op,one,EXIT 21: J 7 21 59 NEXT s pc 53: s 5
E a, pc, quad 22: E 1 5 6 J DONE 54: J 1 1 56
E quad, zero, op 23: E 6 20 7 SETPC T v3, pc 55: T 10 5
E quad, one, sl 24: E 6 21 8 DONE p pc, zero, reg 56: p 5 20 4
E quad, two, s2 25: E 6 22 9 s time 57: s 15
E quad, three, s3 26: E 6 23 10 J LOOP 58: J 1 1 21
E reg, sl, vl 27: E 4 8 11 EXIT E reg, one, a 59: E 4 21 1
E reg, s2, v2 28: E 4 9 12 H 60: H !

!
E reg, s3, v3 29: E 4 10 13 \

(

J op, two, ZERO 30: J 7 22 38 Figure 4.8: Subroutines for the Universal Program l
!t

J op, three, SUCC 31: J 7 23 40 11
·~

J op, four, TRANS 32: J 7 24 43 :i
~ J op, five, JUMP 33: J 7 25 45
~ J op, six, EXTR 34: J 7 26 47 '!

J op, seven, PUT 35: J 7 27 50 l
T one, op 36: T 21 7 :!

i

J DONE 37: J 1 1 56 l

Figure 4.7: The Universal Program (Assembly Code)

240 CHAPTER 4. COMPUTABLE FUNCTIONS

4.10 Church's Thesis

We introduced our RM computer as an attempt to capture the notion
of an algorithm. And certainly every partial function which is RM
computable is computable by an algorithm (using the program itself as
the desired algorithm). But what about the converse? (Is every partial
function computable by an algorithm in fact RM computable?) Until a
generally accepted formal definition of "algorithm" is designed, no for­
mal proof of the converse is possible. However, every known attempt to
describe the class of algorithmically computable functions - using com­
puting machines (like our RM computer), formal systems (like Weak or
Peano Arithmetic), recursiveness, and others -.has resulted in exactly
the same class of computablefonctions. In Chapter 5 we shall make use
of two of these alternative characterizations of the class of computable
functions, the recursive functions and the functions which are repre­
sentable in Weak Arithmetic. This confluence of ideas suggests that
the class of RM computable functions is both natural and comprehen­
sive. Secondly, no one has ever described an (intuitively) algorithmic
function which didn't turn out· to be RM computable. These consider­
ations have led mathematicians to accept the following statement:

CHURCH'S THESIS

Every partial or total function which can be computed by an
algorithm is an RM computable partial or total function.

Let us emphasize that Church's Thesis is not a theorem but rather
is a heuristic principle for which there is a great deal of evidence.
The reason Church's Thesis is only a heuristic principle is that we do
not have a mathematically rigorous definition of the word "algorithm."
We can agree that many particular examples are algorithms, but state­
ments about the class of all algorithms are hard to make precise. Using
Church's Thesis frequently makes the job of verifying that certain par­
tial functions are RM computable much easier, since it allows us to
point to a simple algorithm rather than a tedious RM program to es­
tablish RM computability. Actually, we already began using a form
of Church's Thesis in Section 4.6 when we claimed that the functions

4.10. CHURCH'S THESIS 241

Length , Digit , etc. were RM computable after exhibiting only pseu­
docode programs for them. The task of actually writing RM programs
in place of these pseudocode programs has been left to the exercises.
The proof in this book that every ARM computable function is RM
computable used Church's Thesis to show that these pseudocode pro­
grams can be replaced by actual RM programs. When this proof is
supplemented by the actual RM programs required by the exercises,
we obtain a rigorous proof that every ARM computable function is
RM computable.

The theorem that there exists a universal ARM program for one
input is a good example of a theorem which can be proved more easily
if one uses Church's Thesis. In this chapter we gave an explicit exam­
ple of ~ universal ARM program, without relying on Church's thesis.
The following proof uses Church's Thesis to show very quickly that
there exists a universal ARM program without actually producing· the
program.

Proof that there is a universal ARM program (using Church's
Thesis): We show that the partial function Univ given by

Univ(e, x) fe(x),

where f is the partial function computed by the ARM program with
Godel number e, is.RM computable. By Church's Thesis, all we have
to do is describe an algorithm which computes this partial function.
Here it is: Write down the ARM program which has Godel number
e, Run that program with input x in register Ri and 0 in all other
registers. If the computation eventually halts, Univ(e, x) = a where
a is the number in register R1 at the halt. Otherwise, Univ(e, x) is
undefined. End of Pro of.

In the next chapter we shall use Church's Thesis to show that the
some of the central notions of predicate logic are RM computable.

Whenever we use Church's Thesis in a proof in this book, it is
possible to give a completely rigorous proof without Church's Thesis.
In cases where these rigorous proofs are long and bereft of new ideas,

. it is better to accept Church's Thesis and use the extra time elsewhere.

242 CHAPTER 4. COMPUTABLE FUNCTIONS

4.11 The Halting Problem

Recall from page 199 that a numerical relation R in n variables is said
to be RM computable8 if there is an RM program which produces
the output 1 (for yes) if the input satisfies the relation, and produces
the output 0 (for no) if not. Such a program is said to compute
the relation R. A relation R which is not RM computable is said to
be undecidable; we also say that the decision problem for R is
undecidable. According to Church's thesis, if a relation is undecidable,
then it is impossible to design an algorithm which, given any input,
will always produce the answer yes if the input belongs to R and the
answer no if the answer does not belong to R. One of the main purposes
of the RM machine is to show that various interesting relations are
undecidable. In this section we shall use the universal RM program
to give a first example of an interesting undecidable relation. Other
examples will be given in 5.10 and Exercise 17.

Theorem 4.11.1 (Halting Problem) Let UNIV1 be the universal
program for RM programs with one input. Let R(x, y) be the set of
all pairs x, y of natural numbers such that UNIV1 computing on inputs
x, y eventually halts. The relation R is undecidable1 i.e. it is not RM
computable.

Proof: The proof is by contradiction. Suppose that R is RM com­
putable. Then there is an RM program P which computes the relation
R. Let u be the partial function of two variables computed by UNIVL
By joining the program P with UNIV! and doing some easy house­
keeping, we can form an RM program Q which, when computing on
input x, halts with output 0 if R(x, x) is false and halts with output
u(x, x) + 1 if R(x, x) is true. Let n be Godel number of Q. The pro­
gram Q will eventually halt with any input because it computes a total
function. The program UNIV! computing on input n, n will eventually
halt with the same output as Q computing on input n. But UNIV!
computing on input n, n will have output u(n, n), and by the definition
of Q, Q computing on input n will halt with output u(n, n) + 1. Thus

8 The word decidable is often used as a synonym for computable.

4.12. CHURCH'S THEOREM 243

u(n, n) = u(n, n) + 1, which is a contradiction: Therefore R cannot be
RM computable. · End of Proof.

There is a striking resemblance between the preceding proof and the
arguments used in the proofs of each of the following: Russell's result
that the common notion of "set" is self-contradictory (i.e., Russell's
paradox - Exercise 2.46); Cantor's Theorem that there can be no func­
tion from· a set X onto the set of all subsets of X (Theorem A.6 in the
Appendix); and the result that there is an RM computable function
which is not primitive recursive (Exercise 4.31).

The powerful technique common to these arguments is known . as
Cantor's diagonal method. The idea is to prove that a certain binary
relation R(x, y) cannot have some property by looking at the diagonal
relation R(x, x) in two different ways. The diagonal method will be used
again in the next chapter to prove Godel's Incompleteness Theorems.

4.12 Church's Theorem

Church's theorem says that we cannot program a computer to accept
as input a wff of predicate logic and produce as output a zero or one
according to whether or not the input wff is valid. We will prove this by
contradiction; under the (false) assumption that such a program exists,
we will show how to construct another program which solves the halting
problem~ Since the latter program does not exist (by Theorem 4.11.1)
neither does the former.

A vocabulary sufficient for describing the behavior of an RM pro­
gram P which uses only the registers

(where Ro is the program counter), contains the equality symbol ==,
a constant symbol 0 for the number zero, a unary function symbol s
for the successor function, and an (f, + 1)-ary predicate symbol R. As
in Section 3.7 every non-negative integer n has a name n called the
numeral which denotes n. For example,

3 = s(s(s(O))).

244 CHAPTER 4. COMPUTABLE FUNCTIONS

Theorem 4.12.1 For every RM program P which uses only the regis­
. ters Ro, ... , Rt there is a wff

with free variables (xi, x2 , ••• , Xt) such that for all £-tuples (ai, a2 , ••• , at) E
Ni the sentence

Ap(a1, a2, ... , at)

is valid if and only if the program P halts on input (ai, ... , at).

Proof: The intended interpretation of the wff R(x0 , x1 , x2 , ••• , Xt) is
that the state of a register machine running the program Pis (x0 , x 1 , ••• , Xt);
that is, the register Rj holds the value Xj· We shall be more precise
about this below. It is important to remember that when the register
machine is running, the register Ro plays a special role: it holds the
index of the next instruetion to be executed.

Suppose that the program P is given by

We may assume without loss of generality that the program Pis regular.
Thus Ip= Hand if Ij (J, m, n, q) then q ~ p.

To each instruction Ij (j = 0, 1, ... ,p) of the program P we asso­
ciate a wff Ij as follows.

• If Ij = (Z, n) then Ij is the wff

R(j, Yi, ... , Yn, ... , Yt) => R(s(j),.Y1, ... , 0, ... , Yt).

• If Ij (S, n) then Ij is the wff

R(j, Yi, ... , Yn, ... , Yt) => R(s(j), yi, •.. , s(yn), ... , Yt)·

• If Ii= (T, m, n) then lj is the wff

R(j, ... , Yn, ... , Ym, .. .) => R(s(j), ... , Ym, ... , Ym, .. .).

4.12. CHURCH'S THEOREM

• If lj = (J, m, n, q) then lj is the wff Ij /\ l'J where Ij is ·

[Ym = Yn /\ R(j, Y1, ... 'Yt)] => R(q, Y1, ... 'Yi)·

and I'! is
J

Denote by Cp the sentence

(recall that Ip is a halt instruction). Denote by B the sentence

\fx •s(x) = 0 /\ \fx\fy [s(x) = s(y)::::} x = y],

and by Ap(xi, ... , Xt) the wff

[B /\ Cp /\ R(O, x1, ... , Xt)] => 3z1 ... 3ztR(p, Zi, ... , Zn)·

245

We must prove that for each (a1 , ... , at) E Ni the following are equiv­
alent:

(I) The sentence Ap(a1, ... , at) is valid,

(II) The RM program P halts on the input (ai, ... , am), that is,

(ai, ... , ai) E Dom(<.P~)).

Choose (ai, ... , at) E Ni. For k = 0, 1, ... ,£ and t = 0, 1, 2, ·: ·
let rk(t) denote the value in register Rk after t steps when the RM is
running program P from the initial state (0, a1 , •.• , at)· In terms of
the notation introduced on page 198 this means that rk(t) is defined
inductively by

(r0 (0), r1(0), ... , rt(O)) = (0, ai, ... ";at)

and

·(r0 (t + 1), r1 (t + 1), ... , rt(t + 1)) = NXSTATEp(ro(t), ri(t), · · ·, rt(t)),

246 CHAPTER 4. COMPUTABLE FUNCTIONS

where NXSTATEp is the next state function of the program P. For
each t = 0, 1, 2, ... let Dt denote the sentence

ll(ro(t),r1(t), ... ,rt(t))

which results from R(xo, x1 , ••• , xt) by replacing each Xk by the numeral
rk(t) which denotes the number rk(t). The next state function returns
its input unchanged if .Ro points to a halt instruction (or contains a
value larger than p) so, if P halts on the input (a1 , a2, .•• , at) then the
list

(1)

terminates in the sense that DT DT +1 • · · for sufficiently large T.
We are now ready to prove the theorem, that is, to prove that (I)

and (II) are equivalent. Assume (I). Define a model M with universe
N, the natural numbers, by taking sM(n) = n + 1, OM = 0, and

iff ll(ho, hi, ... hn) appears in the list (1). Now

because each of these sentences asserts that if some state occurs during
the computation, some other state occurs at the next step. Hence

MI= Cp.

M I= B because in the model M the successor function and zero have
their usual interpretations. Moreover, M I= R(O, ai, ... , at) since this
sentence is D 0 , the first sentence in the list (1). Thus

(2).

Since we are assuming that Ap(ai, ... , at) is valid this sentence holds
(in particular) in the model M:

(3)

4.12. CHURCH'S THEOREM 247

But we have seen that the antecedent of Ap holds in M so the conse­
quent must holds as well:

(4)

In other words there are numbers b1, b2 , ••• , bt E N such

(5), M f= ll(p, hi, ... , ht)

so that the sentence
R(p, hi, ... , ht)

occurs in the list (1). But this means that P halts.
Now we prove the converse. Assume II, that is, that the compu­

tation halts. We must show that the sentence Ap(a1 , ... , at) is valid.
To do this we choose a model M and prove (3). If (2) is false then (3)
follows trivially. Assume (2). Then by induction on t we have that

fort= 0, 1, 2, Since the computation halts, the sentence

R(p, hi, ... , ht)

appears in the list (1). Therefore this sentence holds in M, that is, (5)
holds. It follows that (4) holds, and therefore (3) holds. End of Proof.

Church's theorem says that we cannot program a computer to ac­
cept as input a wff of predicate logic and produce as output a zero or
one according to whether or not the input wff is valid. To make this
precise we must assign a Godel number #(A) to each wff A of predicate
logic. There are many ways of defining such a Godel numbering. The
scheme we shall use here takes advantage of the Godel numbering of
finite sequences of natural numbers already developed in this chapter.

The first step is to assign a natural number, called a code, to each
symbol s of the full predicate logic with vocabulary 0, s, R}, where
R is an (£ + 1)-ary predicate symbol. Let

248 CHAPTER 4. COMPUTABLE FUNCTIONS

be a list of all the variables of first order logic. We shall assign the even
number 2n as the code of the nth variable Vn, and assign odd numbers
as codes of the other symbols, including brackets and parentheses, as
follows: ,

symbol =? ~ 3 \:/ _.'._

code 1
/\
3

v
5 7 9 11 13 15

symbol
code

[] () 0 s R
17 19 21 23 25 27 29 31

Next we. define the Godel number #(T) of a string T of symbols
to be the Godel number of the sequence of codes of the symbols. For
example,

#(0 +Vs= s(vo)) = #(25, 29, 10, 15, 27, 21, O, 23).

Each term and each wff, being a string of symbols, now has a Godel
number.

Lemma 4.12.2 Let B be a wff in a full predicate logic with the vo­
cabulary { =, 0, s, R}, and let f3B be the total function from N2 into N
defined by

f3B(a, b) #(B(a, b))

where B(a, b) is the wff obtained from B by replacing all free occur­
rences. of the the variable x 1 by the numeral a and all free occurrences
of the the variable X2 by the numeral b. Then f3B is RM computable.

Proof: By Church's Thesis, it is enough to describe an algorithm with
input (a, b) which computes f3B(a, b). We sketch such an algorithm.
The first step is to build a parsing sequence for B. This can be done
using an exercise from Chapter one, that each wff either starts with
a negation symbol or quantifier, or has a main connective which is
the unique binary connective preceded by one more left bracket than
right bracket. Working through the parsing sequence, underline each
bound occurrence of each variable. This can be done by underlining
all occurrences of a variable which come from underlined occurrences
ear lier in the parsing sequence, and also underlining all occurrences of

4.12. CHURCH'S THEOREM 249

x in a wff starting with \Ix or 3x. Form the string b consisting of b s
symbols followed by one 0 symbol, and do the same for a. Then replace
in B all nonunderlined occurrences of x 1 by a and all nonunderlined
occurrences of x 2 by b. This results in the wff B(a, b). Finally, compute
the Godel number of this wff as the output. End of Proof.

Recall from page 199 that a subset V C N is called computable
iff its characteristic function cv is RM computable (See page 193.) The
set V is undecidable iff it is not RM computable.

Theorem 4.12.3 (Church's Theorem) Let ('P,:F) be a vocabulary
containing at least the symbols { =, 0, s} and an f-ary predicate symbol
for each l. Then the set

V = {#(C) :f= C}

. of Godel numbers of valid sentences in the full predicate logic with vo­
cabulary ('P, :F) is undecidable.

Proof: As in Theorem 4.11.1 let S denote the set of pairs (a, b) such
that the universal machine UNIVl halts on the input (a, b). Theo­
rem 4.11.1 says that S is undecidable (i.e. not computable). Under
the assumption that V is computable we shall derive the contradiction
that Sis RM computable. Denote by U(xi, x2) the wff

AuN1v1(xi, x2, 0, O, ... , 0)

which results from the wff AuNIVI by substituting 0 for the free vari­
ables other than x1 and x2• By Theorem 4.12.1 we have

S = {(a,b): U(a, b) is valid}.

In other words

(a, b) ES ~ #(U(a, b)) EV

or
cs(a, b) = cv(f3u(a, b)).

By the preceding Lemma, the right hand side is an RM computable
function of (a, b). under the assumption that cv is RM computable. But

250 CHAPTER 4. COMPUTABLE FUNCTIONS

this says that cs is RM computable which contradicts Theorem 4.11.1.
End of Proof.

We can see from the proof of Church's Theorem that we did not
really need to assume that the vocabulary has an £-ary predicate symbol
for each £. Instead, we only needed a single £-ary predicate symbol
R where Re-I is the last register used by the universal RM program
UNIVl. In fact, it can be shown that in any predicate logic with at
least one predicate symbol which is binary or larger, the set of Godel
numbers of valid sentences is undecidable.

4.13 Simple Gnumber Problems (GNUM5)

This is the first of two problem sets using the GNUMBER or GNUMWIN
program. In this assignment you only need the SIMPLE form of the
program, which you start by hittingthe Sor RETURN key when you
see the title screen.

The following sample register machine programs are located in di­
rectory GNUM5 on the distribution diskette. The SETUPDOS or SE­
TUPWIN program will put them in a subdirectory called GNUM5 on
your hard disk. The RM programs

ADD, MULT, PRED, DOTMINUS, and DIVREM

are explained in the text, and the commented listings on the distribu­
tion diskette are reproduced in Appendix B. Your problem assignment
is to type in RM programs which compute the following functions.
Test your answers out using the·GNUMBER program (for DOS) or the
GNUMWIN program (for Windows), then file your answers on your
diskette and give them the names indicated.

In the formulas, x, y are the numbers in registers R1 , R2 before run­
ning the program, and a, b are the numbers in these registers after
running the program.

EQUAL:
SQUARE:
ROOT:

a = 1 if x = y, a = 0 if not x = y
a= x * x
a = square root of x if x is a perfect square,

4.13. SIMPLE GNUMBER PROBLEMS (GNUM5) 251

LESS:
FACTRL:
EXP:

PRIME:
LENGTH:

DIGIT:

undefined otherwise.
a = 1 if x < y, a = 0 otherwise.
a = x! (a = 1 * 2 * ... * x if x > 0, a = 1 if x = 0)
a = x raised to the y-th power if x > 0,
a = 0 if x = 0 and y > 0
undefined if x = y = 0.
a= 1 if xis prime (2,3,5,7, 11, ...), otherwise a= 0.
a = the number of decimal digits in x.
(For example, 7 402 has length 4).
a= the y-th digit in x, counting from 0 on the left
if y < the number of decimal digits in x, a = 0 otherwise.
(For example, the 0-th digit of 7402 is 7).

In solving these problems, you may load in the sample programs
and use them as building blocks if you wish.

The following functions are optional problems which require longer
RM programs built up from LENGTH and DIGIT:

TERMSO:

START:.

PUTEND:

·EXTRACT:
PUT:

a= number of terms in the sequence with Godel number x
(not necessarily in standard form),
the empty sequence having zero terms.
a = position of marker for the start of the y-th
term in the sequence with Godel number x
(not necessarily in standard form),
counting from 0 on the left.
Undefined if Terms(x) ~ y.
a = the Godel number of the sequence formed by adding y
as one more term to the end of the sequence with Godel
number x,
if x is a Godel number in standard form.
It doesn't matter what happens if x is not a standard
Godel number.
c = Extract(x, y).
c = Put(x, y, z).

252 CHAPTER 4. COMPUTABLE FUNCTIONS ;\
Advanced Gnumber Problems (G NUM6~. 4.14

This assignment uses the Advanced form of the GNUMBER or GNUMWIN
program. In the GNUMBER program, you start the advanced form by
pressing the A key when you see the title· screen.

The problems in this assignment deal with Godel numbers of register
machine programs. Each ARM instruction is a sequence consisting of
an instruction letter and up to four numbers. The instruction letters
are identified with numbers as follows: L

H = 1, Z = 2, S = 3, T = 4, J 5, E = 6, P = 7.

Each instruction, being a finite sequence of numbers, has a Godel
number. An ARM program P is a finite sequence of instructions
P1, ... ,Pn· If instruction number m has Godel number gm, then the
Godel number of the whole program P is the Godel number of the
sequence g1 , ••• , 9n·

The following sample advanced register machine programs are lo­
cated in directory GNUM6 on the distribution diskette. The SETUP­
DOS or SETUPWIN program will put them in a subdirectory called
GNUM6 on your hard disk. These ARM programs are named

FIVE, TERMS, JOIN, PARAM, NXSTATEO, NXSTATE, and UNIV.

In the Appendix there are pseudocode listings of these programs, as well
as a reproduction of the commented listings which are on the diskette.

The following paragraphs explain the effect of these programs on the
input and output registers. In the formulas, x, y, z, t are the numbers
in registers Ri, R2, R3, R4 before running the program, and a, bare the
numbers in these registers after running the program.

FIVE: Puts the constants 0 through 5 in registers R20 through R25 •

(It is uften convenient to place this at the start of a program).

TERMS: If xis the standard Godel number of a sequence, then a is
the number of terms of the sequence. Otherwise a is zero.

JOIN: If x and y are Godel numbers of ARM programs P and Q (not
necessarily in standard form), z and t the numbers of instructions

~,:1t

4.14. ADVANCED GNUMBER PROBLEMS (GNUM6) 253

in P and Q, and registers R20 through R25 already contain 0
through 5, then a is the standard Godel number of the ARM
program P followed by Q with each jump target of Q increased
by the number of instructions in P. Otherwise the output a can
be anything. Extra bonus: this program ends with z + t in R9.

PARAM: If x is the standard Godel .number of an ARM program
which neatly computes a function f (., .) of two variables, then a

is the standard Godel number of an ARM program which neatly
computes the function g(.) = f(y, .) of one variable. Otherwise
the output a can be anything.

NXSTATE: If x is a Godel number of an ARM program and y is a
Godel number of a sequence representing the register state, then
b will be the standard Godel number of the next state. (y and
bare in R4) The inputs need not be Godel numbers in standard

form.

NXSTATEO: If xis a Godel number of an ARM program,.registers
R20 through R27 hold the constants 0 through 7, and y is a Godel
number of a sequence representing the register state, then b will
be the standard Godel number of the next state. (y and b are
in R

4
) (The program NXSTATE consists of a list of instructions

which puts 0 through 7 in registers R20 through R21, followed by
the program NXSTATEO).

UNIV: The universal program in two variables. If x is a Godel number
of an ARM program P (not necessarily in standard form), then
a is the output of the program P with inputs y and z in R1 and
R2 and zero inputs elsewhere.

Your problem assignment is to type in register machine programs
'which compute the following functions. Test your answers out using the
GODEL and UNGODEL commands in the GNUMBER program, then
file your answers on your diskette and give them the names indicated.
The approximate number of steps required for the program is shown.
When you need small constants, it is recommended that you start your
program with FIVE to put 0 through 5 in registers R20 through R2s·

254 CHAPTER 4. COMPUTABLE FUNCTIONS

CON CAT: (7 steps) If x and y are Godel numbers of sequences of
numbers in standard form, and z and t are the numbers of terms
in these sequences, ·then a is the Godel number of the first se­
quence followed by the second sequence. (Concatenation of two
sequences). Otherwise the output a can be anything.

CONST: (19 steps) a is the Godel number of an RM program which
puts the constant x in R1•

STAND: (25 steps) Given an input x, if S is the sequence which has
x as a Godel numper (not necessarily in standard form), then a
is the Godel number of S in standard form.

SUCC: (23 steps) If x is the Godel number of an ARM program in
standard form which computes a function f(.), then a is the Godel
number of an ARM program which computes the function f(.)+l.
Otherwise the output a can be anything.

TOP REG: (28 steps) If x is the Godel number in standard form of
an ARM program P, then a is the largest number of a register
mentioned in the first y instructions of P. Otherwise the output
a can be anything;

COMPOSE: (61 steps) If x and y are Godel numbers in standard form
of ARM programs which neatly compute functions g(.) and h(.)
of one variable, then a is the Godel number in standard form of an
ARM program which neatly computes the composition function
f(.) = g(h(.)). Otherwise the output a can be anything.

BEFORE: (63 steps) a= 1 if the ARM progr~m with Godel number
x, inputs y and z in R1 and R2 , and zero inputs elsewhere, halts
before t steps, and a = 0 otherwise. (Hint: This can be done by
slightly modifying the ARM program UNIV. UNIV puts the time
in Register 15)

RECUR: (90 steps) If x is the standard Godel number of an ARM
program P which neatly neatly computes a function h(., .), y
is. the largest register mentioned by P, and z is the number of
instructions of P, then a is the standard Godel number of an

4.14. ADVANCED GNUMBER PROBLEMS (GNUM6) 255

ARM program which neatly computes the function f (·) obtained
from h by primitive recursion in the form

J(O) = 1,f(u + 1) = h(f(u), u).

Otherwise the output a can be anything.

NEAT: (93 steps) If x is the Godel number in standard form of an
ARM program P which computes a function f in one variable,
y is the largest register mentioned in P, and z is the number of
instructions of P, then a is the Godel number in standard form
of an ARM program which neatly computes f. Otherwise the
output a can be anything.

CVREC: (139 steps) If xis the Godel number in standard form of an
ARM program P which neatly neatly computes a function h(., .),
y is the largest register mentioned by P, and z is the number
of· instructions of P, then a is the standard Godel number of an
ARM program which neatly computes the function f (·) obtained
from h by course-of-values recursion in the form

J(O) = 1,J(u+ 1) = h(GN((f(O), ... ,f(u)),u).

Otherwise the output a can be anything.

UBMIN: (165 steps) If x is the Godel number in standard for1:1 ?f
an ARM program P which neatly computes the characteristic
function h (., .) of a binary relation R(., .) , then a is the standard
Godel number of an ARM program which neatly computes the
function f (x) = µy R(x, y) obtained from R by unbounded mini­
malization. Otherwise the output a can be anything.

In solving your problems, you may load in the sample programs and
use them as building blocks if you wish. Remember that the LOAD
command can load ARM programs from the diskette starting at any
point· within your current instruction list.

256 CHAPTER 4. COMPUTABLE FUNCTIONS

4.15 Exercises

I. (a) Write an RM program which diverges (never halts) for every
input.

(b) Write an RM program P such that: P(x, y) never halts if x = y,
P(x, y) halts with output 0 in register one if x =/= y.

2. Write an RM program which uses only the instructions Z, S, and
J, and has the effect of placing the number in register 3 into register
7, with all other registers left unchanged. (This shows that the T
command can always be avoided in RM programs).

3. Show that any finite set, considered as a unary relation, is RM
computable.

4. Show that the Fibonacci sequence

ao = l,a1=l,a2=2,a3 = 3,a4 = 5,a5 =8,a6 =13, ... ,

obtained by the rules

is RM computable.

5. Show that the zero function Z, successor function S, and projection
functions Ii, defined by

are RM computable.

Z(x) = 0
S(x)=x+l
lf(x1, ... ,xn) =Xi

6. (a) Write an RM program which computes a one-one onto mapping
N x N~N.

(b) Write an RM program which computes a one-one onto mapping
N ~N xN.

4.15. EXERCISES 257

7. Suppose instead of using the RM instruction set we use JN, S,
Z, T, H, where (JN, 1, 2, 6) would mean jump to instruction 6 if the
contents of register 1 is not equal to the contents of register 2. Prove
that every computable function is computable in this new sense.

·s. Suppose we consider programs that only use the instructions S,Z,T,H;
i.e. no jump instructions at all.

(a) Show that every function computable in this sense is total.

(b) Show that not every total computable function is computable in
this sense.

9. Write an ARM program which computes the function

f(x) = the standard Godel number of the sequence (0, 1, ... , x).

10. Give a universal ARM program for three inputs.

11. Prove that for each natural number n, there is a universal ARM
program for n inputs;

12. Suppose an RM program P neatly computes a function f of one
variable and another RM program Q neatly computes a function 9 of ' .
one variable. Describe an RM program S such that, given inputs x m
R1 and y in R2, S will halt with output 0 in R1 if f(x) and g(y) are
both defined, and S will never halt otherwise.

13. Let UNIV be a universal register machine program for two inputs.
(That is, if p is the Godel number of a program P, then UNIV wi~h
inputs p, x, y in registers R1 , R2 , R3 , and 0 in all other registers will
produce the same output in R1 as program P with inputs x, y in regis­
ters R 1 , R 2 and 0 in all other registers). Let u be the Godel number of
UNIV. Show that UNIV with inputs u, u, u in registers R1, R2, R3 and
0 in all other registers will eventually halt with output 0 in R1.

258 CHAPTER 4. COMPUTABLE FUNCTIONS

14. Let us say that an ARM program U simulates an ARM program
P which has Godel number p if for all x and b, U with inputs p and x
in Rl and R2 and zero elsewhere halts with output bin Rl if and only
if P with input x in Rl and zero elsewhere halts with output b in Rl.
Suppose that U computes a total function of two variables, and that U
simulates every ARM program P such that P has n instructions and
computes a total function of one variable. Prove that U has at least
n - 1 instructions. (Hint: . use a diagonal argument).

15. Define a super ARM to be an ARM with an extra instruction N km
which acts as follows. Before: Rk holds the Godel number of a simple
RM program P and Rm holds the Godel number of a state S. After: Rm
holds the God~l number of the new state formed by executing the j-th
instruction of P where j is the 0-th term of S, and the program counter
of the super ARM is increased by 1. Write a super ARM program U
which is universal for RM programs in one input, i.e. which simulates
every RM program in the sense of the preceding exercise. (Can be done
in 7 instructions).

16. Suppose the numerical relation R(x, y) is decidable. Show that the
relation

3z[z:::; y A R(x, z)]

is also decidable.

17. Show that the following relations are undecidable (Hint: In each
case, assume the relation is decidable and prove that under that as­
sumption the Halting Problem is decidable, contrary to Theorem 4.11.1):

(a) The set of all pairs (e, x) such that e is the Godel number of an
RM program which never halts with input x.

(b) The set of all pairs (e, x) such that e is the Godel number of an
RM program which outputs 0 with input x.

(c) The set of all numbers e such that e is the Godel number of an RM
program which computes a total function.

4.15. EXERCISES 259

18. Give an example of an RM computable partial function whose
graph (considered as a binary relation) is not RM computable.

In the following exercises, we introduce a new kind of machine, the
LRM machine. It is obtained by modifying the definition of the
RM machine as follows: The J (jump) instructions are eliminated and
in their place are added the L (loop) instructions and the N (next)
instructions. In any legal LRM the L and N instructions occur in
pairs: for every L instruction there is a corresponding N instruction
occurring later in the program. The instructions work as follows:

(Z, S, T, H) The LRM machine has the Z (zero), S (successor), T
(transfer), and H (halt) instructions which operate in exactly the
same way as in the RM machine.

For every n = 1, 2, 3 ... there is a loop instruction (L, n) whose effect
is to execute the steps between the loop instruction and the cor­
responding next instruction rn times where rn is the value in the
register Rn when the loop instruction is encountered. After these
rn repetitions have been performed, the program jumps to the
step immediately following the corresponding next instruction.
(If rn = 0, the program immediately jumps to the corresponding
next instruction.)

For every q = 0, 1, 2, ... there is a next instruction (N, q). The q­
th instruction in the program must be a loop instruction (L, n).
The (N, q) instruction acts like an unconditional jump: (J, 1, 1, q).
Notice that changing the value of Rn within the loop does not
affect the number of times the loop is executed.

A legal LRM program is a finite list of LRM instructions which
satisfies the following three requirements.

(1) The L and N instructions all occur in pairs as described above.
(2) There are no H instructions before the last nonhalt instruction.
(3) If any loop instruction occurs within a program fragment of the

form
((L, n), Ig+ 1 , ••• ,In (N, q))

· the corresponding next instruction must also occur in this fragment.

260 CHAPTER 4. COMPUTABLE FUNCTIONS

Thus the (L, N) pairs may be nested but if one loop starts within
another loop, it must also end within the other loop .

A function f (xi, x2, ... , Xn) is LRM computable if there is a legal
LRM program P which computes it in the following sense: If the pro­
gram is run after the registers are initialized so that for k = 1, 2, ... , n

the register Rk holds the value Xk and all other registers hold the value
0, then when it halts the register R1 holds the value J(x 1 , x2 , ••• , xn)·
We call f(x1, x2, ... , Xn) the n-ary function computed by the LRM
program P on inputs (xi, x2 , ••• , xn)·

For any legal LRM program P there is an RM program Q which
performs in exactly the same way. It can be constructed as follows:
Each part of the LRM program of the form

ALOOF L x q: L n

N ALOOF r: N q

is replaced by

z count q z c
ALOOF J x,count, r+3 q+1: J n c r+3

s count q+2: s c

J ALOOF r+2 : J 1 1 q+ 1

Here c is a register used nowhere else in the program (a different one
for each (L, N) pair) and each time the replacement is made all the
jump instructions (J, m, k, t) occurring after the L instruction must be
corrected to (J, m, k, t + 2). The replacement is repeated un~il no loop
and next instructions remain.

19. The following LRM program computes the addition function:

ALOOF L y o: L 2
s x 1: s 1
N ALOOP 2: N o

Find an equivalent RM program.

20. The following LRM program computes the multiplication function:

4.15. EXERCISES 261

z z 0: z 3

MLOOP L x 1: L 1

ALO OP L y 2: L 2

s z 3: s 3
N ALO OP 4: N 2
N MLOOP 5: N 1

T z,x 6: T 3 1

Find an equivalent RM program.

21. Write an LRM program which computes the characteristic function
of the non-zero integers (that is, f(x) = 0 if x = 0 and f(x) = 1 if

x :f 0.)

22. Write an LRM program which computes the characteristic function
-of the set of odd integers.

23. Write an LRM program which computes cut-off subtraction:

. { x-y x-y =
0

if y ~ x
if x < y.

24. Write an LRM program which computes the quotient function:

qt(x,y) = { ~ if x qy + r 0 ~ r < y
if y = o.

25. Write an LRM program which computes the remainder function:

rm(x,y) = { ~ if x = qy + r 0 ~ r < y
if y = 0.

26. Show that if g, h, and p are LRM computable then so is the

function f defined by

{
g(x)

J(x) = h(x)
if p(x) = 0
otherwise.

262 CHAPTER 4. COMPUTABLE FUNCTIONS

27. Prove that a legal LRM program always halts (on any inputs).

28. In this problem the set of primitive recursive functions is defined,
and you are to show that all primitive recursive functions are LRM
computable. We mentioned briefly in the text that the primitive re­
cursive functions form the smallest class of numerical functions that
contains the zero function Z, the successor function S, and the pro­
jection functions Ii (defined in Exercise 5) and that is closed under
composition and primitive recursion. Here's the precise definition:

The set of primitive recursive functions is the smallest set of
numerical functions such that

(1) The zero function Z is primitive recursive.

(2) The zero function Sis primitive recursive.

(3) The projection functions Ii are primitive recursive.

(4) If h : Nm -+ N and the m functions 9i : Nn -+ N for i 1, 2, ... , m
are all primitive recursive then the function f : Nn -+ N defined
by

for (xi, x2, ... , xn) E Nn is also primitive recursive.

(5) if the functions 9 : Nn -+ N and h : Nn+2 -+ N are primitive
recursive, then the function f: Nn+i -+ N defined by

f(x1,x2, ... ,xn,O)
f(x1,x2, ... ,xn,Y + 1)

is also primitive recursive.

g(xi, X2, ••• , Xn)

h(xi, X2, ••• , Xn, y, J(x1, X2, ••• , Xn, y))

To prove that every primitive recursive function is LRM computable
you must show that

• Z, S, and Ii are LRM computable;

4.15. EXERCISES 263

• if the functions h, 91 , .•. , 9m are LRM computable, the the func­
tion f obtained from h, 91, .•• , 9m by composition as in (4) is also
LRM computable;

• if the functions 9 and h are LRM computable, the the function
f obtained from 9 and h by primitive recursion as in (5) is also
LRM. computable.

29. Prove that a function is primitive recursive if and only if it is LRM
computable. Hint: For j, n = 1, 2, 3, ... denote by

the contents in register Rj when the LRM program P is run starting
· with x k in register Rk for k = 1, 2, ... , n and 0 in registers Rn+I, Rn+2,

(According to the definition a function f is LRM computable iff f
~~n,l)) for some LRM program P.) Prove that these functions are all
primitive recursive by induction on the length of the LRM program P.

30. The ALRM machine is obtained from the LRM machine by adding
the E (extract) and P (put) instructions. Prove that a function is
ALRM computable if and only if it is LRM computable.

31. All the total functions we have discussed so far are primitive re­
cursive; In this exercise we construct a total RM computable function
which is not primitive recursive. The basic idea is to describe a "uni­
versal" LRM program and show that the function computed by this
program is RM computable but not LRM computable. First, modify
the notion of Godel number to apply to LRM programs. Prove that for
every n there is a totally defined, RM computable, (n + 1)-ary function

such that whenever e is the Godel number of a legal LRM prog~am P,
the number ?j;(e, x1 , x2 , ••• , xn) is the value of the function computed
by P on inputs (xi, x2 , ••• , xn)· Show ?jJ is RM computable but not
LRM- computable. Hint: See Exercise 9 on page 183.

264 CHAPTER 4. COMPUTABLE FUNCTIONS

32. Another total RM computable function which is not primitive
recursive is the Ackermann function 'lfJ(p, z) defined by

where 'I/Jo, 'l/J1, 'l/J2, ... is the sequence of primitive recursive functions de:.
fined inductively by

'l/Jo(z) z + 1

and

For example, 'l/J1(z) = z + 2, 'l/J2(z) 2z + 2, '1jJ3(z) = 2z+2 + 3(2z 1).
Show that for every n-ary primitive recursive function f there exists p

such that
f(x1, X2, ... 'Xn) < t/;p(X1 + X2 + ... + Xn)

for all (xi, x2, ... , Xn) E Nn. Conclude that 'ljJ is not primitive recursive
(even though each 'l/Jp is). 9

33. Write an RM program to compute the Ackermann function.

34. Definition. The class of partial recursive functions is the
smallest class of numerical partial functions which contains the zero
function, the successor function and the projection functions and which
is closed under composition, primitive recursion, and unbounded mini­
malization.

Show that every partial recursive function is RM computable.

~5. Show that every RM computable partial function is partial recur­
sive.

36. Prove that there are only countably many RM programs, hence,
only countably many RM computable functions. (Hint: Use the fact
that every RM program has a Godel number.)

exercise is tough. If you give up, see Epstein and Carnielli Computability
Wadsworth & Brooks/Cole (1989) pages 110-114. ' '

Chapter 5

The Incompleteness
Theorems

Godel's First Incompleteness Theorem says that there are sentences in
the language of arithmetic which are true in the standard model N but
are not provable from Peano Arithmetic. In itself, this result is not so
surprising. It merely says the set of axioms PA for Peano Arithmetic is
incomplete meaning that it not sufficiently powerful to enable us to give
tableau proofs for all the true sentences of arithmetic. At this point one
can still hope that we can add some additional axioms to PA to obtain
a system of axioms which truly characterizes the natural nun:ibers.

However, the proof of Godel's Theorem shows much more:

No set Hof axioms for arithmetic can have both the proper­
ties that (a) every sentence A which is true in the standard
model N is a logical consequence of H and (b} there is a
computer program which decides whether a given sentence

B is an element of H.

This means that there are intrinsic limitations on the methods mathe.;
maticians have used for centuries to arrive at the truth. _Godel's Second
Incompleteness Theorem is even more devastating: No system satisfy­
ing (b) is powerful enough to prove its own consistency. This means
that there is no tableau proof from the. hypothesis set H that the set
H is -not at the root of a contradictory tableau.

265

266 CHAPTER s: THE INCOMPLETENESS THEOREMS

The Incompleteness Theorems are closely related to the well known
Liar Paradox.

Consider the sentence

This sentence is false.

If true it must be false - if false it is true. This version has caused a
few philosophers to loose quite a lot of sleep over the centuries. Godel's
insight was to construct a sentence of arithmetic whose meaning is

This sentence cannot be proved.

If it could be proved it would be false. Hence it cannot be proved. But
then it is true!

The construction of Godel's sentence will borrow ideas from Can­
tor's diagonal method, which was discussed in Section 4.11 following
the Halting Problem.

5.1 Coding Tableaus

To construct Godel's sentence we must devise a way to formulate state­
ments about PA within PA. This coding process is something like the
Godel numbering used in Chapter 4 to define universal machines.

We shall write #(a1 , ••• , an) for the Godel number in standard form
of a finite sequence (a1 , ••. , an) of natural numbers as developed in
Chapter 4.6, and also write #(t) for the codes which we shall introduce
for other kinds of objects t. We shall use these codes to show that
various numerical relations are computable, culminating in the proof
relation PRFH.

All of the proofs in this section proceed by giving an intuitive al­
gorithm which computes the characteristic function of a set or relation
on the natural numbers, and then invoking Church's Thesis to show
that the relation is computable. A characteristic function is total and
has the output 1 if the answer is yes and 0 if the answer is no. Thus
for each input, our algorithms will halt in a finite number of steps and
have either 1 or 0 as output.

5.1. CODING TABLEAUS 267

The first step is to assign a code #(s) to each symbol s of the
language of arithmetic. We may do this in the same way as we did
in Section 4.10 on Church's Thesis in Chapter 4, except that we must
now give codes to the symbols + and *· We assign the even numbers as
codes of individual variables, and assign odd numbers as codes of the
other symbols as follows:

symbol ..., /\ v ==::- ~ 3 \:/
code 1 3 5 7 9 11 13 15

symbol
code

[] () 0 s + *
25 27 29 31 17 19 21 23

We define the code #(S) of a string S of symbols to be the Godel
. number of the sequence of codes of the symbols. Each term and each
wff, being a string of symbols, now has a code.

Next, we assign to each finite sequence of strings the Godel number
of the sequence of codes of terms of the sequence, that is,

#(S1' ... ' Sn) = #(#(S1), ... '#(Sn)).

Note that a natural number can be used as a code in three ways: as
a code of a symbol, as a code of a string of symbols, and as a code of a
finite sequence of strings of symbols. As we continue we will introduce
other types of codes. Thus when we write #(t) for the numerical code of
an object t, we must specify whether tis a symbol, a string of symbols,
a finite sequence of stri!lgs of symbols, or some other type of object.

We now· show that the sets of codes of terms and of wffs are com­
putable. This will be done using parsing sequences.

Lemma 5.1.1 The set of codes of parsing sequences of terms is com­
putable.

Proof: We shall outline an algorithm which, given a natural number c
as input, outputs 1 if c is the code of a parsing sequence for a term, ~nd
outputs O otherwise. The lemma will then follow by Church's Thesis.

First, form the sequence (a0 , ••• , an) of natural numbers with Godel
number c. Check to see whether the sequence is nonempty and each

268 CHAPTER 5. THE INCOMPLETENESS THEOREMS

ai is the code of a string of symbols. If not, output 0 and stop. If
so, run through i = 0, ... , n and check whether ai is either the code
of a single variable ·or constant symbol, or is the code of a string of
symbols obtained from one or two earlier strings in the list by one of
the rules of formation for terms. If the answer is yes at each step, c
is the code of a parsing sequence of a term, so we output 1 and stop.
Otherwise output 0 and stop. The lemma now follows by Church's
Thesis. End of Proof.

We say that a string Tis a substring of a string S if Tis a consec­
utive part of S, that is, S = UTV for some (possibly empty) strings
U and V.

Theorem 5.1.2 The set of codes of terms is computable.

Proof: We outline an algorithm which, given a natural number c as
input, outputs 1 if c is the code of a term, and outputs 0 otherwise.

Form the sequence (a0 , ••• , an) of natural numbers with Godel num­
ber c. If the sequence is empty or some ai is not the code of a symbol,
output 0 and stop. Otherwise, c is the code of a string S of symbols.
We wish to determine. whether S has a parsing sequence. If there is
a parsing sequence for S, then there is one with no repetitions, and
each string of the sequence must be a substring of S. There are only
finitely many sequences of distinct substrings of S. List all of these in a
systematic way and use the preceding lemma to check whether at least
one of them is a parsing sequence whose last term is S. Output 1 if
yes and 0 if no, then stop. Again, the theorem now follows by Church's
Thesis. End of Proof.

In the rest of this section, it should always be understood that
Church's Thesis is to be invoked at the end of the proof.

Lemma 5.1.3 The set of codes of atomic wffs is computable.

Proof: Given input c, form the string of S symbols with code c. First
check to see whether S has exactly one equality symbol. If not, output·
0 and stop. If so, then S has the form T = U. If both T and U are
terms, then S is an atomic wff, so we output 1 and stop. Otherwise
output 0 and stop. End of Proof.

5.1. CODING TABLEAUS 269

Lemma 5.1.4 The set of codes of parsing sequences for wffs is com­

putable.

Proof: Similar to the corresponding result for terms, but one mu~t
check that each string in the sequence is either an atomic wff o~ is
obtained from two earlier strings in the sequence by a rule of formation

f · ff End of Proof. or w s.

Theorem 5.1.5 The set of codes of wffs is computable.

Proof: Similar to the proof that the set of codes of terms is computable.

End of Proof.

Since any finite set of natural numbers is computable, and Weak
Arithmetic is a finite set of sentences called axioms, the set of codes of
axioms of Weak Arithmetic is computable. Although Peano Arithme~ic
has an infinite set of axioms, we now show that the set of codes of its
axioms is also computable.

Theorem 5.1.6 The set of codes of axioms of Peano Arithmetic is

computable

Proof: Given an input c, we first use the preceding theorem to dete:­
mine whether c is the code of a wff A. If not, output 0 and stop. If c IS

the code of a wff A, we next check whether A is one of the nine axioms
of Weak Arithmetic. If it is, output 1 and stop. If not, we must che~k
whether A is a case of the First Order Induction Scheme. We do this
by systematically running through each of the finitely many subs~rings
B of A check whether B is a wff, and if so, check whether A is the

' string
B(O) /\ Vx [B(x) => B(s(x))] => Vx B(x)]

for some variable x. If so, output 1 and stop. If A is neither an axiom
of Weak Arithmetic or a case of the First Order Induction Scheme,
output 0 and stop. End of Proof.

By refining the above arguments, one can show that va~ious rel~tions
on strings of symbols which are part of the syntax of predicate logic are

·computable. For example, the set of codes of sentences is computable.

270 CHAPTER 5. THE INCOMPLETENESS THEOREMS

We now introduce codes for tableaus. A tableau has :finitely many
nodes including a root node, a parent function, a finite set of wffs called
the hypothesis set attached to the root node, and a wff attached to each
nonroot node.

For simplicity, we may take the nodes of a tableau T with n + 1
nodes to be the natural numbers 0, 1, ... , n, with 0 being the root node.
The tableau can then be completely described by three finite sequences,
the sequence of numbers

(7r(l), ... , ?r(n))

where ?r(i) is the parent node of the nonroot node i, the sequence

(B1,, .. , Bk)

of hypothesis wffs which are attached to the root node, and the sequence

(~(1), ... , ~(n))

where ~(i) is the wff attached to the nonroot node i.
For each nonroot node i E { 1, ... , n}, the parent node 7r (i) belongs

to the set { 0, 1, ... , n} of nodes. Let us assume further that the nodes
were listed in such a way that for each i E { 1, ... , n}, 7r (i) < i. This can
be done for ~ny tableau by listing the nodes in the order in which the
tableau was built using the extension rules, because a nonroot node is
always added to a tableau after its parent. Note that the requirement
that 7r(i) < i for each nonroot node i > 0 guarantees that the root
node 0 will be reached from any nonroot node i in :finitely many steps
by repeatedly taking parents.

Since we already have assigned ·codes to sequences of natural num­
bers and to sequences of strings, we may now take the code of a tableau
T to be the Godel number of the triple

#(T) =#(a, b, c)

where a, b, and c are the codes

a= #((7r(l), ... , 7r(n)),

b = #(Bi, ... , Bk),
and

c = #(~(1), ... , ~(n)).

5.1. CODING TABLEAUS 271

Theorem 5.1.7 The set of codes of tableaus} and the set of codes of
tableau confutations} are computable.

Proof: Given an input t, we first need an algorithm to check whether
t is the code of a tableau. First, check whether t is the Godel number
of a triple (a, b, c) of natural numbers. If not, output 0 and stop. If so,
check whether a is the Godel number of a sequence of some length n
such that each term of the sequence is a natural number less than n,
that is, a is the Godel number of a parent function 7r. If not, output 0
and stop. If so, then check whether 7r(i) < i for each i E {l, ... , n }. If
the answer is no, output 0 and stop. Otherwise, check whether band
c are codes of sequences of codes of wffs. If not, output 0 and stop.
If b and c are sequences of codes of wffs, check whether each nonroot
node is obtained from an ancestor node using a tableau extension rule.
This gives an algorithm for checking whether tis the code of a tableau.
Output 1 if yes and 0 if no, then stop. This shows (by Church's Thesis
as usual) that the set of codes of tableaus is computable.

To show that the set of codes of tableau refutations is computable,
we first determine by the above algorithm whether an input t is the
code of a tableau. If not, output 0 and stop. If t is the code of a
tableau T, we can then check whether T is a tableau confutation by
systematically checking each branch of T to see whether it contains a
contradictory pair. Output 1 if every branch contains a contradictory
pair, and output 0 if not, then stop. End of Proof.

Definition 5.1.8 Let H be a set of wffs in the language of arithmetic.
The proof relation for H is the binary numerical relation PRFH
consisting of all pairs (x, y) such that x is the code of a wff and y is the
code of a tableau proof of the wff coded by x from H.

Theorem 5.1.9 Let H be a set of wffs such that the set of codes of
elements of H is computable. Then the proof relation PRFH for H is
computable.

Proof: First check whether the input x is the code of a wff. If not,
output 0 and stop. If x is the code of a wff A, then check whether y

· is the code of a. tableau refutation, say T. If not, output 0 and stop.

272 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Otherwise, check to see whether each hypothesis attached to the root
of Tis either an element of Hor the negation of A. In this step we use
the assumption that the set of codes of elements of H is computable,
so that we have a procedure for checking whether a number is the
code of an element of H. If we get a yes answer for each hypothesis,
then (x, y) belongs to the relation PRFH, and we output 1 and stop.
Otherwise (x, y) does not belong to PRFH, so we output 0 and stop.
End of Pro of.

5.2 Definability and Representability

In this section. we introduce two ways in which a formula of arithmetic
can express a numerical relation- definability in N and representability.

N is the standard model of arithmetic, whose universe is the set
of natural numbers N and which has the usual interpretations of the
symbols 0, s, +, *· Recall from Chapter 3 that for each natural number
m, the corresponding numeral m is the constant term consisting of m
successor symbols s followed by the zero symbol 0. In N, each numeral
m will be interpreted by the element m of N.

We shall often substitute numerals for free variables in a wff A.
In most cases it will be clear from the context which numeral goes
with which free variable, and in such cases we shall write the sentence
resulting from the substitution in the short form

A(a1, ... , an)

instead of the long form

Remember from Chapter 2 that for each model M with universe
set M and each formula A with n free variables, the set of all n-tuples
of elements of M which satisfy A in M is called the graph of A in M.
We now apply this concept to the standard model N of arithmetic.

Definition 5.2.1 Let R be an n-ary relation on N and let B be a
wff in the vocabulary of arithmetic with the free variables xi, ... , Xn·

5.2. DEFINABILITY AND REPRESENTABILITY 273

We say that R is the graph of B in N, or that R is defined by B
in N, if for all a i, .•• , an E N,

(ai, ... , an) ER~ N t= B(a1, · .. ,an)·

. We say that R is definable in N if it is defined .by s?me wff B in N.
Similarly, an n-ary function J : Nn -+ N is said to be defi~ed

by a wff C with free variables xi, ... , Xn, y if the (n + 1)-ary relation
f (ai, ... , an) b is defined by C in N.

Not all relations on N are definable in N; in fact there are uncount­
ably many relations on N but only countably many definable relations
on N. For example, Tarski's Theorem, Theorem 5.5.8, shows th~t the
set of all codes of sentences which are true in N is not definable m N.

Since the symbols O, s, +, * of arithmetic are interpreted in the ~at­
ural way in N, the zero function, successor function, additio.n function,
and multiplication function are defined in N by the atom~c form~las
o = y, s(x) y, x 1 + x2 ::::: y, x 1 * x 2 y. Similarly, the equality relat10n
is defined by the atomic formula x == Y. ·

Other examples are easy to work out. The order relation::; is de~ned
in N by the formula 3z x + z y, the square function is defined ~n N
by the formula x * x y, and the set of even numbers is defined 1Il N
by the formula :3z x z + z. .

We shall need another, much stronger, way in which a formula m t~e
language of arithmetic can express a numerical rel~tion- ~epresentabil­
ity. Let us first recall the nine axioms of Weak Arithmetic.

Axioms of Weak Arithmetic

1. Vx-is(x)=O

2. VxVy [s(x) s(y) => x == y]

3. Vxx+O == x

4. VxVyx+s(y) == s(x+y)

5. Vxx*O == 0

274 CHAPTER 5. THE INCOMPLETENESS THEOREMS

7. Vx [x:::;o * x = O]

8. VxVy [x:=:;s(y) => [x:=:;y V x = s(y)]]

9. Vx Vy [x:=:;y V y:=:;x].

Definition 5.2.2 Let B be a wff with free variables x 1 , ••• , Xn in the
language of arithmetic and let R be an n-ary relation on N. We say
that B represents R if for all a1 , ••• , an in N,

2. If (ai, ... , an) fj_ R, then WA I- :..,B(a1, ... , an)·

We say that a wff C with free variables xi, ... , Xn, y represents the
numerical function f of n variables if C represents the relation

Finally, a relation or function is representable if some wff repre­
sents it.

We shall call clause (1) in the above definition the "first half" and
clause (2) the "second half" of representability.

The value of knowing that a particular n-ary relation R is rep­
resentable is that true statements of the form (a1 , ••• , an) E R or
(a1 , ... , an) ~ R can be translated in to provable first-order sentences
from Weak Arithmetic in which references to R are replaced by the
representing wff and natural numbers m are replaced by numerals m.
Important information about a theory (like PA) can often be uncovered
by showing that the theory is able to "mirror" -via representability­
some well-understood portion of mathematics. The next proposition
shows that every relation which is representable is definable in N.

Proposition 5.2.3 If a wff B represents a relation R, then B defines
R inN.

5.2. DEFINABILITY AND REPRESENTABILITY 275

Proof: Since each axiom of WA is true in N, every wff which is prov­
able from WA is true in N. Suppose B represents R, and let a1, ... , an
be natural numbers. If (a1 , ••• , an) ER then WA I- B(a1, ... , an) and
hence N f= B(a1, .. .,an)· On the other hand, if (a1, ... ,an) r/:. R,
then WA~ -.B(a1, ... ,an), so NI= -iB(a1, ... ,an), and hence it is
not the case that N I= B(a1, ... , an)· This shows that B defines R in
N. End of Proof.

We shall see later that there are relations which are definable in
N but not representable. An example of such a relation is the set of
all Godel numbers of formulas which are provable from WA. This is
not easy to see,. and is one of the consequences of the incompleteness
theorems.

Functions which certainly ought to be representable are those which
correspond to function symbols in the language of arithmetic, namely,
zero, addition, multiplication, and the successor function. We would
also expect that the relations = and :::; are representable. We have
already seen that each of these is definable in N. Additional work is
needed to show that they are representable. To prove that a relation or
function is represented by a wff, one must show that each of an infinite
list of other wffs is provable in Weak Arithmetic. To give some idea
of what is involved, we now show that the relations = and :::; and the
addition function are representable.

Proposition 5.2.4 The equality relation is represented by the wff

x y.

Proof: For the first half of the definition of representability, suppose
that a b. Then a and b are the same term, so a = b is provable from
the empty hypothesis set and hence is provable from WA.

For the second half we must to show that whenever a< b, WA 1-
•.a= b. This was done for the particular case a= 1, b = 3 in Chapter
3. The same method can be used in general, but requires an induction
on natural numbers. We show by induction on n that

(1) n < m implies WA I- -in= m.

276 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Basis Step: Let n 0 and write m = k + 1. Then s(k) = m and
so by Axiom 1, we have

WA1- .. o=s(k)

as required.
Successor Step: Assuming (1) we show

(2) n+ 1 < m implies WA I- -is(n) = m.

Write m = k + 1. Using the fact that n < k and using (1) (with m
replaced by k) as a hypothesis, we have the following tableau proof
of (2). Rather than writing out all nine axioms of WA as hypotheses
for our tableau, only those that are needed in the proof are shown.

(3) ..., n = k Inductive hypothesis

(4) VxVy [s(x) = s(y) * x = y] Axiom 2

(5) -,-.s(n) s(k) -, to be proved

(6)
I

by (5) s(n) = s(k)

(7)
I

by (4) twice s(n) = s(k) ::::} n = k

(8) I
by (6) and (7) n=k

Thus equality is represented by the w:ff x = y. End of Proof.

We make a few observations about the proof. First of all, what
lets us use induction when the sentences of the First Order Induction
Principle are not among the axioms WA? What we have done is to use
ordinary induction on the natural numbers outside of our formal system
to obtain an infinite sequence of proofs from WA; for each n < m we
obtained a proof from WA of the sentence •n = m. This was possible

5.2. DEFINABILITY AND REPRESENTABILITY 277

because the superscripts m and n are ordinary natural numbers -not
formal expressions in WA- and so ordinary induction applies.

By contrast, the proof of \:fx-,x = s(x) from Peano Arithmetic in
Example 3.7.4 used the formal induction axiom

B(O) /\ Vx [B(x) * B(s(x))] * Vx B(x)

of PA, where B(x) is -,x s(x). Ordinary induction did not apply in
that case because the x in •x = s(x) is a variable in predicate logic,
not an ordinary natural number.

Secondly, notice that we used the induction hypothesis (3) in the
hypothesis set of our tableau. This is a technique that is very useful
in working out tableau proofs and is an example of the Learning Rule
introduced in Section 2.13: Given sentences A and B, if H I- A, then
by the Learning Rule we can use A on any branch of a tableau with
hypothesis set H U { -,B} in building a tableau proof of B from H.
In particular, A can be assumed to be in the hypothesis set of such a
tableau.

The extra rules of tableau proofs introduced in Section 2.13 for pure
predicate logic also hold for full predicate logic. A useful application of
the Learning Rule in full predicate logic is that if H I- A and H I- a = T,

then H 1- A (a/ fr), where a and T are terms and T is free for a in A.

Proposition 5.2.5 The addition function is represented by the wff

x + y = z.

Proof: For the first half, we must show that for all m, n, p E N such
that m + n = p,

WA 1-m+n p.

Note that m + n is a different term than p. For example, 2 + 3 is the
term s(s(O)) + s(s(s(O))), while 5 is the term s(s(s(s(s(O))))).

A tableau proof is shown in Figure 5.1. It proceeds holding m fixed
and using an induction on n to show that for each n, there is a tableau
proof of m + n p from WA where p m + n.

278 CHAPTER 5. THE INCOMPLETENESS THEOREMS

B~sis Step (n = 0) We show WA I- m+O = m.

(1) \Ix x+O = x Axiom 3

(2) •m+o=m ..., to be proved

(3)
I

by (1) m+o m

Induction Step Let p = m + n. We assume WA I- m+n = p and
prove WA I- m+s(n) = s(p).

(4) m+n::::p Induction hypothesis

(5) \Ix Vy x+s(y) s(x+y) Axiom 4

(6) •m+s(n) = s(p) ..., to he proved

(7)
I

by (5) (twice) m+s(n) s(m+n)

(8) I
by (4), (7) and an m+s(n) = s(p)

Figure 5.1: A tableau proof of m+n = p

rule

5.2. DEFINABILITY AND REPRESENTABILITY 279

For the second half of representability, we must show that

m + n =/= r implies WA I- •m+n = r.

Let p = m + n and assume that p f::. r. By the representability of = we
have

WA I- •p:::: r.

Substituting m + n for p (using the first half of representability and
the Learning Rule), we have

WA I- •m+n = r

as required. End of Proof.

The following lemma is often useful in proving that things are rep­
resentable. We shall use it in showing that the order relation on N is
representable.

Lemma 5.2.6 For any natural number n,

WA I- \;/ x [x $n {::.} x = 0 V x 1 V · · · V x n].

Proof: We proceed by induction on n.
Basis step: We must prove from WA that

(1) \Ix [x $ 0 {:} x 0].

Consider any x. If x = 0 then by Axiom 1, x + 0 O, so 3y x + y 0
and x $ 0. If x $ 0, then x = 0 by Axiom 3. Therefore (1) is provable
from WA.

Successor step: Assume that

(2) \Ix [x $ n {:} x = 0 V · · · V x n]

is provable from WA. We must show that

(3) \Ix [x $ s(n) {:} x = 0 V .. · V x = n V x = s(n)]

is provable from WA. By the Learning Rule, it is enough to prove (3)
from the hypothesis set WA plus the extra hypothesis (2).

280 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Consider any x. Assume that x S s(n). By Axiom 8, ·

xsnvx s(n).

Then by (2),
x 0 V · · · V x n V x = s(n).

For the other direction, assume that

x = 0 V · · · V x = n V x = s(n).

By (2) again,
xsnvx=s(n).

Expanding the abbreviation for x Sy, we have

:3z x + z = n V x = s(n).

If x + z = n, then by Axiom 4, x + s(z) = s(n) and hence x s s(n).
If x s(n) then by Axiom 3, x + 0 = s(n), so again x S s(n).

We have shown that

x S s(n) {::} x = 0 V · · · V x = n V x = s(n).

The required wff (3) follows by the Generalization Rule. End of Proof.

Proposition 5.2.7 The order relation {(x,y): x:::; y} on N is repre-
sented by the wff x + z = y.

Proof: We begin with the first half. If m S n, let k be such that
m + k = n. By Proposition 5.2.5 we have

WA I- m+k n.

It follows that
WA I- 3z m+z = n.

To establish the second half, assume m f:. n. Then n < m. Since
the equality relation is represented by the wff x y, for all j S n we
have

5.2. DEFINABILITY AND REPRESENTABILITY 281

Using Lemma 5.2.6 along with each of the above statements in our
hypothesis set, we have the following tableau:

(1)

(2)

(3)

(:)
(n + 2)

(n + 3)

(n + 4)

(n + 5)

(n + 6)

Vx [x S n ::::} x = 0 V x = 1 V · · · V x = n]

•l=m

mSn::::}m=Ov···Vm=n

m=OV···Vm=n

(n + 7) m = 0 m=l m=n

...., to be proved

by (n + 11)

by (10)

by (n + 5)

by (n + 5)

by (n + 6)

For readability, in step (n + 7) we applied the [2J rule n time~ simulta­
neously. . End of Proof.

Here is an example which shows in a simple case what can (and

282 CHAPTER 5. THE INCOMPLETENESS THEOREMS

cannot) be done with a relation that is representable.
In Exercise 6 the reader is asked to verify that the set E of even

numbers is represented by the w:ff

E(x) 3zx=z+z.

Now, consider the following simple property of the even numbers:

(*) The sum of any odd number· and any even number is an odd
number.

This fact can be expressed formally by the w:ff

B(x, y)

Because E(x) represents
all m,n EN

-.E(x) J\ E(y) => -.E(x + y).

it is easy to show (see Exercise 6) that for

WA r B(m,n).

Thus, this simple property of the even numbers is reflected in the for­
mal setting of WA-with respect to the numerals 0, 1, 2, · · ·. It should
be emphasized that the notion of representability we are using here
is not strong enough to guarantee that such properties can always be
translated and proved in WA without such a restriction on the substi­
tution values. In the present example, (*) could be translated into the
following sentence:

C = VxVy [-.E(x) AE(y) => -.E(x + y)].

This sentence makes a much stronger assertion than B (m, n) for all m
and n: it states that the property (*) holds for all possible interpre­
tations of variables in a model of WA, not merely the standard ones.
As a matter of fact, it can be shown (see Exercise 6) that WA If C; a
counter-model is given in Example 3. 7.4 in Chapter 3.

5.3 The Equivalence Theorem

In the preceding section, we developed a very short list of representable
functions and relations. The following theorem shows that the set of
representable relations is richer than one might think from our exam­
ples, and in fact is. the same as the set of all computable relations.

5.3. THE EQUIVALENCE THEOREM 283

Theorem 5.3.1 (Equivalence Theorem)

A numerical relation is representable if and only if it is computable.
Similarly, a total numerical function is representable if and only if it is
computable.

We now prove one half of the Equivalence Theorem using Church's
Thesis. The other half of the theorem will be proved in the next section.

Proof, first half: Using Church's Thesis, we prove that every repre­
sentable relation is computable.

Let the n-ary relation R be represented by the w:ff A. We describe
an algorithm for computing the characteristic function of R. Consider
an input (a1 , ••• , an)· Let B be the w:ff A(ai, ... , an)· Repeat the
following process for each m = 0, 1, 2, ... : Using the computability of
the proof relation PRFwA, determine whether or not m is the code
of a tableau proof of B from WA, and if so, then output 1 and stop.
Otherwise, determine whether or not m is the code of a tableau proof
of -.B from WA, and if so, output 0 and stop. Since A represents R,
for each input (a1 , • •• , an) there will be either a tableau proof of B or
of -.B, so the algorithm will eventually stop and produce an output.

This computes the characteristic function of R as required. By
Church's Thesis, R is computable.

Now suppose the total function f in n variables is representable,
and let R be the relation f(x1 , •. • , Xn) y. By definition, the relation
R is representable, and by the first paragraph its characteristic func­
tion is neatly computable by some RM program P. We shall make a
new RM program Q which, for an input (a1 , ••• , a?i), computes in turn
the characteristic function of (ai, ... , an, b) E R for b = 0, b l, ... ,
continuing until an answer of 1 is found, and then outputs the current
value of b. To do this, let Rk be a register beyond the last register
which·is used by P and let p be the length of P. Q is the program

284 CHAPTER 5. THE INCOMPLETENESS THEOREMS

0 z k
1 z k+l
2 s k+l
3 p
p+3 J 1 k+l p+6
p+4 s k
p+5 J 1 1 3
p+6 T k 1
p+7 H

For each input, the program Q will eventually halt because the func­
tion f is total, and Q will compute the original function f. End of Proof.

Note that the Equivalence Theorem as stated only applies to total
functions. What happens in the case of partial functions? It turns
out that every representable partial function is computable, but there
are computable partial functions which are not representable. One
explanation for this difference is that the class of computable functions
is closed under unbounded ininimalization (recall Theorem 4.8.2) while
the class of representable functions is not. Here is an example of a
partial function which is defined using unbounded minimalization from
a computable relation (and hence is itself computable) but which is not
representable.

Example. Define the ternary relation R by

{

e is the Godel number of an
. (e, a, b) E R <==::::> RM program which halts· with input a

after executing b instructions.

Define the partial function f by

f(e,a) µb (e,a,b) ER.

(As usual, we understand by this definition that f has the same domain
as the function on the right and agrees with it on this domain.) We
can compute f with the following RM program Q: With input e, a, Q
executes UNIVl and halts if and only if UNIVl halts. If UNIVl halts,
then Q outputs the number of steps needed by the program Pe coded
bye to halt on input a. (See Advanced GNUMBER problem BEFORE
in Section 4.14.)

5.3. THE EQUIVALENCE THEOREM 285

To see that f is not representable, first note that by Exercise 5, if a
partial function is representable, its domain is representable (as a unary
relation). By Theorem 4.11 on the undecidability of the Halting Prob­
lem, the domain of this particular function f is not computable.. By
the Equivalence Theorem, all representable relations are computable.
Then the domain of f, and hence f itself, is not representable.

In order to represent all computable partial functions, we shall need
another notion, called weak representability.

Definition 5.3.2 An n-ary relation Ron N is weakly represented
by a wff B with free variables Xi, ... , Xn if for all ai, ... , an in N,

(a1, ... , an) ER¢=::? WA I- B(a1, ... an).

A function f(x 1 , •.• , xn) is weakly represented by a wff C with free
variables x1 , ... , Xn, y if the n + 1-ary relation f (x1, ... , xn) = y is
weakly represented by C.

Every representable relation or function is weakly representable,
but a relation can be weakly representable and not representable. The
incompleteness theorems will show, as an example, that the set of all
codes of sentences which are provable from WA is weakly representable
but not representable.

The difference between representability and weakrepresentability is
that in the case (a1 , ••• , an)$. R, weak representability merely requires
that B(a1 , ... , an) is not provable from WA, while representability
requires that the wff ·B(ai, ... , all.) is provable from WA.

Here is an Equivalence Theorem for partial functions.

Theorem 5.3.3 A partial numerical function is weakly representable
if and only if it is computable.

As we did for the Equivalence Theorem, we shall now prove ohe half
of the above theorem using Church's Thesis, leaving the proof of the
other half for the next section.

Proof, first half! We prove that every weakly representable function
is computable. Suppose that f(xi, ... , Xn) is weakly represented by a

286 CHAPTER 5. THE INCOMPLETENESS THEOREMS

wff B. Then f can be computed by the following algorithm. We are
·given an input (ai, ... , an)· Form= 0, 1, 2, ... , systematically list all

tableaus with at most m nodes, only w:ffs of length at most m, and at
most the variables v0 , ••. , Vm, whose hypotheses are WA together with
a wff of the form

-iB(a1, ... , an, b).

Continue until a tableau proof is found, going on forever if a tableau
proof is never found. If a tableau proof is found, stop with output b
where the extra hypothesis is

-iB(a1, ... , an, b).

End of Proof.

5.4 Computable Implies Representable

In this section we prove the second half of the Equivalence Theorem,
that every total computable function is representable in Weak Arith­
metic. The proof will make use of the notion of a wff being definable
in N, which was introduced in Definition 5.2.1. The main steps will
be as follows.

• Introduce the notion of a E1 w:ff, which is a w:ff with one existential
quantifier followed by bounded quantifiers.

• Prove that for each RM program P, the state relation for P, which
relates the original input, the time, and the register contents at
that time, is definable in N by a E1 w:ff.

• Using the state relation, show that every computable function is
definable in N by a E1 w:ff.

• Show that every total function which is definable in N by aE1
wff is representable.

• Conclude that every computable total function is representable.

5.4. COMPUTABLE IMPLIES REPRESENTABLE 287

Along the way, we shall also show that a relation is weakly repre­
sentable if and only if it is definable in N by a E1 w:ff. This shows
that every computable (partial) function is weakly representable, and
completes the proof of Theorem 5.3.3.

Definition 5.4.1 We introduce two abbreviations in the language of
arithmetic. Let A be a wff and let x, y be distinct variables.

The bounded existential quantifier:

(3x ~ y)A means :Ix [x ~ y /\A],

The bounded universal quantifier:

(Vx ~ y)A means Vx [x ~ y ==?A].

The bounded quantifiers are defined so as to match the usual mean­
ing that one would expect them to have. (3x ~ y)A means that "There
exists an x which is ~ y such that A holds". (Vx ~ y)A means that
"For all x such that x ~ y, A holds".

Definition 5.4.2 A w:ff A is bounded if it can be built up in finitely
many steps using the following rules of formation:

(1) Every atomic wff is bounded.

(2) If A is bounded, so .is -iA.

(3) If A and B are bounded, so are Ao B where o E {/\, V,

(4) If A is bounded, so are (3x ~ y)A and (Vx ~ y)A.

{:} }.

Thus a bounded wff is a w:ff all of whose quantifiers may be written
as bounded quantifiers.

Several familiar numerical functions and relations are definable in
N by bounded wffs.

The equality relation, constant functions, successor function, ad­
dition function, and multiplication function are defined in N by w:ffs

·which have no quantifiers at all, and hence are bounded wffs.

288 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The order relation x ::; y is defined in N by the bounded wff

(3u::; y)u = x.

The strict order relation x < y is defined in N by the bounded
wff

•x y/\(3u:=;y)u=x.

The predecessor function Pred(x) = y, where

y = 0 if x = 0, and y = x - 1 otherwise ,

is defined in N by the bounded wff

[x = 0 /\ y O] V x s(y).

The dotminus function x.:....y = z, where

z = 0 if x ::; y, and z x - y otherwise ,

is defined in N by the bounded wff

[x ::; y /\ z O] V x ::::: y + z.

The remainder function Rem(x,y) = r, where r = 0 if y = 0,
and r is the remainder when x is divided by y otherwise, is defined in
N by the bounded wff

[y = 0 /\ r =OJ V (3q::; x)[x = q * y .+ r /\ r < y].

(In the last two examples, x ::; y and r < y are abbreviations for
the previously given bounded wffs.)

The predecessor function, dotminus function, and remainder func­
tion are total functions.

Definition 5.4.3 A wff A is said to be a E1 wff if it has the form
3x B where B is a bounded wff. A relation or function is E1 definable
if it is defined in N by a E1 wff. ·

5.4. COMPUTABLE IMPLIES REPRESENTABLE 289

Thus a E1 wff is formed by putting one existential quantifier in front
of a bounded wff.

Any bounded wff A is equivalent to the E1 wff 3v A where v does
not occur in A. Therefore any function or relation which is definable
in N by a bounded wff is E1 definable. In particular, the constant,
successor, addition, multiplication, predecessor, dotminus, and remain­
der functions and the equality, order, and strict order relations are E1
definable.

The following lemma is helpful in showing that things are Ei defin-

able.

Lemma 5.4.4 (i) Suppose C and D are E1 wffs and x, y are distinct
variables. Then the relations defined by

CVD, C/\D, (3x ::; y)C, (Vx::; y)C, 3xC

are E1 definable in N.
(ii) If a relation R is defined in N by a wff which is built from

bounded wffs in finitely many steps by repeatedly using V, /\, bounded
quantifiers, and existential quantifiers in any order, then R is E1 de­
finable.

Proof: Part (ii) is proved by repeated application of Part (i). We prove
Part (i). Suppose that C and D are E1 formulas 3u A, 3v B where A
and B are bounded wffs.

Let u', v' be new variables which do not occur in C or D and are
distinct from each other and from x, y. Let A' be the wff obtained
from A by replacing all occurrences of u by u', and let B' be the wff
obtained from B by replacing all occurrences of v by v'. By Exercise 9
in Chapter 2 (but for full rather than pure predicate logic), the wff C
equivalent to 3u' A' and D is equivalent to 3v' B'.

We may therefore simplify the problem by taking A and B so that
the variables u, v, x, y are all distinct, u does not occur in B, and v does
not occur in A.

The wff 3x C defines the same relation in N as the E1 wff

3w (3x ::; w)(3u ::; w)A

290 CHAPTER 5. THE INCOMPLETENESS THEOREMS

where w is a new variable, because

N f= 3x 3u A¢;> (3w (3x s; w)(3u s; w)A].

The wff C /\ D defines the same relation in N as the wff

3u 3v [A/\ B],

because the wff

3u3v(A/\B) # (3uA/\ 3vB]

is tableau provable when u does not occur in B and v does not occur
in A. By the preceding existential quantifier case, it follows that the
relation defined by C /\ D is E1 definable in N.

The C V D case is similar.
The wff (3x s; y)A defines the same relation in N as the E1 wff

3u (3x s; y)A,

because

3u (3x s; y)A # (3x s; y)3uA

is tableau provable.
Finally, the wff ('Vx s; y)A defines the same relation in N as the E1

wff

3w ('Vx s; y)(3u s; w)A,

because

N f= 3w ('Vx s; y)(3u s; w)A {:::} ('Vx s; y)3u A.

End of Proof.

Our next task is to define the state relation for an RM program.
We shall sometimes write a finite sequence of natural numbers as a

"vector",

5.4. COMPUTABLE IMPLIES REPRESENTABLE 291

Definition 5.4.5 Let P be an RM program and suppose that k is
the largest register number appearing in the instruction list of P. The
state of a computation by P at a given time is the finite sequence
s =(so, s1 , ••• , sk) where the program counter contains the number s0

and the registers R1 , ••. , Rk contain the numbers s1 , •.. , Sk.

The state relation of Pis the (2k+3)-ary relation STATEp where

(a, t, b) E STATEp

means that an RM machine which starts in the state (a0, ... , ak) and
executes the instructions of P will be in the state b after t instructions
are executed.

The state relation of P will be obtained from another relation, the
nextstate relation.

Definition 5.4.6 Let P be an RM program and suppose that k is
the largest register number appearing in the instruction list of P. The
nextstate relation of Pis the (2k+2)-ary relation NXSTATEp where

(a, b) E NXSTATEp

means that the a0-th instruction of P will change state a to state b.

In the above definition, it is to be understood that a halt instruction
makes no change in the state.

Lemma 5.4. 7 Let P be an RM program. Then NXSTATEp is E1

definable.

Proof: For convenience we assume that the program P is regular,
so there are no halts before the last nonhalt instruction and no jump
targets beyond the first halt instruction. Let k be the largest register
number appearing in the instruction list of P.

The action of each single RM instruction I involving register num­
bers between 1 and k may be expressed by a boun,ded w:ff

with 2k + 2 variables, where the instruction I changes a given state x
to the new state y. We write down these w:ffs for each instruction type.

292 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Yo == Xo /\ · · · /\ Yk == Xk.

Acz,n):
Yo s(xo) /\ Yt == X1 /\ · · · /\ Yn == 0 /\ · · · /\ Yk == Xk·

Yo== s(xo) /\ Y1 == X1 /\ · · · /\ Yn == s(xn) /\ · · · /\ Yk = Xk·

Yo== s(xo) /\ Y1 == X1 /\ · · · /\ Yp == Xn /\ · · · /\ Yk == Xk.

A). (J,n,p,q •

Now let
J(0),1(1), ... ,J(m)

be the instruction list for P, where I (m) is the last nonhalt instruction.
Then the nextstate relation

(x, Y) E NXSTATEp

is defined in N by the following bounded wff:

[xo == O/\A1(o)]V[xo == l/\A1(1)]V· · ·V[xo == m/\A1(m)]V[m < x 0 /\AH]·

End of Proof.

We now wish to show that the state relation of each RM program
is E1 definable. In order to determine the state of an RM computation
at some time t, one must go through the entire sequence of states at
all times less than t. For this reason, we will need a E1 definable
way of "coding" sequences of natural numbers. We cannot use our
Godel numbering scheme for this purpose, because it depends on the
exponential function y 10:~, and we do not yet know that this function
is E1 definable. Another coding scheme is needed- one which is easier
to define within arithmetic. Godel found a way to do this using the
following function, called the Godel beta function. We must take a
short detour in our development to give this coding scheme.

5.4. COMPUTABLE IMPLIES REPRESENTABLE 293

Definition 5.4.8 The Godel beta function is defined by

f3 (x, y, z) = Rem(x, y * (z + 1) + 1).

Lemma 5.4.9 The Godel beta function is E1 definable.

Proof: We have seen that the remainder function Rem(x, y) = r is de­
fined in N by a E1 wff R(x, y, z). ·The Godel beta function f3(x, y, z) = v
is then defined in N by the E1 wff

R(x, s (y * (s (z))), v).

End of Proof.

To use the Godel beta function for coding finite sequences, we need
a classical theorem in number theory called the Chinese Remainder
Theorem. Since this theorem can be found in most number theory
texts, we shall state it withoµt proof.

Theorem 5.4.10 (Chinese Remainder Theorem) Suppose that
mi, •.• , mn are positive integers such that mi and mj are relatively
prime whenever 1 ~ i < j ~ n. If 0 ~ ai < mi for i = 1, ... , n,

there exists x such that

Rem(x, mi) = ai for i = 1, ... , n.

The next lemma uses the Chinese Remainder Theorem to show that
the Godel beta function can code finite sequences.

Lemma 5.4.11 For each finite sequence (ai, . .. , an) of natural num­

bers, there exist b, c such that

(1) f3(c, d, i) = ai for i 1, ... , n.

Thus the pair (c;d) "codes" the finite sequence (a1 , .•. , an) using the

Godel· beta function.

294 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Let M be such that n ~Mand ai ~ M for i = 1, ... , n. Let
d = M!. For i = 1, ... , n, let mi= d * (i + 1) + 1. Then

0 ~ ai ~ M ~ d < mi for i 1, ... , n.

Moreover, for each x and i = 1, ... , n, we have

(2) (3(x, d, i) = Rem(x, d * (i + 1) + 1) Rem(x, mi)·

We claim that whenever 1 ~ i < j ~ n, the :numbers mi and mi are
relatively prime. Suppose not. Then some prime p divides both mi and
mi. Therefore p divides their difference mi - mi = (j i) * c. Hence
either p divides j - i or p divides d. But p divides mi d * (i + 1) + 1,
so p cannot divide d. Therefore p divides j - i. But j - i < n ·~ M,
so p < M and hence p divides d = M!. This contradiction proves the
claim.

By the Chinese Remainder Theorem 5.4.10, there exists c such that

(3) Rem(c, mi)= ai for i = 1, ... , n.

The desired conclusion (1) follows from (2) and (3). End of Proof.

Theorem 5.4.12 For each RM program P, the state relation STATEp
is E1 definable.

Proof: For simplicity we again assume that P is a regular program.
Let k be the largest register number occurring in an instruction of P.
We must find a E1 w:ff which defines the state relation

(ii, t, b) E STATEp

inN.
The idea is to write a w:ff which says that there exists a finite se­

quence of states (So, ... , St) such that So= ii, (Su, Su+i) E NXSTATEp
for all u < t, and St b. In order to do this with a E1 w:ff, we replace
the finite sequence of states by a pair of natural numbers which codes
a finite sequence of states via the Godel beta function.

Let A(ii, b) be a E1 w:ff which represents the nextstate relation
NXSTATEp in N. Let B(c, d, z, v) be a E1 w:ff which represents the

5.4. COMPUTABLE IMPLIES REPRESENTABLE 295

Godel beta function (3(c, d, z) = v in N. Since each state has k + 1
coordinates it will be convenient to combine k + 1 values of z together.

'
Let j = k + 1 and let C(c, d, z, v) be the w:ff

B(c, d,j * z, v0) /\ B(c, d,j * z + 1, v1) /\ · · · /\ B(c, d,j * z + k, vk)

which defines the relation

(3(c,d,jz) = v0 /\(3(c,d,jz+1) v1 /\ • • • /\ (3(c,d,jz + k) = Vk·

Then the state relation

STATEp(ii, t, b)

is defined in N by the w:ff

[C(c, d, 0, ii) A C(c, d, t,b)A

[u = t V A(x,Y) A C(c,d,u,x) A C(c,d,s(u),Y)]].

This w:ff is built from E1 w:ffs using A, V, bounded quantifiers, and exis­
tential quantifiers. By Lemma 5.4.4, the state relation is Ei definable.
End of Proof.

Theorem 5.4.13 Every computable function is Ei definable.

Proof: Let F be a computable (partial) function of n variables. There
is an RM program P which neatly computes F. By Theorem 5.4.12,
the relation STATEp is E1 definable. It is defined in N by some w:ff

A(y, t,Z).

We may break the sequence of variable y into parts y = (x, it) where x
consists of the first n variables in y. Let p be the number of the first halt
instruction of P. The program P halts when the instruction number is
p. Then the graph F(x) = v of the partial function F computed by P
is defined in. N by the w:ff

3t:Ju 3Z[A(x, u, t, Z) /\ Zo = p /\ v = z1].

Thus by Lemma 5.4.4, Fis E1 definable. End of Proof.

We now make the final step, from E1 definability to representability.

296 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Lemma 5.4.14 Each bounded wff A represents the relation defined by
·A inN.

Proof: Let S be the set of all wffs A such that the relation defined by
A in N is represented by A in Weak Arithmetic. We must show that
every bounded wff belongs to S.

We have seen that the atomic wffs

x=y,O y,s(x)=y,x+y=z,x*y=z

belong to S. Using this fact, it can be shown by induction on terms
that any wff of the form r = y belongs to S, where y is a variable which
does not occur in r.

It then follows that any atomic wff, i.e. equation between two terms,
belongs to S. For if a, r are terms with all variables replaced by nu­
merals, there are a and b such that N f= a = a and .N f= r = b.
One can then check that if a = b then WA I- a = r and otherwise
WA I- •a= r.

It is a routine matter to check that the set S is closed under each
propositional connective.

We now show that the set S is closed under bounded quantifiers.
We assume A E S and prove that (3x :::; y)A E S. The trick is to use
Lemma 5.2.6. By that lemma, for each b, it can be proved in WA that
the wff

(3x S b)A(x, z)

is equivalent to
A(O, z) V · · · V A(b, i').

The latter wff is a finite disjunction of members of S, and thus belongs
to S by the preceding paragraph. It then follows that (3x S y)A ES.

The bounded universal quantifier case is similar. This shows that
every bounded wff belongs to S. End of Proof.

We first take up weak representability, and then representability.

Theorem 5.4.15 Each E1 wff C weakly represents the relation defined
by C in N. A relation is weakly representable if and only if it is E1

definable.

5.4. COMPUTABLE IMPLIES REPRESENTABLE 297

Proof: Suppose first that a relation R is defined in N by a E1 wff
3u A(u, x), where A is a bounded wff. We show that 3u A(u, x) weakly
represents R. Suppose a ER. Then

NF= 3uA(u,a).

Then for some b E N,
N f= A(b,a).

By the preceding lemma,

WA I- A(b, a),

and hence
WA I- 3uA(u,a).

Now suppose
WA I- 3uA(u,a).

Then
N f= 3uA(u,a),

so a E R. Therefore R is weakly representable.
Now suppose that R is weakly represented by a wff B(x). Let F

be the function such that F(a) = 0 if a E R and F(a) is undefined
otherwise. Then F(x) = y is weakly represented by the wff B(x) /\
y = O. By the first half of Theorem 5.3.3, which was proved in the
last section using Church's Thesis, F is computable., Therefore by
Theorem 5.4.13, F(x) = y is defined in N by a E1 wff C(x,y). Then
R is defined in N by the wff 3y C(x, y), and by Lemma 5.4.4, R is E1
definable. End of Pro of.

This gives us the second half of Theorem 5.3.3.

Corollary 5.4.16 Every computable (partial) function is weakly rep­

resentable.

Proof: Suppose _F is computable. By Theorem 5.4.13, F is E1 defin­
able, so by the preceding theorem, F is weakly representable. End of Proof

298 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Theorem 5.4.17 If a relation R has the property that both R and. •R
· are Ei definable, then R is representable.

Proof: Suppose R(x) is defined in N by the wff 3u A(u, x) and ·R(x)
is defined in N by the wff 3v·B(v, x), where A and B are bounded wffs.
Then

NF= 3uA(u,x) <=> Vv•B(v,x).

It follows that R(x) is also defined in N by the w:ff

C(x) : 3u [A(u, x) /\ (Vv ~ u)•B(v, x)],

and •R(x) is defined in N by the w:ff

D(x): 3v [B(v,x) /\(Vu.~ v)•A(u,x)].

Both C and Dare w:ffs. We show that C represents R.
If i1 E R, then by Theorem 5.4.15,

WA r C(a).

Now suppose that i1 tJ. R. Then

WA r D(a).

Exercise 10 shows that the three sentences

C(a), D(a), Vu Vv [u ~ v v v ~ u]

are tableau confutable. The third sentence above is Axiom 9 of WA.
Therefore

WA r D(a) =} ·C(a),

and it follows that

WA r •C(a).

This shows that C represents R. End of Proof.

5.5. FIRST INCOMPLETENESS THEOREM 299

Theorem 5.4.18 Every total function F which is E1 definable is rep­
resentable.

Proof: Let the graph F(x) v of F be defined in N by a E1 w:ff

3z A(z, x, v)

where A is a bounded w:ff. Since Fis total, the complement •F(x) = v
of the graph of F is defined in N by the w:ff

3z 3w [A(z, x, w) /\ •w == v].

By Lemma 5.4.4, the complement of the graph of Fis definable. By
the preceding lemma, the function F is representable. End of Pro of.

Putting everything together, we have now completed the proof of the
Equivalence Theorem, showing that every computable total function is
E1 definable, and hence representable.

5.5 First Incompleteness Theorem

In this section we prove a theorem of Tarski which shows that the set
of sentences which are true in the standard model N of arithmetic is
not definable in N. We shall then use Tarski's Theorem to give a proof
of Godel's First Incompleteness Theorem, which shows that PA is not
complete.

Let us first review the notions of a consistent theory and of a com­
plete theory, which were discussed informally in Chapter 3.

Definition 5.5.l A theory H in the language of arithmetic is con­
sistent if H does not have a tableau refutation. H is complete if H
is consistent and for every sentence A in the language of arithmetic,
either H r A or H r •A.

The proof of Tarski 's Theorem is based on the liar paradox,

This sentence is false.

300 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The idea is to show that if the set of codes of true sentences were de­
·finable, then one could find a sentence which asserts its own falsehood,
as in the liar paradox.

Here are the main steps of the proof that PA is not complete. Using
the· Equivalence Theorem we will show that the set of all codes of
sentences which are provable from PA is definable in N. Then by
Tarski's Theorem the set of sentences provable from PA cannot be the
same as the set of sentences true in N. Since every sentence provable
from PA is true in N, it follows that there is a sentence B which is
true in N but is neither provable nor disprovable from PA.

Godel's original incompleteness proof, which will be given in the
next section, is somewhat harder than the proof in this section but
gives important additional information. It not only shows that PA is
not complete, but actually produces an example of a sentence B which
is neither provable nor disprovable from PA.

We introduce two more properties of theories.

Definition 5.5.2 A theory Hin the language of arithmetic is sound
if N f= H, that is, every sentence in H is true in the standard model
of arithmetic.

Definition 5.5.3 By an axiomatized theory we mean a set of
sentences Hin the language of arithmetic such that the set of codes of
elements of H is computable.

Every sound theory is consistent because it has the model N. If a
theory H is consistent but not complete, it will have an extension H'
which is consistent but not sound (Exercise 4).

We saw in Chapter 3 that Weak Arithmetic is sound but not com­
plete, and that Peano Arithmetic is sound. Any finite theory such as
WA is obviously axiomatized, and we showed earlier in this chapter
that PA is axiomatized. In this section we shall see that PA is not
complete. In fact, we shall show even more, that no sound axiomatized
theory is complete.

It will be convenient to introduce a name for the set of all sentences
which are true in N.

5.5. FIRST INCOMPLETENESS THEOREM 301

Definition 5.5.4 The set of all sentences which are true in a model
M is denoted by Th(M), and called the theory of M. In particular,
T h(N) is called complete arithmetic.

For any model M, the theory Th(M) is automatically complete. A
·theory His sound if and only if it is a subset of Th(N).

Given a wff A(v) in the language of arithmetic with one free vari~ble
v and code a, the sentence A(a) will be called the diagonal sentence
for A(v). Thus the diagonal sentence for a wff A is the sentence formed
by replacing each free occurrence of v by the numeral representing the
code of A(v). The diagonal sentence will be used in this section to form
a sentence which asserts its own falsehood, and in the next section to
form a sentence which asserts its own unprovability. To construct such
sentences, we need the following definition:

Definition 5.5.5 The diagonal relation is the binary relation D
on N consisting of those pairs (a, b) for which a is the code ofa wff
A(v) in the language of arithmetic with one free variable v and b is the
code of the diagonal sentence A(a).

Lemma 5.5.6 The diagonal relation D is computable.

Proof: We outline an algorithm which, given an input (a, b), outputs a
1 if (a, b) E D and a 0 otherwise. First check whether a is the code ~f a
wff A(v) with one free variable v. If not, output 0 and stop. Otherwise,
compute the code of the sentence A(a). Output a 1 if this code is equal
to band output O otherwise, and stop. By Church's Thesis, the diagonal
relation D is computable. End of Proof.

We need one more lemma before proving Tarski's Theorem.

Lemma 5.5.7 In the language of arithmetic, for any wff B(x) with

one free variable x, there is a sentence C such that

N f= C ¢? B(c)

wher:e c is the code of C.

302 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Let D(v, x) be a wff which defines the diagonal relation D in
N'. Let E(v) be the wff

V x [D (v, x) => B (x)] .

Let e be the code of E. Let C be the diagonal sentence E(e) of E(v).
In expanded form, C is

V x [D (e, x) => B (x)] .

Let c be the code of C. The sentence C {:} B(c) in expanded form is

(1) V x [D (e, x) => B (x)] ¢:> B (c) .

Since C is the diagonal sentence of E, (e, c) E D. Therefore c is the
unique number such that

N f= D(e, c).

It follows that the sentence (1) is true in N, as required. End of Proof.

Theorem 5.5.8 (Tarski's Theorem) Let TR denote the set of all
codes of sentences true in N. Then TR is not definable in N.

Proof: Assume TR is definable in N by a wff TR(v) with one free
variable v. By the preceding lemma there is a sentence P with code p
such that

N f= P {:} -.TR(p).

Thus,

N f= P if and only if NF TR(p)

But since TR defines TR in N, the right-hand side above is equiv­
alent to N F P. We are left with the contradiction that P is true in N
if and only if Pis not true in N. We conclude that TR is not definable
after all. End of Proof.

In Section 1 we defined the proof relation PRFH for a set H of
sentences in the language of arithmetic to be the set of all pairs of
natural numbers (x, y) such that x is the code of a wff A and y is the
code of a tableau proof of A from H. Using the proof relation, we can
carry out the incompleteness proof sketched at the beginning of this
section.

5.6. GODEL'S ORIGINAL INCOMPLETENESS PROOF 303

Theorem 5.5.9 (First Incompleteness Theorem) Let H be a sound
axiomatized theory. Then H is not complete.

Proof: Theorem 5.1.9 showed that for each axiomatized theory H,
the proof relation PRFH is computable. By the EquivaleJ).ce Theo­
-rem 5.3.1, PRFH is representable, and therefore definable in N by
a formula PH(x, y). Therefore the set of codes of sentences which are
provable from H is definable in N by the formula 3y PH (x, y). Then by
Tarski's Theorem and the soundness of H, the set of sentences provable
from H must be a proper subset of T h(N). Thus there is a sentence
B which is true in N but not provable from H. Moreover, -.B is not
provable from H because it is false in N and His sound. Therefore H
is not complete. End of Proof.

. Corollary 5.5.10 The complete theory Th(N) of arithmetic is not ax­
iomatized.

5.6 Godel's Original Incompleteness Proof

In this section we shall give another proof of the First Incompleteness
Theorem, using Godel's original method.

The central idea is to modify the liar paradox by finding a sentence
Ac, called a "G sentence." which asserts its own unprovability from
PA. Thus the Godelian sentence Ac says

I am not provable from PA.

Now if Ac is provable from PA, then Ac must be true in N because
PA is sound, and therefore Ac is not provable from PA. Thus Ac
cannot be provable from PA. It follows that Ac is true in N, and
since PA is sound, the negation also is not provable from PA. Hence
PAis incomplete.

With these remarks we have in outline form another proof that PA
is an incomplete theory, and that there are sentences which are true in
N but not provable from PA. The main technical difficulty is to show
that the Godelian sentence exists.

As a starting. point we introduce the concept of a proof formula
· for a·theory H in the language of arithmetic.

304 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Definition 5.6.1 Let H be an axiomatized theory in the language of
arithmetic. A proof formula for His a wff PRFH which represents
the proof relation PRFH:.

Corollary 5.6.2 Let H be an axiomatized theory. Then the proof re­
lation PRFH for H is representable, i.e., H has a proof formula.

Proof: Theorem 5.1.9 showed that for each axiomatized theory H, the
proof relation PRFH is computable.

By the EquivalenceTheorem 5.3.1, PRFH is representable. End of Proof.

A proof formula for H allows us to express a statement like

(1) The tableau T is a proof of the sentence A from H.

formally in arithmetic, by translating it into the wff:

(2) PRFH(a, t)

where a is the code of the wff A and t is the code of the tableau T.
There are several steps involved in this translation. First, form the
proof formula PRFH(x,y) for H. Then compute the codes a for the
wff A and t for the tableau T. Finally, form the numerals (which are
terms) a for a and t fort, and substitute these terms for the variables
x, yin PRFH(x, y).

The next result shows that by using an existential quantifier, we
can express the statement

(3) The sentence A is tableau provable from H

formally in arithmetic by the wff

(4) 3y PRFH(a, y)

where a is the code for the wff A.
In the incompleteness proof in the preceding section, we used the

fact that the set of codes of sentences which are provahle from an ax­
iomatized theory H is definable in N. We now prove that this set is
also weakly representable.

5.6. GODEL'S ORIGINAL INCOMPLETENESS PROOF 305

Theorem 5.6.3 Let PRFH be a proof formula for an axiomatized the­
ory H, and let PV be the set of all codes of sentences which are provable

from H, that is,

PV ={#(A): A E SENT(£) and Hf- A}

where £ is the vocabulary of arithmetic. Then the wff 3y PRFH(x, Y)
weakly represents the relation PV and also defines PV in N . . That is,
for all a EN,

(i) a E PV if and only if WA f- 3yPRFH(a,y),

(ii) a E PV if and only if NI= 3yPRFH(a,y).

Proof: Since PRFH represents PRFH, PRFH defines PRFH in .N
by Theorem 5.2.3. Both (i) and (ii) are proved by the following list of
statements.

If a E PV thenfor some b EN, (a, b) E PRFH·

If (a, b) E PRFH then WA i- PRFH(a, b).

If WA f- PRFH(a, b) then WA f- 3yPRFH(a,y).

If WA f- 3yPRFH(a,y), then NI= 3yPRFH(a,y).

If N I= 3y PRFH (a, y), then for some b E N, N I= PRFH(a, b).

-If NI= PRFH(a, b), then (a, b) E PRFH.

If (a, b) E PRFH then a E PV. End of Proof.

Once we see that statements about proofs can be expressed formally,
many questions naturally arise about the relationship between this for­
mal version of proof (like (2)) and our usual notion of proof (like (1)).
For instance, we will be able to investigate questions like:

(5) If A is provq,ble, is it provable that A is provable?

(6) If it's provable that A is provable, must A be provable?

306 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(7) Is it provable that if A and B are both provable then A AB is
provable?

(8) If A V B is provable, must one of A and B be provable? Is the
answer to this question provable?

We now turn to the First Incompleteness Theorem.

Definition 5.6.4 If H is an axiomatized theory, a sentence P of
arithmetic is a Godelian sentence for H if

where p is the code for P.

Thus P is Godelian for H if H proves that [P is true if and only if
P is not provable from H]. A Godelian sentence for H asserts its own
unprovability from H.

The following proposition shows that a Godelian sentence quickly
leads to incompleteness.

Proposition 5.6.5 Let H be a sound axiomatized theory and let P be
a Godelian sentence for H. Then P is true in N but not provable from
H, and H is consistent but not complete.

Proof: Let p be the code for P. Since P is Godelian for H and His
sound, we have

(1)

We claim that

(2) N f= 1 :ly PRFH(P, y).

Suppose (2) fails. Then there exists n such that

N f= PRFH(p,n),

5.6. GODEL'S ORIGINAL INCOMPLETENESS PROOF 307

and by Theorem 5.6.3, Hr- P. By soundness, N f= P. Then by (1),
(2) holds. Thus (2) holds in all cases.

By (1) and (2), N f= P. By (2) and Theorem 5.6.3, H If P. Since H
is sound and N f= P, we also have H If ...,p. Therefore H is consistent
but not complete. End of Proof.

We now show that theories such as PA have Godelian sentences.
In the preceding section we defined the diagonal relation D, consisting
of those pairs (a, b) for which a is the code of a wff A(v) in the lan­
guage of arithmetic with one free variable v and b is the code of the
diagonal sentence A(a). We showed that D is computable. Since D is
computable, it is representable. The next lemma shows that there is a
wff D which does an especially good job of representing D. It will be
needed in forming a Godelian sentence.

Lemma 5.6.6 There is a wff D(v, x) such that D represents the diag­
onal relation D and for each (a, b) E D,

WA r-vx [D(a,x) ~ x = b].

Proof: By the preceding lemma, Dis computable. By the Equivalence
Theorem, Dis represented in WA bysomeformulaB(v,x). Let D(v,x)
be the wff

(3) B(v,x)/\Vu[u<x ·B(v,u)].

Intuitively, D(a, b) says that bis the first number such that (a, b) E D.
We first check the second half of representability. If (a, b) ~ D,

then WA r- ·B(a, b), and therefore WA r- ·D(a, b) because Dis the
conjunction of B and another wff.

Suppose that (a, b) E D. To prove (3), work within WA and con­
sider each of the three cases x < b, x = b, b < x. In the first case,
show that •D(b, x) using the fact that

WAr-x<b=?x=ov ... vx=b 1

and for each c <. b,
WA r- ·B(a, c).

308 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The second and third cases use the fact that, since B represents D,
- WA r B(a, b) but WA r •B(a,c) for all c < b. This gives us D(a,x)

in the case x =band ·D(a, x) in the case b < x. We have thus proved
(3).

The first half of representability follows from (3) and the fact that

r Vx [D(a, x) # x:::::: b] =:;> D(a, b).

End of Proof.

We now prove a stronger form of Lemma 5.5.7.

Lemma 5.6. 7 (Diagonalization Lemma) In the language of arith­
metic} for any wff B (x) with one free variable x, there is a sentence
C such that

WA r C # B(c)

where c is the code of C.

Proof: (To make the idea easier to follow, we shall keep in mind the
important case where B(x) is a wff which says "x is not provable from
H".) Let D(v, x) be the w:ff of the preceding lemma. Let E(v) be the
w:ff

\fx [D(v, x) =} B(x)].

(Intuitively, E(v) says that the diagonal sentence of the w:ff with code v
is not provable from H). Let e be the code of E. Let C be the diagonal
sentence E(e) of E(v). In expanded form, C is

Vx [D(e, x) =} B(x)].

(Intuitively, C says that the diagonal sentence of the wff with code e is
not provable from H, that is, C says that C is not provable from H!).
Let c be the code of C. The sentence C <=? B(c) in expanded form is

' (4) \fx [D(e,x) =} B(x)J # B(c).

We must show that (4) is provable from WA. Since C is the diagonal
sentence of E, (e, c) E D. By the preceding lemma, the sentence

(5) \fx [D(e,x) # x = c]

5.6. GODEL'S ORIGINAL INCOMPLETENESS PROOF 309

is provable from WA. One can easily check that_(4) is tableau provable
from (5) (e.g. by using the TABLEAU program), so (4) is also provable
from WA as required. End of Proof.

Corollary 5.6.8 Let H be an axiomatized theory and let PRFH be a
proof formula for H. Then there is a sentence P such that

(t), WA r P # 1 3y PRFH(P, y)

where p is the code of P.

Proof: Let B(x) be the w:ff •3y PRFH(x, y) (which intuit~vely says
that "x is not provable from H"). By the Diagonalization Lemma,
there is a_ sentence P with code p such that

WA r P # B(p).

This is (t). End of Proof.

Proposition 5.6.9 Let H be a consistent axiomatized theory which in­
cludes WA, and let P be a sentence with property {t) from the preceding
corollary. Then P is a Godelian sentence for H. Moreover, P is true

in N but not provable from H.

Proof: P is Godelian for H because (t) holds and H includes WA.
We show next that P is not provable from H. Suppose on the contrary
that H r P. Since P is Godelian for H,

Hr •3y PRFH(p, y).

But PRFH is a proof formula for H and H r P, so

WA r 3yPRFH(p,y).

Since H includes WA,

Hr 3y PRFH(P, y).

This contradicts the fact that H is consistent. We conclude that P is
not provable from H.

It follows that the sentence. •3y PRFH(P, y) is true in N. Since
WA is sound, we conclude from (t) that Pis true in N. End of Proof.

We can now_ easily prove the First Incompleteness Theorem.

310 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Theorem 5.6.10 (First Incompleteness Theorem) No sound ax­
iomatized theory is complete. In particular, Peano Arithmetic is not
complete.

Proof: Suppose H is a sound axiomatized theory, and assume that
H is complete. Since H is axiomatized, by Corollary 5.6.8 there is a
sentence P such that (t) holds.

For each axiom Q of WA, N ~ •Q, hence by soundness, H If •Q,
and by completeness, H t-- Q. Thus every axiom of WA is provable from
H, and hence every sentence provable from HU WA is provable from H
alone. Since His sound, HUWA is sound. Then by Proposition 5.6.9,
there is a Godelian sentence P for HU WA. By Proposition 5.6.5, H
is not complete. End of Proof.

5. 7 Godel-Rosser Theorem

The First Incompleteness Theorem in the preceding two sections re­
quires the theory in question to be sound. As reasonable as this prop­
erty may be, it is quite complex from the point of view of computability.
To check the soundness of a theory, we must decide whether each of its
sentences is true (in N). As we show in Theorem 5.5.8, no procedure
which decides the truth of every sentence of arithmetic is even definable
inN.

In th,is section we shall prove an improvement of the First I~com­
pleteness Theorem which does not depend on the notion of soundness,
the Godel-Rosser Theorem: No consistent axiomatized theory which
includes WA is complete.

We first need some results about the undecidability of some of the
relations and theories we have been studying.

Definition 5. 7.1 A set of sentences His called a decidable theory
if the set

{x: 3y PRFH(x, y)}

of codes of sentences which are provable from H is computable. Theo­
ries which are not decidable are called undecidable.

5. 7. GODEL-ROSSER THEOREM 311

The next theorem shows that PA and WA are undecidable. Thus
the set of codes of proofs from PA is computable, but the set of codes
of provable wffs from PA is not computable.

Theorem 5.7.2 Any consistent theory which includes'WA is undecid­
, able.

Proof: Assume His consistent, decidable, and includes WA. We shall
obtain a contradiction.

Since H is decidable, the set

PV = {x: 3yPRFH(x,y)}

of codes of sentences which are provable from H is computable. We
may assume that every sentence which is provable from H is already
an element of the set H. Then PV is the set of codes of elements of
H, so His an axiomatized theory. Let PRFH be a proof formula for
H. By the Equivalence Theorem, PV is represented by some wff B.
BAPRFH is also a proof formula for H, because PRFH PVnPRFH
and B A PRFH represents PV n PRFH. By Corollary 5.6.8 there is
a wff P such that (t) holds with B A PRFH in place of PRFH. By
Proposition 5.6.9,

H If P.

Let p be the code of P. Then p ~ PV. Since B represents PV,
WA t-- •B(p). Therefore

WA t-- 1 3y[B A PRFH](p,y).

It now follows from (t) that WA t-- P, and since WA C H, Ht-- P.
This is a contradiction and completes the proof. End of Proof.

For example, the theories WA and PA are undecidable because
each is a consistent theory which includes WA.

Th(N) is thus an example of a consistent theory which includes
WA, and by the preceding theorem, Th(N) is undecidable. Since every
sentence which is provable from T h(N)) is true in N and vice versa,
it follows ·that the set of codes of sentences which are true in N is not
computable.

312 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Theorem 5.7.2 says something about theories containing sentences
which are false in N. (Such theories are called unsound.) For example,
we might try to make PA a complete theory by adding to PA the axiom
•P where Pis Godelian for PA. Let PA+= PAU{•P}. SinceN f= P,
PA+ is unsound. But PA+ is consistent; if not, then every model of
PA would satisfy P and we would have that PA I- P, contradicting
Proposition 5.6.5. We can therefore conclude by our last theorem that
PA+ is an undecidable theory.

The next lemma shows that any undecidable axiomatized theory is
also incomplete. It leads to the Godel-Rosser Theorem, which is an
improvement of the First Incompleteness Theorem.

Lemma 5. 7.3 Every complete axiomatized theory H is decidable.

Proof: We describe an algorithm which determines whether an input a
is the code of a sentence which is provable from H. First, check whether
a is the code of a sentence of arithmetic. If not, output 0 and stop.
If a is the code of a sentence A, compute the code b of the sentence
•A. Now for c 0, 1, 2, ... , check to see whether (a, c) E PRFH, and
then check whether (b, c) E PRFH. Continue this process until either
(a, c) E PRFH or (b, c) E PRFH. The process will stop after finitely
many steps because H, is complete, so either H I- A or H I- •A. If
(a, c) E PRFH we output 1 and stop, and if (b, c) E PRFH we output
0 and stop. This shows that His decidable. End of Proof.

Theorem 5.7.4 (Godel-Rosser Theorem) No consistent axiomatized
theory which includes WA is complete.

Proof: Suppose His an axiomatized theory which includes WA and
assume that His complete. By Lemma 5.7.3, His decidable, contra­
dicting Theorem 5.7.2. End of Proof.

. The Godel.: Rosser Theorem, like the First Incompleteness Theorem,
is stated entirely in terms of provability, and does not require the notion
of a wff being true in N.

The Godel-Rosser Theorem implies that there is no computable way
to add axioms one-by-one to PA in order to make it complete - even
if we are allowed to add infinitely many axioms. (In other words, we

5. 7. GODEL-ROSSER THEOREM 313

cannot find a list of such axioms whose codes are computed by an RM
program.) To see this, suppose we attempt to add axioms Ao,A1, ...
using some algorithm. Note that if instead we add the axioms Ao, Ao/\
Ai, ... we obtain a theory which has the same consequences as the first,
only now the codes of the new axioms are arranged in increasing order.

·By Exercise 2, the set of these codes is computable, and hence so is the
set of codes of

PA U {Ao, Ao/\ A1, ... }.

Thus, by the Godel-Rosser Theorem, the new theory is either inconsis­
tent or incomplete.

In contrast to the Godel-Rosser Theorem, there are several known
examples of theories H in the language of arithmetic which are con­
sistent, complete, and decidable. By the theorem, no such theory can
include WA. A trivial example is the theory Th(M) of all sentences
true in a finite model M. Two very important examples due to Tarski
are the theories Th(R) and Th(C) where R is the field of real numbers
and C is the field of complex numbers. Another important complete
decidable theory, due to Presburger, is the theory Th(N+) where N+
is the standard model of arithmetic in the vocabulary {O, s, +} without

the multiplication symbol *·
Using the results of this section, we can give another proof of Church's

Theorem, which was proved in Chapter 4.

Theorem 5. 7.5 (Church's Theorem) The empty theory in the lan­
guage of arithmetic is undecidable. That is, the set V of all codes of
valid sentences in the language of arithmetic is not computable.

Proof: Suppose the set of codes of valid sentences is decidable and is
computed by an RM program which we shall call VAL. We shall show
that WA would t,hen be decidable, thus obtaining a contradiction. The
proof depends on the fact that WA is a finite set of sentences. Since
WA is finite, we may form the sentence C which is the conjunction of
all sentences in the set WA. Then for each sentence A, we have

WAf=Aifandonlyiff=C A.

We describe an algorithm which would, under our hypothesis, deter­
mine whether an input a is the code of a sentence which is a valid

314 CHAPTER 5. THE INCOMPLETENESS THEOREMS

consequence of WA. First check whether a .is the code of a sentence.
If not, output 0 and stop. If a is the code of a sentence A, compute
the code c of the sentence C =? A. Then use the hypothetical program
VAL to decide whether or not C => A is valid. If so, then WA r A
and we output 1, and otherwise WA If A and we output 0. This
shows that WA would be decidable and contradicts Theorem 5. 7 .2.
Erid of Proof.

While Church's Theorem shows that the set V of codes of valid
sentences is undecidable, Theorem 5.6.3, shows that V is definable in
N and weakly representable. By contrast, the method of truth tables
shows that the set of codes of valid sentences in propositional logic is
computable.

We have seen that the set of codes of sentences true in the standard
model of arithmetic is not computable. Tarski improved this result by
showing that the set of codes of true sentences is not even definable in
N:

5.8 Provability and Modal Logic

One of the innovations of the 1970's (forty years after Godel's discovery
of the Incompleteness Theorems) was an application of a simple kind
of logic - called modal logic to investigate questions of provability
in arithmetic. This approach allows one to study the Incompleteness
Theorems without the rather involved machinery of Godel numbering.
We shall describe this approach here and use it to prove Godel's Second
Incompleteness Theorem.

The rest of this chapter is organized as follows: In this section we
describe modal logic, an interpretation of modal wffs as sentences of
arithmetic, and a broad class of theories of arithmetic which are needed
to define this interpretation precisely. In 5.9 we describe modal tableau
proofs and discuss various axioms for modal logic which express certain
essential properties of "provability." In 5.10 we revisit the First Incom­
pleteness Theorem. In 5.11 we prove Godel's Second Incompleteness
Theorem and discuss several related results.

We begin our study of modal logic with a language which has as
its primitive symbols those of propositional logic together with a new

5.8. PROVABILITY AND MODAL LOGIC 315

symbol D which is a formal counterpart of the predicate "is provable
from H," where H is some theory in the language of arithmetic, like
WA or PA. The symbol D will allow us to formulate modal axioms
which express essential properties of provability without involving us
in the details of codes.

We want each propositional symbol in modal logic to stand for a
sentence in the language of arithmetic, but we will not be concerned
with the inner structure of the sentences. To accomplish this, we shall
simply take the sentences in the language of arithmetic themselves to be
the propositional symbols of our modal logic. We shall use the capital
boldface letters P, Q, ... to stand for arbitrary propositional symbols of
modal logic (we shall stop using them for RM programs). Lower case
boldface letters will be used for numerals. Thus in our modal logic,
P, Q, ... will stand for sentences in the language of arithmetic, but we
do not have to specify which sentences.

Formally, modal logic is obtained by adding a new symbol D, called
a modal operator, to propositional logic. The vocabulary of modal
logic consists of a set P of proposition symbols, as in propositional
logic. The primitive symbols consist of the proposition symbols just
described, the connectives and brackets of ordinary propositional logic,
and the symbol D . Any finite sequence of these primitive symbols is
a string. A modal wff is a finite string obtained by finitely many
applications of the following rules of formation:

(Modal:P)

(Modal:•)

(Modal:D)

(Modal:/\, V, =>, {:})

Any proposition symbol is a modal wff

If A is a modal wff, then --iA is a modal wff

If A is a modal wff, then DA is a modal wff.

If A and B are modal wffs, then [A*B]
is a modal wff whenever* E {A, V, =>, {:} }.

For the set P of propositional symbols we take the set SENT(£) of
sentences in the vocabulary C of arithmetic. We shall let F denote the
false· sentence -,Q = 0 of arithmetic. Thus F is a particular proposition

316 CHAPTER 5. THE INCOMPLETENESS THEOREMS

symbol of modal logic as well as a sentence of arithmetic. The set of
all modal wffs will be denoted by WFF('P).

· Modal wffs and the logic associated with them can be interpreted
in a variety of ways; originally modal logic arose (starting as far back
as Aristotle) as an attempt to formalize the idea of necessary truth:.
Given a proposition P about the world, if P happens to be true, is it
necessarily true? Around 1910, C.I. Lewis introduced the symbol D
as a new operator in propositional logic to give formal expression to
this notion of necessity. Thus, for any proposition P, DP was to be
understood as saying "it is necessary that P (holds)." Since then, this
operator has been interpreted in a number of different ways and various
axiom systems have been developed to formalize these interpretations;
D has been interpreted as "it is necessary that," "it is provable that,"
and "it is computable that"; in his popularized treatment of the Incom­
pleteness Theorems, Smullyan [1987] interprets D as "it is believable
that." In this chapter, we shall interpret D as "it is provable from H
that," where H is a pre-determined set of sentences of arithmetic.

We now take up the question of how to assign meaning to our modal
wffs, i.e., the question of semantics'. In the logics we considered in
earlier chapters, the question was answered by developing a theory of
models for the particular logic we were studying. A similar approach
(see Boolos [1979] or Smorynski [1985]) could be carried out here but is
unnecessary for our purposes; another kind of interpretation is already
suggested by the fact that our proposition symbols denote sentences of
.arithmetic. We shall show that we can inductively assign a sentence
of arithmetic to each modal wff in such a way that connectives are
preserved and the symbol D has our intended meaning "provable from
H." We shall call this association an arithmetical interpretation
of modal logic. This interpretation will depend only on the choice
of a proof formula PRFH for H. Each modal wff A will have an
interpretation J(A) which is a sentence the language of arithmetic, and
the proof formula for H will play a special role in this interpretation.

Because of the inductive nature of the definition of the arithmetical
interpretation, we need an Inductive Definition Principle for modal wffs
and, as usual, this requires a Unique Readability Theorem. The proofs
of these are virtually the same as their analogues in propositional logic;
proofs at the D-stage of each argument proceed like the •-stage of the

5.8. PROVABILITY AND MODAL LOGIC 317

corresponding proof in propositional logic. We leave the details to the
reader; see Exercise 12.

Definition 5.8.1 Let H be an axiomatized theory with a proof for­
mula PRFH. By the arithmetical interpretation of modal logic by
PRFH we mean the function

I : WFF('P) ~ SENT(£),

where[, is the vocabulary of arithmetic, defined recursively as follows.

Basis For each proposition symbol P, I(P) = P.

Negation J(•A) •l(A).

·Binary connective For each binary connective*,

J([A * B]) = [J(A) * J(B)].

Modal operator J(DA) = 3y PRFH(a, y),

where a= #(I(A)) is the code of the sentence J(A).

From now on, it will be understood that I is an arithmetical inter­
pretation of modal logic by PRFH, where H is a given axiomatized
theory and PRFH is a given proof formula for H.

Definition 5.8.2 Let H be an axiomatized theory and let PRFH be
a proof formula for H. We say that a modal wff C holds for PRFH
if its arithmetical interpretation J(C) by PRFH is true in N. If the
proof formula PRFH is clear from the context, we say that C holds
for H if it holds for PRFH.

The following corollary shows that DA has our intended meaning
under the arithmetical interpretation by PRFH.

Corollary 5.8.3 (Arithmetical Interpretation Theorem) Let
. PRFH be a proof formula for H. For every modal wff A, the following

are equivalent:

318 CHAPTER 5. THE INCOMPLETENESS THEOREMS

. (i) DA holds for H, i.e. N f= J(DA).

(ii) J(A) is provable from H, i.e. Hr- J(A).

(iii) J(DA) is provable from WA, i.e. WA r- !(DA).

Proof: Let a be the code of the wff J(A). Then !(DA) is the sentence
3y PRFtt(a, y). By Theorem 5.6.3, conditions (i)-(iii) are equivalent.
End of Proof.

The Arithmetical Interpretation Theorem can be used to translate
a statement saying that a modal wff holds for H to a statement about
provability from H. If A is a simple modal wff where there are no boxes
within boxes, the translation is done by replacing each DP within A by
"H r- P." To make the translation more readable, we shall sometimes
write H r- P in either of the long forms

"H proves P"

or

"P is provable from H."

Example. Consider the modal wff

A: DP/\ D[P =? Q] =? DQ.

"A holds for H" translates into:

If H r- P and H r- [P =? Q] then H r- Q.

This is the Rule of Modus Ponens, which is true for any theory H by
the Completeness Theorem.

If the modal wff A has nested boxes, the translation is more difficult
and involves codes and the proof formula for H.

Example. Consider the modal wff DDP. Intuitively, DDP says "H
proves that P is provable from H.'' By the Arithmetical Interpretation

5.9. MODAL SYSTEMS AND TABLEAUS 319

Theorem, DDP holds for H if and only if H proves J(DP). We shall
c~mpute!(DP) and J(DDP). Let p be the code of P. Then

J(DP) = 3y PRFtt(P, y).

Therefore D DP holds for H if and only if

Hr- 3y PRFtt(p, y).

Now let c be the code of 3y PRFtt(p, y). Then c is the code of J(DP),
so

J(DDP) = 3y PRFtt(c, y).

5.9 Modal Systems and Tableaus

·We now embark on a discussion of those properties which hold for prov­
ability, and formulate them as axioms for a modal logic. One property
of provability in both propositional and predicate logic is that for any
hypothesis set H, if H r- A and H r- [A =? B], then H r- B. This is
called the Rule of Modus Ponens and follows from the Completeness
Theorem. Thus, we treat the following list of modal wffs as axioms:

DA/\ D[A ::::> B] =? DB, for any modal wffs A, B.

Another property of provability that we wish to formalize is that all
propositional tautologies are provable. Thus, we would like to say that
DA is an axiom for each modal wff A such that A is a "tautology."
In our modal language, what we mean by a tautology is a modal wff
having the form of an ordinary tautology of propositional logic. For
instance,

[P /\ Q] =? p

is a tautology of propositional logic, so

DA/\ [DAV DDB] =? DA

is a modal tautology. (Here, we have replaced P with DA and Q with
DAV DOB.) .

Here is a formal definition of modal tautology.

320 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Definition 5.9.1 A modal tautology is a modal wff C such that
for some tautology D of ordinary propositional logic with the proposi­
tion symbols Pi, ... , P n and some list of modal wffs Ai, ... , An, C is
obtained by replacing each occurrence of Pi in D by Ai for i 1, ... , n.

We remark that neither of the wffs

D[P V •P], DP V o-,p

is a modal tautology, (although DP V ,op is). The first of these
modal wffs is "true," that is, /(D[P V 1 P]) is true for any P under any
arithmetical interpretation of modal logic, because for any H, P V ,pis
provable from H, but the wff does not satisfy the criterion for a modal
tautology. The second wff, however, is not even true in general. For
example, let us take H to be WA and P to be the proposition symbol
which stands for the sentence Vx 0 * x = 0. We have seen in Chapter 3
that the sentence Vx 0 * x = 0 is true in some models of WA and false
in others, so that neither P nor ,p is provable from WA. Thus the
sentence J([DP V D·P]) is false for the arithmetical interpretation of
modal logic by PRFwA·

In this and the next section we shall study four axiom systems for
modal logic, called Mod(O), Mod(l), Mod(2), and Mod(3). Other
systems will;be introduced in the exercises. The axioms will express
properties which "ought" to be true about provability. The first of
these axiom systems, Mod(O), has an axiom expressing the fact that
each modal tautology is provable and an axiom expressing the rule of
modus ponens. The other systems add more axioms which we shall
discuss later oii. We shall list all four systems here so they will be easy
to look up, even though we shall need only the first system Mod(O) at
this time.

Definition 5.9.2 1 The modal system Mod(O) has the following two
axiom schemes.

(tt) DC for every modal tautology C.

the literature, the modal system having axiom schemes (tt), (mp), (n), and
(fmp) is known as (I_Ilodal system) I<. Mod(3) is known as J<4 •

5.9. MODAL SYSTEMS AND TABLEAUS 321

(mp) DA/\ D[A => B] =>DB for all modal wffs A and B.

The modal system Mod(l) has as axioms those of Mod(O) together
with the axiom scheme

(n) DA=> DOA for every modal wff A.

The modal system Mod(2) has as axioms those of Mod(l) together
with the axiom scheme

(s) DOA* DA for all modal wffs A.

The modal system Mod(3) has as axioms those of Mod(l) together
with the following axiom schemes for all modal wffs A and B:

(fmp) D[[DA /\ D[A => B)] =?DB].

(fn) D(DA => ODA).

(tt) stands for tautology, (mp) for. modus ponens, (n) for nor­
mal, and (s) for soundness. (fmp) stands for formalized mod us
ponens and (fn) for formalized normal.

Each of the· above modal axiom schemes is actually an infinite list
of modal wffs. Each of these individual wffs is an axiom of the corre­
sponding modal logic, and is called an instance of the axiom scheme.
Note that axiom (s) is included among the Mod(2) axioms, but is not
included among the axioms of Mod(3). We have

, Mod(O) c Mod(l), Mod(l) c Mod(2), Mod(l) C Mod(3).

Definition 5.9.3 For each modal system Mod(k), k = 0, 1, 2, 3, we
define a Type k theory to be an axiomatized theory H in the language
of arithmetic with a proof formula PRFH such that Mod(k) holds for
H, that is, the arithmetical interpretation of each Mod(k) axiom by
PRFH is true in N.

Proposition 5.9.4 Every axiomatized theory is a Type 0 theory.

322 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Suppose that H is an axiomatized theory. First let C be a
modal tautology, so that DC is an instance of axiom scheme (tt). Then
C is obtained from a tautology D of propositional logic by replacing
propositional symbols P 1 , •.• , P n by modal wffs A 1 , •.. , An. By the
Completeness Theorem for propositional logic, D has a propositional
tableau proof T. By replacing each propositional symbol Pi by the
modal wff Ai in T, we obtain a modal tableau proof T' of C using only
the propositlonal tableau rules. Replacing each modal wff B in T' by
the wff I(B), we obtain a tableau proof of I(C). Thus I(C) is tableau
provable from the empty set of hypotheses, and hence tableau provable
from ,H. By the Arithmetical Interpretation Theorem, !(DC) is true
inN.

Now consider an instance DA/\ D[A ::::> B] ::::> DB of axiom
scheme (mp}. We have

/([DA/\ D[A =? B]) =?DB)

[!(DA)/\ /(D[A =? B])] ::::> !(DB).

Suppose that /(DA) and I(D[A =? B]) are. true in N. By the
Arithmetical Interpretation Theorem, both I(A) and I(A =? B) are
tableau provable from H. Moreover,

I([A B]) = [I(A) =? I(B)].

Therefore by the Completeness Theorem 3.5.2, I(B) is tableau prov­
able from H. Thus by the Arithmetical Interpretation Theorem, !(DB)
is true in N. This shows that /([DA/\ D(A ::::> B]] ::::> DB) is true in
N as required. End of Proof.

To prove consequences of Mod(k), we again use the tableau method.
A modal tableau of type k, or Mod(k) tableau, is defined as

in propositional logic except that we add to the usual list of tableau
extension rules the following rule:

Any axiom of Mod(k) can be added at the end of a branch
(where k 0, 1, 2, or 3).

5.9. MODAL SYSTEMS AND TABLEAUS 323

(We have seen this sort of tableau rule before; the Equality Rule I =3 I
similarly allows any node to be extended by an axiom.) As before, we
declare a branch of a tableau to be contradictory if for some modal wff
A, both A and -iA occur on the branch; a Mod(k) tableau proof is
then defined in the usual way. If there is a Mod(k) tableau proof of
the modal wff A, we write

1-k A.

Likewise, if J is a set of modal wffs and there is a Mod(k) tableau
proof of A from J, we write

JhA.

In this book, we shall only consider finite modal tableaus.
The TABLEAU program is equipped to accept modal wffs and exe­

cute the Axk rules. To run the modal logic version of the TABLEAU
program, c oose "start a MODAL tableau" at the title screen. You will
then be able to enter wffs of modal logic as hypotheses and as formulas
to be proved, and to use the axioms of modal logic in tableau proofs.
To enter a D as part of a modal wff, you can either hit the# key, type
in the word BOX, or hold the Ctrl key down and hit B. To use a modal
axiom in a tableau, hit the A key at the end of a branch in Tableau
mode, and then choose the desired axiom scheme from the menu.

What information do tableau proofs in modal logic give us? In
propositional and predicate logic, the tableau method provided a con­
venient procedure for checking whether a sentence was a semantic con­
sequence of a given hypothesis set. Modal proofs can also be under­
stood in this way by introducing a notion of a model for modal logic.
Instead, we shall understand modal proofs by going back to our arith­
metical interpretation of modal logic. The following proposition is like
the Soundness Theorem for propositional logic, and can be proved by
induction on the number of nodes of a tableau.

Proposition 5.9.5 If there is a tableau proof of a modal wff C i~ the
·modal system Mod(k), then for any Type k theory H, C holds for H.

324 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Thus a Mod(k) tableau proof tells us that a modal wff holds for all
·Type k theories. By Proposition 5.9.4, a Mod(O) tableau proof tells
us that a modal wff holds for all axiomatized theories.

A corresponding completeness theorem can also be formulated; ·see
Exercise 24.

We shall now use modal tableaus to prove some lemmas which will
be used later for the incompleteness theorems. In most cases we shall
only sketch the main steps of the proof, and leave the construction of
a formal tableau proof as a problem using the TABLEAU program.

We state our first lemma formally in modal logic, and then give an
English translation in terms of provability from an axiomatized theory
H. Since this is our first lemma, the full tableau proof will be given in
the text.

Lemma 5.9.6 f- 0 D[P /\ Q] => [DP/\ DQ]
IJH f- P /\ Q, then Hf- P and Hf- Q.

Proof: Here is an informal proof expressed in terms of provability
from H. Suppose H f- P /\ Q . Since P /\ Q => P is a tautology, it
is provable from H. By Axiom Scheme (mp), Hf- P . Likewise, since
H f- P /\ Q => Q , H f- Q . The formal modal tableau proof appears
on the next page.

5.9. MODAL SYSTEMS AND TABLEAUS 325

(1) •[D[P /\ Q] =>[DP/\ DQ]]

I
D[P /\ Q]

II

(2)

(3) •[DP/\ DQ]

(4) •DQ

I
D[P /\ Q:::;. Q]

(4') .op

I
D[P/\Q::::>P]

I

(5') (5)

(6)D[P /\ Q] /\ D[P /\ Q => P] =? DP

D[P /\ Q] /\ D[P /\ Q => Q] => DQ (6')

(7) •[D[P /\ Q] /\ D[P /\ Q => P]] DP

•[D[P /\ Q] /\ D[P /\ Q => Q]] DQ (7')

(8) 0 D[P /\ Q] ·D[P /\ Q:::;. P]

·D[P /\ Q] ·D[P /\ Q => Q] (8')

326 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Justification of nodes: (1): negation of the formula to be proved.
(2) and (3): by (1). (4) and (4'): by (3). (5) and (5'): by (tt). (6) and
(6'): by (mp). (7): by (6). (7'): by (6'). (8): by (7). (8'):by (7').
End of Proof.

Remarks (a) First of all, notice that the availability of the I Ax0 j rule
allows us to start with an empty hypothesis set: Since we are allowed to
introduce any instance of our axiom schemes at any node, we are saved
the inconvenience of having to figure out in advance which axioms to
use as our hypothesis set.

(b) The tableau proof above exhibits a pattern which will recur
in future proofs: We begin the tableau construction by using all the
usual tableau extension rules for p.ropositional logic until each node
is occupied by a 0-wff (i.e. a modal wff of the form DC). Since a 0-
wff cannot be broken down further using propositional tableau rules, we
must come up with an instance of one (or possibly several) of our modal
axiom schemes that can be used in conjunction with further applica­
tions of propositional tableau rules to extend the branch in question.
We continue extending branches until we reach another D-wff, and then
we repeat the process (unless the branch we are on is contradictory, in
which case we move, as usual, to another branch).

Often, the difficult part in the construction is to find the right tau­
tology so that Axiom Scheme (tt) can be used. Recall that in Chapter
1, two methods were developed to show that a propositional wff is a
tautology - the truth table method and tableau proofs. These methods
can now be used to verify that the (tt) axiom is being used correctly in
a modal tableau proof. First, check that the original propositional wff
is a tautology either by using truth tables, tableaus, or by finding the
wff in one of the lists of particular tautologies developed in Chapter 1.
Then make a substitution to get a modal tautology C, and conclude
that DC is an instance of Axiom Scheme (tt).

The TABLEAU program makes sure that the (tt) axiom is used
correctly. Before adding a wff DC as an instance of (tt) in a modal
tableau, you must show that C is a propositional tautology. The pro­
gram automatically starts a temporary tableau with root,c for this
purpose.

5.9. MODAL SYSTEMS AND TABLEAUS 327

The next lemma is the converse of Lemma 5.9.6.

Lemma 5.9. 7 1--o [DP /\ DQ] =} D[P /\ Q]
If each of P and Q is provable, so is P /\ Q.

Proof: Use the tautology

p =} [Q =} [P /\ Q]]

to apply Axiom Scheme (tt). Then apply Axiom Scheme (mp) twice,
once with A = P and B = [Q =} [P /\ Q]], and once with A = Q and
B = [P /\ Q]. The Computer. Problem 1. TBM asks for a tableau proof.
End of Proof.

The next lemma gives an analogue of Lemma 5.9.6 for the connective
and an analogue of Lemma 5.9.7 for V.

Lemma 5.9.8 (a) 1--0 D[P Q] =}[DP=} DQ]
IfH I- P =} Q and HI- P, then HI- Q.

{b) l-- 0 [DP V DQ] =} D[P V Q].
/

I

lfH I- P or HI- Q, then H 1-- P V Q.

Proof: To prove (a), use the tautology

[P =} [Q =} R]] 9 [[P /\ Q] R]

and Axiom Scheme (mp). The formal tableau proof is left for the
student as Computer Problem 2.TBM.

To prove {b), use the tautologies

P P V Q and Q =} P V q.

The formal tableau proof is computer problem 3. TBM. End of Proof.

Example. The converses of the statements in Lemma 5.9.8 do not
follow from the axioms of Mod(O). We have already seen that if H is

328 CHAPTER 5. THE INCOMPLETENESS THEOREMS

the axiomatized theory WA, P is the sentence Vx 0 * x = 0 and Q is
,p, then the sentence ·

J(D[P V Q] =:;,.[DP V DQ])

is false in N. Thus the modal wff

D[P V Q] =:;,. [DP V DQ)

cannot have a Mod(O) tableau proof.
The verification that the converse of part (a) is also false is left to

the reader as Exercise 15.

We plan to use the modal wffs from the preceding lemmas as hy­
potheses in later modal tableau proofs. To justify this, we need the
following theorem, which is the modal form of the Learning Theorem
from Chapter 2.

Theorem 5.9.9 (Learning Theorem) Let J be a finite set of modal
wffs and let A be a modal wff. For each of our modal systems Mod(k)
if h C for each C E J and J h A then h A. '

Proof: Let K be the set of all Mod(k) axioms B such that for some
C E ~' either B is used in the modal tableau proof for h C, or B is
used m the modal tableau proof for J I-k A. By moving all the nodes
containing these axioms up into the root node, we obtain ordinary
propositional tableau proofs for K I- C, all C E J, and for J UK I- A.
As we saw in Exercise 24 in Chapter 1, there is a propositional tableau
proof for K I- A. Moving the modal axioms K back down from the
root node, we obtain a Mod(k) tableau proof for h A as required.
End of Proof. · ·

The following theorem is often useful in combination with the Learn­
ing Theorem as an aid in proving new results from old results.

Theorem 5.9.10 (Modal Substitution Theorem) Suppose a
modal wff C has a Mod(k) tableau proof from a set of modal wffs J.
Let A1, ... , An be modal wffs and let C', J' be formed from C and J
by replacing each occurrence of the propositional symbols P 1 , •.. , P n by
the wffs Ai, ... , An. Then C' has a Mod(k) tableau proof from J'.

5.9. MODAL SYSTEMS AND TABLEAUS 329

We leave the proof of this theorem as Exercise 14. The main steps are
to check that if C is a modal axiom then C' is a modal axiom, and that
if T is a modal tableau proof of C from J, then T' is a modal tableau

proof of C' from J'.
Most of the modal wffs proved in our lemmas contain one or two

propositional symbols P and Q. The Modal Substitution Theorem
shows that the same wffs with P and Q replaced by arbitrary modal wffs
A and B are also provable in modal logic. For example, Lemma 5.9.6
combined with the Modal Substitution Theorem shows that

l-0 D[A AB) :::} [DA A DB)

for any modal wffs A and B whatever. Now by the Learning Theorem·,
any modal wff C which has a Mod(O) tableau proof with the above wff
as a hypothesis also has a Mod(O) tableau proof with no hypotheses

at all.

We now turn to the modal system Mod(l). Recall that the modal
system Mod(l) has as axioms those of Mod(O) together with the

axiom scheme

(n) DA=:;,. ODA (for every modal wff A).

The Axiom Scheme (n) expresses another reasonable property of
provability: if a sentence is provable from H, it ought to be provable
from H that it is provable.

The next result shows that WA and PA are Type 1 theories.

Proposition 5.9.11 Any axiomatized theory which contains all the ax­
ioms of WA is a Type 1 theory.

Proof: Given an axiomatized theory H, we must $how that the modal
axiom scheme (n) holds for H. Let A be any modal wff. Thus for each
modal wff A, we must show that J(DA =:;,. ODA) is true in N. We
have .

J([DA ODA))= [J(DA) =:;,. J(DDA)).

330 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Suppose that J(DA) is true in N. By the Arithmetical Interpretation
Theorem, the sentence J(A) is tableau provable from H. Let a be the
code of J(A). By Theorem 5.6.3,

WA l- 3yPRFH(a,y).

Under the arithmetical interpretation by PRFH, we have

J(DA) = PRFH(a,y).

Since H contains all the axioms of WA, H l- J(DA). Now by
the Arithmetical Interpretation Theorem again, J(DDA) is true in N.
Therefore J(DA ::::} ODA) is true in N, so the modal axiom scheme
(n) holds for H. End of Proof.

We conclude this section with a discussion of the modal system
Mod(2), which is obtained from Mod(l) by adding the axiom scheme

(s) DA for all modal wffs A.

This axiom scheme, called the soundness scheme, says that if H
proves that P is provable then H proves P. More precisely, H is a
Type 2 theory if and only if H is a Type 1 theory and for each A, if
H l- J(DA) then H l- J(A).

Recall that a theory H is called sound if every sentence which be­
longs to His true in Af. Since WA and PA are sound, the next result
shows that WA and PA are Type 2 theories.

Proposition 5.9.12 Every sound Type 1 theory is a Type 2 theory.

Proof: Let H be a sound Type 1 theory. Consider a modal wff A.
Suppose J(DDA) is true in N. By the Arithmetical Interpretation
Theorem, H l- J(DA). Since His sound, J(DA) is true in N. Therefore
J(DDA::::} DA) is true in N as required. End of Proof.

In Exercise 23, a strengthening (ss) of the axiom scheme (s) is in­
troduced and it is shown that for a Type 1 theory H, His sound if and
only if (ss) holds for H.

5.10. FIRST INCOMPLETENESS THEOREM REVISITED 331

5.10 First Incompleteness Theorem Re­
visited

In this section we shall revisit the First Incompleteness Theorem from
the viewpoint of modal logic. The provability operator D in modal
logic lets us avoid some of the complicated details involving codes of
proofs in formal arithmetic, and for this reason it helps to illuminate
the essential ideas in the incompleteness theorems.

To state the incompleteness theorems in modal logic, we need to
formalize the statement

H is consistent

as well as the Godel sentence Ac. A theory H is consistent if and only
if the false sentence F is not provable from H. Thus, ConH can be
formalized by the modal wff

-.OF.

A theory H is consistent if and only if ---, DF holds for H.
As for the Godel sentence Ac, we can formalize the statement "This

sentence is unprovable" by obtaining a modal proposition symbol P
for which P {::} ...,op holds (intuitively, "P holds if and only if P is
unprovable"). For P to be a Godelian sentence for H, the information
that P asserts its own unprovability must be provable from H. Thus
the formal version of our Godelian sentence becomes:

D[P {::} -.DP]

"H proves that P asserts its own unprovability from H." .
Using the Arithmetical Interpretation Theorem, we see that each of

the following conditions is equivalent to P being a Godelian sentence
for an axiomatized theory H (for a given proof formula PRFH)·

D[P {::} holds for H,

332 CHAPTER 5. THE INCOMPLETENESS THEOREMS

H f- J(P {::} ·DP),

Hf- P {::} •!(DP).

We shall break the modal logic form of the First Incompleteness
Theorem into two parts. We begin with Part I. It is similar to Theo­
rem 5.6.10. However, it avoids the soundness assumption and involves
only the notion of provability, and thus can be expressed in our modal
logic and formalized in arithmetic.

Theorem 5.10.1 (First Incompleteness Theorem, Part I)

f-i D(P {::},op] => [DP => DF).

If P is Godelian for a Type 1 theory H and H proves P, then H is
inconsistent.

Proof: Here is an informal proof. Assume D[P {::},op] and DP.
Then o--.op by (mp). Also, DDP by (n). Thus DDP an:d o....,op, and
so DF.

A rigorous proof in modal logic is given by two tableau problems.
Problem PARTLTBM gives a Mod(l) tableau proof of the desired w:ff

D[P {::},op] => [DP => DF]

from the two hypotheses

D[P {::}·DP]=> D[P =>·DP],

[DDP /\ D1DP] => D[DP /\·DP].

Problem 4.TBM gives a Mod(O) tableau proof of the first hypothesis.
The second hypothesis is Mod(O) tableau provable by Lemma 5.9.7
and the Modal Substitution Theorem. Then by the Learning Theo­
rem, the conclusion is Mod(l) tableau provable with no hypotheses.
End of Proof.

Part II of the First Incompleteness Theorem says that we can replace
the strong hypothesis of soundness in Theorem 5.6.10 by the (weaker)
axiom scheme (s) and arrive at the same conclusion. Moreover, like
Part I, Part II can be formalized in arithmetic; see Exercise 29.

5.10. FIRST INCOMPLETENESS THEOREM REVISITED 333

Theorem 5.10.2 (First Incompleteness Theorem, Part II)

f- 2 D[P {::} 1DP] => [D•P => DF].

If P is Godelian for a Type 2 theory H, and H proves,p, then H
is inconsistent.

Proof: We first give an informal proof.
Assume that D[P {::} ·DP] and D--.P. Since [P {::} 1 DP] implies

[•P {::} DP] using only propositional logic, D[1 P => DP]. By (mp),
DDP. By Axiom Scheme (s), DP, and by Part I of the First Incom­
pleteness Theorem, DF.

For a rigorous proof in modal logic, Computer Problem PART2. TBM
. gives a Mod(2) tableau proof of the desired conclusion

D[P {::}....,op]=> [D•P => DF].

from the two hypotheses

D[P ¢:>-.op]=> [DP=> DF],

D[P <=>--,DP) => D[·P => DP].

The first hypothesis is Part I of the First Incompleteness Theorem,
and Computer Problem 5. TBM shows that the second hypothesis has
a Mod(O) tableau proof. End of Proof.

Corollary 5.10.3 No consistent Type 2 theory is complete.

Proof: Let H be a consistent Type 2 theory. Then there is a Godelian
sentence P for H. Since His consistent, DF does not hold for H. Using
both parts of the First Incompleteness Theorem, we see that neither
DP nor o.p holds for H, so that H If P and H If •P.· Therefore H
is not complete. End of Proof.

334 CHAPTER 5. THE INCOMPLETENESS THEOREMS

5.11 Second Incompleteness Theorem

We now turn to Godel 's Second Incompleteness Theorem. This theorem
tells us that one of the sentences which is not provable from PA is
"PA is consistent"! Now since arithmetic is the basis for so much of
mathematics, one would hope that PA is consistent. Of course, once
we know that N f= PA, we know PA is consistent; but Godel's Second
Incompleteness Theorem tells us that the statement "N f= PA" cannot
be formalized and proved within PA. But then how does one ever
prove "N f= PA" formally? In particular, how does one construct the
model N formally? (Once the model is constructed, it is easy to see
that it satisfies PA). A reasonable approach is to formalize arithmetic
and the notion of a model of arithmetic within set theory, say ZFC.
Then the formal statement corresponding to "N f= PA" can be proved
in ZFC; hence, according to ZFC at least, PA is consistent. But, is
ZFC consistent? Godel's proof of the Second Incompleteness Theorem
can be adapted to show that no proof of the consistency of ZFC can be
formalized within ZFC! (See Enderton [1972].) One can, however, work
within an even more powerful theory than ZFC to prove formally the
consistency of ZFC, but again the consistency of this stronger theory
remains problematic. More significantly, the proof of consistency for
each of the theories mentioned becomes progressively more difficult
and requires more and more machinery.

The moral of these remarks is that the truly endless search for an
all-embracing formal system in which all mathematics can be proved
consistent is doomed to failure: once a system is rich enough to prove
the Peano axioms, it is rich enough for Godel's Second Incompleteness
Theorem to apply.

It would seem that Godel's incompletenes.s theorems force us to the
viewpoint that any answer to the question

Is mathematics consistent?

must rely in part on non-formal methods. "Mathematical intuition" is
an example of such a method: It is a widespread belief among math­
ematicians that certain mathematical structures are so natural that
they need not be formally constructed in order for us to be certain of

5.11. SECOND INCOMPLETENESS THEOREM 335

their mathematical soundness. Nearly all mathematicians agree that
small natural numbers (that can be computed on a computer, say) and
computable operations on them can safely be assumed without intro­
ducing inconsistency. A slightly stronger claim is that the existence of
the standard model N of arithmetic is a self-evident truth. Nearly all

·working mathematicians make this assumption in their mathematical
practice (whether or not they speak of this philosophical stance, their
work reflects this assumption). Once this position is granted, of course,
we have the consistency of PA given to us - not formally - but by an
"a priori mathematical intuition" of the model N. Still stronger is
the claim that ZFC is consistent; again the justification is the belief
in a certain fairly natural model of the ZFC axioms (in Exercises 2.51
and 2.52, the first few levels of this model are constructed). A milder
claim is that while ZFC as a whole may be inconsistent, at least that

· finite fragment of it which has been used to prove the theorems of our
present-day mathematics is consistent.

We do not raise these issues here with the intention of providing
a final answer; philosophies among both mathematicians and philoso­
phers regarding these questions vary widely. Our discussion is intended
mainly to offer the reader a sense of the tremendous foundational im­
pact of Godel's work.

The proof of the Second Incompleteness Theorem is essentially a
formalized version of the first part of the First Incompleteness Theorem:
In part I of the First Incompleteness Theorem, the wff

DP=? DF

is proved in Mod(l), assuming P is Godelian. The Main Lemma for
the Second Incompleteness Theorem will prove the wff

D[DP ==? DF],

in the stronger modal system Mod(3), again assuming P is Godelian.
Intuitively, this can be accomplished by showing that each step of the
proof of (*) can be formalized. For this kind of proof to work, we
need to assume as axioms formalized versions of our Mod(l) axioms.
Thus· we are led to postulate formalized versions of Axiom schemes of

336 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Modus Ponens (mp) and Normality (n) as the two new axiom schemes
·of Formalized Modus Ponens (fmp) and Formalized Normality (fn).

We recall that the axioms for the modal system Mod(3) consists
of the axioms of Mod(l) together with these two axiom schemes,

(imp) D[(DA /\ D(A =>BJ]=> DB);
(Jn) D[DA => ODA].

Note that Mod(3) does not contain the Soundness axiom scheme (s).
It can be shown that PA is a Type 3 theory, but the details are

beyond the scope of this book. We state without proof a theorem
which gives us a rich collection of Type 3 theories.

Theorem 5.11.1 Any axiomatized theory H which contains all the ax­
ioms of PA is a Type 3 theory.

One interesting feature of Mod(3) is, as Smullyan [1987] describes
it, a kind of "self-awareness" - Mod(3) "knows" that it satisfies its
own axioms in the sense that for each axiom A of Mod(3), DA is
also provable in Mod(3). This makes Mod(3) an especially natural
system in which to prove formalized versions of modal theorems. We
now prove a theorem showing that Mod(3) is even more self aware -
it "knows" that each of its theorems is provable. This theorem is a
precise form of the intuitive principle that every Mod(3) tableau proof
can be formalized in Mod(3).

Theorem 5.11.2 (Self-Awareness Theorem) If A is a modal wff
and h A, then DA.

Proof: We first show that r 3 DK for each axiom K of Mod(3).
(mp): Let K be the axiom DA/\ D[A => B] =>DB. Then DK is an

instance of the Axiom Scheme (fmp) and thus has a Mod(3) tableau
proof.

(n): Let K be the axiom DA => ODA. Then DK is an instance
Axiom Scheme (fn) and hence has a Mod(3) tableau proof.

(tt), (fmp) and (fn): Let K be an instance of one of these three
axiom schemes. In each case, K has the form DC for some modal wff

5.11. SECOND INCOMPLETENESS THEOREM 337

C. Therefore DK is DOC, which has a Mod(3) tableau proof using
the two axioms DC and DC => DOC .

Now let A be any modal wff such that A. Then there is a
Mod(3) tableau proof of A. Let J be the finite set of modal axioms
which are used in this proof. By moving these axioms up to the root
of the tableau, we obtain a tableau proof of A from J which only uses
the tableau rules of propositional logic. Let E be the conjunction of all
the wffs in the set J. Then E => A is a modal tautology. Therefore
D[E => A] is a modal axiom (an instance of (tt)). Since each K E
J is a modal axiom, we have r 3 DK for each K E J. Using 5.9. 7
finitely many times, we see that r 3 DE. Finally, using the (mp) axiom
DE/\ D[E =>A]=> DA, we obtain the desired conclusion that h DA.
End of Proof.

The Self-Awareness Theorem may be combined with the Learning
and Modal Substitution Theorems to simplify Mod(3) tableau proofs.
All previous modal lemmas may now be used with a D in front. For
example, the Self-Awareness Theorem applied to Lemma 5.9.8 (a} gives

r3 D[D[P => Q] => [DP => DQ]].

(It is provable that if P => Q is provable, then whenever P is
provable, Q is also provable.)

The Learning Theorem allows us to add this wff as an extra hypoth­
esis in a Mod(3) tableau. Computer Problem 6.TBM asks for a formal
Mod(3) tableau proof of this wff (without using the Self-Awareness
Theorem).

Before proving the main lemma for the Second Incompleteness The­
orem, we need the following strengthening of Lemma 5.9.8 (a):

Lemma 5.11.3

r3 D(P => Q] => D[DP => DQ).

If a Type 3 theory H proves P => Q, then H also proves that {if H
proves P then H proves Qj.

Proof: Here is an informal proof. Assume D[P => Q]. By (n),
. DD[P =} Q]. We use the Self-Awareness Theorem to show that Lemrna 5.9.8

338 CHAPTER 5. THE INCOMPLETENESS THEOREMS

with a D in front is Mod(3) tableau provable, so we have

D(D[P :::} Q] :::} (DP :::} DQ]].

By (mp), it follows that D[DP:::} Q].
Computer Problem 7.TBM gives a Mod(l) tableau proof of the

conclusion
D[P =? Q]:::} D(DP =? DQ]

from the two hypotheses

D[D[P :::} Q] =? (DP =? DQ]],

D (D (P Q] :::} (DP :::} DQ]] :::} [DD [P :::} Q] :::} o (DP :::} D Q]].

The first hypothesis is Mod(3) tableau provable by Lemma 5.9.8 and
the Self-Awareness Theorem. The second hypothesis is Mod(O) tableau
provable by Lemma 5.9.8 and the Modal Substitution Theorem, because
it is

D(A =? B] :::} (DA DB]

with A D[P =? Q] and B =[DP:::} DQ]. End of Proof.

We now come to the Main Lemma.

Lemma 5.ll.4 (Main Lemma)

h D[P {:} •DP] D(DP :::} DF].

If P is Godelian for a Type 3 theory H, then H proves that if H proves
P then H is inconsistent.

Proof: Here is an informal proof. Assume that D[P {:} ·DP]. By
Lemma 5.11.3, we have D[DP =? D0 DP]. Axiom Scheme (fn) gives us
D[DP :::} DDP]. Now (fmp) can be used to prove that D[DP :::} OF].

Computer Problem MAIN.TBM gives a rigorous Mod(O) tableau
proof of the desired conclusion

D[P {:} -.DP] :::} D(DP:::} OF]

from the three hypotheses

D(P {:} -.DP] :::} D[P :::} ·DP],

5.11. SECOND INCOMPLETENESS THEOREM

D(P ::} ·DP] :::} D(DP ::} D·DP],

D[[DP:::} 0-,DP] =?[DP=? DF]].

339

The first hypothesis· is proved in the system Mod(O) in Computer
Problem 4.TBM. The second hypothesis is Lemma 5.11.3 with ,op for
Q. The wff after the D in the third hypothesis is proved in the system
Mod(l) in Computer Problem 8.TBM. The Self-Awareness Theorem
now shows that the third hypothesis has a Mod(3) tableau proof. Thus
by the Learning Theorem, the conclusion has a Mod(3) tableau proof.
End of Proof.

Now, at long last, we are ready to prove Godel's Second Incomplete­
ness Theorem.

Theorem 5.11.5 (Second Incompleteness Theorem)

h D [P {:} ·DP] =? (D·DF =? DF]

If P is Godelian for a Type 3 theory H, and H proves its own
consistency, then H is inconsistent.

Proof: Here is an informal proof. Assume Pis Godelian and D1 DF.
By the Main Lemma, D[DP =} DF]. Computer Problem 9.TBM shows
that this implies D[·DF ::} ·DP]. Then by (mp) we have D1 DP.
Since Pis Godelian, it follows that D[·DP:::} P]. By (mp) again, DP.
By the First Incompleteness Theorem Part I, DP =? DF. Therefore
DF as required.

For a modal tableau proof, Computer Problem SECOND.TBM gives
a Mod(O) tableau proof of the desired conclusion

D[P {:}-,DP] =? [D·DF :::} DF]

from. the hypotheses

D[P {:} -.DP] =? D(DP =? DF],

D[P {:}·DP] :::} D(·DP:::} P],

D[P {:},op] =? (DP=? DF],

D(DP:::} DF] =} D(·DF =?·DP].

340 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The Main Lemma says that the first hypothesis has a Mod(3)
tableau proof, the second hypothesis has an easy Mod(O) tableau proof
similar to the Computer Problems 4. TBM and 5. TBM, the third· hy­
pothesis is Part I of the First Incompleteness Theorem, and Computer
Problem 9.TBM gives a Mod(O) tableau proof of the third hypothesis.
Since each hypothesis has a Mod(3) tableau proof, the conclusion is
Mod(3) tableau provable by the Learning Theorem. End of Proof.

We conclude this section by mentioning several additional results
which are worked out in the exercises.

First, we have shown that if P is Godelian for a Type 3 theory H
and if H is consistent, then H neither proves P (First Incompleteness
Theorem) nor •J(DF) (Second Incompeteness Theorem). We could
have proved the second of these from the first by proving the remarkable
fact that for such H, P and 1 J(DF) are provably equivalent! That is,

r3 D(P {:} 1DF).

This tells us that all Godelian sentences are equivalent! In other words,
if P and Q are both Godelian for a Type 3 theory H, then

Hr P {:} Q.

See Exercise 22.
The Second Incompleteness Theorem says that consistent Type 3

theories with a Godelian sentence cannot prove their own consistency.
But what about weaker theories? If we are content to replace consis­
tency with soundness, it can be shown that no sound axiomatized theory
with a Godelian sentence can prove its own soundness; see Exercise 24.

We have seen that the First Incompleteness Theorem tells us that
for sound Type 1 theories, a sentence which provably asserts its own
unprovability is unprovable, but true. What can be said about a sen­
tence which provably asserts its own provability? In other words, what
conclusions can be drawn from the modal wff

D[P {:}DP]?

Such a wff is called a Henkin sentence. The Diagonalization Lemma
shows that PA (and many other theories as well) has a Henkin sentence,

5.11. SECOND INCOMPLETENESS THEOREM 341

and a result known as Lob's Theorem demonstrates that such sentences
are always provable in PA (hence true). These matters are taken up
in Exercises 25 and 27.

As we observed earlier, the proof of the Second Incompleteness The­
orem is largely a formalization of the proof of the first half of the First
Incompleteness Theorem. Can a formalized version of the second half of
the First Incompleteness Theorem be proved? What about a formal­
ized version of the Second Incompleteness Theorem? We investigate
these questions in Exercise 29.

Our proof of Godel's First Incompleteness Theorem depended on the
construction of some version of a Godelian sentence. As we explained
earlier, Godelian sentences express in the formal language of arithmetic
the proposition "I am unprovable." The original form of this latter
proposition is known as the Liar Paradox: "This sentence is false." It
has the property that it's true if and only if it's false, and is therefore a
primitive version of a Godelian sentence. It is possible to prove versions
of the First Incompleteness Theorem using a formalized translation of
another famous paradox Berry's Paradox - quite different in spirit
from the Liar Paradox and its variations.

Berry's Paradox arises from the following consideration: Suppose
you are asked to make a list of all natural numbers which can be de­
scribed using fewer than 100 keystrokes on a typewriter. The first few
natural numbers could be described by simply typing out the usual
base 10 numerals 0, 1, ... , 100, 101, ... , 10, 000, However, once we
reach numbers which have 100 or more digits, we might resort to En­
glish sentences which describe a procedure that would "compute" these
larger numbers. Thus, for example, "1 followed by 99 zeroes" describes
a number whose base 10 numeral is too long to type out. Now notice
that if we are allowed at most 99 keystrokes in a description, and our
typewriter has only, say, 70 keys, then only finitely many descriptions
are possible. Thus there is a natural number which cannot be described
using fewer than 100 keystrokes; and if there is such a number at all,
there must be a least such number n. Thus,

(*) n is the smallest natural number which cannot be described
using fewer than 100 keystrokes.

. But now (*) is a description of n which uses fewer than 100 keystrokes!

342 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The paradox is partially resolved by the fact that we have not been
very clear about which expressions count as "descriptions" of natural
numbers. The notion of "description" can, however, be made rigorous;
in fact, we gave a definition of what it means to "name" a natural
number in Exercise 3.9. Using this definition, Berry's Paradox has
a formal version which leads to a proof of the First Incompleteness
Theorem. In Exercise 30, we outline a proof (due to Boolos see
Boolos [1989]) of the First Incompleteness Theorem which uses this
formal version of Berry's Paradox.

For the reader who would like to do further reading in this area, we
recommend Smullyan [1987], Boolos [1979], and Smorynski [1985].

5.12 Modal Tableau Problems (TAB7)

In these problems the reader is asked to use the TABLEAU program to
work out the indicated proofs. The modal system is given. The problem
files are located in directory TAB7 on the distribution diskette, and the
install program will put them in a subdirectory called TAB7 on your
hard disk.

5.12. MODAL TABLEAU PROBLEMS (TAB7) 343

1.TBM Hypotheses: none
To be proved: (DP A DQ] => D(P A Q]
Modal System: Mod(O)
Can be done in 15 nodes.

2.TBM Hypotheses: none
To be proved: D[P => Q] =>(DP=> DQ]
Modal System: Mod(O)
Can be done 9 nodes.

3.TBM Hypotheses: none
To be proved: (DP V DQ] => D(P V Q]
Modal System: Mod(O)
Can be done in 16 nodes.

4.TBM Hypothesis: D[P? ·DP]
To be proved: D(P -,DP]
Modal system: Mod(O)
Can be done in 6 nodes.

5.TBM Hypothesis: D(P? ·DP]
To be proved: D[-,p =>DP]
Modal· System: Mod(O)
Can be done in 6 nodes.

6.TBM Hypotheses: none
To be proved: D(D[P => Q] =>(DP=> DQ]]
Modal system: Mod(2)
Can be done in 7 nodes.

344 CHAPTERS. THE INCOMPLETENESS THEOREMS

7.TBM Hypotheses: [D[D(P =? Q] =? (DP =? DQ])
D(D(P =? Q] =? (DP =? DQ]) =? (DD(P =? Q] =? D(DP =? Q]]
To be proved: D(P =? Q] =? D(DP =? DQ]
Modal System: Mod(l)
Can be done in 9 nodes.

8.TBM Hypotheses: none
To be proved: [DP =? D-.DPJ => (DP => DF)
Modal System: Mod(l)
Can be done in 22 nodes.

9.TBM Hypothesis: D(DP => DF]
To be proved: D[-.DF =? -.DP)
Modal System: Mod(O)
Can be done in 6 nodes.

10.TBM Hypotheses: None
To be proved: D (P {:} Q] =? (DP {:} DQ]
Modal System: Mod(O)
Can be done in 28 nodes.

PARTl.TBM Hypotheses: D[P {::} -.DP] =? (DP =? -.DP]
DDP /\ 0-.DP =? D(DP /\

To be proved: D[P {:}-.DP] =? [DP =? DF]
Modal System: Mod(l)
Can be done in 24 nodes.

PART2.TBM Hypotheses: D[P {:}-.DP] =? (DP=? DF]
D(P {:} -.DP) => D(-.P =? DP]

To be proved: D[P {:} 1DP] => [D-.P => oF].
Modal System: Mod(2)
Can be done in 18 nodes.

5.13. EXERCISES

Hypotheses:

To be proved:
Modal System:
Can be done in 11 nodes.

ECOND.TBM Hypotheses:

To be proved:
Modal System:
Can be done in 24 nodes.

5.13 Exercises

345

D[P {:}-.DP)=? D[P::::} -.DP]
D[P, =? 1DP] =? D[DP =? D1DP)
D((DP =? D-.DP] =? [DP =? DF])
D(P {:}-.DP] =? D[DP =? DF]
Mod(O)

D[P {:}-.DP] =? D(DP =? DF]
D[P =? 1DP] =? D(-.DP =? P]
D[P =? 1DP] =? [DP=? DF]
D((DP =? OF) ::::} D(-.DF =? -.DP]]
D[P {:} -.DP] =? [D1DF => DF)
Mod(O)

In the exercises for this chapter, all wffs are understood to be in the
language of arithmetic.

In Exercises 1 .. 3 below, the reader is asked to use Church's Thesis
to verify that certain functions associated with syntax are computable.

1. Use Church's Thesis to show that the partial function which sends
the code #(A) to the code #(•A), for each wff A, is computable.

2. Suppose f is a computable function and for all n, f(n) is the code
of a wff An. Suppose h is defined by

Show that h is computable. (Hint: Show that h is obtained from the
function (#(A), #(B)) 1-t #(A/\ B) by primitive recursion and use
Church's Thesis to show that the latter is computable.)

3. Use Church's Thesis to prove that the function which takes a pair
. (m, n), to #(A(n)) if m = #(A(v)) and n EN, and takes (m, n) to 0

. ·otherwise, is computable.

346 CHAPTER 5. THE INCOMPLETENESS THEOREMS

4. Prove that every theory H in the language of arithmetic which is
·consistent but not complete has an extension H' which is consistent
but not sound.

5.

(a) Suppose that f is a unary weakly representable partial function,
and the domain of f is representable (as a unary relation). Prove
that f is representable, and that f can be extended to a total
computable function.

(b) Give an example of a unary representable partial function f such
that f can be extended to a total computable function but the .
domain of f is not representable.

6.

(a) Show that the unary relation

E = { n : n is an even natural number}

is representable. Hint: Show that E is represented by the wff E,
given by

E(x) = ::=;xAx=z+z].

(b) Let B(x, y) be the wff given by

B(x,y) = -iE(x) A E(y) => -iE(x + y).

Intuitively, B says that if x is odd and y is even, then x + y is
odd. Show that for all m, n E N,

WA f- B(m,n).

(c) Let C be the sentence given by

C = VxVy [•E(x) A E(y) =? -iE(x + y)].

Intuitively, C also says that an odd plus an even is an odd. How­
ever, because no restriction has been placed on how the variables

5.13. EXERCISES 347

x and y are interpreted, the sentence C-unlike the wff B(x, y)­
asserts that this property must hold even for the most bizarre
interpretations of x and y in nonstandard models. Not surpris­
ingly, the assertion cannot be proved in WA; prove this; i.e.,
prove that

WA If C.

(Hint: a counter-model is given in Example 3.7.4.)

7. Show that the following relations are representable:

(a) the binary relation consisting of those pairs (a, b) of natural num­
bers for which b is divisible by a (assume that 0 is divisible by
every number);

(b) the unary relation consisting of all prime numbers (recall that p is
prime if p > 1 and the only divisors of pare 1 and p itself).

8. Show that the Fibonacci sequence F (considered as a unary (total)
function) is representable, where F is given by the following data:

F(O) 1, F(l) 1

F(n + 2) F(n + 1) + F(n).

(Thus, F can be expressed as the sequence 1,1, 2, 3, 5, 8, 13,)

9. In this exercise, we discuss a stronger kind of representability of a
relation in a theory than was considered in the text. We will use the
results of this exercise in Exercise 30. Suppose R is a finite subset of
N, say R = {r1, r~, ... , rk}·

(a) Give an example of a wff A(x) which represents R.

(b) Suppose we are given a wff A(x) which represents R. Show that,
although it is true that R consists precisely of those natural num­
bers n for which
WA f- A(n), this information may not be available from within

348 CHAPTER 5. THE INCOMPLETENESS THEOREMS

WA; i.e., show that there may not be a tableau proof from WA
of the sentence

Vx [A(x):::} [x ri V x r2 V ... V x = rk]].

(Hint: Consider the case in which R = {1}. Design a wff A which
represents R but for which the sentence

B Vx [A(x):::} x:::::: s(O)]

is independent of WA. Use the standard model N to show that
there is a model of WA which satisfies B; then use one of the
other models of WA given in the text to· show that •B is also
consistent with WA.)

(c) In light of part (b), we make the following definition:

Definition. A wff A(x) with just one free variable x names the
finite set R {r1 , r 2 , ••• , rk} in the theory H if

Ht- Vx [A(x) {:;> [x ri V x = r2 V ... V x = rk]].

In the special case in which R has only one element n, we say
that A(x) names the natural number n in H. Thus, A(x)
names n in H if

Ht- Vx [A(x) ¢} x = n].

For each n, give a wff which names n in WA ..

(d) Show that if a wff A names n in WA, then A represents the
relation R =· { n}.

10. Prove that for any wffs A(u) and B(v) where u is not free in Band
v is not free in A, the following set of three wffs is tableau confutable.

3u [A(u) /\ (Vv:; u)..,B(v)],

[B(v) /\(Vu:; v)•A(u)],

5.13. EXERCISES 349

Vu Vv [u :::; v V v :; u].

11. (Recursively Enumerable Sets).
Definition A subset AC N is recursively enumerable (or r.e.)

if A = 0 or A is the range of a total computable function (i.e. there is a
total computable function f such that for each a EA there is a number
n such that f (n) = a). The r.e. relations are defined in a similar way.

(a) Show. that the following are equivalent for a subset A C N:

(i) For some computable binary relation R, a E A if and only if
there is b such that (a, b) · E R.

(ii) A is the domain of a computable partial function.

(iii) A is recursively enumerable.

(iv) A is weakly representable.

(b) Prove that a subset A c N is computable if and only if both A
and its complement N\A = {x E N I x tJ. A} are recursively
enumerable.

(c) We say that a total function f : N -+ N is increasing if whenever
m < n, f(m) < f(n). Show that a subset AC N is computable
if and only if either A is finite or A is the range of an increasing
computable function.

12. Formulate and prove a Unique Readability Theorem and an In­
ductive Definition Principle for modal wffs.

13. Show that the following are modal tautologies.

(a) D[P =:::> Q] =:::> ((DP V DQ] :::} D(P =:::> Q]]

(b) D[P /\ DQ ¢} R] V ·D(P /\ DQ ¢} R]

(c) [D[P V DQ] :::} DF] /\ (•O(P V OQ] =:::> OF] :::} OF.

350 CHAPTER 5. THE INCOMPLETENESS THEOREMS

14. Prove the Modal Substitution Theorem.

15.

(a) Show that the converse of part (a) of Lemma 5.9.8 is not generally
true by finding a suitable axiomatized theory H and suitable w:ffs
P,Q.

(b) Prove or disprove:

(i) 1-o (DP {:;> DQ] =? D(P {:;> Q]

(ii) 1-o D(P {:;> Q] =? (DP {:;> DQ].

16. Show that if an axiomatized theory His consistent with WA (i.e.,
H U WA is consistent), then H is incomplete.

17. Show that any axiomatized theory which is consistent with WA is
undecidable.

The next two exercises give two alternative proofs that PA is in­
complete. Note that by Theorem 5.7.3, it suffices to show that PA is
undecidable.

18.
Definition Suppose A and B are disjoint recursively enumerable

sets of natural numbers (see Exercise 11). Then A and B are recur­
sively inseparable if there is no computable set C such that A ~ C
and BnC 0.

In this problem, PA is shown to be undecidable from the fact that
the sets P1 = {#(A) : PA I- A} and P0 {#(A) : PA I- •A} are
recursively inseparable.

(a) Show that the sets P0 and P1 described above are recursively in­
separable.

(Hint: Suppose C is a computable set such that A~ C and B n
C = 0. C is representable by a w:ff C(x). By the Diagonalization

5.13. EXERCISES 351

Lemma, there is a sentence P with code p such that

PA I- [P {:;> -.C(p)].

Get a contradiction by considering whether p E C.)

(b) Use part (a) to show that neither Po nor P1 is computable; conclude
that PA is an undecidable theory.

19. In this exercise, the undecidability of PA is proved from the unde­
cidability of the Halting Problem. Let Ko be the set of all (x, y) such
that x is the Godel number of a program P x which halts on input y.

(a) Let B be the set of all quadruples (x, y, z, t) such that x is the
Godel number of a program P x which on input y outputs .z after
P x has executed fewer than t steps. Show that Bis a computable
4-ary relation.

(b) Using the Equivalence Theorem, we can find a w:ff B(x,y,z,w)
which represents B. Prove that the w:ff

A(x, y) = 3z 3w B(x, y, z, t)

weakly represents Ko.

(c) Prove that if PA is decidable, so is Ko; i.e., decidability of PA im­
plies the decidability of the halting problem. The same argument
works for any sound theory H :>WA in place of PA.

20. (Another form of the Self-Awareness Theorem.) Prove that
if J h A then DJ 1-3 DA, where DJ denotes the set of w:ffs

{DC: CEJ}.

21. Suppose a Type 2 consistent theory H proves a sentence of the
form P {:;> J(D•P) (notice that this sentence is not quite in the form
that makes P Godelian for H). Show that

352 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) H If P and H If •P;

(b) P actually is Godelian for H; i.e. HI- P ¢? •l(DP)).

2 2. Prove that if P is Godelian for a Type 3 theory H (not necessarily
consistent) then P is provably equivalent to ..., DF; i.e. show

l-3 D[P ¢?·DP] D[P ¢? -iDF).

Then show that it follows that all Godelian sentences for such a theory
are equivalent, i.e.,

h [D[P ¢?·DP)/\ D[Q ¢? ·DQ]] =} D[P ¢? Q].

23. Suppose His a sound axiomatized theory. Then for all modal wffs
A,

if HI- J(A) then N f= J(A),

i.e. provability of A implies A is true. Thus, if P is Godelian for
H, not only is P ¢? •l(DP) provable in H, but it is actually true.
These observations lead us to a somewhat different proof of Part l of
the ~irst Incompleteness Theorem for sound theories. We begin by
defimng a modal system Mod(4) : Mod(4) has as axioms those of
Mod(O) together with the axiom scheme

(ss) DA=?- A, for all modal wffs A.

(Here, "ss" stands for "strong soundness.")

(a) Prove that an axiomatized theory is Type 4 if and only if it is a
sound theory. ·

· (b) Prove
h [P ¢? 1 DP) =}...,op,

(If P truly asserts its own unprovability from H, then P is un­
provable from H.)

5.13. EXERCISES 353

(c) Prove
l-4 [P ¢? .op] => .o...,p.

(If P truly asserts its own unprovability from H, then ...,p is
unprovable from H.)

Parts (a) - (c) together show that no Type 4 theory is complete.

(d) Show that (ss) is really a strengthening of (s) by proving that for
all A,

h ODA=} DA,

and noting that there is a Type 4 theory for which (ss) does not
hold. (Hint: For the second half, try an inconsistent theory.)

Putting (a) - (cl) together, we conclude:

Theorem. A theory H is incomplete whenever H is sound and there

is a sentence P such that

N f= P if and only if H If P.

24. While PA is Type 3 and satisfies (ss), PA does not satisfy a

formalized version of (ss):

(f ss) : D[DA => A] for all modal wffs A.

In fact, as is shown in this exercise, no sound axiomatized theory which
satisfies Axiom Scheme (fss) has a Godelian sentence. Prove this by
carrying out the following steps:

(a) Prove
J 1-0 D [P ¢? ...,op] =?- DP

where ·J {D[DP =} P]}; in other words, J contains a single
instance of (fss) where A P.

(b) Show
J h D[P =?- ·DP] =?- F.

354 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(c) Conclude that if H is a sound axiomatized theory which satisfies
(fss), then H has no Godelian sentence. Hence PA does not
satisfy (fss).

25. (Lob's Theorem.) Although many instances of (fss) must fail in
most "reasonable" theories of arithmetic, there are some instances of
(fss) which hold in every axiomatized theory of arithmetic; for instance,
if P is a tautology, Hr J(DP) =} P. More generally, if Hr P, then
H r [J(DP) :::} P].

In this exercise, the reader is asked to show that in PA, the only
sentences P for which

PA r J(DP) =} P.

are those provable from PA, i.e., for all sentences P,

PA r J(DP) =} P implies PA r P

where I is the interpretation function relative to PRp.A_. The statement
(*) is called Lob's Theorem .. We state this theorem in a more general
form and outline the steps of proof in parts (a) - (c) below.

Lob's Theorem. Suppose H is a Type 3 theory. Then for each sen­
tence Q,

H r J(DQ) =} Q, if and only if H r Q.

In particular, (*) holds.

(a) Prove the implication from right to left for any axiomatized theory
using modal tableaus; i.e., show

ro DQ (DDQ =} DQ].

(b) Use the Diagonalization Lemma to show that any axiomatized the­
ory H which includes WA has the following property (L):

(L) for every sentence Q, there is a sentence P such that
Hr P ¢? (J(DP) =} QJ.

5.13. EXERCISES

(c) Prove
J D[DP =} Q],

where J consists of the modal wffs

D(P 9 (DP =} Q]]

D(DQ =} Q].

(d) Using the result of part (c), prove

K r3 DQ,

where K consists of the modal wffs

D(P 9 [DP =? Q]]

D(DP =} Q] ..

(e) Put parts (a) - (d) together to prove Lob's Theorem.

355

Lob's Theorem gives us another property of provability: Let Mod(5)
be the modal system whose axioms are those of Mod(3) together with
the axiom scheme

(g) D(DA A] =} DA for all modal wffs A

("g" stands for "Godel.") As the previous exercise shows, the axioms
of Mod(5) hold for PA. Remarkably, if lf5 DA for some A, then
there is a way to assign the. modal proposition symbols to sentences
of arithmetic so that the translation of A as a sentence of arithmetic
is not provable from PA! Thus Mod(5) "captures" PA in a modal
fashion and is an important modal system for studying arithmetic (see
Boolos [1979] for more discussion). In the following two exercises, we
use Mod(5) to establish several interesting facts about PA.

26. In this exercise, the reader is led to a modal proof that any Type 5
theory has a Godelian sentence.

356 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) Show that if A, B, and C are ordinary propositional wffs, then

A=? BI- [A=? CJ=? [B =? C].

(b) Show that for any modal wff A,

(*) 1-s D([DA =?A)-¢:;> [D[DA =?A)=? A]].

(Note: Because we have a new axiom (g) in Mod(5), the Self­
A wareness Theorem is not. guaranteed to hold; it can be proved,
however, and the reader may wish to assume it in working this
problem. The more thorough reader, after proving (*) with the
leftmost 'D' removed, will want to check that each step of his proof
can be formalized, so that (*) is established without assuming the
Self-Awareness Theorem.)

(c) Show that

27.

I- s D [B -¢:;> -. DB]

where Bis the modal wff DF => F.

(a) Assume that PA is a Mod(5) theory. Suppose P provably asserts
its own provability, or, somewhat more generally, assume

PA I- P =? J(DP).

Show that PA 1- P and hence that P is t'rue. (Use Lob's Theo­
rem.)

Such a sentence is called a Henkin sentence for PA.

(b) Show that any axiomatized theory including WA has a Henkin
sentence. (Hint: Use the Diagonalization Lemma.)

28.

5.13. EXERCISES 357

(a) Give an example of a axiomatized theory H and a sentence P to
demonstrate that

lf0 -.DP =? D-.P.

(b) As in (a), show
lfo D[...,op =? D-iP].

(c) Show that if H is a sound Type 3 theory satisfying (s) and having
a Godelian sentence P, and if Q = [-.DP=? 0-.P], then

is false (in N).

29. (Formalizations.) In this exercise, we present the formalized ver­
sions of several of the important theorems discussed in the text.

(a) (Part II of the First Incompleteness Theorem) Show that

D[P #-.DP) =? D[(-.DF A (DDP =? DP])=? ...,o...,P).

(Hint: First prove h D[P ~-.DP] =? [-.D-.P => -.ODP]).

(b) (Second Incompleteness Theorem) Prove

1-3 D(P # -.DP) =? D(D-iOF =? DF).

(c) (Lob's Theorem) Formulate a formalization of Lob's Theorem and
prove it in the modal system Mod(5).

30. This exercise outlines Boolos' proof [1989] of (a versi~n of) Godel's
First Incompleteness Theorem, namely, that no sound recursively enu­
merable theory of arithmetic is complete.

Recall from Exercise 3.9 that a wff A(x) having x as its only free
variable names a natural number n in an axiomatized theory H if

HI- 'v'x [A(x)-¢:;> x = n].

358 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) Let H be a sound axiomatized theory. Show that for each natural
number m, there is a least natural number nm which cannot be
named in H by any w:ff having:::; m symbols and whose variables
(bound or free) lie in the set {xi,x2, ... , xm}· (In the present con­
text, the number of symbols in a w:ff is the length of the sequence
obtained by thinking of the w:ff as simply a string of symbols;
more formally, if A is a wff and z = #(A), then the number of
symbols of A equals Terms(z).

(b) Suppose H is a sound axiomatized theory. Show that the following
relations are r.e.

% = {(n,a):
the number n is named in H }
by the w:ff coded by a .

QH = {(n,b):
the number n is named by a w:ff having }
exactly b symbols and whose variables .
(bound or free) are among x1 , x 2 , ••• , Xb

(c) Recall from part (e) of Exercise 11 that the relation QH in part
(b) - being r.e. - is weakly represented by some w:ff A. Use
A to build another w:ff B which weakly represents the following
relation:

n is the least natural number n. ot named by l
any w:ff that contains fewer than d symbols
and whose variables (bound or free) are ·
among x1,x2, ... ,xd

(d) Let B be as in (c); let k be the number of symbols in B. Why may
we assume that all variables (bound or free) which occur in Bare
among xi,x2, . .. , Xk and that the only variables which occur free
in B are x1 and x 2?

(e) Continuing part (d), define the following w:ff C(x1):

5.13. EXERCISES 359

Using part (a), let n = nm where m = 10 * k. First show that
C(x1) does not name the number n in H, i.e., that

(Hint: Count the number of symbols in C.)

Then show that

Thus, show that there is a sentence, true in N, which can neither
be proved nor disproved from H.

In addition to giving a new proof of the First Incompleteness Theorem,
this problem suggests a resolution of Berry's Paradox (as formulated at
the end of Section 5.9): As we mentioned in the text, the paradoxical
nature of the fact that the sentence

(*) n is the smallest natural number which cannot be
described using fewer than 100 keystrokes.

"describes" the number n may hinge on a lack of preciseness in our
account of which strings of keystrokes actually count as "descriptions."
Indeed, in the above problem the paradox dissolves once we make it
clear that a natural number n is "described" by a formula if and only if
n is named by the formula in the theory at hand, say PA; for then the
formal version of (*) - namely, C(x1) - does not actually "describe"
(name) the number n, although it does weakly represent it. It may be
that our experience with this problem generalizes to any attempt to be
precise about the meaning of "description" in Berry's Paradox: Perhaps
(*), because it uses the notion of "description" in "describing" n, is
a description of an inherently different kind from strings of keystrokes
(like '100') which do not refer to the notion of "description" at all. Thus,
one might reasonably conjecture at this point that any formalization
of Berry's Paradox - and in particular, of the notion of "description"
- would result in the conclusion that (*) does not describe n in the
formal sense, and the paradox is thereby resolved.

Appendix A

Sets and Functions

In this section of the appendix we discuss some of the basic notions of
what is sometimes called - naive set theory; these include the notions

of set, subset, set operations (union, intersection, etc.), functions, car­
dinality, finite sequences, and permutations. Although these concepts
are fairly easy to grasp, very little of higher level mathematics could be
developed without them. Probably because of its simplicity, naive set
theory is rarely taught explicitly in third and fourth year undergraduate
courses; students at this level are generally expected to "pick it up" as
they go along. Unfortunately, however, it often happens that areas of
confusion in courses like abstract algebra and analysis arise from.a too
fragile grasp of the ideas to be discussed here. Our intention here is to
provide a straightforward development of these concepts, to be used by
the reader as necessary to supplement his knowledge.

A.1 Sets

Intuitively speaking, a set X divides the mathematical universe into
two parts: those objects x which belong to X and those which don't.
The notation x E X means x belongs to X, the notation x ¢:. X means
that x does not belong to X. The objects which belong to X are
called the elements of X or the members of X. Other words which
are roughly synonymous with the word set are class, collection, and
aggregate. These longer words are often used simply to avoid using the

361

362 APPENDIX A. SETS AND FUNCTIONS

word set twice in one sentence. (The situation typically arises when an
author wants to talk about sets whose elements are themselves sets· he

'
might say " the collection of all finite sets of integers" rather than "the
set of all finite sets of integers.") Authors typically try to denote sets by
capital letters (e.g. X) and their elements by the corresponding small
letters (e.g. x E X) but are not required to do so by any commonly
used convention.

The reader who has worked through Section 2.12 should be aware
that technically speaking, a set is, by definition, a member of a model of
ZFC (or of some other axiomatic theory of sets); and while the words
collection and aggregate do not have technical definitions, a class is
defined to be a collection defined by a predicate. Thus, every set is a
class, but not conversely. For example, the collection of all even natural
numbers is (by the AxioJ? of Comprehension) a set, and therefore a
class; but the collection of all sets is a class (defined by the predicate
x = x) which is not a set. In general, unless there is some danger that
the collection of objects at hand is "too big" to be a set (and this does
happen in some areas of mathematics), the collections referred to by
mathematicians are to be understood as sets.

The simplest sets are finite and these are often defined by simply
listing (enumerating) their elements between curly brackets. Thus if
X = {2, 3, 8} then 3 E X and 7 r/:. X. Often an author uses dots as
a notational device to mean "etcetera" and indicate that the pattern
continues. Thus if .

A={ai,a2, ... ,an} (A.l)

then for any object b, the phrase "b E A" and the phrase "b = ai for
some i 1, 2, ... " have the same meaning; i.e., one is true if and only
if the other is. Having defined A by (A. l) we have

b E A {:::::} b = ai or b = a2 or ... or b an,

where the symbol{:::::} means if and only if In other words, the shorter
phrase "b EA'' has the same meaning as the more cumbersome phrase
"b = ai or b = a2 or ... b an."

The device of listing some of the elements with dots between curly
brackets can also be used to define infinite sets provided that the context
makes it clear what the dots startd for. For example we can define the

A.l. SETS 363

set of natural numbers by

N = {0,1,2,3, ... }

and the set of integers by

z { ... ,-2,-1,0,l,2, ... }

and hope that the reader understands that 0 E N 5 E N -5 r/:. N,
3 3 . ' ' 5 rf:_ N, 0 E Z, 5 E Z, -5 E Z, 5 r/:. Z, etc ..

Certain sets are so important that they have names:

0 (the empty set)
N (the natural numbers)
Z (the integers)
Q (the rational numbers)
R (the real numbers)
C (the co:rnplex numbers)

These names are almost universally used by mathematicians today,
but in· older books one may find other notations. Here are some true
assertions: 0 r/:. ©, t E Q, Vi r/:. Q, Vi E R, x 2

-/:- -1 for all x E R, and
x 2 = -1 for some x E C (namely x = ±i).

If X is a set and P(x) is a property which either holds or fails for
each element x E X, then we may form a new set Y consisting of all
x EX for which P(x) is true. This set Y is denoted by

Y={xEX:P(x)} (A.2)

and1 called "the set of all x E X such that P(x)." For example, if
Y {x E N : x 2 < 6 + x }, then 2 E Y (as 22 < 6 + 2), 3 rf:_ Y (as
32 f.. 6 + 3), and -1 r/:. Y (as -1 r/:. N).

This is a very handy notation. Having defined Y by (A.2) we may
assert that for all x

x E Y {:::::} x EX and P(x)

symbol I is sometimes used instead of : here

364 APPENDIX A. SETS AND FUNCTIONS

and that for all x E X

x E Y-{::=:} P(x).

where the symbol ~ means if and only if Since the property P(x)
may be quite cumbersome to state, the notation x E Y is both shorter
and easier to understand. The reader who has worked through Sec­
tion 2.12 will recognize that the collection Y is guaranteed by ZFC to
be a set (by the Axiom of Comprehension).

Example A.1.1 Using these notations, the set E of even natural
numbers may be denoted by any of the following three notations:

E {0,2,4, ... }

{ m E N: m is divisible by 2}

{2n: n EN}

A set Y is a subset of a set X, written

YeX

iff every element of Y is an element of X.
For example,

{1,3,4,7} e {0,1,2,3,4,7,9}

since every element on the left appears on the right. On the other hand,

{1,3,4,7} ~ {0,1,2,4,7,9}

since 3 E {1,3,4, 7} but 3 r/:. {0,1,2,4, 7,9}.
Note the following inclusions:

Nez

(every natural number is an integer),

ZeQ

A.1. SETS 365

(every integer is a rational number),

QeR

(every rational number is a real number), and

Rec

(every real number is a complex number).
The empty set is a subset of every set:

0 ex
for every set X. This is because every element x of the empty set lies
in X - or indeed satisfies any other property since there are no such
elements x. However, while it is true that the empty set is a subset
of every set, it is certainly not an element of every set: for instance,
the set { 1, 2} contains only the numbers 1 and 2 and hence does not
contain 0 as a member. Also, do not confuse the empty set with the
set whose only element is 0:

0 # {O}

since 0 E {O} but 0 ¢:. 0.
Let Y and X be two sets. Two sets are equal, written X = Y, if

X e Y and Y c X, i.e., if every element of Xis an element of Y and
every element of Y is an element of X.

Example A.1.2 Let X = {n EN: n2 + 7 < 6n} and Y = {2, 3,4}.
Then X = Y. In other words, the natural numbers n which satisfy the
inequality

n 2 + 7 < 6n

are precisely n = 2, 3, 4. (This may be proved by graphing the function
y=x2 +1-6x.)

It follows from the definitions that a set defined by an enumere;ttion
is unaffected by the order of the enumeration and by any repetitions in
the enumeration .. Thus

{1,3,7} = {3,1,7} {3,1,7,1,3}.

366 APPENDIX A. SETS AND FUNCTIONS

The reader who has read Section 2.12 may wish to verify that the
statement "The sets X and Y are equal if and only if X and Y have
the same elements" is a theorem of ZFC it follows from the Axiom of
Extensionali ty.

A.2 Boolean Operations

The intersection, X n Y, of two sets X and Y is the set of objects in
both of them:

X n Y = {z: z EX and z E Y}.

X and Y are said to be disjoint if they have an empty intersection,
i.e., if

XnY = 0.

The union,·X UY, of two sets X and Y is the set of objects in one
or the other qf them:

X U Y = { z : z E X or z E Y}.

There is a notation resembling the sigma notation for sums, for the
intersection and union of a collection of sets. If { Xi}iEJ is a family of
sets indexed by some index set I, then the intersection of the family is

and the union is

n Xi = { z : z E Xi for all i E I}
iEI

LJ Xi = { z : z E Xi for some i E I}.
iE/

For example, if I= {1, 2, 3}, then

n Xi = X1 n X2 n X3, and LJ Xi X1 U X2 U X3.
iE/ iE/

Two special cases of taking unions of indexed collections that occur
frequently in this book are increasing unions and disjoint unions.

A.2. BOOLEAN OPERATIONS 367

Increasing Unions Suppose X 0 , X1, ... , Xi, . .. denote sets such that
X 0 C X1 C ... C Xi C ... , so that each set is included in the next as
a subset. Suppose

x = U xi.
iEN

Then X is called the increasing union of the Xi. X has the property
that for each x EX, there is a natural number k such that for all j 2::: k,
x E Xi. In other words, not only is each x in X a member of some Xk,
but x is in every Xj for j 2::: k as well.

Disjoint Unions Suppose now that {Xi : i E I} is any collection
of sets, indexed by a set I. Sometimes it is useful to think of the
elements in all of the Xi as collected together in a single set in such
a way that members of Xi are distinguishable from members of Xi
whenever i f= j. If the xi already happen to be pairwise disjoint (i.e.,
for all i f= j, Xi n Xj 0), our goal is easily accomplished by simply
taking the union of the Xi, as above. But if there is some object x for
which x E X n Xj, and i f= j, then once we take the union of the Xi,
x must be thought of as coming from both Xi and Xj, and possibly
other sets. This situation can be undesirable; for instance, wh~n we
described the set of all function symbols to be used in full predicate
logic, we wanted to collect all elements of the Fn, n = 0, 1, But if a
particular function symbol F occurs in both Fn and Fm (and n f= m)
then this lack of uniqueness causes ambiguity in the use of F in our
logic, since, for instance, we don't have a unique arity associated with
it (it's both n-ary and m-ary). To avoid this complication, we required
that the union of the Fn be a disjoint union.

In practice, "taking the disjoint union" of a collection usually means
that we insist that the sets whose union we will take are already disjoint.
Thus, in our example above, we can simply define the sets Fn so that
function symbols occurring in one of these sets do not occur in any
other. Occasionally however, one is presented with sets whose elements
one does not wish to redefine. For such (rare) occasions, we define the
disjoint union as follows:

Given sets Xi as above, we first replace each Xi by the set Xi of all
pairs (i, x) for which x E Xi. Now Xi is essentially the same as Xi, only
now every member x of Xi is "tagged" with the index i. The disjoint

368 APPENDIX A. SETS AND FUNCTIONS

union of the xi is then defined to be the union of the xi:

One other set operation which is often used is the difference X \ Y
of two sets X and Y, defined by

X \ Y ={xix EX and x ~ Y}.

When Y C X, this is also called the complement of Y in X.

Problem A.2.1 Prove that Y C X if and only if Y \ X = 0.

Problem A.2.2 Prove DeMorgan's Laws:

Y\ (uxi) = (nY\xi)
iEI iEI

Y\ (nxi)
iEI

Problem A.2.3 Write out the elements of the disjoint union of the
sets {O, 1} and {1,2}. How many elements are in the disjoint union?
How many are in the (ordinary) union of these two sets?

A.3 Functions

A function is a mathematical object f consisting of a set X called the
domain ·off, a set Y called the codomain off, and an operation
which assigns to every element x E X a unique value f (x} E Y. This
is summarized by the notation

f:X-7Y

A.3. FUNCTIONS 369

(Note that the arrow goes from domain to codomain.) Other words
which are roughly synonymous with the word function are map, map":"~
ping, and transformation2

• When a function f is defined without
explicit mention of X as above, the domain of f is denoted (in this
book at least)

Dom(!).

The unique value assigned by a. function f to x E X is usually
denoted by f (x) but in some contexts other notations such as f x or f x
are customary. f(x) is sometimes called the value off for argument x.
In the context of computability theory in which computable functions
are treated like computing machines (see Chapter 4) f(x) is called the
output off for input x. We will use this latter terminology frequently
in this appendix because (we feel) it helps the beginner form a clearer
picture of the concept of function and its properties.

The set of all values (outputs) f(x) of a function f is called its
range and is denoted Ran(!):

Ran(!) = {f(x): x E Dom(!)}.

Any numerical expression involving a real variable defines a func­
tion. For. example, the equation

1
f(x) = 1 - x

defines a function f : X -7 R whose domain is given by

X {xER:x#l}

and whose range is given by

Ran(!) = { x E R : x # 0}.

(In elementary algebra and calculus texts, the domain of a function
defined by a~ explicit formula in this· fashion is always assumed to be

2It should be mentioned that in some areas of mathematics, the word "map" (or
"mapping") is reserved for "structure preserving" functions. For instance, in group
theory, a map is often understood to be a group homomorphism; in topology, it is
often taken. to be a surjective continuous function.

370 APPENDIX A. SETS AND FUNCTIONS

. the largest set where the formula is meaningful and the codomain is
assumed to be the set R of real numbers. In more advanced books it is
customary to specify domain and codomain as part of the definition.)

Sometimes one wishes to refer to a function without giving it a
name. A good way to do this is with the symbol r--+. Thus one could
refer to the function f defined above as the function

1
{xER:x:fl}--+R: xr--+--.

1-x

One might call this the function which maps the number x to the num­
ber 1/(1 - x).

Two functions f 1 : X1 --+ Yi and h : X2 --+ Vi are equal if their
domains and codomains are equal (X1 = X 2 and Yi = Y;), and they
return the same output for any input: fi(x) = h(x) for all x E X1.

This may be summarized symbolically by:

We caution the reader that according to this definition of equality the
two functions f : N --+ N and g : N --+ E = { n : n is an even natural number
defined by

J(n) = g(n) = 2n

for· n E N are npt equal since their codomains are not equal. It may
seem like nit-picking to distinguish these two (and indeed until recently
most authors did not) but failure to make the distinction sometimes
leads to confusion. For instance, as we shall see below, the function
g is onto (since its codomain and range are equal) while f is not (3
is in the codomain of f, but not in its range). Hence, even in this
simple example, it makes sense to distinguish these functions. (In more
advanced areas of mathematics, such as algebraic topology and model
theory, this distinction is at times crucial.)

Beginners often confuse the function with the formula which defines
it. This leads to confusion because

• Not every function is defined by a single formula. For example,

A.3. FUNCTIONS 371

the function g : R --+ R defined by

{

x 2 if x > 0
g(x) = 7 if x = 0

x 3 if x < 0

requires three formulas to define it: the formula to use in evalu­
ating the output g(x) depends on the value of the input x.

• Different formulas can define the same function. For example, the
formulas

g(x) = x 2

and
h(t) = t 2

define the same function from R into R. As another example,
the function Ji : R --+ R defined by

f1(x) = (x + 1)2

is the same as the function f2 : R --+ R defined by

h(x) = x2 + 2x + 1.

The reason that f 1 = f2 is that the domain of f 1 is the same
as the domain of f2 (namely R), the co domain of Ji is the same
as the co domain of f 2 (namely R), and Ji (x) = h (x) for every
x E R. The point is that the formulas (x + 1)2 and x2 + 2x + 1
are different (simply because they look different) but their values

are the same for all x.

Suppose f: X--+ Y. For any subset ACX the set

f(A) = {f(x) : x EA}

is called the image of A by f. For any subset B C Y the set

r 1(B) = {x: f(x) EB}

is called the preimage of B by f. The image f(X) of the whole space
X by f is called the range of f (the reader may wish to check that
this definition is equivalent to the definition of "range" given earlier in
.the appendix).

372 APPENDIX A. SETS AND FUNCTIONS

Problem A.3.1 Show that

f(LJAi) LJf(Ai)

f(nAi) c n f(Ai)

r 1 (LJAi) LJ f- 1 (Ai)

f(n Ai) nf-1 (Ai)

Give an example which shows that the second inclusion need not be an
equality.

A notation which is often used to define sets is

Y={f(x):xEX}

(where f is some function whose domain is the set X) which is to be
understood as an abbreviation for

Y = { y : y f (x) for some x E X}

so that for ().ny y

y E Y {:=.:} y = f(x) for some x EX.

A.4 Composition and Restriction

Given functions f : X -+ Y and g : Y -+ Z the composition of f and
g is denoted go f (read " g after f") and defined by go f : X -+ Z
with

(g 0 !) (x) = g (! (x))

for x E X. The operation of composition is associative:

(h 0 g) 0 f = h 0 (g 0 !) .

Suppose we are given a function f: X-+ Y and a subset
Xo C X. The restriction off to X 0 , denoted flX0 , is defined by

Dom(f IXo) = Xo,

A.5. IDENTITY, ONE-ONE, AND ONTO FUNCTIONS 373

(!IXo)(x) f(x) forallxEXo.

For example, if f: R-+ Risa function whose graph is the straight
line given by f(x) = 2x, and if [O, 1] denotes the unit interval, then
fl[O, 1], the restriction off to [O, 1], is a function whose graph is the
closed line segment from the (0, 0) to (1, 2).

The opposite of restricting a function to a smaller domain is extend­
ing a function to a larger domain. Suppose g : X -+ Y is a function
and X C Z. Then any function h : Z -+ Y is called an extension of
g to Z if hlX = g, i.e., if

h(x) = g(x) for all x EX.

Thus, for example, if g is the function defined earlier by g : X -+ R:
xi-+ I~x with domain X = {x ER: x-=f. 1}, then g has an extension g
defined by

g(x) = { o~· if x =f; 1
if x = 1.

The reader may recall from a calculus course that the function g de­
scribed above is continuous on its domain X, but has no continuous
extension to R. In particular, fJ: R-+ R is not continuous.

Problem A.4.1 Suppose Y and X0 , Xi, ... , Xi, ... are sets such that
Xo c X1 c ... c Xi c ... and for each i, fi : Xi -+ Y is a function
such that for all j < i,

filXj = fj

i.e., for each j < i, fj is the restriction of fi to Xj. Let X be the increas­
ing union· of the Xi. Show that there is a unique function f : X -+ Y
which extends each fi, (i = 0, 1, ...) to X.

A.5 ldenti'ty, One-one, and Onto Func­
tions

A function whose domain and codomain are equal and which returns
its argument unchanged is. called an identity function; more precisely
the function .

Jy :Y-+ y

374 APPENDIX A. SETS AND FUNCTIONS

defined by
Jy(y) = y

for y E Y is called the identity function of Y. It satisfies the identities

Jy 0 f = f

for f : X --t Y and
g 0 Jy = g

for g: Y --t Z.
A function f : X --t Y is called one-one if its output determines

its input uniquely; 3 i.e., if for all xi, X2 E X we have Xi = X2 whenever
f(xi) = f(x2). A function f : X --t Y is called onto if every point
of Y is the output of some input; i.e., if for every y E Y there is an
x EX such that f(x) = y. A function is called one-one and onto, or
a bijection, ifit is both one-one and onto.

Think of the equation y = f (x) as a pro bl em to be solved for x.
Then:

{

one-one }
the function f is . onto

one-one and onto

if and only if for every y E Y the equation

{

at most }
y = f (x) has at least one solution x E X.

exactly

The function
R --t R: xi-+ x3

is both one-'one and onto since the equation

y x3

possesses the unique solution x = yi E R for every y E R. In contrast,
the function

R--t R: x --t x2

course, for any function its input determines its output uniquely; that is the
definition of a function. ·

A.5. IDENTITY, ONE-ONE, AND ONTO FUNCTIONS 375

is not one-one since the equation

4 x2

has two distinct solutions, namely x = 2 and x = -2. It is also not
onto since -4 E R but the equation

-4 = x2

has no solution x E R.
The equation -4 x2 does have a complex solution x 2i E C but

that is not relevant to the question of whether the function R --t R :
x i-+ x2 is onto. The functions C --t C : x i-+ x2 and R --t R : x i-+ x2

are different: they have a different domain and codomain. The function
C --t C : x i-+ x2 is onto.

The concepts of one-one and onto can be formulated in other ways.
For instance, a function f : Y --t Z is called left cancellable if for all
sets X and· all pairs of functions gi : X --t Y, gz : X --t Y,

whenever f o gi = f o g2, we have gi = g2.

Likewise, a function f : Y __, Z is right cancellable if for all sets W
and all pairs of functions hi : Z --t W, hz : Z __, W,

whenever hi o f = hz o f, we have hi h2.

The next proposition demonstrates the connection between these
concepts; we leave its proof to the reader.

Proposition A.5.1 Suppose f : X --t Y is a function.

1. The following are equivalent:

(a) f is one-one.

(b) For ally E Ran(!), the set f-i({y}) has .exactly one element.

(c) For all subsets X 0 c x,1-i(f(Xo)) Xo.

(d) f is left-cancellable.

2. The following are equivalent:

376

A.6

(a) f is onto.

(b) f(X) = Y.

APPENDIX A. SETS AND FUNCTIONS

(c) The range and codomain off are equal.

(d) For all subsets Yo c Y} f (f-1 (Yo)) = Yo.

(e) f is right-cancel/able.

Cardinality

Two sets X and Y are said to have the same size, or cardinality, if
there is a one-one, onto function f : X --t Y. This notion is familiar
when X and Y are finite sets: Given that X {xi, x2, •.• , xk} and
Y = {yi, Y2, ... , Ym}, then X and Y have the same cardinality if k = m,
i.e., if they have the same number of elements.

On the other hand, two infinite sets which may at first appear to
have different sizes may in fact have the same cardinality. For instance,
if E = { n : n is an even natural number}, then E and N have the same
cardinality since the function g : N --t E defined by

g(n) 2n

is one-one and onto.
Formally speaking, a set X is said to be finite if there is a natural

number n such that X and {O, 1, ... , n} have the same cardinality. X
is infinite if X is not finite. X is called countable or denumerable
if X and N have the same cardinality.

Is every set finite or countable? Or is there some enormous (un­
countable) infinite set X for which X and N do not have the same car­
dinality? This question plagued Georg Cantor at the end of the 19th
century; many mathematicians and philosophers of the time found this,
and related questions about infinite sets, to be outside the proper do­
main of mathematics. Even in present-day universities, some students,
when confronted with this question, feel somewhat disturbed since, af­
ter all, how could one infinite set be bigger than another?

Despite the controversy surrounding this and related questions, and
despite the apparent unlikeliness of the result, Cantor was able to show
that uncountable sets exist. We a proof of this fact below:

A.6. CARDINALITY 377

For any set X let P(X) denote the set of all subsets of X:

S E P(X) iff S c X.

The set P(X) is called the power set of X. Note that if Xis a finite
set having n elements, then P(X) is a finite set having 2n elements.

Theorem A.6.1 (Cantor's Theorem) There is no onto function

f : X --t P(X).

Proof: Suppose such a function f exists. We will derive a contradic­
tion. Define a subset S C X by

S = {x EX: x ¢ f(x)}.

Since f is onto and S E P(X) there must be an element y E X with
S f(y). Now either y E Sor y ¢ S. If y E S, then y E f(y) (as
S f(y)) soy¢ S. If y ¢ S, then y ¢ f(y) soy ES. Either way we
get a contradiction, so no such function f exists. End of Proof.

The method used in the preceding proof, called Cantor's diago­
nal rriethod, resembles several other arguments in this book. (See the
discussion following the Hal ting Pro bl em in Section 4.11). Using the
diagonal method, Cantor was also able to show that the set R of real
numbers is uncountable. In fact, he showed that R and P(N) have
exactly the same cardinality! ·

Problem A.6.2 Is the set Q of rationals countable or uncountable?

One question which Cantor was unable to answer is whether there
is an infinite set X whose size is strictly between that of N and that of
R; more technically, is there a set X together with one-one functions
f : N -'I> X and g : X -'I> R such that N and X do not have the
same cardinality and X and R do not have the same cardinality? The
assertion that no such set exists - or, stated more positively, that every
infinite set of reals either has the same cardinality as N or as R is
known as the Continuum Hypothesis. It was shown nearly 80 years
after Cantor's time that the Continuum Hypothesis is neither provable
nor disprovable from any known (reasonable) set theory (i.e., it's an
·independent sentence for ZFC and many other set theories).

378 APPENDIX A. SETS AND FUNCTIONS

A.7 Inverses

Let f : X ~ Y. A left inverse to f is a function 9 : Y ~ X such that

gof=Ix.

Proposition A. 7.1 A function f : X ~ Y is one-one if and only if
there is a left inverse 9 : Y ~ X to f .. If f is one-one but not onto,
the left inverse is not unique.

Proof: If 9: Y ~Xis a right inverse to f the problem y = f(x) has
at most one solution for .if y = f(x 1) = f(x2) then g(y) = 9(f(x1)) =
9(f(x2)) whence x1 = x2 since 9(f(x)) = Ix(x) x. Conversely, if
the problem y = f (x) has at most one solution, then any function
9 : Y ~ X which assigns to y E Y a solution x of y = f(x) (when
there is one) is a left inverse to f. (It does not matter what value g

assigns to y when there is no solution x.) End of Proof.

Let f : X ~ Y. A right inverse to f is a function g : Y ~ X
such that

f 0 9 Iy.

Proposition A. 7.2 A function f : X ~ Y is onto if and. only if there
is a right inverse 9 : Y ~ X to f. If f is onto but not one-one the
right inverse is not unique.

Proof: If 9: Y ~Xis a right inverse to f: X ~ Y then x = 9(y) is a
solution toy= f(x) since f(g(y)) = Iv(y) y. The converse assertion
that there is a right inverse 9 : Y ~ X to any onto function f : X ~
Y may not seem obvious to someone who thinks of a function as a
computer program: even though the problem y = f (x) has a solution
x, it may have many, and how is a computer program to choose? (If
X C N one could define g(y) to be the smallest x E X which solves
y f (x) but this will not work if X = Z for in this case there may
not be a smallest x.) In fact, this converse assertion is generally taken
as an axiom: the so called axiom of choice, and cannot be proved from
the other axioms of mathematics. End of Proof.

A. 7. INVERSES 379

Let f : X ~ Y. A two-sided inverse to f is a function which is
both a left inverse to f and a right inverse to f:

9 of= Ix, f o 9 Iy.

The word inverse unmodified means two-sided inverse.
The following easy proposition explains why the two-sided inverse

is necessarily unique.

Proposition A. 7.3 If f : X ~ Y has both a left inverse and a right
inverse, then it has a two-sided inverse f- 1 : Y ~ X, and f-1 is the
only left inverse off and the only right inverse off

Proof: Let g: Y ~ X be a left inverse to f and h: Y ~ X be a right
.inverse. Then

go f Ix

and
foh=Iy.

Compose on the right by h in the first equation to obtain

9 of oh= Ix oh

and use the second to obtain

Iv oh= Ix oh.

Now composing a function with the identity (on either side) does not
change the function so we have

9=h

i.e., 9 h) is a two-sided identity. Now if 91 is another left inverse to
f then this same argument shows that

91 h

{i.e., g1 9). Similarly h is the only right inverse to f. End of Proof.

380 APPENDIX A. SETS AND FUNCTIONS

Proposition A. 7.4 The function f : X ---+ Y is one-one and onto if
·and only if there is a (necessarily unique) two-sided inverse f- 1

: Y ---+
X to f. This inverse function f- 1 : Y ---+ X is characterized by the
equivalence

y = f (x) {:::::::;> x = r 1 (y)

for x E X and y E Y. (The symbol {:::::::;> means if and only if.)

Proposition A.7.5 (1) The identity transformation Ix: X---+ Xis
one-one and onto and is its own inverse:

r;1 =Ix

(2) If f : X ---+ Y is one-one and onto, then so is its inverse f- 1

y ---+ x' and the inverse of f- 1 is given by

u-ltl = f.

(3) If the function f : X ---+ Y is one-one and onto and the function
g : Y ---+ Z is one-one and onto, then the composite go f : X ---+ Z
is one-one and onto and its inverse (g 0 n-1 : z ---+ y is given by

(f) -1 f-1 -1 go = og

Proof of (1): We have Ix o Ix =Ix since (Ix o Ix)(x) Ix(Ix(x)) =
Ix(x) for all x EX. End of Proof.

Proof of (2): The same formulas

r 1
o f = Ix) f o f-1 = ly

which say that f- 1 is the inverse off also say that f is the inverse of
f- 1

• End of Proof.

Proof of (3):

(g 0 f) 0 u-1 0 g-1) = g 0]y 0 g-1 = g 0 g-1]z

and
(f-1 o g-1

) o (go!) = r 1 o Jy = f- 1 of Ix.

End of Proof.

A. 7. INVERSES 381

Example A. 7 .6 Let R + denote the set of non-negative real numbers:

R+ = {x ER: x ~ O}

and consider the four functions:

Then

!1: R---+ R
h: R---+ R+
h: R+---+ R
f4: R+---+ R+

fi(x) = x2 for x ER;
h(x) = x2 for x ER;
h(x) = x2 for x ER+;
f4(x) = x2 for x ER+.

1 ft is neither one-one nor onto. It is not one-one since fi(3) = ·
f 1 (-3) 9 but 3 =f- -3. It is not onto since f 1 (x) =f- -4 for
all x ER.

2 h is onto but not one-one. It is not one-one for the same reason that
Ji is not. The reason that f 1 is not onto does not apply to h

the negative numbers are not in the codomain of f2. The
function

given by
92(Y) vY

is a right inverse to h : R---+ R+ since h(g2(y)) = y for y ~ 0.
It is not a left inverse for h since g2(!2(x)) !xi for x ER and
x Jxl if x < 0. The function

92: R+---+ R

given by
fJ2(Y) = --/Y

is a different right inverse to f3.

3 fs is one-o:rie but not onto. It is not onto for the same reason that
f 1 is not. The reason that f 1 is not one-one does not apply to
h since the negative numbers are· not in the domain of f3. The
function

382 APPENDIX A. SETS AND FUNCTIONS

defined by

_ { .jY for y 2 O;
Y3(Y)- 7fory<O

is a left inverse to the function h; namely, g3 (f3(x)) = x for
x ER+. It is not a right inverse for f3(g3 (y)) = 49 f=. y for y < 0.
(Replacing 7 by some other constant gives a different left inverse
to f3.)

4 f 4 is one-one and onto. The function

given by

is the (two-sided) inverse to the function f4

Example A.7.7 Let Y {y E R : -1 ::; y ::; l} and define f
R Y and g: Y-+ R by f(fJ) = sin(fJ) and g(y) = sin-1 (y). Then
f(g(y)) = y for y E Y. Thus f is a left inverse for g, g is a right inverse
for f, f is onto, and g is one-one. However f is not one-one (since
f (27r) = f (0) although 27r f=. 0) and g is not onto (since g(y) f=. 2 for all
y E Y).

Problem A.7.8 What is the value of g(f(fJ))
()ER?

sin-1 (sin(fJ)) for

The example and exercise point up the fact that it is very impor­
tant to specify the domain and codomain when defining a function. In
order to define inverses for common functions one often restricts their
domains.

Here are some common functions and their inverses. Note how
carefully the source and codomain are specified.

1. The linear function

R -+ R : x r-cr ax + b

A. 7. INVERSES 383

is one-one and onto if a f=. O; its inverse is the function

R -+ R : y r-cr (y - b)/a.

For x,y ER:

y =ax+ b {=:} x = (y - b)/a.

2. The cube function
R -+ R : x r-cr x3

is one-one and onto; its inverse is the cube root function

R
1

R: y r-cr y3.

For x,y ER:
1

ya y = x3
{=:} x

3. The exponential function

R -+ R + \ {O} : x r-cr ex

is one-one and onto; its inverse is the natural logarithm

R+ \ {O}-+ R: y r-cr ln(y).

For x, y E R with y > 0:

y ex{=:} x = ln(y).

4. The restricted sine function

sin: {fJ ER: -~ < () < 7r -+ {y ER: -1 < y < l} 2 - - 2 - -

is one-one and onto; its inverse is the inverse sine function

7r 7r
sin - 1

: { y E R : -1 ::; y ::; 1} -+ { fJ E R : - 2 ::; B ::; 2} ·

For ::; B::; ~}and -1::; y::; 1:

y = sin(fJ) {=:} e = sin-1 (y).

The inverse sine function is sometimes called the arcsine and de­
noted arcsin.

384 APPENDIX A. SETS AND FUNCTIONS

A.8 Cartesian Product

Let X and Y be sets. The Cartesian product of X and Y is the set
of all ordered pairs (x, y) with x EX and y E Y:

Xx Y {(x,y): x EX, y E Y}.

The Cartesian product is also called the direct product.
In certain contexts the word operation is often used in place of the

word function; thus a unary operation on a set X is a function with
domain and codomain X and a binary operation on Xis a function
with domain X x X and codomain X.

An example of a unary operation is the operation of negation of a
real number:

R ---+ R : x 1--t -x

and an example of a binary operation is the operation of addition of
real numbers:

Rx R---+ R: (x,y) 1--t x + y.

Sometimes the value of a function for given inputs is denoted in
other ways. For example, we write x + y rather than +(x, y) Here,
parentheses play the crucial role of indicating the order· in which the
operations are performed (x-(y+z) f:. (x-y)+z) and when parentheses
are omitted this order is determined according to some convention (e.g.
x - y + z means (x - y) + z and not x - (y + z)).

The notation where the name of a binary function is placed between
(rather than in front of) the arguments is called infix notation. Occa­
sionally, the name of the function is placed after the operation - one
writes (x,y)f rather than f(x,y).-this is called postfix notation. The
notation f(x, y) is thus called prefix notation. It is possible to omit
parentheses unambiguously when using postfix (or prefix notation) and
some calculators (e.g., those made by Hewlett-Packard) and program­
ming languages (e.g., APL) do this. (Thus X-'-Y + z is denoted xy- z+
in postfix notation.) 4

4The observation that parentheses are not needed with prefix. (or postfix) nota­
tion is due to a Pole named Lukasiewicz so parentheses-free notation is sometimes
called Polish (or reverse Polish) notation.

A.9. GRAPHING FUNCTIONS

A.9 Graphing Functions

For any function
f:X-+Y

we may define its graph to be the set

G(f) {(x,y) EX x Y: y = J(x)}

of all pairs (x, y) such that y = f (x).

385

(1) A subset G c X x Y is the graph of some function f if and only if
for every x EX there is a unique y E Y (namely y = f(x) with
(x, y) E G(f).

(2) function f is one-one if and only if for every y E Y there is at
most one x EX with (x, y) E G(f).

(3) The function f is onto if and only if for every y E Y there is at
least one x EX with (x,y) E G(f).

(4) function f is one-one and onto if and only if for every Y . E Y
there is exactly one x E X with (x, y) E G(f).

Suppose that both sets X and Y are intervals in the set R of real
numbers. For example,

X {x ER: a1 :s; x :s; a2}, Y {y ER: b1 :s; x :s; b2}.

We may plot points in the usual fashion with the set X represented
by an interval on the horizontal axis and the set Y represented by an
interval on the vertical axis. The set X x Y will be a rectangle and the
graph G(f) of f will be a subset of the rectangle X x Y. Then

(1) A subset G c X x Y is the graph of some function f if and only if
every vertical line through X intersects G in exactly one point.

(2) The function f is one-one if and only if every horizontal line through
Y intersects G(f) in at most one point.

386 APPENDIX A. SETS AND FUNCTIONS

(3) The function f is onto if and only if every horizontal line through
Y intersects G(f) in at least one point.

(4) The function f is one-one if and only if every horizontal line through
Y intersects G(f) in exactly one point.

Problem A.9.1 For each of the following sets G specify whether or
not it is the graph of a function f: X ~ Y.

1. G = {(x,y) E R 2
: x2 +y2 =1},

X = {x ER: -1 ~ x ~ 1},
Y = {y ER: -1 ~ y ~ l}.

2. G={(x,y)ER2 :x2 +y2 =1, y~O},
X = {x ER: -1~x~1},
Y = {y E R : -1 ·~ y ~ 1}.

3. G={(x,y)ER2 :x2 +y2 =1, x~O},
X = {x ER: -1 ~ x ~ 1},
Y = {y ER: -1~y~1}.

4. G = {(x, y) E R 2
: x 2 + y2 = 1, y ~ 0},

X = {x ER: -1 ~ x ~ 1},
Y={yER:O~y~l}.

5. G = {(x, y) E R2
: y = x3

- x, -1 ~ x ~ 1},
X = {x ER: -1~x~1},
Y = {y E R : -9 ~ y ~ 9}.

6. G = { (x, y) E R 2
: y = x3 + x, -1 ~ x :::; 1},

X = {x ER: -1~x~1},
Y = {y E R: -9 ~ y ~ 9}.

7. G = { (x, y) E R 2
: x = y3

- y, -1 ~ y ~ 1},
X = {x ER: -9 ~ x ~ 9},
Y = {y ER: -1 ~ y ~ l}.

8. G = {(x, y) E R2
: x = y3 + y - 1 ~ y ~ 1},

X = {x ER: -9 ~ x ~ 9},
Y = {y E R : -1 ~ y ~ 1 }·.

A.9. GRAPHING FUNCTIONS 387

Problem A~9.2 Graph each of the following functions f : X ~ Y
and specify whether or not it is one-one or onto or both. If the function
is not one-one, draw a horizontal line which intersects its graph at least
twice. If the function is not onto, draw a horizontal line which does not
intersect its graph.

1. X={xER: -1 ~x~l},
Y = {y ER: -1 ~ y ~ 1},
f(x)=~.

2. X = {x ER: -1~x~1},
Y = {y ER: 0 ~ y ~ 1},
f(x)=~.

3. X={xER: O~x~l},
Y = {y ER: -1~y~1},
f(x)=~.

4. X = { x E R: 0 ~ x ~ 1 },
Y = {y ER: 0 ~ y ~ 1},
f(x)=~.

5. X={xER: -l~x~l},
Y = {y E R: -2 ~ y ~ 2},
f(x) = x3

- 1.

6. X = {x ER: -1~x~1},
Y = {y ER: -2 ~ y ~ 1},
J(x) = x3

- 1.

7. X={xER: -1 ~x~l},
Y = {y E R : -2 ~ y ~ 2},
f(x) = x 3 + 1.

8. X= {x ER: -1 ~ x ~ 1},
Y = {y E R ·: 0 ~ y ~ 2},
f(x) = x3 + 1.

388 APPENDIX A. SETS AND FUNCTIONS

A.10 Finite Sequences

A sequence of length n is a list

of objects; Xi is called the i-th element of the finite sequence x. Two
sequences

and
g (yi, Y2, .. ·, Ym)

are equal if m = n and Xi Yi for i = 1, 2, ... , n.
It is important to remember that for sequences the order is impor:­

tant. Thus the sequences x (4, 7, 9) and y (7, 4, 9) are distinct (for
X1 = 4 =/:- 7 = Y1) while the sets { 4, 7, 9} and {7, 4, 9} are the same.
Similarly, for sequences repetition matters, whereas this is not so for
sets. Thus

{1,2,3,1,2} = {1,2,3}

but
(1,2,3,1,2) =I- (1,2,3)

since the two sequences have different length.
The set of all finite sequences of elements of X of length n is denoted

by xn so that

xn = {(xi, X2, •.• 'Xn) : Xi, X2, .•. 'Xn EX}.

It is also customary not to distinguish between a sequence of length
one and its sole element: (x) = x. In other words, we identify the set
X 1 of sequences of length one of elements of X with the set X itself:

X 1 =X.

A sequence of length n is also called an n-tuple. Thus a 2-tuple is
a pair, a 3-tuple is a triple, a 4-tuple is a quadruple, etc ..

Proposition A.10.1 Suppose f is an n-tuple of elements of {1, 2, ... , m},
that is,

f: {1,2, ... ,n}--+ {1,2, ... ,m}.

A.10. FINITE SEQUENCES 389

1. If f is one-one, then n ::; m.

2. If f is onto, then n ~ m.

3. 1/ f is one-one and onto, them n = m.

There are m n functions

f: {1,2, ... ,n}--+ {1,2, ... ,m}

from a finite set with n elements to a finite set with m elements: in
other words, there are m n ways to form a sequence of length n (possibly
with repetitions) from a set of m objects. For example there are 8 = 23

functions
J j : { 1, 2, 3} --+ { 1, 2} for j = 1, 2, ... , 8

from a three element set to a two element set. Let's list them and their
values in a table:

1 1 2 3
Ji(i) 1 1 1
h(i) 1 1 2
/3(i) 1 2 1
/4(i) 1 2 2
Is(i) 2 1 1
/e(i) 2 1 2
f1(i) 2 2 1
/s(i) 2 2 2

None of these is one-one since 2 < 3. For example f4 is not one-one
since f4(2) = / 4(3) = 2 but 2 =f. 3. On the other hand all but /1 and /s
are onto. For example /2 is onto since /2(1) = 1 and f2(3) 2. There
are two right inverses g and h to /2; one of them is defined by g(l) = 1,
g(2) 3 and the other by h(l) 2, h(2) = 3: f(g(y)) f(h(y)) = Y
for y l, 2. On the other hand, / 1 is not onto since the equation
f 1 (x) = 2 has no solution x E {1,2,3}.

Problem A.10.2 For each f: {1,2,3}--+ {1,2} which is onto, give
·all of its right inverses.

390 APPENDIX A. SETS AND FUNCTIONS

Problem A.10.3 Make a table of the 9 = 32 functions

f: {1, 2} ~ {1, 2, 3}.

For each f say whether it is one-one. If it is give all its left inverses. If
it is not, find_ xi, x2 with f (x1) = f (x2) but x1 f=. x2.

A.11 Permutations

Now we deal with the case where m = n. Let

f: {1,2, ... ,n} ~ {1,2, ... ,n}

be a function from a finite set with n elements to itself. The function
f is called a permutation if f is one-one and onto.

Proposition A.11.1 Suppose f is a function from a finite set with n
elements to itself. Then the following conditions are equivalent:

• f has a left inverse.

• f is one-one.

• f has a right inverse.

• f is onto.

• f is a permutation.

• f has a two-sided inverse f- 1; i.e., there is a function

f-1
: {1,2, ... ,n} ~ {1,2, ... ,n}

satisfying f(f- 1(y)) = y and f- 1(f(x)) = x for x, y = 1, 2, ... , n.

Moreover, if f satisfies any of these conditions, f- 1 is the only left
inverse to f and f- 1 is the only right inverse to f.

Of the nn functions from {1, 2, ... , n} to itself exactly n! = n · (n -
1) · (n - 2) · · · 3 · 2 · 1 of these are permutations. (This is the number of
ways we can rearrange n things·without repetitions.)

A.12. INDUCTION 391

Problem A.11.2 There are 27 = 33 functions

f: {1,2,3} ~ {1,2,3}

and 6 of them are one-one and onto. For each of these 6 give its inverse.
Select one of the remaining 21, by specifying the three values f(l), f(2),
f(3). Show that this f is not one-one by finding xi, x 2 E {1, 2, 3} with
X1 f=. x2 and f(x 1) = f(x 2). Show that this f is not onto, finding
y E {1,2,3} such that f(x) f=. y for x = 1,2,3.

A.12 Induction

The set of natural numbers

N = {0,1,2,3, ... }

is one of the starting points for mathematics.
An infinite sequence is a function whose domain is the set of

natural numbers. Infinite sequences are often written with the three
dot notation,

A= (Ai, A2, A3, ...).

The induction principle is a basic property of the natural num­
bers, and plays a central role in many of the proofs in this course.

INDUCTION PRINCIPLE

To prove that all natural numbers have a given property R:

(Basis step) Show that 0 has the property R.

(Successor step) Show that for every natural number n,
if n has property R, then n + 1 has property R.

We may write R(n) to mean that n has property R. The induction
principle is intuitively plausible because one can prove R(k) for a par­
ticular natural number k by first using the basis step to prove R(O),
then using the successor step to prove R(1), then using the successor
step again to prove R(2), and repeating the process k times to form a
·proof of R(k).

392 APPENDIX A. SETS AND FUNCTIONS

Infinite sequences are often defined by induction on the natural
numbers. Such definitions are justified by the following principle.

INDUCTIVE DEFINITION PRINCIPLE

A sequence A = (Ai, A2, A3 , •••). can be defined uniquely by
giving:

(Basis rule) A value A 0 ;

(Successor rule) For each natural number n, a rule for
computing a value An+1 given n and values A0 , •.• , An.

·Appendix B

Listings

B.1 Simple GNUMBER Programs

In this section the simple register machine programs on the distribution
diskette are reproduced.

ADD.GN

0: z 3 -ADD- let count = 0
1: J 3 2 5 -LOOP- if count = b, jump to DONE
2: s 1 let a = a+1
3: s 3 let count = count+1
4: J 1 1 1 jump to LOOP
5: H -DONE-

MULT.GN

0: z 3 -MULT- let accum = 0,

1: z 4 let i = 0

2: J 2 4 10 -LOOP- if b = i, jump to DONE
3: s 4 let i = i + 1
4:. z 5 -ADD(accum,a)- let count = 0

393

394

5: J 5 1
6: s 3
7: s 5
8: J 1 1
9: J 1 1

10: T 3 1
11: H

0: z 2

1: J 1 2
2: z 3
3: s 3
4: J 1 3
5: s 3
6: s 2
7: J 1 1
8: T 2 1
9: H

APPENDIX B. LISTINGS

9 -ALOOP- if count = a, jump to ADONE
let accum = accum+1
let count = count+1

5 jump to ALOOP
2 -ADONE- jump to LOOP

-DONE- let a = accum

PRED.GN

-PRED- let prev = 0
8 if a= prev, jump to DONE

let next = 1
8 -LOOP- if a = next, jump to done

let next = next + 1
let prev = prev + 1

4 jump to LOOP
-DONE- let a = prev

DOTMINUS.GN

0: z
1: J
2: z
3: J
4: z
5: s
6: J

3 -DOTMINUS- let count = 0
3 2 13 -LOOP- if count = b, jump to DONE
5 -PRED(a)- let prev = O
1 5 10 if a= prev, jump to PDONE
4

4 let next = 1
1 4 10 -PLOOP- if a = next, jump to PDONE

7: s 4

8: s' 5
9: J 1 t

let next = next+1
let prev = prev+1

6 jump to.PLOOF

B.2. ADVANCED RM PROGRAMS

10: T 5

11: s 3
12: J 1
13: H

0: z 5
1: J 2
2: z 3
3: z 4
4: J 4
5: J 5
6: s 4
7: s 5
8: J 1
9: s 3

10: z 4
11: J 1
12: T 3

1

1

-PDONE- let a = prev
-END PRED- let count = count+l

1 jump to LOOP
-DONE-

DIVREM.GN

-DIVREM- let count = 0
5 1 -HANG- if b = count, jump to HANG

let q = 0
let r = 0

2 9 -TEST- if r = b, jump to INCQ
1 12 if count = a, jump to DONE

let r = r+1
let count = count+1

1 4 jump to TEST
-INCQ- let q = q+1
let r = 0

1 4 jump to TEST
1 -DONE- let a = q

13: T 4 2
14: H

let b = r

B.2 Advanced RM programs

395

This section contains pseudocode and register machine listings for the
advanced RM programs on the distribution diskette.

0: z 20
1: T 20 21
2: s 21

FIVE.GN

-FIVE- let zero = 0

let one = 1

396 APPENDIX B. LISTINGS

3: T 21 22
4: s 22 let two = 2
5: T 22 23
6: s 23 let three = 3
7: T 23 24
8: s 24 let four = 4
9: T 24 25

10: s 25 let five = 5
11: H

TERMS.GN

program TERMS(a)
input:
output:

a= x, the G.N. of a sequence S
a = number of terms in S

let count = 0
let b = a
do until not b = a

let c = a[count]
let b[count] = c
let count = count + 1

loop
let a = count

end of program TERMS

0: z 4 -TERMS- let count ~ 0
1: T 1 2 let b = a
2: E 1 4 3 -LOOP- let c = a[count]
3: p 3 4 2 let b[count] = c
4: J 1 2 6 if a = b, jump to NEXT
5: J 1 1 8 jump to DONE
6: s 4 -NEXT- let count = count
7: J 1 1 2 jump to LOOP
8: T 4 1 -DONE- let a = count

+ 1

B.2. ADVANCED RM PROGRAMS

9: H

JOIN.GN

program JOIN(p,q,psize,qsize)
input: p = a G.N. of a program P

q = a G.N. of a program Q

psize = number of instructions of P
qsize = the number of instructions of Q
zero= 0, ... , five= J = 5

output: a= the G.N. of the join PQ

let ans = p
let pos = psize
let count = 0
do until qsize = count

let quad = q[count]
let op = quad[zero]
if op = J then

let quad[three] = quad[three] + psize
let ans[pos] = quad
let pos = pos + 1
let count = count + 1

loop
let a = ans

end of program JOIN

0: T 1 5 -JOIN- let ans = a
1: T 2 6 let q = b
2: T 3 7 let psize = c
3: T 4 8 let qsize = d
4: T 3 9 let pos = psize
5: z 10 let count = 0

397

398 APPENDIX B. LISTINGS

6: J 8 10 23 -MAIN- if qsize = count, jump to DONE
7: E 6 10 11 let quad = q[count]
8: E 11 20 1 let op = quad[zero]
9: J 1 25 14 if op= 5, jump to SETJUMP

10: P 11 9 5 -CONTINUE- let ans[pos] = quad
let pos = pos + 1
let count = count + 1

6 jump to MAIN

11: s 9
12: s 10
13: J 1
14: E 11
15: T 7

1
23

2

1 -SETJUMP- let a = quad[three]
let b = psize

16: z
17: J
18: s
19: s
20: J
21: p

22: J
23: T
24: H

B.3

let c = 0 3
2
1

3 21 -LOOP- let a = a + psize, jump to AFTER
let a = a + 1

3 let c = c + 1
1 1 17 jump to LOOP
1 23 11 -AFTER- let quad[three]
1 1 10 jump to CONTINUE
5 1 -DONE- let a = ans

Pseudocode for P ARAM

= a

The PARAM program is an example of how the simpler programs
FIVE, TERMS, and JOIN can be combined to form programs which
build Godel numbers of new programs from Godel numbers of old pro-
grams.

program PARAM(a,b)
input: a = x, the G.N in standard form of an

ARM program P which neatly computes
a function f(.,.) of two variables,
b = y, which goes in the first place of f

output: a= the G.N. of an ARM program Q
which neatly computes the function
g (.) = f (y' .) .

B.4. PARAM.GN LISTING

FIVE
let p = a
let n = b
let count = 0
let const = 0
let instr= G.N. of (Z,2)
let const[O] = instr
let instr= G.N. of (S,2)
do until n = count

let count = count + 1
let const[count] = instr

loop
let d = Terms(p)
let a = const
let b = p
let c = n + 1
JOIN(a,b,c,d)

end of program PARAM

B.4 PARAM.GN listing

0: z 20 -PARAM- -FIVE- let zero
1: T 20 21
2: s 21 let one = 1
3: T 21 22
4: s 22 let two = 2
5: T 22 23
6: s 23 let three = 3
7: T 23 24
8: s 24 let four = 4
9: T 24 25

10: s 25 let five = 5
11: T 1 5 -end of FIVE- let p = a,
12: T 2 6 let n = second input b

399

= 0

G.N. of P

400 APPENDIX B. LISTINGS

13: z 7 let count = 0
let const = 0
let instr = 0

. 14: z 8

15: z 9
16: p 22 20
17: p 22 21
18: p 9 20

9 let instr[zero] = Z
9 this makes instr = G.N. of (Z,2)
8 let const[zero] = instr

19: p
20.: J

21: s
22: p

23: J
24: z
25: T
26: E
27: p

28: J
29: T
30: J
31: s

23 20 9 this makes instr= G.N. of (S,2)
6 7 24 -LOOP- if n = count, jump to TERMS
7 let count = count + 1
9 7 8 let const[count] = instr
1 1 20 jump to LOOP. const = GN of (Z,2), n (S,2)'
4 -TERMS- let d = 0
1 2 let b = a
1 4 3 -TLOOP- let c = a[d]
3 4 2 let d[b] = c
1 2 31 if a = b, jump to NEXT
4 1 let a = d
1 1 33 jump to TOONE
4 -NEXT- let d = d + 1

32: J 1
33: T 1
34: T 8
35: T 5
36: T 6
37: s 3
38: T 1

1 26 jump to TLOOP, a= #terms of P
4 -TOONE- d = # terms of P
1 let a= const, the GN of (Z,2), n (S,2)'s
2 let b = p, the G.N. of program P
3 let c = n

let c = n + 1 = size of const
5 -JOIN- let ans = a

39: T
40: T
41: T

42: T

43: z
44: J
45: E
46: E
47: J
48: p
49: s

2 6
3 7
4 8
3 9

10
8 10 61
6 10 11

11 20 1
1 25 52

11 9 5
9

let q = b
let psize = c
let qsize = d
let pos = psize
let count = O
-MAIN- if qsize = count, jump to DONE
let quad = q[count]
let op = quad[zero]
if op = 5, jump to SETJUMP
-CONTINUE- let ans[pos] = quad
let pos = pos + 1

B.5. PSEUDOCODE FOR NXSTATE AND UNIV 401

50: s
51: J

52: E
53: T
54: z
55: J
56: s
57: s
58: J
59: p

60: J
61: T
62: H

B.5

10
1

11
7
3
2

1
3

1
1
1
5

let count = count + 1
1 44 jump to MAIN

23 1 -SETJUMP- let a = quad[three]
2 let b = psize

let c = 0

3 59 -JLOOP- let a = a + psize, jump to AFT
let a = a + 1

1 55
23 11

1 48
1

let c = c + 1
jump to JLOOP
-AFT- let quad[three] = a
jump to CONTINUE
-DONE- let a = ans

Pseudocode for NXSTATE and UNIV

Section 4.9 contains a pseudocode description of UNIV, the universal
ARM program for two variables. Here we shall give an alternate ex­
planation of this program. We first describe the program NXSTATEO
which is on the distribution disk. Once we have NXSTATEO, UNIV is
built in a very simple way by calling NXSTATEO repeatedly in a loop.
The program NXSTATE on the distribution disk starts with 14 steps
where the registers R20 through R27 are given the constant values 0
through 7. UNIV will use the following simpler program NXSTATEO
where these 14 initial steps are left out.

Let P be an ARM program which uses at most the registers Ri
through Rn. By the state of an ARM machine at a particular stage
in a computation on P we mean the finite sequence of length n + 1
consisting of the contents of the program counter and the registers Ri
through Rn. NXSTATEO takes as inputs a Godel number inst of a
simulated ARM program P and a Godel number reg of the state of
P. (These Godel numbers do not have to be in standard form). Its
output is the Godel number of the next state of P which results after
the execution of the instruction of P given by the program counter.

The variable pc stands for the simulated program counter, which
is the number of the instruction to be executed. quad stands for a

402 APPENDIX B. LISTINGS

Godel number of a simulated instruction. op stands for the zeroth
term of the sequence coded by quad and is an opcode for one of the
instruction letters H,Z,S,T ,J ,E,P. s 1, s2, s3 are the remaining terms
of the sequence coded by quad, and v1, v2, v3 are the values of the
simulated registers numbered s 1, s2, s3.

To make NXSTATEO easier to use in a loop, we regard the opcode
variable op as a second output which will be used by UNIV to determine
whether the simulated program has halted.

Since NXSTATEO and UNIV are ARM programs, the Extract and
Put commands are available. To emphasize the meaning of these com­
mands for sequences, we write Extract (x, y, z) as z=x [y] and Put (x, y, z)
as z [y] =x.

By replaci~g the Extract and Put commands by the simple RM pro­
grams EXTRACT and PUT, NXSTATEO and UNIV can, in principle,
be written as programs for the simple RM. Such programs would be
long and too slow to use in practice.

program NXSTATEO(inst,reg,op)
(Nextstate with constants 0-7 aready given)
input: inst = a G.N. of instruction list,

reg= a G.N. of old state
zero = 0, one = 1,two = 2, three = 3
H = 1, Z = 2, S = 3, T = 4, J = 5, E = 6, P = 7

output: reg= the G.N. of new state,
op = opcode of instruction

let pc = reg[zero]
let quad= inst[pc]
let op = quad[zero]
let s1 = quad[one], s2 = quad[two], s3 = quad[three]
let v1 = reg[s1], v1 = reg[s2], v3 = reg[s3]
if op = Z then

let reg[s1] = zero, pc = pc + 1
else if op = S then

let v1 = v1 + 1, reg[s1] = v1, pc = pc + 1
else if op = T then

let reg[s2] = v1, pt = pc + 1

B.5. PSEUDOCODE FOR NXSTATE AND UNIV 403

else if op = J then
if v1 = v2 then let pc s3
else let pc = pc + 1

else if op = E then
let v3 = v1 [v2] , reg [s3] = v3, pc = pc + 1

else if op = P then
let v3 [v2] = v1, reg [s3] = v3, pc = pc + 1

else let op = H
let reg[zero] = pc

end of program NXSTATEO

404 APPENDIX B. LISTINGS

Here is a pseudocode description of the universal program UNIV
which uses NXSTATEO in its main loop. UNIV has three inputs, a
Godel number of an ARM program P (not necessarily in standard
form), and two numbers x and y. The output of UNIV is the out­
put of P computing on inputs x and y.

program UNIV(a,b,c)
(Universal ARM program)
input: a= a G.N. of an ARM program P

b = x, c = y
output: a= P(x,y)

let zero = 0, one = 1, ... , seven= 7
let time = 0
let reg = 0
let reg[one] = b, reg[two] = c
let op = 0
do until op = H

NXSTATEO(a,reg,op)
let time = time + 1

loop
let a = reg [one]

end of program UNIV

B.6. NXSTATEO.GN LISTING

B.6

0: E
1: E
2: E
3: E
4: E

5: E
6: E
7: E
8: E
9: J

10: J
11: J
12: J
13: J

NXSTATEO.GN listing

4 20
1 5

5 -NXSTATEO- let pc = reg[zero]
6 let quad = instr [pc]

6 20
6 21

7 let op = quad[zero]
8 let s1 = quad[one]

let s2 quad[two]
let s3 = quad[three]
let v1 = reg [s 1]

6 22 9
6 23 10
4 8 11
4 9 12 let v2 = reg[s2]
4 10 13
7 22 17
7 23 19
7 24 22
·1 25 24
7 26 26

let v3 = reg [s3]

14: J 7 27 29
15: T 21 7

if op = two, jump to ZERO
if op = three, jump to SUCC
if op = four, jump to TRANS
if op = five, jump to JUMP
if op = six, jump to EXTR
if op = seven, jump to PUT
let op = one

16: J 1 1 35
17: p 20 8 4
18: J

19: s
20: p

21: J
22: p

23: J
24: J

25: J

1
11
11

1
11

1
11

1
26: E 11
27: p 13
28: J
.29: p

30: p

31: J
32: s
33: J
34: ·T

1
11
13

1
5
1

10

1 32

8 4

1 32
9 4
1 32

12 34
1 32

12 13
10 4

1 32
12 13
10 4

1 32

1· 35
5

jump to DONE
-ZERO- let reg[s1] = 0
jump to NEXT
-SUCC- let v1 = v1 + 1
let reg[s1] = v1
jump to NEXT
-TRANS- let reg[s2] = v1
jump to NEXT
-JUMP- if v1 = v2, jump tc SETPC
jump to NEXT
-EXTR- let v3 = v1[v2]
let reg[s3] = v3
jump to NEXT
-PUT- let v3[v2] = v1
let reg[s3] = v3
jump to NEXT
-NEXT- let pc = pc + 1
jump to DONE
-SETPC- let pc = s3

405

406 APPENDIXB. LISTINGS B.7. UNIV.GN LISTING 407

35: p 5 20 4 -DONE- let reg[zero] = pc 31: J 7 23 40 if op = three, jump to SUCC
36: H 32: J 7 24 43 if op = four, jump to TRANS

33: J 7 25 45 if op = five, jump to JUMP
34: J 7 26 47 if op = six, jump to EXTR

B.7 UNIV.GN listing 35: J 7 27 50 if op = seven, jump to PUT
36: T 21 7 let op = one

O: z 20 -UNIV- let zero = 0 37: J i i ·56 jump to DONE
i: T 20 2i 38: p 20 8 4 -ZERO- let reg[si] = 0
2: s 2i let one = i 39: J i i 53 jump to NEXT
3: T 2i 22 40: s 11 -succ- let vi = vi + i
4: s 22 let two = 2 4i: p ii 8 ·4 let reg[si] = vi
5: T 22 23 42: J i i 53 jump to NEXT
6: s 23 let three = 3 43: p 11 9 4 -TRANS- let reg[s2] = vi
7: T 23 24 44: J i i 53 jump to NEXT
8: s 24 let four = 4 45: J ii i2 55 -JUMP- if vi = v2, jump to SETPC
9: T 24 25 46: J i i 53 jump to NEXT

iO: s 25 let five = 5 47: E 11 i2 i3 -EXTR- let v3 vi [v2]
ii: T 25 26 48: p i3 iO 4 let reg[s3] = v3
i2: s 26 let six = 6 49: J i i 53 jump to NEXT
i3: T 26 27 50: p ii i2 i3 -PUT- let v3[v2] = vi
i4: s 27 . let seven = 7 5i: p i3 iO 4 let reg[s3] = v3
i5: z i5 set time counter to 0 52: J i i 53 jump to NEXT
i6: z 4 simulated register list, let reg = 0 53: s 5 -NEXT- let pc = pc + i
i7: p 2 2i 4 let reg[one] = b 54: J i i 56 jump to DONE
i8: p 3 22 4 let reg [two] = c 55: T iO 5 -SETPC- let pc = s3
i9: z 5 let pc = 0 56: p 5 20 4 -DONE- let reg [zero] = pc
20: z 7 let op = 0 57: s i5 increment time counter
2i: J 7 2i 59 -LOOP- if op = one, jump to EXIT 58: J i i 2i jump to LOOP
22: E i 5 6 -NXSTATEO- let quad = instr[pc] 59: E 4 2i i -EXIT- let output = reg[one]
23: E 6 20 7 let op = quad[zero] 60: H
24: E 6 2i 8 let si = quad[one]
25: E 6 22 9 let s2 = quad[two]
26: E 6 23 iO let s3 = quad[three]
27: E 4. 8 ii let vi = reg[si]
28: E 4 9 i2 let v2 = reg [s2]
29: E 4 10 13 let v3 = reg[s3]
30: J 7 22 38 if op = two, jump to ZERO

Appendix C

The Logiclab Package

Logiclab is a package of four programs which are included with and
keyed to the book. The diskette has the main programs, documentation
files, problem files, and DOS and Windows (R) setup programs.

The DOS setup program, SETUPDOS.EXE, will create a directory
of your choice for the Logiclab package on the hard disk, copy the
DOS versions of the programs to the directory, and copy each problem
set to a different subdirectory. The Windows setup program, SETUP­
WIN .EXE, does the same thing but works within Windows and copies
the Windows versions of the programs instead of the DOS versions.
Neither setup program does anything else.

To install the DOS version of Logiclab on a hard disk, put the
diskette in a drive slot (say drive A:), type A:SETUPDOS, and follow
the directions on the screen.

To install the Windows version of Logiclab on a hard disk, put
the diskette in a drive slot (say A:), run A:SETUPWIN from within
Windows, and follow the directions on the screen.

The programs can be used for the problem sets and for classroom
demonstrations. There are two versions of each program, one for DOS
and one for Windows. The DOS versions of the four programs are
TABLEAU, COMPLETE, PREDCALC, and GNUMBER. The Win­
dows versions, which work with either Windows 3.0 or later, or Win­
dows 95, are TABWIN, COMPWIN, PREDWIN, and GNUMWIN.
These Windows versions have built-in tutorials which can be selected
when the program is started and give quick introductions. The follow-

409

410 APPENDIX C. THE LOGICLAB PACKAGE

ing appendices are manuals which tell you how to use these programs.
The programs are designed so that you can load in problems, save your
solutions in files on a diskette, and hand them in to the instructor.

It may be helpful for the instructor to demonstrate the programs
to the class before assigning problem sets, perhaps using a screen pro­
jector. The student will want to know which key has been pressed at
each step. For this purpose, the DOS versions of all the programs have
the option of displaying the last key pressed in the upper right corner
of the screen. This option is turned on or off by hitting the control key
and the K key together.

TABLEAU is a Semantic Tableau Editor. It helps you to construct
a formal tableau proof in either propositional or predicate logic. You
have to do the thinking and tell the program which proof steps and
substitutions to make at each time. The program takes care of the
routine tasks of writing down formulas, making sure that each step is
legal, and checking for contradictory branches. The problems give you
a list of hypotheses and a formula to be proved, and your task is to
build a tableau proof.

The COMPLETE program automatically extends a propositional
tableau to a finished tableau. It is designed for classroom demonstra­
tions and experimentation by the student, and illustrates the main part
of the proof of the Completeness Theorem for propositional logic.

PREDCALC illustrates the semantics of predjcate logic. It acts
like a reverse Polish notation calculator, but operates on w:ffs instead
of numbers, and displays both the formulas and their graphs at each
step. The problems show you the graph of an unknown wff, and your
task is to build a wff which has that graph.

GNUMBER simulates either a simple or advanced register machine,
and has extra capabilities which let you experiment with Godel num­
bers of w:ffs. The problems describe computable functions, and your
task is to build register machine programs which compute them. The
GNUMBER program can be used to check your program, and also to
experiment with advanced programs such as the universal ARM pro­
gram.

The programs are copyrighted by the authors of this book and are.
part of the public domain. The package fits on one high density 3.5"
diskette. Here is a list of the files which are included with the book.

411

READ.ME: Installation instructions and list of files on the diskette

SETUPDOS.EXE: The program for installing the DOS package on
a hard disk

SETUPWIN .EXE: The program for installing the Windows package
on a hard disk

TABLEAU .EXE: The Semantic Tableau Editor

TABLEAU.DOC: Manual for the TABLEAU program

TABWIN.EXE: The Windows version of TABLEAU

TABWIN.DOC: Manual for the TABWIN program

*.TBU: Problem files for TABLEAU or TABWIN, located in the di­
rectories TABl, TAB3, and TAB4

*.TBM: Modal logic problem files for TABLEAU or TABWIN, lo­
cated in the directory TAB7

TABPROB.DOC: Discussion of TABLEAU problems

COMPLETE.EXE: Tableau Completer for Propositional Logic

COMPLETE.DOC: Manual for the COMPLETE program

COMPWIN.EXE: Windows version of COMPLETE

COMPWIN.DOC: Manual for the COMPWIN program

PREDCALC.EXE: The Predicate Calculator program

PREDCALC.DOC: Manual for the PREDCALC program

PREDWIN .EXE: The Windows version of PREDCALC

PREDWIN.DOC: Manual for the PREDWIN program

*.PRC: Problem files for the PREDCALC or PREDWIN, located in
the directory PRED2

412 APPENDIX C. THE LOGICLAB PACKAGE

PREDPROB.DOC: Discussion of PREDCALC problems

GNUMBER.EXE: Register Machine Program with Godel Numbers

GNUMBER.DOC: Manual for the GNUMBER program

GNUMWIN.EXE: Windows version of GNUMBER

GNUMWIN.DOC: Manual for the GNUMWIN program

*. G N: Sample register machine programs for GNUMBER or G NUMWIN,
located in the directories GNUM5 and GNUM6

GNUMPROB.DOC: Discussion of GNUMBER problems

Appendix D

TABLEAU - Tableau Editor
for DOS

D.1 Introduction

TABLEAU, the Tableau Editor for Predicate Logic, helps you write
down a tableau proof. It will run on an IBM PC or compatible computer
with at least 320K memory and one disk drive. With more memory,
you will have room to build a larger tableau, up to 1500 nodes.

TABLEAU has a top level title screen and three m9des of operation:
Hypothesis Mode builds the formula to be proved and a list of hypothe­
ses. The program will only allow well-formed formulas to be entered.
Tableau Mode builds a semantic tableau, and shows the current branch
and its two neighbors. The program will only allow trees which follow
the rules for a semantic tableau. Map Mode shows the whole semantic
tableau but with abbreviated formulas.

There are two forms of the TABLEAU program, which you select
at the title screen. The ordinary form of the program builds tableaus
for propositional and predicate logic, and is used for the first three
TABLEAU problem sets. The alternative MODAL form of the program
builds tableaus for modal logic, and is used in the last problem set which
deals with the modal logic forms of the Godel incompleteness theorems.
The modal form of the tableau program will be discussed at the end of
this manual.

413

414 APPENDIX D. TABLEAU

The program starts with the title screen, and then goes to the Hy­
pothesis Mode. You can change from one mode to another with the
commands H, T, and M. The command Q is used to quit the program.
To protect against accidental quitting, the first Q returns you to the
title screen, and the program asks you to type Q a second time to be
sure you really meant to quit. At the title screen you can return to the
previous tableau or start a new tableau instead of quitting.

D.2 Getting Started

The program can be run from either a :floppy diskette or a hard disk.
With a diskette, put a diskette with the TABLEAU.EXE program file
in the currently active drive. With a hard disk, either install the pro­
gram as part of the Logiclab package by typing SETUP DOS.EXE at the
DOS prompt, or copy the TABLEAU.EXE file and the TABl, TAB3,
TAB4, and TAB7 subdirectories to a hard disk directory entitled LOG­
ICLAB (or another name of your choice.) If you have a color display,
type TABLEAU and hit Enter at the DOS prompt. If you have a
monochrome display, type TABLEAU M and hit Enter.

D.3 Title Screen

The title screen appears when you initially start the program and when
you use the Q command from within the program. At the initial title
screen, you have the following choices:

Enter key or T : Start the TABLEAU program.

D : Change the Drive or Directory from which the problems and solu­
tions are loaded and saved.

If you plan to work on problem files in the TABl, TAB3, TAB4, or
TAB7 directories, you should type D at the title screen, and then
specify the problem directory when you see "Enter new path".
For example, if you are working from a diskette in the A: drive
and wish to work on the problems in TABl, typeA:\TAB1 andhit

D.4. HYPOTHESIS MODE 415

Enter. If you are working from hard drive C and wish tq work on
the problems in TABl, type C:\LOGICLAB\TAB1 and hit Enter.

M : Start a MODAL tableau.

Q : QUIT the program.

When you return to the title screen from within the program, you have
the following choices:

Enter key : Return to the current tableau without change.

D : Change the drive or directory from which the problems and solu­
tions are loaded and saved.

M : Start a new MODAL tableau.

T : start a new TABLEAU.

Q : Quit the program.

If your current work has not been filed, you will be given a warning
and another chance to file the tableau by hitting the F key.

D.4 Hypothesis Mode

In this mode you can enter the formula to be proved and/ or a list of
hypotheses. You can either type these formulas in at the keyboard or
load them from the problem disk. Use the up and down Arrow keys
and the Page Up and PageDown keys to move the cursor among the
lines on the screen.

D.4.1 Commands in Hypothesis Mode

The currently available commands are listed in the window at the bot­
tom of the screen. Capital or lowercase letters may be used interchange­
ably. The E(<lit), K(ill), and P(ull) commands are available only before
a tableau has been started. The F(ile), L(oad), Q(uit), and ?(help)
comm.ands are available in all three modes.

416 APPENDIX D. TABLEAU

E : Edit. Before starting the tableau, you may add new formulas to
the hypothesis list and edit old formulas. Go to the line you
want to change and hit the E key. The computer will say "new"
or "here" if the line is empty, "w:ff" if the line contains a Well
Formed Formula, and "bad" otherwise. When you have a w:ff or
an empty line, you go back to the main program or to another
line by hitting the Enter key, the up or down arrow key, or the
PageUp or PageDown key. When the computer says "bad," the
? or Fl key will tell you what is wrong with the formula.

F : File. Saves the hypothesis list and tableau in its present state into
a file on the disk. A box will appear with either a blank file name
or with the name you used last time you filed the current tableau.
The file name has the form XXXXXXXX.TBU. Use the keyboard
to enter or change the file name. (You should not enter the suffix
".TBU"; the computer will add it automatically). When you have
the name you want, hit the Enter key to save the tableau. You
are warned if you try to use a file name which already exists. The
Esc key cancels the File command, and goes back to the program
. without saving.

The F command can also be used to erase an unwanted TBU
file. To ERASE a TBU file, Quit and start an empty tableau
(no hypotheses and no formula to be proved), hit F for the File
command, and type the name of the file you want to erase.

K Kill. The formula in the present line will be removed from the
hypothesis list.

L Load. Use this command to load a problem set or a previously
saved tableau. The list of *.TBU files in the current directory is
displayed. Type the name of one of these files and press the Enter
key. You should not enter the "TBU" suffix, only the name as
it appears in the window. If you wish to change directories, you
must hit Q to return to the title screen and follow the instructions
in Section D.3 above.

P Pull. The hypothesis in the current line is pulled from its present
position and put at the end of the hypothesis list. You can use

D.4. HYPOTHESIS MODE

conjunction
disjunction
negation
implication
equivalence
universal quantifier
existential quantifier
infix relations
infix functions

& or/\
I or\/
- or • (Ctrl N)
->
<->
A (Ctrl A)
E (Ctrl E)
= < <= > >=
+ - *

AND
OR
NOT
IMPLIES
IFF
ALL
EXIST

Table D.l: Symbols Used by the Tableau Program

417

this command to easily change the order in which the hypotheses
are listed.

M : Change to Map Mode.

Q : Quit. This command returns you to the title screen. From the title
screen you can either quit the program, return to the current state
without change, change the drive or directory where the tableau
files are loaded and saved, or start a new tableau.

T : Change to Tableau Mode.

? or Fl key : Brings up a HELP screen which summarizes the com­
mands.

D .4.2 Propositional Logic

The symbols which are allowed in formulas are the propositional con­
nectives shown in table D.1 and the brackets [and] for punctuation.
The computer will accept either the symbols or words as shown in the
table.1 Any other string of letters and numbers which begins with a
letter can be used as a propositional symbol.

1The words IFTHEN and ONLYIF may also be used as synonyms for IMP.LIES.

418 APPENDIX D. TABLEAU

D.4.3 Predicate Logic

In addition to the symbols used in propositional logic, the quantifiers,
infix relation symbols, and infix function symbols shown in table D .1
are allowed. The parentheses and comma are also used for punctuation.
Any other string of letters and numbers which begins with a letter can
be used as a variable, relation symbol, or function symbol. The type of
symbol and the number of argument places are determined by the first
use of the symbol. A string which begins with a number can be used
only as a constant symbol.

Note: You must put a space between a variable in a quantifier and
an atomic formula to tell the computer where the variable ends. For
example, Ax p (x) is a wff, ~ut Axp (x) is bad because the computer
will interpret xp as a single variable.

D.4.4 Moving Within a Formula

You can move within a formula using the Right and Left arrow keys.
New symbols are inserted at the cursor position. The Backspace and
Del keys can be used to erase symbols as usual. The Home key will
jump to the beginning of the line and the End key will jump to the end
of the line. The Esc key will erase· the entire line.

D.4.5 Size Limit for Formulas

The size limit for a formula typed in at the keyboard is 70 characters,
which reaches to the end of the line on the screen. Additional characters
beyond this limit will be ignored. Propositional symbols, predicate
symbols, function symbols, and constant symbols have a maximum
length of 20 characters. If a longer symbol is entered, the computer
will use only the first 20 characters.

D.5 Tableau Mode

In this mode you can build a semantic tableau. The tableau is a tree
which has a formula at each node. The top node has the negation of
the formula to be proved, and the next nodes have the hypotheses. If

D.5. TABLEAU MODE 419

every branch through a node is contradictory, the formula is shown in
red (or enclosed in ":" symbols on a monochrome screen). When every
node of the tableau is red, the tableau is a completed proof. On a
color display, colored text will often be used. These colors will not be
visible on a monochrome display, except for the red formulas which are
enclosed in ":" symbols.

Your current location in the tableau is the node which has the blink­
ing cursor and blue background (or reversed text on a monochrome
screen). The tableau is built one step at a time. To extend the tableau,
you move the cursor to a formula, type G to Get the formula into a box
in the window at the bottom of the screen, move the cursor to the end
of a branch, and then type E to Extend the tableau. The program will
only allow tableau extensions which are legal according to the formal
definition of a tableau in the text.

D.5.1 Moving Within the Tableau

The screen shows the current branch of the tableau and the neighboring
branches to the right and left. If the tree is too large, only part of the
tableau can be seen on the. screen at one time. The cursor can be moved
within the tableau using the arrow keys in the following ways:

Up arrow : Move up one line.

Down arrow : Move down one line along the current branch.

Right arrow : Move down one line and bear to the right.

Left arrow : Move down one line and bear to the left.

Home : Move to the top of the tableau.

End : Move to the end of the current branch.

Page Up : Move up one screen (9 lines) .

PageDown : Move down one screen (9 lines).

420 APPENDIX D. TABLEAU

D.5.2 Mouse

The program checks to see whether a mouse is installed. If a mouse is
installed, you have can use either the mouse ball o~ the arrow keys to
move within the tableau. The left mouse button can be used instead
of the G key to get a formula into the box, and the right button can
be used instead of the E key to extend the tableau. .

D.5.3 Commands in Tableau Mode

The list of commands is shown in the window at the bottom of the
screen. (Only the currently available commands are listed.)

D .5 .4 Propositional Logic

E : Extend. The tableau is extended using the tableau rule for the
formula in the "Get" box. This command is available only when
the cursor is at the bottom of a branch. Nothing happens if the
"Get" formula is atomic or negated atomic.

F : File. This is the same as the F command in Hypothesis Mode.

G : Get. The formula at the cursor is put into the green "Get" box in
the bottom window. (If the formula is not red, it is also shown
in green in the tableau). If you later change branches above that
formula, it will drop out of the box. This makes sure that the
formula can only be used below the place where it appears in the
tableau. .

H Change to Hypothesis Mode.

K Kill. This command erases everything below the cursor, and is
used to correct mistakes.

L : Load. This is the same as the L command in Hypothesis Mode.

M : Change to Map Mode.

D.5. TABLEAU MODE 421

P : Print the current branch of the tableau. The printer must be
connected and turned on. The logical symbols ALL, EXIST, and
NOT will be printed as A, E, and - .

Q Quit. Same as the Q command in Hypothesis Mode.

U Undo. This command undoes the last Kill or Extend command,
and goes back to the previous position.

W : Why. This command tells you which formula was used to add the
current formula to the tableau. It does this by putting the formula
which was used into the "Get" box, and writing the formula in
green in the tableau.

? or Fl : Brings up a HELP screen which summarizes the commands.

D.5.5 Predicate Logic

When the tableau is extended using a quantified formula, the variable
in the quantifier is replaced by a term. In this program, you must tell
the computer which term to use. This is taken care of by an extra
provision in the Extend command.

E : Extend (continued). If the formula in the "Get" box starts with
a quantifier or negated quantifier, the bottom window turns red
(on a color display) and asks you for a term to substitute for
the quantified variable. The rules for entering terms here are the
same as the rules for entering formulas in Hypothesis Mode. The
computer will not let you enter a bad term and will explain what
is wrong when you hit the ? or Fl key. Hit the Enter key when
you are finished entering the term.

422 APPENDIX D. TABLEAU

D.5.6 Predicate Logic with Equality

A second box, the "Sub" box, is added in the bottom window to provide
for the equality substitution rule. A new command is added which puts
a formula into this box.

S : Substitution. This command is available only when the current
formula. is an equation. The bottom window turns red and you
are asked to either accept the equation as given (Enter key), or
to reverse it (Right arrow key). The equation will then appear in
the "Sub" box. If the formula is not red, will be written in cyan
(blue-green) in the tableau.

E Extend (continued). If the formula in the "Get" box is an atomic
or negated atomic formula, the equality substitution rule will be
used. do this the "Sub" box must contain an equation between
two terms. The new formula is formed by taking the "Get" for­
mula and replacing the first term in the "Sub" box by the second
term in the "Sub" box. Nothing will happen if there. is no possi­
ble substitution. If there is exactly one possible substitution, the
computer will highlight the substitution position, and you will be
asked to accept (Enter key) or cancel (Esc key). If there is more
than one place to substitute, the computer will highlight the first
one and ask you to accept, cancel, or go to the next place (Right
arrow key).

W : Why (continued). If the current formula was added to the tableau
by an equality substitution, the substitution equation will be put
into the "Sub" box and written in cyari in the tableau, and the
target of the substitution will be put into the "Get" box and
written in green in the tableau.

Equality Extend the formula by adding an equation of the
form t t. The bottom window will ask you to type in the term
t followed by the Enter key. You can cancel this command by
typing the Esc key. This command is available only if there is an
= symbol in the hypothesis list.

D.6. MAP MODE 423

D.5. 7 Size Limit for Substitutions

The maximum length of a term entered at the keyboard during a sub­
stitution is 70 characters, which reaches to the end of the line on the
screen. Additional characters beyond this limit will be ignored. The
le·ngth of a formula can increase when a term is sul;>stituted for a vari­
able. The program will accept a substitution which results in a formula
up to 152 characters long. Beyond that limit, it will give a "long for­
mula" message.

D.6 Map Mode

This mode displays the tableau in a smaller scale by showing only the
main connective of the formulas. If the tableau is too large to fit on the
screen in Tableau Mode, use the Map Mode to see the big picture. The
current location in the tableau is again shown by the blinking cursor
and blue background, and the current formula is displayed in full in
the bottom window. The current branch is connected by white lines,
and other branches are connected by yellow lines. You can still use the
arrow and page keys to move within the tableau. However, you cannot
change the tableau in Map Mode. Sometimes the tableau is so complex
that it will not fit on the screen even in Map Mode. A sharp symbol,#,
is used to indicate a portion of the tableau which is too complicated to
fit on the screen. The Zoom command can be used to enlarge a portion
of the tableau to see what is inside the # symbol.

The commands, shown in the bottom window, are as follows.

F : File. This is the same as the F command in Hypothesis Mode.

H : Change to Hypothesis Mode.

L : Load. This is the same as the L command in Hypothesis Mode.

Q : Quit. Same as the Q command in Hypothesis, Mode.

T : Change to Tableau Mode.

Z : Zoom. This command redraws part of the tableau in a larger scale
with the present cursor position at the top of the screen. This

424 APPENDIX D. TABLEAU

command is useful when the tableau is so large that it will not
fit on the screen even in Map Mode, so that # symbols appear
on the screen. It is best to use this command with the cursor at
a node which is below the point where the central branch splits
and above the # symbol.

? or Fl : Brings up a HELP screen which summarizes the commands.

If a mouse is installed, you may use the mouse ball instead of the
cursor keys to move around the tableau in Map Mode.

D.7 The Modal Logic Option

The Modal logic form of the tableau program is chosen by hitting the
M key at the title screen. (Modal Logic is used in Chapter 5 of the
text to develop the Godel Incompleteness Theorems.) The menus at
the bottom of the screen will now say ''MODAL." In the modal logic
form of the program, only propositional symbols are allowed, and there
are no variables or quantifiers. In addition to the logical connectives,
there is one extra rule of formation for wffs:

If A is a wff, then DA is a wff.

The symbol D is called a modal operator. Intuitively, D means
"provable" in Chapter 5. It is shown on the computer screen as a solid
box. It can be entered at the keyboard in either of three ways: type #,
hold down the Ctrl key and hit B, or type the word BOX.

There is one new rule for extending a tableau, called Axiom, which
adds a modal axiom at the end of a branch. In Tableau Mode, if the
cursor is at the end of a branch and you hit the A key, a menu will
appear with the following six choices:

, (I) (mp)
(2) (n)
(3) (!mp)
(4) (s)
(5) (tt)
(6)

DA/\ D[A::::} BJ ::::} DB
DA::::} DOA
D[DA /\ D[A::::} BJ ::::} DB]
DOA::::} DA
DA, whereAis a modal tautology
Other modal axiom.

D. 7. THE MODAL LOGIC OPTION 425

If you choose (6), the computer will let you enter any modal wff what­
soever at the end of the branch. This provides flexibility, but is never
needed in the problem set assigned in the text. If you choose any of (I)
through (5), you will be asked to type in the wff A, and if needed, the
wffB. As usual, the line will be labeled "bad" if the string is not yet a
wff, and "wff" if it is one. At any point, hitting the Esc key will cancel
the process of adding an axiom, and return to the previous tableau
position. When you have a wff, you may finish the line by hitting the
Enter or down arrow key.

If you had selected one of the axiom schemes (1) - (4), the wffs
which you entered for A and B will then by substituted into the axiom
scheme, and the resulting formula will be displayed at the bottom of
the screen for your approval. Hit the Enter key to accept the axiom
and add it to the tableau, and the Esc key to cancel.

If the axiom scheme which you had selected is number (5), Axiom
(tt), the computer will ask you to show that A is a tautology by building
a separate tableau proof of A. If you succeed, then DA will be added
to the main tableau and displayed at the bottom of the screen for your
approval. But if you fail or give up by hitting the Q key, the main
tableau will remain unchanged.

In the Modal form of the TABLEAU program, the letters A and B
should not be used as proposition symbols, because they are the place
holders for wffs when entering modal axioms.

The window at the bottom of the screen in Tableau Mode will show
which modal axiom schemes have been used in the current tableau. In
some problems, you will be allowed to use only some of the modal axiom
schemes. When the ''Why" command is invoked at a modal axiom, it
will tell you which modal axiom scheme was selected when the wff was
added to the tableau.

In the Modal form of the TABLEAU program, the tableaus will
be filed and lOaded with names of the form XXXXXXXX. TBM, (with
a .TBM ending instead of .TBU). The .TBM files are found in the
directory TAB7. (If a *.TBM file is renamed to *.TBU and loaded into
the regular TABLEAU program, the progran:i will switch to the Modal
Logic form and continue to run, and vice versa).

426 APPENDIX D. TABLEAU

D.8 Changing Directories

When you start the program by typing TABLEAU and hitting the
Enter key, the program will use the currently active drive or directory
for loading the problem files and saving solutions. You can change
drives or directories using the D option within the program at the title
screen. A period "." can be used for the current directory, and a double
period " .. " for the parent of the current directory.

You can start the program with another drive or directory for prob­
lem files by typing TABLEAU followed by the desired path name and
hitting the Enter key. For example, to automatically load the TABl
directory of .TBU problem files, you would type at the DOS prompt
TABLEAU TABl and hit the Enter key. This feature may be useful in
a computer lab setting. The path and the M option for a monochrome
display can be combined or used separately.

For example, the instructor may create a batch file called TAB.BAT
which has the single line

TABLEAUM A:

If the student types TAB [Enter key], the program will run with a
monochrome display and will use diskette drive A: for the problems.

Appendix E

TABWIN - Tableau Editor
for Windows (R)

E.1 Introduction

TABWIN is a version of the TABLEAU program which works under
Microsoft (R) Windows 3.0 or later, and under Windows 95. The TAB­
WIN program can only be started after Windows is running. It can be
operated with a mouse or with the keyboard, and works like other
Windows applications.

The TABWIN.EXE program and the TABl, TAB3, TAB4, and
TAB7 problem directories can either be copied to your hard disk into a
directory named LOGICLAB (or any other name you choose), installed
using the SETUP WIN .EXE program, or accessed directly from the
diskette. In all of these cases, access the Windows File Manager (in
Windows 3.0 or later) or My Computer (in Windows 95), select the
disk drive and directory that contains the program, and then select
TABWIN.EXE.

The program will begin with a welcome message in a small window
with two buttons labeled "Start" and "Tutorial". Click the mouse on
the "Tutorial" button to get a quick introduction. Click the mouse on
the "Start" button or hit the Enter key to begin the program in the
normal way.

The program helps you write down a tableau proof in either pred-

427

428 APPENDIX E. TABWIN

icate or modal logic. A set of hypotheses and a formula to be ·proved
can either be entered at the keyboard or loaded from the disk. Ordi­
nary tableaus use .TBU files, found in the directories TABl, TAB3,
and TAB4, and modal logic tableaus use . TBM files found in the di­
rectory TAB7. Following your instructions, the computer will display
a tableau of formulas and inform you when the proof is complete.

The main menu at the top of the screen has a File menu, a View
menu, a Nodes command, a Help menu, and other commands which
are available at different times.

There are three modes of display which can be selected in the View
menu: the Hypothesis mode, the Tableau mode, and the Map mode.
The program starts in Hypothesis mode, where you can enter hypothe­
ses and a formula to be proved from the keyboard. The tableau proof
tree is built and the current branch is displayed in Tableau mode. The
Map mode displays the entire tableau in a smaller scale.

A Tableau problem is a set of hypotheses (possibly empty) and an
optional formula to be proved. Problems can either be entered at the
keyboard in Hypothesis mode, or loaded from the disk using the Open ...
command in the Files menu.

Your objective is to solve a tableau problem by building a tableau
proof. This is done in the Tableau mode. When a tableau proof js
complete, every node in the tableau will be displayed in red. Along the
way, a single node in the tableau will be shown in red in a color display,
or enclosed within two % signs in a monochrome display, when every
branch through that node is contradictory.

You can see how large your tableau is by selecting the Nodes com­
mand in the main menu. A box will appear showing the number of
hypotheses, the number of nodes (not counting the root node), and the
amount of remaining free space in nodes available for extending the
tableau.

The Help menu can be reached by using the mouse or the Fl key.
It contains five lists of topics and an About command which shows . . '
the verswn number, copyright notice, and icon.

E.2. FILE MENU 429

E.2 File Menu

The New command will start a new tableau. The current tableau
and hypothesis set will be cleared. You will be warned if your current
tableau has not yet been saved on disk.

The Open ... command is used to load a .TBU or .TBM file from the
disk, containing a tableau problem or solution. You will be warned if
your current tableau has not yet been saved on disk. Directories TABl,
TAB3, and TAB4 contain .TBU files, while directory TAB7 contains
.TBM files. You may either choose a file or new directory from a list,
or type in the name of a file. If you only give the first part of a file
name, the . TBU or . TBM extension will be added automatically.

The Print command will print the current branch and the two
neighboring branches of the tableau. Red nodes will be printed with !
signs before and after the formula, negation signs will be printed as -
symbols, and quantifiers will be printed as A and E.

The Save command will save the current tableau under the current
name. The Save command is disabled if there is no name, or if the
current name is a problem file. In these cases you should use the Save
As... command instead.

The Save As... command will save the current tableau under a
name which you will supply. If you only give the first part of a file
name, the .TBU extension (or the .TBM extension when the modal
logic option is in effect) will be added automatically.

The Exit command will quit the Tableau Editor Program and re­
turn to Windows. You will be given a warning and a chance to save the
current tableau if it has not been saved on disk since the last change.

E.3 View Menu

In this menu you can choose between three display modes: Hypothesis
mode, Map mode, and Tableau mode, and select different options.

The Hypothesis mode has an editor for adding or changing hy­
potheses and formulas to be proved. Only full or correctly abbreviated
well-formed formulas (wffs) will be accepted. After a tableau has been

· extended, hypotheses cannot be changed or removed, but may still be

430 APPENDIX E. TABWIN

added. You can use the arrow, home, and end keys or the mouse to
select a hypothesis. Use the Enter key, e key, doubleclick on a radio
button, or choose Edit in the main menu to start editing a hypothesis.

The Map mode displays as much of the tableau as possible in a
small scale. Only the main symbol of a formula is shown at the node,
but the current formula is shown in full in a box at the top of the
window. You can use the arrow, home, and end keys or the mouse to
move ~round the tableau.

The Tableau mode displays the current and neighboring branches
of the tableau, and has the tools needed to build the tableau. The
program allows only correct uses of the tableau extension rules. Use
the arrow, home, and end keys or the mouse to move among the nodes
of the tableau.

In the View menu you can also choose between Ordinary logic and
Modal logic, and between Color and Monochrome.

In the Ordinary Logic option the program accepts formulas of the
full first order predicate logic with equality. Tableaus should be saved
in .TBU files. The program starts out in this option.

In the Modal Logic option the program accepts formulas of modal
propositional logic. Tab lea us should be saved in . TBM files.

Use the Color option if you have a color monitor. A node will be
displayed in red if every branch through it is contradictory.

Use the Monochrome option if you have a monochrome monitor.
A node will be enclosed in a pair of % symbols if every branch through
the node is contradictory.

E.4 Entering Hypotheses

Hypotheses and formulas to be proved can be entered from the key­
board in the Hypothesis mode. In this mode the Edit, Cut, and Paste
commands are available on the main menu.

There are several ways to start the hypothesis editor: hit the Enter
key, hit the e key, doubleclick on a radio button, or choose the Edit
command on the main menu. Use the Ok button or Enter key when you
are done typing in a hypothesis. Only full or correctly abbreviated wffs
will be accepted. If you do not yet have a wff, the help button in the

E.5. VIEWING TABLEAUS 431

hypothesis editor window will tell you why not. Any of the following
will be accepted as binary connectives:

and,&, /\; or, I,\/; implies, ifthen, ->; iff, <->.
Negation and the quantifiers can be entered using the buttons or

by typing the words not , all, exist. The modal. operator is entered
by typing #. Strings beginning with a letter can be either variables,
predicate symbols, or function symbols, depending on first use. All
strings beginning with a digit are constant symbols.

The Cut command will delete the current formula and save it for
later pasting.

The Paste command will paste the formula saved by the last Cut
command into the selected hypothesis line.

.E.5 Viewing Tableaus

In the Map and Tableau modes, you can look at and move within a
tableau. You can use the mouse, the arrow keys, the Home, End,
PageUp, and PageDown keys in the natural way. The Why command
is available on the main menu in both of these modes, and the Zoom
command is available in the Map mode.

Why command shows the node or nodes which were used to
put the current node in the tableau, by placing them in the Get and
Sub boxes and coloring them green and blue respectively in the tableau.

The Zoom command places the current node at the top of the
display and shows the portion of the tableau below the current node in
a larger scale.

E.6 Building Tableaus

The tableau can be built in the Tableau mode. In this mode, the
Axiom, Extend, Kill, Undo, and Why commands are available on the
main menu. The Get and Sub boxes, directly below the main menu, tell
the computer which formulas to use in extending the tableau. When the
Get box contains a nonbasic formula and the current node is terminal
(at the end of a branch), the Extend command will use the formula in

432 APPENDIX E. TABWIN

the Get box to extend the tableau. When the Get box contains a basic
formula, the Sub box contains an equation, and the current node is
terminal, the Extend command will perform the indicated substitution
on the formula in the Get box and add the result below the current
node.

To fill the Get box, click on the Get button with the mouse or type
Alt G at the keyboard. The formula at the current node will be colored
green and placed in the Get box, and can be used to extend the tableau.
The Get box is emptied if you move to a branch which does not contain
the formula in the box, or ifyou fill the Get box when the current node
is the HYPOTHESES or TABLEAU label.

To fill the Sub box, click on the Sub button with the mouse or type
Alt S at the keyboard. The formula at the current node must be an
equation. You will be asked to accept or reverse the substitution. The
equation will be colored blue and placed in the Sub box, and can be
used to extend the tableau. The Sub box is emptied if you move to a
branch which does not contain the formula in the box.

The Axiom command will add a tableau axiom at the current po­
sition. This command is available only at a terminal node. In ordinary
logic, a box will appear asking you to type in a term t, and the equation
t t will be added to the tableau.

In modal logic, a box will appear asking you to choose a modal
axiom scheme and type in the required formulas.

The Extend command will extend the tableau at the current po­
sition, using the formulas in the Get and Sub boxes. This command
is available only at a terminal node. There must either be a nonbasic
formula in the 'Get box, or a basic formula in the Get box and an equa­
tion in the Sub box. Connective rules will be applied automatically.
For quantifier and equality substitution rules, a box will appear asking
for additional information.

The Kill command deletes all nodes below the current node in the
tableau. An exception: the next node below the current node will be
retained if it is connected by a double line because the two nodes were
built at the same time. If you Kill by mistake, you can undo it right
away using the Undo menu command.

The Undo command undoes the most recent change in the tableau,
which resulted from either an Axiom, Extend, or Kill menu command.

Appendix F

COMPLETE - Tableau
Completer for DOS

The COMPLETE program is designed for student experimentation and
classroom demonstrations of finished tableaus in propositional logic.
Finished tableaus are a key concept in the proof of the Completeness
Theorem. The program automatically extends a given tableau by ex­
tending every noncontradictory branch in all possible ways, and ends
up with either a finished or a contradictory tableau.

If you have a color display, type COMPLETE and hit the Enter
key at the DOS prompt. If you have a monochrome display, type
COMPLETE M and hit the Enter key. The title screen will appear.
Hit S to start the program.

On a color display, nodes are shown in three colors~ A node is
shown in red if every branch through the node is contradictory (as in
the TABLEAU program). A node is shown in blue if it is not red and
either (1) the node is an atomic or negated atomic formula, or (2) the
node has previously been used to add nodes below it. All other nodes
are shown in yellow. The yellow nodes are the nodes which can be used
to form further extensions of the tableau in a useful way. A tableau is
finished if it is noncontradictory and has no yellow nodes.

On a monochrome display, the "red" nodes are enclosed by":" sym­
bols, the "blue" nodes are enclosed by "-" symbols, and the "yellow"
nodes are shown in high intensity text.

The program works by using the first yellow node it finds, or a

433

434 APPENDIX F. COMPLETE

yellow node chosen by you, to extend every branch through the node.
· This forms a larger tableau, but the yellow node just used is now red
or blue. This process is repeated, forming larger and larger tableaus. If
the computer has enough memory, the process must end after finitely
many steps with a finished tableau.

COMPLETE works .like the TABLEAU program and uses .TBU
files created by the TABLEAU program, but with the following differ­
ences.

(1) There is no Hypothesis mode, only Tableau and Map modes.

(2) Only propositional rules are recognized. Wffs beginning with quan­
tifiers and atomic wffs are treated as propositional symbols.

(3) The E(xtend) command uses the current wff to extend every non­
contradictory branch through the current node.

(4) There is no G(et) command.

(5) The Ent.er key moves the cursor to the next yellow node the com­
puter finds.

(6) On a color display,. contradictory nodes are shown in red, non con­
tradictory nodes which are atomic, negated atomic, or already
used are shown in blue, and other nodes are shown in yellow.

(7) TBU files can be loaded but cannot be filed.

(8) There is no Modal logic option.

Appendix G

COMPWIN - Tableau
Conipleter for Windows (R)

G.1 Introduction

COMP WIN .EXE is the Windows version of the .COMPLETE.EXE pro­
gram. It works with Microsoft (R) Windows, Version 3.0 or later, and
with Windows 95. It can only be started after Windows is running, and
is accessed in the same way as the TABWIN program. The program
will begin with a welcome message in a small window with two buttons
labeled "Start" and "Tutorial." Click the mouse on the "Tutorial" but­
ton to get a quick introduction. Click the mouse on the "Start" button

. or hit the Enter key to begin the program in the normal way.
The COMPWIN Program automatically produces finished tableaus

for propositional logic. A set of hypotheses and formula to be proved
can be created by the Tabwin program and saved as a . TBU file, which
may then be loaded by the Compwin Program. The Completer Pro..:
gram works like the Tableau Editor, but the current formula is extended
on every noncontradictory branch through it.

The progi·am can be operated with a mouse or with the keyboard,
and works like other Windows applications. The main menu at the top
of the screen has a File menu, a View menu, Extend, Continue, Kill,
Undo, and Zoom commands, and a Help menu.

There are two modes of display which can be selected in the View

435

436 APPENDIX G. COMPWIN

menu. The program starts out in Tableau mode, where the current
branch is displayed. The Map mode displays the entire tableau in a
smaller scale.

A Tableau problem is a set of hypotheses (possibly empty) and an
optional formula to be proved. Problems can be loaded as *.TBU files,
which are created by the TABWIN or TABLEAU program, using the
Open... command in the File menu. The COMP WIN program uses
only the tableau extension rules for propositional logic. In a formula
for predicate logic, the scope of a quantifier is treated as if it were an
atomic formula.

Your objective is to build a finished tableau, that is, a tableau in
which every node is either basic (atomic or negated atomic), or is used
in every noncontradictory branch through it. On a color display, nodes
which can still be used are shown in yellow, contradictory nodes are
shown in red, and the remaining nodes are shown in blue.

In Tableau mode, the boxes at the top of the screen show the formula
which was used to get the current wff, the number of hypotheses, the
number of nodes (not counting the root node), the amount of remaining
free space in nodes available for extending the tableau, and the current
status of the tableau (Finished, Unfinished, or Contradictory).

The Help menu can be reached by using the mouse or the Fl key.
It contains four lists of topics and an About command, which shows
the version number, copyright notice, and icon.

G.2 File Menu

The Open ... command will load a .TBU file from the disk, containing
a tableau problem or solution. You may either choose a file or new
directory from a list, or type in the name of the file from the keyboard.
The .TBU extension will be added by the computer if you omit it.

The Exit command will Quit the Compwin Program and return to
Windows.

G.3. VIEW MENU 437

G.3 View Menu

In this menu you can choose between two display modes, Map mode and
Tableau mode. The tableau can be extended in either the Map or the
Tableau mode. You can also choose between Color and Monochrome
options.

The Map mode will display as much of the tableau as possible
in a small scale. Only the main symbol of a formula is shown at the
node, but the current formula is shown in foll in a box at the top of
the window. You can use the arrow, home, and end keys or the mouse
to move around the tableau.

The Tableau mode will display the current and neighboring branches
of the tableau. Use the arrow, home and end keys or the mouse to move
among the nodes of the tableau.

Use the Color option if you have a color monitor. A node will be
displayed in red if every branch through it is contradictory. A node is
shown in yellow if it is noncontradictory, is not a basic formula, and
can still be used to extend the tableau. All other nodes are shown in
blue.

Use the Monochrome option if you have a monochrome monitor.
A node will be enclosed in a pair of % symbols if every branch through
the node is contradictory. A node is will be enclosed in a pair of ! signs
if it is noncontradictory, is not a basic formula, and can still be used to
extend the tableau.

G.4 Building a Finished Tableau

The finished tableau can be built using the Extend and Continue com­
mands in either the Map or Tableau mode.

The Extend command will extend the tableau on every noncontra­
dictory branch through the current position. The current node must be
a nonbasic formula. A message box will appear if there is not enough
room in memory to perform the tableau extensions.

The Continue command will move to the next unused formula
(shown in yellow on a color monitor). This command is available only
when the tableau is unfinished.

438 APPENDIX G. COMPWIN

G.5 ·other Commands

The remaining commands on the main menu are the Kill, Undo, and
Zoom command. The Zoom command is available only in Map mode,
while the other commands are available in both the Map and Tableau
modes.

The Kill command will delete all nodes below the current node
in the tableau. An exception: the next node below the current node
will be retained if it is connected to the current node by a double line
because it was added to the tableau at the same time. If you use this
command by mistake, you can undo it right away using the Undo menu
command.

The Undo command will undo the most recent change in the tableau,
which resulted from either an Extend or Kill menu command.

The Zoom command is available only in the Map display mode. It
places the current node at the top of the display and shows the portion
of the tableau below the current node in a larger scale.

Appendix H

PREDCALC - Predicate
Calculator for DOS

H.1 Introduction

PREDCALC, the predicate calculator, is a program which demon­
strates the rules of formation for formulas of first order predicate logic,
and the corresponding inductive definition of the truth value of a for­
mula. It works like a reverse Polish notation calculator, but operates on
formulas of predicate logic instead of numbers. There are always four
formulas in a stack which are visible on the screen, and four additional
formulas in storage locations not visible on the screen. The formulas
in the stack are shown both as strings of symbols and as graphs. By
the graph of a formula we mean the set of all valuations for which the
formula is true. The Calculator Pad has 15 "buttons" which allow you
to add an atomic formula to stack location 1, to make a new formula
by applying a logical connective or quantifier to formulas in the stack,
or to move a formula to a new location. Problems loaded from the disk
produce one more formula, called the Goal formula. In some problems
you can only see the graph of the goal formula, and in others you can
see both the graph and the string of symbols. Your task is to use the
calculator pad to make the formula in stack location 1 match the goal
formula.

The program runs on an IBM PC or compatible computer with at

439

440 APPENDIX H. PREDCALC

least 320K memory and one disk drive. It works best with a graphics
·monitor.

H.2 Getting Started

The program can be run from either a floppy diskette or a hard disk.
With a diskette, put a diskette with the PREDCALC.EXE program file
and the PRED2 problem directory in the currently active drive. With
a hard disk, either install the program as part of the Logiclab package
by typing SETUPDOS.EXE at the DOS prompt, or copy the PRED­
CALC.EXE file and the PRED2 subdirectory to a hard disk directory
called LOGICLAB (or another name of your choice.) If you. have a
color display, type PREDCALC and hit Enter at the DOS prompt. If
you have a monochrome display, type PREDCALC M and hit Enter.
The title screen will appear.

H.3 Title Screen

The title screen appears when you initially start the program and when
you use the Q command from within the program. As a default, the
initial universe is the set { 0, 1, 2, 3, 4, 5}. At the initial title screen, you
have the following choices:

S : Start the PREDCALC program.

D : Change the drive or directory from which the problems and solu­
tions are lo.aded and saved. If you plan to work on problem
in the PRED2 directory, you should type D at the title screen,
and then specify the problem directory when you see ''Enter new
path". For example, if you are working from a diskette in the A:
drive, type A: \PRED2 and hit the Enter key. If you are working
from hard drive C, type C: \LOGICLAB\PRED2 and hit the
key.

U Change the universe. You may select a universe size between 1
and 8.

H.4. DISPLAY MODES 441

Q : Quit the program.

When you return to the title screen from within the program, you
have the following choices:

Enter key : Return to the current session without change.

N : Start a new PREDCALC session.

D Change the drive or directory from which the problems and solu­
tions are loaded and saved.

U Change the universe. You may select a universe size between 1
and 8.

Q Quit the program.

If your current work has not been filed, you will be given a warning
and another r.hance to file the session by hitting the F key.

H.4 Display Modes

At all times you can switch back and forth between three display modes,
called the Text Mode, the Graphics Mode, and the Both Mode.
program works identically in all three modes. The program starts out
in the Text Mode. On a text-only monitor, only the Text Mode is
available, and the program will not let you change to the Graphics or
Both modes.

In the Text Mode the formulas in the stack are shown in the usual
way as strings of symbols. Free and bound variables are shown in
different colors to make them easier to identify. The graphs of the
formulas .are not visible in the main Text. Mode display, ·but they can
be seen in tabular form by using the View command described below.
The Text Mode corresponds to the syntax of predicate logic.

The Graphics Mode displays the graphs of the formulas in the stack,
a.nd the graph of the goal formula if there is one. The graphs on the
screen have three dimensions, and for this reason only the three vari­
ables x, y, and z are allowed in a formula. On a color display, the

442 APPENDIX H. PREDCALC

graphs are shown in 4 colors. The Graphics Mode corresponds to the
·semantics of predicate logic.

The Both Mode displays the formulas in the stack in both text and
graphics forms at the same time, but the graphs are shown in a smaller
scale. The screen will be in color on an enhanced or better color display.
Otherwise the screen will be monochrome.

H.5 Goals

When you load a problem file from the disk (using the L command
described later), a universe set and a goal formula are selected. There
are two types of goals, text goals and graphics goals.

A text goal is visible both as a string of symbols and as a graph.
The object of the problem is to match the goal formula in position one
of the stack by using the calculator pad. In order to do this, you must
begin with atomic formulas and build up to the goal formula through
a parsing sequence. When you succeed, you will be rewarded by the
appearance of the word "DONE" qn the screen. If the formula in stack
position 1 has the same graph as the goal formula but is a different
string, you will get partial credit and the word "PART" will appear.

A graphics goal is visible as a graph but hidden as a string of sym­
bols. The object of the problem is to think of a formula which has the
required graph and to get the formula into position one of the stack by
using the calculator pad. This type of problem is more difficult and re­
quires an understanding of the interpretation of quantifiers in a model.
If the letters "NC" appear after the word "GOAL" on the screen, you
are asked to find a formula which has no constant symbols, and will
only get partial credit if you do use constant symbols. When you suc­
ceed in matching the goal formula graph in stack position 1, you will
be rewarded by the word "DONE" or "PART" on the screen.

No goal is shown until a problem file is loaded from the disk. Even
without a goal, you can use the calculator pad to build and look at
formulas in either text or graphics form.

H.6. THE CALCULATOR PAD 443

H.6 The Calculator Pad

all three display modes, a Calculator Pad with 15 buttons and a
time counter are shown on the screen. The currently active button on
the Calculator Pad is enclosed in a double border. The program starts
with the Atomic button active. To PUSH a calculator button, hit the
Enter key when the button is active.

Each button with one or more periods requires additional informa­
tion, either a variable, a constant, or a stack or storage location. If you
push the button, the computer will wait for you to either cancel the
push by hitting the Esc key, or to give the required information and hit
the Enter key.

H.6.1 The Time Counter

The number 0 in the lower left corner of the calculator pad, is a Time
Counter. Each time you use a calculator button to change the formulas
in the stack, the time counter increases by one. A problem loaded
from the disk starts with the double border around the time counter.
However, nothing happens when you push the time counter "button."

H.6.2 Moving Within the Calculator Pad

The four arrow keys can be used to move vertically or horizontally to
another button. The Home, PgUp, End, and PgDn keys move diago­
nally to another button.

H.6.3 The Help Window

In Text mode, the lower right part of the screen has a help window
explaining what the currently active button does. By moving within
the calculator pad and reading the help messages, you can discover
what all the calculator buttons do. ,

444 APPENDIX H. PREDCALC

H.6.4 Mouse

The program checks to see whether a mouse is installed. If a mouse is
installed, you can use either the mouse ball or th~ arrow keys to· move
within the calculator pad. Either mouse button can be used instead of
the Enter key to push the currently active calculator button.

H.6.5 Using the Calculator Buttons

The three buttons labeled "Atomic," "R(...)," and ".=h(..)" are used
t~ enter an atomic formula in stack location 1. You will usually begin a
session with the Atomic button. The periods represent argument places
which must be replaced by variables or constants. The five buttons
labeled "&," "Or," "- >," "< - >," and "Not" can be used to put
a new formula in the stack by combining old formulas with logical
connectives. The "All." and "Exi." buttons can be used to make a
new formula by applying a quantifier to the formula at location 1 in the
stack. The "Dup," "Pik.," and "Put." buttons are used to rearrange
the formulas which are already in the stack. The "Sto." and "Rel."
buttons store and recall the formula in stack location 1 from a storage
location.

When you push the Atomic button, the word "Atomic" disappears
and the computer waits for additional information. You must type an
atomic formula of length 3 or 5 which has variables among x, y, and
z, constants from the universe, the relation symbols =, <, >, and the
operation symbols +, -, * which stand for addition, subtraction, and
multiplication modulo the universe size. The second symbol in the
formula must be a relation symbol. Examples of atomic formulas are
x = 3, x < z + 2. Hit Enter (or the mouse button) to enter the formula,
or hit the escape key to cancel.

The Random Relation button labeled "R(...)" introduces a new
predicate symbol with one, two, or three argument places each time it
is pushed, starting with "A." After pushing the button, you must enter
one, two, or three arguments, which must be different variables from
among x, y, and z. When you are done, hit Enter to enter the formula.
The graph of the relation will be chosen randomly by the computer,
with the variables you enter. The Random Function button ".=h(..)"

H. 7. THE LETTER COMMANDS 445

introduces a new operation symbol with one or two argu'ments each time
it is pushed, starting with "a." Again, its graph is chosen. randomly
with the variables you enter.

The binary connective buttons "& " "Or" "- > " and "< - > " ' ' ' . ' '
combine the formulas in stack locations 1 and 2 and place the result
in stack location 1. The formulas in locations 3 and 4 are moved to
locations 2 and 3, and a false formula is placed in location 4.

The "Not" button and the quantifier buttons "All." and "Exi."
change only the formula in stack location 1. For the quantifier buttons
you must select a variable from among x, y, and z and then hit the
Enter key.

The "Dup" button copies the formula in stack location 1 into stack
location 2, and moves the formulas in stack locations 2 and 3 into
locations 3 and 4. The formula originally in location 4 is discarded.
The "Pik." button asks you for a number n between 2 and 4. It moves
the formula n into stack location 1 and moves formulas 1 through n - 1
into stack locations 2 through n. The effect is to cycle the formulas
in locations 1 through n. The "Put'' button also asks you for a stack
location n and cycles the formulas in the opposite direction, so that
formula 1 is moved into stack location n.

The "Sto." button asks you for a number n between 1 and 4. It
copies the formula in stack location 1 into storage location n. The
"Rel." button also asks for a number n between 1 and 4. It copies
the formula in storage location n into stack location 1, and moves the
formulas in stack locations 1 through 3 into stack locations 2 through
4. The formula originally in stack location 4 is discarded.

H.7 The Letter Commands

On the screen display there is a list of commands to the left of the
calculator pad. Each of these commands is invoked by hitting a single
key. You may use either upper- or lowercase letters.

B Change to the Both display mode.

C Clear. The current session is cleared and the time counter is set
back to 0.

446 APPENDIX H. PREDCALC

F : Saves the current PREDCALC session into a file on the
disk. A box will appear with either a blank file name or with the
name you used last time you filed the current session. The file
name has up to eight characters followed by the suffix .PRC. Use
the keyboard to enter or change the file name. (You should not
enter the suffix ".PRC"; the computer will add it automatically).
When you have the name you want, hit the Enter key to save
the session. You are warned if you try to use a file name which
already exists. The Esc key cancels the File command, and goes
back to the program without saving.

The F command can also be used to erase an unwanted PRC file.
To erase a PRC file, Quit and start an empty session (no goal
and time 0), hit F for the File command, and type the name of
the file you want to erase.

G : Change to the Graphics display mode.

H or ? or Fl : Help. Brings up a help screen which summarizes the
commands.

L : Load. This command displays a list of files in the current directory
which contain problems or previously saved PREDCALC sessions.
If you type the name ,of one of these files and hit the Enter key,
a new universe and goal or session will be loaded. If you hit
Enter without a file name, you will return to the program with no
change. The files have names up to eight characters long followed
by the suffix ".PRC." You should not enter the suffix, only the
name as it appears in the window. You can use the File and Load
commands to save and return to a partially solved problem.

P Print. Prints the formulas in the stack and storage locations, the
goal formula, the steps on the Calculator Pad up to the current
time, and the graphs of the goal formula and the formula in stack
position 1. The printer must be installed and turned on.

Q Quit. This command returns you to the Title Screen. You can
then quit the program by hitting Q again, change the directory

H. 7. THE LETTER COMMANDS 447

where the PRC files are filed and loaded, change the universe size,
start a new session, or return to the current state.

R Replay. Starts a replay of the current PREDCALC session begin­
ning with time 0. The calculator pad is now under the control of
the computer, and the next button is highlighted. You have the
following five options.

Hit Nor the key to see the Next step in the replay. When
you reach the end of the replay, you will regain control of the
calculator pad.

Hit P or the backspace key to go back to the Previous step.

Hit H or the Home key to start the replay over at time 0.

Hit E or the End or key to jump to the last step before the
end of the replay. If you now hit N or the Enter key, you will
regain control of the calculator pad.

Hit K to Kill the remaining steps of the replay and regain control
of the calculator pad at the currently displayed time.

S Storage. Shows the contents of the four storage locations, and the
Goal formula if there is one. In the Text Mode, the graph of
one formula is displayed in tabular form, and you can see other
graphs by hitting the appropriate number key. In the Graphics
or Both mode, the graphs of the formulas in the storage locations
are displayed on the top half of the screen, and one level of one
graph is enlarged in the bottom half of the screen. The arrow keys
can be used to control which level of which graph is enlarged.

T : Change to the Text display mode.

U : Undo. This command undoes the last step from the Calculator
Pad and decreases ·the time by one, going back to the previous
state. It will also undo the Clear command if used immediately.

V View. Shows the contents of the four stack locations, and the
Goal formula if there is one, in the same format as the Storage
command above. If you have a text only monitor, you can still

448 APPENDIX H. PREDCALC

· see the graphs of the formulas in the stack in tabular form using
this command.

The following two special commands· are intended for instructors
preparing problems for students. These commands work in the same
way as the File command, and create PRC files which can be loaded as
problem files with the L command.

Ctrl G : File a GRAPHICS goal. This command is called by holding
the Ctrl key down and hitting the G key. It saves the formula
which is in stack location 1 as a graphics goal.

Ctrl T : . File a TEXT goal. This command is called by holding the
Ctrl key down and hitting the T key. It saves the formula which
is in stack location 1 as a t'ext goal.

H.8 Changing Directories

When you start the program by typing PREDCALC and hitting the
Enter key, the currently active drive or directory will be used for load­
ing the problem files and saving solutions. You can change drives or
directories using the D option within the program at the title screen.
A period "." can be used for the current directory, and a double period
" .. " for the parent of the current directory.

You can start the program with another drive or directory for prob­
lem files by typing PREDCALC followed by the desired path name and
hitting the Enter key. For example, to automatically load the PRED2
directory of PRC files, type PREDCALC PRED2 at the DOS prompt
and hit the Enter key. This feature may be useful in a computer lab
setting. The path and the M option for a monochrome display can be
combined or used separately.

For example, the instructor may create a batch file called PRC.BAT
which has the single line

PREDCALC M A:

If the student types PRC [Enter key], the program will run with a
monochrome display and will use diskette drive A: for the problems.

Appendix I

PREDWIN - Predicate
Calculator for Windows (R)

1.1 Introduction

PREDWIN is a version of the PREDCALC program which runs in
Microsoft (R) Windows, version 3.0 or later, and in Windows 95.

The PREDWIN program can only be started after Windows is run­
ning. It can be operated with a mouse or with the keyboard, and
works like other Windows applications. The PREDWIN.EXE program
and the PRED2 directory can either be copied to your hard disk into
a directory called LOGICLAB (or another name of your choice), in­
stalled using the SETUPWIN .EXE program, or accessed directly from
the diskette. In all of these cases, access the Windows File Manager
(in Windows 3.0 or later) or My Computer (in Windows 95), select
the disk drive and directory that contains the program, and then select
PREDWIN.EXE.

The program will begin with a welcome message in a small window
with two buttons labeled "Start" and "Tutorial." Click the mouse on
the "Tutorial" button to get a quick introduction. Click the mouse on
the "Start" button or hit the Enter key to begin the program in the
normal way.

The program demonstrates the rules of formation for formulas of
first- order predicate logic, and the corresponding inductive definition

449

450 APPENDIXI.PREDWIN

of the truth value of a formula. It works like a reverse Polish notation
calculator, but operates on formulas of predicate logic instead of num­
bers. There are always four formulas in a stack which are visible on the
screen, and four additional formulas in storage locations not visible on
the screen. The Calculator Pad in the upper left corner of the screen
has 15 buttons which allow you to add an atomic formula to location 1
of the stack or to make a new formula by applying a logical connective
or quantifier to formulas already in the stack.

The formulas in the stack are shown in the upper right window
in text form. The universe of the current model is shown in the title
bar of the window. You can choose a universe size U between 1 and
8. The .elements of the universe are natural numbers beginning with 0
and ending with U-1.

The five lower windows display the graphs of the four formulas in
the stack and a Goal. (By the graph of a formula we mean the set of
all valuations for which the formula is true.) The graphs on the screen
have three dimensions, and for this reason only the three variables x,
y, and z are allowed in a formula.

The formula window and each graph window can be moved individ­
ually to any screen location.

The program runs on an IBM PC (TM) or compatible computer
under Microsoft Windows (TM) 3.0 or higher. A mouse is not required,
but will make the program easier to use. Microsoft Windows must be
running before you start the program.

The program starts with a Welcome box. When you hit the OK
button with the mouse, or hinhe Enter key, the program will begin.

The main menu at the top of the screen has labels for a File menu,
a View menu, an Options menu, an Undo command, and a Help menu.

1.2 Goals

If you wish to load problems from a diskette, put the diskette in drive
slot A. To load a problem file from the diskette or the hard drive, select
the File Menu, select the Open ... command, and choose the correct
directory or problem file from the list shown in the dialog box on the
screen. When you load a problem file from the diskette, a Goal graph

I.3. THE HELP MENU 451

will be shown in a window in the lower ~ight corner of the screen. The
object of the problem is to think of a formula which has the required
graph. and to get the formula into location 1 of the stack by using the
buttons on the calculator pad. In order to do this, you must begin with
atomic formulas and build up to the goal formula. When you succeed,
you will be informed by a message on the screen.

No goal is shown until a problem file is loaded from the disk. You
can use the calculator pad buttons to build and look at formulas without
a goal.

1.3 The Help Menu

The Help Menu has five categories, each with a list of topics, and an
About command which displays a box with the program name, version,
and copyright information. Each topic has a brief note which you can
view at any time while running the program. The General category
gives an overview of the program. The Calculator Pad category has
one topic for each button on the pad. The File category has one topic
for each command on the File Menu, the View category has one topic
for each command on the View Menu, and the Options category has one
topic for each command on the Options Menu. When you choose one of
the five categories, you are shown a list of topics and four buttons. The
Next List and Previous buttons change to another help category.
The Help button shows a small dialog box containing the help note for
the current topic and new buttons labeled Topics, Next, Previous,
and Cancel. You can move through the topics in the current list using
the Next and Previous buttons. The Cancel button or Escape key
removes the help box and returns you to the main program. At any
time in the program, the Fl key immediately brings up the General
Category Help Menu.

1.4 The Calculator Pad

You call a calculator pad command by hitting ENTER when the button
with the command is marked with a dark border, or clicking the left

452 APPENDIXIPREDWIN

mouse button when the pointer is at the button. Here is a brief overview
of the calculator pad commands. The three buttons labeled Atomic,
R(...) , and . =h(..) are used to enter an atomic formula in stack
location 1. You will usually begin a session with the Atomic button. The
periods represent argument places which must be replaced by variables
or constants. The five buttons labeled & , \/, ->, <->, and Not can
be used to put a new formula in the stack by combining old formulas
with logical connectives. The All .. and Exi.. buttons can be used to
make a new formula by applying a quantifier to a formula in the stack.
The Dup, Pik .. , and Put .. buttons are used to rearrange the formulas
which are already in the stack. The Sto .. and Rel.. buttons store and
recall the formula in stack location 1 from a storage location.

When you push the Atomic button, a dialog box appears asking
for additional information. You can enter an atomic formula of length
3 or 5 which has variables among x, y, z; constants from the universe;
the relation symbols=,<, and the operation symbols+,-,* which
stand for addition, subtraction, and multiplication modulo the universe
size. The second symbol in the formula must be a relation symbol.
Examples of atomic formulas are x = 3, x < z + 2. Press the OK button
to enter the formula, or the Cancel button to cancel the command.

The random relation button labeled R(...) introduces a new pred­
icate symbol with one, two, or three argument places each time it is
called, starting with A. A dialog box will appear asking you to enter
the arguments, which must be different variables from among x, y, z.
The graph of the relation will be chosen randomly by the computer,
with the variables you enter. The random function button . =h(..)
introduces a new function symbol with one or two arguments each time
it is called, starting with a. Again, its graph is chosen randomly with
the variables you enter. The binary connective buttons,· & , \/, ->,
and <->, combine the formulas in stack locations 1 and 2 and place the
result in stack location 1. The formulas in locations 3 and 4 are moved
to locations 2 and 3, and a false formula is placed in location 4.

The Not button and the quantifier buttons All .. and Exi.. change
only t'he formula in stack location 1. A dialog box will appear for the
quantifier buttons asking you to select a variable x, y, or z.

The Dup button copies the formula in stack location 1 into stack
location 2, and moves the formulas in stack locations 2 and 3 into

I.5. THE FILE MENU 453

locations 3 and 4. The formula originally in stack location 4 is discarded,
The Pik .. button asks you for a stack location n = 2, 3, or 4. It moves
formula n into stack location 1 and formulas 1 through n - 1 into stack
locations 2 through n. The effect is to cycle the formulas in locations
1 through n - 1. the Put .. button also asks you for a stack location n
and cycles the formulas in the opposite direction, so that formula 1 is
moved into stack location n.

The Sto .. button asks you for a number n = 1, 2, 3, or 4. It copies
the formula in stack location 1 into storage location n. The Rel.. but­
ton also asks for a number n = 1, 2, 3, or 4. It copies the formula in
storage location n into stack location 1, and moves the formulas in
stack locations 1 through 3 into stack locations 2 through 4. The for­
mula originally in stack location 4 is discarded.

The t 0 display in the lower left corner of the calculator pad is a
TIME COUNTER. Each time you call a calculator pad command, the
time counter increases by one.

The Undo command undoes the last calculator pad command and
decreases the time by one, going back to the previous state. It will also
undo a Clear command if used immediately. The Alt+ Backspace key
combination will invoke the Undo command at any time.

1.5 The File Menu

The New command starts a new Predcalc session. All the stack and
storage locations are cleared, and you are asked to choose the size of
the universe, ·a number between 1 and 8. The previous session will be
lost, and you are warned if it has changed since being saved on disk.

The Open... command loads a problem file or a previously saved
Predcalc session from the disk. You are shown a list of all files· in
the current directory with the .PRC extension, and all subdirectories,
including PRED2, which contains the problem files provided on the
diskette. A nle or directory may be selected from the list or typed in
at the keyboard. You can change directories by selecting a directory
from the list or typing the name of a file in a new directory. The name
of the new file will appear on the main title bar. Again, the previous
session will be lost, and you are warned if it has changed since being

454. APPENDIX I. PREDWIN

saved on disk.
The Save command saves the current Predcalc session on the disk.

If the session was previously loaded or saved, it will be saved with the
same name in the current directory. Otherwise you will be asked for
a file name. A name with the .PRC extension, such as CUBE.PRC,
is recommended. When the file is later loaded, the present goal, stack
contents, and storage contents will reappear, so you can resume working
on the problem or show your solution to the instructor.

The Save As... command asks you for a file name and then saves
. the current Predcalc session on the disk.

The Save Goal... command is used to create a new problem file.
It asks you for a file name and then saves the current graph in stack
location 1 as a goal. When the file is later loaded in, the graph will
appear in the goal window and all stack and storage locations will
contain false formulas.

The Exit command quits the Predcalc program. You are warned if
the current session has changed since being saved on disk.

1.6 The View Menu

The Arrange Windows command moves all the windows in the Pred­
win program to their original positions.

The Clear command starts a new session. It clears all the stack
and storage locations and sets the time back to 0.

The Replay command starts a replay of the current Predcalc ses­
sion beginning with time 0, with no change in. the random relations and
functions. Instead of the calculator pad, you see a box with five but­
tons. The Next button causes the replay to go. forward one step. After
the last step, the calculator pad reappears and the replay is over. The
Previous button causes the replay to go back one step. The Home
button chooses new random relations and functions, and jumps back
to the beginning at time 0. The End button jumps to the end of the
replay and the calculator pad reappears. The Forget button quits the
replay in the middle and brings back the calculator pad, forgetting the
later steps .in the session.

The View Storage command shows the contents of the four storage

I. 7. THE OPTIONS MENU 455

locations. They are shown temporarily in place of the stack locations . . '
and a dialog box replaces the calculator pad. Nothing else can be
done until you push the OK button or hit ENTER, at which time the
contents of the stack locations and the calculator pad will reappear.

I. 7 The Options Menu

The New Universe command changes the universe. It preserves the
time and wffs in the current session, but erases the goal graph if there
is one. You will be asked for a new universe size between 1 and 8. A
constant which is outside the new universe will be interpreted as the
largest element of the universe.

The three options Capitalize Bound Vars, Monochrome, and Small
can be turned on and off. The program starts with each option turned
off. When one of these options is turned on, it is indicated by a check
mark in the menu.

When the Capitalize Bound Vars option is on, the wffs are dis­
played with all occurrences of bound variables shown as capital letters
X,Y,Z.

You should use the Monochrome option if you do not have a color
display. When the Monochrome option is on, the graphs of the wffs use
white for true and black for false. When the option is off, the graphs
use green for true and red for false.

When the Small option is on, the graphs of the wffs are shown in a
smaller size. The original large size will fit on a VGA display with the
graphs in their original position.

Appendix J

GNUMBER - Godel
Numberer for DOS

J .1 Introduction

GNUMBER, the Register Machine Program with Godel numbering,
simulates a register machine, the basic tool in the study of computable
functions. The title screen asks you to select either the Simple or
the Advanced form of GNUMBER. The simple form can be used to
enter instructions and register values and watch a machine
program run. The advanced form has additional features which let you
manipulate Godel numbers of register machine programs and get a close
look at register machine programs which refer to themselves. Programs
which refer to themselves lead to the striking results of Godel which
show that some problems are unsolvable.

The program runs on an IBM PC or compatible computer with at
least 320K memory and one disk drive. If there is more memory, the
program will have room for larger :registers.

GNUMBER has a top level title screen and four modes of opera­
tion: Instruction editor, Program mode, Register mode, and Execution
mode.

The program starts with the title screen, and then goes to the Pro­
gram mode. You can change from one mode to another with the com­
mands E, I, P and S. The command Q is used to quit the program.

457

458 APPENDIX J. GNUMBER

To protect against accidental quitting, the first Q returns you to the
title screen, and the program asks you to type Q a second time to be
sure you really meant to quit. At the title s0reen you can return to the
previous state or start a new tableau instead of quitting.

J.2 Getting Started

The program can be run from either a floppy diskette or a hard disk.
With a diskette, put a diskette with the GNUMBER.EXE program file
and the GNUM5 and GNUM6 example directories in the currently ac­
tive drive. With a hard disk, either install the program as part of the
Logidab package by typing SETUPDOS.EXE at the DOS prompt, or
copy the GNUMBER.EXE file and the GNUM5 and GNUM6 subdirec­
tories to a hard disk directory entitled LOGICLAB (or another name
of your choice). If you have a color display, type GNUMBER and hit
Enter at the DOS prompt. If you have a monochrome display, type
GNUMBER M and hit Enter. The title screen will appear.

J .3 Title Screen

The title screen appears when you initially start the program and when
you use the Q command from within the program. At the initiai"title
screen, you have the following choices:

S : Start the Simple GNUMBER program.

A : Start the Advanced GNUMBER program.

D Change the drive or directory from which the examples and solu­
tions are loaded and saved.

If you plan to use the example files in the GNUM5 or GNUM6
directories, you should type D at the title screen, and then spec­
ify the problem directory when you see "Enter new path". For
example, if you are working from a diskette in the A: drive and
wish to use the examples in GNUM5, type A: \GNUM5 and hit the
Enter key. If you are working from hard drive C and wish to use

J.4. EXECUTION MODE 459

the examples in GNUM5, type C: \LOGICLAB\GNUM5 and hit the
Enter key.

Q Quit the program.

When you return to the title screen from within the program, you
have the following choices:

Enter key : Return to the current state without change.

A .= Change to the Advanced GNUMBER program.

S : Change to the Simple GNUMBER program.

D : Change the drive or directory from which the examples and solu­
tions are loaded and saved.

Q Quit the program.

If your current work has not been filed, you will be given a warning
and another chance to file the current program by hitting the F key.

The next few pages first explain what you can do in each mode
with the simple form of GNUMBER. Then the additional features of
the advanced form are described. If you are only using the simple form,
you can skip the material on the advanced form.

J.4 Execution Mode

You can get to the Execution mode from the Program or Register modes
with the E command. The Execution mode is the place where you run
a register machine program. It has a variety of commands which allow
you to start and stop the register machine program and control its
speed. Two columns of 23 instructions without comments and one
column of 15 registers are visible on the screen.

The register machine program is started by hitting either the space
bar or the Enter key. As the register machine program runs at slow or
one-step speed, the register contents and next instruction number are
updated at each step. At the same time, the time counter at the top of

460 APPENDIXJ.GNUMBER

the screen shows the current number of steps in the run, and the next
·instruction label is highlighted with a white background. The motion
of the highlighted label will give an indication of what the program is
doing.

While the register machine program is running, it can be interrupted.
by pressing any key. You can go to another mode and make changes or
explore the contents of a long register, and then return to the Execution
mode and continue running the program.

At fast speed, the time counter is updated every 100 steps, and
everything is updated when the program is stopped or interrupted.

J.4.1 Viewing More Instructions or Registers

The Execution mode initially shows the two columns of instructions
from 0 to 45. To see the next column of instructions, hold the Ctrl
key down and hit the right arrow key. To see the previous column of
instructions, hold the Ctrl key down and hit the left arrow key. To go
back to the first two columns of instructions, hold the Ctrl key down
and hit the Home key. In this way you can focus on the part of the
program where the action is and watch the program execute step by
step.

The Execution mode initially shows one column of registers, from
1 to 15. You can view additional registers by hitting the PageUp or
PageDown key.

J .4.2 Execution Mode Commands

I : Go to the INSTRUCTION Editor.

P : Go to the PROGRAM Mode.

R : Go to the REGISTER Mode.

Enter key or Space Bar : Run the current register machine pro­
gram.

Q QUIT. This command returns you to the title screen. From the
title screen, you can quit the program by hitting Q again, change

J.5. PROGRAM MODE 461

the drive or directory where the example files are loaded and
saved, change to the simple or advanced GNUMBER program,
or return to the current state.

0 : Make the register machine program run ONE step at a time.

S : Make the register machine program run at SLOW speed. At slow
speed you can see the changes in the register contents and the
next instruction marker at each step.

F : Make the register machine program run at FAST speed. This is 6
to 20 times faster than slow speed. If you press the U (update)
key while the program is running at fast speed, all the registers
will be brought up to date and then the program will continue.
If you press any other key while running at fast speed, the pro­
gram will stop. (It can then be restarted by pressing the SPACE
key). At fast speed you cannot see the changes in the register
contents until you press the U (update) key, the program halts,
a register overflows, or you stop the program. The time counter
is updated every 100 steps while running at fast speed, but the
next instruction marker is not changed.

T Set the TIME counter and next instruction number to zero. Use
this to start a program from the beginning.

J.5 Program Mode

You always start out in the Program mode, and can get there from
the Execution mode or Register mode with the P command. In the
Program mode, you can delete a single line or a whole register machine
program, open a line for the Instruction editor, load a sample register
machine program from the disk, or save a register machine program.
There are places for 501 instructions, numbered from 0 to 500. Any
instruction beyond 500 is assumed to be a Halt. The next instruction
number is shown at the top of the screen. On the right side of the screen
is a help window which has a list of the available commands. The letters

C D E F H I L 0 P Q R and U are used for these commands.
' ' ' ' '' ' ' ' ' '

462 APPENDIX J. GNUMBER

J .5.1 Moving Within the Screen

The Up, Down, Right, and Left arrow keys, the PageUp and PageDown
keys, and the Home and End keys can be used to move within the
register machine instruction area of the screen. The PageUp key goes
up 23 lines. If you hold the Ctrl key down and press the Page Up key
the cursor will move to instruction 0. The PageDown key moves down
23 lines. If you hold the Ctrl key down and press the PageDown key
the cursor will move to the last nonhalt instruction. The Home key
moves to the beginning of the· current line, and the End key moves to
the end of the current line.

J .5.2 Commands in the Program Mode

C : CLEAR all instructions to H, and set the time counter and next
instruction number to zero.

D : DELETE the current instruction line, move all later lines up one,
and adjust all J (Jump) instructions accordingly.

E Change to the EXECUTION Mode.

F File. Saves the current register machine program in a file on the
disk. A box will appear with either a blank file name or with the
name you used last time you filed the current RM program. The
file name has the form XXXXXXXX.GN. Use the keyboard to
enter or change the file name. (You should not enter the suffix
".GN"; the computer will add it automatically). When you have
the name you want, hit the Enter key to save the program. You
are warned if you try to use a file name which already exists.
The Esc key cancels the File command; and goes back to the
GNUMBER program without saving.

The F command can also be used to erase an unwanted GN file.
To Erase a GN file, Quit and start an empty program (with no
instructions), hit F for the File command, and type the name of
the file you want to erase.

H HALT instruction. This command erases the current instruction
line and replaces it by an H for the Halt instruction.

J.5. PROGRAM MODE 463

I : Change to the INSTRUCTION Editor. The cursor will remain in
its current position.

L LOAD a register machine program. In the bottom window of the
screen you will see the message

LOAD A REGISTER MACHINE PROGRAM AT LINE nn

where nn is the current line of the cursor in the Instruction Menu.
The computer will show you a list of all files on the disk in the
current directory whose names have the suffix .GN, and ask you
to type in a file name and hit the Enter key. The register machine
program described in the file will then be put into the instruction
list, starting at the line nn. All old instructions from line nn
to the end will be moved ahead to the end of the new program,
and all jump instructions will be adjusted in the correct way.
The next instruction number and time counter will be set to 0.
You can get back to the Program Menu without loading a new
program by hitting the Enter key without a file name. After you
load a register machine program, its name will be displayed at
the top of the screen. The name will stay there until you change
a program instruction, file a program, or load a new program. If
the file name you type is not on the diskette, or if there is not
enough room to load the new program starting at line nn, you
will be informed by a message and will return to the Program
Menu with no change.

This command can be used either to load an RM program by
itself, or to load an RM program somewhere in the middle of an
old program. To load a program by itself, first press Home to get
to instruction line 0, then press C to clear out the old instruction
list, and then press L. To load a new program in the middle or
at the end of an old program, move the cursor to the line where
you want the new program to begin and then press the L key.

0 OPEN a line. This command moves all instructions below the cur­
rent line down one, adjusts all J (Jump) instructions accordingly,
and writes an Hin the current line. Use this command vyhen you
want to insert a new instruction at the current line.

464 APPENDIXJ. GNUMBER

P : PRINT the current instruction list. (Ignored if no printer is in­
stalled).

Q QUIT. Same as the Q command in the Execution Mode.

R Go to the REGISTER Mode.

U UNDOES the most recent change in the instruction list. The in­
struction list is returned to what is was before the most recent use
of one of the commands C, D, H, I, L, or 0. Use this instruction
to recover if you accidentally press the wrong key.

J .6 Instruction Editor

You can get to the Instruction editor from any of the other modes with
the I command. You leave the Instruction Editor by hitting the Enter
key, which takes you to the Program mode. The Instruction Editor is
used to type in or change register machine instructions and comments.
The window on the right of the screen will list the available register
machine instructions, H, J, S, T, and Z. The Esc key will undo the
changes on the current line and return it to its previous state. When
you are finished typing in or changing instructions, press the Enter key
to return to the Program mode.

J .6.1 Register Machine Instruction Letters

The following register machine instructions can be entered in your pro­
grams. The table shows what each instruction does when r, s, and t
are the numbers following the instruction letter and [r] is the number
in register r.

INSTRUCTION
H (Halt)
Z r (Zero)
S r (Successor)
T r s (Transfer)
J r s t (Jump)

EFFECT
Stop.
[r] 0.
[r] [r]+ 1.
[s] := [r].
if [r] = [s], jump to instruction t.

J.6. INSTRUCTION EDITOR 465

J .6.2 Entering Register Machine Instructions

When you start the GNUMBER program, there is an H command for
Halt at every position. When you move the cursor to a new line in the
Editor, the H disappears. You may type in a new instruction letter, a
number for each place, and a comment of up to 40 characters. In the
third place of the J command, an instruction number between 0 and
501 is needed. At any other place, a register number between 1 and 45
is needed. You can also place "break points" after the instruction letter
by typing the symbol !. This will cause the register machine program
to stop when you run the program.

To finish an instruction line, hit the Enter key to return to the
Program mode, or the Up or Down arrow key, the PageUp or PageDown
key, or the Ctrl key with the Page Up or PageDown keY_, to .move to a
new line. If your instruction is illegal, the computer w1U give you an
error message. When you get an error message, you have three choices:
1) Correct the error. 2) Press the Esc key, which will undo·your changes.
3) Press the Enter key, which will make an H instruction followed by
your illegal instruction as a comment, and return to the Program mode.

J .6.3 Register Machine Program Files

There are two ways to create a register machine program file. You can
either type in the program with the Instruction Editor and save it with
the F command in the program mode, or you can use an ordinary word
processor outside the GNUMBER program. If a word processor is used,
each line must contain one program instruction letter (capital or lower
case) ~nd the required register or instruction numbers. A line number
at the beginning and comments at the end are optional. The file mu~t
be given a name of the form XXXXXXXX.GN. When a program file is
loaded with the L command, any illegal instructions will be replaced by
an H command with a ! symbol and the original command and error
message as a comment.

466 APPENDIXJ.GNUMBER

J .6.4 Advanced Instruction Letters

Two new 3-placed instruction letters, E and P, are available in the ad­
vanced form of GNUMBER. These instructions allow the manipulation
of finite sequences of natural numbers.

By means of a Godel numbering scheme, each natural number is also
the code of a finite sequence of natural numbers. The Godel numbering
scheme uses the .even decimal positions (starting from 0 on the left) as
markers to show where a new term begins, and uses the odd decimal
positions for . the digits of the terms in the sequence to be coded. A
2 marker means that a new term is beginning, and a 1 marker means
that the old· term is continuing.

For example, the Godel number of the sequence 5034 6 217 is (with
the original digits underlined)

This is a Godel number in standard form. In order to make every
number a Godel number of some sequence, the initial marker can be
any digit except 0, a marker > 2 is identified with a 2, a 0 marker is
identified with a 1, and an extra digit at the end is ignored. Any single
digit number is a Godel number of the empty sequence.

The E command EXTRACTS the [s]-th term from the sequence
coded by [r] and places it in register t. (All terms beyond the last term
of the sequence are considered to be 0). The P command PUTS the
number [r] into the [s]-th term of the sequence coded by register t. The
effect of these commands may be summarized symbolically, where (r)
denotes the sequence with Godel number [r].

INSTRUCTION
E r s t (Extract)
P r s t (Put)

EFFECT
[t] the [s]:-th term of (r).
The [s]-th term of (t) := [r].

It is possible to change back and forth between the Simple and
Advanced forms of GNUMBER at the title screen without losing the
current instruction list. It is also possible to enter the advanced E and
P instructions even within the Simple Instruction Editor. The simple
form of GNUMBER will treat an advanced RM program with the E

J.7. REGISTER MODE 467

and/ or P instructions in the following way: all E and P instructions
will be displayed as blinking characters and will be skipped when the
RM program is executed.

J. 7 Register Mode

You can get to the Register mode from the Execution or Program mode
with the R command. In the Register mode you can put numbers
into the registers. There are 45 registers, numbered 1 through 45.
GNUMBER starts with 0 in every register. The help window below
the registers lists the available commands.

The screen display of the Execution mode and the Register mode
are the same except for the help window at the bottom of the screen,
beginning with instructions 0 to 45 and registers 1to15. In the Register
mode, you can view additional instructions by holding the Ctrl key
down and hitting the left or right arrow or Home key.

J.7.1 Moving Within the Registers

The PageDown and PageUp keys display the next or previous group
of 15 registers, 1-15, 16-30, and 31-45. The Up and Down arrow keys
move the cursor up and down one row, and the Home key moves the
cursor to register one. You can also get to the NEXT INSTRUCTION
REGISTER (register 0) by going to register 1 and pressing the up arrow
key.

J.7.2 Entering a Number into a Register

A number is entered into a register by typing the digits 0, ... ,9 as usual.
You can enter a number into the Next Instruction Register as well as the
ordinary registers. The backspace key works in the usual way. When
you are finished entering the number, hit the Enter key, an Up or Down
arrow, Home, PageUp, PageDown, or one of the commands I, P, or
Q. You can enter up to 1,000 digits. While you are entering a number
which is more than one line long, the screen shows you how many digits
have scrolled off the left edge of the window.

468 APPENDIXJ.GNUMBER

J. 7 .3 Exploring a Register

After you or the computer finish entering a number, its total length
(measured in digits) is shown at the extreme right of the screen. If a
register contains more than a full line of digits, you can explore the
contents of the register by using the right and left arrow keys and the
End key (which displays the last 39 digits). This will cause the number
to scroll horizontally and be displayed in white. The Enter, Up, Down,
Home, PageUp, and PageDown keys and the I, M, and Q commands
will leave the register and behave in the usual way.

J. 7.4 Register Mode Commands

C : CLEAR all registers (put a zero in every register).

E : Go to the EXECUTION Mode.

I : Go to the INSTRUCTION Editor.

P : Go the the PROGRAM Mode.

Q : QUIT. Same as the Q command in the Execution Mode.

J.7.5 Advanced Register Mode Commands

There are four new commands which involve Godel numbers.
A Godel number is assigned to a register machine program in the

following way. Each register machine instruction is a sequence con­
sisting of a letter and from 0 to 3 numbers. The instruction letters
H,Z,S,T,J,E,P are assigned the codes 1 through 7 respectively. This
makes each register machine instruction a sequence of from 1 to 4 num­
bers, and this sequence is assigned its Godel number. The instruction
list is considered to end at the last nonhalt instruction. The register
machine program is a finite sequence of instructions, which gives rise to
a finite sequence of Godel numbers that in turn has a Godel number.

G : Put the GODEL number of the register machine program shown
in the current instruction list into the current register. The Godel
number will be in standard. form. The RM program is taken to

J. 7. REGISTER MODE 469

be the list of all instructions through the last nonhalt instruction.
All the subsequent halt instructions are ignored in com1mting the
Godel number. A program which has only halt instructions has
Godel number zero. This command also sets the time counter and
next instruction to 0, and leaves all other registers unchanged.

U : (UN GODEL) Put the register machine program whose Godel num­
ber (not necessarily in standard form) is in the current register
into the instruction list. A term in the current register sequence
which is not a Godel number of an instruction is treated as the
end of the instruction list, and all later terms will be ignored.
This command also sets the time counter and next instruction
register to 0, and leaves all other registers unchanged.

S : Change to SEQUENCE display. This command causes any number
which has more than 3 digits and is the Godel number of a se­
quence in standard form to be displayed as a sequence of numbers
separated by commas. All other numbers will still be displayed
in the ordinary way. When you explore a register containing a
sequence, the right and left arrow keys move to the beginning
of the next or preceding term of the sequence, and the· End key
moves to the beginning of the last term of the sequence.

In the Advanced Register mode you can enter numbers into reg­
isters in sequence form as well as in number form. To enter a se­
quence into a register, first type the left parenthesis "(" and then
type in the terms of the sequence separated by commas. When
you are finished entering the sequence, type either the right paren­
thesis ")",the Enter key, an Up or Down arrow, Home, PageUp,
PageDown, or one of the commands E, I, P, or Q. The register
will contain the Godel number of the sequence.

N Change to NUMBER display. This command causes the num­
bers in all registers to be displayed in the usual way as ordinary
numbers.

The last line in the help window tells you whether the Number or
Sequence di,splay is being used.

470 APPENDIX~ GNUMBER

The next to the last line in the help window displays more informa­
tion about the current register. If the computer has enough memory,
the first few registers will have room for 15,000 digits instead of 1,000
digits. The amount of room in the current register is reported. If you
are exploring a register in a number display, the number of digits and
the place of the first visible digit are reported. If you are exploring a
register in a sequence display, the number of terms, the place of the
first visible term, and the length (number of digits) of the first visible
term are reported.

J.8 Changing Directories

When you start the program by typing GNUMBER and hitting the
Enter key, the program will use the currently active drive or directory
for loading the example files and saving solutions. You can change
drives or directories from within the program at the title screen by
following the directions in Section J .3. A period "." can be used for
the current directory, and a double period " .. " for the parent of the
current directory.

You can start the program with another drive or directory for exam­
ple files by typing GNUMBER followed by the desired path name and
hitting the Enter key. For example, to load the GNUM5 directory of
GN files, you would type GNUMBER GNUM5 M at the DOS prompt
and then hit the Enter key. This feature may be useful in a computer
lab setting. The path and the M option for a monochrome display can
be combined or used separately.

For example, the instructor may create a batchfile called GNU.BAT
which has the single line

GNUMBERM A:

If the student types GNU [Enter key], the program will run with a
monochrome display and will use diskette drive A: for the example
files.

Appendix K

G NUMWIN - Godel
N uinberer for Windows (R)

K.1 Introduction

GNUMWIN is the version of the GNUMBER program which works
with Microsoft (R) Windows, Version 3.0 or later, and with Windows
95.

The GNUMWIN program can only be started after Windows is
running. It can be operated with a mouse or with the keyboard, and
works like other Windows applications. The GNUMWIN.EXE program
and the GNUM5 and GNUM6 directories can either be copied to your
hard disk into a directory called LOGICLAB (or another name or your
choice), installed using the SETUPWIN.EXE program, or accessed ~i­
rectly from the diskette. In all of these cases, access the Windows File
Manager (in Windows 3.0 or later) or My Computer (in Windows 95),
select the disk drive and directory that contains the program, and then
select GNUMWIN.EXE.

The program will begin with a welcome message in a small window
with two buttons labeled "Start" and "Tutorial". Click the mouse on
the "Tutorial" button to get a quick introduction. Click the mouse on
the "Start" button or hit the Enter key to begin the program in the
normal way. ·

There are two main windows, a program window with instructions

471

472 APPENDIX K. GNUMWIN

0 to 999, and a register window with registers 0 to 99. Register 0 is the
program counter, and the others are data registers. Each data register
can hold a natural number with up to 20,000 digits.

The main menu at the top of the screen has a File menu, a Program
menu, a Registers menu, a Windows menu, an Options menu, a Step
command, a Go menu, and a Help menu.·

The program counter, register 0, holds the number of the next in­
struction to be executed. It can always be seen at the top of the registers
window. A register machine (RM) program starts with a 0 in the pro­
gram counter. During the execution of an RM program the contents of
the program counter and the data registers change but the instructions
remain fixed.

The labels of the next instruction (in the program counter) and one
register are marked in reverse video. They can be changed by clicking
the mouse button on a new label, or by using the arrow, Page Up or
Down, Home, or End keys. The tab key switches the arrow key action
between the two windows. The scroll bars move the window up or
down without changing the marked label. The Enter key moves both
windows to the marked label.

The simple register machine has 5 instruction types, H (halt), Z
(zero), S (successor), T (transfer), and J (jump). When one of these
instructions (other than halt) is executed, it causes a change in the
contents of the program counter holding the next instruction, and may
change the contents of a data register.

The advanced register machine has two additional instructions, E
(extract) and P (put). These instructions manipulate the contents of
the data registers as Godel numbers of finite sequences.

The time display at the top of the Program window is set to 0 at
the start of execution, and increases by 1 at each RM program step.
It shows you how long an RM program has been running. An RM
program will run until a halt instruction is encountered, a data register
overflows, or the user intervenes.

The Help menu can be reached by using the mouse or the Fl key.
It contains five lists of topics and an About command, which shows
the version number, copyright notice, and icon.

K.2. PROGRAM EXECUTION 473

K.2 Program Execution

The initial values in the data registers can be entered by hand or with
the Godel command. The RM instruction list can be entere.d by hand,
loaded from the disk, or created with the unGodel command. You can
then begin execution. The step command on the main menu executes
a single instruction. The Go menu has several choices for starting
automatic execution.

You can stop the automatic execution of an RM program by hitting
any key except U, or by hitting the left mouse button in either the
Program or R~gisters window. Before starting automatic execution,
you can set a stopping time, or set a break point by entering a ! sign
after an instruction letter in the Program window. You cannot exit the
GNUMWIN program while automatic execution is in progress.

The standard Godel number of a finite sequence of natural numbers
is a single natural number which codes the whole sequence. Exam­
ple: The sequence (345,8008,7) has Godel number 2314152810101827.
(Every other digit is a marker.) A single instruction is a sequence of
at most four numbers, (replacing the letters H, Z, ... ,P by 1 through
7). Each instruction thus has a Godel number. The· Godel number of
a whole RM program is the Godel number of the sequence of Godel
numbers of its instructions.

K.3 Register Machine Instructions

Halt: H stops the RM program.
Zero: (Z i] places a 0 in register i and increments the program

counter by 1.
Successor: [S i] increments register i by 1 and increments the pro­

gram counter by 1.
Transfer: [T i j] places the contents ofregister i into registerj and

increments the program counter by 1.
Jump: [J i j k] places k into the program counter if the contents

of registers i and j are equal, and otherwise increments the program
counter by 1.

Extract: [E i j k] If register i contains the Godel number of a

474 APPENDIX K. GNUMWIN

sequence I and register j contains the number J, then the Jth term of
the sequence I is placed in register k. (If I has no Jth term, 0 is placed
in register k.) Then the program counter is incremented by 1.

Put: [P i j k] If registers i and j contain numbers I and J, and register
k contains the Godel number of a sequence K, then the standard Godel
number of the sequence L formed from K by replacing the Jth term of
K by I is placed in register k. (If K has fewer than J - 1 terms, extra 0
terms are added to the end of K before forming L. Then the program
counter is incremented by 1.

K.4 File Menu

The New command starts a new RM program. The current instruction
list and all registers will be cleared. You will be warned if the current
RM program has not yet been saved on disk since the last change.

The Open ... command loads a .GN file from the disk, containing
an RM instruction list. You will be warned if the current RM program
has not yet been saved on disk. You will see a list of .GN files and of
directories, which may include the parent directory called " .. " and the
GNUM5 and GNUM6 directories which contain example files. Choose
a file or new directory from the list, or type it on the screen. The loaded
instructions will be joined with the current RM program at the marked
instruction. The window takes the loaded file name as its title if you
load at 0 over an empty instruction list, but will drop this title when
the instruction list is changed.

The Save command will save the current RM program under the
current title which appears in the main window caption. If the program
is [untitled] you should use the Save As command instead of the Save
command.

The Save As ... command will save the current RM program under
a name which y_ou will supply. The window takes this name as its title,
which will be used for subsequent save commands. If you only give the
first part of a file name, the . GN extension will be added automatically.

The Print command will print the current RM program. The be­
ginning and end of the RM program will be marked with a row of dots.
You will be warned if the printer is not ready.

.k

K.5. PROGRAM MENU 475

The Exit command will quit the GNUMWIN Program and return
to Windows. You will be given a warning and a chance to save the
current RM program if it has not been saved on disk since the last
change.

K.5 Program Menu

The Edit an Instruction command opens a box in which you can
type in an RM instruction and a comment to be placed at tlie marked
position in the instruction list. You can also do this by double clicking
with the left mouse button on the instruction label.

The Clear an Instruction command replaces the marked instruc­
tion by a Halt.

The Delete an Instruction command removes the marked in­
struction, and closes up the gap by moving all lower instructions up
one position and fixing the jump targets as necessary.

The Insert an Instruction command moves the marked instruc­
tion and all later instructions down one position, fixing the jump targets
as necessary, and inserts a Halt at the marked place.

The Clear All Instructions command replaces all instructions in
the current list by Halts. You will be warned if the current list has not
been saved since the last change, and given a chance to save it. This
command is useful when you want to load a new RM program on a
clean slate.

The Undo command undoes the last change in the instruction list
and moves the marked instruction and program counter to the position
at the time of the last change. This command does not affect the
contents of the data registers.

K.6 The Registers Menu

The Edit a Register command opens a box in which you can enter
or change the contents of the marked data register (or the program
counter). You can also do this by double clicking the left mouse button
on the register label.

476 APPENDIX K. GNUMWIN

The View a Register command opens a box with a horizontal
scroll bar in which you can view the entire contents of the marked
register.

The Clear a Register command places a 0 in the marked register.

The Clear All Registers command places a 0 in every register.

The Godel command places the Godel number of the current RM
program in the marked register. This command can be used to test RM
programs which take Godel numbers of other RM programs as inputs:

The Un Godel command replaces the current instruction list by
the RM program whose Godel number is in the marked register. This
command can be used to test the action of RM programs which compute
Godel numbers of other programs.

K.7 Windows Menu

The Vertical Tile command arranges the windows with the Program
window on the left with its current width, and the Registers window
taking up the remaining space on the right. Each window gets at 'least
1/5 of the total available space.

The Horizontal Tile command arranges the windows with the
Program window on the top with its current height, and the Registers
window taking up the remaining space on the bottom. Each window
gets at least 1/5 of the total available space.

The Move Program command lets you move the Program Window
with the keyboard or mouse.

The Size Program command lets you change the size of the Pro­
gram Window with the keyboard or mouse.

The Move Registers command lets you move the Registers Win­
dow with the keyboard or mouse.

The Size Registers command lets you change the size of the Reg­
isters Window with the keyboard ·or mouse.

K.8. OPTIONS MENU 477

K.8 Options Menu

In this menu you can choose between the Numbers and Sequences op­
tions and between the Show Comments and Compress Instructions

' options.
With the Numbers option, the data registers are displayed in the

usual way as numbers. The GNUMWIN program starts out with this
option.

With the Sequences option, the data registers which contain stan­
dard Godel numbers of sequences, and at least 3 digits, are displayed
as sequences. The other data registers are displayed as numbers in the
usual way.

With the Show Comments option, the comments are shown next
to the instructions in the Program window. _The GNUMWIN program
starts out with this option. The Compress Instructions option hides
the comments in the Program window and instead uses the space to
show as many columns of instructions as possible.

K.9 Step Command and Go Menu

The Step command will execute the next RM instruction only.
The Go menu controls automatic execution of the current RM pro­

gram. The Slow, Medium, and Fast commands start automatic execu­
tion, and any key or the left mouse button will stop it. You must sto?
automatic execution to change from one speed to another, or to exit
the GNUMWIN program. During automatic execution, you can mini­
mize the GNUMWIN program and turn to other tasks. You will see a
changing icon which displays the first 6 digits of time during automatic
execution. The normal icon reappears when automatic execution stops.

The Restart command will change the time and program counter to
0. This prepares for restarting the current RM program at instruction

0.
The Stopping Time command will let you enter g, stopping time.

The next autom~tic execution will stop when the time reaches the stop-

ping time.

478 APPENDIX I<. GNUMWIN

The Slow command will begin automatic execution of the current
RM program at the slow rate of about two steps per second.

The Medium command will begin automatic execution of the cur­
rent RM program as fast as possible while still displaying all changes
in the data registers and the marked next instruction label. The speed
will depend on the capabilities of your computer.

The Fast command will begin automatic execution, gaining speed
by not updating the Registers window, hiding the next instruction
mark, and showing the time only in multiples of 1000. The Regis­
ters window will be updated without stopping execution when the U
key is hit. The commands in the Program menu are disabled. during
fast automatic execution. Again, the speed depends on your computer.

Bibliography

Boolos, George
[1979] The Unprovability of Consistency (Cambridge Univer­

sity Press).

[1989] A New Proof of the Godel Incompleteness Theorem,
Notices of the American Mathematical Society, Vol­
ume 36, Number 4, 388-390.

Enderton, ·Herbert
[1972] A Mathematical Introduction to Logic (Academic

Press).
Godel, Kurt

[1940] The Consistency of the Axiom of Choice and of the
Generalized Continuum Hypothesis with the Axioms
of Set Theory, Annals of Mathematical Studies, Vol­
ume 3 (Princeton University Press).

Hofstadter, Douglas
[1979] Godel, Escher, Bach: An Eternal Golden Braid, (Ba­

sic Books, Inc.).
Levy, Azriel

[1972] Basic Set Theory (Springer Verlag).
Rucker, Rudolf

[1982] Infinity and the Mind! the Science and Philosophy of
the Infinite (Birkhauser).

Smorynski, C.
[1985] Self-Reference and Modal Logic (Springer-Verlag) .

. Smullyan, Raymond
[1987] Forever Undecided, A Puzzle Guide to Godel (Alfred

A. Knopf, Inc.).

479

INDEX 481

DeMorgan's laws 63 freely substitutable 70,146

dense linear order 100 full predicate logic 62,143

denumerable 376 function 13,193,368

diagonal 301 function symbol 143
Index difference 368 G.N. 208

direct product 384 generalization rule 108

direct proof rule 105 GNUM5 problem set 250

directed set 137 GNUM6 problem set 252
abbreviation 13 ... equality rules 155

disjoint union 366 graph 78,385
abelian 161 ... minimalization 224

disjunction sign 5 group 161
Ackermann function 263 co domain 368 domain 368 Godel beta function 293
algorithm 191 commutative law 161 dotminus function 288 Godelian sentence 306
alphabetic change · 64 complement 368 dummy variable 63 half-open interval 101
ancestor 23 complete 299 element 361 halt instruction 196
argument 369 ... arithmetic 176,301 empty program 225 height 157
arithmetical interpretation 316 composition 223,372 enumerating 362 Henkin sentence 341,356
arity 62,193 computable 199,242,249 equality axioms 95 holds for 317
ARM program 220 compute 242 equality modulo m 184 holds in a model 16
assembly code 201 confusion of variables 70 equal 365,370,388 hypothesis 24
atomic wff 66,88,145 confutation 29,150 equivalence class 97 identity 64
axiomatized theory 300 congruence relation 96 equivalence relation 96 identity function 374
basic wff 32,88,145 conjunction sign 5 equivalence sign 5 image 371
Berry's Paradox 341 consistent 299 equivalent 157 ,198 implication sign 5
bijection 374 constant symbol 143 Euclidean algorithm 191 indirect proof 44,106
binary operation 384 · continuum hypothesis 377 existential quantifier 63 individual
binary relation 62,71 contradictory 29,88,150,155 extension 36,373 ... parameter . 61

bound occurrence 68,145 contraposition Law 54 extract instructiop. 220 ... symbol 65,143
bound variable 63 countable 21,376 finished set 33,35,88,92,155 ... variable 61
bounded quantifier 287 counter-model 124 finite 362,376 induction principle 391
branch 24 course of values 223,224 ... set 21 infinite 176,376
cardinality 376 data registers 195 ... tableau 26 ... propositional tableau 26

Cartesian product 384 decidable 242,310 ... tree 23 ... sequence 391

characteristic function 193,199 decision problem 242 first-order language 61 infix notation 67,384

child 23,25 deduction rule 108 formalized modus ponens 321 input 369

closed interval 101 definable 273,286 formalized normal 321 instance 73,321

closed under definition 109 free for 70,146 instruction registers 195

... composition 224 definition rule 109 free. occurrence 68 integer 363

480

482 INDEX INDEX 483

intersection 366 neatly compute 227 pre-order 100 representable 274
interval 100,385 necessary truth 316 precedence 11 represents 274
isomorphic 137,172 negation sign 5 PREDCALC 113 respects equality 95,146
join 225 next instruction 259 predecessor function 288 restriction 372
jump instruction 196 nextstate function 198,220,291 predicate logic 61 right bracket 5
Konig tree theorem 39 node 22 predicate symbol 64,143 right cancellable 375
labeled tree 24,80,148 nonstandard model 174,176 predicate 61 right inverse 378
language of arithmetic 163 normal 321 prefix 384 RM computable 192,199
learning rule 106 numeral 164,193,243 preimage 371 RM program 197
left bracket 5 occurrence 68 premodel 146 root 22
left cancellable 375 one-one and onto 374 primitive recursion 223 rules of formation 6,65,144
left inverse 378 one-one 374 primitive recursive 261 Russell paradox 139
legal LRM program 259 onto 374 primitive symbols 64 satisfiable 86,154
length 7,24,225,388 opcode 209 program counter 195 satisfies 21,62
lexicographic order 134 open interval 101 proof by cases 45 scope 68,69
liar paradox 266,341 order 175 proof formula 304 second order arithmetic 172
linear order 100 ... ax10ms 100 proof relation 271 second order logic 173
logically consistent 41 ... isomorphism 137 proper ancestor 23 semantic consequence 22,78
logically equivalent 53 ... relation 100,288 propositional sentence with parameters 69
Logiclab vii output 191,369 . . . connectives 1 sentence 71,148
loop instruction 259 PA 163 ... logic 1,5 sequence 388
LRM computable 259 pair 388 ... symbol 5,143 definable 284
LRM machine 258 parametrization 224 ... tableau chain 25 :Ei wff 284
Lob's theorem 354 parent 22 ... tableau 26 simulated program 232
machine language 201 parsing sequence 7,66 provable 83 sound set of rules 104
main connective 10 partial pseudocode 201 soundness 154,300,321
map 369 ... function 193 pure predicate logic 62 standard abbreviation 12
modal logic 314 ... order 100 put instruction 220 standard form 208
... tableau 322 ... recurs.ive function 264 quadruple 388 standard model 163,208
... tautology 320 Peano arithmetic 163 range 369,371 state 198,291
... wff 315 permutation 390 recursively enumerable 349 strict confutation 57

model 13,71,147 plain wff 70 recursively inseparable 350 strict order 288

models 21 Polish notation 60 reflexive law 96 string 5,65,315

modulo n 79 postfix 384 register machine 195 subset 364

modus ponens 43,321 power set 377 regular 227 substitution rule 110

name 348 PRED2 problem set 113 relation 71 substring 268

natural number 125,363 pre-model 95 remainder function 288 successor instruction 196

484

symmetric law
syntax
TABLEAU (program)
tableau
... chain
... confutation

96
5,65

46,177

80
83

... extension rules 25,80

... for full predicate logic 148

... for predicate logic 81

... proof 29,83,150
tautology 18,321
TABl problem set 46
TAB3 problem set 116
TAB4 problem set 177
terminal node 23
term 144
ternary 62
theorem 102
theory of 301
there exists 63
total function 193
transfer instruction 196
transformation 369
transitive closure 101
transitive law 54,96
tree 22
triple 388
truth in a model 16
truth table 18
tuple 388
two-sided inverse 379
type k theory 321
unary 62
... operation 384
... relation 71
unbounded minimalization 224
undecidable 242,249,310

um on
unique readability
universal quantifier
universe of a model
URM machine
unsound
unused
used
valid argument form
valid sentence
valuation
value
variable free term

INDEX

26,366
10

63,232
71,146

192,195
312

36
26
43
78

85,154
369
144

vocabulary 5,64,143
weak arithmetic 171
weakly represent 285
well-formed formula 6,65
well-formed part 68
wff 6,65,14 7
why command 35
Zermelo set theory 101
Zermelo-Fraenkel set theory 101
zero instruction 196
ZFC 101

