Schaum’s Solved Problems Series

Each title in this series is a complete and expert source of solved problems with
solutions worked out in step-by-step detail.

Titles on current list include:

3000 Solved Problems in Calculus

2500 Solved Problems in Differential Equations
2000 Solved Problems in Discrete Mathematics
3000 Solved Problems in Linear Algebra

2000 Solved Problems in Numerical Analysis
3000 Solved Problems in Precalculus

BOB MILLER’S MATH HELPERS
Bob Miller's Calc I Helper

Bob Miller’s Calc II Helper

Bob Miller’s Precalc Helper

McGRAW-HILL PAPERBACKS
Arithmetic and Algebra...Again

How to Solve Word Problems in Algebra
Mind Over Math)

Available at most college bookstores, or for a complete list of titles and prices, write to:

Schaum Division

The McGraw-Hill Companies, Inc.
11 West 19th Street

New York, NY 10011

MATHEMATICAL LOGIC
AND
COMPUTABILITY

H. Jerome Keisler

Joel Robbin

Contributors:

Arnold Miller
Kenneth Kunen
‘Terrence Millar
Paul Corazza

The Wisconsin Logic Group’
University of Wisconsin, Madison

The McGraw-Hill Companies, Inc

New York St. Louis San Francisco Auckland Bogotd Caracas Lisbon
London Madrid Mexico City Milan Montreal New Delhi
San Juan Singapore - Sydney Tokyo Toronto

S

McGraw-Hill
A Division of The McGraw-Hill Companies

MATHEMATICAL LOGIC AND COMPUTABILITY

Copyright © 1996 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America., Except as permitted under the

United States Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval
system, without prior written permission of the publisher.

This book is printed on acid-free paper.
1234567890 DOCDOC 9098765
P/N 033939-2

PART OF

ISBN 0-07-912931-5

The editor was Jack Shira;

the production supervisor was Paula Keller.
R. R. Donnelley & Sons Company was printer and binder.

Library of Congress Catalog Card Number: 95-80649

Contents

Preface

1

Propositional Logic

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

“1.10

1.11
1.12
1.13
1.14

Introduction
Syntax of Propositional Loglc
Induction on Length of Wifs . . .
Main Connective .
Semantics of Propositional Loglc
Truth Tables and Tautologies

Tableaus
Soundness
Finished Sets
Completeness
Compactness

Valid Arguments .
Tableau Problems (TABl)
Exercises .

Pure Predicate Logic

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Introduction
Syntax of Predicate Logic
Free and Bound Variables
Semantics of Predicate Logic . .
Graphs . .

Tableaus
Soundness
Finished Sets

g Ot

10
13
17
19
30
32
34
38
42
46
50

61
61
64
68
71
78
79
85
88.

2.9 Completeness 91
2.10 Equivalence Relations. 94
2.11 Order Relations 100
212 Set Theory o i 101
2.13 Tableaus and Mathematical Proofs 104
2.14 PREDCALC Problems (PRED2) 113
2.15 Tableau Problems (TAB3) 116
2.16 Exercises e e e e 124
Full Predicate Logic : - 143
3.1 Syntax e e 143
3.2 Semantics 146
33 Tableaus e e e e 148
3.4 Soundness B e e e e e e 154
3.5 Completeness L. 154
3.6 Theoryof Groups v v v v 160
3.7 Peano Arithmetic 163
3.8 Some Applications of Compactness 175
3.9 Tableau Problems (TAB4)177
3.10 Exercises, R 182
Computable Functions - 191
4.1 Introduction, 191
4.2 Numerical Functions and Relations e 193
4.3 The Unlimited Register Machine. 195
44 RM computability 198
4.5 Examples of RM-Computable Functions 200
4.6 Godel Numbers, Extract, and Put 208
4.7 The AdvancedRM e 220
4.8 Closure Theorems vt v v v v oo oo e e 222
4.9 Universal RM Programs 232
'4.10 Church’s Thesis 240
4.11 The Halting Problem 242
4.12 Church’s Theorem . . ., . .., 243
4.13 Simple Gnumber Problems (GNUM5) 250
4.14 Advanced Gnumber Problems (GNUMS6) 252
4.15 Exercises L 256
i

5 The Incompleteness Theorems

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Coding Tableaus BT

Definability and Representability ‘

The Equivalence Theorem« .o oo oo oL
Computable Implies Representable
First Incompleteness Theorem . - « « + « v o v o o v L L,
Godel’s Original Incompleteness Proof
Godel-Rosser Theorem . v« « « « v v v v v v o v v v i L
Provability and Modal Logic . . - « -« v v v v oL .
Modal Systems and Tableaus « . .« . . e

5.10 First Incompleteness Theorem Revisited
5.11 Second Incompleteness Theorem

B.1
B.2
B.3
B.4
B.5
B.6
. B.7

5.12 Modal Tableau Problems (TAB7)
513 EXercises . . o v v v v v vt e e

Sets and Functions

Al Sets e e e e e e e e e
A.2 Boolean Operations+ « v v v o v v v oo,
A3 Functions« o e
A.4 Composition and Restriction oo v v ot
A.5 Identity, One-one, and Onto Functions
A6 Cardinality e
A7 Inverses e e e e .
A.8 Cartesian Product e e
A.9 Graphing Functions oL
A.10 Finite Sequences« o v o oL
A1l Permutationso v e e e
A.12 Induction e e R

Listings ‘ :
Simple GNUMBER Programs . - . . « .« o« v oo L. :

Advanced RM programs « -+« ¢ oo oo .
Pseudocode for PARAM e e e e e c
PARAM.GN listing v« v v v v v v v oo
Pseudocode for NXSTATE and UNIV..
NXSTATEO.GN listing -+« .« .. IRREREEE
UNIV.GN listing e e e

iii

C The Logiclab Package 409
D TABLEAU — Tableau Editor for DOS 413
D.1 Introduction e 413
D2 Qetting Started . . .« . . - - - e e e e e 414
D.3 TitleScreen.......‘..,....‘..........’414
D.4 Hypothesis Mode« ovove et 415
D.4.1 Commands in Hypothesis Mode . . .« v v v o v - 415

D.4.2 Propositional Logic . . .« -« v e e 417

D.4.3 Predicate Logic« o oo 418
 D.4.4 Moving Within aFormula . . .« oo oo 418
D.4.5 Size Limit for Formulas. . « « « v v o v o o0 oo 418

D.5 Tableau Mode . . o v oo v oo v m 418
D.5.1 Moving Within the Tableau« 419

D52 MOUSE « v v v vooomv oo s 420

D.5.3 Commands in Tableau Mode. . .« v v v v v 420

D.5.4 Propositional Logic . . .+« oo 420

D.5.5 Predicate Logic e e e 421

D.5.6 Predicate Logic with Equality - e 422

D.5.7 Size Limit for Substitutionsc.-eee 423

D6 MapMode . . o oo v v o 423
D.7 The Modal Logic Option . . .« o oo v v e mem im0 424
D.8 Changing Directories« .« oot 426

E TABWIN - Tableau Editor for Windows (R) 427
E.1 Introduction........'....; 427
B2 File Menu . . . o v v ovomm s ommm s 429
E3 View Menu . . « o coovoo v mo s sme o 429
E.4 Entering Hypotheses e e e 430
E.5 Viewing Tableaus e e e e 431
E.6 Building Tableaus+« o v oo v s 431
F COMPLETE — Tableau Completer for DOS - 433
G COMPWIN - Tableau Completer for Windows (R) 435
G.1 Introduction . o v v v vo e w s 435
G.Q,FileMenu...................;...'...436

G.3 View Menu , 437

..........
L Y

G.4 Building a Finished Tableau 437
G.50therCommands..............::: “““ 438
PREDCALC - Predicate Calculator for DOS 439
H.1 Imtroduction
H.2 Getting Started oo oo 40
H3 Title Screen o .'440
H4 Display Modes oo oo il
H.5G0als............:: ------ D e
- H.6 The Calculator Pad Zig
H.6.1 The Time Counter 443
H.6.2 Moving Within the Calculator Pad 443
H.6.3 The Help Window B 443
H64 Mouse . .. oooonoo 444
H.6.5 Using the Calculator Buttons 444
H.7 The Letter Commands L
H.8 Changing Directories ‘‘‘‘‘‘ jig

PREDWIN - Predicate Calculator for Wi
1.1 Introduction or Windows (R) 449

(2 Goao o nl L 150
1.3 The Help Menu o AU S
14 The Calculator Pado oo oo o
L5 The File Menu oo oo 3
1.6. The View Menu ::: L o
L7 The Options Menu igg
GNUMBER — Godel Numberer for DOS 457
J.1 Introduction
J2 Cetting Started . .+« oo o o
J.3 TitleScreen s
J4 ExecutionMode igg
J4.1 Viewing More Instructions or Régistt;rs. 460
J42 Execution Mode Commands 460
J5 Program Mode oo . 461
J.5.1 Moving Within the Screen :4;62

752 Commands in the Program Mode 462

J.6 Instruction Editor« o oo .. 464

J.6.1 Register Machine Instruction Letters 464

J.6.2 Entering Register Machine Instructions 465

J.6.3 Register Machine Program Files 465

J.6.4 Advanced Instruction Letters- 466
J7 Register Mode . . . oo oo oo v om i 467

- J.7.1 Moving Within the Registers- -~ 467
J.7.2 Entering a Number into a Register 467

J.7.3 Exploring a Registero .o 468

J7.4 Register Mode Commands - .- o 468

375 Advanced Register Mode Commands - 468

J.8 Changing Directories« oo oo o e 470

K GNUMWIN - Gédel Numberer for Windows (R) 471
K1 Introduction . . . « o v v v v oo o m e 471
K.2 Program Executiono .. 4T3
K.3 Register Machine Instructions« - voeee o 473
K4 File Menu . . v o v oo oo v oo 474
K.5 Program Menu« ce sttt 475
K.6 The Registers Menu. . . . oo v oo oo 475
K.7 WindowsMenu - e 476
K.8 Options Menu . .« - o v vv e e 476
K.9 Step Command and Go Menu vvve e e 477
Bibliography 479
Index 480

vi

P reface

This course is concerned with the two broad topics of logic and com-
putability and the relationship between them. Classical propositional
‘and predicate logic is the topic for the first three chapters of the text
the theory of computable functions occupies the fourth chapter and,
‘ ‘the relationship between the two, as embodied in the Incbmplet’eness
" Theorems of Gddel, comprises the fifth chapter.

. A package of computer programs called Logiclab is included with
tlfu; book. The pacl:.ge contains both DOS and Windows versions
- of four programs. The DOS versions are TABLEAU, C(

PREDCALC, and GNUMBER, and the Windows ver;ionosl\giiL'}Ia‘Egj
WIN, COMPWIN, PREDWIN, and GNUMWIN. These programs are
‘ key.ed to the book and are designed to be used for problems, student ex-
- perimentation, and classroom demonstrations. They work on an IBM
P(? or compatible personal computer. Many of the problem sets in
- thl.S book use the Logiclab programs. The Windows versions work with
V‘deow's 3.0 or later, and with Windows 95, and have built-in tuto-
. E‘lalts Wh}ch will quickly show you how to use the programs. Complete
B OI;St }rlléclzi)oonli for the programs are included in the appendices at the end

While there are no specific mathematical prerequisites for the book
some experien.ce with abstract mathematical proof is crucial. Some ba—,
Sfic ?}Tthematl.cal concepts used in this text are explained in Appendix
B st. ; e material of Chapters 2 and 3 will be more meaningful to the
i udent who has had a course in linear algebra or abstract algebra.

vii

About tﬁc Authors

Jerome Keisler, Kenneth Kunen, Térrence Millar, Arnold Miller, and Joel:

Robbin are Professors of Mathematics at the University of Wisconsin in
Madison. Kenneth Kunen is also a Professor of Computer Science, and
Terrence Millar is also a Dean in the Graduate School. Paul Corazza has taught
at the University of Wisconsin and is a Professor of Mathematics at Maharishi
International University. The authors have published numerous textbooks and
research articles in mathematical logic and other areas of mathematics. Jerome
Keisler received his Ph.D. degree from the University of California at Berkeley,

Paul Corazza from Auburn University, Kenneth Kunen from Stanford

University, Terrence Millar from Cornell University, Arnold Miller from the
University of California at Berkeley, and Joel Robbin from Princeton
University.

MATHEMATICAL LOGIC AND COMPUTABILITY

~ Chapter 1
‘Propositional Logic

This book is about formal languages which are powerful enough for the
development of mathematics. Unlike natural languages such as English,
formal languages have a precise set of rules for forming sentences. This
set of rules is called the syntax of the language. '

In this chapter we study a very simple formal language called propo-
sitional logic. The main topics will be well formed formulas (or wifs),
formal tableau proofs, and models. These concepts will be tied together
at the end of the chapter with the Completeness Theorem. At the end
of the chapter there are two problem sets. One problem set uses the
TABLEAU program and is done on a computer. It gives the student a
set of examples of formal tableau proofs, and some experience in build-
ing such proofs. The other problem set is a collection of pencil and
paper problems. ‘ '

1.1 Introduction

In propositional logic one can build new statements out of old state-
ments using propositional connectives. These connectives are not,
and, or, if, and if and only if. We are orily concerned with the common
mathematical meanings of these connectives. In some cases the math-
ematical meaning is slightly different from the meaning in everyday
English. We now explain these meanings.

1

2 CHAPTER 1. PROPOSITIONAL LOGIC

NEGATION. A sentence of form ‘not p’is true when p is false, and
is false when p is true. The symbol used in mathematical logic for not

is =. Of the two sentences
’ ~2492=4
-24+2=5

the first is false while the second is true. The sentence —p is called the
negation of p.

CONJUNCTION. A sentence of form ‘p and ¢’is true exactly when
both p and ¢ are true. The mathematical symbol for and is A (or

sometimes &). Of the four sentences
242=4 A 24+3=5
242=4 A 243=7
242=6 A 243=5
242=6 AN 243=7
the first is true and the last three are false. The sentence pAgqis called

the conjunction of p and q.
The words and and but have the same meaning for the mathemati-

cian. For example, the statement
C“r >3 but r < 3.27
has the same mathematical meaning as the statement

“4r >3 and T < 3.2.7

DISJUNCTION. A sentence of form ‘p or ¢’ is true exactly when
at least one of the sentences p, ¢ is true. ’
The symbol used in mathematical logic for or is V. Of the four

sentences

2+2=4 V 2+4+3=5
2+2=4 V 2+43=7
242=6 VvV 24+3=5
24+2=6 V 2+3=7

1.1. INTRODUCTION 3

the first three are true while the last is false,
called the disjunction of p and gq.

In everyday usage, the phrase soup or salad included in a restau-
ra-l,nt menu means that the customer can have either soup or salad with
his /her dinner at no extra cost but not both. This usage of the word
oris called exclusive (because it excludes the case where both compo-

The sentence p V ¢ is

nents are true). On the other hand, the question Do you want cream

or sugar with your coffee? means cream or sugar or both. This is the

inclusive meaning of the word or, and is sometimes written and/or in

English. Mathematicians always use the inclusive meaning; when they

;}niznd the exclusive meaning they say so explicitly as in p or ¢ but not
oth.

IMI;LICATION. ‘p .in?,plies ¢’ is false exactly when p is trﬁe but
¢ is false. The mathematical symbol for “implies” is =>. Of the four

. sentences

242=4 = 243=5
242=4 = 243=7
242=6 = 243=5
242=6 = 243=7

the second is false and the first, third and fourth are true.

The forms ‘p implies ¢’, “if p, then ¢, 4, if p° P only if ¢’, and *
whene?er p’ all.ha‘we the same meaning for the mathematician.7 !

This usage is in sharp contrast to the usage in everyda,yvlanguage'
In common discourse a sentence of form if p then ¢ or p implies)
suggests that there is a causa] relationship between p and q. Considef

-for example the sentence

If Columbus discovered America, then Aristotle was a Greek.

Since Aristotle was indeed a Greek this sentence either has form If true

the.n tm{e or If false then true and is thus true according to the meaning
of implies we have adopted. However, common usage would judge this
sentence either false or nonsensical because there is no causal relation
between Columbus’s voyage and Aristotle’s nationality.

4 " CHAPTER 1. PROPOSITIONAL LOGIC

The mathematical usage of p implies ¢ is much simpler than-the
everyday usage. The main advantage of the mathematical usage is
~that the truth value of p implies ¢ depends only on the truth values of
p and ¢, and not on other aspects of p and of g.

EQUIVALENCE. Theforms ‘p if and only if ¢’, ‘p is equivalent.tc'» q’
and ‘p ezactly when ¢’ all have the same meaning for the mathematician:
they are true when p and ¢ have the same truth value and false when
p and ¢ have different truth values.

Sometimes iff is used as an abbreviation for if and only if. The
mathematical symbol for if and only ifis &. Equivalence is the equality
of propositional logic, because p < ¢ says that the truth values of p
and ¢ are equal to each other.

Of the four sentences -

242=4 & 243=5
24+2=4 & 243=7
242=6 & 243=5

242=6 & 24+3="7

the first and last are true while the other two are false. .
The statement p if and only if ¢ has the same meaning as if p then

g and if q then p.

For each of the connectives which we have introduced, the truth
value of the new sentence depends in a simple way on the truth values
of the original sentences. The rules for truth values are summarized in
the following tables.

A=A

T| F

F| T
A B[]AAB AVB A=B A<B
T T| T T T T
T F| F T F F
F T| F T T F
F F| F F T T

1.2. SYNTAX OF PROPOSITIONAL LOGIC 5

1.2 Syntax of Propositional Logic

In this section we give the grammatical rules for propositional logic.
A vocabulary for propositional logic is a non-empty set P,
of proposition symbols, which are denoted by lower case letters

P,4,7,8,P1,41,.-.. The proposition symbols will stand for proposi-

tions, which are simple statements which may be combined to form
other statements. Propositional logic is not concerned with any in-
ternal structure these propositions may have; indeed, for us the only
meaning a proposition symbol may take is a truth value ~ either #rue
or false. ' ,

We start our development of propositional logic by giving a list of
primitive symbols which includes the vocabulary, the connectives, and
two brackets which will be used in the same way that parentheses are
used in algebra. '

The primitive syrﬁbols of the propositional logic are:
e proposition symbols p,q,r,... from Po

¢ the negation sign -

the conjunction sign A

the disjunction sign v

the implication sign =

the equivalence sign

the left bracket |
e the right bracket].

Any finite sequence of these symbols is called a string. Here are
some examples of strings:

[PAgl pAdl A AN
Our first task is to specify the syntax of propositional logic: ‘we
_Tust say which strings are grammatically correct. These strings are

6 CHAPTER 1. PROPOSITIONAL LOGIC

called well-formed formulas, or more briefly, wis. If we wish to be

spemﬁc about exactly which proposition symbols may appear in a wif

A we say it i is a wif in the vocabulary P;.

Definition 1.2.1 Let Py be a set of proposition symbols. A wiff '

of propositional logic with the vocabulary Po is a string which can
be obtained by finitely many applications of the following rules of
formation:

(W:Py) If p € Py, then p is a wif;

(W:=) If A is a wif, then —A is a wif;

(W:A) if A is a wif and B is a wif, then [A A B] is a wf;
(W:V) if A is a wif and B is a wff, then [A V B] is a wff;
(W:=) if A is a wif and B is a wff, then [A = B} is a wif;
(W:&) if A isa wif and B is a wff, then [A & B] is a wif.

For example the string [pVg] can be built using the rules of formation
and hence is a wif.

However, the strings pV ¢, [p] V[q], Vpg (which correspond to [pV g
in other treatments of propositional logic) cannot be built up in this
way and are not wifs.

We can show that a particular string A is a wif by using the rules
of formation repeatedly in a step by step manner. When we do this we
get a sequence of strings, called a parsing sequence for A. A string
which is not a wif cannot have a parsing sequence.

For example, we show that the string [-p = [g A p]] is a wif by

‘giving a parsing sequence.

(1) pis a wif by (W:P).

(2) ¢ is a wit by (W:P).

(3) [gAp]is a wh by (1), (2), and (W:A).
(4) —pis a wff by (1) and (W:-).

b

1.3.. INDUCTION ON LENGTH OF WFFS A 7

(8) [=p=>[gAp]] is a wif by (3), (4), and (W:=).

Most wifs have several different parsing sequences. We must always
start with one of the proposition letters, build up in some order from
simpler to more complex wifs, and end with the string which we want to
show is a wif. Here is another parsing sequence for the wif [-p = [gAp]].

(1) q'is a wif by (W:P).

(2) pis a wif by (W:P).

(8) —pis a wif by (2) and (W:-).

(4) [gAp|is a wit by (1), (2), and (W:A).

' (5) [~p = [g A p]] is a wif by (3), (4), and (W::?).

As the example illustrates, a parsing sequence for a string S is a
finite sequence of strings Si,...,S, such that the last string S, is S,
and each string S; in the sequence is either a proposition symbol, is
the negation of an earlier string in the sequence, or is built from two
earlier strings in the sequence using a binary connective. By applying
the definition of a wff at each step, we see that each string S; in the
sequence is a wif, and hence the final string S is a wif.

To parse a wif is to find a parsing sequence for the wif.

We shall use bold-face upper-case letters near the beginning of the
alphabet like A, B, C to denote arbitrary wifs. Other bold-face upper-
case letters like S, U wﬂl denote strings whlch might or might not be
wifs.

1.3 Induction on Length of Wifs

Many times in this book we shall use the idea of the length of a wif.

 The length of a string of symbols

S’-—-‘-‘Sl...Sm

is the number m. The empty string has length zero. The only wffs of

- length one are the propositional symbols.

8 CHAPTER 1. PROPOSITIONAL LOGIC

Quite often we shall prove some fact about wifs by induction on the
length of wifs. We illustrate this method with a simple example. It
will be useful to use an asterisk * to stand for one of the four binary
connectives A, V, =, &. '

Proposition 1.3.1 Every wff has the same number of left brackets as
right brackets. '

Proof: Let us call a wif balanced if it has the same number of left as
right brackets. Every wif of length one is balanced because the only
wifs of length one are propositional symbols, which have no brackets.
Assume that every wif of length at most n is balanced. Let A be a wif
-of length n + 1. There are two cases:

Case 1: A = -B. B is a wif of length at most n and hence is
balanced. A has the same brackets as B, so A is also balanced.

Case 2: A = [B * C] where * is a binary connective. B and C
are wifs of length at most n and hence are balanced. The number of
left brackets in A is equal to the number of left brackets in B plus the
number of left brackets in C plus one, and the number of right brackets
in A is the same, so A is balanced.

We have assumed that all wifs of length at most n are balanced, and
proved that all wifs of length at most n+ 1 are balanced. By induction,
all wifs are balanced. End of Proof.

The fdllowing fact turns out to be very useful and will be proved by
a somewhat harder induction on the length of a wif.

Proposition 1.8.2 If C is a wff of propositional logic, then no string
which is obtained by removing one or more symbols at the end of C is

a wff.

Before givin'g the proof, we shall rephrase the proposition and give
an example.

- A string T is said to be an initial part of a string S if T is formed

by removing one or more symbols at the end of S.

- We shall often use the notation TU to mean the string T followed
by the string U. If T is a string of length m and U is a string of length
n, then TU will be a string of length m + n.

1.3. INDUCTION ON LENGTH OF WFFS " -9

Thus T is an initial part of S if S = TU for s.orne string U which
is not empty. '

Proposition 1.3.2 says that: no initial part of a wff of propositional
logic is a wff.

Here is an example. The initial parts of the wiff

[lp=[q Apll = q]

are the empty string and the strings

L L lle, p=, [p=] p=1lo [p=loA,
[p=larp, [lp=1lgAp), [lp=>[gnpll, lp= [gArp] =,
lp=lgAp]=q

None of these initial parts are wifs. The whole wif has length 13, and
the initial parts have lengths 0 through 12.

Proof of Proposition 1.3.2: We prove by induction on n that no
initial part of a wif of length at most n is a wif. This is true for n = 1
because the only initial part of a wff of length 1 is the empty ‘string,
which is not a wiff. Assume that no initial part of a wff of length at
most n is a wif. Let A be a wff of length n + 1. We must prove that
no initial part of A is a wif. There are two cases: .

Case 1: A is =B. We assume that an initial part D of A is a wif
and get a contradiction. We have A = DT where T is. not empty.
D is a wif starting with -, so D = —E where E is a wf. Removing
the initial = symbols from A = DT, we get B = ET. But then B is
a wif of length at most n which has a wff E as an initial part. This

con‘;;a,dicts our inductive hypothesis. Therefore no initial part of A is
a wit.

Case 2: A is [B+C] where # is a binary connective. We assume that
an initial part D of A is a wif and get a contradiction. A = DT where
T is nonempty. D is a wif starting with [, so D = [EoF] for some binary
connective o and some wifs E and F. Then B * C] = EoF]T. Both
B and E are wifs of length at most n. By our inductive hypothesis,
neither of B, E can be an initial part of the other. Since B and E
start at the same place within A, they must be the same, B = E.

10 | CHAPTER 1. PROPOSITIONAL LOGIC

- Therefore B * C] = B o F|T, so * = 0 and C] = F]T. But then the
wif F is proper initial part of the wif C of length at most n. This
contradicts our inductive hypothesis. Therefore no initial part of A is

— End of Proof.

1.4 Main Connective

In order to assign meanings to wifs we need to know that each wif
can be read in exactly one way. This will be shown by the Unique
Readability Theorem, which will be proved rather easily from the
preceding proposition. S

Each wif is either a propositional symbol, starts with a negation -

symbol, or starts with a left bracket. A wff —A is the negation of the
shorter wif A. Wis which start with a left bracket are more compli-
cated, but they are also built up from shorter wifs. We shall see that
every wif which is not already a proposition symbol can be broken down
into shorter wifs in a unique way. o

Consider a wif C which starts with a left bracket. C must have
been built from two other wifs using a binary connective. This binary
connective must be introduced in the last step of a parsing sequence,
and is called the main connective of C. It is clear that C has a
main connective. The Unique Readability Theorem will show that C
has only one main connective. This is the key fact we need in order to
break each wif down into simpler wifs in a unique way.

For example, the main connective of the wif

[lp = [g A pll = 4]

is the second occurrence of =>. The given wif is built from the two
shorter wifs

p=[gApl], ¢

using the connective =.
In this example, the connective = occurs twice in the wif, but only
the second occurrence counts as the main connective.

1.4. MAIN CONNECTIVE 11

Definition 1.4.1 We say that an occurrence of a binary connective

~*is a main connective of a wif C if C = [A +B] where A and B are

wis.

Th‘eorem. 1.4..2 (Unique Readability) Each propositional wff C
which begins with a left bracket has ezactly one main connective.

~Proof: We consider the case where A is a wif of the form [B * C] ‘for

some wifs B and C and binary connective . Suppose that A is also
equal to [D o E] where D and E are wffs and o 1s a binary connective
The wifs B and D are strings which both start at the same place, ri hf:
after the first left bracket in A. By Proposition 1.3.2. one of ’B gD
cannot be an initial part of the other. Therefore B :,D It foll,ows
that * =0 and C = E, ‘ End' of Proof.

ﬂ?li)z»cerczse 4 gives a useful rule for finding the main connective of a
wif C: An occurrence of a connective * is the main connective of C if

and only if C has the form [S * T] where S has th _
brackets as right brackets, e same number of left

ﬁ"TO make our V{ffs more readable, we shall introduce abbreviated
wils. These are strings which are not wifs according to our definition
b

but are usually shorter and easier for
| or people to read, and
be translated into a full wff, e con ahvays

Rules for Abbreviating Wifs

e The outem’lost brackets of a wif need not be written. For example
we may write pV ¢ as an abbreviation for the wff [pVg], and write;
P < [¢Vr] as an abbreviation for the wff P& gVvr]

¢ We define the precedence of the binary connectives by the list
ANV, =, &,

with /\ being of highest precedence and < lowest. If * and o are
two binary connectives with * having higher precedence than o
and A, B, C are wifs, then A * B o C means [[A*B]o C] a,nd:
AoB*Cmea,ns[Ao[B*C]]. o

12 CHAPTER 1. PROPOSITIONAL LOGIC

For example, pA ¢V r is an abbreviation for [[pA ¢] V r] rather than
for [p A [q V r]], since A has a higher precedence than V.

The string which is obtained from a wif C by using the preceding
rules whenever possible is called the standard abbreviation of C.
The standard abbreviation of a wif is usually easier to read than the
full wif. For this reason, the TABLEAU program always displays the
standard abbreviation of a wil. ' ,

Proposition 1.3.2 is not true for abbreviated wifs. Abbreviated wifs
frequently have initial parts which are abbreviated wifs, or even full
wifs. For example, consider the string S = pV gAr. S is not a wif, but
it is an abbreviation for the wif [pV [gAr]]. The wif p is an initial part
of A. The string p V ¢, which is an abbreviation for the wif [p V ¢}, is
another initial part of S. : :

Given the standard abbreviation C’ of a wif C, it is always possible
to recover the original wif C . Exercise 9 gives an easy way to do this,
by finding which symbol of C’ corresponds to the main connective of
the original wif C. ' ’

In defining the standard abbreviation, we have not changed our
notion of a wif. We shall always use full wifs in the original sense when
proving theorems about wifs, but will often use the abbreviated form
when discussing particular examples.

There are two other conventions which we shall sometimes use to
improve readability.

The first of these conventions involves repeated A or repeated V
connectives. We may write AABA C instead of [A AB]AC. Similarly,
we may write A VBV C instead of [A V B]V C. Note that [[pAg]Ar]
and [p A [q A r]] are two different wffs. The string p A ¢ A r is an
abbreviation for the first wif [[p A ¢] A r], but not for the second wif
[pA[gAr]]. This convention is particularly useful when we wish to write
" a conjunction or disjunction of a finite number of wffs, for example,
A1/\A2/\A3/\A4/\A5,OI‘ Al/\"'/\An.

Our second convention is that we may insert an extra pair of brack-
ets around a wif to make it easier to read.

Notice that in the rules of formation of wifs, no new brackets are

required in forming the negation —A of a wff A. Instead of the rule

(W:=), we could have used the rule that if A is a wff, then [-A] is a
wif. This was not done because it would only add an unnecessary extra

1.5. SEMANTICS OF PROPOSITIONAL LOGIC ' 13

pair of brackets.
According to the rules, =p A ¢ means [~p A ¢|, and does not mean
=[p A g]. To remind us of this fact, we might write [=p] A ¢ instead of

pAg. o
A string obtained from a wif C using some combination of the con-

‘ventions in this section will be called an abbreviation of C. Thus

each wif has many abbreviations, but only one standard abbreviation.
The TABLEAU program accepts as input any abbreviation of a wif.

‘But after you finish typing the abbreviated wif at the keyboa,rd? the

program will display only its standard abb;evia,ted form.

1.5 Semantics of Propositional Logic

In this section we shall assign truth values to wifs of propositional logic.

" We start with the notion of a model, which assigns a truth value to each

propositional symbol. Given a model, we can then compute the truth
value of any wif by a step by step process which parallels the rules for
building wifs. , : _ »

There are two truth values in propositional logic, T and F. ‘A
model M for propositional logic of type P is a function which
assigns to each proposition symbol p € Po a truth value which we
denote by pm.

This is the first of many times in this text when we shall use the
mathematical concept of a function. In general, a function f from a
set A to a set B is a mathematical object which assigns an element
f(a) € B to each element a € A. We sometimes use the notation
f: A — B to indicate that f is a function from A to B. Thus a model
for propositional logic is just a function M : Po — {T,F}.

For example, if the vocabulary contains two propositional symbols,
Po = {p, q}, there are 4 different models of type Po, which we may call
Mo e Mg:)

Pmo = T;QMO = Ta

Pmy = T> qmy, = F,
Pm; = F7(IM2 = T:
Pm; = F7qM3 =F.

14 . CHAPTER 1. PROPOSITIONAL LOGIC

If Py has n propositional symbols where n is finite, there are 27
different models of type Py. If Py is infinite then there are infinitely
many models of type Po.

Figure 1.5 lists the rules for computing the truth value A of a wif
A in model M .

Truth Value Rules
(M:P,) If A is a propositional symbol p, Ay = pus;

M=) [Alu=T ifAm=F

(M:A) [AABly =T ifAy =T and By =T;
: [AAB]pm =F otherwise.

[AV B]um

T ifAM=TorBM=T;
F otherwise.

M=) A=>Bjm=TifAy=ForBy=T,
‘ [A = B]m =F otherwise. ‘

(M:&) [AeBju=TifAy=Bu;
‘ - [A & B]y =F otherwise.

Figure 1.1: Truth Value Rules for Propositional Logic.

- 1.5. SEMANTICS OF PROPOSITIONAL LOGIC 15

Using these rules, the truth value of each wif in each model can be
computed by choosing a parsing sequence for the wif and applying one
of the rules at each step.

For example, let us compute the value of [p = —q] = [¢V p] for a
model M with pps = T and gp = F. We first parse the wif.

(1) pis a wif by (W:Py).

(2) gis a wh by (W:Pg).

(8) ~q is a wif by (2) and (W:-).

(4) [p= q] is a wit by (1), (3), and (W:=>).

(5) [gVplis awi by (1), (2), and (W:V).

(8) [[p=> —~q] = [gV pl] is a wit by (4), (5), and (W:=>).
Now we apply the rules for A

(1) ppy=T.

(2) qu =F.

(8) [~¢Jm =T by (2) and (M:—).

(4) [p= —~qla =T by (1), (3), and (M:=>),

(5) gV plas = T by (1),(2), and (M:).

(6) [[p = =q] = [¢V pllm =T by (4),(5), and (M:=).

The next theorem states a vitally important fact about truth values:
Although a wff can have many different parsing sequences, the truth
value depends only on the model and the wff, and does not depend on
the particular parsing sequence which was used to construct the wit.

Theorem 1.5.1 ‘Given a model M and a wff A, the truth value A

15 the same for all parsing sequences of A..

16 CHAPTER 1. PROPOSITIONAL LOGIC

This theorem shows that given a model M for Py, there is a unique
function which assigns a truth value A to each wif A and satisfies all
the rules in Figure 1.5.

We leave the proof of this theorem as an exercise at the end of the
chapter. Hint: the proof uses ideas that we have already developed
in this book, the Unique Readability Theorem and induction on the
length of wifs.

There are several different ways of saying that a wif is true in a
model, which call attention to the model, the wif, or the truth value.

We shall often write the equation Ay = T in the alternate form
M | A. This alternate form uses .the useful “turnstile symbol” k=,
~ which is read “models,” or “is a model of.” The following five expres-
sions all mean the same thing:

Ay="T

A is true in M

A holds in M.
MEA

M is a model of A

Similarly, the following are the same:
Ay=F '

A is false in M.

MIEA

In the next proposition we write down rules for truth values which
are similar to the rules for tableau proofs in propositional logic- which
will be given later on in this chapter.

Proposition 1.5.2 Let M be a model for pr;:ipositional logic and A
and B be wffs. Then:

If M= ——A, then M = A.

M E[AAB], then M = A and M = B.
[=A] If M= —[AAB], then M |= A or M |= -B.
If M |= [A V B], then either M = A or M | B.

1.6. TRUTH TABLES AND TAUTOLOGIES 17
If M |= —[A VB, then M |=—A and M }:'—)B.

If M k= [A = B], then either M = —A or M =B.

- == If Mk -[A=B], then M = A and M |= -B.

If M = [A © B], then either both M = A and M %: B or else
both M = -A and M |=-B.

[F=] If M | —[A & B, then either both M = A and M }:: -B or
else both M |= —A and M = B.

1.6 Truth Tables and Tautologies

| The evaluation of the truth value Ay of a wif A in a model M is so

mechanical that we can arrange the work in a table. We first review
our semantical rules in tabular form:

A | -A

T| F

F| T

and

A B[AAB AVB A=B A&B
T T T T T T
T F F T F F
F T F T T F
F F 1) F T T

Now we can evaluate A by the following strategy.
We first write the wif A, and then underneath each occurrence of a
proposition symbol we write the symbol’s value:

P = - qg = ¢V 7
T F F T

18 CHAPTER 1. PROPOSITIONAL LOGIC

Then we fill in the value of each wif on the parsing sequence under its
‘main connective:

To save space we may write all the truth values on the same line:

P = - qd=1[¢V g
TTTFTTFT.T

A wif A is called a tautology if it is true in every model: M = A
for every model M. To check if A is a tautology, we can make a truth
table which computes the value of A in every possible model.

Take for the vocabulary P a finite set of propositional symbols
which contains at least every propositional symbol in A. The rows
of the truth table will correspond to the models M of type Po. The
columns of the truth table will correspond to the proposition symbols
and connectives in the string A. For example,

P = - qd = [V p
TFFTTTTT
TTTFTT FTT
FTFTTTTTF
FTTFPFTFT FTFTF

The entries in the column under the main connective (the fifth column
in this example) give the values for the whole wff. Since the last of
these values is F, the wif is not a tautology.

Here is a tautology:

- p = [p = 4
FTTTTT
FTTTTFTF
TFTT FTT
TFTT FTTF

1.7. TABLEAUS 19

Note that the same table shows that =A = [A = B] is a tautology for
any wifs A and B (not just proposition symbols):

- A = [A = B
FTTTTT
FTTTTF FF
TF T F T T
TF T F T F

This is because the wifs A and B can only take the values T and F
just like the proposition symbols p and q.

Suppose we have a tautology C built from two proposition symbols
p and q. We will then get another tautology D by replacing each p in
C by a wff A and replacing each ¢ in C by a wif B. (A similar remark

holds for wifs with more than two proposition symbols).

1.7 Tableaus

In ordina,ry discourse, a wif A is said to follow from another wif B’

if, assuming B is true, one can show that A is true by purely logical
reasoning. Similarly, A follows from a list of other wifs By,..., B, if

~ one can show that A is true assuming that each of the wifs By,..., B, is

true. Truth tables give us one method of showing that one wif follows
from others. In this section we shall introduce a second and more
practical method for doing this, the method of tableau proofs. Tableau
proofs have two major advantages over truth tables. First, a tableau

- " proof will usually be much shorter than the corresponding truth table

computation. Second, the method of tableau proofs carries over to the
more important predicate logic, while the method of truth tables does
not. :

Often one can see very quickly (without computing the full truth
table) whether some particular wff is a tautology by using an indirect
argument. As an example we show that the wif p = [¢ = [p A ¢]]
is a tautology. If not, there is a model M for its negation, i.e. (1)
M -[p = [¢g = [pAg]]. From (1) we obtain (2) M | p and
(3) M = -[¢g = [pAg]. From (3) we obtain (4) M = ¢ and (5)

M = =[pAg]. From (5) we conclude that either (6) M = —p or else

20 4 - CHAPTER 1. PROPOSITIONAL LOGIC

(7) M | —q. But (6) contradicts (2) and (7) contradicts (4). Thus no
such model M exists; i.e. the wif p = [¢ = [p A ¢]] is a tautology as
claimed.

We can arrange this argument in a diagram, Figure 1.2, called a
tableau.

(1) ~p= [g= [pAgl] (negation of wif to prove)
(2) P by (1)
3) g =>"[P A q)) by (1)
(4) q by (3)
® -phd by (3)
(6,7) =p =g by (5)

Figure 1.2: A Tableau Proof.

The steps in the original argument appear at “nodes” of the tableau.
The number to the left of a wif is its step number in the argument; the
number to the right is the number of the earlier step which justified the
given step. The nodes are connected by lines. (Later on we shall explain
why some of these lines are double). The two branches at the bottom of
the tree correspond to the two possibilities in the case analysis. There
are two ways to move from wif (1) down to the bottom of the diagram:

(1)-2)-(3)1-(4)-(5)-(6) and (1-(2)-3)-(&)- G (7)

Along each of these two branches there is a wif and its negation: namely
(2) and (6) for the former branch and (4) and (7) for the latter.

The method of tableaus can also be used to show that one wif
(called the conclusion) follows from one or more other wifs (called the
hypotheses). The tableau in Figure 1.3 shows that the wif p = r
follows from the set of hypotheses p = ¢ and ¢ = r. The first node

1.7. TABLEAUS 21

is the negation of the conclusion, —[p =], and the second and third
nodes contain the two hypotheses. On each branch of the tableau there
is a wif and its negation. This shows that it is impossible for both
hypotheses to be true and the conclusion to be false. Thus in any
model in which both hypotheses are true, the conclusion is also true.

(1) Sp=r] (negation of wif to prdve)

(2) p :L ¢ hypothesis
3) q L r hypothesis
(4) ‘ by (1)
(5) “ by (1)
(6,7) - / \ by (2)
(8,9) ﬂq/ \r by (3)

Figure 1.3: A Tableau Proof with Two Hypotheses.

We shall now extend the “turnstile” notation to apply to sets of
wifs as well as single wifs. This will make it easier to discuss the case
where one wif follows from a set of hypotheses. After that we w111 be
ready to explain the tableau method in general.

A finite set is a set of the form S = {so,...,5,} where n is a
natural number. A countable set is an infinite set of the form § =
{80, ,8n, ...} where n runs over all natural numbers. The empty set
is also cons1dered to be a finite set.

Let us consider sets whose elements are wifs. In this book we shall
confine our attention to sets of wifs which are either finite or countable.
If H is a set of wifs and M is a model we shall say M models-H (or

M is.a model of H, or M satisfies H) and write M |= H if M models

22 CHAPTER 1. PROPOSITIONAL LOGIC

every element A of H:

MEHITMEAfforall AeH.

Of course, when H is a finite set, say H = {A;, Aj,...,A,}, then the
notations

MEH

and
MEAANA A NA,

are synonymous. However, the new notation M |= H is handy, espe-
cially when H is an infinite set. A wff A is a tautology if and only if
the set {—A} consisting of the single wiff =A has no models. Instead
of trying to show that a given wif is a tautology, the tableau method
tries to show that a given set of wifs has no models.

We now introduce yet another use of the “turnstile” symbol. A wif
A is called a semantic consequence of the set of wifs H, in symbols
H = A, if every model of H is a model of A. Evidently, A is a semantic
consequence of H if and only if the set HU {-A} has no models. The
notation “H = A” is a formal description of the intuitive idea “A
follows from H.”

To sum up, we have introduced three ways to use the “turnstile”
notation. M = A means that M is a model of the wif A. M = H
means that M is a model of the set of wifs H. H |= A means that
every model of H is a model of A.

The tableau method which we now describe makes the task of de-
ciding whether H |= A holds more manageable, particularly in the case
of first order logic in the next chapter.

As a stepping stone to the mathematical definition of a tableau, we
first introduce the concept of a tree. A tree T is a system consisting
of a finite or countable set of points called the nodes of the tree, a
distinguished node r called the root of the tree, and a function =, or
71, which assigns to each node ¢ distinct from the root another node
7(t) called the parent of ¢; it is further required that if we repeatedly
take parents starting from any node ¢, forming the sequence of nodes

m(t) =ty (1) = w(2), 7 (1) = w(x (1)), 7°(t) = 7(w(m (), .

-1.7. TABLEAUS 23

we will reach the root node

"(t) = rp.
in finitely many steps. The nodes ='(t),7%(t), 7%(¢),... are called the

proper ancestors of ¢; a node ' is an ancestor of ¢ if it is either
t itself or is a proper ancestor of ¢{. Thus the root is an ancestor of

_every node, including itself. Conversely, each node s whose parent is ¢

is called a child of ¢. A node of the tree which has no children is called
a terminal node.

It is customary to draw a tree upside down with the root at the top,
because it is natural to start at the top of a piece of paper and work
down when building a tableau. Each node is connected to its parent
by a line. For example, in the tree

b/a\c
(]i 6/ \f’
|

g

the root is a; the parent function is defined by 7(b) = 7(c) = a, 7(d) =

- b, m(e) = n(f) = ¢, 7(g) = e; the terminal nodes are d, f, g.

A tree with finitely many nodes, such as the preceding example, is
called a finite tree, and a tree with infinitely many nodes is called an
infinite tree. Infinite trees are possible because, although we required
that a node has only finitely many ancestors, a node can have infinitely
many descendants (children, grandchildren, etc.)

‘The simplest example of an infinite tree is the tree of natural num-
bers, with the set of nodes T = {0,1,2,...}, the root node rp = 0, and

~ the parent function m(n) = n— 1. This tree has no terminal nodes, and
~every node has exactly one child. Here is a picture.

24 . CHAPTER 1. PROPOSITIONAL LOGIC

. D) O

A subset T of a tree T is called a branch of T if the root node r¢
belongs to I', the parent of each nonroot node in I' is in I, and each
node in I is either a terminal node of T or has exactly one child in I.
We say that a node ¢ is on the branch I' if ¢ is an element of the set T'.

- By successively taking parents, we see that for every node t on a
branch T', every ancestor of t is also on I'. By successively choosing
children, we see that each node of a tree is on at least one branch of
the tree. A terminal node t will be on exactly one branch I', which is
equal to the set of all ancestors of ¢ and is finite. On the other hand, a
node with more than one child will be on more than one branch.

A branch I" will either have exactly one terminal node ¢, in which
case I' is finite, or will have no terminal nodes, in which case I is
infinite. The number of nodes on a finite branch I is called the length
of T ‘

All the branches of a finite tree must be finite. In the above example
of a finite tree, the branches are (d, b,a), (f,¢,a), (g,€,¢,a).

The infinite tree of natural numbers has just one branch, which is

the whole tree.

Figure 1.2 at the beginning of this section is a tree with a wif at-
tached to each node. This is an example of a labeled tree. By a labeled

tree for propositional logic we shall mean a system consisting of a -

tree T, a finite or countable set of wifs H which is called the set of
hypotheses, and a wif ®(¢) attached to each nonroot node t. We shall
say that the wif “A occurs at t” or that “A is t,” when A = ®(t). All
the wifs in the hypothesis set H are considered to occur at the root

1.7. TABLEAUS ‘ 25

e. ;
nc’CIA wif which occurs at a child of a node ¢ will be called a child
wif (or simply child) of ¢, and we shall use similar terminology for
gra,nd‘children, ancestors, etc. Thus a hypothesis wif is an ancestor of
-every node of T. ‘ . ’

We are now ready to define tableaus. An example of a ta,bleau is
shown in Figure 1.2 at the start of this section. You will see hundreds
of additional examples of tableaus as you work the problems using the
TABLEAU computer program. The idea is that tableaus are labeled
trees which are built up step by step according to a particular set
of rules, called the tableau extension rules. In this process, we start
with just the root node labeled by the hypothesis set, and at ez?ch
step we form a new tableau by adding one or more new nodes with
attached wifs. During this process we form a sequence of larger and
larger tableaus, called a tableau chain.

Definition 1.7.1 A propositional tableau chain is a finite or
infinite sequence of finite labeled trees To,+++,Tny... such that To.
consists only of a root node with the set of hypotheses H, and each T{;H
in the sequence is obtained from Ty by applying one of the following
tableau extension rules at a terminal node t of Ty:

If ¢t has an ancestor ~—A, extend T by adding the child A of t.’

If + has an ancestor A A B, extend by adding a child A and
grandchild B of £. -

If t has an ancestor ~[A A B], extend by adding two children - A

_a,nd‘ -B of ¢.

If ¢ has an ancestor A V B, extend by adding two children A and
B of t.

If At has an ancestor —[A V B], extend by adding a child ~A and
~ grandchild =B of t.

Tf ¢ has an ‘ancestor A = B, extend by adding two children ~A
and B of t.

26 - CHAPTER 1. PROPOSITIONAL LOGIC

If t has an ancestor =[A = B], extend by adding a child A and
a grandchild -B of t.

V If ¢ has an ancestor [A & B], extend by adding two children A
and —A of ¢, a child B of A, and a child =B of -A.

If ¢ has an ancestor —=[A & B], extend by adding two children

A and —A of ¢, a child =B of A, and a child B of —A.

In each case, the ancestor wif is said to be used at ¢ and the other
wifs mentioned are said to be added at ¢.

Definition 1.7.2 A finite propositional tableau is a labeled tree
T which is the last term T, of some finite propositional tableau chain
To,..., T '

Thus a finite propositional tableau has finitely many nodes, but its
hypothesis set H may be either finite or countable.

Definition 1.7.3 An infinite propositional tableau is a labeled
tree T which is the union of some infinite propositional tableau chain

To,...,Tk,...,

in symbols, T = 32 OTk

That is, T is the infinite labeled tree such that t is a node of T if
and only if ¢ is a node of T}, for some k¥ € N, and whenever ¢ € Tk, the
parent 7(t) and wif ®(t) are the same in T as in Tj.

By a propositional tableau with root H we shall mean either a
finite or an infinite propositional tableau whose set of hypotheses is H.
The role of a tableau chain in building a tableau is analogous to the
role of a parsing sequence in building a wff !, To build a propositional
tableau, start with a tree Ty consisting of a single node (its root) and
a set H of hypotheses at the root node. Then extend the tableau Ty

1The TABLEAU program makes it easy to build a finite tableau. The program
starts with a tableau To with only a root node, and forms a new tableau each time
the Extend command is used.

S B

1.7. TABLEAUS 27

to a tableau T4y, and extend Ty to T3, and so on. Each extension uses
one of the set of nine rules for extending a finite propositional tableau
T,. At each stage we choose a terminal node ¢ of T, and a wif C
which appears on the branch through ¢, and build T,4; by adjoining

- one, two, or four nodes below ¢ according to the rule determined by the

form of C. 7

At each stage of the process of building a tableau, we will have
a finite propositional tableau Ty. If the process continues through
all k, the union of the chain of finite tableaus T} will be an infinite
propositional tableau T.

For reference we have summarized the nine extension rules in Fig-
ure 1.4. This figure shows the node ¢ and a wif C above it; the vertical
dots indicate the branch of the tableau through t so the figure shows
C on this branch. (It is not precluded that C be at ¢ itself.) Below ¢
in the figure are the wifs at the children of ¢, and when appropriate the
gra,ndchlldren of . When both child and grandchlld are added together
in a single rule, they are connected by a double line.

28

CHAPTER 1. PROPOSITIONAL LOGIC

Tableau Extension Rules

AVB ~[A AB] ASB
i i i
VAN VRN /N
A B —A -B -A B
A%}B ~[A & B

N é
0y
fl I

Figure 1.4: Propositional Tableau Extension Rules.

1.7. TABLEAUS : 29

Tableaus will be used in two ways: to build a formal proof of a
wi A from a hypothesis set H, and to build a model of a set of wifs
H. Formal proofs will be finite tableaus, while both finite and infinite
tableaus will be used to build models. ,

We are now ready to define the notion of a tableau proof. The
tableau in Figure 1.2 at the beginning of this section is an example of a
tableau proof. You will see other examples of tableau proofs when you
solve the problems using the TABLEAU program. Going along with
the idea of proving a wif by showing that its negation has no models,
we shall first define a tableau confutation of a set of hypotheses, and
then define a proof of a wif to be a confutation of the negation of the
wif.

We say that a wif A occurs along, or on, a branch I" if A is either a
hypothesis (hence attached to the root node) or is attached to a nonroot

" node of T'. We call a branch T" of a tableau contradictory if for some

wif A, both A and —A occur along the branch.

Definition 1.7.4 By a confutation of a hypothesis set H in propo-
sitional logic we mean a finite propositional tableau T with root H
such that every branch of T is contradictory 2, By a confutation of
a wif A we mean a confutation of the one-element set {A}. Bya
tableau proof of a wff A from a hypothesis set H we mean a tableau

confutation of HU{-A}.

The case that H is the empty set is of particular interest. By a

~ tableau proof of A we mean a tableau confutation of {~A}. Thisis the

same thing as a tableau proof of A from the empty set of hypotheses.
The “single turnstile” symbol F is useful when discussing whether
or not a wif has a tableau proof. The notation

HFA

means that there is a tableau proof of A from H. The notation F A
means that there is a tableau proof of A. :

2In the TABLEAU program, one can see at a glance whether or not a finite
tableau with a finite root is a confutation. A node is colored red if every branch

" through the node is contradictory. In a confutation every node is colored red.

30 | CHAPTER 1. PROPOSITIONAL LOGIC

Since tableau confutations are by definition finite tableaus, all tableau
" proofs have only finitely many nodes, even when the hypothesis set is
infinite. ,

In the next few sections we shall prove the Soundness and Com-
pleteness Theorems, which will clarify the relationship between tableau
proofs and semantic consequences.

1.8 Scundness

In this section we will prove the

Soundness Theorem

If a propositional wff has a tableau proof, then it is a tautology.

The main step is the following

Lemma 1.8.1 Let T be a finite propositional tableau with root H. Let
M be a propositional model of the hypothesis set H. Then there is a
branch T such that M =T, that is, M = A for every wff A onT.

Proof: By Definition 1.7.1 there is a finite propositional tableau chain
To,T1,... such that T is the last term T,. We must show that there
is a branch T" of T such that every wif A which occurs on I' holds in
M. To do this, we shall find a sequence of branches Ty of Ty, k < n,
such that for each k < n , I'y C x4y, and every wif A which occurs
on I'yyq holds in M (in symbols, M = T'kyy). Then IT', is a branch of
T and M =T, as required.

‘When k& = 0 we take I'y to be the set whose only element is the
root node, so that the wifs A on I'y are simply those of H. Thus the
assumption M | H shows that M | To. If Tgyy is obtained from
T} by extending at some node other than the terminal node of T'; we

1.8. SOUNDNESS 31

simply take T'y = I'y41 and there is nothing to prove. Hence assume
that Ty is obtained from T} by extending at the terminal node of I’
by applying one of the nine tableau extension rules to some wif A; in
the list. We use a case analysis and Proposition 1.5.2.

(1) If A; is -—A then I';y, is obtained from I'y by adjoining A.

(2) If A; is [AAB] then I'yyy is obtained from I'y by adjoining A and
B. ‘

(3) If A; is =[A A B], then I'yyy is obtained from I'y by adjoining
either —A (if M = =A) or =B (if M = -B).

(4) If A; is [AVB], then T'yy, is obtained from I'; by adjoining either
A (if M = A)or B (if M EB).

' (5) I A, is =[A V B}, then Ty is obtained from T by adjoining A

and —-B.

(6) If A;is [A = B, then then Ty is obtained from I'x by adjoining
either =A (if M = -A) or B (if M E B).

(7) If A;is =[A = B], then then I}, is obtained from I'; by adjoining
A and -B.

(8) If A; is [A & B, then I'yy is obtained from I'x by adjoining
either both A and B (if M | A and M |= B) or else both —A
and =B (if M E —-A and M E -B).

(9) If A;is -[A & B], then then I'k4y is obtained from I’y by adjoining

either both A and -B (if M | A and M = —B) or else both
-A and B (if M E —-A and M = B).

In cases (1), (2), (5), and (7) the branch T'y4; is the unique branch of
Ti41 which extends I'y; in the remaining cases I'x1y is one of the two
branches of T, which extend I';. End of Proof.

The above lemma actually holds for infinite tableaus as well as finite
tableaus (Exercise 20), but we shall only use the lemma in the finite

T case.

32 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.8.2 If a finite or countable set H of propositional wffs has
a tableau confutation, then H has no model.

Proof: Suppose H is a hypothesis set and T is a tableau confutation
of H; if H has a model M, then by the previous lemma, there is a
branch T' of T each of whose wifs holds in M. Since every branch of T
is contradictory, there is a wif A such that both A and —A are on T.
But this is impossible since by Definition 1.5, no model satisfies a wif
and its negation. End of Proof.

Theorem 1.8.3 (Extended Soundness Theorem) Suppose H is a
fintte or countable set of propositional wffs and A is a propositional wff.
IfHF A then H = A; in other words, if there is a tableau proof of A
from H, then A is a semantic consequence of H.

Proof: Given H and A and a tableau confutation T of HU {—A}, we
note that by the previous lemma, HU {-A} has no model, that is, no
model of H is also a model of ~A. Thus, if M is a model of H, M is
a model of A. It follows that H |= A. End of Proof.

A tableau confutation can be used to show that a propositional wif
is a tautology. Remember that a propositional wif A is a tautology if
and only if it is true in every model, and also if and only if —A is false
in every model. Thus if ~A has a confutation, then A is a tautology.
Therefore the Soundness Theorem in the box at the beginning of this
section is a corollary of the Extended Soundness Theorem.

1.9 Finished Sets

In this section we introduce the concept of a finished set of wffs. It will
be used in the proof of the Completeness Theorem in the next section.
The concept will be refined in the next chapter to handle predicate
logic.

By a basic wff we shall mean a propositional symbol or a negation
of a propositional symbol. The basic wifs are the ones which cannot
be broken down into simpler wifs by the rules for extending tableaus.
A set A of wifs is called contradictory iff it contains some wif A

1.9. FINISHED SETS 33

together with the negation —A of that wif. A set A of wifs is ca,lle_d
finished iff it is not contradictory and for each wff C € A either C is
basic or one of the following is true:

—-=] C has form ~—A where A € A;

[
| [A] C has form [A A B] where both A€ Aand BE A;

[~A] C has form —[A A B] where either ~A € A or -B €A
[V] C has form [A V B] where either A € A or B € A; |
[-V] C has form —[A V B] where both —A € A and =B € A;
[=] C has form [A = B] where cither ~A € A or B € A;
[~ =] C has form —~[A = B] where both A € A and ~B € A;

[©¢] C has form [A & B] where cither both A € A and B € A or
' else both —A € A and =B € A;

[~ &] C has form —[A & B] where either both A € A and -B € A
or else both —A € A and B € A.

Notice the similarity between this definition and the tableau extension
rules of Definition 1.7.1. Notice also that in each of these rules, the
new wifs have smaller length than the original wif C.

Here is an example of a finished set of wifs: ’

pAg,p=[sVplsVppq

The set
pAgp=[sVplpq

is not finished because it does not satisfy rule [=]. The set
pAgGp=[sVplsVpp
is not finished because it does not satisfy rule [A]. The set

pAg,p=[sVpl,-p,p ¢

is not finished because it is contradictory.

34 CHAPTER 1. PROPOSITIONAL LOGIC

Lemma 1.9.1 (Finished Set Lemma) Let A be a finished set of
wffs. Then A has a model. In fact, any model of the set of basic
wffs in A is a model of all the wffs in A.

Proof: Let us first note that the set of basic wifs in A has at least one
model. Let us define N by py = T if pisin A and pyr = Fin p is
not in A. Then (because A is not contradictory) pay = F if —p is in
A. Indeed, any model M in which each p which occurs in A is true,
and each p such that —p occurs in A is false, is a model of the set of
basic wifs in A. Given one model of the set of basic wffs in A, another
model of the set of basic wifs in A can be obtained by changing the
truth values of any propositional symbols ¢ such that neither ¢ nor —q
occur on A,
Let M be a model of all basic wifs in A. We must show that

ME A,

that is, that M |= C for each wff C € A. Now let B(n) be the following
property of a natural number n: For every wif C, if C belongs to A
and C has length at most n, then M models C.

~ R(0), R(1), and R(2) are true because every wff of length < 2 is
basic, and M models every basic wif in A. Assume R(n). Suppose
that C has length at most 7+ 1 and belongs to A. By examining each
of the nine cases listed above, we see that since M models every wif in
A of length at most n, M also models C. This proves R(n + 1). We
conclude by induction that R(n) holds for all n, and thus M models
every wif in A as required. , End of Proof.

1.10 Completeness

In this section we will prove the

Completeness Theorem

If a propositional wff is a tautology, then it has a tableau proof.

1.10. COMPLETENESS ' 35

The next lemma is the main fact which we shall prove in order to
get the Completeness Theorem.

Lemma 1.10.1 (Finite Main Lemma) Let H be a finite set of
propositional wffs. FEither H has a tableau confutation or H has a
model. : ‘

We have already shown in Lemma 1.8.2 that H cannot have both a
tableau confutation and a model. This, combined with the Finite Main
Lemma above, shows that H has a tableau confutation if and only if
H does not have a model. »

Hereis the basic idea in proving the Finite Main Lemma. First make
a systematic attempt to find a tableau confutation of H by building a

~very rich finite tableau, called a finished tableau. Then show that this

finished tableau is either a tableau confutation of H, or else has a
branch whose wifs form a finished set which gives us a model of H. -

To carry out this basic idea, we first give a careful definition of the
notion of a finished tableau. Then a finished tableau will be built in
the proof of the Tableau Extension Lemma. After that, near the end
of this section, we prove the Finite Main Lemma.

A branch T of a tableau is said to be finished if T is not contradic-
tory and every nonbasic wif on I' is used at some node of I'®. In other
words, a branch T’ is finished if and only if the set A of wffs which
occur along I' is a finished set in the sense of the previous section. A
propositional tableau T is said to be finished if every branch of T is
either finished or is finite and contradictory.

A confutation is automatically a finished tableau because every
branch is finite and contradictory. A finite finished tableau either has at
least one finished branch or is a confutation. Figure 1.5 is an example of
a finished tableau which is not a confutation. It has two contradictory
branches and one finished branch.

" Finished tableaus can be either finite or infinite. In this section
we shall construct a finite finished tableau on the way to proving the

3In the TABLEAU program, a branch I' is finished if its terminal node is yellow
and each node of I is either a basic wff or is shown by the Why command to be

" invoked at some other node of T.

36 CHAPTER 1. PROPOSITIONAL LOGIC

(1) ~[p = 1] (hypothesis)
(2) p :L ¢ hypothesis
(3) q L p hypothesis
(4) g’; by (1)

(5) Jr | by (1)

(6,7) ﬂp/ \ g by (2)

(8,9) ﬁq/ \p by (3)

Figure 1.5: A Finished Tableau.

Completeness Theorem. In the next section we shall use infinite fin-
ished tableaus to establish the connection between proofs and semantic
consequences of an infinite set of hypotheses.

A tableau T’ is said to be an extension of a finite tableau T if
T’ can be obtained from T by repeatedly adding nodes at the ends of
branches. ‘

Lemma 1.10.2 (Tableau Extension Lemma) Every finite propo-

sitional tableau with a finite root H can be extended to a finite finished

tableau (with the same hypothesis set)*.

Proof: We shall call a wif A at a node ¢ in a tableau unused if A
is not a basic wif and there is a noncontradictory branch through ¢ on
which A is not used®. Note that a tableau is finished if and only if
there are no unused wifs in the tableau.

4An algorithm for doing this is illustrated by the computer program COM-
PLETE, which is included with this book.
5In the COMPLETE program, unused wifs are colored yellow, wffs through

;)vhich every branch is contradictory are colored red, and other wfls are colored
lue.

1.10. COMPLETENESS 37

Let H be a finite hypothesis set which remains fixed throughout our
proof. Given a finite tableau T with root H, let u(T) be the length of
the longest unused wif in T, with the provision that u(T) = 0 if there
are no unused wifs, that is if T is finished. Since there are only finitely
many wifs occurring anywhere in T, the number u(T) exists. We prove

‘the lemma by induction on u(T).

Let R(n) be the statement that every finite propositional tableau
T with root H and with u(T) < n can be extended to a finite finished
tableau. R(n) asserts that the lemma is true whenever u(T) < n. The
statement R(1) is true, because a tableau T with w(T) <1 is already
finished. Assume R(n). Choose a finite tableau T with root H and
u(T) < n+1. Extend T to a new finite tableau T’ by using every unused
wif A in T once on every noncontradictory branch through A. Each
of the unused wifs in the original tableau T is used in the new tableau

- T'. Moreover, each new wif which was added in forming T’ has length

less than u(T), because the added wifs always have smaller length than
the used wifs. Therefore u(T") < u(T) < n + 1, so u(T) < n. By
the induction hypothesis R(n), there is a finite finished extension T
of T/. T" is also a finished extension of T. This proves R(n +1) and
completes the induction. End of Proof.

Proof of the Finite Main Lemma: Let H be a finite set of wifs

which does not have a tableau confutation. By the Tableau Extension
Lemma, the tableau consisting of only a root node with hypothesis set
H can be extended to a finite finished tableau T. This tableau still has

root H. Since T is not a confutation, it has a finished branch I'. By ‘

" the Finished Set Lemma 1.9.1, the set A of all wifs on T has a model

M. In particular, M is a model of H as required. End qf Proof.

Theorem 1.10.3 (Extended Completeness Theorem) If a wff A
is a semantic consequence of a finite set of wffs H, then there is a
tableau proof of A from H. In other words,

HEA implies HFA.

Proof: Suppose that A is a semantic consequence of H. Then the set

* formed by adding the negation of A to H has no models. By the Finite

38 CHAPTER 1. PROPOSITIONAL LOGIC

Main Lemma, this set has a tableau confutation, which is a tableau
proof of A from H. (The special case where the hypothesis set H is
empty is the Completeness Theorem in the box at the beginning of this
section.) End of Proof.

We reiterate that tableau proofs are finite. Thus in the Extended

Completeness Theorem, if H = A then there is a finite tableau proof

of A from H. In the next section we see that this still works when the
hypothesis set H is infinite.

1.11 Compactness

In this section we shall show that the Extended Completeness Theorem
and other results of the last section hold for a countable set of hypothe-
es. We are studying countable sets of hypotheses in this chapter to
prepare the way for predicate logic, where they are of great importance.
Most of contemporary of mathematics is based on two particular count-
able sets of hypotheses in predicate logic, Zermelo Fraenkel set theory,
to be introduced in Chapter 3, and Peano arithmetic, to be introduced
in Chapter 4.
The key result in this section is the following infinite form of the
Main Lemma.

Lemma 1.11.1 (Main Lemma) Let H be a countable set of propo-
sitional wffs. Either H has a tableau confutation or H has a model.

We first show that each countable hypothesis set has a finished
tableau.

Lemma 1.11.2 For every finite or countable set H of propositional
wffs, there is a finished tableau with root H.

Proof: The Tableau Extension Lemma shows that each finite hypoth-
esis set H is the root of a finished tableau. It remains to give the proof
" in the case that H is a countable set

H={Ay...,An...}.

1.11. COMPACTNESS 39

Let H, be the finite subset
Hn == {Al,...,An}

composed of the first n elements of H. We shall say that a finite

tableau T, with root H is finished for H, if the tableau T} which is

the same as T, except that it has root H,, instead of H is a finished

tableau. Using the Tableau Extension Lemma countably many times,

we obtain a sequence of finite tableaus T, ..., Ty, ... with root H such

that T, has only a root node, and for each n > 0, T, is an extension

of T,_; which is finished for H,. We can also take the T, to have

the additional property that no contradictory branch I' of T,_; gets
extended in forming T, that is, the terminal node of T in T,y is still

a terminal node of T,,.

Let T be the union T = U2, Tk. Let T' be a branch of T. If " is
contradictory, with a contradictory pair A, —A, then there is an » such
that both of the nodes A and —A belong to T,,. Then I'N'T,, is already
a contradictory branch of T,. By our construction, the contradictory
branch T' T, never gets extended after stage n,soI' =T NT, and T
is finite.

On the other hand, if I' is noncontradictory, then our construction
insures that T' is a finished branch. Therefore T is a finished tableau
with root H. -End of Proof.

Our next lemma is a general mathemathematical principle which is
useful in a variety of circumstances. We shall use it here to show that
if all the branches of a tableau are finite and contradictory, then the
tableau itself is finite and hence is a confutation.

Theorem 1.11.3 (K6nig Tree Theorem) If a tree has infinitely
many nodes and each node has finitely many children, then the tree
has an infinite branch.

Proof: To prove this, choose an infinite sequence of nodes to,¢1,%2, . .-
with the properties

1. to is the root node;

2. tpy1 is a child of ¢,; and

40 . CHAPTER 1. PROPOSITIONAL LOGIC

3. each t, has infinitely many nodes beneath it;

Given a node t, with infinitely many nodes beneath it, one of its chil-
dren must also have infinitely many nodes beneath it. This is because
t, has finitely many children and an infinite set cannot be the union of
finitely many finite sets. Let ¢,41 be any child of ¢, which has infinitely
many nodes beneath it. The set of nodes {t, : n = 0,1,2,...} is an
infinite branch. End of Proof.

The Ko6nig Tree Theorem fails if we omit the requirement that each
node have only finitely many children; see Exercise 30.

Corollary 1.11.4 Let T be a finished tableau. Then either T haé a

finished branch or T is a tableau confutation.

Proof: Suppose T has no finished branch. Then every branch of T is
finite and contradictory. Since every branch of T is finite, T is a finite
tableau by the Kénig Tree Theorem. Since T is finite and every branch
of T is contradictory, T is a tableau confutation. End of Proof.

Proof of the Main Lemma: Suppose that H does not have a tableau
confutation. By Lemma 1.11.2, there is a finished tableau T with root
H. T is not a tableau confutation by assumption, so by the preceding
corollary, T has a finished branch I'. By the Finished Set Lemma,
the set of wifs on I' has a model M. Finally, since all the wifs in the
hypothesis set H occur on T', M is a model of H. End of Proof.

We now give several consequences of the Main Lemma. Our first
consequence is the Compactness Theorem

Theorem 1.11.5 (Compactness Theorem) Let H be a countable

set of propositional wffs. Suppose that every finite subset of H has a
model. Then H has a model ©. ‘

Proof: ‘Suppose that H does not have a model. By the Main Lemma, -

H has a tableau confutation T. Since each tableau confutation is a

$The Compactness Theorem is actually true even when H is an uncountable set
of wifs. The proof in the general case requires transfinite induction which is beyond
the scope of this book. '

Therefore H does have a model.

1.11. COMPACTNESS 41

finite tableau, the set H' of all wifs in H which are used somewhere
in T is finite. Now let T/ be the labeled tree which is the same as T
but with root Ho instead of H. Then T’ is a tableau confutation of
H'. By the Extended Soundness Theorem, H' has no models. But this
contradicts the assumption that every finite subset of H has a model.
End of Proof.

As we mentioned at the beginning of this section, the Extended
Completeness Theorem holds for countable as well as finite hypothesis
sets H. The Soundness Theorem also holds for such hypothesis sets.
We can therefore combine the Extended Soundness, Extended Com-
pleteness, and the Compactness Theorems together into one concise
statement.

Corollary 1.11.6 Suppose H is a finite or countable set of wffs and
A is a wff. Then

HF A ifand only if H = A, ‘
Proof: The Extended Soundness Theorem says that if H - A then
H = A. Suppose that H = A. Then HU {-A} has no models.
By the Compactness Theorem, there is a finite subset Ho C H such

that Ho U {~A} has no models. Then Hy |= A. By the Extended
Completeness Theorem, Ho - A. Therefore H- A. End of Proof.

Let us say that a set H of wifs is logically consistent if there is
no wif A for which H [A A —A]. From the last corollary, we have the
following:

Corollary 1.11.7 Suppose H is a finite or countable set of wifs. Then
the following are equivalent:

1. H has a model.
2. H is logically consistent.
3. H has no tableau confutation.

End of Proof.

One application of the Propositional Compactness Theorem is that
the Four Color Theorem for finite maps implies the Four Color Theorem

Proof: Exercise 31.

- for infinite maps. That is:

42 . CHAPTER 1. PROPOSITIONAL LOGIC

If every finite map in the plane can be colored with four
colors so that no two adjacent countries have the same color,
then the same is true for every infinite map in the plane.

"Suppose that C is a set of countries on some given map. Introduce
four proposition symbols
1.2 .3 4
PcyPesPey Pe
for each country ¢/inC. The proposition symbol pl is meant to express

the fact that the color of country cis 1. We thus define the vocabulary
Py to be the set

Po={p, pi,p5p: : c€C}.
Let H be tile set of all sentences of the following forms:
1. plvp2VpdV ptfor each ¢
2. pi = —~pl for each ¢ and for each ¢ # j; and

3. =[pi A pL,] for each i and for each pair of distinct countries ¢ and
¢’ which are next to each other.

Now a model M for H corresponds to a coloring of the countries by
the four colors {1,2, 3,4} such that adjacent countries are colored differ-
ently. If every finite submap of the given map has a four coloring, then
every finite subset of H has a model. By the Compactness Theorem H
has a model, hence the entire map can be four colored.

For another application of the Compactness Theorem of this kmd
see Exercise 32.

1.12 Valid Arguments

In this section we shall use tableaus to obtain some valid consequence
patterns which arise frequently in mathematical proofs Here is a first
example.

1.12. VALID ARGUMENTS 43

Modus Ponens. From p and p = ¢ we may conclude q.

np=qkEq

In view of the Soundness Theorem, we need only give a tableau proof
of ¢ from the hypotheses p and p = ¢. Here it is.

~q
|

|
p=4q

— T~
-p q

If, in developing a mathematical proof, we happen to know that cer-
tain statements Ai,..., Ay are all true (they may have already been
proved or they may be assumed as hypotheses) and we know that an-
other statement B is a semantic consequence of Aj,..., Ay, then we
can conclude that B is also true. Thus, taking Modus Ponens as an
example, if we can establish the truth of p and p = ¢, then we may
conclude that ¢ is also true.

Laws such as Modus Ponens are called valid argument forms.
They are often used without being mentioned in ordinary mathematical
proofs, and are helpful in understanding the plan of the proof. Here is
a typical example of a mathematical proof which makes use of Modus
Ponens.

Proposition 1.12.1 There is an ¢ in the interval (1,7) such that
In(z) = sin(z), where In(z) is the natural logarithm of x.

Proof: Let f(x) = In(z) — sin(z). We must show that there is an
z € (1,7) such that f(z) = 0. The Intermediate Value Theorem states
that if f is contiriuous on a closed interval [a,b] and f(a) < 0 < f(b),

‘then there exists ¢ € (a,b) such that f(z) = 0. We note that f is.

44 CHAPTER 1. PROPOSITIONAL LOGIC

continuous on [1,7] and that f(1) < 0 < f(x). Therefore there exists
z € (1,7) such that f(z) =0. End of Proof.

The above proof does not explicitly mention the Law of Modus
Ponens. In fact, Modus Ponens is so familiar that it is rarely mentioned
in a proof and should be understood as implicit in the argument. To see

where Modus Ponens was used, let p be the statement “f is continuous -

on [1,7]and f(1) < 0 < f(r),” and let ¢ be the statement to be proved,
“there exists ¢ € (1,7) such that f(z) = 0.” We know that p is true,
and the Intermediate Value Theorem gives us p = ¢. The statement ¢
follows from p and p = ¢ by Modus Ponens.

We shall now use tableaus to find two more valid argument forms,
and illustrate them in actual mathematical proofs.

Indirect Proof. From —p = [¢ A —¢] we may conclude p.

—p=[gA-qlEp

Verbally, the Indirect Proof Law says that in order to prove p, we may
show that —p leads to a contradiction. Here is a tableau proof.

ﬁ[p
—p = gA-gq
// \
|
q
I
-q

The proof of Euclid’s famous theorem that there are infinitely many
prime numbers can by analyzed as an Indirect Proof.

Proposition 1.12.2 There is no largest prime.

1.12. VALID ARGUMENTS 45

Proof: Suppose there is a largest prime a. Let b = a! + 1. Let c be
a prime number which divides b. Since a is the largest prime, ¢ < a.
However, no number d < a divides b, so ¢ < a. We conclude that
there is no largest prime. End of Proof.

To see where the Indirect Proof Law was used, let p denote the
sentence to be proved, in this case “a is not the largest prime.” Let ¢
be the statement “c < a.” In the course of the proof we have shown
that —p = ¢ A —q. Usmg the Indirect Proof Law, it follows that the

“desired conclusion p is true.

Here is another commonly used valid argument form and its tableau:

. proof.

Proof by Cases. From p = ¢ and —p = ¢ we may conclude g.

P=¢,-p=>qF(

Verbally, the Proof by Cases Law says that in order to prove ¢, we may
prove that ¢ holds in each of the two cases p and —p. Tableau proof:

"‘[q
PT‘Z
p=q
— T~
N
—1—1p, q

We give an example of the Proof by Cases Law from the calculus.

Proposition 1.12.3 (Rolle’s Theorem) Ifa, b are real numbers with
a < b, the function f is continuous on [a,b] and differentiable on (a, b),
and f(a) = f(b) = 0, then there is a number c in (a,b) such that

- fl9=0.

46 CHAPTER 1. PROPOSITIONAL LOGIC

Proof: We find the desired number ¢ in (a, b) as follows. If for all z in
“(a,b), f(z) =0, then let ¢ be any such z. If, on the other hand, there
exists z in (a,b) such that f(z) # 0, then if f(z) > 0 we may take
(¢, f(¢)) to be a maximum for f by continuity on [a,b], and if f(z) < 0
“we may take (c, f(c)) to be a minimum for f again by continuity. We
have shown in each case that ¢ < ¢ < b and f’(¢) = 0. End of Proof.

Let us analyze the above proof and see where the Proof by Cases
Law was used. Let ¢ be the sentence to be proved, namely, “There is a
number ¢ in (a,b) such that f'(c) =0,” and let p be the sentence “For
all z in (a,b), f(z) = 0.” We have proved that p = g and -p = ¢. It
then follows using Proof by Cases that the desired conclusion q is true.

In Exercise 17 we consider some other valid argument forms which
are commonly used in mathematics.

1.13 Tableau Problems (TAB1)

This is the first of three problem sets using the TABLEAU or TAB-
WIN program. In this assignment you will construct tableau proofs
in propositional logic. The problems are located in directory TAB1 on
the distribution diskette, and the SETUPDOS or SETUPWIN program
will put them in a subdirectory called TAB1 on your hard disk. This
directory. contains an assignment of seven problems, called CASES,
CONTR, CYCLE, EQUIV, PIGEON, PENT, SQUARE. It also has
~ the extra files SAMPLE, ASAMPLE, RAMSEY. SAMPLE is a sample
problem and ASAMPLE is its solution. The problem RAMSEY is very
difficult and is described below.

" Use the TABLEAU or TABWIN program commands to load each

problem, do your work, and then save your answer on your diskette
or hard drive. Each problem consists of a list of hypotheses and/or a
wif to be proved. Your solution should be a tableau proof, with every
node colored red. The file name of your answer should be the letter A
followed by the name of the problem. (For example, your answer to the
CYCLE problem should be called ACYCLE). Be sure your name is on
your diskette label.

The solutions to these computer problems will be similar to the two
“hand” examples of tableau proofs given at the beginning of Section 1.7.

1.13. TABLEAU PROBLEMS (TABI) - 47

EXAMPLE 1 A rule for conjunctions of wffs.

Hypotheses: none
To prove: p= [g=[pAq]]

The solution is given in Figure 1.2 and has 6 nonroot nodes.
EXAMPLE 2 The Transitivity Law.

Hypotheses: p=q,g=>r
To prove: p=r

The solution is given in Figure 1.3 and also has 6 nonroot nodes.

At the end of this paragraph we list the set of problems in order

of difficulty, with attached comments. For each TABLEAU problem in

this book, an approximate value is given for the number of nodes in the
solution: its par value. There will always be at least one solution with
the suggested number of nodes, and in many cases there are solutions
which use even fewer nodes. You are not required to find a solution
with the suggested number of nodes. The par value is included only
as a guide to the difficulty of the problem. We also list the number
of entries in the truth table for the problem. This number is equal to
2" * m where n is the number of distinct propositional symbols and m
is the number of occurrences of propositional symbols and connectives.
You are not required to build the truth table. Its size is given only so

© you can compare it with the size of the tableau proof.

CASES (8 nodes) (88 truth table entries) The rule of proof by cases.

Hypotheses: a= ¢, b= ¢
~To prove: [aVb]=c¢

CONTR (12 nodes) (36 truth table entries) The law of contraposition,

Hypotheses: none
To prove: [p= q] & [~¢ =]|

48 CHAPTER 1. PROPOSITIONAL LOGIC

EQUIV (20 nodés) (72 truth table entries) Two wifs which are equiv-
alent to a third wif are equivalent to each other.

Hypotheses: p & i], g&T
To prove: p&r

"PIGEON (24 nodes) (88 truth table entries) The pigeonhole principle: |

Among any three propositions there must be a pair with the same
“truth value.
Hypotheses: None v
To prove: [p&q|Vp&r]Vige] ’
CYCLE (26 nodes) (416 truth table entries) Given that four wifs im-

ply each other around a cycle and at least one of them is true,
prove that all of them are true.

Hypotheses: p=q,q=r,r=s,s=p,pVqVrVs;
To prove: pAgATAs

PENT (38 nodes) (55,320 truth table entries) It is not possible to color
each side of a pentagon red or blue in such a way that adjacent
sides are of different colors. '

Hypotheses: b1Vrl, 52V r2, b3V r3, b4 Vrd, b5V rs, ~[bl Ab2],
=[62A063], —[b3Ab4], —[bAALS], ~[b5AbL], =[r1AT2], ~[r2AT3],
=[r3 Ard], =[rd Ar5], =[r5 Arl]

To prove: A tableau confutation.

SQUARE (58 nodes) (17,408 truth table entries) There are nine propo-
sitional symbols which can be arranged in a square:

al a2 a3
bl b2 &3
cl ¢2 3

Assume that there is a letter such that for every number the
proposition is true (that is, there is a row of true propositions).
Prove that for every number there is a letter for which the propo-
sition is true (that is, each column contains a true proposition).

1.13. TABLEAU PROBLEMS (TAB1) 49

Hypothesis: [al Aa2Aa3]V [b1 Ab2ADB3]V [cl Ac2 A cd]
To prove: [al Vbl Vecl]A[a2V b2V 2] Aa3 VB3V c]

RAMSEY (1140 nodes) (8,060,928 truth table entries) The simplest
case of Ramsey’s Theorem can be stated as follows. Out of any
six people, there are either three people who all know each other
or three people none of whom know each other. This problem has
15 proposition symbols ab, ac,...,ef, which may be interpreted
as meaning “a knows b,” etc. The problem has a list of hypotheses
which state that for any three people among a,b,¢,d, ¢, f, there
is at least one pair who know each other and one pair who do not
know each other. Ramsey’s Theorem says that these hypotheses
are inconsistent and so must have a tableau confutation.

Here is an informal proof of Ramsey’s Theorem in the case at -
hand. Select one of the people, say a. The five remaining people
may be divided into two sets: those who know @ and those who
do not. At least one of these sets must have three people in it.
Hence there are essentially two cases:

1. a knows all the people b,¢,d. If none of b,c,d know each
other, then {b,c,d} is a set of three people none of whom
know each other. If two of b,c,d know each other, say b
knows c, then {a,b,c} is a set of three people all of whom
know each other.

2. a does not know any of the people b, c,d. If b, c, d know each
other, then {b, c,d} is a set of three people all of whom know '
each other. If two of b,c,d do not know each other, say b
does not know c, then {a,b,c} is a set of three people none
of whom know each other.

The tableau confutation is very long since the rules of proposi-
tional tableaus do not allow us to rename the people as we have
done in the informal proof. This problem is optional, and is in-
cluded mainly to illustrate the power of the tableau method.

50 : " CHAPTER 1. PROPOSITIONAL LOGIC

' 1.14 Exercises

1. For a wif A define s(A) to be the number of occurrences of proposi-
tion symbols in A, and b(A) to be the number of occurrences of binary
connectives (A, V, =, <) in A. Prove by induction on the length of
wifs that for every wif A, ' '

s(A) = b(A) + 1.

2. Prove by induction on the length of wifs that every wif has the same
number of left brackets as right brackets.

3. Prove by induction on the length of wifs that an initial part of a
wif is either a string of negation symbols or has more left brackets than
right brackets.

4. Let C be a wif which has the form C = [S * T], where S and T are
strings. Prove that * is the main connective of C if and only if S has
the same number of left brackets as right brackets.

5. Show that there is a unique function ¢ from the set of wifs on the
vocabulary Pp to the set N of natural numbers such that

(basis) ¢(p) =0 for any p € Po.
(negation) ¢(—A) = c(A) + 1.

(binary)’ c([A *B]) = c(A) +¢(B) +1
for any binary connective *.

Prove that for any wif A the number ¢(A) is the number of occurrences
of connectives in A. (A connective is one of the symbols -, A, V, =, &)

6 Show that there is a unique function L from the set WFF(’PO)
‘wifs to the set N of natural numbers as follows:

(Basis) L(p) =1 for p € Py.

1.14. EXERCISES 51

(Negation) L(—A) = L(A)+ 1.
(Binary connective) L([A +B])= L(A)+ L(B)+3
What information does L(A) give about the wif A?

7. Write the standard abbreviations of the following wifs. (You can
use the TABLEAU program to check your answers).

L [[p=ql&-rAd]
2. [p= g ~[rAdl]
3. =[lp=ql & [rAs]]
4. =[p=(gerAdl

8. Write fhe wifs with the following standard abbreviations.
l.pAgVr=3
2. p/\v[qu] = s
3. p/\qV[’r:}s]
4. [pAgVr]=s

5. pAlgVr =g

9. Prove the following rule for finding the main connective of a wif
C given only the standard abbreviation C'. If there is an occurrence
of a binary connective * in C’ which is preceded by the same number
of left brackets as right brackets, then is the main connective of C.
Otherwise, C is either a proposition symbol or C is the negation of a
wif. ' A

(This proof requires a more difficult induction on the length of wifs.)

10. The purpose of this exercise is to show that bad things could

' _happen without the Unique Readability Theorem. Let P be a subset

52 - CHAPTER 1. PROPOSITIONAL LOGIC

of the set of integers'Z. Define the set of well formed integers with the
vocabulary P to be the set of all integers which can be obtained by
finitely many applications of the following rules of formation:

1.14. EXERCISES

53

(Doublé Negation Law)

(1) -pep A
(2) [pAglAr & pAlgAT] (Associative Law)
(38) [pvalVvrepVigvr] (Associative Law)

-Ifp € P, then p is a well formed integer.
- If a and b are well formed integers then so is their product ab.

The set of all well formed integers with the vocabulary P is denoted by
W(P). In the following take P = {-1,2,5}.

(1) Find all well formed integers a such that —31 < a < 31.

(i1) Show that the analog of the Unique Readability Theorem fails by
exhibiting well-formed integers a;, as, b1, b2 such that a;b, = agby
but a; # as. :

(iii) Show that for any function g : P — Z and any function f : Z x Z — Z
there is at most one function ¢ : W(P) — Z such that

- If p € P, then ¢(p) = g(p)-
- If a,b € W(P) then ¢(ab) = f(4(a), $(b)).

(iv) Show that no such function ¢ exists when g(p) = p and f(a,b) = a.

(v) Show that there is such a function ¢ when g(—1) = —1, g(2) =
~9(5) =1, and f(a,b) = ab. What is it? '

11. Prove Theorem 1.5.1, that for a given a model M and wif A,
the truth value A, is the same for all parsing sequences of A. (Hint:

Use the Unique Readability Theorem and an induction on the length
of wifs.)

12. Show that the following are tautologies, first by using truth tables
and then using tableaus. :

(Commutative Law)
(Commutative Law)

(4) pAgeqAp.
(5) pVgeqVp
6) pAlgVrle [pAg VI pAT] (Distributive Law)

() pVigAr] < [pVgAlpVr] (Distributive Law)

8) p=>g=2>rlehb=>4q=10 =] (Self-Distributive Law)

9) -[pvale -pA—g (DeMorgan’s Law)
(10) -[pAgl& -pV g (DeMorgan’s Law) .
(1) [p=>d=rs=p (Peirce’s Law)

13. Let M be the model for propositional logic such that pm = T
for every proposition symbol p. Prove by induction on length that for
every wif A: Either the — symbol occurs in A, or M = A.

14. Show that [A = B] = A is a tautology if Aisp = p a,nd.B
is g, but is not a tautology if A and B are both p = ¢. (The aim
of this exercise is to make sure you distinguish between a proposition
symbol p and a variable A used to stand for a wif which may have more
complicated structure.) :

15, We say that two wifs A and B are logically equivalent if the wif

A & B is a tautology. Show that for any wif A there is a wif B sulch
that A and B are logically equivalent and the only connectives which
occur in B are = and A. Do the same for the conneqtives - and =.

16. If p is a proposition symbol and C is a propositidna,l wif, thfen for
each propositional wif A, the wif A(p//C) formed by substituting C
for pin A is defined inductively by:

(a) p(p//C)=C.

(b) If ¢ is a proposition symbol different from p, then 4{p//C) = ¢-

(©) (~A)p//C) = ~(AG//C)).

54 CHAPTER 1. PROPOSITIONAL LOGIC

(d) For each binary connective *
| (A B)(p//C) = [A(p//C) + B(p//C)].
For example,

(lp & rl = pl(p//g A p)is [[gAp] & r] = [gAp.
Prove that for any proposition symbol p and wifs A, B, and C,
 BeOl=AG/B) & AR//O) |

is a tautology. (Show by induction on the the leﬁgth of the wff A that
in every model of ‘

B& C,

the two wifs
A(p//B) , A(p//C)

have the same truth value.)

17. Here are some additional valid argument forms which are frequently
used in mathematical proofs. Give a tableau proof for each one.

(i) p=>qqF-p

(i) pEg=p

(i) pv g, “pkg |

(iv (Contraposition Law) ~¢= —pE p = q
(v) (Transitive Law) p = ¢, ¢ => rEp=r
(vi) p=>[gVrlg=>t,r=>tEp=t.

18. In this exercise you are asked to provide a proof of the given
statement using the given argument form.

 1.14. EXERCISES : 55

(1) “The square root of 2 is irrational.”

Use the Indirect Proof Law. (Hint: Assume there is a number
m/n, with m and n integers, whose square is 2 and arrive at a -
contradiction.)

(2) “Between any two rational numbers there is an irrational number.”

Use the Proof by Cases Law. (Hint: You may first wish to prove
that for any integer k and any prime p, k + (1/,/p) is irrational;
see part (1) above.)

(8) “If n is an odd integer, then n? is odd.”

Use the Contraposition Law.

(4) “If z,y are real numbers, then z # y implies e” # €¥.”
Usethelaw p= [qVr],q=> t,r=>tkE=p=t.

(5) “If 2" — 1 is a prime number, so is n.”

Use the Contraposition Law.

19. In this exercise we present several well-known theorems and their
proofs. In each proof, find a valid argument form that is used.

(a) Definition. A function f with domain A is one-one if for all
- z,y € A, f(z) = f(y) implies z = y (see also Section A.5 in the
Appendix). A function f is left cancellable if for all sets A and
allg;: A— B, g2: A— B,if fog, = fog,then g; = g. (See
the Appendix for the definition of f 0 g.)

Theorem. If f is left cancellable, then f is one-one.

Proof. Suppose f with domain B is not one-one. Then there are
2 # y with f(z) = f(y). Define g, : {0} — B, g2 : {0} — B by
9:1(0) = 2, g2(0) =y. Now fogs = fog, but g1 # go. Thus fis
not left cancellable. '

56 CHAPTER 1. PROPOSITIONAL LOGIC

(b) Theorem. (Subgroups of cyclic groups are cyclic.) Suppose A
is a set of integers (recall the set Z of integers consists of the
numbers ...—2,-1,0,1,2,...) and A is closed under subtraction
(i.e. for all z,y € A, 2 —y € A as well). Then thereisann € N
such that every m € A is a multiple of n.

Proof. Let n be the least positive integer in A. Given
m € A, use long division to write m = ng + r for ¢,r € Z
and r > 0,7 < n. Now m,nq are in A (why?). Since A is closed
under subtraction, r = m — ng € A. Since n is the least positive
integer in A, r > 0, and r < n, it follows that r = 0. Hence, r =0
and m = ngq, as required.

(c) Theorem. (Fundamental Theorem of Arithmetic) Every com-
posite positive integer (i.e. an integer greater than one which is
not prime) is a product of primes.

Proof. Suppose not, i.e., suppose there is a composite number ¢
which has no prime factorization. Let £ € N be such that 2% > c.
Since c is composite but unfactorable into primes, we can write
¢ = ¢1d; where ¢; is composite and also unfactorable into primes.
Similarly, write ¢; = cpd; where c¢; is composite and unfactorable
into primes. Continuing in this way, obtain cx_; = cydx. Now
c=cdy = cpdady = - = cpdidi_y -+ dy > ¢ - 2% > ¢, which is
impossible.

(d) Examine Cantor’s Theorem given in Appendix A.6. What is the
argument form?

20. Prove that Lemma 1.8.1 holds for infinite tableaus.

21. The Kill command in the TABLEAU program works as follows
when it is invoked with the cursor at a node t. If there is a double

line below t, (i.e. t and its child were added together) then every node -

below the chlld of t is removed from the tableau. Otherwise, every node
below t is removed from the tableau. Using the definition of proposi-
tional tableau, prove that if you have a tableau before invoking the Kill
command, then you have a tableau after using the Kill command.

1.14. EXERCISES - 57

22. Prove: If A has a tableau proof then A(p//C) has a tableau proof
with the same number of nodes (in fact, with the same tree but different

wifs assigned to the nodes).

23. Let H be a finite set of propositional wifs. By a strict confutation

-of H we mean a tableau T with root H such that every branch of T

has a contradictory pair of the form {s,~s} where s is a propositional
symbol.

(a) Give a strict confutation of the set
H={[-pVgAr]],=[-pVIgA r]]}-

(b) Prove by induction of the length of wifs tha,t for every wif A, the
set H = {A,—-A} has a strict confutation.

(¢) Using part (b), prove that every finite set H of wifs which has a
tableau confutation has a strict confutation.:

24. Use the Soundness and Completeness Theorems for propositional
logic to prove that if A has a tableau proof from H and B has a tableau

proof from A, then B has a tableau proof from H.

25 Use the Soundness and Completeness Theorems to prove that if
[A V B] has a tableau proof from H, C has a tableau proof from A,
and C has a tableau proof from B, then C has a tableau proof from H.

26.
(a) Make a finished tableau with the single hypothesis

[q=pA-T]AltVT].

(b) Choose one of the finished branches, I" and circle the terminal
nodeof I'. : '

. (c) Using the Finished Set Lemma, find a wff A such that:

58 ‘ . CHAPTER 1. PROPOSITIONAL LOGIC

1. A has exactly the same models as the set of wifs on the
branch T' which you chose, and

2. The only connectives occurring in A are A and —.

27. Let T be a finished tableau with finite hypothesis set H in which ,

every wif is used at most once on each branch. Prove that each branch
of T has at most 2n+1 nodes, where n is the total number of connectives
occurring in wifs in the set H.

28. In this exercise we describe an extremely simple language to give
the reader an easy example of the Soundness and Completeness Theo-
rems.

The vocabulary for “baby logic” is a nonempty set Py of proposition
symbols. The primitive symbols are the proposition symbols from P,
together with the connective —. A string in this language is a wif if
it is obtained from finitely many applications of the following rules of
formation. '

Each p in P is a wif.
If A is a wif, then —A is a wff.

Given a model M of type Po, we obtain, as in the text, a uniquely
defined function which assigns a truth value A to each wif A of baby
logic according to the rules

If A is-a propositional symbol p, Ay = pus.
Ay =Tiff Ay =F.

Tableaus are also defined as before, but now every tableau has only
one branch.

Without using the Soundness and Completeness Theorems for Propo-

sitional Logic, prove these theorems for baby logic; i.e., prove

(Soundness) If there is a tableau proof of A from H,’then H = A.
(Completeness) If H = A, there is a tableau proof of A from H.

1.14. EXERCISES 59

(Hint: One approach is to mimic the lemmas used to prove these
theorems for Propositional Logic in the text. This approach will provide
the student with easy special cases of these lemmas. Another approach
is as follows. For any p € Pp and natural number n, define —"p by
induction with the rules: —%p = p, ="*!p = =="p. As a main lemma,

| “show that there is a tableau confutation of a hypothesis set H if and

only if there are p € Py and natural numbers m, n such that m is even,
n is odd, =™p € H, and -"p € H.

29. Let X and Y be sets and R be a binary relation between X and
Y,ie. RC X xY. For each z € X define

R,={y€Y:(a,y) € R}

Assume

(1) for every finite S C X there exists a one-one function f: § — Y
such that f(z) € R, for z € S;

(2) for every z € X the set R, is finite.

(a) Show that there exists a one-one function F' : X — Y such that
F(z) € R, for all z € X. Hint: For each a € X, and b € ¥
introduce a proposition symbol p,, whose intended interpretation
is F(a) = b. Use the Compactness Theorem.

(b) Give an example which shows that hypothesis (2) cannot be dropped.
Hint: The negation of (2) asserts that at least one R, is not finite.
In the example, there should be no one-one function F: X — Y
such that F(z) € R, for all z € X.

30. Give an example of a tree with infinitely many nodes that has no
infinite branch. Why does this not contradict the Kénig Tree Theorem?

31. Prove Corollary 1.11.7

32. Civen a countable set of students and a countable set of classes,

- suppose each student wants one of a finite set of classes, and each class

60 CHAPTER 1. PROPOSITIONAL LOGIC

has a finite enrollment limit. Prove that if each finite set of students can
- be accommodated, then the whole set can. Hint: Use the Compactness
Theorem. Let your basic proposition symbols consist of p,. where s is
a student and c is a class: p,. is intended to mean student s will take
class c.

Polish notation for propositional logic is defined as follows. The
logical symbols are {A,V,—,<,=}, and the nonlogical symbols or
proposition symbols are the elements of an arbitrary set Py. The well-
formed formulas in Polish notation (wffpn) are the members of the
smallest set of strings which satisfy:

1. Each p € Py is wipn;
2. If A is wilpn, then so is —A;

3. If A is wifpn and B is wifpn, then AAB is wifpn, VAB is wifpn, -

< AB is wilpn, and = AB is wifpn.

Note that no parentheses or brackets are needed for Polish notation.
33. Put the wif [p & ¢] = [~¢ V r] into Polish notation.

34. Construct a parsing sequence for the wifpn
Vo= pg & rp

to verify that it is wifpn. Write this wif in regular notation.

35. Prove using induction on length that for any wifpn A, the number
of occurrences of logical symbols of the kind {A, V, &, =} in A is always
exactly one less than the number of occurrences of proposition symbols.

36. Using induction on length, prove that for any wifpn A and any
occurrence of a proposition symbol p in A except the last, the number
of logical symbols of the kind {A,V, <, =} to the left of p is strictly
greater than the number of proposition symbols to the left of p.

37. State and prove a Unique Readability Theorem for wifs in Polish
notation. : k

| Chapter 2

Pure Predicate Logic

In this chapter we study the family of languages known as first-order
languages or predicate logics. These languages have the quantifiers
for all and there exists. Instead of propositional symbols they have
predicates. As in the first chapter, we shall develop the concepts of a
wff, a formal proof, and a model, and prove a Completeness Theorem
which ties them together. Predicate logic is rich enough to express the
statements and prove the theorems which arise in ordinary mathemat-
ical practice. ' :

| - 2.1 Introduction

A predicate is a word or phrase like is a man, is less than, belongs to,
or even is which can be combined with one or more names of individuals
to yield meaningful sentences. For example, Socrates is a man, Two
is less than four, This hat belongs to me, He is her partner. Names of
specific individuals are called parameters. Symbols called variables
stand for arbitrary individuals. If the variables in an expression are
replaced by parameters the result acquires a meaning. For example, in
the assertion
A P(z) : « is less than 4 °

we understand that the variable z stands for any number in the par-
ticular class of numbers we are studying (e.g. the natural numbers,

“the real numbers, etc.). For instance, if « is understood to stand for

61

62 ‘ CHAPTER 2. PURE PREDICATE LOGIC

a natural number in thls example, and we replace z by the number 1,
the assertion
P(1) : 1 is less than 4

is true, whereas replacing z by 5 yields the false statement
P(5) : 5 is less than 4.

The number of variables associated with a predicate is called the
arity of the predicate. Hence, the predicate

P(z) : z is less than 4
is a 1-ary, or kunary predicate;
Q(z,y) : « is less than y
is a 2-ary or binary predicate; and
R(z,y,z) : z is between y and 2

is a 3-ary, or ternary predicate.

If P(xy,...,2,) is an n-ary predicate and if a,...,a, are values
such that P(ay,...,a,) is true we say that (ai,...,a,) satisfies P.
Thus in the above examples 1 satlsﬁes P, (1,2) satlsﬁes @, but (1,2,3)
does not satisfy R.

The predicate logic developed here will be called pure predicate
logic to distinguish it from the full predicate logic of the next chap-
ter. (Full predicate logic will add to pure predicate logic the expressive
power of constants, functions, and equality). '

A unary predicate determines a set of things; namely those things
for which it is true. Similarly, a binary predicate determines a set of
pairs of things — a binary relation - and in general an n-ary pred-
icate determines an n-ary relation. For example, the predicate is a
man determines the set of men and the predicate is west of (when ap-

plied to American cities) determines the set of pairs (a,b) of American -

cities such that a is west of b. (For example, the relation holds be-
tween Chicago and New York and does not hold between New York

and Chicago.) Different predicates may determine the same relation

; (for example, z is west of y and y is east of z.)

‘then

2.1. INTRODUCTION ‘ 63

The phrase for all is called the universal quantifier and is de-
noted symbolically by V. The phrases there exists, there is a, and
for some all have the same meaning: there exists is called the exis-
tential quantifier and is denoted symbolically by 3.

The universal quantifier is like an iterated conjunction and the ex-

istential quantifier is like an iterated disjunction. To understand this,

suppose that there are only finitely many individuals; that is the vari-
able takes on only the values a;, az, ... ,a,. Then the sentence Vz P(z)
means the same as the sentence P(ay) /\P(az) A...AP(a,) and the sen-
tence 3z P(z) means the same as the sentence P(a;)VP(az)V...VP(a,).
In other words, if

Vz[z =1 Ve =a V...V =ay

Ve P(z)] & [P(ai) A P(az) A... A P(ay)]

and

[FzP(z)] & [P(a1)V P(az) V ...V P(an)].

Of course, if the number of distinct individuals is infinite, such an in-
terpretation of quantifiers is not possible since infinitely long sentences
are not allowed in predicate logic.

The similarity between ¥V and A and between 3 and V suggests many
logical laws. For example, DeMorgan’s laws '

—lpvg e [pA=gd, lpAd e [pVd,
have the following versions in predicate logic:
-3z P(z) & Yz-P(z), -VzP(z) & Jz-P(z).

In sentences of form VzP(z) or 3z P(z), the variable z is called a
dummy variable or a bound variable. The meaning of the sen-
tence is unchanged if the variable z is replaced everywhere by another
variable. Thus the sentences

VaP(@) & WP(y), FoP(s) @ PW),

are both true. For example, the sentence there is an x satisfying t+7 =

. 5 has exactly the same meaning as the sentence there is a y satisfying

64 CHAPTER 2. PURE PREDICATE LOGIC

y + 7 = 5. We say that the second sentence arises from the first by
alphabetic change of a bound variable.

In mathematics, universal quantifiers are not always explicitly in-
serted in a text but must be understood by the reader. For example,
when an algebra textbook contains the equation

cty=y+o

the author means .
VaVy z+y=y+z.

(The former equation is called an identity, since it is true for all values
of the variables, as opposed to an equation to be solved where the
object is to find those values of the variables which make the equation
true.)

A precise notation for predicate logic is important because natural
language is ambiguous in certain situations. Particularly troublesome
in English is the word any which sometimes means for all and sometimes
there exists, depending on the context.

2.2 Synfax of Predicate Logic

A vocabulary P for pure predicate logic consists of a set P, of n-ary
predicate symbols for each natural number n = 0,1,..., where at
least one of the sets P, is nonempty. The 0-ary predicate symbols are
_ just propositional symbols as in propositional logic. The words unary,
binary, ternary mean respectively l-ary, 2-ary, 3-ary. In the intended
interpretation of predicate logic the predicate symbols denote relations
suchaszc <yorz+4y=-z. ‘

In addition to the primitive symbols of propositional logic the fol-
lowing are primitive symbols of pure predicate logic:

o the predicate symbols from Py, Py, P, .. .;
e an infinite set

VAR = {.’B, ¥,%,%0, Y0520, T1,Y1, .- }

of symbols which are called variables;

2.2. SYNTAX OF PREDICATE LOGIC o 65

a set K, possibly empty, of symbols which are called parameters;

the right and left parenthesis and comma (,);

e the universal quantifier V,
o the erzistential quantifier 3.

For the syntax, the only difference between a variable and a param-
eter is that the latter may not appear immediately after a quantifier in
a wif. The reason for having parameters is that they will make it much
easier to develop the semantics for predicate logic, beginning in Sec-
tion 2.4. (The parameters will denote particular elements of a model
and the variables will stand for arbitrary members of a model).

Definition 2.2.1 A symbol which is either a variable or a parameter

is called an individual symbol. When we wish to emphasize the

similarity between them, we will sometimes call variables individual
variables, and call parameters individual parameters.

Any finite sequence of symbols of any kind is called a string. Our
first task is to specify the syntax of pure predicate logic; i.e. to spec-

“ify which strings are grammatically correct. These strings are called

well-formed formulas. The phrase well-formed formula is often ab-
breviated to wif.

Definition 2.2.2 A wff of pure predicate logic is a string which
can be obtained by finitely many applications of the following rules of

~ formation:

(W:P,) Any proposition symbol from P is a wif;

(W:P,) If Uy, Usg, . - -, Uy are individual symbols (variables or parame-

ters), and p € P, is an n-ary predicate symbol, then p(ua, Uz, .-+ Un)
is a wif; :

(W:=) If A is a wif, the =A is a wif;

(W:A,V, =, <) If A and B are wffs, then [A AB], [AVB], [A = Bj,
~ and [A & B are wffs; '

.66 V CHAPTER 2. PURE PREDICATE LOGIC

(Wi, 3) If Aisawfand zisa variable, then the strings VzA and
- JzA are wifs.

If we wish to emphasize that the predicate symbols appearing in a
wif A come from a specific vocabulary P, and that the parameters come

from a set K, we say that the wif is formed from the vocabulary P with -

parameters from K. The set of all wifs formed from the vocabulary P
with parameters from K will be denoted by WFF(P, K).

The wifs obtained from the basic rules (W:Pp) and (W:P,,) are called
atomic wifs. Thus the atomic wifs are precisely those wfs in which no
connectives or quantifiers occur.

To show that a particular string of symbols is a wif we construct
a sequence of wifs using this definition. This is called parsing the
wif and the sequence is called a parsing sequence. Although it is
never difficult to tell if a short string is a wff, the parsing sequence is
important for theoretical reasons. ;

As an example, let us assume that P, contains a propositional sym-

bol ¢, and that P; contains a unary predicate symbol P. We first parse

the wif Vz[P(z) = g .

(1) P(z) is a wif by (W:Py).

(2) qis a wit by (W:Py).

(8) [P(z) = q]is a wif by (1), (2), and (W:=).

(4) Va[P(z) = q is a wff by (3) and (W),
Now we parse the wft [VzP(z) = .

(1) P(z) is a wif by (W:P;).

(2) V2P(s) is a wh by (1) and (W),

(3) g is a wif by (W:Pp).

(4) is a wif by (2), (3) and (W:=).

2.2. SYNTAX OF PREDICATE LOGIC : 67

The two wils are alike except for the location of the brackets. In
the parsing sequence for the first wif, Vz[P(z) = ¢|, the = must be
introduced before the V, but in the parsing sequence for the second wif,
[VzP(z) = g], the ¥ must be introduced before the =.

- We continue using the abbreviations and conventions introduced in
the propositional logic chapter and in addition add a few more.

¢ We shall use = rather than = for a predicate symbol correspond-
ing to equality in our formal language, to avoid confusion with
the ordinary equality symbol used outside of predicate logic.

¢ Certain well-known binary predicates like = and < are tradition-
ally written between the variables (for example z < y) rather
than before the variables (for example < (z,y)), and we continue
‘this practice. Expressions such as < y are said to be written in
infix notation.

¢ The three rules (W:=), (W:V), and (W:3) put brackets around
wifs in the same way. Thus =P(z) = ¢ means [~P(z) = ¢ rather
than —[P(z) = ¢]. Likewise VzP(z) => ¢ means [VzP(z) = ¢
and not Vz[P(z) => ¢|. Since it is easy to confuse these two, we
may insert extra brackets and write [VzP(z)] = ¢ for Yz P(z) =
g. Thus, an abbreviated wil can actually contain more brackets
than an unabbreviated wif.

The following lemma is proved in the same way as the corresponding
lemma in propositional logic, by induction on the length of wffs.

Lemma 2.2.3 In pure pfedicate logic, no initial part of a wff is a wff.

Each wif of pure predicate logic is either an atomic wif, starts with
a negation symbol or quantifier, or starts with a left bracket. As before,
the wffs which start with a left bracket are formed by combining two
other wifs with a binary connective called the main connective.

Theorem 2.2.4 (Unique Readability) Each wff C of pure predi-
cate logic which starts with a left bracket has ezdactly one main con-
nective * such that C = [A + B] where A and B are wffs.

The proof is an easy modification of the Unique Readability Theo-

rem on page 11 and is left as an exercise.

68 CHAPTER 2. PURE PREDICATE LOGIC

2.3 Free and Bdund Variables

In predicate logic, an individual symbol z may appear in several differ-
ent places in the same wif A. We shall call each place where a symbol
or string s appears in A an occurrence of s in A. It is important to
distinguish between two kinds of occurrences of a variable in a wif, free
and bound occurrences. Informally, the free occurrences of variables
stand for elements of a universe set, and the truth value of a wif will
depend on which element is assigned. to the free occurrences of individ-
ual symbols. On the other hand, the bound occurrences of variables
are dummy variables which appear within quantifiers.

We first declare that every occurrence of an individual parameter
in a wff is free. For individual variables, we shall first define the notion
of a bound occurrence and then declare that all other occurrences are
free. :

A wff B is said to be a well-formed part of a wif A if A is SBT
for some strings S and T.

Let z be a variable and Q be a quantifier, either V or 3, such that
Qz occurs in A. Suppose that B is a well formed part of A, so that
A = SBT for some strings S and T, and that B begins with Qu.
Thus B is a wif of the form QzC. B is called the scope of that
occurrence of the quantifier Q in A. We shall show later that the scope
of a quantifier in a wif is unique. Every occurrence of z in the wif
B = Qz C (including the occurrence immediately after the Q) is called
a bound occurrence of z in A. Any occurrence of z in A which is
not a bound occurrence is called a free occurrence of z in A.

For example, in the wif

P(z,y) = Va[IyR(z,y) = Qz,y)],

the first occurrence of z is free, the three remaining occurrences of =
are bound, the first and last occurrences of y are free, the second and
third occurrences of y are bound, the wif

Ve[3yR(z,y) = Q(z,y)]

is the scope of the quantifier Vz and the wit dyR(z,y) is the scope of

the quantifier 3y. If we make a change of bound variable (say replacing

2.3, FREE AND BOUND VARIABLES ‘ 69

all bound occurrences of z by u and all bound occurrences of y by v)
we obtain the wif

P(z,y) = Yu[3v R(u,v) = Q(u,y)]

which has exactly the same meaning as the original wif.
Before going further, we shall prove that a quantifier occurrence has
only one scope in a wif. '

Theorem 2.3.1 (Unique Scope) For each occurrence Q of a quan-
tifier in a wff A, there is a unique well formed part of A which begins
with Q. This unique well formed part of A is called the scope of that
occurrence of Q.

Proof: We first prove the existence of a scope by induction on the

~length of A. Let P(n) be the property that for each wif A of length

< n, each occurrence Q of a quantifier in A is the beginning of at least
one well formed part of A. An easy proof by induction shows that P(n)
is true for all natural numbers n. Thus every occurrence of a quantifier
has at least one scope. ,
The proof of the uniqueness of the scope uses the lemma t%lat no
initial part of a wif is a wif. Let Q be an occurrence of a qua,ntlﬁer_ in
a wif A, and suppose B and C are two well formed parts of A which
begin with Q. Since B and C both start at Q and neither one can be
an initial part of the other, B and C are the same. Thus there is only
one well formed part of A which begins with Q. End of Proof.

We shall denote by
| C(z//y)

the result of replacing all free occurrences of the variable z in C by the
individual symbol y, which may be either a variable or a parameter.
For example, if C is the wif R(z) V [Q(z) = 3z P(z,z)] then C(z//u)
is the wif R(u) V [Q(u) = JzP(z,2)]. ' ‘
There is a problem with this notation. We would like any wil of the
form : ' S

vzC = C(z//y)

70 CHAPTER 2. PURE PREDICATE LOGIC

to be valid (i.e. true in any interpretation), because it says that if C
is true for all x, then it is in particular true when z is y. But consider
the case where C is Jyz < y. In this case we would obtain

Vedyz <y=>dyy <y

which is false for the natural numbers since Vz3yz < y is true (take

y =z + 1) but Jyy < y is false. The problem is that the substitution
of y for z in Jyz < y creates a bound occurrence of y at a position
where there is a free occurrence of z; this problem is called confusion
of bound variables.

‘We say that the individual symbol y is freely substitutable for
the individual variable z in the wif C if no free occurrence of z in C
occurs in a well-formed part of C which is of the form VyB or JyB.
Henceforth we will use the notation C(z//y) only in the case that y is
freely substitutable for z in C. We use free for as an abbreviation for
freely substitutable for, so y is free for in A means that y is freely
substitutable for z in A. By definition a parameter is always freely
substitutable for a variable z in a wif C.

We shall see later that if y is free for z in C, then the wff

VzC = C(z//y)

is true in all interpretations, which is what we wanted.

By a plain wif we shall mean a wif which has no parameter symbols.
Thus WFF(P,0) is the set of all plain wifs formed from P.

A plain wif with no free variables is called a sentence. The set of
all sentences in the vocabulary P is SENT(P,).

‘A sentence has a meaning (truth value) once we specify (1) the
meanings of all the propositional symbols and predicate symbols which
appear in it, and (2) the range of values which the bound variables
assume. For example, the sentence JzVy z < y is true if < has its usual
meaning and the variables z and y range over the natural numbers
(since Yy 0 < y) but is false if the variables « and y range over the
integers. By contrast the truth value of a wif which has one or more
free variables depends on the values of the free variables. For example,
the wff z =y is trueif z = 2 and y = 2 but is false if z = 2 and y = 3.

2.4, SEMANTICS OF PREDICATE LOGIC | n

A wff A € WFF(P,K) with parameters from X but no free vari-
ables is called a sentence with parameters from K. The set of all
sentences with parameters from X is denoted by SENT(P,K) .

A sentence with parameters from K has a meaning once we specify

(1) and (2) above, and (3) the meanings of all parameter symbols which

appear in it. For example, the sentence Yy 0 < y is true if < and 0
have their usual meaning, and the variable y ranges over the natural
numbers.

2.4 Semantics of Predicate Logic
In this section we shall introduce models of pure predicate logic, and

then define what is meant by the truth value of a sentence in a model.
Given a natural number n and a set X, an n-ary relation on X

is a subset of the set X™ of all length n sequences (1, 22,...,%a) of
elements from X. The set of all n-ary relations on X will be written
REL,(X).

The set X! is the same as X, and a l-ary relation, or unary rela-
tion, on X is just a subset of X. Similarly, X? is the same as X x X,
and 2-ary relations are also called binary relations. ‘

The 0-ary relations on X correspond in a natural way to truth

‘values. The only sequence of length 0 is the empty sequence (). The set

X© has only one element, the empty sequence (); in symbols, X° = {()}.
There are two 0-ary relations on X, the empty set § which corresponds
to the truth value F, and the set X° which corresponds to the truth
value T, .

A model for pure predicate logic of type P is a system M
consisting of a non-empty set M called the universe of the model
M, and a function which assigns an n-ary relation ¢ to each n-ary
predicate symbol ¢ of P.

We emphasize that only the universe set M of a model M is required
to be nonempty. A unary relation p™ may be any. subset of M at all,
empty or nonempty. After we define the notion of a truth value of a
sentence in a model, we will be able to use sentences of predicate logic
to express properties of relations. As a simple example, the sentence
‘3z p(z) will be true in a model M if and only if p™ is a nonempty

72 , CHAPTER 2. PURE PREDICATE LOGIC

subset of M, and the sentence Vz p(z) will be true in a model M if and
only if pM = M. As an even simpler example, a propositional symbol ¢
will be true in M if and only if g™ = MP°, i.e. ¢™ contains the empty
sequence.

To illustrate the concept of a model, suppose the vocabulary P has

only a single unary predicate symbol p. Then a model M of type P

consists of a nonempty set M and a subset pM (which may or may not
be empty) of M. Given a nonempty finite set M with n elements, there
are 2" different models of type P with universe M, one for each subset
pM of M. Given an infinite set M, there are infinitely many different
models of type P with universe M. ‘

As a second example, suppose the vocabulary P has two unary
predicate symbols p and ¢. In this case a model M of type P consists
of a nonempty universe set M and two subsets p™ and ¢™ of M. Given
a nonempty finite set M of size n, there will be (2")? different models
of type P with universe M.

Finally, suppose the vocabulary P has one binary predicate symbol
p. In this case a model M of type P consists of a nonempty universe
set M and a subset p™ of the set M x M. Given a nonempty finite set
M of size n, there will be 2 different models of type P with universe
M.

Recall that a plain wff is a wif in which no parameters occur. A
wif with parameters from K is a wif all of whose parameters (if any)
are in the set X ~ in other words, a wif which has no parameters outside
of K. Thus a plain wif is a wif with parameters from K for every set K.

Our next goal will be to assign an appropriate truth value to each
plain sentence in every model for a vocabulary P. The easiest way to do
this is to do even more: given a model M, we shall assign a truth value
to each sentence with parameters from M. Since every plain sentence
is also a sentence with parameters from M, this will accomplish our
goal. :

Given a model M, we shall work with the predicate logic whose set
of parameters K is the universe set M of M. SENT(P,M) is the set
of all sentences with parameters from M.

If C is a plain wif of pure predicate logic and z;,...,z, are the free
variables of C, we may form a sentence with parameters from M by
choosing a1,...,a, € M and replacing all free occurrences of z;.in C

2.4, SEMANTICS OF PREDICATE LOGIC | -3

by ay for k = 1,...,n. The resulting sentence, called an instance of -
C in M, is denoted by

C(z1,...,Tn//01, -1 0n)

As a particular case, if C is a plain sentence then no parameters are
needed, and C already an instance of itself.)

Now we define M = A where A € SEN (P,M). Figure 2.1 gives
the rules which determine the truth value A of a sentence‘ A with
parameters from M. As in propositional logic we sometimes write M =
A instead of Apq = T, and M £ A instead of Am = F.

T4

CHAPTER 2. PURE PREDICATE LOGIC

Truth Value Rules
(M:Po) If pe Py, pm =T iff () € p™;
(M:'Pn)'p(al,ag,.f.,an)M = T iff (a1, aq,...,a,) € pM;
(M:m) [~Ala = T iff A= F; |
(M:A) [AABJp = Tiff Apyg=T and By = T,
(M:V) [AVBJp=Tiff Ay =Tor By =T;
M:=) [A=>Blu=Tif Ay=For By =T;
M:e) A Bu=Tif Ayy=Bu;
(M:Y) VzAlp =T iff A(z//a)m = T for every a € M;
(M:[3) 3zAu = T iff A(z//b)p = T for some b € M.

‘Figure 2.1: Truth Value Rules for Predicate Logic.

2.4. SEMANTICS OF PREDICATE LOGIC 75

The following theorem is important for the semantics for pure pred-
icate logic because it shows that the rules unambiguously determine
a truth value for each sentence in a model. It is the analog of Theo-
rem 1.5.1 for propositional logic. ’

Theorem 2.4.1 For any model M (of type P) with universe M there
is a unique function which assigns a truth value Ay to each sentence

A € SENT(P,M) and satisfies the rules of Figure 2.1.

We shall skip the proof of Theorem 2.4.1, which is again by induction
on the length of wffs using the Unique Readability Theorem.

In the next few examples we illustrate our definition of the truth
value of a sentence in a model with some detailed computations. In
each example, we go step by step through a parsing sequence for the
sentence. Because of the quantifier rules, we shall compute the truth
value of every instance of the wif at each step of the parsing sequence.

Example 2.4.2 We compute the truth value of the sentence
VzP(z) = ¢

in a model M whose universe is a two element set M = {0,1}, with
¢™ = 0 and PM € REL,(M) given by

PM = {0}.
We first parse the sentence.
(1) P(z) is a w by (W:Py).
(2) VzP(z) is a wi by (1) and (W:). -

© (8) gis a wif by (W:Py).

(4) VzP(z) = ¢ is a wif by (2), (3) and (W:=).
Now we apply the definition. "
(1) P(0)m =T and P(1)m =F by (M:Py).

| . (2) VzP(2)]m = F by (1) and (M:V).

76 CHAPTER 2. PURE PREDICATE LOGIC

 (3) gm =F by (M:Py).

(4) [YP(2) = glw = T by (2), (3), and (M:=).

Example 2:4.3 We compute the truth value of sentence
Va[P(z) = q]

in the model M of the previous example.

‘We first parse the sentence.

(1) P(z) is a wh by (W:Py).

(2) qisawif by (W:P).

(3) P(s) = s a wif by (1), (2), and (W:=).

(4) \/w[P(:c) = ¢ is a wif by (3) and (W:V).

Now we apply the definition.

(1) M = P(0) and M [£ P(1) by (M:Py).

(2) M £ g by (M:Ps) because guy = F.

(8) M} P(0) = g and M = P(1) = ¢ by (1), (2), and (M:=>).

(4) M = Ve[P(z) = q] by (3) and (M:V),

Example 2.4.4 We compute the truth value of

 VyFer<ys Wz <y

. for a model M whose universe set is the set M = N of natural numbers
and <™ is the usual order relation on N:

<M = {(a,b) e N*: a < b}.
We first parse the wif.

(1) z <yisawi by (W:P,).

2.4, SEMANTICS OF PREDICATE LOGIC 7

(2) 3z z <yisawiff by (1) and (W:3).

(8) Vydzz <yisa Wffk by (2) and (W:V).

(4) Vy z <y is a wif by (1) and (W:V).

(5) Ja¥y z < y is a wif by (4) and (W:3). |
(6) [Vy3z ¢ <y = 3a¥y = <ylis a wif by (3), (5), and (W:=).
Now we apply the definition of M = A to this parsing sequence.
(1) ME c<diffe<Md. |

(2) M =3z ¢ < d for every d since M = 0 < d for every d.

(3) M Vydzz <yby (2)
(4) MEVyc<yiffc=0.

(5) M =3daVyz <y by (4).

(6) M [=Vydzz <y= JaVyz <y by (3) and (5).

‘Example 2.4.5 We compute the truth value of the wif of the preced-
ing example for a different model. Take M = Z, the set of 1n‘cegers,
with <M the usual order relation on Z:

<M = {(a,b) € Z*:a < b}

() ME c<diffc<Md.

(2) M |= 32 z < d for every d, since M = ¢ < dif c=d.
(8) M =Vydzz <y by (2).

| - (4) M%V;z/cgyforeveryc,since./\/i}# e<difd =c—-1.
(5) M I Tavy o <y by (4). |
(8) M EVy3e e <y = JzVyz <y by (3) and (5).

'78‘ ‘ CHAPTER 2. PURE PREDICATE LOGIC

We can now define the notion of semantic consequence as before.
‘The sentence A is said to be a semantic consequence of a set H
- of sentences, and we write H |= A, if every model of H is also a
model of A. If H = A and H is the empty set, we say that A is a
valid sentence. In other words, a valid sentence is one which holds

in every model; it is the analog for predicate logic of a tautology in

propositional logic. In Section 2.6 we will again encounter the tableau

method for establishing semantic consequence and validity of sentences. :
To motivate the new tableau rules we give the following extension of

Proposition 1.5.2 from page 16.

- Proposition 2.4.6 Suppose M is a model with universe M.
V] IFM=VzA anda € M then M = A(z//a).

If M = ~VzA then M = ~A(z//b) for some b€ M.
If M = 3zA then M = A(z//b) for some b€ M.
I MI=-3zA and a € M then M = —~A(z//a).

2.5 Graphs

The semantics for wifs with three or fewer variables can be represented

graphically. Let A be a wif with at most the free variables z,y. The

(z,y) graph of A in M is the set of all pairs of elements of M for
which A is true, that is, '

GRAPH, (A, M) = {(a,b) € M? : M |= A(z,y//a,b)}.

If A is a sentence, the (z,y) graph of A in M is either the whole
plane M? or the empty set. This is because A has no free variables,
so A(z,y//a,b) is just the original sentence A for every pair a,b. If
M = A then the (z,y) graph of A is the whole plain M2, and otherwise
the graph is the empty set.

_ If the z axis is horizontal and A is a wff with only z free, then
the (z,y) graph of A in M will be a union of vertical columns in the
M x M plane. This is because the graph of A is the set

{(a,0) € M* : M = A(z//a)},

-2.6. TABLEAUS 79

and two pairs (a,b) and (a,c) in the same column go with the same
instance A(z//a) of A. Similarly, if A has only y free, its (z,y) graph
will be a union of horizontal rows in the M x M plane.

A wif with n free variables can be represented by an n-dimensional

- graph. The PREDCALC program gives a graphical representation of

wifs all of whose variables, both free and bound, are among z,y, and
z. A finite universe of the form 0,1,...,n — 1 of size n must first be
chosen, where n is between 1 and 8. The (z,y,z) graph of a wff is a
subset of a cube with n points on each side. The model in the program
has three binary relations

=y, <Y, T>Y,
and nine ternary relations
T=Y+z, T=Y—2, T=Y*x2,

r<y+z z<y—2, t<yx*z,
T>Y+z, T>Y—2z, T>Y*2,

which can be entered using the button for atomic formulas. Here the
addition, subtraction, and multiplication are performed modulo n.
(To add or multiply two numbers modulo n, add or multiply them in
the usual way and then take the remainder after division by n. To
subtract two numbers modulo n, subtract in the usual way and then
add n if the result is negative). There is also a provision for adding
“random” unary, binary, or ternary relations to the vocabulary. By
experimenting with the program, you can see what happens to the
graphs when you combine wifs with connectives and quantifiers.

2.6 Tableaus

Recall that a sentence A of predicate logic is said to be valid if A
is true in every model. In propositional logic it is possible to test
whether a wff is valid in a finite number of steps by constructing a
truth table. This cannot be done in predicate logic. In predicate logic
‘there are infinitely many models to consider, even when the vocabulary

80 CHAPTER 2. PURE PREDICATE LOGIC

of predicate symbols is finite. Since we cannot physically make a table
* of all models, we need another method of showing that a sentence is
valid. To this end, we shall generalize the notion of tableau proof from
propositional logic to predicate logic. As before, a formal proof of a
sentence A will be represented as a tableau confutation of the negation
of A.

Tableaus in predicate logic are defined in the same way as tableaus
in propositional logic except that there are four additional rules for ex-

tending them. The new rules are the [V| and |3] rules for wifs which
begin with quantifiers and the and rules for the negations

of wifs which begin with quantifiers. As in the case of propositional

logic, our objective will be to prove the Soundness Theorem and the
Completeness Theorem. The Soundness Theorem will show that ev-
ery sentence which has a tableau proof is valid, and the Completeness
Theorem will show that every valid sentence has a tableau proof. The
tableau rules are chosen in such a way that if M is a model of the set
of hypotheses of the tableau, then there is at least one branch of the
tableau such that every wif on the branch is true for M.2

A labeled tree for pure predicate logic is a system (T,H, @)
- where T is a tree, H is a set of wifs and @ is a function which assigns
to each nonroot node t of T a wif ®(t) of pure predicate logic. The
definition is exactly the same as for propositional logic, except that the
wis are now wffs of predicate logic. As in propositional logic, “the wif

A is at the node #” means that “A is ®(¢).” The wffs of H are said to

be “at the root.” We shall use the same terminology (ancestor, child,
parent, etc.) as we did for propositional logic. ‘

Definition 2.6.1 A tableau chain for pure predicate logic is a finite
or infinite sequence of finite labeled trees which is formed using the nine
tableau extension rules for propositional logic (see section 1.7.1) and the
following additional tableau extension rules:

If t has an ancestor VzA, extend by adding a child A(z//a) of t,

where a is an individual symbol which is free for z in 'A.

For a precise statement, see Lemma 2.7.2 on page 86 below.

2.6. TABLEAUS — 81

if £ has an ancestor “VzA, extend by adding a child =A(z//b) of
t, where b is an individual symbol which does not occur in any
ancestor of .

If ¢ has an ancestor 3zA, extend by adding a child A(z//b) of

t, where b is an individual symbol which does not occur in any
ancestor of t. :

If ¢ has an ancestor 3z A, extend by adding a child ~A(z//a) of

t where a is an individual symbol which is free for z in A.

The four new rules are summarized in Figure 2.2, which should be
viewed as an extension of Figure 1.4 on page 28.

Definition 2.6.2 A tableau for predicate logic is a labeled tree
which is either the last term of a finite tableau chain, or the union of

" an infinite tableau chain.

82

CHAPTER 2. PURE PREDICATE LOGIC

Tableau Extension Rules
VeA JzA

A(z//a) A(z//b)

ﬂE.a:A -«V.xA
: ;
| |
~AGe/fa) A/

a is free for z b is new -

Figure 2.2: Tableau Extension Rules for Pure Predicate Logic.

2.6. TABLEAUS 83

Notice that the |V |and rules are similar to each other, and the

and rules are similar to each other. The|V|and rules allow

any substitution at all as long as there is no confusion of free and bound
variables. On the other hand, the @ and rules are very restricted,

and only allow us to substitute a completely new symbol b for z. In

an informal mathematical proof, if we know that 3z A is true we may
introduce a new symbol b to name the element for which A(z//b) is
true. It would be incorrect to use a symbol which has already been
used for something else. This informal step corresponds to the 3 rule
for extending a tableau, A similar remark applies to the =V rule.

A tableau confutation of a set H of wifs in predicate logic is a
tableau T with root H such that each branch is contradictory, that

is, each branch has a pair of wffs A and —A. A tableau proofof a wif

A is a tableau confutation of the set {A}, and a tableau proof of A

" from the hypotheses H is a tableau confutation of the set HU{-A}.

If there is a tableau proof of A from H, we say that A is provable
from H and write HF A. : '
The main purpose of tableaus is to give a method for showing that a

_ sentence is valid, or that one sentence is a semantic consequence of a set

of other sentences. For this reason, We shall usually work with tableaus
whose hypothesis set H is a set of sentences, rather than merely a set
of wis.

We shall see later that if a set of sentences H has a tableau confuta-
tion, it has one such that every individual symbol which occurs freely
on the tableau is a parameter rather than a variable. We shall always
follow the practice of building tableaus with no free variables, because
then we never have to worry about a variable being both free and bound
in a wif. This is done by using individual parameters rather than indi-
vidual variables in the quantifier extension rules.

It is usually much more difficult to find formal proofs in predicate
logic than in propositional logic, because if one is careless, the tableau
will keep growing forever. One useful rule of thumb is to try to use the
and rules, which introduce new individuals, as early as possible.
Quite often, these new individuals will appear in substitutions in the
or rules later on. This rule of thumb is illustrated in the two

~ simple examples in Figure 2.3.

84 - CHAPTER 2. PURE PREDICATE LOGI C

M) =3y Py ~ to be proved
@) 3 zlv(x) * hypothesis

(3) P(la) by (2)

4 S pl(g) by (1)

A tableau proof of Jy P(y) from 3z P(z).

- () -Wy3z P(z,y) - to be proved
(2) 3wy JD(x, y) hypothesis
3wy P(la, y) by (2)

(4) -3¢ 137(:1,', 5 by (1)
(5) P(L, b) by (3)
(6) -—»P({a, b) by (4)

A tableau proof of Vy3z P(z,y) from 3zVy P(z, Y).

Figure 2.3: Two Tableau Proofs in Predicate Logic.

2.7. SOUNDNESS ’ -8

2.7 Soundness

In this section we will prove the

Soundness Theorem

If a sentence of pure predicate logic has a tableau proof, then it
s valid.

~ The proof of the Soundness Theorem for predicate logic is similar
to the proof of the Soundness Theorem for propositional logic, but with
extra steps for the quantifiers. Recall that Lemma 1.8.1 for proposi-
tional logic asserted that if T is a finite tableau with a set H of wifs
at the root and if M is a model for H then there is a branch I' such
that M |= I'. Without some qualification this will not be true in pred-
icate logic since the wils in the tableau proof may have free variables
or parameter symbols which are not elements of M. To make it correct
we must replace the free variables or parameter symbols which occur
in the tableau with suitable parameters from M.

To this end define a valuation in the set M to be a hst of pairs

v ={(z1,a1), (23, az),. .., (ze,a)}

where z1,z2,...z, are distinct individual symbols (variables or param-
eters) and ay, as, . . . a; are elements of M. For any wif A we write A(v)
in place of the more cumbersome

‘ A(:Bh.’lig,....’Ee//al,ag,...,af)

If the list 1, 73,...7 contains all the individual symbols occurring
freely in the wif A then A(v) is a sentence with parameters from M. If

- M is a model with universe M and T is a set of wifs, then the notation

M =T (v)

model for H, that is,

86 CHAPTER 2. PURE PREDICATE LOGIC

means that M E A(v) for each wff A in I'. The notation is used only

“when the list z1,3,...2, contains all the individual symbols which

occur freely in some wif of I'.

Recall that a sentence of pure predicate logic is a wif with no free
individual symbols, that is, no free variables and no parameters. To
keep things simple, in this section we shall consider only finite tableaus
T whose hypothesis set H is a finite or countable set of sentences. If
T is such a tableau, then each branch T' of T will have only finitely
many wifs in addition to the hypotheses. Since no individual symbols
occur freely in H, only finitely many individual symbols occur freely in
I . In this case, M |= I'(v) is meaningful and says that M | A(v) for
each wif A which occurs along T'; i.e. the same notation is used for the
branch and the set of wifs which occur along the branch.

In the exercises we shall see that the results in this section can be

~ extended to all tableaus by using infinite valuations.

Definition 2.7.1 A wif A is called satisfiable in a model M iff there
is a valuation v in the universe of M such that M | A(v). A set T' of
wifs in which only finitely many individual symbols occur freely is called

simultaneously satisfiable in a model M iff there is a valuation v in
the universe of M such that M |=T'(v).

Lemma 2.7.2 Let T be a finite tableau in predicate logic whose hy-
potheses set H is a finite or countable set of sentences, and let M be a

MEH.

Then there is a branch T of T which is simultaneously satisfiable in M.

Proof: The proof of this lemma is similar to the proof of Lemma 1.8.1
which is the corresponding lemma for propositional logic. The idea is to
carefully choose individual symbols from the model at each step where
the | 3| rule or the |V|rule is used in extending the tableau T.

By definition there is a finite tableau chain Ty, Ty,..., T, with
T = T,. We will construct inductively a branch T’y of Tk and a
valuation

Vg = {(mla al)a (3}2) (12), ey (xeka alk)}

2.7. SOUNDNESS 87

such that the wifs

AlaA-?y"')A-m
which occur along this branch satisfy M = A; (vk) forj =1,2,...k.
The first coordinates z1,zs,...,2q, of the pairs in the list v w111 be

precisely the individual symbols which occur free along I'x. The branch

T'41 will extend the branch Ty and the valuation wvyy, will extend vg.

When k = 0 the wifs A; are simply those of H so we take vy to be
empty and the result is the hypothesis M = H. If Ty, is obtained
from T} by extending at some node other than the terminal node of T'x
we simply take 'y = I'yy1 and vi = vgq; and there is nothing to prove.
Hence assume Ty, is obtained from Ty by extending at the terminal
node of Ty by applying one of the thirteen tableau extension rules to
some wif A; in the list. We use a case analysis and Proposition 1.5.2
(page 16).

In case the T} is extended to Ty1 via one of the nine propositional
tableau extension rules we take vgy; = vk and argue as in Proposi-
tion 1.8.1. In the remaining cases we argue as follows.

(10) Suppose A; is VzA and the tableau is extended by adjoining
A(z//y). Take vgyy = vy if the individual symbol y appears in
the list z1,...z, of first coordinates in wvg; if not, extend vi to
vk+1 by adjoining the pair (y,a) where a is any element of M. By
the induction hypothesis M = VzA(vi) so M = A(vksa).

(11) Suppose A; is =VzA and the tableau is extended by adjoining
=A(z//y). In this case the individual symbol y does not occur in
the list of first coordinates in vy and by the induction hypothesis
M = ~VzA(vy). Choose b € M so that M = —A(vgq1) where
V41 is defined by adjoining (y, b) to vg.

>(12) Suppose A; is JzA and the tableau is extended by adjoining
A(z//z). Proceed as in (11).
(13) Suppose A; is ~dzA and the tableau is extended by adjoining -
~A(z//y). Proceed as in (10). :
End of Proof.

As in propositional logic, we have the following lemma which is

- proved in essentially the same way:

88 CHAPTER 2. PURE PREDICATE LOGIC

Lemma 2.7.3 If a finite or countable set H of sentences has a tableau

- confutation, then H has no model.

Proof: Suppose H is a hypothesis set and T is a tableau confutation
of H; if H has a model M, then by the previous lemma, there is a
branch I’ in T and a valuation v in M such that M |=I'(v). But this

is impossible since every branch of T is contra,dictory.‘ End of Proof.

This lemma gives us the Extended Soundness Theorem just as with
propositional logic. Since the proof carries over without change, we
omit the details. The Soundness Theorem in the above box is the
special case where the hypothesis set H is empty.

Theorem 2.7.4 (Extended Soundness Theorem) Suppose that
HU{A} is a finite or countable set of sentences. [fHF A thenH = A;

in other words, if there is a tableav proof of A from H, then A is a -

semantic consequence of H.

‘As in propositional logic, a tableau confutation can be used to show
that a sentence is valid. This is the special case of the Extended Sound-
ness Theorem in which the hypothesis set H is empty. Thus, if F A,
then every model (of the empty set of hypotheses) is a model of A;
hence A is valid.

2.8 Finished Sets

By an atomic wiff we mean either a propositional symbol alone or a
wif of form p(zy,x3,...,2,) where p is an n-ary predicate symbol and
Z1,%2,..., T, are individual symbols. By a basic wif in pure predicate
logic we mean a wif which is either an atomic wif or the negation of an
atomic wif. We call a set A of wifs contradictory if it contains some’
wif A, and its negation —A. A set A of sentences with parameters
from M is a finished set on M if A is not contradictory, and for each-
C € A, either C is a basic wif, C satisfies one of the conditions [~—] to
[~ ©] from Section 1.9 on page 33, or else one of the following is true:

[V] C has form VzA where A(z//a) € A for every a € M;

. 2.8. FINISHED SETS 89

[~¥] C has form ~Vz A where =A(z//b) € A for some be M;
[3] C has form 3zA where A(z//b) € A for some be M;
[~3] C has form —3zA where ~A(z//a) € A for every a € M.

The definition of a finished set is parallel to the definition of a tableau.
It should be noted, however, that the and tableau extension -
rules differ markedly from the [V] and[~3] clauses in the definition of a
finished set. The latter two rules say that every possible substitution:
instance must lie in the finished set, whereas the former two rules say
that the tableau is extended by one substitution.

Lemma 2.8.1 (Finished Set Lemma) Suppose M is a non-empty
 set and that A is a set of sentences with parameters from M. Assume

that A is finished set on M. Define a model M for pure predicate logic
as follows:

o The universe set of the model M is the set M.

e For each propositional symbol p € Po, pm = T if and only tf
pEA,

o For each n-ary predicate symbol p € P,

pM:_ {(bl7 bz,.,.,bn) e Mn :p(bl,bzg...;bn) E A}'

Then M = A.
Proof: We shall prove that '
(%) MECIHCeA

by induction of the length of C. The pattern of proof is as follows.
First we prove () in case C is a basic wif. Then we choose C € A,
assume that () is true for all wffs A which are shorter than C, and
prove that M = C. (This shows that if (*) is true for ali wffs A shorter
than C, then () is also true when A is C.) : ,
First consider the case where C is basic. If C is p(b1, by, - - -, bn) and

~p(by,by, ... ,b,) € A, then M | C by the definition of M. If C is

90 - CHAPTER 2. PURE PREDICATE LOGIC

=p(b1,b2,...,b,) and C € A, then p(by, bs,...,b,) ¢ A for otherwise
" the set A would be contradictory and hence not finished. Hence in this
case as well M = C by the definition of M. _

Now choose C € A and assume inductively that (*) is true for all
wifs shorter than C. We have just handled the case where C is basic so
we may assume that C is not basic. Hence C has one of the forms [--],
[Al,..., [3] as in the definition of finished set given above. There are
thirteen cases, one for each part of the definition. They are all similar
so we will only prove five of them and leave the rest to the reader.

[-—] In this case C has the form =—A. As we have assumed that
C € A the definition of finished set tells us that A € A. By the
induction hypothesis, M = A. Hence M | C.

[V] In this case C has the form A V B. As we have assumed that

C € A the definition of finished set tells us that either A € A or
B € A. By the induction hypothesis, either M = A or M = B.
Hence M = C.

[=V] In this case C has the form =[A V B]. As we have assumed that

- C € A the definition of finished set tells us that =A € A and

—B € A. By the induction hypothesis, M |= —=A and M |= -B.
Hence M = C. o

[V] In this case C has the form YzA. As we have assumed that C € A

the definition of finished set tells us that
A(z//a) € A for every a € M.

The induction hypothesis tells us that M = A(z//a) for every
a€ M Hence M = C.

[-V] In thls case C has the form -VzA. As we have assumed that
C € A, the definition of finished set tells us that

—~A(z//b) € A for some be M.

The induction hypothesis tells us that M = A(z//b). Hence
MEC.

End of Proof.

. 2.9. COMPLETENESS 91

2.9 Completeness

- In this section we will prove the

Completeness Theorem

If a sentence of pure predicate logic is valid, then it has a
tableau proof.

The Completeness Theorem for pure predicate logic uses many of

" the ideas introduced in connection with the Completeness Theorem for

propositional logic. One important difference is that infinite tableaus
are needed even when the set of hypotheses is finite. As with proposi-

“tional logic, our main task is to prove the following Main Lemma.

‘Lemma 2.9.1 (Main Lemma) Suppose H is a finite or countable set

of sentences in pure predicate logic. Either H has a tableau cqnfutation
in which no free variables occur, or H has a model.

As before, the Extended Soundness Theorem shows that H cannot
have both a tableau confutation (with or without free variables) and a
model. To prove the Main Lemma we shall construct a tableau T in

.. .which every branch is either finished or finite and contradictory. The

tableau T will also have the property that no free variables occur on
T. : '

The formulation of the Completeness Theorem in the box at the
beginning of this section is a special case of the following. (Take the
hypothesis set H to be empty.)

Theorem 2.9.2 (Extended Completeness Theorem) Suppose H
is a finite or countable set of sentences and A is a sentence in pure

- predicate logic. If every model of H is a model of A, then there is a

tableau proof of A from H in which no free variables occur. Thus if

" HEA, then HF A,

92 , CHAPTER 2. PURE PREDICATE LOGIC

The proof of the Completeness Theorem from the Main Lemma
~ carries over from propositional logic without change, and so we omit it
here. Following the pattern which we used for propositional logic, we
shall now state and prove a Tableau Extension Lemma for predicate
logic, and then prove the Main Lemma.

We fix a countable set M of new individual parameters which occur

nowhere in H. A branch of a tableau is said to be finished on M if-

the set of wifs on the branch is finished on M. Define a tableau T
to be finished on M if every branch of T is either finished on M or
else both finite and contradictory. In a finished tableau, the finished
branches, if any, may be either finite or infinite. (A branch will have to
be infinite if M is infinite and a wif of form VzA or ~JdzA appears on
the branch.) If all the branches of a tableau are finite and contradictory,
then by the Konig Tree Theorem from Chapter 1, the tableau will have
finitely many nodes and hence will be a confutation. Tableau proofs
and tableau confutations are always required to be finite, but finished
tableaus which are not confutations are allowed to be infinite.

Lemma 2.9.3 (Tableau Extension Lemma) Let M be a countable

set (to be used as a set of parameter symbols) and let H be a finite or
countable set of sentences in pure predicate logic. Then there erists a
finished tableau T on M with root H, such that no free variables occur
onT.

Proof: We construct a sequence of finite tableaus
ToCTiCT:C...

such that T4 is an extension of T, for each n € N. The finished
tableau will be the union of the tableaus in this sequence. The tableau
T 1s just the trivial tableau with only the root node and the given set
of sentences H attached to it. Since the set M is countable we may list
its elements:

M = {a;,a9,as,...}.

We also list the elements of the finite or countable set H,

H = {Cl,Cg,Cg, . }

2.9. COMPLETENESS ‘ _ 93

Let Hy be the empty set and H,, = {Cy,...,C,}, with the understand-

ing that if H is finite with n elements then we instead take Hn = H

when m 2 n. -
We shall construct the sequence T, of tableaus using only the pa

* rameter symbols from M in the quantifier rules. Since each tableau T,
‘will have only finitely many nodes, T will contain only finitely many

sentences outside H and hence only finitely many parameters from M
occur in Tn. (The finished tableau, however, may well use all the pa-
rameters from M.)

Given the finite tableau T, we form a finite extension Tpy; with
the following properties. For any noncontradictory branch I' of Tpy1

" and wif A on I such that either A € H, or A is a nonroot wif Ty:

1. If A is of the form YzB then for every ¢ = 1,2,...,n + 1 the wif
B(z//a;)ison T. :

2. If A is of the form =JzB then for every i = 1,2,...,n + 1, the
wif ~B(z//a;) ison T

3. If A is of any other form, then A is used (as the hypothesis of a
tableau extension rule) at least once along T'. For example, if A
" is of the form JzB then for some integer k, possibly much bigger
than n, the wif B(z//ax) is on T'. As a second example, if A is

- of the form B v C then either Bison I' or C is on I'.

" Furthermore, no contradictory branch of Ty, is extended in forming
Tn+1. X - - ol . N .

The tableau T, is constructed in finitely many stages by taking

care of all wifs in H, and all nonroot wffs of T,, one at a time. Now

"we claim that the union T = {J, Tn is a finished tableau on M. Let I

be any branch of T. If T is contradictory then T' is finite as before.
If T' is not contradictory we must show that A, the set of all wifs

~on T, is a finished set. Suppose that A € A. Then for some n, A is

either in H, or is a nonroot wif of T,,. Since 'NTyy1 is a branch of
T,41, by the construction A has been used on I' N Tryq and hence on
T'. Now suppose that A has the form YzB. Then for every m > n and
i < m, the wif B(z//a;) is on T'N Ty, Hence for every i = 1,2,... the

! - wiff B(z//a;) is on T. Similarly if A has the form ~3zB, then for every

04 CHAPTER 2. PURE PREDICATE LOGIC

1=1,2,... the wif —«B(;r://a,-) is on I'. The other cases for the wif A
‘may be dealt with in a similar manner to complete the proof that A is
a finished set. It follows that T is a finished tableau with hypothesis
set H. End of Proof,

Proof of the Main Lemma: The Main Lemma for the Completeness

‘Theorem can now be deduced as follows. Let H be a finite or countable
set of sentences in pure predicate logic. By the Tableau Extension
Lemma, there is a finished tableau T on M with root H and no free
variables. By the Kénig Tree Theorem, T is either a tableau confutation
of H or T has a noncontradictory branch I'. In the latter case, the set
of wifs on T is a finished set on M, so by the Finished Set Lemma, H
has a model. , "End of Proof.

Note that this proof shows that any finite or countable set of sen-
tences of pure predicate logic which has a model has an infinite model,
i.e., one with an infinite universe. This will not be the case for the full
predicate logic (at least if we require our model to respect equality in
the sense explained in the next chapter). '

We conclude this section by stating the Compactness Theorem for
pure predicate logic. It is proved from the Main Lemma exactly as in
the propositional logic case.

Theorem 2.9.4 (Compactness Theorem) Let H be any countable
set of sentences of pure predicate logic. If every finite subset of H has
a model, then H has a model.

2.10 Equivalence Relations

The full predicate logic studied in the next chapter introduces some

rules of logic which deal with equality. The pure predicate logic studied
in this chapter treats the equality symbol like any other binary relation
symbol. However, by adding certain axioms to the hypothesis set of

any tableau, we can assure (without adding any additional logical rules)

that the equality symbol essentially represents true equality. We shall
explain how to do this in this section.

To make it easier to distinguish an equality symbol in our vocab-
" ulary P of predicate logic from the ordinary uses of equality outside

2.10. EQUIVALENCE RELATIONS 95

of predicate logic, we shall use the symbol = as an equality symbol in

predicate logic. There is nothing in our definition of model which says
that the value =™ of the equality symbol = has to be the equality
relation between elements of M. We say that a model M of type P
respects equality iff for all a,b € M, the universe of M, we have

M}zaibifandonlyifazb.

In the next chapter we introduce the term pre-model for a model:
which may or may not respect equality, and reserve the term model for
models which do respect equality.

Equality Axioms

Veo =z

VaVylz =y = y = 2]
VaVyVzlz =y Ay = 2 = o = 2|
VavilE = § = [p(Z) & p(§)l]

—~ N S
b
A .

Definition 2.10.1 The sentences in the box comprise the set E(P)
of equality axioms for the vocabulary P. There is one instance of (4)
for each predicate symbol p. In (4) p denotes an n-ary predicate symbol
and we have used the following abbreviations:

VZ for Vx V- Vz,
Vi for VyiVys--Vy,
T=¢ for zi=yAza=ysA---Azp=Yn
p(Z) for p(z1,29,...,2n)
p(y) for p(yn,yz,-.. ¥n)

96 CHAPTER 2. PURE PREDICATE LOGIC

In this section we shall pfove the following Soundness and Com-
pleteness Theorem for models which respect equality.

Soundness & Completeness with Equality

A sentence B in the vocabulary P is true in every model for P
which respects equality if and only if B is tableau provable from
the hypothesis set E(P).

This is a special case of the following theorem:

Theorem 2.10.2 Let H be a set of sentences and A a sentence in the
vocabulary P. Every model of H which respects equality is a model of

A if and only if there is a tableau proof of A from the hypothesis set
HUE(P)."

To prove this theorem we need to develop the theory of equiva-
lence relations. We shall use this theory again in Chapter 3. A bi-
nary relation = on a set X is called an equivalence relation iff the
equality axioms (1),-(2), and (3) above hold in the model M whose
universe is X and where the value = assigned the equality symbol is
=. The equivalence relation is called a congruence relation for the
relation B € REL,(X) iff in addition M models equality axiom (4)
when pM = R. In other words an equivalence relation on X is a binary
relation on X which satisfies the following three laws:

Reflexive Law T=z
Symmetric Law z =y impliesy ==

Transitive Law z =y and y = z implies z = =

for z,y,z € X. An equivalence relation = is a congruence relation for
R € REL,(X) iff in addition

(#1,...,2,) € Rand & =yy,° -+, 2, =y, implies (y1,...,y2) € R

2.10. EQUIVALENCE RELATIONS ’ 97

for z1,...,yn € X. . . .
The equality relation on any set is an equivalence relation. The

* equality relation is a congruence relation for any relation R: equals
" may be substituted for equals without changing the meaning. Ano't}‘xer
- important equivalence relation is equality modulo m. Each positive
integer m determines an equivalence relation on Z denoted =3 The
definition is?)
T =p y <> m|(y—z).
The notation m|b is read m divides b and means that m = ab for some
integer a. For example 3 =7 24 while 7 #3 2. Equality mod m is a
congruence relation for each of the ternary relations = + y =2 and
gy = z but not for the binary relation z < y. (See Exercises 34 on
page 135 and 10 on page 183.) ‘
: Any function 7 from X to X determines an equivalence relation on

“ X via the definition
T =y <> 7(z)= m(y)-

'~ For example, define 7 from Z to {0,1,...,m — 1} by taking m(z) to be
the remainder when z is divided by m:
r=n(z)<=z=qm+r, 0<r<m.

Then z =, y iff 7(z) = Tr(y) The following lemma reverses this
process. ~

- Lemma 2.10.3 Let = be an equivalence relation on a set X and for
each z € X define the equivalence class of z by

[z]={y € X:z=y}
Then for all z,y € X the following are equivalent:
() e=y;

(i) [o] = [y];

20ther commonly used conventional notations for this are =y (m)andz =y
" (mod m) . i

98 | ~ CHAPTER 2. PURE PREDICATE LOGIC

(i) [2]nfy] # 0.

Proof: Assume (i). Choose z € [z]. Thenz =z andz =ysoz=z

by the Transitive Law. Hence [z] C [y]. Choose z € [y]. Then z = y so
z = ¢ by the Transitive and Symmetric Laws. Hence [y] C [z]. Hence
2] = [y]. We have proved (ii).

Assume (ii). Then z € [z] = [y] by the Reflexive Law [z]N [y] #0.

We have proved (iii). _

Assume (iii). Then there is a z € [z] N [y]. Hence z = z abd z =
so = y by the Transitive and Symmetric laws. We have proved (i
End of Proof.

y
)-

- Lemma 2.10.4 Suppose that = is a congruencé relation for a relation
R € REL.(X). Let X denote the set of equivalence classes of =. Then
there is a unigue relation R € REL,(X) such that

(21,22,...,2) € R <= ([z1],[z2], ..., [zn]) € R.

The relation R is called the relation induced by R on the set of equiv-
alence classes X .

Proof: Define R by
R= {([z1], [z2], - - -, [2n)) ¢ (21, 22,...,2,) € R}.

Then (z1,22,...,2,) € R implies ([z1],[z2],...,[za]) € R by defini-

tion. If ([z1], [a],...,[za]) € R then (again by definition) there ex-
ist y1,92,--+,¥n With [z;] = [yi] and (y1,92,...,yx) € R. But then

(#1,22,...,2,) € R by the definition of congruence relation. Unique-

ness is an immediate consequence of the definition of equality of sets.
(Exercise 35 relates to this construction.) : End of Proof.

Now assume that P is a vocabulary which contains the equality
symbol and let M be a model for sentences (1), (2), and (3) and all the
sentences (4) where p € P. Let M be the universe of M. Let = be the
binary relation =™ which represents the equality predicate symbol =
in the model M. By definition = is a congruence relation for each of
the relations pM. Let M be the set of equivalence classes and for each
p € P let pM be the relation induced by p™ and let M be the model
~ thus defined. o

~ for every valuation

2.10. EQUIVALENCE RELATIONS 99

Theorem 2.10.5 (Equality Construction) The model M respects
equality. Moreover for any sentence A we have o

MEA & MEA.

.Proof:A The proof is by induction on the length of A. To make the

induction work it is necessary to prove a stronger statement, namely

that B .
MEA(W) <= M E A(D)

Vo= {(1'1, al); (3927 a2)a ey (:l’:g,ag)}

where z;, x4, ...z, are distinct individuals, a;, aq,...,a; € M, and

v = {(e1, [a]), (22, [a2]), - -, (2, [@])}-

We omit the details.

Proof of Soundness in 2.10.2: Suppose that HUE(P) F A. Let
M be a model of H which respects equality. Then M is also a model
for the set E(P) of equality axioms. Now by the ordinary Soundness
Theorem 2.7.4, M is a model of A. End of Proof.

Proof of Completeness in 2.10.2: Suppose there is no tableau proof
of A from HUE(P). Then by the ordinary Completeness Theorem 2.9.2
there is a model M of HU E(P) in which A is false. By the Equality
Construction the model M respects equality, and is a model of H in

~ which A is false. End of Proof.

Henceforth we assume that all models mentioned in this book
' respect equality.

100 CHAPTER 2. PURE PREDICATE LOGIC

2.11 Order Relations

By an order relation mathematicians usually mean a transitive binary
relation, that is a binary relation < satisfying the transitive law below.
As usual write z < y instead of (z,y) €<, and = < y instead of
[z <yA-z=y] '

Order Axioms

(1) Reflexive Law Ver <z

(2) Transitive Law VaVyVe[z Sy Ay <z =z < 2]
(3) Anti-symmetric Law VzVylz <yAy <z =z =1y

(4) Comparability Law VaVy[z <yVy < 1]

(5) No First Element -d2Vz 2z <z

(6) No Last Element -JuwVz z <w

(7) Density Law VaVylz <y = Jz[z <z Az < y]].

A model for axioms (1)-(2) is called a pre-order. A model for axioms
(1)-(3) is called a partial order. A model for axioms (1)-(4) is called
a linear order. An order which satisfies (5) is said to have no first
element; an order which doesn’t is said to have a first element.
Similarly for (6). A model for axioms (1)-(7) is called a dense linear
order without first or last element.

Some familiar linear orders include the set R of real numbers, the
set Q of rational numbers, the set Z of integers, and the set N of natural
numbers, all with the usual < relation. Of these R and Q are dense
linear orders without first or last element, Z and N are not dense, Z has

no first or last element, and N has a first element but no.last element.

Each a,b € R determines four intervals
[, ={reR:a <z < b}, la,b[={z € R:a <z < b},

la,b={z € R:a <z < b}, la,b)={z€R:a<z<b},

2.12. SET THEORY , ' 101

called respectively the closed interval, open interval, and half-open.
intervals with endpoints a and b. If a < b these are all dense linear
orders, [a,b] has first and last element,]a,b[has neither first nor last
element, [a, b[has a first but no last element, and]a,] has a last but no
first element. An example of a partial order which is not a linear order

is the set P(X) of all subsets of a set X having more than one element,

where the relation symbol < is interpreted as the subset relation C.
Thus, for example, letting X = N, the set of natural numbers, we can
demonstrate that (4) fails for the model M = (P(X), C) by considering
the two sets ' V

O = {n € N:nisodd}, E ={n€N:niseven}.

Any binary relation R on a set X determines a preorder <r called
the transitive closure of R. The definition is that for z,y € X we

" have z <g y iff there is a sequence o, &1, T2, . . . T, of elements of X

such that zo = =, T, = y and
(zg-1,2x) € Rfor k=1,2,...,m.

The transitive closure is reflexive since sequences of length n = 0 are
allowed. It is transitive since a sequence from z to y may be followed
by a sequence from y to z to given a sequence from z to z. If the set X
is finite we may represent the transitive closure as follows: Draw a dot

" for each element of X and an arrow from z to y if (z,y) € R. Then

z <p y iff may be connected to y by a path of arrows.

2.12 Set Theory

In this section we give the axioms for ZST — Zermelo set theory,
which were introduced by Zermelo in 1906 as a foundation for mathe-
matics. Zermelo set theory is a part of a larger and more recent set of
axioms called ZFC — Zermelo-Fraenkel set theory with the axiom

~ of choice. The first-order language in which the sentences of Zermelo

set theory are formulated has no proposition symbols and has just two
predicate symbols: one for equality (=) and one for membership(€).

V ' -The equality axioms are tacitly included in ZST. Thus, when we say

102 CHAPTER 2. PURE PREDICATE LOGIC

that a sentence C is a theorem of ZST we mean that it is provable
from the axioms of ZST and the equality axioms. While the vocab-
ulary of ZST is very simple, it has been shown that the sentences of
(virtually) every mathematical theory can be translated into sentences
of ZST. Much of mathematics, including all the mathematics done in

this book, can be carried within ZST, and (virtually) every theorem of

mathematics can be treated as a theorem of the larger axiom set ZFC.
See A. Levy’s book on set theory for a complete list of axioms for the
larger theory ZFC and interesting discussion.

2.12. SET THEORY 103

Axioms of Zermelo Set Theory

(1) Pairing: VzVyIVufu €z &z =uVy =y
Translation: If z,y are sets, so is z = {z,y}.

(2) Extensionality: VaVylz =y & Vz[z €z & 2 € y]

Translation: Two sets are equal iff they have the same
elements.

(3) Empty set: JzVy[y € z = y # y]
Translation: There is a set which has no elements.
(4) Union: VzyVz[z €y & Juuez Az € u
Translation: The union of a set of sets is a set.

(5) Power set: VziyVz[z €y & Vu[u € z = u € z]]

Translation: The collection of all subsets of a set is also a
set.

(6) Infinity: Ju[d € uAVz[z €u=2U{z} € u]]
Translation: There is an infinite set.

(7a) Comprehension: VrIyVz[z €y & [z €z A A(2)]]
Translation: There is a set y = {2z € z: A}.

The last item (74) is an infinite list of axioms, one for each wif
A(z) in which y does not occur. Together, this infinite list is called the
Comprehension scheme. Given a set z and a wif A(z), the Comprehen-
sion scheme allows us to form the set of all z € z such that A(z). For
example, once we have the set of natural numbers and a wif which ex-
presses the property “z is even”, we can use the Comprehension scheme
‘to prove that the set of even natural numbers exists.

104 CHAPTER 2. PURE PREDICATE LOGIC

The remaining axioms of ZFC, which are not given here, are also
sentences of pure predicate logic with the = and € symbols. Their
names are the Aziom of Regularity, the Aziom of Choice, and an infinite
list of axioms called the Scheme of Replacement.

The Axiom of Infinity deserves some comment. To make the ax-

iom readable, we have expressed it using symbols which are not in the.

original vocabulary of Zermelo set theory: for the empty set, and
z U {z} for the union of z and the singleton {z}. These expressions
are abbreviations for notions given to us by the other axioms. So, for
example, § € u could be formally expressed by the wif

Jdz[z € u AVy—y € z].

We leave as an exercise (Exercise 49) the verification that the entire
Axiom of Infinity can be expressed in a formally correct way as a wif
in the vocabulary of Zermelo set theory. -

It is reasonable to translate the Axiom of Infinity as “there is an
infinite set,” because it says that there is a set u such that

0 € u, {0} € u, {0, {0} € u, {0, {0}, {0, {0}}} € u, ...

2.13 | Tableaus and Mathematical Proofs

In composing a “real” mathematical proof, a mathematician is free to
use not only the rules of tableau proofs, but any other rules which are
known to be sound. By a sound set of rules we mean a set of rules
such that any wif which is proved from a hypothesis set H using the
rules is a semantic consequence of H. Real mathematical proofs are
usually written in paragraph form rather than in tree form. However,
they can be translated into tree form, and can be thought of as tablean
proofs which use extra rules. When extra rules are allowed, proofs
become easier to find and easier to understand. On the other hand, the
concept of a proof is more complicated when more rules are allowed.
When the aim is to study the concept of a proof, as in this book, one
should keep the set of rules as small and simple as possible. But when
the aim is to discover proofs in mathematics, one should make the set
of rules as rich as possible.

2.13. TABLEAUS AND MATHEMATICAL PROOFS - 105

In this section we shall make a short detour from our main path and
discuss some of the extra tules of proof in pure predicate logic which
are commonly used in mathematics. Each of these extra rules is easily
seen to be sound. . The Extended Completeness Theorem shows that

- any wi which can be proved from a hypothesis set H using the tableau

rules and the extra rules can be proved from H using only the tableau
rules. Often, however, the formal tableau proof will be considerably
longer. -

For the sake of simplicity, our presentation in this section will be

less precise than in our main line of development. We shall deal with .

tableaus in a broader sense which are built using a variety of extra rules

as well as the original tableau extension rules. In order to combine

various rules together, we need to work with hypothesis sets which
contain sentences with parameters from K. The Extended Soundness
and Completeness Theorems for sentences with parameters from K are

given in the Exercises.

For each of the extra rules, we shall first display the rule in a box,

- and then prove a theorem which says that the extra rule is sound. In
this section we shall always assume that H is a set of sentences with -

parameters from X, and that all tableaus mentioned are finite.

Direct Proof Rule. Color a node of a tableau red if 'eVéfy o

contradictory.

Theorem 2.13.1 (Direct Proof Theorem) If there is a tableau T

with root H such that the wff A occurs on every noncontradz’ctory
branch of T, then A is tableau provable from H..

Proof: To get a tableau proof of A from H, simply add —A to the list
of hypotheses H. This makes each branch of T contradictory, so that
T is a tableau proof of A from H.

By a direct proof of A from H we mean a tableau with root

~ H such that A occurs on every noncontradictory branch. The‘Dirvect

branch through it either contains the formula to be prov‘éd"qr: ;,iSf;;iﬁ_ P

End of Proof.

106 CHAPTER 2. PURE PREDICATE LOGIC

Proof Theorem shows that if A has a direct proof from H, then it has a |

tableau proof from H. Ordinary tableau proofs, which add —A to the
list of hypotheses, are called indirect proofs. Sometimes there is an
indirect proof of A from H but no direct proof. It is considered good
form in mathematics to give a direct proof if you can find one, because
direct proofs are often easier to follow than indirect proofs.

Learning Rule. If T is a branch in a tableau and B is tableau
provable from some or all of the formulas in T, then the tableau
may be extended by adding B to the end of the branch T.

Theorem 2.13.2 (Learning Theorem) Suppose that a wff A has a

proof from H which uses all the tableau rules plus the Learning Rule.

Then A is tableau provable from H.

Proof: Our plan is to prove that the Learning Rule is sound by imi-
tating the proof of the Soundness Theorem, then to use the Extended
Completeness Theorem to prove the Learning Theorem.

Let T be a labeled tree whose root is a set of sentences H which is
built up using the tableau rules and the Leaning Rule. We may assume
that all the wffs on T are sentences with parameters in some set X’
which contains K. As in the proof of Lemma 2.7.2, one can prove by
induction on the number of nodes in T that for any model M of H,
there is a branch I of T and a valuation v such that M k= T'(v). The
induction step has one new case corresponding to the Learning Rule.
Suppose B is added to the end of a branch T' by the Learning Rule.
Let M |= I'(v). By the Extended Soundness Theorem for hypotheses
with extra parameters (Exercise 24), M = B(v). This completes the
induction.)

Exactly as in the proof of the Soundness Theorem, we see that if A is
provable from H using the tableau rules and the Learning Rule, then A
is a semantic consequence of H. Finally, by the Extended Completeness

2.13. TABLEAUS AND MATHEMATICAL PROOFS 107

Theorem, if A is provable from H using the tableau rules and the
Learning Rule, then A is tableau provable from H. End of Proof.

The Learning Rule is quite powerful. There are two ways to. use
it in a mathematical proof. One way is to invoke a previous theorem
during the proof of a new theorem. This makes it possible to build up
a body of knowledge by keeping a record of theorems which have been
proved. The second way is to temporarily stop work on the original
tableau, use a new a sheet of paper to write out -a tableau proof of a
wil A from the formulas on the branch, and then add A to the end of
the branch in the original tableau. One can think of this method in
terms of “windows” which can be opened and used to hold subordinate
tableaus within the main tableau. To use the Learning Rule, “open a
window” at the end of a branch in a tableau. Inside the window, put
a tableau proof of a wif A from the formulas on the branch. Then

* return to the main tableau and add the new formula A right below the

window. Sometimes there will be windows within windows.

In many cases a wif A easily follows from a branch T’ using only
propositional logic, and one can add A to the end of T by the Learning
Rule. For example, if B and C both occur on a branch, one can add
B A C to the end of the branch. Similarly, if A = B and B = A
both occur on a branch, one can add A & B to the end of the branch.
Another common example is modus ponens: if B and B = C both
occur on a branch, one can add C to the end of the branch. There is
a similar consequence of the Learning Rule which uses an equivalence
instead of an implication: If B and C < B both occur on a branch, one
can add C to the end of the branch. Some other examples are provided
by the valid argument rules given in Chapter 1.

By the Learning Rule, any formula which has a tableau proof can
be added at any time to the end of a branch; for example, A V -A can
always be added.

The Learning Rule may also be used to add the formula Jz A to
the end of a branch whenever a formula of the form A(z//c) occurs on
the branch. In this way, one can often give a direct proof of a formula
which starts with an existential quantifier.

Each of the next three rules is obtained by combining a theorem

‘with the Learning Rule.

108 CHAPTER 2. PURE PREDICATE LOGIC

Deduction Rule. If I' is a branch of a tableau and B is tableau
- provable from A and some or all of the formulas in T, then
A = B may be added to the end of the branch T'.

Theorem 2.13.3 (Deduction Theorem) If B is tableau provable

from H and A, then A = B is tableau provable from H.

Proof: Suppose H,A I B. By the Extended Soundness Theorem,
H,A = B. It follows from the truth table for = that H = A = B.
By the Extended Completeness Theorem, H+ A = B. End of Proof.

To see that the Deduction Rule is sound, we note that it is obtained
by combining the Deduction Theorem with the Learning Rule as fol-
lows. If B is tableau provable from A and a branch I, then A = B is
provable from I' by the Deduction Theorem, so we may add A = B to
the end of I by the Learning Rule.

The Deduction Rule is often used in the following way. To add
A = B to the end of a branch I', open a window and prove B from
A and formulas on I', then return to the main tableau and use the
Deduction Rule. In a mathematical proof, this is usually expressed by
saying that we temporarily assume A and prove B, then conclude that
A = B.

Generalization Rule. If T' is a branch of a tableau and
A(z//c) is tableau provable from a set of wifs on I' in which
the individual symbol ¢ does not occur free, then Yz A may be
added to the end of the branch T.

Theorem 2.13.4 (Generalization Theorem) Suppose that VzA is
a sentence with parameters from K. If an individual symbol ¢ does not
occur free in H and A(z//c) is tableau provable from H, then Yz A is
tableau provable from H. : ‘

2.13. TABLEAUS AND MATHEMATICAL PROOFS 109

Proof: Let T be a tableau proof of A(z//c) from H. By adding

the additional hypothesis ~Vz A to T and inserting the wif ~A(z//c)

immediately below the root of the tableau, we obtain a tableau proof
of Vz A from H. ‘ End of Proof.

We can see that the Generalization Rule is sound as follows. If
A(z//c) is tableau provable from formulas on a branch I' in which ¢
does not occur free, then Vz A is provable from I' by the Generalization -
Theorem, so we may add Vz A to the end of I' by the Learning Rule..

The Generalization Rule is often used in the following way. To add

© Vz A to the end of a branch I, open a window, choose a new individual

symbol ¢, prove A(z//c) from formulas on T in which ¢ does not occur
free, then come back to the main tableau and use the Generalization
Rule. In a mathematical proof, this is usually expressed by saying that
we let ¢ be arbitrary, prove A(z//c), then conclude that Vz A.

We shall discuss two more extra rules which are used very frequently
in mathematical proofs, the Definition Rule and the Substitution Rule.

Definition Rule. If I is a branch of a tableau, A is a wif with -
~ the free variables z1,...,%n, and r is an n-ary predicate symbol .
which does not occur on the branch I or in A, then the formula

Yoy ... Ve, [r(z1,. .., %) & A] (2.1)

may be added at the end of the branch.

Theorem 2.13.5 (Definition Theorem) If A and B are wffs with
parameters from K, A has the free variables zy,...,Tn, T i an M-
ary predicate symbol which does not occur in H, A, or B, and B is
tableau provable from H together with the formula 2.1, then B is tableau
provable from H alone.

The formula 2:1 is called a definition of the predicate r. An appli-

.cation of the Definition Rule can be easily recognized in a mathematical

110 CHAPTER 2. PURE PREDICATE LOGIC

proof because it is usually signaled by a word such as “define,” “let,”
- or “where.” The purpose of this rule is to make a proof easier to un-
derstand by replacing a long formula which may appear several times
by an atomic formula with a new predicate symbol. This is especially
helpful if the name of the new symbol is chosen to remind the reader
of its meaning.
~ There are many examples of the Definition Rule in the proofs in
this book. For instance, during the proof of the Completeness Theo-
rem for Propositional Logic, the predicates “basic wif,” “unused node,”
finished branch,” and “finished tableau” were defined.

Proof of the Definition Theorem: Suppose that B is tableau prov-
able from HU{C} where C is the formula 2.1. Let P be the vocabulary
of H, so that P U {r} is the vocabulary of HU {C}. Then any model
of HU {C} in the vocabulary P U {r} is a model of B. Now let M be
a model of H in the original vocabulary P. We may expand M to a
model M of HU {C} in the vocabulary P U {r} by taking rx to be the
set of n-tuples of elements of M which satisfy the wif A in M. Thus

N = B. It can by shown by an induction on wifs that for every wif D

in the original vocabulary P and any valuation v in M, M | D(v) if
. and only if /' | D(v). Therefore M B, so H = B. Finally, by the
‘ Extended Completeness Theorem, H + B. End of Proof.

The following Substitution Rule is often used in combination with
the Definition Rule.

-Substitution Rule. Suppose Cis a wif, A and B are wifs with
at most the free variables z;,...,z,, A is a well-formed part of
C, and D is the wif obtained from C by replacing the string A
by the string B. If T' is a branch which contains the wifs C and

Va,...Vz, [A & B], (2.2)

then D may be added to the end of the branch.

- 2.13. TABLEAUS AND MATHEMATICAL PROOFS 111

Theorem 2.13.6 (Substitution Theorem) Suppose C is a sentence
with parameters from K, A and B are wffs with at most the free vari-
ables z1,...,2n, A is a well-formed part of C, and D is the wff obtained
from C by replacing the string A by the string B. Then D is tableau

provable from C and V...V, [A < BJ.

The proof is by induction on the length of the wif C, and is left as

Exercise 53.
The Substitution Rule is obtained from the Substitution Theorem

and the Learning Rule as follows. Suppose that C and Vz;...Vz,[A &
B] occur on T'. By the Substitution Theorem, D is tableau provable

“from T, so by the Learning Rule, D may be added to the end of the

branch. Thus the Substitution Rule is sound. ‘
The Substitution Rule is frequently used in the following way. Sup-

" pose a new predicate r is introduced by the definition

Vay ... Ve, [r(@1,. .., %) & A

using the Definition Rule. Then the Substitution Rule may be used
to replace a well-formed part A within a wiff C by the new predicate
r(a:l,;..,:c,.). It may also be used to “unravel” the definition by re-
placing a well-formed part r(z1,...,2,) within a wif C by the old wif
A

Recall that a set of rules is said to be sound if any wif which is proved
from a hypothesis set H using the rules is a semantic consequence of

"H. In this section we have introduced several extra rules which are

commonly used in real mathematical proofs. We showed that each of
these extra rules is sound by proving that any tableau proof using an
extra rule can be replaced by an ordinary tableau proof. What we
really need in order to use these extra rules in mathematical proofs is
one grand soundness theorem which says that the set of all the extra
rules together, plus the original tableau rules, is sound.

Theorem 2.13.7 The set of rules consisting of the original tableau
extension rules and the Direct Proof, Learning, Deduction, Generaliza-

~ tion, Definition, and Substitution Rules is sound.

112 CHAPTER 2. PURE PREDICATE LOGIC

Proof: We prove that Lemma 2.7.2 is true for tableau proofs and direct
~ “tableau proofs which use the extra rules. That is, for every tableau T
for H which uses the extra rules and any model M of H, there is
a branch I' of T and a valuation v such that M |= I'(v). Like the
ordinary Soundness Theorem, the proof is by induction on the number

of nodes in the tableau. The induction has one new case for each of

the extra rules for extending the tableau. In each case, we need only
repeat the argument used to show that the extra rule by itself is sound.

The soundness of the set of all our extra rules now follows as before.
End of Proof.

As we mentioned before, mathematical proofs are usually written
in paragraph form rather than in tree form. When the proof is trans-
lated into tree form, a list of “cases” will translate into a node with
two children, as in the V rule and similar tableau rules. A temporary
assumption in a mathematical proof will often begin an application of
the Deduction Rule, and a phrase such as “consider an arbitrary ¢” will
begin an application of the Generalization Rule.

- Very simple steps in proofs are often omitted or grouped together.
For example, if a hypothesis has the form YzVyVz C, one usually sub-
stitutes for the variables z,y and z all at once rather than using the V
tableau rule three times.

Because of the extra rules, a real mathematical proof translated into
tree form will usually be shorter and have fewer negations and branches
than the corresponding full tableau proof.

Example 2.13.8 We conclude this section with an example of a math-
ematical proof in paragraph form which we shall analyze as a tableau
proof with extra rules.

Hypotheses:
(1) p=>qvr
(2) ¢=Vzs(z)
(3) r=Vyi(y)
(4) Vylt(y) = s(y)]
To Prove:
p = Yz s(z)

Proof in paragraph form: Temporarily assume p. By (1), ¢ V r.

N

2.14. PREDCALC PROBLEMS (PRED2) 113

Case 1: q. By (2), Vz s(z).

Case 2: r. By (3), Vyt(y). Consider an arbitrary a. Then t(a). By
(4), t(a) = s(a). Therefore s(a). Since a was arbitrary, V:cs(:c)

| Since Vz s(z) in all cases, p = Vz 5(z) as required. End of Proof.

The above proof can be translated into a direct proof which uses the
tableau rules together with the Deduction and Generalization' Rules.
The figure on page 114 shows the proof in tree form, skippln'g the
simpler steps which use the ordinary tableau rules. The large window
contains a direct proof of ¥z s(z) from the original hypotheses and the
temporary hypothesis p, and is used for the Deduction Rule. The small
window contains a direct proof of s(a), where a is new, from the wifs on

_ the branch above the window, and is used for the Generalization Rule.

2.14 PREDCALC Problems (PRED2)

This set of problems uses the PREDCALC or PREDWIN program.
Its purpose is to make the student more familiar with the behavior
of truth values of wifs of predicate logic in a model. There are twe.lve
problems. They are located in the directory PRED2 on the distribution
diskette, and the SETUPDOS or SETUPWIN program will put them
in a subdirectory called PRED2 on your hard disk. In each problem,
a goal gré.ph will appear on the screen and your task is. t'o use the
“calculator” keys to get an exact copy of the goal in position one of
the stack. If the letters NC appear after the label GOAL, your answer
must use none of the parameter (or constant) symbols 0,1,... in order
to get full credit. (If you have a text only monitor, you will have to use
the View command to see the goal graph.) .
Suggestions: Think of a wif which has the required graph .a,nd write
it down, then make a parsing sequence for the wif. and build it up step

by step. You always start out with atomic wifs involving =, <, >,+,—,

or . To see the graph of the goal wif in detail, hit V for Vi.ew. If
you want to keep part of what you did and change the rest, hit R to

" Replay, go as far as you want by pressing the Enter key, then hit K to

114 ‘ CHAPTER 2. PURE PREDICATE LOGIC
Hypotheses: A
(1) p=gqVr
(2) q=Vzs(z)
(3) = Yyi(y)
(4) Vylt(y) = s(y)]

Proof:

- Temporary hypothesis: p

q r
Vxl(x) (by 2) Vyt!(y) (by 3)
t(a)
t(a)f,?s(a) (by 4)
S(|a)

Vas(z) (by Gen. Rule)

p=Vzs(z) (by Deduction Rule)

Figure 2.4: Example 2.13.8 in Tree Form.

2.14. PREDCALC PROBLEMS (PRED2) ' 115

Kill the remaining steps and make your changes. As in the previous
problem set, you should give your solution the name of the problem
preceded by the letter A. The approximate number of steps needed for
a solution and other comments are given below. You do not have to

~ find a solution with exactly the suggested number of steps. However,

if you are using many more steps than suggested you are probably on
the wrong track.
POINT. 5 steps. (A graph consisting of one point in the cube).
PLANES. 5 steps. (Three perpendicular planes).
SQRPLUS. 4 steps. (The graph of the equation z = y2? + 1).
TOUGH. 3 steps. (A graph which has something to do with divisi-

bility by 3).

DIAG. 3 steps. (The diagonal of the cube from lower front left to

~upper back right). No parameters allowed.

TWOLESS. 4 steps. (x is at least 2 less than z). No constants
allowed. ‘

FOUR. 5 steps. (z is divisible by 4). No parameters allowed.
XXX. 5 steps. (A stack of eight X’s formed by two vertical planes).

~ No parameters allowed.

TRUESUM. 6 steps. (z = z +y in the usual way instead of modulo
8). No parameters allowed.

ALLEVEN. 8 steps. (All three variables are even). No parameters
allowed. ' |

SOMEVEN. 8 steps. (At least one variable is even). No parameters
allowed.

SQRSUM. 9 sfeps. (2 is the sum of two squares). No parameters
allowed.

‘Here are some optional projects using the PREDCALC program.

1. The sentence
VzVz[0 <z = Jyz=zxy]

116 CHAPTER 2. PURE PREDICATE LOGIC

is true for ‘some universes of size between 1 and 8 but false for
others. Find out when it is true and when it is false.

2. The R(...) key in the upper left corner of the PREDCALC key-
pad can be used to add extra predicate symbols with one, two,
or three places to the vocabulary. The computer will randomly
choose models for these predicates. Use this key to experiment
with graphs of a wif in randomly chosen models. By using the
“Replay” command, you can repeat a session with the same wils
but different randomly chosen models.

3. The . = h(..) key also adds extra predicate symbols with two
or three places to the vocabulary. The computer will randomly
choose models in which the first variable is a function of the other
one or two variables.

4. Find a single sentence A which uses only the variables and y,
+, connectives, and quantifiers, such that A is true in each of
the PREDCALC models of even universe size 2,4, 6,8 and false
in each of the models of odd universe size 1,3,5,7..

. 5. Find eight different sentences A,, ..., Ag which use only the vari-
ables z and y, the predicate symbol <, connectives and quanti-

fiers, such that for each n, A, is true in the PREDCALC model
with universe size n, but is false in every other universe size.

2.15 Tableau Problems (.TAB3)

This assignment uses the TABLEAU or TABWIN program. In this

assignment you will construct tableau proofs in predicate logic. The
problems are located in directory TAB3 on the distribution diskette,
and the SETUPDOS or SETUPWIN program will put them in a sub-
directory called TAB3 on your hard disk. There are three groups of
problems in this directory:

1. SHORT1, SHORT?, ..., SHORTS,
2. SET1, SET?, ..., SETS6,

~ 2.15. TABLEAU PROBLEMS (TAB3) 117

3. ORDERI, ORDER2, ..., ORDERS.
Use the TABLEAU or TABWIN program commands to load the

problem, do your work, and then save your answer on your diskette
or hard drive. The file name of your answer should be the letter A
followed by the name of the problem.

As in the propositional problems, each problem is assigned a sug-
gested number of nodes: its par value. The par value is given only
as a guide; you are not expected to attain it exactly. You should try
problems with smaller par value first.

The first group of problems, called

SHORT1.TBU through SHORT8.TBU,

develop some of the basic properties of quantifiers. You should do

" these problems first by hand on a piece of paper, and then do them

on the computer to check your work. This will help you discover any
misunderstandings you may have.

SHORT1 (3 nodes)
Hypothesis: 3z p(z,z)
To prove: 3z Jy p(z,y)

SHORT?2 (3 nodes)

Hypothesis: 3y p(y)
To prove: Jy Vz p(y)

SHORT3 (4 nodes)

Hypothesis: Vy Vz p(z,y)
To prove: Vz Vy p(z,y)

SHORT4 (6 nodes)

Hypothesis: p A 3z ¢(z)
~To prove: 3z [pA q(z))

118 CHAPTER 2. PURE PREDICATE LOGIC

- SHORTS5 (7 nodes)

Hypothesis: 3z [p(z) A ¢(z)]
To prove: 3z p(z) A Iz g(z)

SHORT®6 (11 nodes)

Hypothesis: None
To prove: Iz p(z) & —Vz —p(z)

SHORT7T (9 nodes)

Hypothesis: Vz 3y F(z,y)
~ To prove: Vz Jy 3z [F(z,y) A F(y,2)]
SHORTS (23 nodes)
Hypothesis: None
To prove: Yz p(z) AVz ¢(z) & Vz [p(z) A ¢(z)]

The remaining problems are more difficult, and you need an overall
‘picture of your proof so that you will be able to choose useful substitu-
tions for the quantifiers. Before doing the formal proof on the computer,
you should make a sketch of the main steps of the proof with pencil
and paper. ’ '
The next group of problems called

 SET1.TBU through SET6.TBU

aré about sets.
SET1 (10 nodes).
AHypothesis:
Yz Yy [subset(z,y) & Vz [in(z,z) = in(z,y)]]

To prove: /
Ve subset(z, z)

2.15. TABLEAU PROBLEMS (TAB3) 119

The predicate in(z,y) means that z is an element of y, and the
predicate subset(z,y) means that z is a subset of y. The hypoth-
esis defines subset(z,y) in terms of in(z, y). The conclusion states
that every set is a subset of itself. '

SET2 (14 nodes)
Hypotheses:
Y Yy [subset(-a:,y) & Vz [in(z, z) = in(z,y)]],
Ve [empty(z) < - Jy in(y,z)].

To prove: :
' Vz [empty(z) = Vy subset(z,y)]

The predicate empty(z) means that = is the empty set. The first
hypothesis is the same as before. The second hypothesis defines
empty(z) in terms of in(z,y). The conclusion states that the
empty set is a subset of every set.

SET3 (28 nodes)
Hyi)otheses:
Ve Yy [subset(z,y) & Vz [in(z,z) = in(z,y)]],
Ve Wy Vz [union(z, v, 2) & ¥t [in(t, z) © in(t, <) V in(t, y)])-
To prove:
Vz Yy Vz [union(z,y, z) = subset(z, z)]

The predicate union(z,y, 2z) means that z is the union of z and
y. The hypotheses define subset(z,y) and union(z,y) in terms of

“in(z,y). The conclusion states that = is a subset of the union of
z and y.

. 'SET4 (33 nodes)

120 CHAPTER 2. PURE PREDICATE LOGIC
Hypothesis:
Vz Vy [subset(z,y) & Vz [in(z,z) = in(z,y)]]
To prove:
Vz Yy Vz [subset(z,y) A subset(y, z) = subset(z, z)]
The hypothesis is again the definition of subset(z,y) in terms of

in(z,y). The conclusion is the transitivity law for subsets, that if
z is a subset of y and y is a subset of z, then z is a subset of z.

SET5 (42 nodes)

Hypotheses:
Vz Yy [subset(z,y) & Vz [in(z,z) = in(z,9)]],

Vi ‘v’y [QQ($, y) & Vz [in(a:, 2‘) = in(yaz)]]v

Vz [single(z) ¢ 3y in(y, z)AVy Vz [in(y, z)Ain(z,) = evq(y,kz)]].

To prove:
Ve [single(z) = Vy [3z [in(z, z) A in(z, y)] = subset(z,y)]]

The predicate eq(z,y) means that z and y are elements of the
same sets. The predicate single(z) means that z has exactly
one element. The hypotheses define the predicates subset(z,y),
eq(z,y), and single(z). The conclusion states that if single(z) and
y contains some element of x, then z is a subset of y.

SET6 (51 nodes)
Hypotheses:
Yz Vy [subset(z,y) & Vz [in(z,z) = in(z, y)]],

Vz Vy Vz [union(z,y,z) & Vit [in(t, z) & in(t,z) Vin(t, y)]).

' 2.15. TABLEAU PROBLEMS (TAB3) 121

To prove:

Yz Yy Vz [union(z,y,z) = Vu [subset(z, u)Asubset(y,) = su‘bSet(b

The hypotheses define the predicates subset(z, y) and union(z,y,2).
The conclusion states that if both z and y are subsets of u, then
the union of z and ¥ is a subset of u.

The next group of problems called
ORDERIL.TBU through ORDER6.TBU

concern partial orders.
ORDER1 (19 nodes)

Hypotheses:
Vzz <z,

Yz Vy Vz [chy/\ySz=>:c§z].
To prove:
YwVzVyVz [[w<zAz Sy]/\yﬁz:»wiz]
The hypotheses state that < is a partial ordering. The conclusion
states that if w <z <y < z, then w < 2.

ORDER2 (21 nodes)

Hypotheses:
Vezr<uz,

, VzVyVz[z <yAy<z=z<2],
VaVyVzlglb(z,y,2) & [z < sAz SylAVEt Sant <y =t <z]}

To prove: :

122 CHAPTER 2. PURE PREDICATE LOGIC 2.15. TABLEAU PROBLEMS (TABS3) 123
The predicate glb(z, y, z) means that z is the greatest lower bound Hypotheses:
of z and y in the partial ordering <, that is, z is the greatest Vzz <z,

element which is < both z and y. The conclusion states that if .
~z <y, then z is the greatest Jower bound of = and y. VeVyVz[z<yAy<z=z <z,

VeVylz<yeoz<yA-y <zl

ORDERS (27 nodes)
Hypotheses: To prove:

Vzz <z, ‘v’a:Vsz[x<y/\y§z:>Vm<z]

veVyVzlz SyhySz=e <, The predicate z < y means that 2 < y but not y < 2. The
hypotheses state that <is a partial ordering and define the pred-
icate z < y in terms of z < y. The conclusion states that if
z<y<zthenz <z

VaVyVzlglb(z,y,2) © [z S zhz S y|AVEt < zAt <y =t < z]].

To prove:
< .
Vz Vy Vz Vit [glb(z,y,2) A glb(z,y,t) = z < 1] ORDERS (104 nodes)

The hypotheses are the same as for ORDER2. The conclusion
states that if z and t are both greatest lower bounds of z and y,
then z < £. (Since the same reasoning gives ¢ < z, this shows
‘that any two greatest lower bounds of z and y are equal).

- Hypotheses:
Vrz <z,

VeVyVzz <yAy<z=z <z,

ORDER4 (32 nodes) VaVyVzlglb(z,y,2) & [z < zhz S ylAvEt S zAt <y = t < 2],

Hypotheses: ; Vo ¥y feale,a) & £ Sy Ay <l
Ve z <z, ‘
VeVyVzz <yAy<z=z <2, Toprove: ; |
VeVydtle <tAy <i]. ([glb(a, b,) Aglb(b, ¢, €)]Aglb(d, ¢, f)] Aglb(a, e,g) = ea(f, g)
"To prove: '

The predicate eq(z,y) means that ¢ < y and y < z. The hy-
potheses state that < is a partial ordering and define the predi-
cates glb(z,y,2) and eq(z,y) in terms of z < y. The conclusion
is an associative law for greatest lower bounds. If we write z Lly -
for the greatest lower bound of z and y, and z = y for eq(z,y),
the conclusion states that

VeVyVzdt[[s <tAy <tjAz <]

The hypotheses state that < is a partial ordering, and that for
any two-elements z,y there is an element ¢ such that z < ¢ and’
y < t. The conclusion states that for any three elements z,y, 2
there is an element ¢ such that 2 < ¢,y <t,and z < t.

ORDERS5 (36 nodes) (aUb)Uc=all(bUc).

124 ' CHAPTER 2. PURE PREDICATE LOGIC

2.16 Exercises

1. The string
3z [Vy p(z,y) = —q(z) V r(y)]

is an abbreviation for a wff in predicate logic.

(a) Change the string into the wif which it abbreviates by inserting
brackets in the correct places.

(b) Write down a parsing sequence for the wiff.

(c) For each wif of your parsing sequence, circle every occurrence of a
variable which is bound in that wff.

2. Give an example of a wif A in predicate logic with variables z, y,
and z which satisfies each of the following four conditions at the same
time:

e z is free for y but not for z,
s y is free for z but not for z,
e z is not free for z, and

¢ 2 is not free for y.

3. Prove that for each wif A in pure predicate logic, if B and C are
well formed parts of A and the first symbol of C is within B then the
last symbol of C is within B.

Hint: Use induction on the length of B and Lemma 2.2. 3.

4. Which of the following sentences A are valid? For those which are,
give a tableau proof. For those which are not, give a counter-model

(i.e. a model M such that M }£ A).

(1) [p11 V pi2) Alpar V p22] = [pi1 A par] V [pr2 A paa]

2.16. EXERCISES 125

(2) [p11 Apa]V [p12 A paz)-= [p11 V P12 A [P21 V paa]
(3) Vedyp(z,y) = yVzp(z,y)
(4) FyVep(z,y) = Y2y p(e,y)

5. In the following, N denotes the set of natural numbers,
N ={0,1,2,3,...}

Let A be the model with universe N in which the predicate sy‘mb‘0¥s =,
<, and < and the expression z +y = z all have their usual meanings.
Which of the following are true in N7

© (L.a) VeVyVzlz+y=z=>y+a=z]
(1.b) Vzdyz +y = z.

(2) JyVzz +y ==z

(3.a) VaVedyz +y = 2.

(3.b) VaVz[z <z=Jyz+y=2]
(4.2) Vzdyz < y.

(4.b) Vzdyz < y.

- (5.a) Vzyy < z.

(5.b) Vadyy < z.

(6.a2) JyVzy < z.

(6.b) JyV¥ay < .

(7) ValYys <y = o = 0],

(8) Vavy[lz <yAy < a]= 2=yl

- (9) Vavy[lz <y Ay <z]= -z =yl

126 CHAPTER 2. PURE PREDICATE LOGIC

(10) Vzdyz <y =3Jy3 <y.

C(11) Vzdyz <y = Jyy <y.

6. Let Z denote the set of integers:
Z=1{.,-2-101,2,...},

and let Z be the model with universe Z and the usual meaning for the
predicate symbols. Which of the sentences of Exercise 5 remain true
‘when N is replaced by Z?

7. In this problem you are to find a model M for predicate Iogic with
one binary predicate symbol p. The universe of M is the set {0, 1,2}
and the relation p™ is a subset of the set of pairs (i,;) with ¢ and j
from {0,1,2}. Your answer will be counted as correct if and only if the
wif
‘ Vz3y p(z,y) A 32Vy p(e,y) A ~FyVz p(z,y)
is true in your model M. You may specify your model by drawing a 3
by 3 matrix of truth values to indicate the graph of pa.

8. For each positive integer n construct a model M = (M, M) as
follows: ,
M={1,2,3,...,n—1},

M={(,j)e M xM: ij =1 (mod n+1)}.

- (Note: z=y (mod k) iff z —y is divisible by k.)
' Show that M }= Vz3y p(z,y) when n = 6 but not when n = 5.

9. In pure predlcate logic, let z and y be varlables and let A(z/y)

(with only one slash) be the wif formed by replacing each bound oc-
currence of z in A by y, leaving the free occurrences alone. For example,
(Vz3zp(z,2))(z/y) is Vz3y p(y, z). Prove by induction on wifs that if
A is a wif and y does not occur in A, then the wif [A & A(z/y)]
is valid. Hint: Let R(n) be the following property: For every wif C
of length < n, every model M, and every instance A of C in M,

M k= A(z/y) whenever y does not occur in A.

2.16. EXERCISES 127

'10. Give a tableau proof of each of the following:

(1) -Vep(e) & 3z -p(c)

(2) -Fzp(z) & Yz -p(z)

(8) Vap(z)

(4) Jzp(z)

(5) Vzp(z) & Vyp(y)
(8) Jzp(z) & Jyp(y)

(7) Vzlp(z) A q(2)] & [V p(z) AVz g(z)]

(
& ~dz ﬂp(m)
(

& Ve —p(z)

(8) Falp(2) V q(2)] & [Fop(a) vV 3a q(o)

11. In this exercise [p = ¢] is to be understood as an abbreviation
for the sentence Vz[p(z) < ¢(z)]. Give a tableau proof of each of the
following: '

(1) [p=q] = [Vzp(2) & Yz g(z)]
(2) [p=q] = Bep(z) & Fzg(z)]
(3) [p = gl = Vz[-p(z) & ~q(z)]

(@) [= @] A lp = g3 = Vel (@) A pe(e)] € [a1(z) A gs(a)]

[[pa(2)
(5) [pr = @] A [p2 = g = Ye[[pa(z) V po(2)] & [a(2) V ¢a(z)
(8) [p1 = qul A lp2 = @] = Va[[pi(2) = pa(2)] & [a(2) = 92(1’)]]
(M) [pr = @] A lp2 = 2] = Va[[pi(2) & pa(2)] & [a1(2) & 2(2)]]

12. Which of the following sentences A are valid? For those which are,
give a tableau proof. For those which are not, give a counter-model.
You may specify your counter-model M by writing down the universe

“set M and one or two subsets p™ and g™

128 CHAPTER 2. PURE PREDICATE LOGIC

(1.a) 3alp() A g(2)] = Bz p(z) A3z q(z)]
(1.b) [Fop(z) A Iz q(x)] = olp(a) A g(2)
(2.) Valp() V g(a)] = [Vap(z) V V2 ()]
(2.b) [Vzp(z)V Vz ¢(z)] = Vzlp(z) V ¢(z)]
(3.2) Valp(z) = g(2)] = Vzplz) = Va q(2)]
(3.b) [Vop(z) = Vo g(x)] = Valp(z) = g(o)]
(4.a) Fzlp(z) = ¢(z)] = Bz p(z) = Jz ¢(z)]
(4.b) [Fzp(z) = Foq(2)] = Felp(e) = q()]
(5.2) Vz[p(z) & g(z)] = [Vep(z) & Vzq(z)]
(5.b) [Vzp(z) & Vzq(z)] = Vz[p(z) & q(z

(z)]
(6.2) Jaz[p(z) & ¢(z)] = [(Bep(e) & Fzg(z)]
)]

(6.b) [Fzp(z) & Jz ¢(z)] = Ja[p(z) & ¢(=
(7.a) Vz-p(z) = —Vz p(z)
(7.b) —Vzp(z) = Ve -p(z)
(8.2) 3z —p(z) = ~Jz p(z)

))

(8.b) -3z p(z) = Jz—p(x

13. Give a tableau proof of each of the following:

(1) Vapep
(2) Jzperp
(3) ValpAg(z)] & [pAVag(z)]
(4) 3alpAg(@)] & [pA3eg(@)]

'2.16. EXERCISES

- (5) Vz[pVq(z)] & [pVVzg(z)]

(6) 3Jz[pVg(z)] [pVIzg(z)]
(7) Vz[p = ¢(2)] & [p = Vz ¢(z)]
(8) Fzp = q(@)] & [p= 3z (o))

(9) 3Jzlg(z) = p] & [Vzg(z) = p]

| (10) Valg(e) 5 5] ¢ (3o 4(z) = p

129

14. For each pair of wifs (a,b) below, give a tableau proof of one of the

 wifs and a countermodel of the other

(1.a) ‘v’x[p=> q(z)] = [p = Jz ¢(z)]

(1.b) [p= Fzg(z)] = Valp = ¢(z)]

)]
)

(2.2) Jz[p = g(2)] = [p = Vz ()]
)

(2.b) [p = Vag(z)] = Jz[p= ¢(z)]
(3.a) 3z¢(z) = p] = Bz q(z) = p]

(3:b) [Brq(z) = pl = Felg(a) =

(4:a) Vag(z) = p] = [Vz ¢(z) = p]
7l

(4.b) V2 g(z) = p] = Velg(a) >

- (5.2) Va[g(z) & p] = V2 q(z) & gl
(5.b) [Vzg(z) & p] = Velg(e) ¢ p]
‘_ v"‘(6.a) Jz[g(z) & p] = [Tz q(z) < p|

(ﬁ-b) [Fz ¢(z) & p] = zfq(z) & p]

130 CHAPTER 2. PURE PREDICATE LOGIC

15. Let T be the set consisting of the two wifs z = y and -~z = y.
Construct a model M such that each of these two wils is satisfiable in
M but the set T is not simultaneously satisfiable in M.

16. Find a finished tableau with the hypothesis set

¥y p(y, z),

Vzp(z,z), 3aVyp(z,y),

3z3y [-p(=,y) A =p(y,2)]
and the set of parameters M = {a, b,c,d}.

17. This exercise gives a formal proof of Problem 24 from Chapter 1.
Consider the following four statements.

(1) There exists a tableau proof of A from D.

(2) There exists a tableau proof of B from A.

(3) For all A and all B, there exists a tableau proof of B from A if
and only if for all M, if M models A then M models B.

(4) There exists a tableau proof of B from D.

Statements (1)-(3) are the hypotheses, and statement (4) is the for-
mula to be proved. Statement (3) combines the Soundness and Com-
pleteness Theorems for propositional logic.

Consider the following vocabulary for pure predicate logic.

Py={MO}, P3={TP}.

Let MO(z,y) be interpreted as “z models y,” and T'P(z,y,2) as “z is
a tableau proof of z from y.” Let the individual parameters a, b, and d
be interpreted as the wifs A, B, and D.

Write out the above hypothesis set and formula to prove as sentences
of pure predicate logic with individual parameters a, b, and d. Then
give a tableau proof.

18. Give a formal proof of Problem 25 from Chapter 1- analogous to
the preceding exercise. In addition to the predicate symbols MO, TP,

2.16. EXERCISES 131

another ternary predicate symbol OR is needed, where OR(z,y, z) is
interpreted as “z = [z V y].” One of the hypotheses should correspond
to the statement:

(0) For all A;B,C and M, if C = A V B then M models C if and
only if M models A or M models B.

19. This exercise gives a formal proof of the Main Lemma for the

Completeness Theorem for propositional logic. Here is a list of five
statements from Chapter 1.

(1) For all H and for all T, T is a finished tableau with hypothesis
set H if and only if T is a tableau with hypothesis set H and for
every I') if T" is a branch of T then either T is finished or T is
contradictory and finite. '

(2) For all H and for all T, T is a confutation of H if and only if T is
a tableau with hypothesis set H and for every I, if I is a branch
of T then T is contradictory and finite.

(3) For all H,T and T, if T is a tableau with hypothesis set H and
T' is a branch of T and T is finished, then there exists M such
that M models H. ‘

(4) For every H there exists T such that T is a finished tableau with
hypothesis set H.

(5) For all H, either there exists M such that M models H, or there
exists T such that T is a confutation of H.

The hypotheses (1-4) are versions of the definitions of a finished
tableau and a confutation, and of the Finished Set and Tableau Ex-
tension lemmas. Statement (5) is the formula to be proved, the Main
Lemma for the Completeness Theorem.

Consider the following vocabulary for pure predicate logic:

P, ={FB,CB}, P,={F B,MT,C}

al

ti

gir

i

(1

132 CHAPTER 2. PURE PREDICATE LOGIC

Let F'B(z) be interpreted as “z is a finished brahch”, and CB(z) as “x

~ is a contradictory finite branch.” Let F(z,y) be interpreted as “z is a

finished tableau with hypothesis set y,” B(z,y) as “z a branch of y,”
M(z,y) as “z is a model of hypothesis set y,” T(z,y) as “z is a tableau
with the the hypothesis set y,” and C(z,y) as “z is a confutation of
hypothesis set y.” ,

Write out the above hypothesis set and sentence to prove in pure
predicate logic with this vocabulary. Give a tableau proof.

20. Suppose that T is a finite tableau in predicate logic, that H is the
set of hypotheses of T, that A is a wif whose only free variable is z,
that b is a variable which is free for z in A, and that every branch of T
is either contradictory or contains the wif A(z//b). Describe a simple
way to change T into a tableau proof of 32 A from H.

21. Suppose that H is a finite set of sentences of pure predicate logic,
that H has at least one model, and that H has a finished tableau with
fewer than 100 nodes. Prove that H has a model whose universe has
fewer than 100 elements.

The next four problems need assignments of infinite sets of individ-
ual symbols. By an assignment of a set S of individual symbols in M
we mean a function v from S into M. Let I be a set of wifs and let S
be the (possibly infinite) set of individual symbols which occur freely
in I'. T'(v) is the set of sentences with parameters from M obtained by
replacing each free occurrence of an individual symbol = by v(z). I is
said to be simultaneously satisfiable in a model M if M | I'(v) for
some assignment v of S in M.

22. Prove the analogue of Lemma 2.7.2 for infinite tableaus: If T is
an infinite tableau whose hypothesis set H is a set of sentences and
M |= H, then some branch of T is simultaneously satisfiable in M.

23. Let T be an infinite tableau whose hypothesis set H is a set of
sentences with parameters from K. Prove that if H is simultaneously

satisfiable in a model M, then some branch of T is simultaneously

satisfiable in M.

2.16. EXERCISES , 133

24. Prove the following Extended Soundness Theorem for sentences
with parameters from K: Let HU {A} be a finite or countable set of
sentences with parameters from K. If H - A then H | A, that is,
for every model M and assignment v of X in M, if M = H(v) then

. CMEA@).

25. Prove the following Extended Completeness Theorem for sentences

~ with parameters from K. Let HU {A} be a finite or countable set of

sentences with parameters from K. If H = A then H F A. Hint: To
prove the Main Lemma for sentences with parameters from X, introduce
an infinite set of new parameter symbols M and use the set K U M as
the universe of the model being constructed. o

.. 26. This exercise indicates why we need to assume that the universe set

of any model of (pure or full) predicate logic is nonempty. Assume we
are working in a logic which has at least one binary predicate symbol’
P. (We will see that, by assumption, every full predicate logic has such
a symbol.) ‘ :

(a) Show that each of the following sentences is valid by giving a
tableau proof of each using an empty set of hypotheses:

A 1 VaVWy [P(e,y) V ~P(z,y)]
B : A= [3z3y [P(z,y) V~P(z,y)]]
(b) Conclude from (a) that for any model M for ﬁure predicate logic,

MEA and MEB.

~(c) Conclude from (b) that for any model M for pure predicate logic,

M | 3ady [P(a,5) V ~P(a,y)]

(d) Conclude from (c) that a model of predicate logic must have a
- nonempty universe.

134 | CHAPTER 2. PURE PREDICATE LOGIC

It should be mentioned that there are other treatments of logic in
" which the universe of a model is allowed to be empty; such treatments
generally require a more restricted definition of “proof” than we have
given in this text.

27. Let A be a finite linearly ordered set (for example the 26 letters of
the Latin alphabet) and A* denote set of all finite sequences (words)
of elements of A. Given two words w,w' € A* we write w < w' iff w
precedes w' in alphabetical order. Define this order relation precisely
and prove that it is a linear order. (This order is often called the
lexicographic order on A*.) Hint: The empty sequence comes first,
and ac precedes acbh but not abaaaa.

28. Show that the theory of linear orders with no last element has
infinite models but has no finite models.

29. Let X = {1,2,3,4}. Compute the transitive closure <y of each of
the following relations R € RELy(X):

L R= {(172), (2’3)7 (1’4)}'
2. R= {(1”2)a (2’3)’ (3w 1")’ (1’4)}'
37' R= {(172)a (2’3)a (3a4)}'

30. Give an example of

(1) a binary relation R; which is not a pre-order and whose transitive
closure is a pre-order but not a partial order;

(2) a binary relation R, which is not a pre-order and whose transitive
closure is a partial order but not a linear order;

(8) a binary relation R3 which is not a pre-order and whose transitive
closure is a linear order.

31. For each of the first three order axioms in Section 2.11, give a
model in which it fails but the other two axioms hold.

2.16. EXERCISES 135

32. Let H denote the following three hypotheses:
—dzdy[z <y Ay <z

VeWy[z <y=>Vz[z <zVz <y
VeWylz <y z<yVe =y

Must < be represented by a linear order in any model for H? Give
tableau proofs or a counter-model which respects equality.

33. Show that every equivalence relation is a congruence relation for
itself. ‘

34. Show that the relation z =, y (on Z) is an equivalence relation,
that it is a congruence relation for each of the ternary relations z+y =,
z and 2y =, 2z, but that it is not a congruence relation for the binary
relation z < y.

35. Let 7 be a function from X to X and R be an n- ary relation on
X. In the text we observed that 7 determines an equlvalence relation
=, on X via the definition

T =,y <= 7(z)=7(y).

In Lemma 2.10.3 we saw that every equivalence relation could be de-

_ fined this way: if an equivalence relation = is given on X and X denotes

the set of equivalence classes [z] and 7(z) = [z] then = and =, are the
same. The n-ary relation R on X. determines an n-ary relation 7*R
on X via

(z1,22,...,2n) € T°R <> (7(z1),7(22),...,7(zn)) € R.
(a) Show that the relation =, is a congruence relation for 7*R.

(b) Show that if X happens to be the space of equivalence classes of
some equivalence relation = and 7 (z) = [z], then R is the relation
induced on X by 7*R in the sense of Lemma 2.10.4.

136 CHAPTER 2. PURE PREDICATE LOGIC

36. Let < be a pre-order on a set X and define a binary relation = on
"~ X by the rule

z=y <= z<yandy<Laz.

Show that = is an equivalence relation, that it is a congruence relation
for <, and that the induced relation on the set of equivalence classes is
a partial order. ' ‘

37. Enumerate the eight subsets Xd, ..., X7 of {1,2,3} in such a way
that)

X; C X; implies ¢ < j.

38. Show that for any finite partial order (X, <) (i.e. X is finite) there
is a linear order (X, <*) which extends <, i.e. for every a,b € P if
a < b= a <*b. Hint: By induction we may assume that

X ={a1,az,...,a4,,b}
where a; < a; = ¢ < j. Let | ‘
L={z€P:z<b z#b}, R={yeP:b<y, z#b}.
Argue that there must be an integer k£ with v

LC {al‘,az,...,ak}, RC {Cl,k+1,...,(1n}.

39. Show that every partial order on a countable set can be extended
to a linear order.

Hint: Use the previous problem and the Compactness Theorem.

40. Let A, be the sentence

SR P e |

where we have used the abbreviations {/\i# x; # :cj] for

$1§£$2A$17£$3A"'A$n-1§£$n

2.16. EXERCISES " 137

and [V, y = ;] for
yﬁ;cl\/y.—':xzv-?'\/yf“—wn.

Let H, consist of the four sentences:the sentence A, and axioms (1-3)
from Definition 2.10.1 on page 95. The set H, has an obvious model -
M, which respects equality: its universe consists of the first n positive
integers {1,2,...,n}. Show that for any sentence B containing equality
as its only predicate symbol we have H, - B if and only if M., E B.

41. Two orders (X, <) and (X', <') are said to be isomorphic iff there
is a one-one onto function f : X — X' such that for all z,y € X we
have

z <y <= flz) < f(y)-
Such a function f is called an order isomorphism between the two
orders. '

(a) Show that the tangent function is an isomorphism between the
open interval | — r/2,7/2[and the set R of all real numbers (each
with the usual linear order). :

(b) Find real numbers m and ¢ such that the formula

f(z)=mz+c

defines an order isomorphism from the interval [a1, a;] to the in-
terval [by, bo].

42. Show that any two countable dense linear orders without ﬁrst or
last element are isomorphic.® Deduce (using the Completeness Theo-
rem) that if A is any sentence with no parameters and containing only
the relation symbols < and =, then Q |= A if and only if R EA.

43. A directed set is a pair (D, <) consisting of a set D and a binary
relation < on D which models the following axioms:

3See Studies in Model Theory, ed. by M.D. Morley, MAA Studies in Math,

.page 6 if you get stuck.

138 ; CHAPTER 2. PURE PREDICATE LOGIC

(anti-reflexive law) VzVy[-z <y V -y < z]
'(transitive law) VaVyVz[z <y Ay < z = z < 7]
(méximum law) VaVy3z{z < 2 Ay < 2]
Which of the following sentences are true for all directed sets?
l.Vz -z <z
2. ‘v’x‘v’y‘v’zﬂw{m <wAy<wAz<uw
3. Vedyz <y
4. EyVm:b <y
5 Vedyy < x

For those that are true for all directed sets give a tableau proof with
the three axioms and the negation of the wif to be proved at the root.
. For those that are not true for all directed sets give a counterexample.
Can a directed set be finite?

44.

(a) Give a proof of the problem SET?2 from the TABLEAU problem
set in paragraph form, and analyze it as a proof using the tableau
rules together with the Direct Proof, Learning, Deductlon and
Generalization Rules.

(b) Do the same for the problem SET4.

45. Show that the first three equality laws (v1z the Reflexive, Sym-

metric, and Transitive Laws) follow from the Axiom of Extensionality.
(You must give three tableau proofs.)

46.
(a) Show that there is no set 7' such that for all sets = we have

tel <=z ¢ur.

2.16. EXERCISES 139

(b‘) Give a tableau confutation of the wif
JyVz[z €y & —z € 2).
This wif has form
JyVz[z ey & A(2)].
and hence is not a case of the Comprehension scheme
VzIyVz[z €y & [2 € z A A(2)]].
The proof of a contradiction is called Russell’s paradox.

(c) Russell gave the following analogue of the above paradox:

“Among the citizens of the town of Kenilworth there
is a barber who shaves all and only those citizens of
Kenilworth who do not shave themselves. Who shaves
the barber?”

Note that the question as stated is impossible to answer. Can
- you think of a way to resolve the paradox?

47. Give a tableau confutation of the following two sentences:
JdzVyyex

Ve IyVz[z €y & 2z €z A~z € 2]

The second hypothesis is a case of the Comprehension scheme of ZST.
This gives a proof in ZST that the set of all sets does not exist.

48. Let Xo, X1, Xs,... be subsets of N = {0,1,2,...}. Define a subset
Y such that Y # X, for all n. Conclude that the set of subsets of N is
not countable,

-49. Let W (u) be the sentence

PeuAVz[z€u=azU{z} € u.

~ The Axiom of Infinity from Section 2.12 is the wif Ju W (u).

140 CHAPTER 2. PURE PREDICATE LOGIC

(a) Write the Axiom of Infinity in a formally correct way, i.e. without
' using abbreviations like § or z U {z}.

(b) Show any w satisfying W (u) really is infinite. (Describe an infinite

list of elements that the set v must contain). Hint: The sets 0
and {0} are different.

50. Let Q(w) be the wif
Ve [z € w & Yu[W(u) = z € ul]

where W (u) is the wif of the previous exercise and let H be the ax-

ioms (1-7) of ZST in the text. Recall that the notation H F A means -

that there is a tableau proof of A from the hypotheses H. Prove the
following;:

e HF JwQ(w).
o HF VuVu' [Q(w) A Q) = w = W]
o HE YuVw[W(u) A Qw) = w C ul
(The expression w C u abbreviates Vz[z € w = z € u].) This exercise

says that there is a unique set w satisfying (w) and that it satisfies an
analog of the axiom of induction.

51. In this exercise we describe a model My = (Mg, =, €) for Ax-

ioms (1-5,7) of ZST, given in Section 2.12. Axiom (6), the Axiom of
Infinity, is false in this model.

(a) List the elements of the three sets P(8), P(P(0)), and P(P(P(0))),

where § denotes the empty set and for any set X, P(X) denotes

the power set

P(X)={Y:Y C X}
of all subsets of X.

" (b) Define sets

- 2.16. EXERCISES | ~ 141

Vo, Vi oo, Vs - o
and natural numbers

ko, ki, kn, ...
as follows:

Vo=0,k=0.

Vot1 = P(Va), kny1 = 2k,

Prove that for all n, V. has exactly k, elements. (Intuitively,
Vop = P(P(...(0)...)) where P is repeated n times).

" (c) We now define a model M, for pure predicate logic with two rela-

tion symbols which will be = and € to suggest equality and set
-membership. The universe My for M is the set

A/.{o - U Vn
neN

where V,, is defined in part (b). Now let Mo = (M, =, €) where
= and € are the equality and membership relations among the
elements of My. Prove that M, is a model of Axioms (1)-(5) of
ZST.

(d) Prove that the Axiom of Infinity is false in M.

52. In this exercise we build on the preceding exercise to describe a -

~ model of Axioms (1)-(7) of ZST. The idea is to repeat the construction

used in the preceding exercise, but starting with the set M instead of

the empty set.

" Define a model M for pure predicate logic with'the two predicate
symbols = and € as follows. The universe M of M is defined to be the

union of a sequence of sets

MO’MIV",MM"

142 o CHAPTER 2. PURE PREDICATE LOGIC

where Mj is the set of the previous exercise and M, is defined induc-
" tively by: .
Mais = P(M) = (X : X C M,) |

- Now, let M =, M,, and interpret = by equality and € by membership
among elements of M. Prove that M is a model of each of Axioms (1)-
(6) of ZST. '

53. Prove the Substitution Theorem (Theorem 2.13.6). Hint: The
proof is by induction on the formula C. The Unique Scope Theorem

is needed at the quantifier step, and Exercise 3 is needed at the binary
connective step.

Chapter 3
'Full Predicate Logic

In this chapﬂer we enrich predicate logic by adding function symbols
and a special symbol for equality. We shall call this enriched language

. full predicate logic to distinguish it from the simpler pure predicate

logic developed in the last chapter. Full predicate logic is closer to the

- usual language of mathematics. Although it is in principle possible to

express everything in the pure predicate logic of the previous chapter,
in practice it is usually more convenient to develop mathematics in full
predicate logic. :

3.1 Syntax

A vocabulary (P, F) for full predicate logic consists of a list of sets P,
of n-ary predicate symbols, and sets F,, of n-ary function symbols,

~wheren = 0,1,.... These sets may or may not be empty, but P, always

contains the equality symbol =. The 0-ary predicate symbols in Pqy are
also called proposition symbols, and the 0-ary function symbols in
Fo are also called.constant symbols.

In addition to the vocabulary symbols (P,F), full predicate logic

- has all the primitive symbols of pure predicate logic, including the

set VAR of variables, a set X of parameters, and the universal and
existential quantifiers. As before, the elements of the set VAR UK
are called individual symbols. The vocabulary constants from Fo

- are distinct from the individual parameters from K, and will play a

143

144 CHAPTER 3. FULL PREDICATE LOGIC

different role in the semantics of full predicate logic.

The equality symbol =, which always belongs to P, in full predicate
logic, plays a special role. Like the propositional connectives and quan-
tifiers, it will be interpreted in a fixed way in all models. We always
write 7 = o in place of the more cumbersome = (g,).

Variables, parameter symbols, constant symbols, and function sym-
‘bols may be combined to form terms. A term is a string which can
be obtained by finitely many applications of the following rules of
formation:

(T:VAR) Any variable is a term.
(T:K) Any element of K is a term.
(T:Fo) Any constant symbol from Fy is a term.

(T:F,.) If f € F, is a function symbol, where n > 0, and 7, 70,..., 7,
are terms, then f(ry,7,,...,7,) is a term.

These rules are used repeatedly. For example, if y is a variable, c is
a constant, f is binary, and g is unary, then g(f(c, 9(y))) is a term.

Terms, like wifs, have parsing sequences. The above example is parsed 7

as follows:

(1) cis a term by (T:F,).

(2) y is a term by (T: VAR).

(3). 9(y) is a term by (2) and (T:7;).

(4) f(e,9(y)) is a term, by (1), (3), and (T:y).
(5) 9(f(c,9(y))) is a term by (4) and (T:7).

The set TERM(F,K) of variable free terms of type F with pa-

‘rameters from X consists of those terms which contain no elements of

VAR, that is, which are built without using the (T: VAR) rule.

We continue using the abbreviations and notational conventions in-
troduced earlier and in addition add the the usual mathematical con-
ventions regarding infix notation and parentheses.

3.1. SYNTAX ‘145

o The familiar binary function symbols 4+, —, and * are written in
infix notation so that (z + y) is written instead of +(z,y).

o The outer parentheses may be suppressed, so that = 4+ y means
(z +y).

e Multiplication has a higher precedence than addition or subtrac-
tion, so that z + y * z means z + (y * z) and not (z + y) * z.

& Operations of equal precedence associate to the left in the absence
of explicit parentheses, so that £ — y — 2 means (z — y) — z and
not z — (y — 2).

The set of wils is defined as before except that the argument places
in the predicate symbols may be filled by terms. Here are the rules of

formation.
(W:P;) Any propositional symbol is a wif.

(W:P,) If p € P, is a predicate symbol and 71,7;,...,7, are terms,
then p(71,72,...,7) is a wif. '

(W:=) If A is a wif, then -A is a wif.

(W:A,V,=,%) If A and B are wifs, then [A AB], [AVB], [A = B],
and [A < B] are wifs. : '

| (W:V,3) If A is a wif, and z is a variable, then YzA and JzA are wifs.

(If it is necessary to explicitly specify the vocabulary (P, F) used in

. the definition of the set of wils, we shall refer to the wils deﬁned here

as built using the vocabulary (P,F).)

Atomic wifs and basic wifs are defined as before except that now
arbitrary terms may occupy the argument positions. Thus atomic
wifs are those constructed by rules (W:P;) and (W:P,) above, while a
basic wif is a wit which is either an atomic wif or the negation of an
atomic wif.

The Unique Readability Theorem generalizes to full predicate logic.
As in the case of pure predicate logic, an occurrence of a variable z in
a wif A is a bound occurrence if it is in the scope of a quantifier on

146 ‘ | CHAPTER 3. FULL PREDICATE LOGIC

z; all other occurrences of individual symbols are called free. As in
" pure predicate logic all occurrences of a variable in a basic wif are free,
because a basic wif has no quantifiers.

In full predlcate logic, the notion of an individual being free for a
variable in a wif is replaced by the notion of a term being free for a
variable in a wif. A term 7 is said to be freely substitutable for, or
free for, the variable z in a wiff A if every variable which occurs in 7
is free for z in A. Given a wif A, a variable z, and a term 7 which
is free for z in A, A(z//r) is the wif obtained by replacmg each free
occurrence of z in A by .

3.2 Semantics

In this section we define the notion of a model for full predicate logic,

and then give the rules which determine the truth value of a sentence
in a model. As in the case of pure predicate logic, the n-ary predicate
symbols will stand for relations on the universe set of the model. The
n-ary function symbols will stand for functions of n varlables on the
universe set.

Recall that for each natural number n > 0, an n-ary relation on a
set X 1is a subset of X™, and a 0-ary relation on X is just a truth value.
REL,(X) is the set of all n-ary relations on X. We now introduce
" n-ary functions on a set X. When n > 0, an n-ary function on X is
a function f : X™ — X from the set X" of n-tuples to the set X. A
0-ary function on X is just an element of X. FUN,(X) will denote the
set of all n-ary functions on X.

A premodel for full predicate logic of type (P, F) is a system
M consisting of a non-empty set M called the universe set of M,
and for each n > 0 a function which assigns to each n-ary predicate
(or propositional) symbol p an n-ary relation p* on M, and another
function which assigns to each n-ary function (or constant) symbol f

‘an n-ary function (or constant) f* on M. We say that the premodel -

M respects equality if the equahty relation of the premodel M is
true equality, that is,

=M is 7{(a,b)EM2:a:b},

3.2. SEMANTICS | 147

A model for full predicate logic of type (P, F) is a premodel which
respects equality.

In mathematics, models are more important than premodels. Pre-
models are a convenient tool which allows us to begin proving results

‘which do not involve the special properties of the equality relation.

Since every model is a premodel, all of our results for premodels will
hold for models as well.

In the next theorem we assign an element of the universe set M as
a value for each variable free term from TERM(F,M).

Theorem 3.2.1 For each premodel M of type (P, F), there is a unique
function which assigns an element Toq € M to each variable free term

7 € TERM(F, M) such that the following formation rules hold:

(MM) Ifu € M, then up = u.

(M:Fo) If'c € Fo, then cpm = M.

o (M:F,) If 1iyTe, ..., e are terms and £ € Fn is a function symbol,

then
(1,72, s Ta)Mm = fM(TlM,TgM,...,TnM).

Proof: To justify this definition we need a Unique Readability The-
orem for terms: Every term in TERM(F,K) is either an individual

. symbol, a constant symbol from Fo, or can be uniquely read in the

< form
f(Tla T2ye - >Tn)
where f € F, and 7q,...,7, are terms. We omit the remainihg'details
of the proof. » End of Proof.

We define the set WFF(P,F,K) of wifs based on the vocabulary
(P, F) with additional parameters from the set X as in pure predicate
logic except that the rule (W:P,) is modified to allow terms:

(W:P,) If p € P, and 71,72,...,T, are terms then p(71,72,. .. ' Ta) €
' WFF(P,F,K).

148 CHAPTER 3. FULL PREDICATE LOGIC

As in pure predicate logic, SENT(P, F,K) is the subset of WFF(P, F,K)

* consisting of those wifs with no free variables: it is the set of all sen-
tences built from the vocabulary (P, F) with additional parameters
from the set K. The following is proved in the same way as the analo-
gous result for pure predicate logic.

Theorem 3.2.2 Given a premodel M of type (P, F) there is a unique
function which assigns a truth value A g to each sentence A with pa-
rameters from M which satisfies the conditions of Theorem 2.4.1, but
with the condition (M:P,) modified to read

(M:pn) M }:p(TlvTZP-')Tn) iﬁ(TlMyTZM7"~',TnM) EpM-

As usual we have written M |= A in place of the more cumbersome
phrase Ay =T,

Remark 3.2.3 If the premodel M respects equality, then for all terms
1,0 € TERM(F, M) |

we have
M ET1=0¢if and only if T/ = om.

3.3 Tableaus

In full predicate logic, a tableau may be formed using all the rules for .

tableaus in propositional logic (see Figure 1.4) plus additional rules for
handling terms and the equality relation. A labeled tree for full
predicate logic is defined as for propositional logic, except that now
the wifs are those of full predicate logic.

Definition 3.3.1 A tableau for full predicate logic is defined as
before except that two of the four quantifier rules allow the substitution
of terms, and there are three new equality rules. The new rules are:

If ¢ has an ancestor Vz A, extend by adding a child A(z//7) of ¢,
where 7 is a term which is free for z in A, '

.33, TABLEAUS | 149

If t has an ancestor ~VzA, extend by adding a child ~A(z//b) of

¢, where b is an individual symbol which does not occur in any
ancestor of ¢; :

If ¢ has an ancestor 3zA, extend by adding a child A(z//b) of
t, where b is an individual symbol which does not occur in any
ancestor of t; -

If t has an ancestor =3z A, extend by adding a child ~A(z//T) of
t, where 7 is a term which is free for z in A.

If ¢ has an ancestor [-]p(...7...), and another ancestor of form
T = o, extend by adding a child [-]p(...c...) of t.

— 2| Ift has an ancestor [<]p(...7...), and another ancestor of form.
o = 7, extend by adding a child [~]p(...c...) of t.

Extend by adding a child ¢ = ¢ of .

In these rules ¢ denotes the terminal node at which the tableau is
extended. :

Diagrams for the three equality rules ! are shown in Figure 3.1.
In the first two equality rules, [-]p(...7...) and [=]p(...o...) denote

 basic wifs (i.e. atomic wifs or negations of atomic wifs) such that

[~]p(...c...) results from [=]p(...7...) by replacing one occurrence
of the term 7 by the term o. The occurrence of 7 may be a part of
some longer term within the wif [-]p(...7...). '

For example, if 7 is f(a) and o is b, and we take

p(9(f(0)),a, f(a)) for (... f(a)...),

" then there are two possibilities for p(...5...) (one for each occurrence

of f(a)). We can either take

p(g(b), a, f(a)) for p(...b...),

UIn the TABLEAU program, the first two equality rules are invoked by typing
the G key at the node A to put A in the Get box, typing the § key at the node
T = ¢ to put either 7 = ¢ or'o = 7 into the Sub box (pressing the right arrow key
toggles between these two), then going to the end of the branch and typing the E

A - ’key to extend the tableau. The third equality rule is invoked by typing the = key.

150 CHAPTER 3. FULL PREDICATE LOGIC

p(9(f(a)), a,b) for p(...b...).

In order to be sure that the string [-]p(...o...) is a wif, one must
prove that whenever 7 occurs within a term, the string formed by re-
placing one occurrence of 7 by o is also a term. This is left as an
exercise, with a hint, at the end of this chapter.

The rules [= 1] - and [= 2] - 2| differ only in- that in the former the equa.l
ity ancestor is T = ¢ while in the latter it is o = 7.

The equality rules are justified by the fact that sentences

M Flp(..7 .) A[r = ol = [lp(...0...)

ME[Fp(...7. .)A[e=7]= []p(...0...)
MEo=o

will be valid in any model M which respects equality.

The basic definitions are the same as before except for the addi-
tion of the new tableau rules. A branch I' of a tableau is said to be
contradictory if I’ contains some wif and its negation.

The notions of a tableau confutation and a tableau proof are defined
as before. A tableau T is said to be a confutation of a set of sentences
H if T is a finite tableau with hypothesis set H and every branch of T is
contradictory. A tableau proof of A from H is a tableau confutatlon
of HU {-A}.

3.3. TABLEAUS

151 -

Tableau Extension Rules

ol 7 ()
j ;
| |
[Fp(.0-.) (o)
=1 =2
1
|
=3

Figure 3.1: Equality Rules for Full Predicate Logic.

152 - 'CHAPTER 3. FULL PREDICATE LOGIC 3.3. TABLEAUS 7 , 153

Here are two simple examples of tableau proofs in full predicate Example 3.3.3 A tableau proof of
logic. The second example is one of the Equality Axioms from Sec-

tion 2.10." In Exercise 7 you are asked to give tableau proofs of the

VaVyVe[z =y Ay =z = ¢ = 2).
remaining Equality Axioms. ‘

Example 3.3.2 A tableau proof of

VaVylz =y = f(z) = f(y)].

(1) -VaVyVz[z =y Ay = 2= = 2. - 10 be p?qved

@ spayieazd Y 0)
(3) ﬂ\/z{éﬁb/\blﬁz:»aﬁz] by (2)
(1) VaWyla =y T f@) = f)] o be proved 4 Sle=bn bli c=a=d by (3
@ sy -f,»l f@=fw) by () ®) s z}l/\ b Cww
) la=b= f(a)= f(b)] by (2) (6) WIL . | by (4)
(®) o i b by (3) - . l: b by (5)
5) ﬁ(a)Hé £(6) by (3) ®) o :H c by (5)
(6) ~f(b) l: F(b) : by (4) and (5) ©) . |: . - by (7) and (8)

(7) : f(6) = f(b) ‘ by equality rule 3

154 CHAPTER 3. FULL PREDICATE LOGIC

3.4 | Soundness

The proof of the Soundness Theorem for full predicate logic is much

as before. The definition of valuation in M (which assigns elements

of M to finitely many individual symbols), satisfiable, and simul-
taneously satisfiable are the same as for pure predicate logic (see
Definition 2.7.1).

Lemma 3.4.1 Let H be a set of sentences of full predicate logic of type
(P,F). Let T be a tableau in predicate logic with hypothesis set H. Let
M be a model of H. Then there is a branch T of T such that the wffs
on I' are simultaneously satisfiable in M.

Proof: The proof is like that of Lemma 2.7.2 except that we must
deal with the three equality rules in the step where we build a branch
I't41 on Tiyy from a given branch Ty of a smaller tableau T,. We
have to check that if any of the equality rules were used to extend T,
the Valuatxon vk given by the induction hypothesis satisfies the new wif

given by the equality rule. This follows from the fact that the model

respects equality. End of Proof.

Theorem 3.4.2 (Soundness Theorem) Suppose H is a set of sen-
‘tences in full predicate logic and A is a sentence. If H - A, then
H = A, that is, every model of H is a model of A. In particular, if
there is a tableau proof (without hypotheses) of a sentence A, then A
is valid.

This is proved as before: see Theorem 2.7.4. Both Lemma 3.4.1
-and the Soundness Theorem require that M respect equality. They are
true for all models but not for all premodels.

3.5 Completeness

The Completeness Theorem for full predicate logic is similar to the one
for predicate logic, but with some additional twists. As before, we begin
with a main lemma which easily implies the Completeness Theorem

3.5. COMPLETENESS 155

Lemma 3.5.1 (Main Lemma) Let H be a finite or countable set of

sentences of full predicate logic. Either H has a tableau confutation or
H has a model which respects equality.

Theorem 3.5.2 (Extended Completeness Theorem) Suppose H

is a finite or countable set of sentences and A is a sentence of full

predicate logic. If H |= A then HF A; that is, if every model of H is
a model of A, then there is a tableau proof of A from H. In particular,
a valid sentence has a tableau proof. 4

As in the Completeness Theorem for pure predicate logic we fix an
infinite set M of new parameters. The set TERM(F, M) will be used
as the universe set of a model.

We call a set A of wifs closed under the equality rules if any ba-
sic wif obtained from two wifs of A by an equality substitution is again
a element of A; in other words, if for all terms 7 and o in TERM(F, M)
and all basic wifs [-]p(...7...), the following conditions hold:

[=1] if[r=o],["]p(...7...) € A then []p(...0...) e A
[=2] iffo=r7],[~]p(...7...) € A then [-]p(...0...) € A.
[=3] [c=0dleA

A set A of wifs is called contradictory if it contains some wif and
its negation.

The definition of a finished ‘set for full predicate logic on a set M
is verbatim the same as the definition of a finished set of wifs for pure
predicate logic given before except that now

e In the [V] and [~3] rules the set TERM(F, M) is used in place of
M. :

e the set A must be closed under equality rules.

In particular, if a wif Vz A is in a finished set A the new version of the
[V] rule requires that every wif A(z//r) with 7 € TER.M(}' M) be an
element of A, not just those where r € M.

As in pure predicate logic, a branch of a tableau is finished on M

if the.set of all wifs on the branch is finished on M, and a tableau in

156 CHAPTER 3. FULL PREDICATE LOGIC

full predicate logic is finished on M if every branch is either finished
on M or else both finite and contradictory. ,

For the Tableau Extension Lemma we require that the set F of func-
tion symbols be finite or countable. In this case, the set TERM(F, M)
is countable (see Exercise 8) and we are able to build a finished tableau

on a countable set of new parameters M as in Chapter 2. We will not .

need the assumption that F is finite or countable for the Main Lemma
or its consequences.

Lemma 3.5.3 (Tableau Extension Lemma) Suppose that the set
F of function symbols is finite or countable. Let M be a countable
set, and suppose H is a finite or countable set of sentences. Then H is
the hypothesis set of a finished tableay on M.

Proof: The proof is basically the same as in pure predicate logic ex-
cept that now we must use terms to extend the tableau at nodes with
universal quantifiers and we must make sure that the final tableau is
closed under the equality rules.) ‘
As before, we let H = {C,,C,,...} and H, = {A4,..., A }.
Since the set TERM(F, M) is countable, it may be arranged in a
list
‘ TERM(}:,M) - {Tl,Tz,...}.
We build finite tableaus To C T, C ... with hypothesis set H as before,
and our final tableau T will be the union of the tableaus T,. We extend
T, to a finite tableau T,; as in the proof of the Tableau Extension
Lemma for pure predicate logic with the following additional features.
If A is either in H,, or at a nonroot node of T,, and A is of the form

VzB or —dzB, then each noncentradictory branch in Tp4; through A

must have the n 4 1 formulas [-|B(z//%) fort=1,...,n+ 1.

To make progress toward closure under the equality rules, each non-
contradictory branch of T, 4; must have a basic wff p(...7...) whenever
required by the equality rules [= 1] or [= 2] using wffs in H,, and/or

wifs at nonroot nodes of T,,. Finally, each noncontradictory branch of

Tpy1 must have the wif 7,41 = 7,41 so that condition [= 3] will be
satisfied.

We leave the straightforward proof that T is a finished tableau on
M to the reader. , End of Proof.

3.5. COMPLETENESS ~ ' 157

Lemma 3.5.4 (Finished Set Lemma for Premodels) Suppose A
is a finished set of wffs on a set M. Define a premodel M for full

predicate logic as follows:

o the universe set of the premodel is TERM(F, M);

e for each propositional symbol p € Po, pm =T iff peA;

o for eachn-ary predicate symbolp € Py and all 7,..., ™ € TERM(F,M)
(T1y .o Tn) € PM A p(T1,. .-, 70) € A '

Then M = A.

Proof: The proof proceeds as in the Finished Set Lemma for pure
predicate logic except that we need to use induction on the height

“rather than the length of wffs. This is because if C € A and C is

of the form VzA then A(z//r) may be longer than VzA. We define
the height h(A) to be the number of occurrences of quantifiers and
connectives in A. Thus atomic wifs have height zero. Now proceed
as in the proof of the Finished Set Lemma for pure predicate logic,
replacing length by height. For example, if C € A and C is of the f(.n‘m
VzA, then A(z//7) € A for all 7. Since A(z//7) is of lower height
than VzA, we have M |= A(z//r) for all 7, and hence M E VzA.

End of Proof.

The Finished Set Lemma for Premodels gives us a premodel which
need not respect equality. To get a model; we need three more lem-
mas. In all three lemmas we assume that A C SENT(P,F, M) is a
finished set of wifs in the parameters M. We shall call terms 7 and o in
TERM(F, M) equivalent (abbreviated 7 = o) if the sentence 7 =0
is an element of the finished set A. Thus

r=oiff [r=0] € A.

Lemma 3.5.5 Let A be a finished set of wffs on M. Then E.is an
‘equivalence relation on the set of terms in TERM(F,M). That is, for

1,0,p € TERM(F,M):

*(reflexivity) 7 =17;

158 ' CHAPTER 3. FULL PREDICATE LOGIC

(symmetry) if T =0 then o =7;

’(transitivity) ift=0 and 0 = p then 7 = p.

Lemrﬁa 3.5.6 Let A be a finished set of wffs on M. Let
T1y T2y e vy Ty 01,02 ...,0n € TERM(F, M)

andf € F,. If

) TV =01, T2 =09y «v.y Tn = 0qp,

then o

f(r1,72,...,7) =f(01,00,...,0,). |

Lemma 3.5.7 Let A be a finished set of wffs on M. Suppose
TliT27"*JTnaalsU2,-"aan (S TERM(}:',M)

and p € Py If

TI=01, T =02, ..., Tn = O,
then
P(T1,...,Ta) € A iff p(o1,...,0,) € A.

Proof: The proofs of these three lemmas are easy consequences of
‘what it means for the set A to be closed under the equality rules. For
example, the reflexive law in Lemma 3.5.5 follows from part [= 3] in the
definition. To prove the symmetry law assume [t = o] € A. By [= 3]
we have [1 = 7] € A so we may use [= 1] with the first occurrence of
7 in the basic wif 7 = 7 to conclude that [c = 7] € A. To prove the
transitive law assume [1 = o],[0c = p] € A. Apply [= 2] to replace
the occurrence of o in the basic wif ¢ = p by 7 and conclude that
[t = p] € A. Lemma 3.5.6 follows by applying part [= 1] n times to
the basic wif ,
f(r,700) = £(T1, 7200y Ta)s

(this is an element of A by part [= 3]) to obtain that the wff

A, 70,00, T0) = f(01,00,...,00)

is an element of A. Finally, Lemma 3.5.7 simply follows by repeated -

application of [= 1] and [= 2]. End of Proof.

3.5. COMPLETENESS 159

Lemma 3.5.8 (Finished Set Lemma) Let A be a finished set of
wffs on the nonempty set M. Then there is a model N with an in-
terpretatz'oh for each element a € M such that N' EA.

Proof: For each 7 € TERM(F, M) let [r] denote the equivalence class
of 7:
[7] = {0 € TERM(F,M): 1 =0c}.

By Lemma 3.5.5 we have
[r] =[o] ff T = 0.

We define the universe N of our model A to be the set of equivalence

classes:
N={r]:7¢€ TERM(F,M)}.

Now by Lemma 3.5.6 each function symbol f € F,, determines a func-

tion f¥ € FUN,(N) by the condition
fN’([TIL [7.2]} cey [Tn]) = [f(’rl» T2y-0vy Tn)]

In the case n = 0, if ¢ € Fo then ¥ =[d].

This gives the universe set and the operations of a model N.

It follows by induction on lengths of terms that for each term 7 €
TERM(F, M), the element [r] € A is named by 7, that is,

[t] = 7w

By Lemma 3.5.7 each predicate symbol p € P, determines a relation
Y € REL,(N) by the condition

([Tl]? [T2]7 tey [T‘"v]) € pM iff p(T_laT% cee ,Tn) € A.

For propositional symbols p € Py, py = T if and only if p € A.

~ This gives the predicates and completes the definition of the model
N. Let M be the premodel defined in the Finished Set Lemma for
Premodels. It can be shown by induction on the height of sentences B
over M that N |= B if and only if M = B. The details are left as an

B exercise. Since M |= A, we have A |= A as required. End of Proof.

160 CHAPTER 3. FULL PREDICATE LOGIC

Proof of the Main Lemma: Let H be a finite or countable set of
‘sentences with no tableau confutation. Let F' be a finite or countable
subset of F which contains all the function symbols occurring in H. We
may apply the Tableau Extension Lemma to get a finished tableau with
hypothesis set H on a countable set M. Since there is no confutation
of H, at least one branch I' of the tableau is finished, and so by the
Finished Set Lemma there is a model M of H of type (P,F’). The
remaining function symbols which are in F, but not in F’, if any, can
now be interpreted by any n-ary function on M at all, making M into
a model of H of the required type (P, F). End of Proof.

As before, we now easily get the Compactness Theorem and the
Extended Completeness Theorem for full predicate logic.

Theorem 3.5.9 (Compactness Theorem) Let H be a countable set

of sentences of full predicate logic. If every finite subset of H has a
model, then H has a model.

3.6 Theory of Groups

A set of sentences in first order logic is sometimes called a first order
theory. In this section we look at an important example of a first order
theory in full predicate logic, the theory of groups. The vocabulary for
our language will consist of one infix binary function symbol * and one
constant symbol e. The axioms of group theory are as follows:

Axioms of Group Theory
(1) Associativity: Vz VyVz (zxy)xz = a*(y*z)
(2) Identity: Vz[zxe = 2z A exz = z]
(3) Inverses: Vady [zy = e A yxz = €]

These axioms will be collectively known as GT. The first axiom says
that the operation is associative; the second says that the constant
symbol e is an identity for the operation; and the third says that every
element of a group has an inverse relative to *.

- 3.6. THEORY OF GROUPS v v - 161

A model G of these axioms is a group which consists of a universe G
together with interpretations *g and eg of the symbols * and e. Instead

of writing the group as § = (G,#9,e9%), most textbooks simply identify

a group ¢ with its universe G whenever the operation and»idezﬂlti'ty are
clear from the context. :

Examples of groups include e

(1) (Z,+,0) (recall that Z denotes the set of integers);

(2) (Qt,-,1) where Q" denotes the positive rationals and “” de-
notes multiplication; and ,

(3) for any set X, the group (5(X),0,/ x) defined as follows: ‘S (X)
is the set of all permutations f of X. (Recall that a permutation of
X is a one-one, onto function from X to X; see Appendix A.) The
operation “o” is composition of functions (see page 372). Finally, Ix
is the identity permutation on X (see Appendix A, Section A.5). The

" reader may wish to verify that the group axioms are satisfied by this

model.

Example 3.6.1 Figure 3.2 gives a tableau proof that in every group,
the identity is unique; in this example, we prove the following sentence
A:

Vz [Vyzry =y =z = el.
(The sentence actually says that every left identity equals e.) We in-

clude in the hypothesis set only the second axiom since we do not neefi
the others in the proof. In the tableau problems at the end of this

~ section, other properties of groups are established.

The groups Z and Q* mentioned above satisty the additional prop-
erty
C Vo Vyzxy = yxz

called the commutative law. If we could prove C from GT then by
the Soundness Theorem, C would hold in every group. This is not the
case however, since for any set X with more than two elements, S X
does not satisfy the commutative law (see Exercise 11). A group in

-~ which C holds is called abelian.

162

G

(9)

(10)

CHAPTER 3. FULL PREDICATE LOGIC

Vzlexz =z Azre =2]

Ve [Vyasy =y =z = e

~[Vytsy =y =t = e]

Vytsy =y
-t=e
ixe = e

ext =t Nixe =1

ext = ¢
txe =1{
t=e

= to be proved

by (6) and (9)

Figure 3.2: Tableau proof that the identity is unique

3.7. PEANO ARITHMETIC * ’ 163

3.7 Peano Arithmetic

We now turn to another first order theory, called Peano Arithmetic.
Throughout this book, Mathematical Induction has been one of our
most important methods in informal proofs. The axioms of Peano

“Arithmetic consist of a group of six basic axioms, and an infinite list

of additional axioms called the First Order Induction Principle which
is the formal counterpart of Mathematical Induction. v

" The vocabulary for the predicate logic we will use consists of two
infix function symbols 4+ and *, one unary function symbol s, and one
constant symbol 0. The constant symbol 0 is a boldfaced zero to dis-
tinguish it from the usual mathematical symbol 0. (Recall that the
relation = is automatically a relation symbol in the vocabulary.) The
full predicate logic with this vocabulary will be called the language
of arithmetic. We let A/ denote the model of this language which
has universe N, the set of natural numbers, and in which the function
symbols + and * are interpreted as ordinary addition and multiplica-
tion, respectively, of natural numbers; s is interpreted as the successor
function

s(0) =1,s(1) =2,8(2) =3,...;

and O is interpreted as the natural number 0. This model N is called
the standard model of arithmetic.

Definition 3.7.1 Peano Arithmetic, or PA, is the collection con-

sisting of the following six basic axioms:

L. Vz-s(z) =0

2. VaVy[s(z) =s(y) = z = y]
3. Vzz40 =2

4. Yz Vyz+s(y) = s(z+y)

5. Vreax0 =0

6. Vo Vy zxs(y) = (z*xy)+z

164 CHAPTER 3. FULL PREDICATE LOGIC

together with the all the instances of the

First Order Induction Principle

Vs - Vya [B(0) A Ve [B(z) = B(s(x))] = Ve B(z)]

In this principle B is a wif in the language of arithmetic and all free
variables of B are among z,y1,.. ., ¥, To improve readability, we wrote

B(z) for B, B(0) for B(z//0), and B(s(z)) for B(z//s(z)).

Peano Arithmetic is of fundamental importance in mathematics,

because it captures most of the mathematical facts which are known
about the natural numbers. '

Axiom 1 says that 0 is not the successor of any element. Axiom 2
says that the successor function s is one-one. Axioms 3 and 4 give the
inductive definition of + in terms of 0 and s. Axioms 5 and 6 give the
inductive definition of * in terms of 0,s, and +.

The only constant symbol in the vocabulary of Peano Arithmetic
is the zero symbol 0. However, by repeatedly applying the successor
function symbol s to 0 we obtain a constant term for each natural
number. Thus s(0) stands for 1, s(s(0)) stands for 2, and so on. The

term
n= S(S(. . S(O) ..))

with n s’s followed by 0 stands for the natural number n. It is called
the numeral of n and is denoted by n. The first few numerals are

0=0,1=-5(0),2 =s(s(0)),...

Using the six basic axioms alone, one can prove many equations and
inequalities involving particular numerals.
We give two examples as illustrations.

3.7. PEANO ARITHMETIC ' 165

Example 3.7.2 Here is a tableau proof of the sentence

-3=1

" from Axioms 1 and 2.alone. Of course, everyone already kn?ws t‘his
inequality. Our point here is that there is a tableau proof of it which

uses only the first two axioms of Peano Arithmetic as hypotheses. Only
the main steps are shown. '

(1) ——s(s(s(0))) =s(0) - ‘?0 be proved
(2) Vz-s(z)=0 Axiom 1

(3) VazVyls(z) =s(y) >z = Y] Axiom 2

(&) s(s(s(0)) = s(0) By (1)

(5) —s(s(0)) =0 By (2)

(6) s(s(s(0))) =s(0) = s(s(0)) =0 By (3)

(7) s(s(0))=0 By (4) and (6)

By thé same method, for any particular natural numbers m and n
such that m > n, there is a tableau proof of the sentence

-m=n

from Axioms 1 and 2 of Peano Arithmetic.

'Example 3.7.3 Here is a tableau proof of the sentence

1+2=3

from Axioms 3 and 4 alone, again showing the main steps.

(1) -s(0) + s(s(0)) = s(s(s(0))) - to be proved
(2) Vzz+0==z Ax3om3
(3) VzVyz +s(y) =s(z+y) Axiom 4
(4) s(0)+0=s(0) By (2) .
(5) s(0)+s(0) =s(s(0)+0) By(3)
(6) 5(0) +(0) = s(s(0)) By (4) and (5)
(1) s(0) +5(s(0)) = 5(s(0) +5(0))) By (3) -
(8) 5(0)+s(s(0)) = s(s(s(0))) By (6) and (7)

166 CHAPTER 3. FULL PREDICATE LOGIC

Agaxn by the same method, for any three particular natural num-
bers m,n and p,ifm+n=>p then the sentence

m+n=p

has a tableau proof from Axioms 3 and 4 of Peano Arithmetic.

In spite of these examples, one cannot go very far with only the six

basic axioms of Peano Arithmetic. The Induction Principle is needed
early and often in the study of the natural numbers.

In a formal tableau proof of a sentence from Peano Arithmetic, the
- cases of the Induction Principle which are neéded for the proof are
included in the hypothesis list. Many simple and familiar properties
of the natural numbers cannot be proved without induction; that is,
there is no tableau proof from the six basic axioms alone, but there is a
tableau proof from the full set of axioms of Peano Arlthmetlc including
the Induction Principle.

We now give several examples of such sentences. In each example,
we first sketch a tableau proof of the sentence from Peano Arithmetic.

We then show that the sentence cannot be proved from the six basic

axioms alone by describing a model of the six basic axioms in which

the sentence is false. It follows from the Soundness Theorem that a

sentence which is false in some model of the six basic axioms cannot

be provable from them. Thus at least one induction axiom is needed in
any tableau proof of the sentence

Example 3.7.4 The sentence
Ay Vz-z= s(d:)

is provable from Peano Arithmetic but is not provable from the six
basic axioms alone.

Proof "To prove this sentence from PA, we let B be the wif - ¢ = = s(z),
and prove Al from the hypotheses

1. Va:—'O—S()

2. VaVy[s(z) = s(y) T y!

3.7. PEANO ARITHMETIC 167

3. B(0) AVz[B(z) = B(s(z))] = VzB(z)

Note that Vz B(z) is the same as A;, the formula to be proved.
By hypothesis 1, -0 = s(0), so B(0) holds. Let a be arbitrary and
temporarily assume B(a), that is, —a = s(a). By hypothesis 2,

s(a) = s(s(a)) = a = s(a).

By propositional logic, —s(a) = s(s(a)), that is, B(s(a)).
By the Deduction Rule, B(a) => B(s(a)), and thus by the General-
ization Rule,

Vz [B(z) = B(s(z))].

By hypothesis 3, it follows that Vz B(z), which is the formula to be
proved. End of Proof.

A formal tableau proof of the sentence A; can be carried out in 12

| nodes, and is included in the diskette as PEANO.TBU.

To see that sentence A; is not provable from Axioms 1—6 alone,
we shall describe a model M of Axioms 1—6 in which the sentence A,
is false. The universe set of the model is the set M = N U {oo} formed
by adding to the set IN of natural numbers one extra element called co.
Among elements of N, the function symbols +, *,s,0 have their usual
meaning. To complete the definition of the model, we stipulate that

sm(o0) = oo,
T+m 00 =00+pm T =00,
O*p cOo=o00*p 0=0,
T#0=T*p 00=00%p T=o00.

It can be checked that each of the six basic axioms is true in this model.
However, we see that the sentence A is false in the model M by taking
T = oco.

Example 3.7.5 The sentence
Ay, : VzOxz =0

is provable from Peano Arithmetic but is not provable from Axioms

" 1—6 alone.

168 | CHAPTER 3. FULL PREDICATE LOGIC

Proof: Here is a direct proof of A; from PA in paragraph form. The
following axioms of PA are needed in the proof:

1.Vz 24+0=2

2. ¥z zx0=0

3. VaVy zxs(y)=zxy+z

4. 0%x0=0AVz [0x2=0=0%s(z)=0]=Vz 0xz=0.
By hypothesis 1, we have 0 x 0 = 0. We next prove that

Ve [0z =0 = 0+s(z)=0].

Let a be arbitrary and assume that 0 x a = 0. By hypotheses 3 and 1, '

O%s(a)=0*xa+0=0xa.

Then
O0*s(a) =0xa=0.

By the Deduction and Generalization Rules,
Vz[0xz =0= 0xs(z) = 0].
Then by hypothesis 4, Vz 0 * z = 0 as required. End of Proof.

The formal tableau proof of A, from PA is left as Exercise 22.
To see that Aj is not provable from the six basic axioms alone, we
modify the model M in the preceding example by stipulating that

O*M oo = 1T.

This modified model is still a model of Axioms 1—6. (In fact, we can

give 0 x5 oo any value at all and still have a model of Axioms 1—6.)

To see that the sentence A, is false in this model, take oo for z.
Example 3.7.6 The sentence
Az: Vz[z =0V dyz =s(y)]

is provable from Peano Arithmetic but not from Axioms 1—6 alone.

3.7. PEANO ARITHMETIC 169
Proof: The proof of Az from PA uses the single induction axiom
1. B(0)AVz[B(z) = B(s(z))] = VzB(z)

where B(z) is the wff z = 0V Jyz = s(y). Note that the formula As

to be proved is Vz B(z). B(0) is the sentence

0=0V3Iy0=s(y),

which follows from the equality rule 0 = 0 by propositional logic. Let

a be arbitrary and assume B(a). The formula B(s(a)) is
s(a) =0V Jys(a) = s(y),

which is easily proved with no hypotheses.
By the Deduction and Generalization Rules,

Vz [B(z) = B(s(z))].

Then by the hypothesis 1., Vz B(z), which is the formula to be proved.
End of Proof.

The formal tableau proof of As from PA is left as an ex‘ercise for

the student.

Example 3.7.7 The sentence
A VzVyz+y=y+2

is provable from Peano Arithmetic but not from the six basic axioms .
alone. '

In the computer problem PLUS.TBU, you are asked to give a tableau
proof of A4 from PA. To see that neither of the sentences Az nor Ay
is provable from Axioms 1—6 alone, we describe a:model M of Axioms
1—6 in which each of the sentences As and Ay is false. The universe
set of M is the set

_{ag,al,az, . } U {bo,b], bg,. . } U {C}

170 CHAPTER 3. FULL PREDICATE LOGIC

made up of two “copies” of N and one additional element {c}. The
function symbols in M are defined as follows:

- Om = ao,

S-M(an) = Qny1, SM(bn) = bn+17 SM(C) =6
G +M Qn = Gy, Um +i bp = bm bn, M ap = bn+m7

and in all other cases the sum is .
Am ¥ M QAp = Qpan,

AGo*M T =T *p Qo =0ap and a;*y T =T *xp aq =z for all

and in all other cases the product is c. The student can now check that
all the basic axioms of PA are true in the model M. To see that the
sentence Aj is false in M, take by for z. To see that the sentence Ay
is false in M, note that

a1 +m bo=bo, bo+m a3 =b.

Using the definition given above for + A, one can see that the rela-
tion < orders the elements of M so that ‘

CLQSCLl< ..Sbogbls...<c.

We now introduce the new symbol < as an abbreviation as follows:
For any terms o, 7 of arithmetic, we write c<7 for the sentence 2

Jzotz=71

-where z does not occur in ¢ or 7.

With this symbol, the four axioms for linear order can be proved
from PA.

?Note that technically we have not specified a particular sentence since any choice
of z not in ¢ or 7 satisfiés the condition of the definition. However, as the reader
may easily verify, for any variables ,y not in ¢ or 7, there is a tableau proof of the
sentence [Ix o +x = 7] & [Jy 0 + y = 7]; thus, any choice of z will do.

3.7. PEANO ARITHMETIC 171

The Reflexive Law Vz 2 < z is an abbreviation for the sentence
Vz3zz + z = z, which follows very easily from Axiom 3 of PA. The
proofs of the other linear order axioms from PA are broken into small
steps which are included in the Exercises at the end of this chapter.

In the remainder of this section we shall briefly discuss two other
forms of arithmetic, one which is much weaker than PA and another
which is much stronger than PA. :

Weak Arithmetic, or WA is a particular list of nine axioms which
are consequences of PA.,

Definition 3.7.8 The axioms for Weak Arithmetic consist of the six
basic axioms for Peano Arithmetic together with the following three
additional axioms; '

7. Ve [t<0 = = = 0]

8. Va Wy [z<s(y) = [z<y V= = s(y)]]
9. VzVy [z<y V y<z].

The three additional axioms 7-9 for Weak Arithmetic use the ab-
breviation < but officially are sentences of the language of arithmetic.
Each of these axioms can be proved from PA; the proofs are left to the
student in the Exercises. ‘

Axiom 7 says that no element is less than 0. Axiom 8 says that there
are no elements between z and s(z). Axiom 9 is the Comparability Law
for linear order.

Each of the sentences in Examples 3.7.4, 3.7.5, 3.7.6, and 3.7.7 is
an example of a sentence which can be proved from PA but cannot be
proved from WA. To see this, recall that in each example we proved
the sentence from PA and gave a model of the six basic axioms of PA
in which the sentence is false. In each case, the remaining three axioms
of WA also hold in the same model.

Weak Arithmetic is a useful technical tool in the proof of the Godel
Incompleteness Theorems and the study of computable functions. It
will be developed further in Chapter 5 on the way to the proof of
the Godel Incompleteness Theorem. The above examples show that

.~ many-familiar facts about the natural numbers cannot be proved from

172 " CHAPTER 3. FULL PREDICATE LOGIC

Weak Arithmetic. In spite of this, Weak Arithmetic has two important
‘advantages. First, it has only finitely many axioms. Second, as we
shall see in Chapter 5, the concepts of a wif and a tableau proof in

full predicate logic can be developed within Weak Arithmetic as well
as within Peano Arithmetic.

We now turn to another induction principle which is more powerful

than the First Order Induction Principle of PA. It cannot be included
in the axiom list of Peano Arithmetic because it is not a wif of first
order predicate logic.

Second Order Inductiqn Principle
for every subset A C N

0cAAVn[ne A= (n+1) € A]=Vnne€ A.

In this principle the quantifier Vn means Vn € N. The system of
axioms consisting of Weak Arithmetic and the Second Order Induction
Principle is sometimes called Second Order Arithmetic. It is more
powerful than Peano Arithmetic but is not a set of sentences of first
order logic. o '

Unlike the First Order Induction Principle, the second order version
is a single axiom. However, this axiom quantifies over subsets, rather
than elements, of N, and cannot directly be formalized in the first order
language of arithmetic. ~ ‘

The advantage of this second principle is that, combined with Weak
Arithmetic, it captures the standard model N of arithmetic: If M is
any model of WA having universe M, and, on replacing N by M, the
Second Order Induction Principle is true, then M is isomorphic to
N; that is, the elements of M can be listed, ‘

M= {moamls-“}

We obtain:

3.7. PEANO ARITHMETIC ' 173
so that if +m, *m, Sm, Opm are the interpretations of the function and
relation symbols of arithmetic, then we have, for all k,£ € N,

Om =mo ME+m Mg = Mig
sm (ME) = Mig1 Mpkam Mg = Mke.

(See Theorem 3.7.9 below.) o

The disadvantage of the Second Order Induction Principle is that to
formalize it one must introduce a second order logic which has va.riabl-es.
and quantifiers for predicates as well as for individuals. This logic will
need additional rules of proof to take care of the quantifiers over the
predicates. There will be just one induction axiom but at the pr.ice of
a new list of rules of proof. A logic with quantifiers over predicates
is called second order logic. Second order logic does not have a
completeness theorem, and for this reason it has been less important

‘than first order logic in the foundations of mathematics.

The First Order Induction Principle is a reasonable attempt to for-
malize the Second Order Induction Principle in our language. The’ .idea
is to “spread out” the Second Order Induction Axiom over infinitely
many distinct sentences to eliminate quantification over subsets. A first
attempt at spreading out this axiom would be to have, for every subset
A of N, an axiom '

IA:[OGA/\Vw{:cEA#s(:I:)6A]]:>Va:wEA.

If A were represented by a unary relation symbol p# in our vocabulary,
we could then write out I, as the formal sentence .

G+ [PA(0) AV [pA(z) = pA(s(e))]] = Vo (o).

- Now, although we have no such relation symbols in our vocabulary, we

can represent many subsets A of N with wffs rather than with relation
symbols. For instance, the set E of even numbers is represented by,thg ‘
wif B having only the variable free:

Jy yty==.

E={neN : N E&B@/n)}.

7 | CHAPTER 3. FULL PREDICATE LOGIC

In fact, every wif of the language determines a subset of N in exactly
‘the same way. Moreover, if we replace the collection of Cy4’s with
“the collection of first order wffs in our formulation of the second-order
axiom we obtain the First Order Induction Principle. Unfortunately,
however, since there are only countably many wffs in the language (see
Exercise 8) and uncountably many subsets of N (see Appendix A6),
“most” subsets of N are not accounted for by the wifs used in the
first order axiom. Thus we should not expect every model of Peano

Arithmetic to be isomorphic to A. In fact, models which are not iso-

morphic to A" (called nonstandard models of arithmetic) can be

constructed using the Compactness Theorem; see Theorem 3.8.3 in the
next section. By contrast

Theorem 3.7.9 (Uniqueness Theorem) Suppose that M is a model

for weak arithmetic and satisfies the Second Order Induction Aziom in
the sense that if A C M satisfies

'AOMEAananEM[nEA:»(n+1)€A]

then A = M. (Here M is the universe of the model M) Then M
is isomorphic to the standard model N' of PA. In particular for any
sentence A we have M = A if and only if N |= A.

Proof: The assertion that A and M are isomorphic means that there
is a one-one onto function

¢:N—- M
such that (
CHO=0", nt1) =M (g(n)) (1)

and

dmAn)=gm)+M g(n), f(mn) = g(m) +M g(n). (2)

The equations (1) determine ¢ uniquely by induction (on N). /Using '

induction again and the fact that M = WA we see that ¢ is one-
one and that equations (2) hold. (See Exercise 25.) Finally apply the
Second Order Induction Principle (for M) to the set '

A= {¢4(n):n € N}.
We see that A = M so that ¢ is onto. ~ End of Proof.

3.8. SOME APPLICATIONS OF COMPACTNESS 175

3.8 Some Applications of Compactness

The Compactness Theorem is one of the most useful theorems in math-
ematical logic. In this section we shall give three applications which

- illustrate its usefulness.

Theorem 3.8.1 Let H be a finite or countable set of sentences. Sup-
pose that for each natural number n, H has a model whose universe set
has more than n elements. Then H has a model whose universe set is
infinite.

Proof: For each n, let E, be the sentence
Vo Voo - Ve dyler £ yAzes £y A Az, £yl

The sentence E,, is true in a model M if and only if the universe set of
M has more than n elements. For each n, the set

HU{E,E,,...,E,)}

has a model, namely any model of H whose universe set has more than
n elements. It follows that each finite subset of the countable set of
sentences

HU{E,,E,,...}

has a model. By the Compactness Theorem, this set of sentences has
a model M. Then M is a model of H whose universe is infinite, as

" required. " End of Proof.

The next application involves groups. In the language of group
theory, let z” be the term for multiplied by itself n times. That is,
2% is e, z' is , and z"*' is (z") * . In a group G, an element g has
order n if n is the least natural number such that ¢g" = e. An element
g has infinite order if g" # e for each natural number n.

Theorem 3.8.2 Let H be a finite or countable set of sentences which
contains all the group azioms. Suppose that for each n, H has a model
G which has no elements of order < n except the element e of order 0.

. Then H has a model in which all elements ezcept e have infinite order.

176 CHAPTER 3. FULL PREDICATE LOGIC

Proof: For each n let D, be the sentence Vz[z" = e = z = e]. Then
for each n, H has a model in which each of the sentences Dy, k < n is
true. Therefore each finite subset of the countable set

HU{Dy,D,,...,}

has a model. By the Compactness Theorem, this whole set has a model
M. Then M is a model of H in which all elements except e have infinite
order. ‘ End of Proof.

Our third application concerns models of arithmetic. By complete

arithmetic we mean the set of all sentences in the vocabulary of PA
which are true in the standard model N of arithmetic . Thus all the
axioms of PA belong to complete arithmetic. We shall see from the
Godel Incompleteness Theorem in Chapter 5 that there are additional
sentences in complete arithmetic which are not tableau provable from
PA The following application of the Compactness Theorem shows that
complete arithmetic, and hence PA, has nonstandard models.

Theorem 3.8.3 There is ¢ model M of complete arithmetic whose
universe set M contains an element w such that all the sentences

OSw,rlgw,ZSw,...

are true in M. (Such an element w is called infinite, and models of

PA which have infinite elements are called nonstandard models of
arithmetic.)

Proof: Add a new constant symbol w to the vocabulary of PA. In this

expanded vocabulary, let H be the union of complete arithmetic and
the set of sentences '

0<w,1 fw,2<w,....

Every finite subset Hy of H has a model, namely the standard model
N of arithmetic with the extra constant symbol w interpreted by an
element m € N which is greater than any n such that the sentence
n < w belongs to Hy. By the Compactness Theorem, H has a model
M. End of Proof.

3.9. TABLEAU PROBLEMS (TAB4) o

| 3.9 Tableau Problems (TAB4)

This assignment uses the TABLEAU or TABWIN program. You will
construct tableau proofs in full predicate logic. The problems are lo-
cated in directory TAB4 on the distribution diskette, and _the SETUP-
DOS or SETUPWIN program will put them in a sul.)dlre.ctor_y called
TAB4 on your hard disk. There are seven problems in this directory,

called

GROUP1.TBU, GROUP2.TBU, CALC1.TBU, CALC2.TBU,
CALC3.TBU, ZPLUS.TBU, PLUS.TBU.

You should load in each problem with the TABLF;‘;\U or TABWH:
rogram, then make a proof sketch on paper, and ﬁn.a Y use your proo
fketgch as a guide to make a formal tableau proof with the TABLEAU

- or TABWIN program. In many cases your sketch will contain a string

of equations. As usual, you should save your answer on your diskette
or hard drive, with the name of the problem p.rec?ded by an A.

These problems use the full predicate logic with v’fu‘nctlon, symbols
and eciua,lity substitutions. Here are some com{nents on the problems.
You should try the problems with shorter solutions (fewer nodes) first.

- GROUP1 (16 nodes).

Hypotheses:
Ve VyVzaz*(y*z)=(zxy)*z,
| Vzdyzxy=e, ’
Vezxe=z,
Vze*z=z.
To prove:

Vzdyyxz=e

The hypotheses are axioms from group theory Yv'ith a binary in-
fix operation * and a constant symbol e for the identity element.
The first hypothesis is the associative law, the‘second hypothe-
sis is that every element has a right inverse, and the other two

178 CHAPTER 3. FULL PREDICATE LOGIC

hypotheses state that e is a two-sided identity element (actually,
the fourth hypotheses can be proved from the other three). The
sentence to be proved is that every element has a left inverse..

GROUP2 (21 nodes).

Hypotheses: ;
Ve VyVezx(y*z)= (zxy)*z,
Vedyzxy=e,
Vrz+e=az.
To prove:

vayvz[x*zzy*z;»,m:_y]

The hypotheses are the axioms for groups. The sentence to be
proved is the cancellation law.

CALC1 (6 nodes).

Hypotheses:
Vydz f(z) =y,
Vz g(f(z)) ==.

- To prove:
Yy flg(y)) =y

The hypotheses state that the function f is onto and that g is an

'inverse function of f. The sentence to be proved is that f is an
inverse function of g. |

- CALC2 (30 nodes).
Hypotheses: |
: VaVy [z <y = f(z) < f(y)],
Ve f(z) < e,
Yy Ve fl@) <y = c<yVe=y],
~drdylz<yAy <zl
VeVy [z <y=Vz [z<zvz<y].

3.9. TABLEAU PROBLEMS (TAB4) 179

To prove:
Vyly<e=3IzVz[z<z=y< f(2)]]

This is the theorem from calculus which states that a bounded
increasing real function f(z) approaches a limit as z approaches
infinity. The vocabulary has a constant ¢, a unary function f, and
a binary infix predicate <. The first hypothesis states that the
function f is increasing, the second and third hypotheses state
that ¢ is the least upper bound of the range of f, and the last
two hypotheses are needed facts about the order relation. The
sentence to be proved states that ¢ is the limit of f(z) as = ap-
proaches infinity. '

~ CALC3 (64 nodes).

Hypotheses:
VeVyVzz <yAy<z=1z <2z,

Vzdy -~y <z,
Ve [f(z) 0=z < d,
Yy [Vz [f(z) S0 =z < y] = c < y],
Vz Yy Vz [p(z,y,2) & ~y SzA-z< yl,
YavuVu(p(u, f(z),v) = Js3t[p(s, z,t)AVy[p(s, y,t) = p(u, f(¥),v)]]].

To prove:

fle)<0

This is the main part of the the Intermediate Value Theorem from
calculus. The vocabulary has constants ¢ and 0, a unary function
f, a binary infix predicate <, and a ternary predicate p. The first
two hypotheses are facts about the order relation. The next two
hypotheses state that c is the least upper bound of the set of all
z such that f(z) < 0. The fifth hypothesis defines the relation
p(z,y, z) to mean that y belongs to the open interval (z,z). The

long sixth hypothesis uses the relation p to state that the function

: ' - 1
180 CHAPTER 3. FULL PREDICATE LOGIC 3.9, TABLEAU PROBLEMS (TABY) - 18

f(z) is continuous for all z. The sentence to be proved is that =>VaVyz+y=y+7,

7o) <o. |
(A similar proof will show that 0 < f(c). This leads to the

<
theorem that if f is continuous and f(a) < 0 < f(b) then there
is a point ¢ between a and b with f(¢) =0.) '

‘v’:c[x+0=0+:c/\\/y[$‘+y=y+:n :>‘x+s(y)=s(,y)+a;] N

: =¢»Vy$,+y=y+$]>
The problems ZPLUS and PLUS are examples of proofs using the ‘
induction principle for the natural numbers. The vocabulary has a con-
stant 0 for zero, a unary function s for successor, and a binary function

+ (written in infix notation z +y) for the sum. The hypotheses in each
problem give the rules for computing the sum. The other hypotheses
are cases of the induction principle for natural numbers.

VzO+z=1z.

~To prove:
VeVyz+y=y+2

ZPLUS (11 nodes). The third and fourth hypotheses are the induction principle for

Vy z +y = y+z in the variable z, and the induction Priz'lciple
for + y = y + z in the variable y. The last hypothesis is the -
sentence proved in the preceding problem. The sentence to be»
proved is the commutative law for the sum.

Hypotheses:
Vez+ 0=z,

Vz Vyz + s(y) = s(z +y),

040 =0AVz [0+2z =2z = 0+s(z) = s(z)] = Ve 042z = z.

If you get stuck, you may look at the hints below.
To prove: .

VelO4z=2z HINT FOR GROUP1: Ha*b=cand b*c= e then

The third hypothesis is the induction principle for the wif 0—}—@' =
‘z in the variable z. The sentence to be proved is that for all z,
04z =z ’ '

PLUS (38 nodes).

a=a*e=a*(b*c)=(a*b)*c;e*cﬁc’

so that bxa =e.

'HINT FOR GROUP2: Ifaxc=bxcandcxd=¢ then
H th : ; : ‘ _
S Vez+0=2 a:a*e:a*(c*d)=(a*c)*dz(b*c)*d:b*(c*d)=b*6—be
HINT FOR PLUS: HVy [a+y =y +a] and s(a) + b = b+ s(a),

Ve Vy s+ s(y) = s(z+y), then

s(a) + s(b) = s(é(a) +b) = s(b+ s(a)) = s(s(b+ a)) = s(s(a+b)) =
= s{at () = s(s() +0) = s(8) + ()

N

Vy0+y =y+0A[Yyz+y =y+a = Vys(z)+y = y+s(z)]

i
K
!',
;

- 2. Prove that for each term r and each initial segment U of the string

- 8. Suppose T is a term and ¢ is a term withig 7, that is, 7 = UoV for

‘that is, A = UBV for some U and V., Prove that for every wif C, the

, , 183
182 CHAPTER 3. FULL PREDICATE LOGIC 3.10. EXERCISES |

3.‘10 Exercises 5. Give a tableau proof of the sentence

VaVy3z z = f(z,y)
1. Let B be the wff 7 _
| y = s(z)AJyz+y =2z 6. Give a tableau proof of the sentence
’m ' ANz =yl
(a) Write down the wif B(z//0). | Vy [R(y) & 3z [R(z) Az =y]
(b) Is the term s(z) free for z in B? If it is, write down the wif :

B(z//s(z)).

(c) Is the term z y free for z in B? If it is, write down the wif

7. In the full predicate logic with a vocabulary consisting of the two
binary predicate symbols =, p, give tableau proofs of each .of the Equal-
ity Axioms from Section 2.10. (You may skip the transitive law (3),

B(z//z *y) ~ which is already proved in the text as an example).
(d) Is the term o+ y free for yin BY I it is, write down the wff . 8. Suppose there are only countably many function symbols in the
B(y//z xy). |

" vocabulary of a full predicate logic and that M is a f:ount-able set.
Prove that TERM(F,M) is a countable set. (Hint: First show that
the set of all finite sequences from a countable set is countable. The_n
- show that the set S of all symbols except for the predicate symbo}s is
countable. Finally, show that each term is a finite sequence (or string)
~ of symbols from S). Then show that WFF(P,F, M) is countable.

(e) Write down the sentence B(v) where v is the valuation

v={((2,2), (,4), (+,6)).

9. Let N = {0,1,2,...} be the set of natural numbers and ¢, ¢1, ¢2,.. ..
be a list elements of FUN;(N), i.e. each ¢,, : N — N. Define a function

~ f:N = N such that f # ¢, for all n = 0,1,2,.... Conclude that the
set FUN;(N) is not countable. Hint: See Exercise 48 on page 139.

7 such that the next symbol after U is a function symbol f, thereis a
unique term o within 7 which starts with [, that is, there is a unique
term o such that 7 = Uo'V for some V.

(Hint: Similar to the proof of the Unique Readability Theorem for
wifs). -

~ 10. This exercise gives an example of a premodel which is not a model

~ and shows how the premodel may be transformed into a model. We use

the logic of group theory whose vocabulary {*, e} consist.s of one binary

function symbol * and one constant symbol e. We bl.nld a premodel
G for each natural number m with the following specifications:

some strings U and V. Prove that for every other term p, the string
UpV obtained by replacing o by pin T is also a term.

(Hint: Use the preceding Exercise. Hold ¢ and p fixed and argue
by induction on the length of T.) - ‘ the universe of G,, = N

4. Let A be a wff in full predicate logic and let B be a wff within A, *g,, = +

string UCV obtained by replacing B by Cin A is also a wif, egm =0

184 CHAPTER 3. FULL PREDICATE LOGIC

where =,,, called equality modulo m, is defined by:
T =m Y <= =z —y is divisible by m.

(Fo-r instance, any two even numbers are equal modulo 2, and the fol-
lowing numbers are equal (in pairs) modulo 3 : 2,5,8,11,....)

(a) Show that G, is a premodel satisfying the a.xionis of group theory
but that G, is not a group. ,

(b) Notice that the elements of G, can be organized in an array:

O, 1,‘ ey o m—1
m, m+1, ..., 2m—1

so that the elements in any column are equal modulo m (but
elements from different columns are not equal modulo m).

Let Z.,, consist of the elements in the top row of the matrix, i.e.,
Zm ={0,1,...,m —1}.
We interpret * for Z,, by the operation +,, defined by

it f = the remainder obtained on dividing
t+7bym

where “i+;” signifies ordinary addition of natural numbers. Thus
for example, N

2453=0
| 3454 =1
Show that Z,, = (Z,,, +m,0) forms an abelian group.

- 3.10. EXERCISES 185

(¢) Show that for all m, G, and Z,, satisfy the same first order sen-
tences, i.e., for all sentences A, ’

OnlEA = ZnEA

(Hint: For each n € N, let 7 denote the remainder obtained on -
dividing » by m. Show that for each wif A with free variables
Z1,-.-.,Zy, and for all natural numbers ny,...,n,,

Gm EA(ny,...,n,) <= Z, EAR,...,7).
Do this by induction on the wif A.

(d) Treat Z,, as a model of the language of arithmetic by interpreting
the multiplication symbol * as *y,, defined by ' ‘

e i the remainder obtained on dividing
MR P by m

Does Z,, satisfy WA? Which axioms are satisfied and which fail?
‘Does your answer depend on the choice of m? What is the “right”
way to define multiplication'on G so that it too becomes a model
of the language of arithmetic satisfying the same sentences as Z,,7?

11. Recall from page 161 that (S(X),0,Ix) denotes the permutation
group of the set X. Show that for any set X with more than two

~elements, this group is not abelian. (Why must S(X) be abelian if X

has at most two elements?)
12, Prove that every model of the sentence
[Vz —=s(z) = 0 AVzVy[s(z) = ‘s(y) =z =y]]
of full predicate logic has an infinite universe.
13. Give a tableau proof from PA of the wif

Vz[z=0V3dyz = s(y)]

186 CHAPTER 3. FULL PREDICATE LOGIC

(Hint: An informal proof was given in Example 3.7.6. The tableau
proof involves the use of the induction axiom where B(z) is the wif
z=0V3Jyz =s(y).)

14, Show that Axiom 7 of WA,
Vz[z <0=z=0],
is provable from PA, by proving it from the six basic axioms and the

sentence _
Vrlz =0V Iyz = s(y)]

from the preceding Exercise.
15. Show that Axiom 8 of WA,
Vavylz < s(y) = [o <y Va =s(y)],

is provable from PA by proving it from the six basic axioms and the
~ sentence from Example 3.7.6.

16. Prove that Axiom 9 of WA, the Comparability Law
Vavylz <yVy <,

is provable from PA. In addition to the axioms of PA, you may use
the Commutative Law for Addition

VeVyz +y =y +=z

from the computer problem PLUS.TBU and Axiom 8 which is proved
from PA in the preceding exercise.

17. Show that the sentence
VaVyVzlz+y =z + 2 => y = 2]

is provable from PA. (Hint: Prove it from the axioms of PA and the
Commutative Law for Addition from computer problem PLUS.TBU).

3.10. EXERCISES 187

- 18. Shox}v that there is a tableau proof from PA of the associative law

of addition,
VzVyVz (z +y) +z =2+ (y +2)-

(Hint: First come up with an informal proof from the Peano axioms

 using induction. Then translate it into a tableau proof.)

19. Show that the Transitive Law
VaVyVz[z Sy Ay <z=z < 7]

is provable from PA. (Hint: Prove it from the Associative Law of

Addition.)

20. Shéw that the Antisymmetric Law
Vavylz <yAy<z=>z =y

is provable from PA. (Hint: Prove it from the basic axioms of PA, the
Associative Law of Addition, and the sentence from Exercise 17).

21. Give a tableau proof of the sentence
Yz [0%z = 0= 0xs(z) =0
from the set of hypotheses
Ve z+0=z

VaVy zxs(y)=z*y+z

22. Give a tableau proof of the sentence
Yz O0xz=0

from Peano arithmetic. Here is a start (showing only the axioms of
Peano arithmetic which are needed for your proof).

-z Oz =0

' 189
188 CHAPTER 3. FULL PREDICATE LOGIC

3.10. EXERCISES
Ve z4+0=¢ by induction:
Vz z%0=0 f(0) =0M, f(n+1)=sM(f(n)).

VaVy zxs(y) =zxy+z

: Since
0x0=0AVz [O*xiOéﬁ*s(m)éO]:'V:v Oxz=0

M EVaVyls(a) =s(y) >z =y]

it follows by induction that f is one-one. Siflce oM ¢ f(N)
and s(u) € f(N) whenever u € f(N) and since M models
the Induction Principle, it follows that M = f(N), that is,
that f is onto. Finally the formulas

23. Show that the Distributive Law

, VxVsz(a:+y)*z=z*y+x*z

is tableau provable from PA.. You may use extra rules of proof such as f(0) = oM '
the Generalization and Deduction Rules, as well as the commutative f(s(z) = SM(f(z))
and associative laws for addition, which were proved from PA in earlier M
exercises. k fz+y) fz) +7 f()
: flzxy) = flz)+™ f(y)
24. Glye a tableau proof of the “strong induction principle hold, the first two by definition and the last two by induc-

tion.

Vz[Vyly <z = P(y)] = P(z)] = Vz P(z)

from the three hypotheses The argument is wrong: Theorem 3.8.3 provides a counter-example.

Where is the error?
Vz-z <0, :

The following four problems use the Compactness Theorem.

B(0) A Vz [B(z) = B(s(z))] = VzB(z),
where B(z) is the particular wif Yyly <z = P(y)).

27. Prove that for every set P of prime numbers, there is a model M -
-of complete arithmetic and an element a € M such that

‘ : M]: dzp*xz=a
25. Supply the missing details in the proof of Theorem 3.7.9. , k
for each prime p € P, and
26. The following argument purports to prove that any two models for ' o
Peano arithmetic are isomorphic. ‘ Mz -Jopre=a

Let M be a model for Peano arithmetic with universe set

for each prime p ¢ P.
M and define a map -

28. Let H be a finite or countable set of sentences in the language of

’ 1
fiN->M . group theory. Suppose that for each natural number n, H has a mode

190 - CHAPTER 3. FULL PREDICATE LOGIC

~ which has at least one element of order > n. Then H has a model
which has at least one element of infinite order.

-29. Let H be a set of sentences which contains the axioms for linear
order. Suppose H has an infinite model. Prove that H has a model M
in which there is a countable strictly increasing sequence of elements,
that is, there are elements a1, as,as,... € M such that '

MF:al<a2,.M Fa;<as,....

"30. Let H be the set of all sentences in the vocabulary {0,1,<,+, *}
which are true of the real numbers. Prove that H has a model M with
an element ¢ such that M = 0 < ¢ but for each natural number 7,
M En*e<1. (nisthe term formed by adding 1 to itself n times)

Chapter 4

Computable Functions

4.1 Introduction

- Consider the following two statements:

1. For any two positive integers m and n, there is a largest integer

g which is a factor of m and n. .
2. For any two positive integers m > n, if m is divided i?y n obtain-
ing a remainder r, and n is divided by r obtaining a rema,mder_ s, and
r is divided by s obtaining a remainder ¢, and so forth, stopping the

. first time the remainder is zero, then the last nonzero remainder that

arises in this process is the largest factor of m and n.
The first of these statements merely asserts the ezistence ’of» the
greatest common divisor (ged) of any two positive integers; the second

- actually gives a procedure to construct g. Moreover, this procedure is

mechanical in the sense that a computer can be programmed to carry
out these instructions.
 The procedure given in the second statement is known as the Eu-

“clidean algorithm. An algorithm is a finite set of instructions which,

when applied to an appropriate input, dictates a uniqtlle sequence of
simple operations to be applied to the input. For some 1nputs, thfz se-
quence of operations will come to a halt and an output will be‘ given;
for others, the sequence of operations on the given input may never ter-
minate and there will be no output. The Euclidean algorithm accepts

-as input any pair of positive integers m > n and in every case produces

191

192 CHAPTER 4. COMPUTABLE FUNCTIONS

an output (namely, ged(m, n)). ;

As another example, consider the following algorithm R: R accepts
natural numbers as inputs; with input n R checks to determine whether
n = 0 and if so, outputs 0; if not, R adds 1 to n and repeats the
procedure. Clearly, R outputs 0 with input 0 and, with input n > 0,
continues adding 1 to n forever and gives no output at all.

The two algorithms described above define functions in a natu-
ral way. The Euclidean algorithm defines a total function (m,n)

ged(m,n) from pairs of positive integers to positive integers. The sec-

ond algorithm defines the following “partial” function f:
V 0 : ifn=0
f(n) = { undefined ifn >0

Which functions are computed by algorithms? In this chapter we
provide an answer to that question by devising a simple computing

machine, called an unlimited register machine, which will execute -

programs especially designed to run on this machine; these programs
will be called RM programs. Given a subset S of N, a function
f 8 = N will be called RM computable if there is an RM program
which outputs f(ay, . -+, @n) when it runs with input (ay,...,a,) € S,
and gives no output for any input lying outside S. : ,
We will find that virtually all functions § — N that come up in

mathematical practice are RM computable. In addition we will show

how finite sequences — and as a result RM programs themselves — can
be coded as single natural numbers. We will then be able to construct
a universal RM program UNIV which will be able to execute every RM

‘program on any input: If P is an RM program which is coded by the

number e, the program UNIV will accept as input all pairs of numbers
(e;n) and will output the number which P outputs on input n (or, if P
gives no output with input n, then UNIV gives no output with input
(e,n)). The universal RM program will allow us to find examples of
functions which are not RM computable and will provide examples of
“unsolvable” problems.

There are three sets of problems at the end of this chapter. The
first two problem sets use the GN UMBER program and are done on a

computer. The third problem set contains ordinary pencil and paper
problems. ' : ’

 of partial functions.

4.2. N UMERICAL FUNCTIONS AND RELATIONS , 193

4.2 Numerical Functions and Relations

A numerical function is a function f defined on a set of n-tuples of

natural numbers:
* Dom(f) C N"

and taking natural numbers as values:
Ran(f) C N.

The positive integer n is called the arity of. the numerical function; it
is the number of inputs z1,z2,...,2Zx requlre(‘i to groduce an output
f(x1,22,...,%,). A numerical function with arity n 1s.also ca,lievd a;hr'z-
ary numerical function, or simply an n-ary function on N. (li
usage arose from more traditional ‘termT%logy v;tel)"e unary meant
- ; nt 2-ary, ternary meant 3-ary, etc. '
: MI); Ilgz::z?})mjaNn7 f);,s calledya totalt functioxz; if l?on;z() is lal,
subset of N”, f is called a partial function. By “function” we will -
mean “fotal function” although we will occasionally.refer to a functu?n
redundantly as a total function if we want to emphasize tha,if 1ts'domam
is all of N™. Since N" is a subset of itself, every to.tal function is also a
partial function, that is, the set of total functions is a subset of the set
An n-ary numerical relation is any su‘bset of N™; note th.at th‘:
graph of an n-ary function (partial or tota,l.) Is an n + }:-ary re}atl?n.h
relation R is determined by its characteristic function which is the

numerical function cg defined by

1 if (21,2,...,2.) ER
CR(wl,IEg,..-,Ja’n): 0 if($17$21""$”)¢3

for (zq,z2,...,2,) € N™. An important difference betiiveen numeri-
cal functions and numerical relations is that by convention, relat.zov?s
are always assumed to be totally defined. Therefore the characteristic
function cg of a numerical relation is always total.. . s

In Chapter 3 we saw examples of total and partial numerical U.I}ll(.I-
tions: addition and multiplication are total binary fl{nctlons; in t };s
chapter we call these functions Add and Mult», respectively. Also, sub-
traction and division are partial binary functions ; reg:all that we denote

194 CHAPTER 4. COMPUTABLE FUN CTIONS

subt}*action by Subt and division by Divide . Another useful pair of
partial functions, which we denote by Div and Remain , 18 given by
the division algorithm as follows:

qg= Div(z,y), r = Remain(z,y)

if and only if
z=qy+r, 0<r<y
with domain {(z,y) € N?:y > 0}.
We will be interested in extending partial functions to make them
total. We give some examples below; we define

o Cut-off subtraction by

. z—y ify<z
rT—Yy =
Y {O ifz<y

- for (z,y) € N2,

* The quotient function by

Di :
gt(z,y) = { 0 w(z,y) :gz Z g

for (z,y) € N2.

e The remainder function by

rm(z,y) = { fﬂmain(x,y) gz ig

for (z,y) evN2, _

WARNING: In the theory of computable functions the domain of a par-
.tia,l function plays an important role. Typically an n-tuple (24, z,,..., z)
is not in the domain of some computable function f because t};e pljo-n
gram which computes f(z1,2,...,,) does not terminate normally
when the input is (xl’,:cz., .+ Ty): it goes into an infinite loop.

The total functions —, rm, and qt in the above examples turn out
to be RM computable. However, it can happen (as we shall see later)

F(zy,zq,...,2,) :{ 0

4.3, THE UNLIMITED REGISTER MACHINE : 195

that the total function F' defined from the partial function f by the
prescription

f(ml,:cz,...,:cn) if ($1,$2,...,$n) € Dom(f)

otherwise.

Will not be computable, even though f is computable.

4.3 The Unlimited Register Machine

" In this section we shall describe an abstract computer called the un-

limited Register Machine or simply register machine (RM). It
differs from real computers in three ways.

- @ First, the instruction set of an RM is much smaller than that of a
real computer. This makes the RM much easier to study than a
real computer (although it also makes the RM less efficient than
a real computer), but does not in principle restrict the computing
power of the RM; we shall see that the RM can compute anything
a more complicated computer can.

¢ Second, the RM has an infinite memory: it has infinitely many -

data registers, and infinitely many instruction registers which
hold the program instructions. Moreover each register can hold
an arbitrarily large number. This idealization makes the RM easy
to study and is not as far removed from reality as one might think:
any particular calculation on an RM will use only a finite amount
of memory, so any particular calculation which can be done by
an RM can in principle be performed by a real computer with a
large enough finite memory.

& Third, program memory is disjoint from data memory.

The register machine has two countable lists of registers, the instruc-
‘tion registers Iy, I;, Iz, ... and the data registers R;, Ry, R3,.... In
addition, there is one more register Ry, called the program counter.
Each instruction register I, holds an instruction I,, which is loaded prior

196 CHAPTER 4. COMPUTABLE FUNCTIONS

to the execution of a program and does not change. However, all but
finitely many of the instruction registers hold the halt instruction H.
At any given time in the execution of a program, the program counter
and all the data registers hold natural numbers, with all but finitely
many of the data registers holding 0. The contents of these registers
“may change during execution of a program. The program counter Ry

contains the index of the next instruction to be executed, and is initially

set to 0 so that the program starts with the instruction Io.
The RM recognizes the following five kinds of instructions:

(H) Halt Instruction: There is a single halt instruction H which
causes the RM to stop execution.

(Z) Zero Instructions: For each n = 1,2, ... there is a zero instruc-
tion (Z,n) which causes the RM to set the contents of register R,
to 0, and to increment by 1 the contents of the program counter
Ry, leaving the other registers unaltered. ‘

(S) Successor Instructions: For each n = 1,2,... there is a succes-
sor instruction (S, n) which causes the RM to increment by 1 the
contents of the register R,, and to increment by 1 the contents
of the program counter Ry, leaving the other registers unaltered.

(T) Transfer Instructions: For each m = 1,2,... and n = 1,2,...
there is a transfer instruction (7,7, n) which causes the RM to
replace the contents of the register R, by the contents of the
register R,, (i.e. transfer R,, to R,), and to increment by 1 the

contents of the program counter Ry, leaving the other registers
(including R,,) unaltered. '

(J) Jump Instructions: Foreachm = 1,2,...,eachn = 1,2,..., and
each ¢ = 0,1,2,... there is a jump instruction (J,m,n,q) which
causes the RM to put the number ¢ into the program counter Ry
(resulting in a jump to the g-th instruction) if the contents of the
registers R, and R, are equal, and to increment by 1 the contents
of the program counter Rg otherwise. A jump instruction does
not alter any data registers R,,n > 1. k

43. THE UNLIMITED REGISTER MACHINE A 197

H (do nothing)
(Z,n) rpi=0,r0:=10+1
(S,n) ri=Tn+ 1, To:=r0o+1

(T,m,n) Tn:=Tm,To:=To+ 1
(J;m,n,q) ifrm=rn then ro:=gq else ro :=1o +1

‘Table 4.1: The RM machine

An RM—program is a finite sequence

P= (Io,Il,Iz, eey Ip)

" of such instructions, with the understanding that all the later nstruc-
tions Ipt1, Ip42, - - - are halt instructions H. -

If a program P is loaded into the RM’s program memory, tjhe data
registers Ry, Ra, ... are given initial values, and the RM is given the

" command to start computing, the RM first puts a 0 in the program

counter Ro. It then keeps repeating the following procedure: Look up

" the number ro currently in the program counter RO., and execute the
* corresponding instruction Ir,, modifying the appropriate data registers

and program counter as required. It continues this process until it
encounters a halt instruction, at which point the RM stops.
It is possible (even likely) that a program will no.t stop at all (for ex-
ample, the program consisting of the single instruction Io = .(J, 5,5,0)).
The RM instructions are summarized in Table 4.1. In this table.the
column on the left gives the instruction and the column on the right

~ gives the result of executing the instruction in conventional program-

ming notation. Here the lower case letter r, indicates the contents of
register R, and ro indicates the value of the program c?unter. ’.

Note that program memory is indexed starting at 0, i.e. tl.le ?nstruc—
tions are numbered Io, I3, Iz, ... whereas the data memory is mde}'(ed
starting at 1, i.e. the data registers are numbered Ry, Rz, ..., reserving
R, for the program counter. : .

Each particular RM program P uses only finitely many data regis-

" ters. If £ is the largest data register index mentioned in the program

instructions, then the program will never use the data registers R,tl fO'I%
m > £, no matter what the initial register contents were. That is, 1

198 CHAPTER 4. COMPUTABLE FUNCTIONS

m > £ then the contents of R,, will never change and will never affect

. the contents of another register during program execution.

For a given program P, the state of the register machine is a se-
quence of natural numbers (ro,71,72,...,7¢) Where 7o is the program
counter contents, £ is the highest data register index which appears in
the program instructions, and rq,...,r, are the contents of the data
registers Ry,..., R;. Since the program begins execution with instruc-
tion I, the initial state is a sequence (0,ry,...,r,) with zeroth term 0.
The state at time ¢ + 1 is completely determined by the state at time
t. It is sometimes useful to think of the program as a rule for changing
from one state to another. Thus the program P gives rise to a function

- NXSTATEp : N — N1

where (ro,71,...,7¢) € N1 is the state before instruction I, is exe-

‘cuted, and NXSTATEp(ro,r1,...,7¢) is the state after execution. This
function is sometimes called the nextstate function.

We do not. count the infinite sequence of halt instructions at the end
as part of the program, so that a program will be a finite rather than
an infinite sequence of instructions. We say that two RM programs

P=(Is.... L), Q= (Jo,..., J;)

are equivalent if they are the same except for a different finite number
of halt instructions at the end; that is, if p < ¢,

Io=Jo,....J,=Jp, and Jppy = H,...,J, = H.

Two equivalent RM programs will have exactly the same computations
and will be displayed alike by GNUMBER. Given an RM program P,
the smallest RM program which is equivalent to P is the program con-
sisting of all instructions of P up through the last nonhalt instruction.
We regard the empty sequence as an RM program equivalent to.an RM
program which has only Halt instructions. ‘

4.4 RM computability

In this section we study functions which are computed by register ma-
chine programs.

~ 4.4. RM COMPUTABILITY - 199

Register machines have no special provision for input or output.
Instead we consider the input to the RM to be the sequence of values
in the registers Ry, Rs,... when the RM starts, and the output frqm
the RM to be the value in the register Ry if and when the RM halts.

(Sometimes we allow two outputs, say R; and Ry, although this should

really be regarded as computing two different functions at the same
time, or as computing one function with values in N2.) ,

We now give a formal definition of RM computable functions and
relations. In the sequel, we shall say that an RM program P halts
on some input when we actually mean to say that when running the
program P with the given input, the RM eventually vha,lts: .

An RM program P computes an n-ary partial numerical function

CD%) as follows:
e The domain Dom(i’g)) of@g) is the set of all n-tuples
‘ (ay,02,...,0,) € N

such that the program P eventually halts if it is started with
register R; set to a; for j =1,2,...,n and all other registers set

to 0.
e For any n-tuple (a1,4az,...,an) € Dom(@%)) the value
@g)(al,az, ceeyGn)

is the number in register Ry when the program P ‘halts (after it
has been started as above).

Recall that the characteristic function of an n-ary relation & on

N is the total function Cg from N" into the set {0,1} defined by

Cr(z1y...,Tn) =11f R(z1,...,%n) is true,
Cr(z1,...,zn) =0if R(z1,...,2n) is false.

Definition 4.4.1 An n-ary numerical function f is called RM com-

- putable if there is an RM program P which computes f; that is, if
~there is a program P with \ '

/=0y
An n-ary relation R is called RM computable if its characteristic func-
“tion Cg is RM computable.

200 CHAPTER 4. COMPUTABLE FUNCTIONS

4 5 Examples of RM-Computable Func-

tions

In this section we give some simple examples of RM-computable func-

tions.
Example 4.5.1 The addition function Add is defined by
Add(z,y) = +y
for (z,y) € N? = Dom(Add). 1t is RM- computable
Example 4.5.2 The multiplication function Mult is defined by
| Mult(z,y) =z *y
for (z,y) € N? = Dom(Mult). It is RM- computable.

Example 4.5.3 The predecessor function Pred is defined by
-1 ifz>0
Pred(z)={ *
| Predz) {o ifo =0
It is RM-computable.

lI)Example 4.5.4 The cut-off subtraction function DotMinus is defined
Y

DotMinus(a:,y)z{g“y 1§y§x
ifz<y

for (:v,y) € N? = Dom(DotMinus). Tt is RM- computable. We often
write z—y for DotMinus(z,y):

T—y = DotMinus(z,y).
Example 4.5.5 The functions Div and Remain are defined by
Div(z,y) = q, Remain(z, y)=r,
if
T=gqy+r, where 0 <r <y

for (z,y) € N? and y # 0. They are undefined when y = 0. Both
functions are RM-computable.

4.5. EXAMPLES OF RM-COMPUTABLE FUN CTIONS 201

We now proceed to the RM programs to compute the functions in
the above list. Each program is presented in three forms: in “pseu-
docode,” in “assembly code,” and in “machine code.”

Pseudocode is useful for writing a first version of a program. It
lists the main steps of a program in English, and may contain loops and
if-then tests. Certain conventions will be followed. The letters a,b,c,

.. will correspond to the contents of the first registers Ry, Ry, Rs,
Other “variables” correspond to other register contents and have names
which suggest how they are used in the program. A pseudocode listing
will begin with the program name and the intended input and output

- of the program. Sometimes the name of an earlier RM program with

indicated inputs will appear as a line within a new program.. The start’
of a loop will be indicated by a line such as

do until s = t,

and the end of the loop will be indicated by a single line

loop.

The program will repeat the intervening sequence of steps (the loop)
until s = t becomes true, and will then go on to the line after the
loop. If s = t is already true the first time the loop is encountered,
the loop is never executed. If s = t never becomes true, the loop will
be repeated forever and the computation will never halt,.

The assembly code for a program matches the final RM program
line by line, but uses descriptive names instead of numbers for the
register contents and the targets of jump instructions. The assembly
code has two kinds of jump instructions, the ordinary jump with three
arguments as in an RM program, and an unconditional jump with just
one argument, which always causes the program to jump to the target
line. The final RM program in machine code is listed next to the
assembly code.

~ The assembly code is tra.nslated into machine code (the final RM
program) in a routine manner. For example, let us go through this
translation for the ADD program. The labels “LOOP” and “DONE”
stand for two of the instruction numbers: ;

LOOP = 1,DONE = 5.

202 CHAPTER 4. COMPUTABLE FUNCTIONS

(The only instructions which need labels are those which appear some-

.where in the program as jump targets). The labels “a,” “b,” and -
“count” in the assembly code stand for register numbers. Choose a

register number for each of these labels:
a=1,b=2,c=3.

To form the machine code RM program, first write down the instruc-

tion numbers 0 through 5, then copy the instruction letters from the

assembly code, then insert a pair 1 1 after each unconditional jump in-
struction to make it into an ordinary RM jump instruction, and finally
replace each label by the corresponding jump target or register number.
(A different choice of register numbers would give another RM program
which does the same thing but in different registers.)

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 203

ADD

program ADD(a,b)
input: a = x, b=y
output: a=x+y

let count = 0
do until count = b
let a=a+1
let count = count + 1
loop
end of program ADD

7 count 0: Z3
LOOP J count,b, DONE 1: J 325

S a 2: §1

S .count 3: 83
‘ - J LOOP 4: J 111
DONE H 5: H

Figure 4.1: Pseudocode, assembly code, machine code for ADD

204 CHAPTER 4. COMPUTABLE FUNCTIONS

MULT

pfogram MULT(a,b)
~input: a=x, b=y
output: a = x * y

let accum = 0
let 1 =0
do until i =b»
let i =1+ 1
ADD (accum,a)
loop
let a=accum
end of program MULT

accum
1

b,i, DONE

i

count

count, a, ADONE
accum

count

ALOOP

LOOP

accum,a

- LOOP 4 10

ALOOP

N O

ADONE
DONE

O WWNDUDWN O
W RO WO N D W
[y
0

[S Y

H
Mo G WG N W e NN

M~ S 000 N2 NN

11:

Figure 4.2: Pseudocode, assembly code, machine code for MULT

PRED

program PRED(a)

input: a = x
output: a = x - 1 if x
a=20 if x

v

]

if a = 0 then halt
let prev = 0
let next
do until
let next
let prev
loop
~let a = prev
end of program PRED

oo

= next
next + 1
prev +

[are

prev
a,prev,DONE
next
. next

a,next, DONE
next

prev

LOOP

prev,a

LOOP-

DONE

WO ~N®MU D WO

oo e D NN

B = N W WWwe N

4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS = 205

28

38

- Figure 4.3: Pseudocode, assembly code, machine code for PRED

206 CHAPTER 4. COMPUTABLE FUNCTIONS 4.5. EXAMPLES OF RM-COMPUTABLE FUNCTIONS 207

DIVREM
DOTMINUS program DIVREM(a,b)
input: a=1x, b=y
output: a = q, b = r where
x=qy+rand 0<=r <y.
(undefined if y=0)

program DOTMINUS(a,b)
input: a=x, b=y
output: a = x-y if x>y
' a=0 otherwise

if b = 0 then hang
let (count, q, r) = (0,0,0)
do until count = a

let count = 0
do until count = b

PRED(a)
let count = count + 1 if r = b then let (q, r) = (q+1, 0)
loop else let r = r+1
end of program DOTMINUS let count = count+1
loop
let (a,b) = (q,r)
7 count 0: 7 3 end of program DIVREM
LOOP J count,b, DONE 1: J 3 2 13
Z prev 2: 25 Z count 0:Z 5
J a,prev,PDONE 3: J 15 10 HANG J b,count, HANG 1:J 2 5 1
7 next 4: 7 4 Z q 2: 72 3
S next 5: S 4 Z r - 3:Z 4
PLOOP J anext, PDONE 6: J 1 4 10 "TEST J 1,b, INCQ 4:] 4 9
S next 7.8 4 J count,a, DONE 5:J 5 1 12
S prev 7: 85 S r 6: S 4
J PLOOP 8:J1186 S count 7:8 5
PDONE T prev,a 9: T5 1 J TEST 8:J 1 1 4
S count 10: § 3 INCQ S ¢ 9: 3 3
- J LOOP 11: J 111 Z r 10: 2 4
DONE H 12: H J TEST 11: J 1 1 4
DONE T gq,a 12:' T 3 1
T r,b 13: T 4 2

Figure 4.4: Pseudocode, assembly code, machine code for DOTMINUS
Figure 4.5: Pseudocode, assembly code, machine code for DIVREM

208 CHAPTER 4. COMPUTABLE F UNCTIONS

4.6 Godel Numbers, Extract, and Put

In this section we introduce a way of representing finite sequences of
natural numbers by single natural numbers. This scheme is called a
Goédel numbering scheme, and will be used in the construction of a

universal RM program. The GNUMBER program has a built-in Godel

numbering scheme which uses the even decimal positions (starting from
0 on the left) as markers to show where a new term begins, and uses
the odd decimal positions for the digits of the terms in the sequence
to be coded. A 2 marker means that a new term is beginning, and a
1 marker means that the old term is continuing. We take 0 to be the

Godel number of the empty sequence. For example, the Godel number
(or G.N.) of the sequence

(54,6,217)

is (with the original digits in large type)
2501426221117.

This is the Godel number in standard form, or the standard
Godel number. In order to make every number a Godel number of
some sequence, we adopt the convention that any single digit number,
0 through 9, is taken to be a Godel number of the empty sequence.
For numbers with two or more digits, we treat every digit in an even
position (starting from 0 on the left) as a marker. The initial digit can
be any digit except 0 and is the first marker. Any marker > 2 has the
same effect as a 2 and starts a term of the sequence. Any 0 marker has
the same effect as a 1 and continues a term. An extra marker at the
end is ignored. After computing the sequence, any initial zeros which
may appear in a term are ignored. For example, the natural number

151630101907 4.

is a Godel number of the sequence

(56,97).

46. GODEL NUMBERS, EXTRACT, AND PUT | 209
Let N* denote the set of all finite sequences of natural ngmbe?s:
N =|JN"

: n=0

where N™ is the set of sequences of length n (and N is the singleton

~ whose only element is the empty sequence). Define two functions

#:N* >N, seq:N—N

| where #(0) is the standard Godel number for the sequence o and seg(n)

is the sequence o having n as a Godel number. E[‘he function # is one-
one (two sequences having the same standard Godial number are equal)
and the function seq is onto (every number is a Godel number of some
sequence). Moreover, seq is a left inverse to #:

seq(#(0)) = o

for every finite sequence o € N*. Thus each finite sequence of naturf;l
numbers has several Godel numbers but a unique Godel numbe}‘ in
standard form, and each natural number is a Godel number of a unique
finite sequence of natural numbers. ‘ ,

Godel numbers of RM programs are especially important, because
they are central to our goal of using RM programs to study RM pro-
grams. The first step in assigning Godel numbers to programs is to
introduce a numerical code (called an opcode) for each of the five RM
instructions letters. We use the natural numbers 1, 2,3, 4, 5 as codes
for the RM instruction letters H, Z, S, T', and J, respectively: When
we replace the RM instruction letters by their codes, each RM 1nst£uci
tion becomes a sequence of from 1 to 4 natural numbers“. By the Gode:E
number #(I) of an RM instruction / we mean the Godel numbe;{ ;{ ;
that sequence. For example, the Q&del number #(T,5,43) of the
instruction (7',5,43) is given by : ,

(T,5,43) = #(4,5,43) =24 2524 13.
Fina,llyy,kea,ch RM program is a finite sequence

P=(lo,h, ... Ip)

210 ‘ CHAPTER 4. COMPUTABLE FUNCTIONS

of instructions, and the Godel number #(P) of the program P is defined
" to be the Godel number

#(P) = #(# (o), #(Lr), - -, #(1p))

of the sequence of the Godel numbers of the instructions of the program.
For example, the Godel number of the program

T 543
S 6
Zz 1

' is the G8del number of the sequence ;
(24252413,2326,2221),

which is k ;

221412 151214111322 13121622121211.

We shall now introduce two new total functions,
Eztract(z,y), Put(z,y,z)

and show that they are RM computable.

Eztract(z,y) is the y-th term of the sequence with Godel number
z, with Eztract(z,y) = 0 if this sequence has fewer than the y terms
needed. (The Godel number z need not be in standard form).

Put(z,y,z) is equal to the standard Gédel number of the sequence
which is formed by putting z into the y-th term of the sequence with
Godel number z, first adding as many 0 terms as necessary if the se-
quence with Godel number z has fewer than y terms. These functions
are useful in manipulating G6del numbers, but have rather long and
slow RM programs. '

The following functions:

Length(z), Digit(z,i), Terms(z), Start(z,y), PutEnd(z,y)

defined below are RM computable. Using pseudocode, we shall de-
scribe RM programs LENGTH, DIGIT, TERMS0, START, and PU-
TEND which compute them. These programs will be used only to

4.6. GODEL NUMBERS, EXTRACT, AND PUT ' 211

show that the two functions Eztract(z,y) and Put(z,y,2) are RM com-

- putable. (The RM program which computes Terms(z) will be denoted
by TERMSO to distinguish it from the shorter Advanced RM program

TERMS which is on the distribution diskette.)
At this point the reader should be convinced that given pseudocode

‘for a new function in terms of old functions, and given RM programs for

the old functions, one can routinely construct an RM program for the
new function. For convenience, we include with each of the functions
below a short algorithm for computing it; each such algorithm briefly
describes the behavior of its corresponding pseudocode program.

(1) Length(z) = number of decimal digits in x.

For example,

I

i

I
:—-—‘

Length(0) = Length(1)
Length(10) = Length(11)
Length(100) = Length(101)

Length(9)
= Length(99)
Length(999) = 3,

1l
™o

I

!
il
|

and so on.

Short Algorithm: Successively divide z by 10, using Div, until 0
is reached. Output the number of divisions required.

(2) Digit(z,1) = thei-th decimal digit of z if i < Length(z), Digit(z,?)
0 otherwise.

We start counting with 7 = 0 on the left. For example,

Digit(907,0) = 9,

Digit(907,1)

Digit(907,2) = 7,

0 for all n > 3.

I
=

Digit(907,n)

I

Short Algorithm: If ¢ > Length(z), output 0. Otherwise, succes-
sively divide = by 10 using Div so that the i-th digit d is moved
to the one’s place (Div is applied Length(z) — ¢ times). Apply
-Remain(-,10) to the result to output d. :

9212 CHAPTER 4. COMPUTABLE FUNCTIONS 4.6. GODEL NUMBERS, EXTRACT, AND PUT 213

‘ ddi
(8) Terms(z) = number of terms in the sequence with G.N. z, with the (5) PutEnd(z,y) = the standard G.N. of the sequence formed by adding

emply sequence having 0 terms.

For example,

Terms(201426221117)=3,

Terms(l5043642 1107 9)=3.

Short Algorithm: If has an odd number of digits, use Div to
drop the last digit. Use a counter to keep track of how many terms
are in the sequence. If z > 0, initialize the counter at 1 because
the zeroth (leftmost) digit is a marker which starts a term of the
‘sequence, regardless of its value. Search the even-placed digits of
z excluding the zeroth digit, and increment the counter whenever
a marker > 1 is found; output the number in the counter after all
even-placed digits have been tested.

(4) Start(z,y) = the position of marker for the start of the y-th term in

the sequence with G.N z if y < Terms(z), undefined otherwise.

Count terms from 0 on the left. For example,

Start(2514 262211 17,0)=0,
Start(251426221117,1)=4,

Start(251426221117,2)=6.

Short Algorithm: If y > Terms(z), do not output anything; oth-

erwise check the even-placed digits for markers > 1; use a counter
to keep track of how many such markers are found, and another

counter to record the position of each. When the yth such marker

is found, output its position.

y as one more term to the end of the sequence with G.Nz ifx is
¢ G.N. in standard form. Don’t care otherwise.

For example;

PutEnd(2514262211.17,98) = 2514262211172918 |

Short Algorithm: If « is not a standard Godel number, the output
can be anything. Otherwise, adjoin a 2 to the‘ end of ':c.(l.e., let
2! = x %10+ 2) and then use a loop to successively adjoin to the
end of this new value of z the zeroth digit of ¥, then a 1, then
the first digit of v, then a 1, etc., until the last digit of y has been
adjoined. «

(6) Extract(z,y) = the y-th term of the sequence with G.N. z if y <

Terms(z). Extract(z,y) =0 otherwise.

Following the precedent set in defining the function Digit, we
make Ertract a total function by giving it the value 0 when y 2
Terms(z). For example,

Extract(251426221117,0) = 54

Extract(251426221117,1) = 6
Ertract(251426221117,2) = 217
Eatract(251426221117,3) = 0

Short Algorithm: Record the digit d in the Start(z,y)-+1 position,

and use a loop to successively adjoin to the end of d the digits in
positions Start(z,y)+ 3, Start(z, y)+ 5,...a§nd so forth. Stop the

process when the next even-numbered position is ?CCUpied by a
marker > 1; output the number that has been obtained from this

loop.

(7) Put(z,y,z) = the standard G.N. of the sequence formed by putting

T into the y-th term of the sequence with G.N. z, first adding a5
many 0 terms as necessary if z has fewer than y terms.

214 CHAPTER 4. COMPUTABLE FUNCTIONS

For example,

Put(99,2,251426221117)
Put(99,5,251426221117)

2514262919
25142622111720202919

I

Note that Put(z,y,z) is always a Godel number in standard form;

thus, it not only replaces the yth term of the sequence coded by
z, but ‘also changes the markers for the other terms to 1’s and 2’s
as appropriate.

Short Algorithm: To change the markers which occur before the
yth term of z to 1’s or 2’s, use a loop which successively ap-
plies Eztract and PutEnd to the zeroth, first, second,...terms of
(the sequence coded by) z (remembering to adjoin 0-terms if
Terms(z) < y), thereby obtaining a code u for a sequence of
y terms. Now use PutEnd to adjoin to u a yth term z. Finally, if
Terms(z) > y + 1, repeat the process above of applying Extract
and PutEnd to change all markers after the yth to 1’s and 2’s, as
- appropriate.

Here are pseudocode descriptions of programs computing each of
these functions. The RM programs for Length and Digit are assigned
as exercises for the student. These functions can be tested with the
GNUMBER program and do not take too much time when applied
to numbers with fewer than six digits. The other functions are more
- difficult optional exercises. It is still possible to write RM programs for
them with the GNUMBER editor, but the Eziract and Put functions
are too slow to be tested out.

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program LENGTH(a)
input: a = x

output: a = number of decimal digits in x
let len =1
let num = a
let num = Div(num,10)

do until num = 0
let num = Div(num,10)
let len = lentl
loop
let a = len
end of program LENGTH

program DIGIT(a,b)
input: a = number, b = position
output: a = Digit(number,position)

let place = Length(a)

DOTMINUS (place,b)

if place = 0 then-let a =0

PRED(place)

let num = a

let times = 0

do until times = place
let num = Div(num,10)
let times = times + 1

loop

let a = Remain(num,10)

end of program DIGIT

215

216 : CHAPTER 4. COMPUTABLE FUNCTIONS

program TERMSO(a)
input: a = x
output: a = number of terms in the sequence
with Godel number x.

let count = 0
let pos =0
do until pos + 2 > Length(a)
let d = Digit(a,pos)
if (count = 0 or d >1) then let count = count + 1

let pos = pos + 2
loop
let terms = count

end of program TERMSO

program START(a,b)
input: a =x, b =i
output: a

with index i. Undefined if i >= Terms(x).

let pos
let count = 0
do until count >= b
let pos = pos + 2
let d = Digit(a,pos)
if d >1 then let count = count + 1
loop
let a = pos
end of program START

the position of the start marker of the term of x

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program EXTRACT(a,b)
input: a = source, b = 1
output: ¢ = the i-th term of the sequence
with Godel number source if

i < Terms(source), 0 otherwise.

if b >= Terms(a) then
let ¢ = 0, halt
let position = Start(a,b)
let term = 0 ’
. let marker = 0
do until marker > 1
let position = position + 1
let d = Digit(a,position)
let term = 10 * term + d
let position = position + 1
let marker = Digit(a,position)
loop '
let ¢ = term

end of program EXTRACT

217

218

CHAPTER 4. COMPUTABLE FUNCTIONS

program PUTEND(a,b)
input: a = a standard G.N. x, b =y
output: a = the standard Godel number

of the sequence formed by

putting the number y onto the end of
the sequence with Godel number x.

let ab = a*10 + 2
let place = 0

let len = Length(b)
do until place = len

let d = Digit(b,place)

let ab = ab*10 + d ’

let place = place+l

if place < len then let ab = ab*10 +1

loop
let a = ab
end of program PUTEND

4.6. GODEL NUMBERS, EXTRACT, AND PUT

program PUT(a,b,c)
input: a = source, b = i, ¢ = target
output: ¢ = the standard Godel number
of the sequence formed by

219

putting the number source into the i-th term

of the sequence with Godel number target.

let inarray = c
let outarray = 0
let index = 0
do until index = b
let term = Extract(inarray,index)

let outarray = Putend(outarray,term)

let index = index + 1
loop
let outarray = Putend(outarray,a)
let index = index + 1
do until index >= Terms(inarray)
let term = Extract(inarray,index)

let outarray = Putend(outarray,term)

let index = index + 1
loop
let ¢ = outarray
end of program PUT

220 CHAPTER 4. COMPUTABLE FUNCTIONS

‘4.7 ‘"The Advanced RM

The advanced RM machine, or ARM, is formed by adding to the or-

dinary RM machine the two new instructions E for Fztract and P for
Put.

(E) Extract Instructions: For each m = 1,2,..., each i = 1,2,...,

and each n = 1,2,..., there is an Extract instruction (E,m,%,n)
which causes the ARM to replace the contents of register R, by
Eztract(rm, ;) leaving the other registers unchanged. Here r; and
rm are the contents of registers R; and R,, respectively, before
the instruction is executed. : :

(P) Put Instructions: For each m = 1,2,..., each : = 1,2,...,
and each n = 1,2,..., there is a Put instruction (P,m,%,n)
which causes the ARM to replace the contents of register R, by
Put(rp,,r;,7,) leaving the other registers unchanged. Here rp,, r;,
and r, are the contents of registers R, R; and R, respectively
(before the instruction is executed).’ ‘

Since the functions Extract and Put are RM computable, any func-
tion which is computable by an advanced RM program is already com-
putable by an RM program in the original sense, using only the in-
structions H, Z, S, T, and J. We make this precise in Theorem 4.7.1
below.

An ARM program is a sequence
P= (107117]27 e 7177)

of ARM instructions. As for the RM each program and each n de-
termine a partial function (I)(ff) defined on a subset Dom(@%)) of N™.
Just as in Section 4.3, an ARM program P determines a nextstate
function '

'NXSTATEp : N*' — N!

where £ is the highest number of a register mentioned in the program P,

(ro,T1,72,...,7m¢) € N1 is the state before instruction I, is executed,
and NXSTATEp(ro,71,72,...,7¢) is the state after execution.

4.7. THE ADVANCED RM ‘ 221

H (do nothing) -

(Z,n) rpi=0,r9:=10+1
(S,n) Tni=rp+1,r0:=r0+1
(T,m,n) Tpi=Tm,roi=To+1

(J,m,n,q) if rm =17y thenro:=¢ else rp =19+ 1
(E,m,i,n) Tn:=rm[r],ro:=70+1
(P,m,i,n) r[ri] :=rm, ro:=To+1

Figure 4.6: The ARM machine

The ARM-instructions are summarized in Figure 4.6. In this figure,
alz] denotes the z-th element of the sequence with Godel number a.
The column on the left gives the instruction and the column on the
right gives the result of executing the instruction in conventional pro-
‘gramming notation. Here the lower case letter r, indicates the contents
of register R, and rg indicates the value of the program counter.

Thekorem 4.7.1 A function is ARM computable if and only if it is RM
computable. '

Proof: Clearly an RM computable function is ARM compu‘pable‘ since
every RM program is an ARM program. The converse is true becal}se
we may always transform an ARM program to an RM program which
behaves in the same way. We simply replace every Eztract instruction
(E,m,i,n) by an RM program which computes the Eztract function
Eaxtract(r,,,r;) (with inputs rn, r; the contents of Ry, R;) and puts the
result in R,, and every Put instruction (P,m,%,n) by an RM program
which compute the Put function Put(rm,ri,7s) (With inputs rm, mi, Tn

" the contents of Ry, Ri, R,) and put the result in Ry. We must take

care that these inserted programs do not change any registers (other
than R,) used by the original ARM program. :
The advanced GNUMBER program replaces the Extract and Put
functions by extra instructions E and P. In principle, any “advanced”
RM program with the E and P instructions can be replaced by an
ordinary RM program which computes the same function. However,
RM programs which involve computations of Gédel numbers are often
'so long and slow without the extra E and P instructions that nobody

222 : CHAPTER 4. COMPUTABLE FUNCTIONS

will live long enough to see the output. The extra instructions are a
pragmatic compromise which will allow us to experiment with some
important programs involving Gédel numbers.

The Gédel number of an advanced RM program is defined in the

same way as for an ordinary RM program, with the two new instruc-

tion letters F and P having the opcodes 6 and 7. In the sections which
follow we shall use the advanced RM machine to build programs which
manipulate Gédel numbers of programs. As an‘aid in the testing of RM
programs which manipulate Gédel numbers of RM programs, GNUM-
BER has a command which places the standard Godel number of the
current RM program in a given register, and a command which replaces
the current RM program with the RM program whose Gdédel number
(not necessarily in standard form) is in a given register.

4.8 Closure Theorems

One of the easiest ways to show that a complicated function is RM com-

putable is to show that it can be built up using operations which pro-
‘duce RM computable functions from other RM computable functions.
In this section several common operations are discussed: composition,
primitive recursion, course of values recursion, parametrization, and
unbounded minimalization. We shall prove several theorems showing
that if the original function is RM computable then the new function
is also RM computable. Such theorems are called closure theorems,
because they say that the set of all RM computable functions is closed
under the operation used to form a new function.

Throughout this section, all partial functions mentioned will be un-
derstood to be numerical functions. Remember that if we say that f

is a partial function, we do not exclude the possibility that f might be.

total. Every total function is a partial function, but there are many
partial functions which are not total. To simplify the exposition, we
shall state the closure theorems for partial functions of one variable,
with the understanding that results for n variables can be proved in
a similar way. Since the RM computable functions are partial func-
tions, we define composition, primitive recursion, and other operatlons
on pa,rtlal rather than total functions.

- 4.8. CLOSURE THEOREMS 223

Composition: Let g1,...,gn be k-ary functions and let h be an m-ary
function. The composition h(g,...,g) is the new k-ary function f
defined by

flat, ... ax) = h(gl(al,...,ak),f..,gm(al,...,a‘k)’),

where f(ay,...,ax) is undefined if any part of the right side of the equa-
tion is undefined. In the case of one variable, if g and h are unary partial
functions, then their composition g o k is the unary partial function f

such that
f(z) = g(h(z))

whenever both A(z) and g(h(z)) are defined, and f(z) is undefined
otherwise. If g; and g, are unary partial functions and A is a binary
partial function, the composition h(g1,g2) is the unary partial function

f such that
f(z) = M(g1(2), 92(2))

whenever ¢(z), g2(z) and h(gi(z),g2(z)) are all defined, and f(z) is
undefined otherwise.

Primitive Recursion: Let h be a binary partial function. The partial
function obtained from h by primitive recursion is the unary partial
function f such that ,

| f(0) =1
and for all z,

flz+1) = h(f(),2)

if f(z) and h(f(z),z) are both defined, and f(z + 1) is undefined oth-
erwise. «
Note that in this definition, if f(z) is undefined then all later values
f(¥), y > = will be undefined. Thus f will either be total, i.e. defined
for all z, or the domain of f will be a finite initial segment {0,1,. .,n}
of the natural numbers.

Course of Values Recursion: Let h be a binary partial function.
The partial function obtained from k by course of values recursion 1s
the unary partial function g such that

9(0) =1

224 CHAPTER 4. COMPUTABLE FUNCTIONS

. and for all z,
gl +1) = h(#(9(0),9(1), - - -, 9(2)),)

if (0),...,9(z) and A(#(g(0),9(1),...,9(z)),z) are all defined, and
g(z+1) is undefined otherwise. In this definition, #(g(0), g(1),...,9(z))
stands for the standard Godel number of the sequence (g(0),...,9(z))
in the notation of Section 4.6. ‘

Again, if g(z) is undefined then all later values g(y), y > « will be
undefined. Thus g will either be total or Dom(g) will be a finite initial
segment {0,1,...,n} of the natural numbers.

Parametrization: Let f be a binary partial function. The parametriza-
tion of f is the sequence of unary partial functions f,, n = 0,1,...

defined by »
fa(z) = f(z,n).

Unbounded Minimalization: This is a way of getting a unary partial
function from a binary relation. Let R be a binary relation. The partial
function obtained from R by unbounded minimalization is the unary
partial function '

f(z) = py R(z,y)

where f(z) is the least y such that R(z,y) if Iy R(z,y), and f(z) is
- undefined otherwise.

The symbol py is read “the least y such that.” It is called the
unbounded ‘minimalization operator. :

Definition 4.8.1 We say that a set F of partial functions is closed
under composition if any partial function obtained from partial func-
tions in F by composition belongs to the set F. Closure under primi-
tive recursion, course of values recursion, and parametrization
are defined in a similar way. A set F of partial functions is closed
under unbounded minimalization if for any relation R whose char-
acteristic function belongs to F, the partial function obtained from R
by unbounded minimalization belongs to F. '

4.8. CLOSURE THEOREMS : 225

In this section we shall prove the’

Theorem 4.8.2 (Closure Theorem) The set of RM computable func-

tions is closed under composition, primitive recursion, course of values
recursion, parametrization, and unbounded minimalization.

Before starting on the proof of the Closure Theorem, we need to
develop an efficient way of combining two RM or ARM programs.
If P is an ARM program, the length of P—denoted n(P)—is the

number of instructions in P, not counting halt instructions at the end.

The empty program is the program consisting entirely of halt instruc-
tions, and has length zero. Since the instructions of an ARM program
are numbered beginning with 0, if P is not the empty program then

- the (n(P) — 1)th instruction is the last nonhalt instruction in P.

The total function f, where f(z) is the length of the ARM program
P with Gédel number z, is RM computable. To make an ARM program
which computes f, start with the program TERMS !, which gives the
number of instructions in P, and then add a loop which will subtract
1 from the output for each halt instruction at the end of P.

Given two ARM programs P and Q, their join PQ is the new ARM
program consisting of the program P followed by the program Q, with

'Q starting immediately after the last nonhalt instruction of P, and

with each instruction number and each jump target in Q increased by

the length of P. ‘

There is an ARM program called JOIN? which is a useful buildirig
block for other programs, and computes the Gédel number of the join

- of two ARM programs P and Q from the Godel numbers and lengths .
of P and Q. If the Godel numbers of P and Q are placed in registers

Ry and R,, the program lengths n(P) and n(Q) are placed in registers
R3 and Ry, and the numbers 0 — 5 are placed in registers Rzo — Rgs the
program JOIN will eventually halt with the Gédel number of the join
PQ in register R;.

Lemma 4.8.3 Let ¢(z,y) be the total function deﬁned as follows. Ifx
and y are Godel numbers of ARM programs P and Q, then c(z,y) is

Included on the broblem diskette for the advanced RM machine
*Included on the problem diskette for the advanced RM machine

226 CHAPTER 4. COMPUTABLE FUNCTIONS

the Gidel number of the join PQ. Otherwise c(z,y) = 0. The function
¢ is RM computable.

Proof: An ARM program to compute ¢ can be pieced together us-
ing the TERMS and JOIN programs given in the problem diskette.
End of Proof. '

If P and Q are sufficiently well designed, the join PQ will compute
the composition g o f of the unary partial function g computed by Q
and the unary partial function f computed by P.

For example, let P be the program

and let Q be the program

0: T 1 2
1: . Z 3
'2: J 2 3 &6
3: s 1
4: s 3
5: J 1 1 1

Here, P computes the function f(z) = z + 2 and Q computes the
function g(z) = 2z. Then the join PQ is the following program, which
computes the function g(f(z)) = 2z + 4:

0: S 1

1: S 1

2: T 1 2

3: Z 3

4: J 2 3 8
5: S 1

6: S 3

7: J 1 1 3

In this example, the join PQ has the effect of first executing the
program P, ending up at the initial instruction of Q with the output
of P in register R;, and then executing Q.

+4.8. CLOSURE THEOREMS 227

We shall now introduce conditions under which the join of two pro-
grams will compute the composition of two partial functions, as in the
example. We first define the regular programs, which behave well as
the first part of a join, and then define the neatly computing programs,
which are regular and also behave well as the second part of a join.

Definition 4.8.4 We will call an ARM program P regular if P has
no halt instructions before the last nonhalt instruction, and no target
of a jump instruction in P is greater than the program length n(P).

The three programs listed above are regular.

Let us consider a joined program PQ whose first part P is regular.
Suppose P and Q are ARM programs and P is regular. Then the join
program PQ will stay within the first n(P) instructions and therefore
do exactly the same thing as P does until P halts. If P never halts
with input zy,z2,..., then PQ never halts with input z,,2s,.... If P
with input z1, s, ... halts at step ¢, then PQ with input z;, z,... will
have the same state as P at time ¢, with the program counter at n(P)
where the Q part of the join program begins.

There is one more problem to be dealt with. The program P might
place nonzero data in registers Ry, Rs,... while computing its output
in Ry. In order to be sure that PQ computes the composition, we must
know that the output of Q in R; depends only on the initial contents of
R, and is not affected by the initial contents of the other data registers.

Definition 4.8.5 An RM program P is said to neatly compute
an n-ary function f if P is regular and computes f in the following
sense: if the registers of the RM are initialized so that the registers
R, through R, hold the numbers a; through a,, and the program P
is loaded into the machine and executed (starting with instruction o),
then, no matter what the other registers contain initially,

o if (al‘,kag, ...,az) € Dom(f), then the program eventually halts
with register R; holding the value f(a;, a, ..., a,) of the function;
and :

o if (ay,az,...,a,) ¢ Dom(f), then the program never halts, i.e.
computes forever.

228 CHAPTER 4. COMPUTABLE FUNCTIONS

In other words, P neatly computes the n-ary function f if and only
if P is regular and for any m > n and any numbers ay,as, ..., a, we
have both the condition

, (al,az, ceey an) S Dom(f) & (al, ag, ..., am) € DOm(an))

and the condition that
f(al,az, ey an) = (ﬁgn)(al,az, caey am)

for (a1, a9,...,a,) € Dom(q)(m))

Again, the functions in our example above are neatly computed by
their ARM programs. We now show that joins of neatly computing
programs neatly compute compositions of partial functions.

Lemma 4.8.6 Suppose that P and Q neatly compute the unary partial

functions f and g. Then the join PQ neatly computes the composition
gof.

Proof: Let h be the unary partial function computed by PQ. Start
with ¢ in R,. Since P is regular, P and PQ will do exactly the same
thing until P halts. Thus if f(z) is undefined, then both P and PQ
will go on forever, so h(z) is undefined.

- Suppose that f(z) is defined. Then P will halt at some time t with
f(z) in Ry, so PQ at time ¢ will have f(z) in R, and the program
counter at n(P) where Q begins. Since P neatly computes f, this hap-
pens no matter what the initial contents of the other registers R,,n > 1
were.

The program PQ will now do the same thing as Q would do startlng
from the data register contents left by P at time {. Since Q neatly
computes g, the output of PQ in R; depends only on the contents of
R, at time ¢, not on the other data registers. If 9(f(z)) is undefined, the
program PQ will never halt, so A(z) is undefined. If g(f(z)) is defined,
the program PQ will eventually halt with g(f(z)) in Ry, so h(z) =
9(f(z)). Thus PQ neatly computes %, and A = go f. End of Proof

The following proposition shows that there are enough neatly com-
putmg programs to capture all RM computable functions.

4.8, CLOSURE THEOREMS 9229

Proposition 4.8.7 If an RM program P computes an n-ary partial

- function f, then there is a program Q which neatly computes the same

partial function f.

* Proof: To make the computation neat, first add additional steps at the

beginning of the program P which put zero in all the registers which

“are used in the program except for the first n registers. Let m be the

1ength of this adjusted program. Renumber the targets of the Jump :
instructions by increasing each by m.

To make the program regular, decrease to m any targets of jump
instructions in this new program which exceed m. Replace all halt in-
structions by the instruction (J,1,1,m). The new program Q computes
f neatly, and is clearly regular as well. - End of Proof.-

We now prove the composition part of the Closure Theorem. We
shall prove even more, that the Gédel number of a program for the
composition is given by an RM computable function. :

Theorem 4.8.8 (Closure Under Composition) Ifg and h are RM
computable functions of one variable, then the composition go h is RM

- computable. Moreover, there is an RM computable total function c of

two variables such that whenever x and y are the Godel numbers of
ARM programs which neatly compute g and h respectively, then c¢(x,y)
is the Godel number of an ARM program which neatly computes g o h.

| Proof: The first part of the theorem follows from Lemma 4.8.6, which
“shows that if P neatly computes ¢ and Q neatly computes A, then the.
~ join PQ neatly computes the composition g o h. It now follows that

the function ¢ given in Lemma 4.8.3 does the job 2.

Theorem 4.8.9 (Closure Under Primitive Recursion) Ifh is an
RM computable function of two variables, then the partial function f
of one variable given by the rule

f0)=1, f(n+1)=h(f(n),n)

‘ 3The function ¢ w111 be computed by the ARM program COMPOSE asmgned in
. computer problem set GNG6.

230 ' CHAPTER 4. COMPUTABLE FUNCTIONS

‘is RM computable. Moreover, there is an RM computable total function
1 of one variable such that for all z, if z is the Godel number of an RM
program which neatly computes h then r(z) is the Godel number of an
RM program which neatly computes the new partzal function f given by
the above rule.

Proof: We sketch the proof of the first part of the theorem. Let P
" neatly compute k. Take m large enough so that P does not use any
register beyond R,,, that is, no register number larger than m appears
in the instructions of P. We describe a new program Q which neatly
computes f. First, Q saves the original input @ in Rp41, and puts a
zero in R,,42. The number in R,, 2, which we shall call z, will be used
as a counterkWhich works its way from 0 to a. Q then puts a 1 in R;.

Now Q checks whether a = 2. If so, Q halts. Otherwise, Q puts =
into Ry, runs the program P, and increases = by 1. It then repeats the
process given in the current paragraph.

The program Q can be built by joining a few instructions before
‘and after P

To prove the second part of the theorem, an ARM program must
* be produced which computes the total function r*. End of Proof.

Theorem 4.8.10 (Closure Under Course of Values Recursion)
~ If h is an RM computable function of two variables, then the partial
function g of one variable given by the rule

9(0) =1, g(n+1)=h(#((9(0),-..,9(n)),n)

is RM computable. Moreover, there is an RM computable total function
7 of one variable such that for all z, if z is the Godel number of an RM
program which neatly computes h then r(z) is the Gédel number of an
RM program which neatly computes the new partial function g given by
the above rule.

Again, this can be proved by producing an appropriate RM pro-
5
gram.

4This is assigned as the problem RECUR in computer problem set GN6.
5This is assigned as the problem CVREC in problem set GN6.

-4.8. CLOSURE THEOREMS 231

Theorem 4.8.11 (Parametrization) If f is an RM computable func-
tion of two variables, then for each natural number n, the one variable

~ partial function f,(z) = f(z,n), obtained by holding the second argu-
“ment fized at n, is RM computable. Moreover, there is an RM com-

putable total function p of two variables such that for all x and y, if

- is the Gédel number of an RM program which neatly computes f then

p(z,y) is the Godel number of an RM program which neatly computes
Jy-

The first part is proved as follows. Let P be an RM program which
neatly computes f. For each n, let Q, be the program which has one
instruction (Z,2) followed by n copies of the instruction (S,2). Then

~ the join Q,P computes the partial function f,, because it puts n in

register 2 and then executes P. The second part is proved by producing
the RM program PARAM which does the job.® If PARAM is executed
with the Gddel number of an RM program P as the first input and n
as the second input, it will halt with the Godel number of the program
Q.P as output.

Theorem 4.8.12 (Closure Under Unbounded Minimalization)

" Let R be an RM-computable binary relation. Then the partial unary

function f defined by
f(z) = py R(z,y)

-is RM-computable. Moreover, there is an RM computable total function
-1 of one variable such that for all z, if z is the Godel number of an RM
- program which neatly computes the characteristic function of R then

r(z) is the Godel number of an RM program which neatly computes the
new partial function f given by the above rule.

- To prove the theorem, an RM program must be produced which
computes the total function .

SIncluded on the problem diskette as an example. l
"This is assigned as the problem UBMIN in computer problem set GN6.

932 , CHAPTER 4. COMPUTABLE FUNCTIONS

4.9 Universal RM Programs

An RM program U is universal for one input if for all RM programs
P with one input there is a number e such that for all the output of U

computing on input (e, z) is the same as the output of P computing on

input z. (The program U never halts on (e,) just in case P never halts
on z.) We sometimes call P the simulated program with index e.
More generally, an RM program U is universal for n inputs if for
all RM programs P with n inputs there is a number e such that for all
Z3,...,Tn the output of U computing on inputs (e,z1,...,z,) is the
same as the output of P computing on inputs (z1,...,z,).

Theorem 4.9.1 (Universal Machine) Forrevery n there is an RM
program which is universal for n inputs.

We shall prove this theorem in case n = 2 by producing a universal

RM program UNIV for two inputs. We leave the problem of modifying
the program to produce a universal program on n inputs as an exercise
for the reader (Exercise 11). The following remark takes care of the
case of one input.

Remark 4.9.2 If UNIV is a universal RM program for two inputs,
then the program UNIV1 formed by joining the single instruction (2,3)
to the beginning of UNIV is a universal RM program for one input.

This is because, by definition, the output of an ARM program com-
puting on n inputs is obtained by starting the program with the given
inputs in the first n registers and zero in all other reglsters

To make the task of producing a universal program easier, we shall
use the advanced RM instructions. (It follows from Theorem 4.7.1 that
there is also an ordinary RM program which does the job.) To keep

things balanced, the universal program will simulate advanced as well

as ordinary RM programs. The ARM program UNIV listed below is
the same as the one supplied on the diskette.

UNIV will use several Godel numbers of sequences of numbers. We
identify the instructions H, Z, S, T, J, E, and P with the natural
numbers 1,2,3,4,5,6,7. An ARM instruction is then a sequence of at
most 4 natural numbers, and an ARM program P is a finite sequence of

4.9. UNIVERSAL RM PROGRAMS 233

instructions. The state of an ARM program P during a computation is
another finite sequence of natural numbers, giving the contents of each
register used in the program.

UNIV accepts as input a triple e,z,y in reglsters Ry, Ry and Hs.

- The number e is interpreted as the Godel number of an ARM program

P. (If the sequence display is used in the GNUMBER program, e will |
appear as a finite sequence of Godel numbers for the instructions of
P.) The output of UNIV will be the same as the output of the pro-
gram P with input z,y. UNIV works by simulating an ARM machine
running the program P. The contents of the registers of the simulated
machine are coded as a Goédel number for a single finite sequence of
natural numbers, which is held in register R, (the fourth register of the
universal machine). The zeroth term of the sequence coded in Ry is
the program counter of the simulated machine. For n > 1, the n-th

term of the sequence coded in R, is the n-th register of the simulated

machine. UNIV begins by initializing constants and clearing register
R, to zero. It then places z and y into the simulated registers one and
two. It does this by using the Put command to make the first term of
the sequence coded in R4 equal to z and the second term equal to y.
At this point the simulated program counter, which is the zeroth term
of the sequence coded in Ry, contains a zero. UNIV next analyzes the
zeroth simulated instruction, whose Godel number is the zeroth term
of the sequence coded by the input e in register R;, and performs the
indicated operation on the contents of the simulated program counter
and registers coded in R4. It then repeats the process, extracting the
simulated program counter from the zeroth term in Ry, and the sim-
ulated instruction from R;. In this way, UNIV does the same thing
to the simulated registers in Ry that the program P would do to its
registers.

For example, suppose that the simulated program counter, which is
the zeroth term in Ry, is 5, and the fifth simulated instruction is Z3.
We identify Z3 with the sequence (2,3), whose Goédel number 2223
would be the fifth term in R;. UNIV will use the Put command to
place a zero in the third simulated register, which is the third term in
R, _ ‘

Here is a list of the registers used in the program UNIV. For each

register, we give a name for the contents to use in comments, and a

234 ; CHAPTER 4. COMPUTABLE FUNCTIONS ~ 4.9. UNIVERSAL RM PROGRAMS 235

Riys : v3. The contents of simulated register number s3, i.e. the s3-th
term of reg. (Note that in case the simulated instruction number
pc is a jump instruction, then s3 is another instruction number
and not a register number).

verbal description.

"Ry : a. The input e, a Godel number of the simulated program P. (In
the sequence display, e is shown as a sequence of Godel numbers
of instructions of P. Each instruction is itself a sequence of from

one to four numbers.) The output of the program also goes here. Ry4 : Unused.

Ris : time. The time for the simulated program. (This is not needed,

R, : b. The input z. v : ed pre
but is helpful when experimenting with the program).

: ¢. Thei D ty. : S ‘
By :c ekmpuv Y Ry : zero. The constant 0.

R4 : reg. A Gddel number for the state of the simulated machine,
i.e. the finite sequence consisting of the contents of the simulated
program counter and the simulated registers.

Ry : one. The constant 1.
R,, : two. The constant 2.

Rs : pc. The simulated program counter, which is the zeroth term Ras : three. The constant 3.

coded in reg.
Ry4 : four. The constant 4.

Rs : quad. The Godel number of the pec-th simulated instruction,
-which is a sequence of from one to four numbers. quad is the
pe-th term of the simulated program e in R;.

Rys : five. The constant 5.
Ry : six. The constant 6.

R7 : op. The zeroth term of the simulated instruction quad. This term
is an opcode for one of the commands H,Z,S,T,J,E,P.

R,; : seven. The constant 7.

We first give a pseudocode description of UNIV, using the “variable”
names in the preceding list for the contents of the registers used by

Rs : s1. The first term of the simulated instruction quad (or zero if
' UNIV.

the instruction is of length 1).

Ry : s2. the second term of the simulated instruction quad (or zero if
- the instruction is of length < 3).

Ry : s3. The third term of the simulated instruction quad (or zero if
the instruction is of length < 4).

Ry : vi. The contents of simulated register number si, i.e. the si-th
term of reg,.

Ry2 : v2. The contents of simulated register number s2, i.e. the s2-th
term of reg. :

236 CHAPTER 4. COMPUTABLE FUNCTIONS

program UNIV(a,b,c)
~ input: a=e, b=x,c=y
output: a = P(x)
let zero = 0, one =1, ... , seven = 7
let time = 0
let reg = 0
let reglonel = b, regltwo]
let pc =0
let op =0
do until op = H
let quad = inst{pc]
let op = quad[zero]

[]
O

let s1 = quadfone], v1 = reg[si]
let s2 = quad[two], v2 = reg[s2]
let s3 = quad[three], v3 = reg[s3]

if op = Z then
let reglsi] = zero, pc = pc+l
else if op = S then
let vl = vl + 1, reglsi] = vl, pc = pc+l
else if op = T then
let regls2] = vi, pc
else if op = J then
if vl = v2 then let pc

pc+l

s3 else let pc = pc+l

else if op = E then

let v3 = vi[v2], regls3] =v3, pc = pctl
else if op = P then

let v3 = vi[v2], regls3] = v3, pc = pc+l
else let op = H
let reglzero] = pc
let time = time + 1

loop
let a = reg[one]
end of program UNIV

-4.9. UNIVERSAL RM PROGRAMS 237

The listings in figures 4.7 and 4.8 give “assembly code” for the uni-
versal program. Adjacent to the assembly code is the actual “machine
language” which the assembly code describes. The program could be
shortened by several steps, but instead is designed to match the pseu-

- docode listing. Here’s an outline:

‘Initialization Instructions 00-14 initialize the constants zero through

seven. Instructions 15-20 initialize the simulated time counter
time, program counter pc, and register sequence reg.

Main Loop Instructions 21-29 initialize the main loop by extracting
the opcode op of the instruction to be executed, the registers
s1, s2, s3 used in this instruction, and the values v1, v2, v3
held in this registers. Instructions 30-37 jump to the appropri-
ate interpreter subroutine. Instructions 57-58 increment the time
counter and restart the loop. :

Action Instructions 38-56 contain the interpreter subroutines.

Output Instructions 59-60 place the output in R; and halt.

238 -

LOOP

S S S G e NN TONN®NH R 000 00N

CHAPTER 4.
Z€ero
Zero, one
- one
one, two
two
two, three
three
three, four
four
four, five
five 10:
five, six 11:
six 12:
six, seven 13:
seven 14:
time 15:
.reg 16:
b, one, reg 17:
¢, two, reg 18:
pc 19:
op 20:
op,one, EXIT 21:
a, pc, quad 22:
quad, zero, op 23:
quad, one, sl 24:
quad, two, s2 25;
quad, three, s3 26:
reg, s1, vl 27
reg, s2, v2 - 28:
reg, s3, v3 - 29:
op, two, ZERO 30:
op, three, SUCC 31:
op, four, TRANS 32:
op, five, JUMP 33:
op, six, EXTR 34:
op, seven, PUT 35:
one, op 36:
DONE 37:

Figure 4.7: The Universal Program (Assembly Code)

O 00 ~N O U WD WK O

\

COMPUTABLE FUNCTIONS 4.9. UNIVERSAL RM PROGRAMS
Z 20

T 20 21

S 21

T 21 22

S 22

T 22 23

S 23 ZFRO P zero,sl, reg 38:
T 23 24 J NEXT 39:
S 24 succ S wv1 40:
T 24 25 P vl,sl, reg 41:
S 25 ’ J NEXT 42:
T 25 26 TRANS P vl,s2, reg 43:
S 26 J NEXT 44
T 26 27 JUMP J wv1,v2, SETPC 45:
s 27 : ~J NEXT 46:
Z 15 EXTR E v1,v2,v3 47:
zZ 4 ‘ P v3,s3, reg 48:
P2 21 4 J NEXT 49:
P 3 22 4 PUT P wvl,v2,v3 50:
Z 5 P v3, 3, reg 51:
z 7 B J NEXT 52:
J 7 21 59 - NEXT S pc 53:
E 1 5 &6 J DONE 54:
E 6 20 7 SETPC T v3,pc 55:
E 6 21 8 DONE P pc, zero, reg 56:
E 6 22 9 S time 57:
E 6 23 10 : J LOOP 58:
E 4 8 11 EXIT E reg, one, a 59:
E 4 9 12 H 60:
E 4 10 13

J 7 22 38

J 7 23 40

J 7 24 43

J 7 25 45

J T 26 47

J 7T 27 50

T 21 7

J 1 1 56

j= >3 o> BT SVII 7> Wike IS RSP 7 Y SFERRS o IR o B SPRER o BN 3 I 2 " 2 S T » I € B R v

-

- O =

12

12
10

12
10

[o2 B 2

20

1
21

53

53
53
55
53
13

53
13

53

56

21

Figure 4.8: Subroutines for the Universal Program

239

240 CHAPTER 4. COMPUTABLE FUNCTIONS

‘4.10 Church’s Thesis

We introduced our RM computer as an attempt to capture the notion

of an algorithm. And certainly every partial function which is RM

computable is computable by an algorithm (using the program itself as
the desired algorithm). But what about the converse? (Is every partial
function computable by an algorithm in fact RM computable?) Until a
generally accepted formal definition of “algorithm” is designed, no for-
mal proof of the converse is possible. However, every known attempt to
describe the class of algorithmically computable functions — using com-

puting machines (like our RM computer), formal systems (like Weak or.

Peano Arithmetic), recursiveness, and others — has resulted in exactly
the same class of computable functions. In Chapter 5 we shall make use
of two of these alternative characterizations of the class of computable
functions, the recursive functions and the functions which are repre-
sentable in Weak Arithmetic. This confluence of ideas suggests that
the class of RM computable functions is both natural and comprehen-
sive. Secondly, no one has ever described an (intuitively) algorithmic
function which didn’t turn out to be RM computable. These consider-
ations have led mathematicians to accept the following statement:

CHURCH’S THESIS

Every partial or total function which can be computed by an
algorithm is an RM computable partial or total function.

Let us emphasize that Church’s Thesis is not a theorem but rather
is a heuristic principle for which there is a great deal of evidence.
The reason Church’s Thesis is only a heuristic principle is that we do
not have a mathematically rigorous definition of the word “algorithm.”
We can agree that many particular examples are algorithms, but state-
ments about the class of all algorithms are hard to make precise. Using
Church’s Thesis frequently makes the job of verifying that certain par-
tial functions are RM computable much easier, since it allows us to
point to a simple algorithm rather than a tedious RM program to es-
tablish RM computability. Actually, we already began using a form
of Church’s Thesis in Section 4.6 when we claimed that the functions

4.10. CHURCH’S THESIS 241

- Length , Digit , etc. were RM computable after exhibiting b’nly pseu-

docode programs for them. The task of actually writing RM programs
in place of these pseudocode programs has been left to the exercises.
The proof in this book that every ARM computable function is RM
computable used Church’s Thesis to show that these pseudocode pro-
grams can be replaced by actual RM programs. When this proof is -
supplemented by the actual RM programs required by the exercises,
we obtain a rigorous proof that every ARM computable function is
RM computable.

The theorem that there exists a universal ARM program for one
input is a good example of a theorem which can be proved more easily
if one uses Church’s Thesis. In this chapter we gave an explicit exam-
ple of a universal ARM program, without relying on Church’s thesis.
The following proof uses Church’s Thesis to show very quickly that

- there ezists a universal ARM program without actually producing the

program.

Proof that there is a universal ARM program (using Church’s
Thesis): We show that the partial function Univ given by

Univ(e,z) = fe(z),

where f is the partial function computed by the ARM ‘program with
Gddel number e, is RM computable. By Church’s Thesis, all we have
to do is describe an algorithm which computes this partial function.
Here it is: Write down the ARM program which has Godel number

‘e. Run that program with input in register R; and 0 in all other

registers. If the computation eventually halts, Univ(e,z) = a where
a is the number in register R, at the halt. Otherwise, Univ(e,z) is
undefined.. End of Proof.

In the next chapter we shall use Church’s Thesis to show that the
some of the central notions of predicate logic are RM computable.

‘Whenever we use Church’s Thesis in a proof in this book, it is
possible to give a completely rigorous proof without Church’s Thesis.
In cases where these rigorous proofs are long and bereft of new ideas,

it is better to accept Church’s Thesis and use the extra time elsewhere.

242 ‘ CHAPTER 4. COMPUTABLE FUNCTIONS

411 The Halting Problem

Recall from page 199 that a numerical relation R in n variables is said
to be RM computable® if there is an RM program which produces
the output 1 (for yes) if the input satisfies the relation, and produces
the output 0 (for no) if not. Such a program is said to compute
the relation R. A relation R which is not RM computable is said to
be undecidable; we also say that the decision problem for R is
undecidable. According to Church’s thesis, if a relation is undecidable,
then it is impossible to design an algorithm which, given any input,
will always produce the answer yes if the input belongs to R and the
answer no if the answer does not belong to B. One of the main purposes
of the RM machine is to show that various interesting relations are
undecidable. In this section we shall use the universal RM program
to give a first example of an interesting undecidable relation. Other
examples will be given in 5.10 and Exercise 17. -

Theorem 4.11.1 (Halting Problem) Let UNIVI be the universal
program for RM programs with one input. Let R(z,y) be the set of
all pairs z,y of natural numbers such that UNIV1 computing on inputs
z,y eventually halts. The relation R is undecidable, i.e. it is not RM
computable. ‘

Proof: The proof is by contradiction. Suppose that R is RM com-
putable. Then there is an RM program P which computes the relation
R. Let u be the partial function of two variables computed by UNIV1.
By joining the program P with UNIV1 and doing some easy house-
keeping, we can form an RM program Q which, when computing on
input x, halts with output 0 if R(z,z) is false and halts with output
u(z,z) 4+ 1 if R(z,z) is true. Let n be Godel number of Q. The pro-
gram Q will eventually halt with any input because it computes a total
function. The program UNIV1 computing on input n, n will eventually.
halt with the same output as Q computing on input n. But UNIV1
computing on input n, n will have output u(n,n), and by the definition
of Q, Q computing on input n will halt with output u(n,n) + 1. Thus

8The word decidable is often used as a synonym for computable.

4.12. CHURCH’S THEOREM 243

u(n,n) = u(n,n) + 1, which is a contradiction. Therefore R cannot be
RM computable. : End of Proof.

There is a striking resemblance between the preceding proof and the
arguments used in the proofs of each of the following: Russell’s result

that the common notion of “set” is self-contradictory (i.e., Russell’s

paradox — Exercise 2.46); Cantor’s Theorem that there can be no func-
tion from a set X onto the set of all subsets of X (Theorem A.6 in the
Appendix); and the result that there is an RM computable function

~which is not primitive recursive (Exercise 4.31).

The powerful technique common to these arguments is known as
Cantor’s diagonal method. The idea is to prove that a certain binary

- relation R(z,y) cannot have some property by looking at the diagonal

relation R(z,) in two different ways. The diagonal method will be used
again in the next chapter to prove Gédel’s Incompleteness Theorems.

4.12 | Church’s Theorem

" Church’s theorem says that we cannot program a computer to accept

as input a wif of predicate logic and produce as output a zero or one
according to whether or not the input wif is valid. We will prove this by
contradiction; under the (false) assumption that such a program exists,
we will show how to construct another program which solves the halting
problem. Since the latter program does not exist (by Theorem 4.11.1)
neither does the former.

A vocabulary sufficient for describing the behavior of an RM pro-

k gram P which uses only the registers

RO:Rh"'aRl

(where Ry is the program counter), contains the equality symbol =,
a constant symbol O for the number zero, a unary function symbol s
for the successor function, and an (£ + 1)-ary predicate symbol R. As

- in Section 3.7 every non-negative integer n has a name n called the

numeral which denotes n. For example,

3 = s5(s(s(0))).

244 CHAPTER 4. COMPUTABLE FUNCTIONS 4.12. CHURCH’S THEOREM 245

Theorem 4.12.1 For every RM program P which uses only the regis- o If I; = (J,m,n,q) then I is the wif I; AL} where I} is -

~ters Ry, ..., Ry there ts a wff . a

, , [ym iyﬂ/\R(Jayla”wyéf)] =>'R(qayl$“-’yf)‘

A N ’
P (o1, 21) and I is

with free variables (x1, g, ..., x¢) such that for all £-tuples (a1, ag, ..., az) €

Y = b Y1y - = R yeees YY)
N¢ the sentence [“Ym = Yn AR}, 1,) (s(j):I/l Ye)

Ap(ay,az,...,a) Denote by Cp the sentence

is valid if and only if the program P halts on input (ay, ..., a).
: Vyl\/yg[Io A... /\Ip..l]

Proof: The intended interpretation of the wif R(zo,z1,22,...,x¢) is
that the state of a register machine running the program P is (zo, 21, . . . , Z¢);
that is, the register R; holds the value x;. We shall be more precise
about this below. It is important to remember that when the register
machine is running, the register Ry plays a special role: it holds the
index of the next instruction to be executed.

Suppose that the program P is given by

(recall that I, is a halt instruction). Denote by B the sentence
Wz -s(z) = 0 A VaVy[s(z) = s(y) = = = 9],
and by Ap(z1,...,z) the wif

[BACp AR(0,21,...,20)] = 321 ... JzR(p, 215 - - » Zn)-

.o N? the following are equiv-
P = (Io,11,1z,...,1-1). ~ We must prove that for each (a1,...,az) € g

alent:
We may assume without loss of generality that the program P is regular.
Thus I, = H and if I; = (J,m,n,q) then ¢ < p.

To each instruction I; (= 0,1,...,p) of the program P we asso-
ciate a wif I; as follows.

(I) The sentence Ap(ai,...,ar) is valid.

(II) The RM progrant P halts on the input (a1,...,amn), that is,

(a1,...,a¢) € Dom(@g)).
o If I; = (Z,n) then I; is the wif ’ | A
Choose (ay, .. .,a7) € N& For k = 0,1,. ,fand t =0,1,2,.
let r4(t) denote the value in register Ry after t steps when the RM is-
running program P from the initial state (0,a1,...,a¢). In terms of
the notation introduced on page 198 this means that ri(t) is defined

inductively by

R(jaylr"*ayna 33}2):’}1(() Y1, 07”'7y€)‘
o If I; = (S,n) then I; is the wif
R(jayla---ayn, 795) = R(() Y1, (yn)w'-',yl)-

(ro(0),71(0), . .., re(0)) = (0,a1,...;0¢)

o If I; = (T, m,n) then I; is the wif and

R(j’ s Yny ey Ymo e) = R(S(j)’ cosYmy e 3 Ymy e)) '(7‘0(t+ 1),7"1(t + 1), cen ,re(t + 1)) = NXSTATEP(To(t),T1(t), v ,Tg(t)),

246 CHAPTER 4. COMPUTABLE FUNCTI ONS

where NXSTATFEp is the next state function of the program P. For
“each t =0,1,2,... let D; denote the sentence

R(ro(t), rl(t)a SRR rf(t))

which results from R(zo, z1, . . ., z¢) by replacing each z; by the numeral
ri(t) which denotes the number ri(t). The next state function returns
its input unchanged if Ry points to a halt instruction (or contains a
value larger than p) so, if P halts on the input (a4, as,...,a;) then the
list

(1) , Do, Dy, Dy, ...

terminates in the sense that Dy = Dryy = - -+ for sufficiently large T.

We are now ready to prove the theorem, that is, to prove that (I)
and (II) are equivalent. Assume (I). Define a model M with universe
N, the natural numbers, by taking sp(n) =n + 1, O = 0, and

M E R(bg,by,...,by)
iff R(bg, b1, ...bn) appears in the list (1). Now
M ‘: Ij(b07b17 s >b€)

because each of these sentences asserts that if some state occurs during
the computation, some other state occurs at the next step. Hence

M E Cp.

MEB because in the model M the successor function and zero have
their usual interpretations. Moreover, M = R(0,ay,...,a;) since this
sentence is Do, the first sentence in the list (1). Thus

(2). MEBACpAR(0,ay,...,a)

Since we are assuming that Ap(az,...,a,) is vé,lid this sentence holds
~ (in particular) in the model M:

@ M Ap(ay,...,a)

4.12. CHURCH’S THEOREM 247

But we have seen that the antecedent of Ap holds in M so the conse-
quent must holds as well:

(4) M =3z ... 32 R(p, 21, - 20).
In other words there are numbers by, b,,...,8, € N such
(5)7 M t:R(pvblv'_',bZ)

so that the sentence ‘
R(p,b1, ‘e .,bg)

occurs in the list (1). But this means that P halts.

Now we prove the converse. Assume II, that is, that the compu-
tation halts. We must show that the sentence Ap(ay,..., a;) is valid.
To do this we choose a model M and prove (3). If (2) is false then (3)
follows trivially. Assume (2). Then by induction on ¢ we have that

M E D,
for t =0,1,2,.... Since the computation halts, the sentence
R(p’blv . 7b£)

appears in the list (1). Therefore this sentence holds in M, that is, (5)
holds. It follows that (4) holds, and therefore (3) holds. End of Proof.

Church’s theorem says that we cannot program a computer to ac-
cept as input a wif of predicate logic and produce as output a zero or
one according to whether or not the input wff is valid. To make this
precise we must assign a Godel number #(A) to each wif A of predicate
logic. There are many ways of defining such a Goédel numbering. The -
scheme we shall use here takes advantage of the Godel numbering of
finite sequences of natural numbers already developed in this chapter.

The first step is to assign a natural number, called a code, to each
syinbol s of the full predicate logic with vocabulary {=,0, s, R}, where
R is an (£ + 1)-ary predicate symbol. Let

Vo, V1,V2y. .

248 ' CHAPTER 4. COMPUTABLE FUNCTIONS

be a list of all the variables of first order logic. We shall assign the even
‘number 2n as the code of the n'* variable v,, and assign odd numbers
as codes of the other symbols, including brackets and parentheses, as
follows: ‘ ‘

symbol = A V = & 3 V =
code 1 3 5 7 9 1

symbol [] () 0 s R ,
code 17 19 21 23 25 27 29 31

Next we define the Godel number #(T) of a string T of symbols
to be the Godel number of the sequence of codes of the symbols. For
example,

#(0 + vs = s(vg)) = #(25,29,10,15,27,21,0,23).

Each term and each wff, being a string of symbols, now has a Godel-

number.

Lemma 4.12.2 Let B be a wff in a full predicate logic with the vo-
cabulary {=,0,s,R}, and let Bp be the total function from N? into N
defined by

BB(a,b) = #(B(a,b))

where B(a,b) is the wff obtained from B by replacing all free occur-
rences of the the variable z, by the numeral a and all free occurrences
of the the variable z; by the numeral b. Then By is RM computable.

Proof: By Church’s Thesis, it is enough to describe an algorithm with
input (a,b) which computes Ap(a,b). We sketch such an algorithm.
The first step is to build a parsing sequence for B. This can be done
using an exercise from Chapter one, that each wif either starts with
a negation symbol or quantifier, or has a main connective which is
the unique binary connective preceded by one more left bracket than
right bracket. Working through the parsing sequence, underline each
bound occurrence of each variable. This can be done by underlining
all occurrences of a variable which come from underlined occurrences
earlier in the parsing sequence, and also underlining all occurrences of

4.12. -CHURCH’S THEOREM - 249

z in a wif starting with Yz or 3z. Form the string b consisting of b s
symbols followed by one 0 symbol, and do the same for a. Then replace
in B all nonunderlined occurrences of z; by a and all nonunderlined
occurrences of by b. This results in the wif B(a, b). Finally, compute
the Godel number of this wif as the output. End of Proof.

Recall from page 199 that a subset V' C N is called computable
iff its characteristic function cy is RM computable (See page 193.) The
set V is undecidable iff it is not RM computable. :

Theorem 4.12.3 (Church’s Theorem) Let (P,F) be a vocabulary
containing at least the symbols {=,0,s} and an L-ary predicate symbol
for each £. Then the set :

V= {#©) £}

.of Godel numbers of valid sentences in the full predicate logic with vo- -

cabulary (P, F) is undecidable.

 Proof: As in Theorem 4.11.1 let S denote the set of pairs (a,b) such

that the universal machine UNIVI halts on the input (a,b). Theo-
rem 4.11.1 says that $ is undecidable (i.e. not computable). Unfler
the assumption that V is computable we shall derive the contradiction
that S is RM computable. Denote by U(zy, ;) the wif

AUNIVl(mly T, 0, 0, e ,0)

which results from the wif Aynivy by substituting O for the free vari-
ables other than z; and z;. By Theorem 4.12.1 we have

'S ={(a,b) : U(a,b) is valid}.
‘In other words
(a,b) € S <= #(U(a,b)) €V

or
. cs(a,b) = ev(Bu(a,b))- o
By the preceding Lemma, the right hand side is an RM computable

“function of (a,b) under the assumption that cy is RM computable. But

250 - CHAPTER 4. COMPUTABLE FUNCTIONS

this says that cg is RM computable which contradicts Theorem 4.11.1.
End of Proof.

We can see from the proof of Church’s Theorem that we did not
really need to assume that the vocabulary has an £-ary predicate symbol
for each £. Instead, we only needed a single f-ary predicate symbol
R where R,_; is the last register used by the universal RM program
UNIVL. In fact, it can be shown that in any predicate logic with at
least one predicate symbol which is binary or larger, the set of Godel
numbers of valid sentences is undecidable.

4.13 Simple Gnumber Problems (GNUMS5)

This is the first of two problem sets using the GNUMBER or GNUMWIN
program. In this assignment you only need the SIMPLE form of the
program, which you start by hitting the S or RETURN key when you
see the title screen.

The following sample register machine programs are located in di-
rectory GNUMS on the distribution diskette. The SETUPDOS or SE-
TUPWIN program will put them in a subdirectory called GNUMS5 on
your hard disk. The RM programs

ADD, MULT, PRED, DOTMINUS, and DIVREM

are explained in the text, and the commented listings on the distribu-
tion diskette are reproduced in Appendix B. Your problem assignment
is to type in RM programs which compute the following functions.
Test your answers out using thee GNUMBER program (for DOS) or the
GNUMWIN program (for Windows), then file your answers on your
diskette and give them the names indicated.

In the formulas, z,y are the numbers in registers R;, R, before run-
ning the program, and a,b are the numbers in these registers after
running the program.

EQUAL: a=1ifx=y,a=0vifnotm=y
SQUARE: a=zT*zT
ROOT: a = square root of z if z is a perfect square,

4.13. SIMPLE GNUMBER PROBLEMS (GNUMS5) 251

LESS:
FACTRL:
EXP:

PRIME:
LENGTH:

DIGIT:

undefined otherwise.

a=11iz<y,a=0 otherwise.

a=z! (a=1%2*..xzifz>0,a=1ifz=0)

a = z raised to the y-th power if z > 0,
a=0ifz=0and y >0

undefined if z =y = 0.

a =1 if z is prime (2,3,5,7,11,...), otherwise a = 0.
a = the number of decimal digits in z.

(For example, 7402 has length 4).

a= the y-th digit in z, counting from 0 on the left

if y < the number of decimal digits in z, a = 0 otherwise.
(For example, the 0-th digit of 7402 is 7).

In solving these problems, you may load in the sample programs
and use them as building blocks if you wish.

The following functions are optional problems which require longer
RM programs built up from LENGTH and DIGIT:

TERMSO0:

- START: .

'PUTEND:

- EXTRACT:
PUT: -

a = number of terms in the sequence with Gédel number z
(not necessarily in standard form),

the empty sequence having zero terms.

a = position of marker for the start of the y-th

term in the sequence with Godel number z

(not necessarily in standard form),

counting from 0 on the left.

Undefined if Terms(z) < y.

a = the Godel number of the sequence formed by adding y
as one more term to the end of the sequence with Godel
number z, ‘

if z is a Godel number in standard form.

It doesn’t matter what happens if = is not a standard
Godel number.

c = Eztract(z,y).

¢ = Put(z,y, 2).

252 CHAPTER 4. COMPUTABLE FUNCTIONS

4.14 Advanced Gnumber Problems (GINUMS6
This assignment uses the Advanced form of the GNUMBER or GNUMWIN

program. In the GNUMBER program, you start the advanced form by
pressing the A key when you see the title screen.

The problems in this assignment deal with Godel numbers of register
machine programs. Each ARM instruction is a sequence consisting of
an instruction letter and up to four numbers. The instruction letters
are identified with numbers as follows:

H=1, Z=9 S§=3, T=4, J=5 E=6 P=T.

Each instruction, being a finite sequence of numbers, has a Godel
number. An ARM program P is a finite sequence of instructions
P1y--+,Pn. If instruction number m has Godel number g, then the
Godel number of the whole program P is the Godel number of the
sequence gi, . . . , gn- v

The following sample advanced register machine programs are lo-
cated in directory GNUMS6 on the distribution diskette. The SETUP-
DOS or SETUPWIN program will put them in a subdirectory called
GNUMSG on your hard disk. These ARM programs are named

FIVE, TERMS, JOIN, PARAM, NXSTATEQ, NXSTATE, and UNIV.

In the Appendix there are pseudocode listings of these programs, as well
as a reproduction of the commented listings which are on the diskette.

The following paragraphs explain the effect of these programs on the
input and output registers. In the formulas, z,y, z,t are the numbers
in registers Ry, Ry, R3, R4 before running the program, and a, b are the
numbers in these registers after running the program.

FIVE: Puts the constants 0 through 5 in registers R thro’ugh Ras.
(It is often convenient to place this at the start of a program).

TERMS: If z is the standard Godel number of a sequence; then a is
the number of terms of the sequence. Otherwise a is zero.

JOIN: If z and y are G6del numbers of ARM progra,ms P and Q (not
necessarily in standard form), z and ¢ the numbers of instructions

4.14. ADVANCED GNUMBER PROBLEMS (GNUMS6) - 253

in P and Q, and registers Ry through Ras already contain 0
through 5, then a is the standard Godel number of the ARM
program P followed by Q with each jump target of Q increased
by the number of instructions in P. Otherwise the output @ can = -
be anything. Extra bonus: this program ends with z +¢ in Rg.

‘PARAM: If z is the standard Gbdel number of an ARM prdgram

which neatly computes a function f(.,.) of two variables, then a -
is the standard Gédel number of an ARM program which neatly
computes the function g(.) = f(y,.) of one variable. Otherwise
the output a can be anything. ‘

NXSTATE: If is a Godel number of an ARM program and y is a
Godel number of a sequence representing the register state, then
b will be the standard Godel number of the next state. (y and
b are in R4) The inputs need not be Godel numbers in standard
form.

" NXSTATEQ: If z is a Godel number of an ARM program, registers

Rgo through Ry hold the constants 0 through 7, and y is a Godel
number of a sequence representing the register state, then b will
be the standard Godel number of the next state. (y and b are
in R4) (The program NXSTATE consists of a list of instructions
which puts 0 through 7 in registers Rzo through Ry, followed by
the program NXSTATED).

UNIV: The universal program in two variables. If is a Godel number
of an ARM program P (not necessarily in standard form), then
a is the output of the program P with inputs y and z in Ry and
R, and zero inputs elsewhere.

Your problem assignment is to type in register ma,chinepr(?grams
‘which compute the following functions. Test your answers out using the
GODEL and UNGODEL commands in the GNUMBER program, then
file your answers on your diskette and give them the names ilndicated.
The approximate number of steps required for the program is shown.
When you need small constants, it is recommended that you start your -

~ program with FIVE to put 0 through 5 in registers Ryo through Ras.

254 CHAPTER 4. COMPUTABLE FUNCTIONS

" CONCAT: (7 steps) If z and y are Godel numbers of sequences of

. numbers in standard form, and z and ¢ are the numbers of terms
in these sequences, then a is the Gédel number of the first se-
quence followed by the second sequence. (Concatenation of two
sequences). Otherwise the output a can be anything.

CONST: (19 steps) a is the Gédel number of an RM program which
puts the constant z in R;.

STAND: (25 steps) Given an input z, if S is the sequence which has
z as a G6del number (not necessarily in standard form), then a
is the Godel number of S in standard form.

SUCC: (23 steps) If z is the Godel number of an ARM program in
standard form which computes a function f(.), then a is the Gédel
number of an ARM program which computes the function f(.)+1.
Otherwise the output a can be anything.

TOPREG: (28 steps) If « is the Gédel number in standard form of
an ARM program P, then a is the largest number of a register
mentioned in the first y instructions of P. Otherwise the output
a can be anything:

COMPOSE: (61 steps) If z and y are G6del numbers in standard form
of ARM programs which neatly compute functions g(.) and A(.)
of one variable, then ¢ is the Godel number in standard form of an
ARM program which neatly computes the composition function
f(.) = g(Rh(.)). Otherwise the output a can be anything.

BEFORE: (63 steps) a = 1 if the ARM program with Godel number
z, inputs y and z in Ry and R,, and zero inputs elsewhere, halts
before t steps, and a = 0 otherwise. (Hint: This can be done by
slightly modifying the ARM program UNIV. UNIV puts the time
in Register 15)

RECUR: (90 steps) If z is the standard Gddel number of an ARM
program P which neatly neatly computes a function k(.,.), ¥
is the largest register mentioned by P, and z is the number of
instructions of P, then a is the standard Godel number of an

414, ADVANCED GNUMBER PROBLEMS (GNUMS6) 255

ARM program which neatly computes the function f(-) obtained
from h by primitive recursion in the form

f0)=1,f(u+1)=h(f(u),u).
Otherwise the output a can be anything.

NEAT: (93 steps) If z is the Godel number in standard form of an
ARM program P which computes a function f in one variable,
y is the largest register mentioned in P, and z is the number of
instructions of P, then a is the Gédel number in standard form
of an ARM program which neatly computes f. Otherwise the
output a can be anything.

'CVREC: (139 steps) If « is the Gédel number in standard form of an
ARM program P which neatly neatly computes a function A(.,),
y is the largest register mentioned by P, and z is the number
of instructions of P, then a is the standard Godel number of an
ARM program which neatly computes the function f(-) obtained
from h by course-of-values recursion in the form '

f(0) =1, f(u+1) = R(GN((f(0), .., f(u)), w)-
Otherwise the output a can be anything.

UBMIN: (165 steps) If @ is the Godel number in standard form of
an ARM program P which neatly computes the characteristic
function h(.,.) of a binary relation R(.,.), then a is the standard
Gadel number of an ARM program which neatly computes the
function f(z) = py R(z,y) obtained from R by unbounded mini-
malization. Otherwise the output a can be anything.

In solving your problems, you may load in the sample programs and
use them as building blocks if you wish. Remember that the LOAD
command can load ARM programs from the diskette starting at any

" point-within your current instruction list.

256 CHAPTER 4. COMPUTABLE FUNCTIONS

4.15 Exercises

1. (a) Write an RM program which diverges (never halts) for every
input.

(b) Write an RM program P such that: P(z, y) never halts if z = v,
P(z,y) halts with output 0 in register one if # .

2. Write an RM program which uses only the instructions Z, S, and
J, and has the effect of placing the number in register 3 into register
7, with all other registers left unchanged. (This shows that the T
command can always be avoided in RM programs).

3. Show that any finite set, considered as a unary relation, is RM
computable.

4. Show that the Fibonacci sequence
ao=1,a1=1,a2 =2,a3 =3,a4 = 5,a5 = 8,05 = 13,...,
obtained by the rules
@ =1,a1 =1, any2 = an + any1,

is RM computable.

5. Show that the zero function Z, successor function S , and projection
functions I?*, defined by

Z(:z:) =0
SE)=z+1
I?(mla---,iﬂn) =

are RM computable.

6. (a) Write an RM program which computes a one-one onto mapping
NxN-—-N. '

(b) Write an RM program which computes a one-one onto mapping
N - N xN.

4.15. EXERCISES 257

7. Suppose instead of using the RM instruction set we use J N , 9,
Z,T, H, where (JN,1,2,6) would mean jump to instruction 6 if the
contents of register 1 is not equal to the contents of register 2. Prove
that every computable function is computable in this new sense.

8. Suppose we consider programs that only use the instructions S,Z,T,H;

i.e. no jump instructions at all.
(a) Show that every function computable in this sense is total.

(b) Show that not every total computable function is computable in
this sense.

- 9. Write an ARM program which computes the function

f(z) = the standard Godel number of the sequence (0,1,...,z).

10. Give a universal ARM program for three inputs.

11. Prove that for each natural number n, there is a universal ARM
program for n inputs:.

12. Suppose an RM program P neatly computes a function f of one
variable, and another RM program @ neatly computes a function g f’f
one variable. Describe an RM program S such that, given inputs z 1n
R; and y in Ry, S will halt with output 0 in R; if f(z) and g(y) are
both defined, and S will never halt otherwise. :

13. Let UNIV be a universal register machine program for two inpu'ts’
(That is, if p is the Godel number of a program P, then UNIV Wﬁfh
inputs p,z,y in registers Ry, Ry, R3, and 0 in all other reglst:,ers W.lll
produce the same output in R; as program P with inputs z,y in regis-
ters Ry, R; and 0 in all other registers). Let u be the Godel number of
UNIV. Show that UNIV with inputs u,u, u in registers R;, Rz, Rs and

"0 in all other registers will eventually halt with output 0 in R;.

258 CHAPTER 4. COMPUTABLE FUNCTIONS

14. Let us say that an ARM program U simulates an ARM program
P which has Gédel number p if for all z and b, U with inputs p and z
in R1 and R2 and zero elsewhere halts with output 4 in Rl if and only
if P with input z in R1 and zero elsewhere halts with output b in RI.
Suppose that U computes a total function of two variables, and that U
simulates every ARM program P such that P has n instructions and
computes a total function of one variable. Prove that U has at least
n — 1 instructions. (Hint: use a diagonal argument).

15. Define a super ARM to be an ARM with an extra instruction N km
which acts as follows. Before: Ry holds the Gédel number of a simple
RM program P and R,, holds the Gédel number of a state S. After: R,
holds the Goédel number of the new state formed by executing the j-th
instruction of P where j is the 0-th term of S, and the program counter
of the super ARM is increased by 1. Write a super ARM program U
which is universal for RM programs in one input, i.e. which simulates
every RM program in the sense of the preceding exercise. (Can be done
in 7 instructions).

16. Suppose the numerical relation R(z,y) is decidable. Show that the
relation

Jz[z < y A R(z, 2)]

is also decidable.

17. Show that the following relations are undecidable (Hint: In each
case, assume the relation is decidable and prove that under that as-

~sumption the Halting Problem is decidable, contrary to Theorem 4.11.1):

(a) The set of all pairs (e, z) such that e is the Godel number of an
RM program which never halts with input z.

(b) The set of all pairs (e, z) such that e is the Gédel number of an

RM program which outputs 0 with input z.

(c) The set of all numbers e such that e is the Godel number of an RM
program which computes a total function.

4.15. EXERCISES : ‘ 259

18. Give an example of an RM computable partial function whose
graph (considered as a binary relation) is not RM computable.

In the following exercises, we introduce a new kind of machine, the
LRM machine. It is obtained by modifying the definition of the
RM machine as follows: The J (jump) instructions are eliminated and
in their place are added the L (loop) instructions and the N (next)
instructions. In any legal LRM the L and N instructions occur in
pairs: for every L instruction there is a corresponding N instruction

- occurring later in the program. The instructions work as follows:

(Z, S, T, H) The LRM machine has the Z (zero), S (successor), T'
(transfer), and H (halt) instructions which operate in exactly the
same way as in the RM machine.

For everyn = 1,2,3... thereis a loop instruction (L, n) whose effect
is to execute the steps between the loop instruction and the cor-
responding nezt instruction r, times where 7, is the value in the
register R, when the loop instruction is encountered. After these
rn repetitions have been performed, the program jumps to the
step immediately following the corresponding nezt instruction.
(If r, = 0, the program immediately jumps to the corresponding
next instruction.)

For every ¢ = 0,1,2,... there is a next instruction (N, q). The ¢-
th instruction in the program must be a loop instruction (L,n).
The (N, q) instruction acts like an unconditional jump: (J,1,1,¢).
Notice that changing the value of R, within the loop does not
affect the number of times the loop is executed.

A legal LRM program is a finite list of LRM instructions which
satisfies the following three requirements.

(1) The L and N instructions all occur in pairs as described above.

(2) There are no H instructions before the last nonhalt instruction.

(3) If any loop instruction occurs within a program fragment of the
form

((Lan))1q+l, o >I'r)(N7 Q))

" the corresponding next instruction must also occur in this fragment.

260 CHAPTER 4. COMPUTABLE FUNCTIONS

Thus the (L, N) pairs may be nested but if one loop starts within
another loop, it must also end within the other loop .

A function f(zy,2a,...,2,) is LRM computable if there is a legal
LRM program P which computes it in the following sense: If the pro-
gram is run after the registers are initialized so that for k =1,2,...,n
the register Ry holds the value zy and all other registers hold the value
0, then when it halts the register R; holds the value f(z1,2,...,Zx).
We call f(z),z3,...,%,) the n-ary function computed by the LRM
program P on inputs (z1,2,...,Z.).

For any legal LRM program P there is an RM program Q which
performs in exactly the same way. It can be constructed as follows:
Each part of the LRM program of the form

ALOOP L x q: L n

N ALOOP «r:Ngq
is replaced by

Z count q :Zc
ALOOP J x,count,r4+3 q+i: J n c r+3
: S count qt2: S ¢

J ALOOP r+2: J 1 1 g+l

Here c is a register used nowhere else in the program (a different one
for each (L, N) pair) and each time the replacement is made all the
jump instructions (J,m, k, t) occurring after the L instruction must be

corrected to (J,m, k,t + 2). The replacement is repeated until no loop
and nezt instructions remain.

19. The following LRM program computes the addition function:
ALOOP L y 0: L2
S -x 1: 51
N ALOOP 2: N O

Find an equivalent RM program.

20. The following LRM program computes the multiplication function:

4.15. EXERCISES ‘) 261;

7 z 0: 23

MLOOP L x 1: L 1

ALOOP L y 2: L2
S =z 3: 83
N ALOOP 4: N2
N MLOOP 5: N1
T zx 6:

Find an equivalent RM program.

21. Write an LRM program whlch computes the characteristic function
of the non-zero integers (that is, f(z) = 0 if z = 0 and f(a:) =1if

z#0.)

22. Write an LRM program which computes the cha,racterlstlc functxon :

»of the set of odd integers.

23. Write an LRM program which computes cut- off subtraction:
. Jz-y ify<ez '
V=10 ifz<y.
24. Write an LRM program which computes the quotient function:
_fq ifz=qy+r0sr<y
Hz9) =10 ity=0.

25. Write an LRM program which computes the remainder function:

fr ifz=q+r0<r<y
@¥)=10 ify=0.

26 Show that if g, h, and p are LRM computable then so is the
functlon f deﬁned by

i)_‘{ g(z) ifp(z)=0

h(z) = otherwise.

262 CHAPTER 4. COMPUTABLE FUNCTIONS

27. Prove that a legal LRM program always halts (on any inputs).

28. In this problem the set of primitive recursive functions is defined,
and you are to show that all primitive recursive functions are LRM
computable. We mentioned briefly in the text that the primitive re-
cursive functions form the smallest class of numerical functions that:
contains the zero function Z, the successor function §, and the pro-
jection functions I (defined in Exercise 5) and that is closed under
composition and primitive recursion. Here’s the precise definition:

The set of primitive recursive functions is the smallest set of
numerical functions such that

(1) The zero function Z is primitive recursive.
(2) The zero function S is primitive recursive.
(3) The projection functions I are primitive recursive.

(4) If h: N™ — N and the m functions ¢; : N* — Nfori =1,2,...,m
are all primitive recursive then the function f : N* — N defined

by
Cflr, e, 2n) = h(gi (2, 22, oo 20)s e O, 20,04, Z0)
for (z1,22,...,2,) € N™ is also primitive recursive.

(‘5) if the functions ¢ : N* — N and & : N"*?2 — N are primitive
recursive, then the function f : N**! — N defined by

f(mlax%"wmn»o) = g(mlax%"',xn)
flz1, 20,20y + 1) = A(z1,20,..., 20, Y, f(21,22,. .., Tny)

- is also primitive recursive.

To prove that every primitive recurswe function is LRM computable
you must show that

e 7,85, and I are LRM computable;

4.15. EXERCISES 263

e if the functions h, g1, .,gm are LRM computable, the the func-
" tion f obtained from A, gi,...,gm by composition as in (4) is also
LRM computable;

e if the functions ¢ and A are LRM computable, the the function
f obtained from g and k by primitive recursion as in (5) is also
LRM computable.

29. Prove that a function is primitive recursive if and only if it is LRM
computable. Hint: For j,n =1,2,3,... denote by

8N (a1, 2s, .., 22)

the contents in register R; when the LRM program P is run starting

“with zj in register Ry for k =1,2,...,nand 0in registers Ry 1, Rnt2, -

(According to the definition a functlon f is LRM computable iff f =

@("1) for some LRM program P.) Prove that these functions are all
primitive recursive by induction on the length of the LRM program P.

30. The ALRM machine is obtained from the LRM machine by addin‘g
the E (extract) and P (put) instructions. Prove that a function is
ALRM computable if and only if it is LRM computable.

31. All the total functions we have discussed so far are primitive re-
cursive; In this exercise we construct a total RM computable func’mon
which is not primitive recursive. The basic idea is to describe a “uni-
versal” LRM program and show that the function computed by this
program is RM computable but not LRM computable. First, modify
the notion of Gbédel number to apply to LRM programs. Prove that for
every n there is a totally defined, RM computable, (n + 1)-ary function

‘l/) = ¢'(ea Ty, T2y ,xn)

such that whenever e is the Gédel number of a legal LRM program P,
the number (e, z1,Zy,...,T,) is the value of the function computed
by P on inputs (z1,23,...,%s). Show 1 is RM computable but not

" LRM: computable. Hint: See Exercise 9 on page 183.

264 CHAPTER 4. COMPUTABLE FUNCTIONS

32. Another total RM computable function which is not primitive
recursive is the Ackermann function %(p, z) defined by

b(p,) = Pp(2)

where 1o, 91,92, . .. is the sequence of primitive recursive functions de*
fined inductively by

Po(z) =2z +1
and :
¢p+1<0) = d’p(l)a ¢p+1(z + 1) = "l)p("ﬂl’p-i-l(z))'

For example, ¥,(2) = z + 2, ¢2(2) = 2z + 2, 3(2) = 2% 4+ 3(2° - 1).
Show that for every n-ary primitive recursive function f there exists p
such that .

f(th%--'axn) < ¢p($1 + oA +$n)
for all (z1,2,...,2,) € N™. Conclude that v is not primitive recursive
(even though each 1, is).?

33. Write an RM program to compute the Ackermann function.

34. Definition. The class of partial recursive functions is the
smallest class of numerical partial functions which contains the zero
function, the successor function and the projection functions and which
is closed under composition, primitive recursion, and unbounded mini-
malization.

Show that every partial recursive function is RM computable.

35. Show that every RM computable partial function is partial recur-
sive. '

36. Prove that there are only countably many RM programs, hence,
only countably many RM computable functions. (Hint: Use the fact
that every RM program has a Gédel number.)

9This exercise is tough. If you give up, see Epstein and Carnielli, Computability,
Wadsworth & Brooks/Cole (1989) pages 110-114.

Chapter 5

The Incompleteness
Theorems

Godel’s First Incompleteness Theorem says that there are sentences in

the language of arithmetic which are true in the standard mod?l N but
are not provable from Peano Arithmetic. In itself, this resul.t is no!; 80
surprising. It merely says the set of axioms PA for Peano Arlthmetlc.: is
incomplete meaning that it not sufficiently powerful to enabl.e us 'to give
tableau proofs for all the true sentences of arithmetic. At this point one
can still hope that we can add some additional axioms to PA to obtain
a system of axioms which truly characterizes the natural numbers.
However, the proof of Gddel’s Theorem shows much more:

No set H of azioms for arithmetic can have both the proper-
ties that (a) every sentence A which is true in the standard
model N is a logical consequence of H and (b) there is a
computer program which decides whether a given sentence
B is an element of H.

This means that there are intrinsic limitations on the methods mathe-
maticians have used for centuries to arrive at the truth. Godel’s Sec;md
Incompleteness Theorem is even more devastating: No systerr‘z satisfy-
ing (b) is powerful enough to prove its own consistency. This means
that there is no tableau proof from the hypothesis set H that the set

" H is not at the root of a contradictory tableau.

265

266 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The Incompleteness Theorems are closely related to the well known
Liar Paradox.
Consider the sentence

This sentence is false.

If true it must be false — if false it is true. This version has caused a
few philosophers to loose quite a lot of sleep over the centuries. Godel’s
insight was to construct a sentence of arithmetic whose meaning is

This sentence cannot be proved.

If it could be proved it would be false. Hence it cannot be proved. But
then it is true!

The construction of Gédel’s sentence will borrow ideas from Can-
tor’s diagonal method, which was discussed in Section 4.11 following
the Halting Problem.

5.1 Coding Tableaus

To construct Godel’s sentence we must devise a way to formulate state-
ments about PA within PA. This coding process is something like the
Godel numbering used in Chapter 4 to define universal machines.

We shall write #(ay, ..., a,) for the Gédel number in standard form
of a finite sequence (ay,...,a,) of natural numbers as developed in
Chapter 4.6, and also write #(t) for the codes which we shall introduce
for other kinds of objects t. We shall use these codes to show that
various numerical relations are computable, culminating in the proof
relation PRFy. '

All of the proofs in this section proceed by giving an intuitive al-
gorithm which computes the characteristic function of a set or relation
on the natural numbers, and then invoking Church’s Thesis to show
that the relation is computable. A characteristic function is total and
has the output 1 if the answer is yes and 0 if the answer is no. Thus
for each input, our algorithms will halt in a finite number of steps and
have either 1 or 0 as output. ’

-5.1. CODING TABLEAUS 267

The first step is to assign a code #(s) to each symbol s of the
language of arithmetic. We may do this in the same way as we did
in Section 4.10 on Church’s Thesis in Chapter 4, except that we must
now give codes to the symbols + and *. We assign the even numbers as
codes of individual variables, and assign odd numbers as codes of the
other symbols as follows: '

symbol = A V = & 3 V =
code 1 3 5 7 9 11 13 15

symbol [] () 0 s + «x
code 17 19 21 23 25 27 29 31

We define the code #(8S) of a string S of symbols to be the Gddel

number of the sequence of codes of the symbols. Each term and each

wif, being a string of symbols, now has a code. ‘
Next, we assign to each finite sequence of strings the Gédel number
of the sequence of codes of terms of the sequence, that is,

#(Sl, ey Sn) = #(#(Sl)v - -7#(571))'

Note that a natural number can be used as a code in three ways: as
a code of a symbol, as a code of a string of symbols, and as a code of a
finite sequence of strings of symbols. As we continue we will introduce
other types of codes. Thus when we write #(t) for the numerical code of
an object ¢, we must specify whether ¢ is a symbol, a string of symbols,
a finite sequence of strings of symbols, or some other type of object.

We now show that the sets of codes of terms and of wifs are com-
putable. This will be done using parsing sequences. ‘

Lemma 5.1.1 The set of codes of parsing sequences of terms is com-
putable.

Proof: We shall outline an algorithm which, given a natural number c

as input, outputs 1 if ¢ is the code of a parsing sequence for a term, and

outputs 0 otherwise. The lemma will then follow by Church’s Thesis.
First, form the sequence (ag, . .., a,) of natural numbers with Gddel

. number ¢. Check to see whether the sequence is nonempty and each

268 CHAPTER 5. THE INCOMPLETENESS THEOREMS

a; is the code of a string of symbols. If not, output 0 and stop. If
so, run through ¢ = 0,...,n and check whether a; is either the code
of a single variable or constant symbol, or is the code of a string of
symbols obtained from one or two earlier strings in the list by one of
the rules of formation for terms. If the answer is yes at each step, ¢
is the code of a parsing sequence of a term, so we output 1 and stop.
Otherwise output 0 and stop. The lemma now follows by Church’s
Thesis. , End of Proof.

We say that a string T is a substring of a string S if T is a consec-
utive part of S, that is, S = UTV for some (possibly empty) strings
Uand V. ;

Theorem 5.1.2 The set of codes of terms is computable.

Proof: We outline an algorithm which, given a natural number ¢ as
input, outputs 1 if ¢ is the code of a term, and outputs 0 otherwise.
Form the sequence (ao, . . ., a,) of natural numbers with Gédel num-
ber ¢. If the sequence is empty or some a; is not the code of a symbol,
output 0 and stop. Otherwise, ¢ is the code of a string S of symbols.
We wish to determine whether S has a parsing sequence. If there is
a parsing sequence for S, then there is one with no repetitions, and
each string of the sequence must be a substring of S. There are only
finitely many sequences of distinct substrings of S. List all of these in a
systematic way and use the preceding lemma to check whether at least
one of them is a parsing sequence whose last term is S. Output 1 if
yes and 0 if no, then stop. Again, the theorem now follows by Church’s
Thesis. End of Proof.

In the rest of this section, it should always be understood that
Church’s Thesis is to be invoked at the end of the proof.

Lemma 5.1.3 The set of codes of atomic wffs is computable.

Proof: Given input ¢, form the string of S symbols with code ¢. First
check to see whether S has exactly one equality symbol. If not, output
0 and stop. If so, then S has the form T = U. If both T and U are
terms, then S is an atomic wif, so we output 1 and stop. Otherwise
output 0 and stop. End of Proof.

~ 5.1. CODING TABLEAUS | 269

Lemma 5.1.4 The set of codes of parsing sequences for wffs is com-

~ putable.

Proof: Similar to the corresponding result for terms, but one ,mu§t
check that each string in the sequence is either an atomic wit or 18
obtained from two earlier strings in the sequence by a rule of formation

for wils. " End of Proof.

Theorem 5.1.5 The set of codes of wﬁ's is computable.
Proof: Similar to the proof that the set of codes of terms is computable.
End of Proof.

Since any finite set of natural numbers is computable, and Weak
Arithmetic is a finite set of sentences called axioms, the set of codes of

‘axioms of Weak Arithmetic is computable. Although Peano Arithmetic

has an infinite set of axioms, we now show that the set of codes of its
axioms is also computable.

Theorem 5.1.6 The set of codes of azioms of Peano Arithmetic s
computable

Proof: Civen an input ¢, we first use the preceding theorem to dete%‘-
mine whether c¢ is the code of a wif A. If not, output 0 and stop. I‘f cis
the code of a wif A, we next check whether A is one of the nine axioms
of Weak Arithmetic. If it is, output 1 and stop. If not, we must che(‘:k
whether A is a case of the First Order Induction Scheme. We do 'thls
by systematically running through each of the finitely many subs?rlngs :
B of A, check whether B is a wff, and if so, check whether A is the
string :

B(0) A Vz [B(z) = B(s(z))] = Yz B(z)]

for some variable z. If so, output 1 and stop. If A is neith‘er an axiom
of Weak Arithmetic or a case of the First Order Induction Schemfi:‘,
output 0 and stop. End of Proot.

By refining the above arguments, one can show that various rela-tions
on strings of symbols which are part of the syntax of predicate logic are

‘computable. For example, the set of codes of sentences is computable.

270 ' CHAPTER 5. THE INCOMPLETENESS THEOREMS

, We now introduce codes for tableaus. A tableau has finitely many
nodes including a root node, a parent function, a finite set of wifs called

the hypothesis set attached to the root node, and a wif attached to each

nonroot node. ,

For simplicity, we may take the nodes of a tableau T with n + 1
nodes to be the natural numbers 0,1,...,n, with 0 being the root node.
The tableau can then be completely described by three finite sequences,
the sequence of numbers :

(x(1),...,7(n))
where (i) is the parent node of the nonroot node 4, the sequence
(B1,...,B)
of hypothesis wifs which are attached to the root node, and the sequence

(®(1),...,2(n))
where ®(7) is the wif attached to the nonroot node 1.

For each nonroot node 7 € {1,...,n}, the parent node (i) belongs
to the set {0,1,...,n} of nodes. Let us assume further that the nodes
were listed in such a way that for each ¢ € {1,...,n}, 7(¢) < ¢. This can
be done for any tableau by listing the nodes in the order in which the
tableau was built using the extension rules, because a nonroot node is
always added to a tableau after its parent. Note that the requirement
that 7(z) < ¢ for each nonroot node 7 > 0 guarantees that the root
node 0 will be reached from any nonroot node ¢ in finitely many steps
by repeatedly taking parents.

Since we already have assigned codes to sequences of natural num-
bers and to sequences of strings, we may now take the code of a tableau
T to be the Gédel number of the triple

#(T) = #(a,b,¢)
where a, b, and c are the codes
a=#((n(1),... ,m(n)),
b= #(By,...,B),

and

- 5.1. CODING TABLEAUS 271

Theorem 5.1.7 The set of codes of tableaus, and the set of codes of
tableau confutations, are computable.

Proof: Given an input ¢, we first need an algorithm to check whether
t is the code of a tableau. First, check whether ¢ is the Gédel number

of a triple (a, b, ¢) of natural numbers. If not, output 0 and stop. If so,

check whether a is the Gddel number of a sequence of some length n
such that each term of the sequence is a natural number less than n,
that is, a is the Godel number of a parent function 7. If not, output 0
and stop. If so, then check whether 7(i) < ¢ for each 7 € {1,...,n}. If
the answer is no, output 0 and stop. Otherwise, check whether b and
¢ are codes of sequences of codes of wifs. If not, output 0 and stop.
If b and ¢ are sequences of codes of wifs, check whether each nonroot
node is obtained from an ancestor node using a tableau extension rule.
This gives an algorithm for checking whether ¢ is the code of a tableau.
Output 1 if yes and 0 if no, then stop. This shows (by Church’s Thesis
as usual) that the set of codes of tableaus is computable.

To show that the set of codes of tableau refutations is computable,
we first determine by the above algorithm whether an input ¢ is the
code of a tableau. If not, output 0 and stop. If ¢ is the code of a
tableau T, we can then check whether T is a tableau confutation by
systematically checking each branch of T to see whether it contains a
contradiétory pair. OQutput 1 if every branch contains a contradictory
pair, and output 0 if not, then stop. End of Proof.

Definition 5.1.8 Let H be a set of wifs in the language of arithmetic.
The proof relation for H is the binary numerical relation PRFg
consisting of all pairs (z,y) such that z is the code of a wff and y is the
code of a tableau proof of the wff coded by z from H.

Theorem 5.1.9 Let H be a set of wffs such that the set of codes of
elements of H is computable. Then the proof relation PRFy for H is
computable.

Proof: First check whether the input z is the code of a wif. If not,
output 0 and stop. If z is the code of a wif A, then check whether y

" is the code of a tableau refutation, say T. If not, output 0 and stop.

272 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Otherwise, check to see whether each hypothesis attached to the root

" of T is either an element of H or the negation of A. In this step we use
the assumption that the set of codes of elements of H is computable,
so that we have a procedure for checking whether a number is the
code of an element of H. If we get a yes answer for each hypothesis,
then (z,y) belongs to the relation PRFg, and we output 1 and stop.
Otherwise {z,y) does not belong to PRFy, so we output 0 and stop.
End of Proof. '

5.2 Definability and Representability

In this section we introduce two ways in which a formula of arithmetic
can express a numerical relation— definability in A and representability.

N is the standard model of arithmetic, whose universe is the set
of natural numbers N and which has the usual interpretations of the
symbols 0,s, +, *. Recall from Chapter 3 that for each natural number
m, the corresponding numeral m is the constant term consisting of m
successor symbols s followed by the zero symbol 0. In NV, each numeral
m will be interpreted by the element m of N.

We shall often substitute numerals for free variables in a wif A.

In most cases it will be clear from the context which numeral goes
with which free variable, and in such cases we shall write the sentence
resulting from the substitution in the short form

A(ay,...,ay)

instead of the long form

A(zy//a1,...,zn//an).

Remember from Chapter 2 that for each model M with universe
set M and each formula A with n free variables, the set of all n-tuples
of elements of M which satisfy A in M is called the graph of A in M.
We now apply this concept to the standard model A of arithmetic.

Definition 5.2.1 Let R be an n-ary relation on N and let B be a
wif in the vocabulary of arithmetic with the free variables zq,...,z,.

59 DEFINABILITY AND REPRESENTABILITY 273 |

We say that R is the graph of B in WV, or that R ‘is'deﬁned by B

- in W, if for all ay,...,a, € N,

(al,...,dn)GRx:)N = B(ai,...,an).

.We say that Ris deﬁnable in NV if it is defined by some wif B in N.

Similarly, an n-ary function f : N" — N is said to be deﬁx?ed
by a wif C with free variables z1,...,%n,y if the (n + 1)-ary relation

f(a1,...,an) = bis defined by CinN.

Not all relations on N are definable in AV; in fact there arekunco%mt—
ably many relations on N but only countably many definable relations
on N. For example, Tarski’s Theorem, Theorem 5.5.8, shows thz?t the
set of all codes of sentences which are true in A is not definable in V.

Since the symbols 0, s, +, * of arithmetic are interpreted in the 1.1at~
ural way in NV, the zero function, successor function, additio.n functgon,
and multiplication function are defined in N by the atorm.c formu}as
0=y,s(z)=y,z1+22 =y, T1%T2 = Y- Similarly, the equality relatlon’
is defined by the atomic formula z = y. o

Other examples are easy to work out. The order relation <1s deﬁned
in M by the formula 3z z 4 z = y, the square function %s defined n N
by the formula z * z = y, and the set of even numbers is defined in N
by the formula 3zz = z + 2. '

We shall need another, much stronger, way in which a formula in t}.le
language of arithmetic can express a numerical relation— Fepresenta,bll—
ity. Let us first recall the nine axioms of Weak Arithmetic.

Axioms of Weak Arithmetic

1. Vz—s(z) =0

w

. Vz zt0 =z
. Yz Vy z+s(y) = s(z+y)
. Vzzx0 =0

(=2 TR 1 SR

. Vo Vy zxs(y) = (zxy)+z

274 CHAPTER 5. THE INCOMPLETENESS THEOREMS

7. Yz [2<0 = z = 0]
8. V:I:Vy [z<s(y) = [z<y V = = s(y)]]

9. VzVy[z<y V y<z].

Definition 5.2.2 Let B be a wif with free variables z4,...,z, in the

" language of arithmetic and let R be an n-ary relation on N. We say
- that B represents R if for all a;,...,a, in N,

1.1 {a1,...,a,) € R, then WA B(ay,...,an),

2. If (a;,...,an) ¢ R, then WA I =B(ay,...,an).

- We say that a wif C with {ree variables Ti,...,Zn,Yy represents the

numerical function f of n variables if C represents the relation
f(:l)l,. ..,:cn) =1.

Finally, a relation or function is representable if some wif repre-
sents it.

We shall call clause (1) in the above definition the “first half” and
clause (2) the “second half” of representability.

The value of knowing that a particular n-ary relation R is rep-
resentable is that true statements of the form (a4,...,a,) € R or
(a1,...,a,) ¢ R can be translated into provable first-order sentences
from Weak Arithmetic in which references to R are replaced by the
representing wif and natural numbers m are replaced by numerals m.
Important information about a theory (like PA) can often be uncovered
by showing that the theory is able to “mirror” -via representability—
some well-understood portion of mathematics. The next proposition

shows that every relation which is representable is definable in N.

Propjc\)fsition 5.2.3 If a wff B represents a relation R, then B defines
RinN. '

N,

5.2. DEFINABILITY AND REPRESENTABILITY 275

Proof: Since each axiom of WA is true in AV, every wif which is prov-
able from WA is true in N. Suppose B represents R, and let ay, ..., ax
be natural numbers. If (ay,...,a,) € R then WA I B(ay,...,an) and
hence N = B(ay,...,an). On the other hand, if (a1,...,as) ¢ R,

‘then WA F -B(ay,...,an), so N |= -B(ai,...,an), and hence it is

not the case that A/ = B(ay,...,an). This shows that B defines R in
« End of Proof.

We shall see later that there are relations which are definable in
N but not representable. An example of such a relation is the set of
all Gédel numbers of formulas which are provable from WA. This is
not easy to see, and is one of the consequences of the incompleteness
theorems. ;

Functions which certainly ought to be representable are those which

~correspond to function symbols in the language of arithmetic, namely,

zero, addition, multiplication, and the successor function. We would
also expect that the relations = and < are representable. We have
already seen that each of these is definable in N. Additional work is
needed to show that they are representable. To prove that a relation or
function is represented by a wif, one must show that each of an infinite
list of other wifs is provable in Weak Arithmetic. To give some idea
of what is involved, we now show that the relations = and < and the
addition function are representable.

Proposition 5.2.4 The equality relation is represented by the wff
T =Y.

Proof: For the first half of the definition of representability, suppose
that ¢ = b. Then a and b are the same term, so a = b is provable from
the empty hypothesis set and hence is provable from WA.

For the second half we must to show that whenever a < b, WA I
—a = b. This was done for the particular case @ = 1,b = 3 in Chapter
3. The same method can be used in general, but requires an induction
on natural numbers. We show by induction on n that

(1) ~ n < mimplies WA+ —-n=m.

216 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Basis Step: Let n = 0 and write m = k + 1. Then s(k) = m and
so by Axiom 1, we have

WA F -0 = s(k)

as required.
Successor Step: Assuming (1) we show

(2) n+1 < m implies WA I -~ s(n) = m.

Write m = k + 1. Using the fact that n < k and using (1) (with m

replaced by k) as a hypothesis, we have the following tableau proof-
of (2). Rather than writing out all nine axioms of WA as hypotheses

for our tableau, only those that are needed in the proof are shown.

(3) —n =k Inductive hypothesis
(1) Vavyls(z) = s(y) = o = y) Axiom 2 |
(5) —=-s(n) = s(k) —to be proved
(6) s(n) = s(k) by (5)
(7) s(n)=s(k)=>n=k by (4) twice
(8) n =k by (6) and (7)
Thus equality is represented by the wif z = y. End of Proof.

We make a few observations about the proof. First of all, what

lets us use induction when the sentences of the First Order Induction

Principle are not among the axioms WA? What we have done is to use
ordinary induction on the natural numbers outside of our formal system
to obtain an infinite sequence of proofs from WA; for each n < m we
obtained a proof from WA of the sentence =n = m. This was possible

5.2. DEFINABILITY AND REPRES’ENTA‘BILITY 277

because the superscripts m and n are ordinary natural numbers -not
formal expressions in WA~ and so ordinary induction applies.

By contrast, the proof of Vz -~z = s(z) from Peano Arithmetic in
Example 3.7.4 used the formal induction axiom

B(0) A Vz [B(z) = B(s(z))] = Yz B(x)

of PA, where B(z) is =z = s(z). Ordinary induction did not apply in
that case because the z in ~z = s(z) is a variable in predicate logic,
not an ordinary natural number.

Secondly, notice that we used the induction hypothesis (3) in the -
hypothesis set of our tableau. This is a technique that is very useful
in working out tableau proofs and is an example of the Learning Rule -
introduced in Section 2.13: Given sentences A and B, if HI A, then
by the Learning Rule we can use A on any branch of a tableau with
hypothesis set HU {-B} in building a tableau proof of B from H.
In particular, A can be assumed to be in the hypothesis set of such a
tableau. ;

The extra rules of tableau proofs introduced in Section 2.13 for pure
predicate logic also hold for full predicate logic. A useful application of
the Learning Rule in full predicate logicis that if HF- A and HF o = 7,
then H F A(o//7), where ¢ and 7 are terms and 7 is free for o in A.

Proposition 5.2.5 The addition function is represented by the wff
r+y==z

Proof: For the first half, we must show that for all m,n,p € N such
that m + n = p,
WA + m+n = p.

“Note that m + n is a different term than p. For example, 2 + 3 is the

term s(s(0)) + s(s(s(0))), while 5 is the term s(s(s(s(s(0))))).

A tableau proof is shown in Figure 5.1. It proceeds holding m fixed
and using an induction on n to show that for each n, there is a tableau
proof of m + n = p from WA where p = m + n.

278 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Basis Step (n = 0) We show WA + m+0 = m.

(1) Yzz4+0 =z Axiom 3
(2) ; am40=m - to be proved
(3) m+0 = m by (1)

Induction Step Let p = m + n. We assume WA + m+n = p and
prove WA F m+s(n) = s(p).

(4) ' | m+n = p Induction hypobthesis

(5) Va Yy z+s(y) = s(z+y) Axiom 4

(6) . "bm—{-s(n) = s(p) ‘ -to be proved
(7 m+s(n) Ts(m-{-n) by (5) (twice)

(8) m+s(n) =s(p) by (4), (7) and an = rule

Figure 5.1: A tableau proof of m+n = p

5.2. DEFINABILITY AND REPRESENTABILITY | 279

For the second half of representability, we must show that
m + n # r implies WA F -m+n =r.

Let p = m + n and assume that p # r. By the representability of = we
have '
WAF -p=r.

Substituting m + n for p (using the first. half of representability and
the Learning Rule), we have

WAF-m+4+n=r

as required. End of Proof.

The following lemma is often useful in proving that things are rep-

 resentable. We shall use it in showing that the order relation on N is

representable.
Lemma 5.2.6 For any natural number n,
WAFVz[z<n&z=0Vz=1V---Vz=n]

Proof: We proceed by induction on n.
Basis step: We must prove from WA that

(1) _ Ve[z<0& =0

Consider any z. If z = 0 then by Axiom 1, z4+0=0,s0 Jyz+y =0

and z < 0. If z <0, then z = 0 by Axiom 3. Therefore (1) is provable

from WA. ‘
Successor step: Assume that

(2) Vz[z<n&z=0V---Vz=n]
is provable from WA. We must show that
(3) Vm[rﬁs(n)éxﬁOV-'-Vxﬁanis(n)]

is provable from WA. By the Learning Rule, it is enough to prove (3)
from the hypothesis set WA plus the extra hypothesis (2).

280 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Consider any z. Assume that z < s(n). By Axiom 8, -
z<nVz =s(n).

Then by (2),
r=0V---Vz=nVz=s(n)
For the other direction, assume that
z=0V..-Vz=nVaz=s(n).
By (2) again, |
z<nVz=s(n).

Expanding the abbreviation for z <y, we have
Jzz+2z=nVaz=s(n)

If z+ 2 = n, then by Axiom 4, z +s(z) = s(n) and hence z < s(n).
If z = s(n) then by Axiom 3, z + 0 = s(n), so again = < s(n).
We have shown that

t<s(n)&z=0V---Vz=nVz=s(n)
The required wif (3) follows by the Generalization Rule. End of Proof.

Proposition 5.2.7 The order relation {(z,y): z < y} on N is repre-
sented by the wff 3zz 4+ 2 = y.

Proof: We begin with the first half. If m < n, let k£ be such that
m + k = n. By Proposition 5.2.5 we have

WA F m+k =n.

It follows that
WA + 3z m+z =n.

To establish the second half, assume m € n. Then n < m. Since

the equality relation is represented by the wif z = y, for all j < n we
have

WAl -j=m.

5.2. DEFINABILITY AND REPRESENTABILITY ' 281

Using Lemma 5.2.6 along with each of the above statements in our
hypothesis set, we have the following tableau:

(1)‘ Va:‘[xgn=>:z:i0vyxﬁ1V?--Vxén]

(3) v -1=m
() :

(n+2) -n=1m _ ’
(n+3) -—-m <n - to be proved
(n+4) "m<n by (n+11)

(n +5) m<nSm=0V--Vm=n by (10)
|
(n +6) m=0V---Vm=n by (n +5)
Tmsn by (n +5)
(n+7 m=0 m=1 m=n by(+6)

For readability, in step (n +7) we applied the [V | rule n times simulta-
neously. End of Proof.

Here is an example which shows in a simple case what can (and

282 CHAPTER 5. THE INCOMPLETENESS THEOREMS

cannot) be done with a relation that is representable.
~ In Exercise 6 the reader is asked to verify that the set £ of even
numbers is represented by the wif

E(z)= Jzz=z+z
Now, consider the following simple property of the even numbers:

(%) * The sum of any odd number and any even number is an odd
number.

This fact can be expressed formally by the wif
B(z,y) = -E(z) AE(y) = ~E(z +y).

Because E(z) represents F, it is easy to show (see Exercise 6) that for
allm,ne N -
‘ WA + B(m,n).

Thus, this simple property of the even numbers is reflected in the for-
mal setting of WA-with respect to the numerals 0,1,2,---. It should
be emphasized that the notion of representability we are using here
is not strong enough to guarantee that such properties can always be
translated and proved in WA without such a restriction on the substi-
~ tution values. In the present example, () could be translated into the
following sentence:

C = Va¥y [-E(z) AE(y) = ~E(z + y)].

This sentence makes a much stronger assertion than B(m,n) for all m
and n: it states that the property (%) holds for all possible interpre-
tations of variables in a model of WA, not merely the standard ones.
As a matter of fact, it can be shown (see Exercise 6) that WA I/ C; a
counter-model is given in Example 3.7.4 in Chapter 3.

"5.3 The Equivalénce Theorem

In the preceding section, we developed a very short list of representable
functions and relations. The following theorem shows that the set of
representable relations is richer than one might think from our exam-
ples, and in fact is the same as the set of all computable relations.

- 5.3. THE ‘EQUIVALENCE THEOREM 283

" Theorem 5.3.1 (Equivalence Theorem) .

A numerical relation is representable if and only if it is computable.
Similarly, a total numerical function is representable if and only if it is
computable.

We now prove one half of the Equivalence Theorem using Church’s
Thesis. The other half of the theorem will be proved in the next section.

Proof, first half: Using Church’s'Thes’is, we prove that every repre-

'sentable relation is computable.

Let the n-ary relation R be represented by the wif A. We describe
an algorithm for computing the characteristic function of E. Consider
an input (ai,...,a,). Let B be the wif A(ay,...,an). Repeat the
following process for each m = 0,1,2,...: Using the computability of
the proof relation PRFwa, determine whether or not m is the code
of a tableau proof of B from WA, and if so, then output 1 and stop.
Otherwise, determine whether or not m is the code of a tableau proof
of =B from WA, and if so, output 0 and stop. Since A represents R,
for each input (ay,...,a,) there will be either a tableau proof of B or
of =B, so the algorithm will eventually stop and produce an output.

This computes the characteristic function of R as required. By
Church’s Thesis, R is computable.

Now suppose the total function f in n variables is representable,
and let R be the relation f(z;,...,z,) = y. By definition, the relation
R is representable, and by the first paragraph its characteristic func-
tion is neatly computable by some RM program P. We shall make a
new RM program Q which, for an input (a1, ...,as), computes in turn
the characteristic function of (ay,...,an,0) € Rfor b =0,b=1,...,
continuing until an answer of 1 is found, and then outputs the current

~ value of b. To do this, let Ry be a register beyond the last register
- whichis used by P and let p be the length of P. Q is the program

284 CHAPTER 5. THE INCOMPLETENESS THEOREMS
0 Z k
1 Z k+1
2 S k+1
3 P
p+3 J 1 k+1 p+6
p+4 S k :
p+5 J 1 1 3
p+6 T k 1
p+7 H

For each input, the program Q will eventually halt because the func-
tion f is total, and Q will compute the original function f. End of Proof.

Note that the Equivalence Theorem as stated only applies to total
functions. What happens in the case of partial functions? It turns
out that every representable partial function is computable, but there
are computable partial functions which are not representable. One
explanation for this difference is that the class of computable functions
is closed under unbounded minimalization (recall Theorem 4.8.2) while
the class of representable functions is not. Here is an example of a
partial function which is defined using unbounded minimalization from
a computable relation (and hence is itself computable) but which is not
representable.

Example. Define the ternary relation R by

e is the Godel number of an
(e,a,b) € R < { RM program which halts with mput a
after executing b instructions.

Define the partial function f by
fle,a) = pb(e,a,b) € R.

(As usual, we understand by this definition that f has the same domain
as the function on the right and agrees with it on this domain.) We
can compute f with the following RM program Q: With input ¢,a, Q
executes UNIV1 and halts if and only if UNIV1 halts. If UNIV1 halts,
then Q outputs the number of steps needed by the program P, coded

by e to halt on input a. (See Advanced GNUMBER problem BEFORE
in Section 4.14.)

5.3. THE EQUIVALENCE THEOREM 285

To see that f is not representable, first note that by Exercise 5, if a
partial function is representable, its domain is representable (as a unary
relation). By Theorem 4.11 on the undecidability of the Halting Prob-
lem, the domain of this particular function f is not computable, By

the Equivalence Theorem, all representa,ble relations are computable.
- Then the domain of f, and hence f itself, is not representable.

In order to represent all computable partial functlons we shall need
another notion, called weak representability.

| Definition 5.3.2 An n-ary relation R on N is weakly represented

by a wif B with free variables z1,...,@, if for all a4,...,a, in N,

(a1,-..,8,) €E R WAF B(al,...an).

A function f(z1,...,%Zn) is weakly represented by a wif C with free
" variables zi,...,Zn,y if the n + l-ary relation f(zy,...,2,) = y is

weakly represented by C.

Every representable relation or function is weakly representable,
but a relation can be weakly representable and not representable. The
incompleteness theorems will show, as an example, that the set of all

~ codes of sentences which are provable from WA is weakly representable

but not representable.

The difference between representability and weak representability is
that in the case (a1,...,an) ¢ R, weak representability merely requires
that B(a1,...,an) is not provable from WA, while representability
requires that ‘che wif =B(a1,...,an) is provable from WA.

Here is an Equivalence Theorem for partial functions.

‘ Theorem 5.3.3 A partial numerical function is weakly representable

if and only if it is computable.

As we did for the Equivalence Theorem, we shall now prove one half
of the above theorem using Church’s Thesis, leaving the proof of the
other half for the next section.

Proof, first half: We prove that every weakly representable function
is computable. Suppose that f(z1,... ,Tn) is weakly represented by a

286 CHAPTER 5. THE INCOMPLETENESS THEOREMS

wif B. Then f can be computed by the following algorithm. We are

“given an input (ai,...,a,). For m =0,1,2,..., systematically list all
tableaus with at most m nodes, only wffs of length at most m, and at
most the variables vo, ..., vy, whose hypotheses are WA together with
a wif of the form o

-B(a1,...,an,b).

- Continue until a tableau proof is found, going on forever if a tableau
proof is never found. If a tableau proof is found, stop with output b
where the extra hypothesis is

—"B(al,) ,an, b).

End of Proof.

5.4 Computable Implies Representable

In this section we prove the second half of the Equivalence Theorem,
that every total computable function is representable in Weak Arith-
metic. The proof will make use of the notion of a wff being definable
in N, which was introduced in Definition 5.2.1. The main steps will
be as follows.

o Introduce the notion of a i1 wif, which is a wif with one existential
- quantifier followed by bounded quantifiers.

¢ Prove that for each RM program P, the state relation for P, which
relates the original input, the time, and the register contents at
- that time, is definable in A by a ¥y wff.

o Using the state relation, show that every computable function is
definable in A by a %; wif. v

o Show that every total function which is definable in A" by a £,

wif is representable.

Conclude that every computable total function is representable.

5.4. COMPUTABLE IMPLIES REPRESENTABLE 287

Along the way, we shall also show that a relation is weakly repre-
sentable if and only if it is definable in A by a X, wff. This shows
that every computable (partial) function is weakly representable, and
completes the proof of Theorem 5.3.3.

Definition 5.4.1 We introduce two abbreviations in the language of
arithmetic. Let A be a wif and let z,y be distinct variables.
The bounded existential quantifier:

(3z < y)A means Jz [z <y A A],
The bounded universal quantifier:
(Vz < y)A means Vz [z <y = A].

The bounded quantifiers are defined so as to match the usual mean-
ing that one would expect them to have. (3z < y)A means that “There
exists an which is < y such that A holds”. (V2 < y)A means that
“For all z such that z <y, A holds”.

5

Definition 5.4.2 A wif A is bounded if it can be built up in finitely
many steps using the following rules of formation:

(1) Every atomic wif is bounded.-

(2) If A is bounded, so is —A.

(3) If A and B are bounded, so are A o B where 0 € {A,V,=,&}.

(4) TAis bounded, so are (Jz < y)A and (Yo < y)A.

Thus a bounded wff is a wff all of whose quantifiers may be written
as bounded quantifiers.
- Several familiar numerical functions and relations are definable in
N by bounded wffs.
The equality relation, constant functions, successor function, ad-
dition function, and multiplication function are defined in N by wifs

. which have no quantifiers at all, and hence are bounded wffs.

288 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The order relation z < y is defined in /' by the bounded wif

(Fu <yu=z.

The strict order relation z < y is defined in A by the bounded -

wif
~z =y A (Fu<yu==z.

The predecessor function Pred(z) = y, where
y=0ifz=0, and y =z — 1 otherwise , -
is defined in A by the bounded wif
[z=0Ay=0]Vz=s(y).
The dotminus function z—y = z, where
z=0ifz <y, and 2z = z — y otherwise ,
is déﬁned‘ in A by the bounded wff
[z<yAz=0]Vz=y+=z.
The remainder function Rem(z,y) = r, where r = 0 if y - 0,

and r is the remainder when z is divided by y otherwise, is defined in
N by the bounded wif

y=0Ar=0]V(Ig<az)z=qgry+rAr<yl

(In the last two examples, z < y and r < y are abbreviations for
the previously given bounded wifs.)

The predecessor function, dotminus function, and remainder func-
tion are total functions.

Definition 5.4.3 A wif A is said to be a ¥; wif if it has the form
Jz B where B is a bounded wif. A relation or function is £; definable
if it is defined in M by a ¥; wif.”

5.4. COMPUTABLE IMPLIES REPRESENTABLE 289

Thus a X, wif is formed by putting one existential quantifier in front
of a bounded wff.

Any bounded wif A is equivalent to the £, wif dv A where v does
not occur in A. Therefore any function or relation which is definable

"in M by a bounded wif is X definable. In particular, the constant,

successor, addition, multiplication, predecessor, dotminus, and remain-
der functions and the equality, order, and strict order relations are ¥
definable. : . o V
The following lemma is helpful in showing that things are ¥, defin-
able.

Lemma 5.4.4 (i) Suppose C and D are £y wffs and z,y are diSti’nct :
variables. Then the relations deﬁned by .

CvD, ~CAD, (Fz<yC, (Ve<y)C, 3C

are ¥y definable in V.- ' o
(i) If a relation R is defined in N by a wff which is built from

‘bounded wffs in finitely many steps by repeatedly using V, A, bounded

quantifiers, and ezistential quantifiers in any order, then R 1s ¥y de-

finable.

Proof: Part (ii) is proved by repeated application of Part (i). We prove
Part (i). Suppose that C and D are 2, formulas Ju A, JvB where A
and B are bounded wifs. ‘

Let v',v' be new variables which do not occur in C or D and are
distinct from each other and from z,y. Let A’ be the wit obtained
from A by replacing all occurrences of u by v/, and let B’ be the wif
obtained from B by replacing all occurrences of v by v'. By Exercise 9
in Chapter 2 (but for full rather than pure predicate logic), the wif C .
equivalent to Ju’ A’ and D is equivalent to 3o’ B'.

We may therefore simplify the problem by taking A and B so that
the variables u, v, z,y are all distinct, u does not occur in B, and v does
not occur in A. o
" The wif 3z C defines the same relation in A as the Xy wif

Jw (Fz < w)(Fu < w)A

290 : CHAPTER 5. THE INCOMPLETENESS THEOREMS
'Where w is a new variable, because
N F3z3uA & [Bw(3z < w)(3u < w)Al.
The wif C A D defines the same relation in A as the wif
JuJv[A A B,
because the wif

JuIv[AAB] & [3uA A JvB]

is tableau provable when u does not occur in B and v does not occur

in A. By the preceding existential quantifier case, it follows that the
relation defined by C A D is £; definable in V.
The C V D case is similar.

The wif (3z < y)A defines the same relation in A as the ¥ wit
Ju(Fz < y)A,
because) |
Fu(dz <y)A & 3z <y)FuA

_is tableau provable.

Finally, the wif (V& < y)A defines the same relation in A as the &
wif

Jw (Ve < y)(Fu < w)A,

because

N EFw(Vz <y)(Fu<w)A & (Vz < y)IuA.

End of Proof.

Our next task is to define the state relation for an RM program.
We shall sometimes write a finite sequence of natural numbers as a
“vector”, '

d = (ag,a1,...,ax).

5.4. COMPUTABLE IMPLIES REPRESENTABLE 291

Definition 5.4.5 Let P be an RM program and suppose that k is
the largest register number appearing in the instruction list of P. The
state of a computation by P at a given time is the finite sequence
§ = (80,%1,...,8) where the program counter contains the number s¢
and the registers R;,..., K contain the numbers sq,..., sk.

The state relation of P is the (2k+3)-ary relation STATEp where

(@,t,b) € STATEp
means that an RM machine which starts in the state (ao, ..., ax) and
executes the instructions of P will be in the state b after ¢ instructions
are executed. '

The state relation of P will be obtained from another relation, the
nextstate relation.

Definition 5.4.6 Let P be an RM program and suppose that k is
the largest register number appearing in the instruction list of P. The
nextstate relation of P is the (2k+2)-ary relation NXSTATEp where

(&,b) € NXSTATEp

means that the ao-th instruction of P will change state @ to state b.

In the above definition, it is to be understood that a halt instruction
makes no change in the state.

Lemma 5.4.7 Let P be an RM program. Then NXSTATEp is ¥,

 definable.

Proof: For convenience we assume that the program P is regular,
so there are no halts before the last nonhalt instruction and no jump
targets beyond the first halt instruction. Let k& be the largest register
number appearing in the instruction list of P. '

The action of each single RM instruction [involving register num-
bers between 1 and k£ may be expressed by a bounded wif

AI(‘%: ?7)

with 2k + 2 variables, where the instruction I changes a given state Z

to the new state §. We write down these wifs for each instruction type.

292 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Ag:
. yoiwo/\"’/\yki.f}c.
A-(Z,n):

Yo=8(zo) A1 = 1A Ayn 0N Ay = Ty
A(g,n):

Yo=8(zo) Ay1 =1 A AYn =8(zp) A Ayp = 2.

A1) .

yQiS(:Bo)/\yl i501/\"'/\%,ﬁ-’lln/\"'/‘\:l,lk ='-‘:ik.
A(J,n,p,Q):

[[en = 2pAYo = q]V[~2n = 2pAY0 = 8(0)]|Ay1 = 21A- - Ayx = Tk

Now let
I(0),I(1),...,I(m)
be the instruction list for P, where I(m) is the last nonhalt instruction.
Then the nextstate relation ‘

(Z,%) € NXSTATEp
is defined in A by the following bounded wff:

[0 = OAA)]V [zo = 1AA)] V- - -V[zo = MAA)] V[m < zoAAg].

End of Proof.

We now wish to show that the state relation of each RM program
is X definable. In order to determine the state of an RM computation
at some time ¢, one must go through the entire sequence of states at
all times less than ¢. For this reason, we will need a X; definable
way of “coding” sequences of natural numbers. We cannot use our
Godel numbering scheme for this purpose, because it depends on the
exponential function y = 10%, and we do not yet know that this function
is X definable. Another coding scheme is needed- one which is easier
to define within arithmetic. Gédel found a way to do this using the
following function, called the Godel beta function. We must take a
short detour in our development to give this coding scheme.

. 5.4. COMPUTABLE IMPLIES REPRESENTABLE 293

Definition 5.4.8 The Godel beta function is defined by
ﬁ(xaya‘z) = Rem(x3y * (Z + 1) + 1)'
Lemma 5.4.9 The Gédel beta function is Ty definable.

Proof: We have seen that the remainder function Rem(z, y) =r is de-
fined in A by a £, wif R(z,y,2). The Godel beta function f(z,y,2) = v
is then defined in N by the X; wif . v

R(z,s(y * (s(2))), v)-
End of Pfoof. ;

To use the Godel beta function for coding finite sequences, we need
a classical theorem in number theory called the Chinese Remainder
Theorem. Since this theorem can be found in most number theory
texts, we shall state it without proof.

Theorem 5.4.10 (Chinese Remainder Theorem) Suppose thfzt
mi,..., My are positive integers such that m; and m; are relatively

~ prime whenever 1 <1 < j < n. If0 <a; <m fori =1,...,m,

there ezists x such that :

Rem(z,m;) =a; fori=1,...,n.

The next lemma uses the Chinese Remainder Theorem to show that
the Godel beta function can code finite sequences.

Lemma 5.4.11 For each finite sequence (a1,...,0n) of natural num-
bers, there exist b,c such that

(1) Blc,d,i) = a; fori::l,...,n..

Thus the pair (c,d) “codes” the finite sequence (ay,...,an) using the
 Godel beta function.

204 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Let M be such that n <Manda; < Mfori=1,...,n Let
d=M! Fori=1,...,n,let m;=d=*(¢+1)+1. Then

0, < M<d<mfori=1,...,n.
‘Moreover, for each z and ¢ = 1,...,n, we have
(2) B(z,d,t) = Rem(z,d * (i + 1) + 1) = Rem(z, m;).

We claim that whenever 1 < i < j < n, the numbers m; and m; are
relatively prime. Suppose not. Then some prime p divides both m; and
m;. Therefore p divides their difference m; — m; = (j — ¢) * ¢. Hence

either p divides j —i or p divides d. But p divides m; = d* (i +1) +1,

" so p cannot divide d. Therefore p divides j —i. But j — 7 < n < M,
s0 p < M and hence p divides d = M!. This contradiction proves the
claim.

By the Chinese Remainder Theorem 5.4.10, there exists ¢ such that

(3) ‘Rem(c,my;) =a; fori=1,...,n.

"The desired conclusion (1) follows from (2) and (3). End of Proof.

Theorem 5.4.12 For each RM program P, the state relation STATFEp
is Xy definable.

Proof: For simplicity we again assume that P is a regular program.
Let k be the largest register number occurring in an instruction of P.
We must find a £; wif which defines the state relation

(a,t,b) € STATEp
in V.

~ The idea is to write a wif which says that there exists a finite se-
quence of states (So, ..., S;) such that Sy = @, (Sy, Sut1) € NXSTATEp
for all u < t, and S; = b. In order to do this with a Y., wif, we replace
the finite sequence of states by a pair of natural numbers which codes
- a finite sequence of states via the Godel beta function.

Let A(@,5) be a £, wif which represents the nextstate relation
NXSTATEp in V. Let B(c,d,z,v) be a 5; wif which represents the

5.4. CQMPUTABLE IMPLIES REPRESENTABLE 295

Gédel beta function B(c,d,z) = v in M. Since each state has k + 1
coordinates, it will be convenient to combine &+ 1 values of z together.
Let j = k+ 1 and let C(c,d, z,7) be the wit

B(c,d,j * z,v0) AB(¢,d,j* 2+ L,v1) A--- AB(c,d,j * 2+ k, vz)
which defines the relation '

Blc,d,jz) = vo A Blc,d,jz+1)=vi Ao+ AB(e,d, gz + k) = V-
Then the state relation

STATEp(d,t,b)
is defined in A/ by the wif
3¢3d[C(c, d, 0,) A C(c, d, t,) A
(Vu < £)3Z3F[u = t V A(Z,9) A C(c, d,u, %) A C(e, d,s(u), 9)]]-

This wff is built from X, wifs using A, V, bounded quantifiers, andv exis-
tential quantifiers. By Lemma 5.4.4, the state relation is ¥ definable.
End of Proof.

Theorem 5.4.13 Every computable function is ¥, definable.

Proof: Let F be a computable (partial) function of n variables. There
is an RM program P which neatly computes F. By Theorem 5.4.12,
the relation STATEp is £; definable. It is defined in A/ by some Xy wif

A(,,9).

‘We may break the sequence of variable i into parts § = (&, 4) where z
consists of the first n variables in 7. Let p be the number of the first halt
instruction of P. The program P halts when the instruction number is
p. Then the graph F(&) = v of the partial function F' computed by P
is defined in. A by the wif

3t 32 IFA(F, 6,8,7) Azo = p Av = z).
Thus by Lemma 5.4.4, F' is ¥; definable. End of Proof.
We now make the final step, from 2 definability to representability.

296 CHAPTER 5. THE INCOMPLETENESS THEOREMS’ :

Lemma 5.4.14 Each bounded wff A represents the relation defined by
A in N,

Proof: Let S be the set of all wifs A such that the relation defined by
A in N is represented by A in Weak Arithmetic. We must show that
every bounded wif belongs to S.

We have seen that the atomic wifs

c=y,0=ys(z)=y,zty=zz¥y=2

belong to §. Using this fact, it can be shown by induction on terms
that any wif of the form 7 = y belongs to S, where y is a variable which
does not occur in 7.

It then follows that any atomic wff, i.e. equation between two terms,
belongs to S. For if 0,7 are terms with all variables replaced by nu-
merals, there are a and b such that ' o = aand N | 7 = b.
One can then check that if ¢ = b then WA F ¢ = 7 and otherwise
WAF -0 =7, :

It is a routine matter to check that the set S is closed under each
‘propositional connective.

We now show that the set S is closed under bounded quantifiers.
We assume A € S and prove that (3z < y)A € S. The trick is to use
Lemma 5.2.6. By that lemma, for each b, it can be proved in WA that
the wif

(3z < b)A(z, 7)

is equivalent to
A(0,2)V---V A(b, 7).

The latter wif is a finite disjunction of members of S, and thus belongs
to S by the preceding paragraph. It then follows that (3z < y)A € S.

The bounded universal quantifier case is similar. This shows that
every bounded wif belongs to §. End of Proof.

We first take up weak representability, and then representability.

Theorem 5.4.15 FEach £, wff C weakly represents the relation defined

by C in N. A relation is weakly representable if and only if it is Ty
definable. :

5.4. COMPUTABLE IMPLIES REPRESENTABLE =~ 297

Proof: Suppose first that a relation R is defined in M by a I; wif
Ju A(u,), where A is a bounded wif. We show that Ju A(u, Z) weakly
represents R. Suppose @ € R. Then ' »

N Ju Ay, d).
Then for some b € N,
» N E A(b,d).
By the preceding lemma, |
WA + A(b, &),

and hence

WA F Ju A(u,).

Now suppose
WA F Ju A(y,).
Then
N E JuA(u,d),
so @ € R. Therefore R is weakly representable. »

Now suppose that R is weakly represented by a wif B(Z). Let F
be the function such that F(@) = 0 if @ € R and F(d) is undefined
otherwise. Then F(#) = y is weakly represented by the wif B(&) A
y = 0. By the first half of Theorem 5.3.3, which was proved in the
last section using Church’s Thesis, F' is computable.’ Therefore by
Theorem 5.4.13, F(&) = y is defined in N by a ¥y wif C(Z,y). Then

R is defined in A by the wif 3y C(F,y), and by Lemma 5.4.4, Ris Xy
definable. End of Proof.

This gives us the second half of Theorem 5.3.3.

Corollary 5.4.16 Every computable (partial) function is weakly rep-
resentable. '

Proof: Suppose F is computable. By Theorem 5.4.13, F is &, defin-

~ able, so by the preceding theorem, F' is weakly representable. End of Pro of

298 CHAPTER 5. THE INCOMPLETENESS THEOREMS

‘Theorem 5.4.17 If a relation R has the property that both R and =R
© are Xy definable, then R is representable.

r.Proof: St}ppose R(Z) is defined in A by the wff Ju A(u, &) and ~R(7)
i;hdeﬁned in NV by the wff JvB(v, Z), where A and B are bounded wffs
en

. NEJuA(w,7) & Yw-B(v, d).
It follows that R(Z) is also defined in A by the wif
| | C(@): FulA(y,3) A (Yo < w)-B(v, 7)),
and = R(Z) is defined in A by the wif
D(#): v [B(v,2) A (Vu < v)-Au,).

Both C and D are ¥, wffs. We show that C represents R.
If @ € R, then by Theorem 5.4.15, :

WA + C(&).
Now suppose that @ ¢ R. Then
WA I D(a).
Exercise 10 shows that the three sentences

C(3), D(d),YVu Vo [u < v Vo < u

are tableau confutable. The third sentence above is Axiom 9 of WA.
Therefore k

WA+ D(&) = -C(a),
‘and it follows that
WA + -C(a).

This shows that C represents R. End of Proof.

5.5. FIRST INCOMPLETENESS THEOREM : 299

Theorem 5.4.18 Every total function F' which is £y definable is rep-
resentable.

Proof: Let the graph F(Z) = v of F be defined in N by a £; wff
dz A(z,Z,v)

where A is a bounded wff. Since F'is total, the complement —F(&) = v
of the graph of F is defined in A/ by the wiff

Jz w [A(z, &, w) A ~w = v].

By Lémma 5.4.4, the complement of the graph of F' is ¥; definable. By
the preceding lemma, the function F' is representable. End of Proof.

Putting everything together, we have now completed the proéf of the
Equivalence Theorem, showing that every computable total function is
¥, definable, and hence representable.

5.5 First Incompleteness Theorem

In this section we prove a theorem of Tarski which shows that the set
of sentences which are true in the standard model A of arithmetic is
not definable in A/. We shall then use Tarski’s Theorem to give a proof
of Gédel’s First Incompleteness Theorem, which shows that PA is not
complete. :

Let us first review the notions of a consistent theory and of a com-
plete theory, which were discussed informally in Chapter 3.

Definition 5.5.1 A theory H in the language of arithmetic is con-
sistent if H does not have a tableau refutation. H is complete if H
is consistent and for every sentence A in the language of arithmetic,
either HF A or HI —A.

The proof of Tarski’s Theorem is based on the liar paradox,

This sentence is false.

300 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The idea is to show that if the set of codes of true sentences were de-
finable, then one could find a sentence which asserts its own falsehood,
as in the liar paradox. :

Here are the main steps of the proof that PA is not complete. Using
the: Equivalence Theorem we will show that the set of all codes of
sentences which are provable from PA is definable in A'. Then by
Tarski’s Theorem the set of sentences provable from PA cannot be the
same as the set of sentences true in . Since every sentence provable
from PA is true in WV, it follows that there is a sentence B which is

" true in M but is neither provable nor disprovable from PA.

Godel’s original incompleteness proof, which will be given in the
next section, is somewhat harder than the proof in this section but
gives important additional information. It not only shows that PA is
not complete, but actually produces an example of a sentence B which
is neither provable nor disprovable from PA.

We introduce two more properties of theories.

Definition 5.5.2 A theory H in the language of arithmetic is sound
if N = H, that is, every sentence in H is true in the standard model
of arithmetic. '

Definition 5.5.3 By an axiomatized theory we mean a set of
sentences H in the language of arithmetic such that the set of codes of
elements of H is computable.

Every sound theory is consistent because it has the model . If a
theory H is consistent but not complete, it will have an extension H’
which is consistent but not sound (Exercise 4).

We saw in Chapter 3 that Weak Arithmetic is sound but not com-
plete, and that Peano Arithmetic is sound. Any finite theory such as
WA is obviously axiomatized, and we showed earlier in this chapter
that PA is axiomatized. In this section we shall see that PA is not
complete. In fact, we shall show even more, that no sound axiomatized
theory is complete.’

It will be convenient to introduce a name for the set of all sentences
which are true in N.

5.5. FIRST INCOMPLETENESS THEOREM 301
Definition 5.5.4 The set of all sentences which are true in a model
M is denoted by Th(M), and called the theory of M. In particular,
Th(N) is called complete arithmetic.

For any model M, the theory Th(M) is automatically complete. A

“theory H is sound if and only if it is a subset of Th(N).

Given a wif A(v) in the language of arithmetic with one free variable

" v and code a, the sentence A(a) will be called the diagonal sentence

for A(v). Thus the diagonal sentence for a wif A is the sentence formed
by replacing each free occurrence of v by the numeral representing the
code of A(v). The diagonal sentence will be used in this section to form
a sentence which asserts its own falsehood, and in the next section to
form a sentence which asserts its own unprovability. To construct such
sentences, we need the following definition:

Definition 5.5.5 The diagonal relation is the binafy relation D

" on N consisting of those pairs (a,b) for which a is the code of a wif

A(v) in the language of arithmetic with one free variable v and b is the
code of the diagonal sentence A(a).

Lemma 5.5.6 The diagonal relation D is computable.

Proof: We outline an algorithm which, given an input (a, b), outputs a
1if (a,b) € D and a 0 otherwise. First check whether a is the code c?f a
wif A(v) with one free variable v. If not, output 0 and stop. VOt}_lerw1se,‘
compute the code of the sentence A(a). Output a1 if this code is equal
to b and output 0 otherwise, and stop. By Church’s Thesis, the diagonal
relation D is computable. End of Proof.

We need one more lemma before proving Tarski’s Theorem.

Lemma 5.5.7 In the language of arithmetic, for any wff B(z) with
one free variable z, there is a sentence C such that '

NFC@B(C)‘

~ where ¢ is the code of C.

302 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Let D(v,z) be a wif which defines the diagonal relation D in
N. Let E(v) be the wif

Vz [D(v, z) = B(z)].
Let e be the code of E. Let C be the diagonal sentence E(e) of E(v).
In expanded form, C is
Vz [D(e,z) = B(z)].
Let ¢ be the code of C. The sentence C <> B(c) in expanded form is
1) Yz [D(e,z) = B(z)] & B(c).
Since C is the diagonal sentence of E, (e,c) € D. Therefore c is the
unique number such that :
| N = D(e,c).
It follows that the sentence (1) is true in A, as required. End of Proof.

Theorem 5.5.8 (Tarski’s Theorém) Let TR denote the set of all
codes of sentences true in N'. Then TR is not definable in N

Proof: Assume TR is definable in A" by a wif TR(v) with one free
variable v. By the preceding lemma there is a sentence P with code p
such that

N EP < -TR(p).
Thus,

N =P ifand only if A’ I TR(p)

But since TR defines TR in N, the right-hand side above is equiv-
alent to A [P. We are left with the contradiction that P is true in A/
if and only if P is not true in A/. We conclude that TR is not definable
after all. End of Proof.

In Section 1 we defined the proof relation PRFg for a set H of
sentences in the language of arithmetic to be the set of all pairs of
natural numbers (z,y) such that z is the code of a wif A and y is the
code of a tableau proof of A from H. Using the proof relation, we can
carry out the incompleteness proof sketched at the beginning of this
section.

'5.6. GODEL’S ORIGINAL INCOMPLETENESS PROOF 303

Theorem 5.5.9 (First Incompleteness Theorem) Let H be a sound
aziomatized theory. Then H is not complete.

Proof: Theorem 5.1.9 showed that for each axiomatized theory H,
the proof relation PRFy is computable. By the Equivalence Theo-
rem 5.3.1, PRFy is representable, and therefore definable in & by
a formula Py (z,y). Therefore the set of codes of sentences which are
provable from H is definable in A by the formula 3y Py (z,y). Then by
Tarski’s Theorem and the soundness of H, the set of sentences provable |
from H must be a proper subset of Th(AN'). Thus there is a sentence
B which is true in A/ but not provable from H. Moreover, =B is not
provable from H because it is false in A and H is sound. Therefore H
is not complete. End of Proof.

Corollary 5.5.10 The complete theory Th(N') of arithmetic is not az-

iomatized.

5.6 Godel’s Original Incompleteness Proof

In this section we shall give another proof of the First Incompleteness
Theorem, using Gédel’s original method.

The central idea is to modify the liar paradox by finding a sentence
Ag, called a “G sentence.” which asserts its own unprovability from
PA. Thus the Gédelian sentence Ag says

I am not provable from PA.

Now if Ag is provable from PA, then Ag must be true in A/ because
PA is sound, and therefore Ag is not provable from PA. Thus Ag
cannot be provable from PA. It follows that Ag is true in A/, and
since PA is sound, the negation also is not provable from PA. Hence
PA is incomplete.
 With these remarks we have in outline form another proof that PA
is an incomplete theory, and that there are sentences which are true in
N but not provable from PA. The main technical difficulty is to show
that the Godelian sentence exists.

As a starting point we introduce the concept of a proof formula

~ for a-theory H in the language of arithmetic.

304 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Definition 5.6.1 Let H be an axiomatized theory in the language of
‘arithmetic. A proof formula for H is a wif PRFy which represents
‘the proof relation PRFg.

Corollary 5.6.2 Let H be an aziomatized theory. Then the proof re-
lation PRFy for H is representable, i.c., H has a proof formula.

Proof: Theorem 5.1.9 showed that for each axiomatized theory H, the
proof relation PRFy is computable.

By the Equivalence Theorem 5.3.1, PRFg is representable. End of Proof.

A proof formula for H allows us to express a statement like
(1) The tableau T is a proof of the sentence A from H.
formally in arithmetic, by translating it into the wif:

(2) PRFy(a,t)

where a is the code of the wif A and ¢ is the code of the tableau T.
There are several steps involved in this translation. First, form the
proof formula PRFg(z,y) for H. Then compute the codes a for the
wiff A and ¢ for the tableau T. Finally, form the numerals (which are
terms) a for ¢ and t for ¢, and substitute these terms for the variables
z,y in PRFy(z,y).

The next result shows that by using an existential quantifier, we
can express the statement

(3) The sentence A is tableau provable from H
formally in arithmetic by the wif
(4) 3yPRFx(a,y)

where a is the code for the wif A.

In the incompleteness proof in the preceding section, we used the
fact that the set of codes of sentences which are provable from an ax-
iomatized theory H is definable in /. We now prove that this set is
also weakly representable.

5.6. GODEL’S ORIGINAL INCOMPLETENESS PROOF 305

Theorem 5.6.3 Let PRFy be a proof formula for an aziomatized the-
ory H, and let PV be the set of all codes of sentences which are provable

~ from H, that is,

PV = {#(A): A € SENT(L) and HF A}

where L is the vocabulary of arithmetic. Then the wff B'y PRFH(x,y)
weakly represents the relation PV and also defines PV in N. ’ That 1s,
forall a € N,

(i) a € PV if and only if WA+ Jy PRFyu(a,y),
(ii) @ € PV if and only if N |= 3y PRFy(a,y).

" Proof: Since PRFy represents PRFy, PRFy defines PR'FH i.n N
" by Theorem 5.2.3. Both (i) and (i) are proved by the following list of

statements.

If a € PV then for some b € N, (a,b) € PRFq.

If (a,5) € PRFy then WA - PRFg(a,b).

If WA - PRFg(a, b) then WA I 3y PRFx(a,y)-
If WA - 3y PRFx(a,y), then M = 3y PRFx(a,y).

If N = 3yPRFg(a,y), then for some b € N, N = PRFyu(a,b).

If N &= PRFu(a,b), then (a,b) € PRFH.

If (a,b) € PRFg then a € PV. End of Proof.

Once we see that statements about proofs can be expressed formally,
many questions naturally arise about the relationship between .this for-
mal version of proof (like (2)) and our usual notion of proof (like (1))
For instance, we will be able to investigate questions like:

(5) If A is provable, is it provable that A is provable?

" (6) If it’s provable that A is provable, must A be provable?

306 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(7) Is it provable that if A and B are both provable then A A B is
' provable?

(8) If AV B is provable, must one of A and B be provable? Is the

answer to this question provable?
We now turn to the First Incompleteness Theorem.

Definition 5.6.4 If H is an axiomatized theory, a sentence P of
“arithmetic is a Goédelian sentence for H if

HF P & -3y PRFu(p,y)

where p is the code for P.

- Thus P is Godelian for H if H proves that [P is true if and only if
P is not provable from H]. A Gédelian sentence for H asserts its own
unprovability from H.

The following proposition shows that a Gddelian sentence qulckly
leads to incompleteness.

Proposition 5.6.5 Let H be a sound aziomatized theory and let P be

a Gédelian sentence for H. Then P is true in N but not provable from
H, and H is consistent but not complete.

- Proof: Let p be the code for P. Since P is Godelian for H and H is
sound, we have

(1) N EP & -3y PRFg(p,y)

We claim that

(2 N E -3y PRFu(p,y).
Suppose (2) fails. Then there exists n such that

N E PRFg(p,n),

5.6. GODEL’S ORIGINAL INCOMPLETENESS PROOF ; 307

and by Theorem 5.6.3, H - P. By soundness, ' = P. Then by (1),
(2) holds. Thus (2) holds in all cases.

By (1) and (2), M = P. By (2) and Theorem 5.6.3, H I/ P. Since H
is sound and /' |= P, we also have H I/ —=P. Therefore H is consistent

‘but not complete. End of Proof.

We now show that theories such as PA have Gdédelian sentences.
In the preceding section we defined the diagonal relation D, consisting
of those pairs (a,b) for which a is the code of a wif A(v) in the lan-
guage of arithmetic with one free variable v and b is the code of the
diagonal sentence A(a). We showed that D is computable. Since D is
computable, it is representable. The next lemma shows that there is a
wif D which does an especially good job of representmg D. 1t will be
needed in formmg a Godelian sentence.

Lemma 5.6.6 There is a wff D(v, z) such that D represents the diag-
onal relation D and for each (a,b) € D,

WA F Vz [D(a,z) & z = b].

Proof: By the preceding lemma, D is computable. By the Equivalence
Theorem, D is represented in WA by some formula B(v, z). Let D(v,)
be the wif

(3) B(v,z) AVulu < z = -B(v,u)].

Intuitively, D(a, b) says that b is the first number such that (a,b) € D.
We first check the second half of representability. If (a,b) ¢ D,
then WA —-B(a,b), and therefore WA - =D(a, b) because D is the
conjunction of B and another wif.
Suppose that (a,b) € D. To prove (3), work within WA and con-
sider each of the three cases * < b,z = b,b < z. In the first case,
show that —D(b, z) using the fact that

WAbz<b=2z=0V...Vvz=b -1

and for each ¢ < b,
WA + -B(a,c).

308 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The second and third cases use the fact that, since B represents D,
WA I B(a,b) but WA I -B(a,c) for all ¢ < b. This gives us D(a, z)
in the case z = b and —D(a, z) in the case b < z. We have thus proved
(3). ‘
The first half of representability follows from (3) and the fact that

I Vz[D(a,z) & z = b] = D(a, b).

End of Proof.

We now prove a stronger form of Lemma 5.5.7.

Lemma 5.6.7 (Diagonalization Lemma) In the language of arith-
metic, for any wff B(z) with one free variable z, there is a sentence

C such that
WA F C & B(c)

where ¢ is the code of C.

Proof: (To make the idea easier to follow, we shall keep in mind the
important case where B(z) is a wif which says “z is not provable from
H”.) Let D(v,z) be the wif of the preceding lemma. Let E(v) be the
wif : , ,

Vz [D(v,z) = B(z)].

(Intuitively, E(v) says that the diagonal sentence of the wif with code v
is not provable from H). Let e be the code of E. Let C be the diagonal
sentence E(e) of E(v). In expanded form, C is

Vz [D(e,z) = B(z)].

(Intuitively, C says that the diagonal sentence of the wif with code e is
not provable from H, that is, C says that C is not provable from H!).
Let ¢ be the code of C. The sentence C < B(c) in expanded form is

(4 Vz [D(e,z) = B(z)] & B(c).

We must show that (4) is pfova,ble from WA. Since C is the diagonal
sentence of E, (e,c) € D. By the preceding lemma, the sentence

() Vz [D(e,z) & z = (]

5.6, GODEL’S ORIGINAL INCOMPLETENESS PROOF 309

is provable from WA.. One can easily check that (4) is tableau provable
from (5) (e.g. by using the TABLEAU program), so (4) is also provable
from WA as required. ’ End of Proof.

Corollary 5.6.8 Let H be an aziomatized theory and let PRFy be a

“proof formula for H. Then there is a sentence P such that

(1), ~ WA P & -3y PRFH(p,y)
where p is the code of P. .

Proof: Let B(:c) be the wif -3y PRFg(z,y) (which intuitively says
that “z is not provable from H”). By the Diagonalization Lemma,
there is a sentence P with code p such that

WA F P & B(p).
This is (). End of Proof.

Proposition 5.6.9 Let H be a consistent aziomatized theory which in-
cludes WA, and let P be a sentence with property () from the preceding
corollary. Then P is a Gédelian sentence for H. Moreover, P s true
in N but not provable from H.

~ Proof: P is Godelian for H because (1) holds and H includes WA. -

We show next that P is not provable from H. Suppose on the contra,ryk
that H + P. Since P is Gédelian for H,

HF -3y PRFu(p,y).
But PRFy is a proof formula for H and HI P, so
WA F 3y PRFu(p,y).
Since H includes WA, o
H + 3y PRFu(p,y).
This contradicts the fact that H is consistent. We conclude that P is

" not provable from H.

It follows that the sentencé,—é]y PRFy(p,y) is true in /. Since

WA is sound, we conclude from () that P is true in A. End of Proof.

We can now easily prove the First Incompleteness Theorem.

310 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Theorem 5.6.10 (First Incompleteness Theorem) No sound az-
tomatized theory is complete. In particular, Peano Arithmetic is not
complete.

Proof: Suppose H is a sound axiomatized theory, and assume that
H is complete. Since H is axiomatized, by Corollary 5.6.8 there is a
sentence P such that (f) holds. .

For each axiom Q of WA, ' }£ —Q, hence by soundness, H i -Q,
and by completeness, H - Q. Thus every axiom of WA is provable from
'H, and hence every sentence provable from HUWA is provable from H
alone. Since H is sound, HU WA is sound. Then by Proposition 5.6.9,
there is a Godelian sentence P for H U WA. By Proposition 5.6.5, H
is not complete. End of Proof.

5.7 Godel-Rosser Theorem

The First Incompleteness Theorem in the preceding two sections re-
quires the theory in question to be sound. As reasonable as this prop-
erty may be, it is quite complex from the point of view of computability.
To check the soundness of a theory, we must decide whether each of its
sentences is true (in). As we show in Theorem 5.5.8, no procedure
which decides the truth of every sentence of arithmetic is even definable
in V. _ .)

In this section we shall prove an improvement of the First Incom-
pleteness Theorem which does not depend on the notion of soundness,
the Godel-Rosser Theorem: No consistent axiomatized theory whlch
includes WA is complete. :

We first need some results about the undecidability of some of the
relations and theories we have been studying.

Definition 5.7.1 A set of sentences H is called a decidable theory
if the set

{z: 3y PRFH((L‘, y)}

- of codes of sentences which are provable from H is computable. Theo-
ries which are not decidable are called undecidable.

5.7. GODEL-ROSSER THEOREM 311

The next theorem shows that PA and WA are undecidable. Thus
the set of codes of proofs from PA is computable, but the set of codes
of provable wifs from PA is not computable.

Theorem 5.7.2 Any consistent theory which includes WA is undecid-

“able.

Proof: Assume H is consistent, decidable, and includes WA. We shall

obtain a contradiction.
Since H is decidable,k the set

PV = {z: JyPRFu(z,y)}

of codes of sentences which are provable from H is computable. We

_may assume that every sentence which is provable from H is already

an element of the set H. Then PV is the set of codes of elements of
H, so H is an axiomatized theory. Let PRFy be a proof formula for
H. By the Equivalence Theorem, PV is represented by some wif B.
BAPRPFy is also a proof formula for H, because PRFy = PVNPRFy
and B A PRFy represents PV N PRFy. By Corollary 5.6.8 there is
a wif P such that (1) holds with B A PRFy in place of PRFy. By

Proposition 5.6.9,
HiP.

Let p be the code of P. Then p ¢ PV. Since B represents PV,
WA + —~B(p). Therefore

WA + -3y [B APRFH|(p,y).

It now follows from (1) that WA F P, and since WA C H, H - P.
This is a contradiction and completes the proof. End of Proof.

For example, the theories WA and PA are undecidable because
each is a consistent theory which includes WA.

- Th(N) is thus an example of a consistent theory which includes
WA, and by the preceding theorem, Th(A) is undecidable. Since every
sentence which is provable from Th(N)) is true in N and vice versa,
it follows that the set of codes of sentences which are true in ./\f is not

~ computable.

31z | CHAPTER 5. THE INCOMPLETENESS THEOREMS

Theorem 5.7.2 says something about theories containing sentences
~ which are false in V. (Such theories are called unsound.) For example,
we might try to make PA a complete theory by adding to PA the axiom
~P where P is Godelian for PA. Let PAt = PAU{-P}. Since N E P,
PA™ is unsound. But PA™ is consistent; if not, then every model of
PA would satisfy P and we would have that PA F P, contradicting
Proposition 5.6.5. We can therefore conclude by our last theorem that
PA™ is an undecidable theory.
The next lemma shows that any undecidable axiomatized theory is
also incomplete. It leads to the Godel-Rosser Theorem, which is an
improvement of the First Incompleteness Theorem.

Lemma 5.7.3 FEvery complete aziomatized theory H is decidable.

Proof: We describe an algorithm which determines whether an input
is the code of a sentence which is provable from H. First, check whether
a is the code of a sentence of arithmetic. If not, output 0 and stop.
If a 1s the code of a sentence A, compute the code b of the sentence
—A. Now for ¢ =0,1,2,..., check to see whether (a,c) € PRFy, and
then check whether (b,¢) € PRFu. Continue this process until either
(a,c) € PRFg or (b,¢) € PRFyg. The process will stop after finitely
many steps because H is complete, so either H - A or H =A. If
(a,c) € PRFu we output 1 and stop, and if (b,c) € PRFyg we output
0 and stop. This shows that H is decidable. End of Proof.

Theorem 5.7.4 (Godel-Rosser Theorem) No consistent aziomatized

theory which includes WA s complete.

Proof: Suppose H is an axiomatized theory which includes WA and
assume that H is complete. By Lemma 5.7.3, H is decidable, contra-

dicting Theorem 5.7.2. End of Proof.

The Godel-Rosser Theorem, like the First Incompleteness Theorem,
is stated entirely in terms of provability, and does not require the notion
of a wif being true in V. ;

The Godel-Rosser Theorem implies that there is no computable way

to add axioms one-by-one to PA in order to make it complete — even

if we are allowed to add infinitely many axioms. (In other words, we

5.7. GODEL-ROSSER THEOREM 313

cannot find a list of such axioms whose codes are computed by an RM
program.) To see this, suppose we attempt to add axioms Ag, Ay,...
using some algorithm. Note that if instead we add the axioms Ag, Ag A
A;,...weobtain a theory which has the same consequences as the first,
only now the codes of the new axioms are arranged in increasing order.

"By Exercise 2, the set of these codes is computable, and hence so is the

set of codes of
PAU{ApAcAAy,.. .}

Thus, by the Gédel-Rosser Theorem, the new theory is either inconsis-
tent or incomplete. N ’

In contrast to the Godel-Rosser Theorem, there are several known
examples of theories H in the language of arithmetic which are con-
sistent, complete, and decidable. By the theorem, no such theory can
include WA. A trivial example is the theory Th(M) of all sentences
true in a finite model M. Two very important examples due to Tarski
are the theories Th(R) and Th(C) where R is the field of real numbers
and C is the field of complex numbers. Another important complete
decidable theory, due to Presburger, is the theory Th(N,) where N
is the standard model of arithmetic in the vocabulary {0,s, +} without
the multiplication symbol *.

Using the results of this section, we can give another proof of Church’s
Theorem, which was proved in Chapter 4.

Theorem 5.7.5 (Church’s Theorem) The empty theory in the lan-
guage of arithmetic is undecidable. That is, the set V of all codes of
valid sentences in the language of arithmetic is not computable.

Proof: Suppose the set of codes of valid sentences is decidable and is
computed by an RM program which we shall call VAL. We shall show
that WA would then be decidable, thus obtaining a contradiction. The
proof depends on the fact that WA is a finite set of sentences. Since -
WA is finite, we may form the sentence C which is the conjunction of
all sentences in the set WA, Then for each sentence A, we have

WA [A if and only if | C = A.

We describe an algorithm which would, under our hypothesis, deter-

" mine whether an input @ is the code of a sentence which is a valid

314 CHAPTER 5. THE INCOMPLETENESS THEOREMS

consequence of WA. First check whether a is the code of a sentence.
" If not, output 0 and stop. If a is the code of a sentence A, compute

the code c of the sentence C = A. Then use the hypothetical program
VAL to decide whether or not C = A is valid. If so, then WA - A
and we output 1, and otherwise WA I/ A and we output 0. This
shows that WA would be decidable and contradicts Theorem 5.7.2.
End of Proof.

While Church’s Theorem shows that the set V of codes of valid
sentences is undecidable, Theorem 5.6.3, shows that V' is definable in

"N and weakly representable. By contrast, the method of truth tables

shows that the set of codes of valid sentences in propositional logic is
computable.

We have seen that the set of codes of sentences true in the standard
model of arithmetic is not computable. Tarski improved this result by
showing that the set of codes of true sentences is not even definable in

N:

5.8 Provability and Modal Logi\c

- One of the innovations of the 1970’s (forty years after Godel’s discovery

of the Incompleteness Theorems) was an application of a simple kind

_of logic - called modal logic ~ to investigate questions of provability

in arithmetic. This approach allows one to study the Incompleteness
Theorems without the rather involved machinery of Godel numbering.
We shall describe this approach here and use it to prove Gédel’s Second
Incompleteness Theorem.

The rest of this chapter is organized as follows: In this section we
describe modal logic, an interpretation of modal wifs as sentences of
arithmetic, and a broad class of theories of arithmetic which are needed
to define this interpretation precisely. In 5.9 we describe modal tableau
proofs and discuss various axioms for modal logic which express certain
essential properties of “provability.” In 5.10 we revisit the First Incom-
pleteness Theorem. In 5.11 we prove Godel’s Second Incompleteness
Theorem and discuss several related results.

We begin our study of modal logic with a language which has as
its primitive symbols those of propositional logic together with a new

5.8. PROVABILITY AND MODAL LOGIC 315

symbol O which is a formal counterpart of the predicate “is provable
from H,” where H is some theory in the language of arithmetic, like
WA or PA. The symbol O will allow us to formulate modal axioms
which eXpress essential properties of provability without involving us

_ in the details of codes.

We want each propositional symbol in modal logic to stand for a
sentence in the language of arithmetic, but we will not be concerned
with the inner structure of the sentences. To accomplish this, we shall
simply take the sentences in the language of arithmetic themselves to be
the propositional symbols of our modal logic. We shall use the capital
boldface letters P, Q, ... to stand for arbitrary propositional symbols of

" modal logic (we shall stop using them for RM programs). Lower case

boldface letters will be used for numerals. Thus in our modal logic,
P,Q,... will stand for sentences in the language of arithmetic, but we
do not have to specify which sentences.

Formally, modal logic is obtained by adding a new symbol O, called
a modal operator, to propositional logic. The vocabulary of modal
logic consists of a set P of proposition symbols, as in propositional
logic. The primitive symbols consist of the proposition symbols just
described, the connectives and brackets of ordinary propositional logic,
and the symbol O . Any finite sequence of these primitive symbols 18
a string. A modal wff is a finite string obtained by finitely many
applications of the following rules of formation: ' '

(Modal:P) ~ Any proposition symbol is a modal wif
(Modal:—) If A is a modal wff, then —A is a modal wif
(Modal:O0) If A is a modal wff, then DA is a modal wit.

(Modal:A, V,=,<) If A and B are modal wifs, then [A*B] |
is a modal wif whenever * € {A,V,=, &}

For the set P of propositional symbols we take the set SEN T(L) of
sentences in the vocabulary £ of arithmetic. We shall let F denote the

- false sentence 0 = O of arithmetic. Thus F is a particular proposition

316 CHAPTER 5. THE INCOMPLETENESS THEOREMS

“symbol of modal logic as well as a sentence of arithmetic. The set of
all modal wifs will be denoted by WFF(P).

* Modal wifs and the logic associated with them can be interpreted
in a variety of ways; originally modal logic arose (starting as far back
as Aristotle) as an attempt to formalize the idea of necessary truth:
Given a proposition P about the world, if P happens to be true, is it
necessartly true? Around 1910, C.I. Lewis introduced the symbol O
as a new operator in propositional logic to give formal expression to
this notion of necessity. Thus, for any proposition P, OFP was to be
understood as saying “it is necessary that P (holds).” Since then, this
operator has been interpreted in a number of different ways and various
axiom systems have been developed to formalize these interpretations;
O has been interpreted as “it is necessary that,” “it is provable that,”
and “it is computable that”; in his popularized treatment of the Incom-
pleteness Theorems, Smullyan [1987] interprets O as “it is believable
that.” In this chapter, we shall interpret O as “it is provable from H
that,” where H is a pre-determined set of sentences of arithmetic.

We now take up the question of how to assign meaning to our modal
wils, i.e., the question of semantics. In the logics we considered in
earlier chapters, the question was answered by developing a theory of

models for the particular logic we were studying. A similar approach

(see Boolos [1979] or Smorynski [1985]) could be carried out here but is
unnecessary for our purposes; another kind of interpretation is already
suggested by the fact that our proposition symbols denote sentences of
arithmetic. We shall show that we can inductively assign a sentence
of arithmetic to each modal wff in such a way that connectives are
preserved and the symbol O has our intended meaning “provable from
H.” We shall call this association an arithmetical interpretation
of modal logic. This interpretation will depend only on the choice
of a proof formula PRFy for H. Each modal wiff A will have an
interpretation J(A) which is a sentence the language of arithmetic, and
the proof formula for H will play a special role in this interpretation.
Because of the inductive nature of the definition of the arithmetical
interpretation, we need an Inductive Definition Principle for modal wifs
and, as usual, this requires a Unique Readability Theorem. The proofs
of these are virtually the same as their analogues in propositional logic;
proofs at the O-stage of each argument proceed like the —-stage of the

5.8. PROVABILITY AND MODAL LOGIC , 317

corresponding proof in propositional logic. We leave the details to the
reader; see Exercise 12. ’

Definition 5.8.1 Let H be an axio’matize‘d theory. with a proof for-
mula PRFg. By the arithmetical interpretation of modal logic by
PRFy we mean the function

I: WFF(P) — SENT(L),
where £ is the vocabulary of arithmetic, defined recursively as follows.

Basis For each proposition symbol P, I(P) = P.
Negation I(—=A)=-I(A).

‘Binary connective For each binary connective *,

I([A *B]) = [I(A) « I(B)].

Modal operator I(OA) = Jy PRFg(a,y),
~ where a = #(I(A)) is the code of the sentence I(A).

From now on, it will be understood that I is an arithmetiqal inter-
pretation of modal logic by PRFg, where H is a given axiomatized
theory and PRFg is a given proof formula for H. :

Definition 5.8.2 Let H be an axiomatized theory and let PRF g be
a proof formula for H. We say that a modal wif C holds for PRFn
if its arithmetical interpretation I(C) by PRFy is true in A If the

- proof formula PRFy is clear from the context, we say that C holds

for H if it holds for PRFy.

The following corollary shows that DA has our intended meaning
under the arithmetical interpretation by PRFq. :

Corollary 5.8.3 (Arithmetical Interpretation Theorem) Let

PRFy be a proof formula for H. For every modal wff A, the following

are equivalent:

318 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(i) DA holds for H, i.e. N |= I(DA).
(ii) I(A) is provable from H, i.e. H I(A).
(iii) I(DA) is provable from WA, i.e. WA + I(DA).

Proof: Let a be the code of the wff I(A). Then I(OA) is the sentence
Jy PRFH(a,y). By Theorem 5.6.3, conditions (i)-(iii) are equivalent.
End of Proof. :

The Arithmetical Interpretation Theorem can be used to translate
a statement saying that a modal wif holds for H to a statement about
provability from H. If A is a simple modal wif where there are no boxes
within boxes, the translation is done by replacing each OP within A by
“HF P.” To make the translation more readable, we shall sometimes
write H = P in either of the long forms

“H proves P”
or

“P is provable from H.”

Example. Consider the modal wif
A: OPADP= Q)= 0Q.
“A holds for H” translates into:
IfHFPand H [P = Q] then HF Q.

This is the Rule of Modus Ponens, which is true for any theory H by
the Completeness Theorem.

If the modal wif A has nested boxes, the translation is more difficult
and involves codes and the proof formula for H.

Example. Consider the modal wif DOP. Intuitively, OOP says “H
- proves that P is provable from H.” By the Arithmetical Interpretation

5.9. MODAL SYSTEMS AND TABLEAUS 319
Theorem, OOP holds for H if and only if H proves I(OP). We shall
compute J(OP) and I(DOP). Let p be the code of P. Then :
I(OP) = 3y PRFx(p,y).
Therefore OOP holds for H if and only if
Ht 3y PRFHu(p,y).
Now let ¢ be the code of 3y PRFy(p,y). Then c is the code of I(OP),

SO

I{(OOP) = Jy PRFH(c,y).

5.9 Modal Systems and Tableaus

"We now embark on a discussion of those properties which hold for prov-

ability, and formulate them as axioms for a modal logic. One property
of provability in both propositional and predicate logic is that for any
hypothesis set H, if HF A and H F [A = B], then H - B. This is
called the Rule of Modus Ponens and follows from the Completeness
Theorem. Thus, we treat the following list of modal wifs as axioms:

OA AO[A = B] = OB, for any modal wifs A, B.

Another property of provability that we wish to formalize is that all
propositional tautologies are provable. Thus, we would like to say that
DA is an axiom for each modal wif A such that A is a “tautology.”
In our modal language, what we mean by a tautology is a modal wif
having the form of an ordinary tautology of propositional logic. For
instance,

PAQ]=>P
is a tautology of propositional logic, so
DA A[OAVDOOB] = DA

is a modal tautology. (Here, we have replaced P with OA and Q with
DA v OOB)
~ Here is a formal definition of modal tautology.

320 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Definition 5.9.1 A modal tautology is a modal wif C such that

for some tautology D of ordinary propositional logic with the proposi- -

tion symbols Py,...,P, and some list of modal wifs A4,..., A,, Cis
obtained by replacing each occurrence of P; in D by A; fort=1,...,n

We remark that neither of the wifs

o[Pv-P], OPVO-P

is a modal tautology, (although OP v —OP is).
modal wifs is “true,” that is, I(O[P V —P]) is true for any P under any
arithmetical interpretation of modal logic, because for any H, PV —-P is
provable from H, but the wif does not satisfy the criterion for a modal
tautology. The second wif, however, is not even true in general. For
example, let us take H to be WA and P to be the proposition symbol
which stands for the sentence Yz 0 z = 0. We have seen in Chapter 3
that the sentence Yz 0% z = 0 is true in some models of WA and false
. in others, so that neither P nor —P is provable from WA. Thus the
sentence I([OP vV O-P]) is false for the arithmetical interpretation of
modal logic by PRFwa.

In this and the next section we shall study four axiom systems for
modal logic, called Mod(0), Mod(1), Mod(2), and Mod(3). Other
systems will be introduced in the exercises. The axioms will express
~ properties which “ought” to be true about provability. The first of
these axiom systems, Mod(0), has an axiom expressing the fact that
each modal tautology is provable and an axiom expressing the rule of
modus ponens. The other systems add more axioms which we shall
discuss later ori. We shall list all four systems here so they will be easy
to look up, even though we shall need only the first system Mod(0) at
this time.

Definition 5.9.2 ! The modal system Mod(0) has the following two
axiom schemes.

(tt) OC for every modal tautology C.

In the literature, the modal system having axiom schemes (tt), (m
(fmp) is known as (modal system) K. Mod(3) is known as K.

p), (n), and

The first of these -

5.9. MODAL SYSTEMS AND TABLEAUS 321

(mp) DA AO[A = B]= OB for all modal wifs A and B.

The modal system Mod(1) has as axioms those of Mod(0) together B

with the axiom scheme

(n) DA = OOA for every modal wif A.

The modal system Mod(2) has as axioms those of Mod(l) together
with the axiom scheme ‘

(s) OOA = OA for all modal wifs A.

The modal system Mod(8) has as axioms those of Mod(1) together
with the following axiom schemes for all modal wifs A and B:

(fmp) O[[0A A O[A = B]] = OB].
(fn) O[CA = OOA).

(tt) stands for tautology, (mp) for modus ponens, (n) for nor-

‘mal, and (s) for soundness. (fmp) stands for formalized modus

ponens and (fn) for formalized normal.

Each of the above modal axiom schemes is actually an infinite list
of modal wifs. Each of these individual wifs is an axiom of the corre-
sponding modal logic, and is called an instance of the axiom scheme.
Note that axiom (s) is included among the Mod(2) axioms, but is not
included among the axioms of Mod(3). We have

" Mod(0) C Mod(1), Mod(1) C Mod(2), Mod(1) C Mod(3).

Definition 5.9.3 For each modal system Mod(k),k = 0,1,2,3, we
define a Type k theory to be an axiomatized theory H in the language
of arithmetic with a proof formula PRFy such that Mod(k) holds for

H, that is, the arithmetical interpretation of each Mod(k) axiom by

PRFy is true in V.

Proposition 5.9.4 Every aziomatized theory is a Type 0 theory.

322 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Proof: Suppose that H is an axiomatized theory. First let C be a

" modal tautology, so that OC is an instance of axiom scheme (tt). Then
C is obtained from a tautology D of propositional logic by replacing
propositional symbols Py,...,P, by modal wifs A;,...,A,. By the
Completeness Theorem for propositional logic, D has a propositional
tableau proof T. By replacing each propositional symbol P; by the
modal wif A; in T, we obtain a modal tableau proof T of C using only
the propositional tableau rules. Replacing each modal wff B in T’ by
the wif I(B), we obtain a tableau proof of I(C). Thus I(C) is tableau
provable from the empty set of hypotheses, and hence tableau provable
from H. By the Arithmetical Interpretation Theorem, I(OC) is true
in M.
‘Now consider an instance OA A O[A = B] = OB of axiom

scheme (mp). We have

I([DAACT[A = B]]=0B) =

[I(0A) A I(T[A = B))] = I(0B).

Suppose that I(OJA) and I(O[A = B]) are true in A. By the
Arithmetical Interpretation Theorem, both I(A) and I(A = B) are
tableau provable from H. Moreover,

I([A=B]) = [I(A) = I(B)].

Therefore by the Completeness Theorem 3.5.2, I(B) is tableau prov-
able from H. Thus by the Arithmetical Interpretation Theorem, /(OB)
is true in A. This shows that I([OA A D[A = B]] = 0OB) is true in
N as required. End of Proof.

- To prove consequences of Mod(k), we again use the tableau method.

A modal tableau of type k, or Mod(k) tableau, is defined as

in propositional logic except that we add to the usual list of tableau
extension rules the following rule:

Az Any axiom of Mod(k) can be added at the end of a branch

(where k= 0,1,2, or 3).

~5.9. MODAL SYSTEMS AND TABLEAUS ‘ : 323

(We have seen this sort of tableau rule before; the Equality Rule
similarly allows any node to be extended by an axiom.) As before, we
declare a branch of a tableau to be contradictory if for some modal wif

‘A, both A and —A occur on the branch; a Mod(k) tableau proof is

then defined in the usual way. If there is a Mod(k) tableau proof of
the modal wif A, we write

Fe A

Likewise, if J is a set of modal wifs and there is a Mod(k) tableau
proof of A from J, we write .

J R A

In this book, we shall only consider finite modal tableaus.

The TABLEAU program is equipped to accept modal wffs and exe-
cute the rules. To run the modal logic version of the TABLEAU
program, choose “start a MODAL tableau” at the title screen. You will
then be able to enter wifs of modal logic as hypotheses and as formulas
to be proved, and to use the axioms of modal logic in tableau proofs.
To enter a O as part of a modal wff, you can either hit the # key, type
in the word BOX, or hold the Ctrl key down and hit B. To use a modal
axiom in a tableau, hit the A key at the end of a branch in Tableau
mode, and then choose the desired axiom scheme from the menu.

What information do tableau proofs in modal logic give us? In
propositional and predicate logic, the tableau method provided a con-
venient procedure for checking whether a sentence was a semantic con-

~ sequence of a given hypothesis set. Modal proofs can also be under-

stood in this way by introducing a notion of a model for modal logic.
Instead, we shall understand modal proofs by going back to our arith-
metical interpretation of modal logic. The following proposition is like
the Soundness Theorem for propositional logic, and can be proved by
induction on the number of nodes of a tableau.

Proposition 5.9.5 If there is a tableau proof of a modal wff C in the

- modal system Mod(k), then for any Type k theory H, C holds for H.

324 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Thus a Mod(k) tableau proof tells us that a modal wif holds for all
Type k theories. By Proposition 5.9.4, a Mod(0) tableau proof tells
us that a modal wif holds for all axiomatized theories.

A corresponding completeness theorem can also be formulated; see
Exercise 24.

We shall now use modal tableaus to prove some lemmas which will
be used later for the incompleteness theorems. In most cases we shall
only sketch the main steps of the proof, and leave the construction of
a formal tableau proof as a problem using the TABLEAU program.

We state our first lemma formally in modal logic, and then give an
English translation in terms of provability from an axiomatized theory
H. Since this is our first lemma, the full tableau proof will be given in
the text.

Lemma 5.9.6 o OP A Q] = [OP A OQ]
IfHFPAQ, then HFP and HF Q.

Proof: Here is an informal proof expressed in terms of provability
from H. Suppose HF P AQ . Since P A Q = P is a tautology, it
is provable from H. By Axiom Scheme (mp), HF P . Likewise, since
HEFPAQ=Q,HF Q. The formal moda,l tableau proof appears

on the next page.

5.9. MODAL SYSTEMS AND TABLEAUS 325

(1) -[O[P A Q] = [OP A DQ]]

(2) mwtq

(3) DPH/\ 0Q)

(4) {IIP %ElIQ (4)
(5) O[P A Q = P] P AQ= Q) (%)

(G)D[P/\Q]/\D[P/\Q:>P] = OP

DPAQIABPAQ=Q]=DQ ()

(1) ~O[PAQIAD[PAQ=P]] OP
-[OP AQIAOPAQ= Q] oQ (7)
6)-clPAQl -O[PAQ=P

—B[P A Q] -OPAQ=Q] (8)

326 CHAPTER 5. THE INCOMPLETENESS THEOREMS

~ Justification of nodes: (1): negation of the formula to be proved.
(2) and (3): by (1). (4) and (4): by (3). (5) and (5'): by (tt). (6) and
(6'): by (mp). (7): by (6). (7'): by (6'). (8): by (7). (8):by (7).

End of Proof.

Remarks (a) First of all, notice that the availability of the rule
allows us to start with an empty hypothesis set: Since we are allowed to
introduce any instance of our axiom schemes at any node, we are saved
the inconvenience of having to figure out in advance which axioms to
use as our hypothesis set.

(b) The tableau proof above exhibits a pattern which will recur
in future proofs: We begin the tableau construction by using all the
usual tableau extension rules for propositional logic until each node
is occupied by a O-wff (i.e. a modal wff of the form OC). Since a O-
wif cannot be broken down further using propositional tableau rules, we
must come up with an instance of one (or possibly several) of our modal
axiom schemes that can be used in conjunction with further applica-
tions of propositional tableau rules to extend the branch in question.
We continue extending branches until we reach another O-wif, and then
we repeat the process (unless the branch we are on is contradictory, in
which case we move, as usual, to another branch).

Often, the difficult part in the construction is to find the right tau-
tology so that Axiom Scheme (tt) can be used. Recall that in Chapter
1, two methods were developed to show that a propositional wif is a
tautology — the truth table method and tableau proofs. These methods
‘can now be used to verify that the (tt) axiom is being used correctly in
a modal tableau proof. First, check that the original propositional wif
is a tautology either by using truth tables, tableaus, or by finding the
wif in one of the lists of particular tautologies developed in Chapter 1.
Then make a substitution to get a modal tautology C, and conclude
that OC is an instance of Axiom Scheme (tt).

The TABLEAU program makes sure that the (tt) axiom is used
correctly. Before adding a wif OC as an instance of (tt) in a modal
tableau, you must show that C is a propositional tautology. The pro-
gram automatically starts a temporary tableau with root —=C for this
purpose.

- 5.9. MODAL SYSTEMS AND TABLEAUS 327

The next lemma is the converse of Lemma 5.9.6.

- Lemma 5.9.7 ko [OP A DQ] = O[P A Q]

If each of P and Q is provable, so is P A Q.
Prodf: Use the tautology
P=[Q=[PAQ]
to apply Axiom Scheme (tt). Then apply Axiom Scheme (mp) twice,
once with A = P and B = [Q = [P A Q]], and once with A = Q and

B = [P AQ]. The Computer Problem 1.TBM asks for a tableau proof.
End of Proof.

 The next lemma gives an analogue of Lemma 5.9.6 for the connective
=, and an analogue of Lemma 5.9.7 for V.

Lemma 5.9.8 (a) o OP = Q] = [OP = 0Q]
FHFP= Qand HF P, then HF Q.

(b) ko [OP v OQ] = OPV Q] |
FHFP orHE Q, then HF PV Q.
Proof: Té prove (a), use the tautology
P> [Q=R] & [[PAQl+R]
and Axiom Scheme (mp). The formal tableau proof is left for the

student as Computer Problem 2. TBM.
To prove (b), use the tautologies

P=PvQ and Q=PVQ.

The formal tableau proof is computer problem 3.TBM. End of Proof.

Example. The converses of the statements in Lemma 5.9.8 fio n?t)
follow from the axioms of Mod(0). We have already seen that if H is

328 CHAPTER 5. THE INCOMPLETENESS THEOREMS

the axiomatized theory WA, P is the sentence Vz 0z = 0 and Q is
"~ =P, then the sentence

I(OPvVQ]=[OPVOQ)
is false in V. Thus the modal wif
olP v Q) = [OP v OQ)

cannot have a Mod(0) tableau proof.
The verification that the converse of part (a) is also false is left to
the reader as Exercise 15.

We plan to use the modal wifs from the preceding lemmas as hy-

potheses in later modal tableau proofs. To justify this, we need the -

following theorem, which is the modal form of the Learning Theorem
from Chapter 2.

Theorem 5.9.9 '(Learning Theorem) Let J be a finite set of modal
wffs and let A be a modal wff. For each of our modal systems Mod(k),
if i C for each C € J and J b4, A then }fk A.

Proof: Let K be the set of all Mod(k) axioms B such that for some
C € J, cither B is used in the modal tableau proof for F; C, or B is

used in the modal tableau proof for J - A. By moving all the nodes

containing these axioms up into the root node, we obtain ordinary
propositional tableau proofs for K+ C, all C € J, and for JUK I A.
As we saw in Exercise 24 in Chapter 1, there is a propositional tableau
proof for K F A. Moving the modal axioms K back down from the
root node, we obtain a Mod(k) tableau proof for I, A as required.
End of Proof. ‘ ‘

The following theorem is often useful in combination with the Learn-
ing Theorem as an aid in proving new results from old results.

Theorem 5.9.10 (Modal Substitution Theorem) Suppose a
modal wff C has @ Mod(k) tableau proof from a set of modal wffs J.
Let Ay,..., A, be modal wffs and let C', J' be formed from C and J
by replacing each occurrence of the propositional symbols Py,...,P, by
the wffs Aq,...,A,. Then C' has a Mod(k) tableau proof from J'.

 5.9. MODAL SYSTEMS AND TABLEAUS 329

. We leave the proof of this theorem as Exercise 14. The main steps are ‘

to check that if C is a modal axiom then C' is a modal axiom, and that
if T is a modal tableau proof of C from J, then T" is a modal tableau
proof of C' from J'. .

Most of the modal wffs proved in our lemmas contain one or two

- propositional symbols P and Q. The Modal Substitution Theorem

shows that the same wffs with P and Q replaced by arbitrary modal wifs
A and B are also provable in modal logic. For example, Lemma 5.9.6
combined with the Modal Substitution Theorem shows that

o O[A A B] = [OA A OB]

for any modal wifs A and B whatever. Now by the Learning Theorem,
any modal wff C which has a Mod(0) tableau proof with the above wff

‘as a hypothesis also has a Mod(0) tableau proof with no hypotheses

at all.

We now turn to the modal system Mod(1). Recall that the modal

~ system Mod(1) has as axioms those of Mod(0) together with the

axiom scheme
(n) OA = OOA (for every modal wit A).

The Axiom Scheme (n) expresses another reasonable property of
provability: if a sentence is provable from H, it ought to be provable
from H that it is provable.

The next result shows that WA and PA are Type 1 theories.

Proposition 5.9.11 Any aziomatized theory which contains all the az-
ioms of WA is a Type 1 theory. , :

Proof: Given an axiomatized theory H, we must show that the modal
axiom scheme (n) holds for H. Let A be any modal wif. Thgs for each
modal wff A, we must show that I(OA = OOA) is true in N. We
have V

I([DA = DOAJ) = [I(0A) = I(A0A)).

330 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Suppose that I(DA) is true in M. By the Arithmetical Interpretation
Theorem, the sentence I(A) is tableau provable from H. Let a be the

code of I(A). By Theorem 5.6.3,

WA + Jy PRFx(a,y).

‘Under the arithmetical interpretation by PRFy, we have

I(OA) = 3y PRFy(a,y).

Since H contains all the axioms of WA, H + I(OA). Now by
the Arithmetical Interpretation Theorem again, J(OOA) is true in .
Therefore J(OA = OOA) is true in A, so the modal axiom scheme
(n) holds for H. End of Proof.

We conclude this section with a discussion of the modal system
Mod(2), which is obtained from Mod(1) by adding the axiom scheme

(s) OOA = 0A for all modal wifs A.

This axiom scheme, called the soundness scheme, says that if H
proves that P is provable then H proves P. More precisely, H is a
Type 2 theory if and only if H is a Type 1 theory and for each A, if
HF I(DA) then HF I(A).

Recall that a theory H is called sound if every sentence which be-
longs to H is true in /. Since WA and PA are sound, the next result
shows that WA and PA are Type 2 theories.

 Proposition 5.9.12 Every sound Type 1 theory is a Type 2 theory.

Proof: Let H be a sound Type 1 theory. Consider a modal wif A.
Suppose I(OOA) is true in A'. By the Arithmetical Interpretation
Theorem, H F I(OA). Since H is sound, 7(OA) is true in M. Therefore
I(O0A = OA) is true in AV as required. End of Proof.

In Exercise 23, a strengthening (ss) of the axiom scheme (s) is in-
troduced and it is shown that for a Type 1 theory H, H is sound if and
only if (ss) holds for H. “ :

5.10. FIRST INCOMPLETENESS THEOREM REVISITED 331

5.10 First Incompletenéss Theorem Re-
visited

In this section we shall revisit the First Incompleteness Theorem from

~ the viewpoint of modal logic. The provability operator O in modal

logic lets us avoid some of the complicated details involving codes of
proofs in formal arithmetic, and for this reason it helps to illuminate
the essential ideas in the incompleteness theorems.

To state the incompleteness theorems in modal logic, we need to
formalize the statement ‘

H is consistent

as well as the Godel sentence Ag. A theory H is consistent if and only

"if the false sentence F is not provable from H. Thus, Congy can be

formalized by the modal wif

—0OF.

A theory H is consistent if and only if ~OF holds for H.

As for the Gédel sentence Ag, we can formalize the statement “This
sentence is unprovable” by obtaining a modal proposition symbol P
for which P ¢ =0OP holds (intuitively,“P holds if and only if P 1s
unprovable”). For P to be a Godelian sentence for H, the information
that P asserts its own unprovability must be provable from H. Thus
the formal version of our Godelian sentence becomes:

(+) o[P & ~OP]

“H proves that P asserts its own unprovability from H.”
Using the Arithmetical Interpretation Theorem, we see ‘that each of
the following conditions is equivalent to P being a Godelian sentence

for an axiomatized theory H (for a given proof formula PRFg).

OP < -~0P] holds for H,

N I(O[P & -0OP)),

332 CHAPTER 5. THE INCOMPLETENESS THEOREMS

HF I(P & -OP),
HF P & -I(OP).

We shall break the modal logic form of the First Incompleteness
Theorem into two parts. We begin with Part L. It is similar to Theo-
rem 5.6.10. However, it avoids the soundness assumption and involves
only the notion of provability, and thus can be expressed in our modal
logic and formalized in arithmetic.

Theorem 5.10.1 (First Incompleteness Theorem, Part 'I)
k O[P & -0OP] = [OP = OF].
IfP is Gédelian for a Type 1 theory H and H proves P, then H is

inconsistent.

Proof: Here is an informal proof. Assume O[P <« -0OP] and OP.
Then O—-0OP by (mp). Also, DOP by (n). Thus OOP and O-OP, and
so OF. .

-A rigorous proof in modal logic is given by two tableau problems.
Problem PART1.TBM gives a Mod(1) tableau proof of the desired wff

Q[P < -~0OP] = [OP = OF]
from the two hypotheses
0P & -0P] = O[P = -0OP],

[0OP A O-0OP] = O[OP A -OP].

Problem 4.TBM gives a Mod(0) tableau proof of the first hypothesis.

The second hypothesis is Mod(0) tableau provable by Lemma 5.9.7
and the Modal Substitution Theorem. Then by the Learning Theo-

rem, the conclusion is Mod(1) tableau provable with no hypotheses.
End of Proof. '

Part IT of the First Incompleteness Theorem says that we can replace
the strong hypothesis of soundness in Theorem 5.6.10 by the (weaker)
axiom scheme (s) and arrive at the same conclusion. Moreover, like
Part I, Part II can be formalized in arithmetic; see Exercise 29.

- 5.10. FIRST INCOMPLETENESS THEOREM REVISITED 333

Theorem 5.10.2 (First Incompleteness Theorem, Part II)
+, O[P & -OP] = [0-P = OF].

If P is Gédelian for a Type 2 theory H, and H proves —P, then H

45 tnconsistent.

P»robf: We first give an informal proof.
Assume that O[P < -OP] and O-P. Since [P & —OP] implies.
[-P < OP] using only propositional logic, O[-P = OP]. By (mp),

N OOP. By Axiom Scheme (s), OP, and by Part I of the First Incom-

pleteness Theorem, OF.
For a rigorous proof in modal logic, Computer Problem PART2.TBM

gives a Mod(2) tableau proof of the desired conclusion

0[P & -0OP] = [O-P = OF)].
from the two hypotheses
O[P & -OP] = [OP = OF),

0[P < -0OP] = O[-P = OP].

The first hypothesis is Part I of the First Incompleteness Theorem,
and Computer Problem 5. TBM shows that the second hypothesis has

"a Mod(0) tableau proof. . End of Proof

Corollary 5.10.3 No consistent Type 2 theory is complete.

Proof: Let H be a consistent Type 2 theory. Then there is a Godelian
sentence P for H. Since H is consistent, OF does not hold for H. Using
both parts of the First Incompleteness Theorem, we see that neither
OP nor O—-P holds for H, so that H/ P and H i/ =P. Therefore H
is not complete. ~ End of Proof.

334 CHAPTER 5. THE INCOMPLETENESS THEOREMS

5.11 Second Incompleteness Theorem

We now turn to Godel’s Second Incompleteness Theorem. This theorem
tells us that one of the sentences which is not provable from PA is
“PA is consistent”! Now since arithmetic is the basis for so much of
mathematics, one would hope that PA is consistent. Of course, once
we know that /' = PA, we know PA is consistent; but Gédel’s Second
Incompleteness Theorem tells us that the statement “A” = PA” cannot
be formalized and proved within PA. But then how does one ever
prove “A' = PA” formally? In particular, how does one construct the
model N formally? (Once the model is constructed, it is easy to see
that it satisfies PA). A reasonable approach is to formalize arithmetic
and the notion of a model of arithmetic within set theory, say ZFC.
Then the formal statement corresponding to “A" = PA” can be proved
in ZFC; hence, according to ZFC at least, PA is consistent. But, is
ZFC consistent? Godel’s proof of the Second Incompleteness Theorem
can be adapted to show that no proof of the consistency of ZFC can be
formalized within ZFC! (See Enderton [1972].) One can, however, work
within an even more powerful theory than ZFC to prove formally the
consistency of ZFC, but again the consistency of this stronger theory
remains problematic.. More significantly, the proof of consistency for
each of the theories mentioned becomes progressively more difficult
and requires more and more machinery.

The moral of these remarks is that the truly endless search for an
all-embracing formal system in which all mathematics can be proved
consistent is doomed to failure: once a system is rich enough to prove
the Peano axioms, it is rich enough for Gédel’s Second Incompleteness
Theorem to apply.

It would seem that Godel’s incompleteness theorems force us to the
viewpoint that any answer to the question

\
Is mathematics consistent?

must rely in part on non-formal methods. “Mathematical intuition” is
an example of such a method: It is a widespread belief among math-
ematicians that certain mathematical structures are so natural that
they need not be formally constructed in order for us to be certain of

5.11. SECOND INCOMPLETENESS THEOREM 335

their mathematical soundness. Nearly all mathematicians agree that
small natural numbers (that can be computed on a computer, say) and

_computable operations on them can safely be assumed without intro-

ducing inconsistency. A slightly stronger claim is that the existence of
the standard model A/ of arithmetic is a self-evident truth. Nearly all

‘working mathematicians make this assumption in their mathematical

practice (whether or not they speak of this philosophical stance, their
work reflects this assumption). Once this position is granted, of course,
we have the consistency of PA given to us — not formally — but by an
“a priori mathematical intuition” of the model . Still stronger is
the claim that ZFC is consistent; again the justification is the belief
in a certain fairly natural model of the ZFC axioms (in Exercises 2.51
and 2.52, the first few levels of this model are constructed). A milder
claim is that while ZFC as a whole may be inconsistent, at least that

* finite fragment of it which has been used to prove the theorems of our

present-day mathematics is consistent.

We do not raise these issues here with the intention of providing
a final answer; philosophies among both mathematicians and philoso-
phers regarding these questions vary widely. Our discussion is intended
mainly to offer the reader a sense of the tremendous foundational im-
pact of Godel’s work.

The proof of the Second Incompleteness Theorem is essentially a
formalized version of the first part of the First Incompleteness Theorem:
In part I of the First Incompleteness Theorem, the wif

(%) OpP = OF

is proved in Mod(1), assuming P is Godelian. The Main Lemma for
the Second Incompleteness Theorem will prove the wif

O[OP = OF],

in the stronger modal system Mod(3), again assuming P is Godelian.
Intuitively, this can be accomplished by showing that each step of the
proof of (x) can be formalized. For this kind of proof to work, we
need to assume as axioms formalized versions of our Mod(1) axioms.

" Thus we are led to postulate formalized versions of Axiom schemes of

336 CHAPTER 5. THE INCOMPLETENESS THEOREMS

Modus Ponens (mp) and Normality (n) as the two new axiom schemes
“of Formalized Modus Ponens (fmp) and Formalized Normality (fn).

We recall that the axioms for the modal system Mod(3) consists
of the axioms of Mod(1) together with these two axiom schemes,

(fmp) DDA AQ[A = B]] = OBJ;
(fn) DO[DA = DDA]L

Note that Mod(3) does not contain the Soundness axiom scheme (s).

It can be shown that PA is a Type 3 theory, but the details are
beyond the scope of this book. We state without proof a theorem
which gives us a rich collection of Type 3 theories.

Theorem 5.11.1 Any aziomatized theory H which contains all the az-
ioms of PA is a Type 3 theory.

One interesting feature of Mod(3) is, as Smullyan [1987] describes
it, a kind of “self-awareness” - Mod(3) “knows” that it satisfies its
own axioms in the sense that for each axiom A of Mod(3), OA is
also provable in Mod(3). This makes Mod(3) an especially natural
system in which to prove formalized versions of modal theorems. We
now prove a theorem showing that Mod(3) is even more self aware -
it “knows” that each of its theorems is provable. This theorem is a

precise form of the intuitive principle that every Mod(3) tableau proof

can be formalized in Mod(3).

Theorem 5.11.2 (Self-Awareness Theorem) If A is a modal wff
and I"3 A, then I"3 OA.

Proof: We first show that 3 OK for each axiom K of Mod(3).

(mp): Let K be the axiom DAAD[A = B| = OB. Then OK is an

instance of the Axiom Scheme (fmp) and thus has a Mod(3) tableau
proof.

(n): Let K be the axiom OA = OOA. Then UK is an instance
Axiom Scheme (fn) and hence has a Mod(3) tableau proof.

(tt), (fmp) and (fn): Let K be an instance of one of these three
axiom schemes. In each case, K has the form OC for some modal wif

5.11. SECOND INCOMPLETENESS THEOREM 337

C. Therefore OK is OOC, which has a Mod(3) tableau proof using
the two axioms OC and OC = 0OC . : ’

Now let A be any modal wif such that 5 A. Then there is a 8

Mod(3) tableau proof of A. Let J be the finite set of modal axioms
which are used in this proof. By moving these axioms up to the root -
of the tableau, we obtain a tableau proof of A from J which only uses
the tableau rules of propositional logic. Let E be the conjunction of all
the wifs in the set J. Then E = A is a modal tautology. Therefore
O[E = A] is a modal axiom (an instance of (tt)). Since each K €
J is a modal axiom, we have 3 OK for each K € J. Using 5.9.7
finitely many times, we see that F3 OE. Finally, using the (mp) axiom
OEAQ[E = A] = DA, we obtain the desired conclusion that 5 OA.
End of Proof. '

 The Self-Awareness Theorem may be combined with the Learning
and Modal Substitution Theorems to simplify Mod(3) tableau proofs.
All previous modal lemmas may now be used with a O in front. For
example, the Self-Awareness Theorem applied to Lemma 5.9.8 (a) gives.

O[O0P = Q] = [OP = OQ]].

(It is provable that if P = Q is provable, then whenever P is

- provable, Q is also provable.)

The Learning Theorem allows us to add this wff as an extra hypoth-
esis in a Mod(3) tableau. Computer Problem 6.TBM asks for a formal
Mod(3) tableau proof of this wif (without using the Self-Awareness
Theorem).

Before proving the main lemma for the Second Incompleteness The-
orem, we need the following strengthening of Lemma 5.9.8 (a):

Lemma 5.11.3
- 0[P = Q] = O[oP = 0q).

If a Type 3 theory H proves P = Q, then H also proves that [sz
proves P then H proves Q].

Proof: Here is an informal proof. Assume O[P = Q). By (n),

- 00[P = Q]. We use the Self-Awareness Theorem to show that Lemma 5.9.8

338 CHAPTER 5. THE INCOMPLETENESS THEOREMS

with a O in front is Mod(3) tableau provable, so we have

o[O[P = Q] = [OP = DQ]].

By (mp), it follows that O[OP = Q).
Computer Problem 7.TBM gives a Mod(1) tableau proof of the
conclusion ’

0P = Q] = 0O[OP = 0Q]
from the twe hypotheses

o[oP = Q] [OP = DQ],

O[o[P = Q] = [OP = 0Q]| = [00[P = Q] = O[OP = 0q)]
The first hypothesis is Mod(3) tableau provable by Lemma 5.9.8 and
the Self-Awareness Theorem. The second hypothesis is Mod(0) tableau

~provable by Lemma 5.9.8 and the Modal Substitution Theorem, because
it is
O{A = B| = [DA = OB
with A = O[P = Q] and B = [OP = 0Q)]. End of Proof.
We now come to the Main Lemma.

Lemma 5.11.4 (Main Lemma)
b3 O[P < -0OP] = O[OP = OF).

If P is Gidelian for a Type 3 theory H, then H proves thai if H proves
P then H is inconsistent.

Proof: Here is an informal proof. Assume that O[P & —OP]. By
Lemma 5.11.3, we have O[OP = O-OP] . Axiom Scheme (fn) gives us
O[OP = 0OO0OP]. Now (fmp) can be used to prove that O[OP = OF].

Computer Problem MAIN.TBM , glves a rigorous Mod(0) tableau
proof of the desired conclusion

0[P < -0OP] = O[0OP = OF]
from the three hypotheses

0[P & -0P] = O[P = -0OP),

5.11. SECOND INCOMPLETENESS THEOREM 339

0[P = ~0OP] = O[OP = 0O-0P],
O[[oP = 0-0P] = [OP = OF]].

* The first hypothesis is proved in the system Mod(0) in Computer

Problem 4. TBM. The second hypothesis is Lemma 5.11.3 with ~OP for
Q. The wif after the O in the third hypothesis is proved in the system
Mod(1) in Computer Problem 8. TBM. The Self-Awareness Theorem
now shows that the third hypothesis has a Mod(3) tableau proof. Thus
by the Learning Theorem, the conclusmn has a Mod(3) tableau proof.
End of Proof. ' :

Now, at long last, we are ready to prove Gddel’s Second Incomplete-
ness Theorem.

Theorem 5.11.5 (Second Incompleteness Theorem)
k3 O[P « -0OP] = [0-OF = OF]

FIf P is Godelian for a Type 3 theory H, and H proves its own
consistency, then H is inconsistent.

Proof: Here is an informa)] proof. Assume P is Gédelian and O-OF.
By the Main Lemma, O[OP = OF]. Computer Problem 9.TBM shows

~ that this implies O[-OF = —OP]. Then by (mp) we have O-0OP.

Since P is Godelian, it follows that O[-0OP = P]. By (mp) again, OP.

By the First Incompleteness Theorem Part I, OP = OF. Therefore

OF as required.
For a modal tableau proof, Computer Problem SECOND.TBM gives

a Mod(0) tableau proof of the desired conclusion

0[P & -0P] = [0-OF = OF]

~ from the hypotheses

0[P « -0OP] = O[OP = OF],

0[P & -0P] = O[-0OP = P},

0[P & -OP] = [OP = OF],
0[OP = OF] = O[-OF = -0OP].

340 CHAPTER 5. THE INCOMPLETENESS THEOREMS

The Main Lemma says that the first hypothesis has a Mod(3)
‘tableau proof, the second hypothesis has an easy Mod(0) tableau proof
similar to the Computer Problems 4. TBM and 5.TBM, the third hy-
pothesis is Part I of the First Incompleteness Theorem, and Computer
Problem 9.TBM gives a Mod(0) tableau proof of the third hypothesis.
Since each hypothesis has a Mod(3) tableau proof, the conclusion is
Mod(3) tableau provable by the Learning Theorem. End of Proof.

We conclude this section by mentioning several additional results
which are worked out in the exercises.

First, we have shown that if P is Gédelian for a Type 3 theory H
and if H is consistent, then H neither proves P (First Incompleteness
Theorem) nor —/(OF) (Second Incompeteness Theorem). We could
have proved the second of these from the first by proving the remarkable
fact that for such H, P and —~I(OF) are provably equivalent! That is,

ks O[P < -OF].

This tells us that all Gidelian sentences are equivalent! In other words,
if P and Q are both Gédelian for a Type 3 theory H, then

HFP & Q.

See Exercise 22. ,

The Second Incompleteness Theorem says that consistent Type 3
theories with a Gé&delian sentence cannot prove their own consistency.
But what about weaker theories? If we are content to replace consis-
tency with soundness, it can be shown that no sound aziomatized theory
with a Godelian sentence can prove its own soundness; see Exercise 24.

We have seen that the First Incompleteness Theorem tells us that
for sound Type 1 theories, a sentence which provably asserts its own
unprovability is unprovable, but true. What can be said about a sen-
tence which provably asserts its own provability? In other words, what
conclusions can be drawn from the modal wif

ofP OP]?

Such a wif is called a Henkin sentence. The Diagonalization Lemma
shows that PA (and many other theories as well) has a Henkin sentence,

5.11. SECOND INCOMPLETENESS THEOREM 341

and a result known as Lob’s Theorem demonstrates that such sentences
are always provable in PA (hence true). These matters are taken up
in Exercises 25 and 27.

As we observed earlier, the proof of the Second Incompleteness The-
orem is largely a formalization of the proof of the first half of the First
Incompleteness Theorem. Can a formalized version of the second half of
the First Incompleteness Theorem be proved? What about a formal-
ized version of the Second Incompleteness Theorem? We investigate
these questions in Exercise 29.

Our proof of Godel’s First Incompleteness Theorem depended on the
construction of some version of a Gddelian sentence. As we explained
earlier, Godelian sentences express in the formal language of arithmetic
the proposition “I am unprovable.” The original form of this latter
proposition is known as the Liar Paradox: “This sentence is false.” It
has the property that it’s true if and only if it’s false, and is therefore a
primitive version of a Gédelian sentence. It is possible to prove versions
of the First Incompleteness Theorem using a formalized translation of
another famous paradox — Berry’s Paradox — quite different in spirit
from the Liar Paradox and its variations.

Berry’s Paradox arises from the following consideration: Suppose
you are asked to make a list of all natural numbers which can be de- .

~scribed using fewer than 100 keystrokes on a typewriter. The first few’
~ natural numbers could be described by simply typing out the usual

base 10 numerals 0,1,...,100,101,...,10,000,.... However, once we
reach numbers which have 100 or more digits, we might resort to En-
glish sentences which describe a procedure that would “compute” these

larger numbers. Thus, for example, “1 followed by 99 zeroes” describes

a number whose base 10 numeral is too long to type out. Now notice
that if we are allowed at most 99 keystrokes in a description, and our
typewriter has only, say, 70 keys, then only finitely many descriptions
are possible. Thus there is a natural number which cannot be described
using fewer than 100 keystrokes; and if there is such a number at all,
there must be a least such number n. Thus, ’

(*) n is the smallest natural number which cannot be described
‘using fewer than 100 keystrokes.

‘But now (*) is a description of n which uses fewer than 100 keystrokes!

349 CHAPTER 5. THE INCOMPLETENESS THEOREMS

‘The paradox is partially resolved by the fact that we have not been
very clear about which expressions count as “descriptions” of natural
numbers. The notion of “description” can, however, be made rigorous;
in fact, we gave a definition of what it means to “name” a natural
number in Exercise 3.9. Using this definition, Berry’s Paradox has
a formal version which leads to a proof of the First Incompleteness
Theorem. In Exercise 30, we outline a proof (due to Boolos — see
Boolos [1989]) of the First Incompleteness Theorem which uses this
formal version of Berry’s Paradox.

Fbr the reader who would like to do further reading in this area, we
recommend Smullyan [1987], Boolos [1979], and Smorynski [1985].

5.12 Modal Tableau Problems (TABT)

In these problems the reader is asked to use the TABLEAU program to

work out the indicated proofs. The modal system is given. The problem
files are located in directory TAB7 on the distribution diskette, and the

install program will put them in a subdirectory called TAB7 on your
hard disk.

5.12. MODAL TABLEAU PROBLEMS (TABT)

1.TBM

2.TBM

3. TBM

4. TBM

5. TBM

6. TBM

Hypotheses:
To be proved:
Modal System:

Can be done in 15 nodes.

Hypotheses:

To be proved:

Modal System:

Can be done in 9 nodes.

Hypotheses:
To be proved:
Modal System:

Can be done in 16 nodes.

Hypothesis:

-To be proved:

Modal system:
Can be done in 6 nodes.

Hypothesis:

To be proved:

Modal System:

Can be done in 6 nodes.

Hypotheses:

To be proved:

Modal system:

Can be done in 7 nodes.

none
[OP ADQ] = D[P A Q]
Mod(0) '

0P = Q] = [OP = 0Q]
Mod(0)

none
[OP v 0Q] = O[P v Q)]
Mod(0)

0[P & —-0OP]
D[P = -:DP]
Mod(0)

0P & -0OP]
[:l['\P = DP]
Mod(0)

I[;J?EIJG[P = Q] = [OP = 0Q]]
Mod(2)

343

344

7.TBM

8. TBM

9. TBM

10.TBM

PART1.TBM

PART2.TBM

CHAPTER 5. THE INCOMPLETENESS THEOREMS

Hypotheses:

O[OP = Q] = [OP = DQ]] =

To be proved:

- Modal System:

Can be done in 9 nodes.

Hypotheses:
To be proved:

- Modal System:
Can be done in 22 nodes.

Hypothesis:

To be proved:

Modal System:

Can be done in 6 nodes.

Hypotheses:
To be proved:
Modal System:

Can be done in 28 nodes.

Hypotheses:

To be proved:
Modal System:

Can be done in 24 nodes.

Hypotheses:

"To be proved:

Modal System:

Can be done in 18 nodes.

[C[OP = Q] =
[0O[P = Q] = D[0P = Q]
0P = Q] = D[OP = 0OQ]
Mod(1) ‘

none
Mod(1)

= [OP = OF

O[OP = OF]
E][—lljF = —|DP]
Mod(0)

None
a[P & Q] = [OP ¢ 0Q]
Mod(0)

0P < -0OP] =
OOP A O-0OP = D[DP A -OP

0[P < 0P| = [OP = OF]
Mod(1)

OP « -0OP] = [OP = OF]

0[P & —-0OP] = O[-P = OP] .
= [O0-P = OF]

[
O[P < -0OP]
Mod(2)

0P = oQ)

[OP = -0OP]

|

MAIN.TBM

SECOND.TBM Hypotheses:

5.13. EXERCISES 345

0[P & —-0P] = O[P = -0P]
D[P'=> -0P] = O[OP = 0-0OP]

O[[oP = 0-0P] = [OP = OF]]
To be proved: 0[P & —-OP] = O[0OP = OF)
Modal System: Mod(0) ‘
Can be done in 11 nodes.

Hypotheses:

0[P & —-OP] = O[0OP = OF]
D{P = -IE]P] = D[—lDP = P]
0[P = -0OP] = [OP = OF]

[[OP = OF] = O[-0F = -~0P]]
O[P « —0P] = [0-0F = OF]
‘Mod(0)

]

To be proved:
Modal System:
Can be done in 24 nodes.

5.13 Exercises

In the exercises for this chapter, all wifs are understood to be in the

language of arithmetic.
In Exercises 1 - 3 below, the reader is asked to use Church’s Thesis
to verify that certain functions associated with syntax are computable.

1. Use Church’s Thesis to show that the partial function which sends

the code #(A) to the code #(—A), for each wif A, is computable.

2. Suppose f is a computable function and for all n, f(n) is the code
of a wif A,. Suppose h is defined by

h(n) = #(A1 A -~

Show that h is computable. (Hint: Show that A is obtained from the

function (#(A), #(B)) — #(A A B) by primitive recursion and use
Church’s Thesw to show that the latter is computable.)

AAL).

3. Use Church’s Thesis to prove that the function which takes a pair

(m,n), to #(A(n)) if m = #(A(v)) and n € N, and takes (m,n) to 0

~otherwise, is computable.

346 CHAPTER 5. THE INCOMPLETENESS THEOREMS

4. Prove that every theory H in the language of arithmetic which is
consistent but not complete has an extension H’ which is conmstent
but not sound.

5.

(a) Suppose that f is a unary weakly representable‘pa;rtial function,

and the domain of f is representable (as a unary relation). Prove
that f is representable, and that f can be extended to a total
computable function.

(b) Give an example of a unary representable partial function f such

that f can be extended to a total computable function but the

domain of f is not representable.

6.
(a) Show that the unary relation
E = {n:nis an even natural number}

is representable. Hint: Show that E is represented by the wif E,
given by
E(z)= Fzz<zAz=2+2].

(b) Let B(z,y) be the wif given by
B(z,y) = —E(z) AE(y) = ~E(z +y).

Intultxvely, B says that if z is odd and y is even, then 2 + y is
odd. Show that for all m,n € N,

WA + B(m,n).
(c) Let C be the sentence given by
' C = VaVy [-E(z) AE(y) = —E(z + y)].

Intuitively, C also says that an odd plus an even is an odd. How-
ever, because no restriction has been placed on how the variables

5.13. EXERCISES a7

z and y are interpreted, the sentence C—unlike the wif B(z,y)-
asserts that this property must hold even for the most bizarre
interpretations of z and y in nonstandard models. Not surpris-
ingly, the assertion cannot be proved in WA; prove this; i.e.,
prove that

WA i/ C.

(Hint: a counter-model is given in Example 3.7.4.)

7. Show that the following relations are representable:

(a) the binary relation consisting of those pairs (a, b) of natural num-
bers for which b is divisible by a (assume that 0 is divisible by
every number);

(b) the unary relation consisting of all prime numbers (recall that pis

prime if p > 1 and the only divisors of p are 1 and p itself).

8. Show that the Fibonacci sequence F (considered as a unary (total)

function) is representable, where F' is given by the following data:
Flo)=1, F(1)=1

F(n+2)=F(n+1)+ F(n).
(Thus, F' can be expressed as the sequence 1,1,2,3,5,8,13,....)

9. In this exercise, we discuss a stronger kind of representability of a
relation in a theory than was considered in the text. We will use the
results of this exercise in Exercise 30. Suppose R is a finite subset of
N, say R = {r1,72,...,7%}.

(a) Give an example of a wif A(z) which represents R.

(b) Suppose we are given a wif A(z) which represents R. Show that,
although it is true that R consists precisely of those natural num-
bers n for which
‘WA F A(n), this information may not be available from within

348 CHAPTER 5. THE INCOMPLETENESS THEOREMS

WA i.e., show that there may not be a tableau proof from WA
of the sentence -

Ve[A(z)=>[z=r1Vez=raV Vo= rk)].

(Hint: Consider the case in which R = {1}. Design a wif A which
represents B but for which the sentence

B = Vz[A(z) = z = 5(0)]

is independent of WA.. Use the standard model A to show that
there is a model of WA which satisfies B; then use one of the

' other models of WA given in the text to show that —B is also
consistent with WA..)

(c) In light of part (b), we make the following definition:

Definition. A wif A(z) with just one free variable £ names the
finite set R = {ry,7q,...,7} in the theory H if

Hi—Va:[A;(a:)@[xianﬁer...V;cirk]].

In the épecial case in which R has only one element n, we say
that A(z) names the natural number n in H. Thus, A(z)
names n in H if

HFVz[A(z) & z =n].
For each n, give a wif which names n in WA.

(d) Show that if a wif A names n in WA, then A represents the
relation R = {n}.

10. Prove that for any wifs A(u) and B(v) where u is not free in B and
v is not free in A, the following set of three wifs is tableau confutable.

Fu[A(u) A (Yo < u)-B(v)],

Fv[B(v) A (Vu < v)=A(u)],

5.13. EXERCISES ' 349

YuVolu <vVo <ul

‘11. (Recursively Enumerable Sets). "

Definition A subset A C N is recursively enumerable (or r.e.
if A =0 or A is the range of a total computable function (i.e. thereis a
total computable function f such that for each a € A there is a number
n such that f(n) = a). The r.e. relations are defined in a similar way..

(a) Show that the following are equivalent for a subset A C N:

(1) For some computable bin@ry relation R, a € A if and only if
there is b such that (a,b) € R.

(ii) A is the domain of a computable partial function.
(i) A is recursively enumerable.

(iv) A is weakly representable.

(‘b)' Prove that a subset A C N is computable if and only if bo‘?h A
and its complement N\A = {z € N | = ¢ A} are recursively
enumerable. o

(c) We say that a total function f : N — N is increasing if whenever
m < n, f(m) < f(n). Show that a subset A C N is comput@jble‘
if and only if either A is finite or A is the range of an increa,sms
computable function. ’

12. Formulate and prove a Unique Readability Theorem and an In-
ductive Definition Principle for modal wifs.

13. Show that the following are modal tautologies.
(a) Q[P = Q] = [[AP v OQ] = O[P = Q]

(b) O[PADQ & R]V-O[P AOQ & R]
(e) [O[P v OQ] = OF] A [-O[P v OQ] = OF] = OF.

350 CHAPTER 5. ‘THE INCOMPLETENESS THEOREMS

14. Prove the Modal Substitution Theorem.

15.

(a) Show that the converse of part (a) of Lemma 5.9.8 is not generally
. _true by finding a suitable axiomatized theory H and suitable wifs

P,Q.
(b) Prove or disprove:

(i) ko [OP & 0Q] = D[P & Q]
(ii) Fo O[P & Q] = [OP & 0Q).

16. Show that if an axiomatized theory H is consistent with WA (i.e.,
H U WA is consistent), then H is incomplete.

17. Show that any axiomatized theory which is consistent with WA is
undecidable.

"~ The next two exercises give two alternative proofs that PA is in-
complete. Note that by Theorem 5.7.3, it suffices to show that PA is
undecidable.

18.

Definition Suppose A and B are disjoint recursively enumerable
sets of natural numbers (see Exercise 11). Then A and B are recur-
sively inseparable if there is no computable set C such that A C C
and BNC = 0. E

In this problem, PA is shown to be undecidable from the fact that
the sets P, = {#(A) : PA+ A} and P, = {#(A) : PA I -A} are
recursively inseparable. '

(a) Show that the sets P, and P; described above are recursively in-
separable. '

(Hint: Suppose C' is a computable set such that A C C and B ﬂ
C = 0. C is representable by a wif C(z). By the Diagonalization

' 5.13. EXERCISES 351

Lemma, there is a sentence P with code p such that
PA + [P & -C(p)].
Get a contradiction by considering whether p € C.)

(b) Use part (a) to show that neither Py nor P; is computable; conclude
that PA is an undecidable theory. '

19. In this exercise, the undecidability of PA is proved from the unde-
cidability of the Halting Problem. Let Kq be the set of all (z,y) such
that z is the Godel number of a program P, which halts on input y.

(a) Let B be the set of all quadruples (z,y,2,t) such that = is the
Gédel number of a program P, which on input y outputs z after
P, has executed fewer than t steps. Show that B is a computable
4-ary relation.

(b) Using the Equivalence Theorem, we can find a wff B(z,y,z,w)
which represents B. Prove that the wif

A(z,y) = Iz FwB(z,y, 2,1)
weakly represents Ko.

(c) Prove that if PA is decidable, so is Ko; i.e., deéidability of PA im-
plies the decidability of the halting problem. The same argument
works for any sound theory H D WA in place of PA.

20. (Another form of the Self-Awareness Theorem.) Prove that
if I3 A then OJ k3 OA, where OJ denotes the set of wifs

{OC : CeJ}.

21. Suppose a Type 2 consistent theory H proves a sentence of the
form P & I(O-P) (notice that this sentence is not quite in the form

_that makes P Godelian for H). Show that

352 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) HY P and HY -P;
(b) P actually is Godelian for H; i.e. HF P & —I(OP)).

22. Prove that if P is Gédelian for a Type 3 theory H (not necessarily
consistent) then P is provably equivalent to ~OF}; i.e. show

k3 OP © -0P] = O[P & ~0OF].

Then show that it follows that all G6delian sentences for such a theory
are equivalent, i.e.,

ks [O[P & ~OP] A 0[Q & -0Q]] = O[P & Q.

23. Suppose H is a sound axiomatized theory. Then for all modal wifs
A, :

if H+ I(A) then N |= I(A),

i.e. provability of A implies A is true. Thus, if P is Godelian for
H, not only is P < —I(OP) provable in H, but it is actually true.
These observations lead us to a somewhat different proof of Part 1 of
the First Incompleteness Theorem for sound theories. We begin by
defining a modal system Mod(4) : Mod(4) has as axioms those of
Mod(0) together with the axiom scheme

(ss) DA = A, for all modal wifs A.

(Here, “ss” stands for “strong soundness.”)

(a) Prove that an axiomatized theory is Type 4 if and only if it is a
sound theory.

~(b) Prove
F4 [P =4 —d:lP] = 0P,

(If P truly asserts its own unprovability from H, then P is un-
provable from H.)

(b) Show

- 5.13. EXERCISES : 353

(c) Prove :
[P & -0OP] = -~0O-P.

(If P truly asserts its own unprovablhty from H, then —-P is
unprovable from H.)

Parts (a) — (c) together show that no Type 4 theory is complete.

(d) Show that (ss) is really a strengthening of (s) by proving that fo;?
all A,
by O0A = DA,

and noting that there is a Type 4 theory for which (ss) does not
hold. (Hint: For the second half, try an mconmstent theory.)
Putting (a) — (d) together, we conclude:

Theorem. A theory H is incomplete whenever H 15 sound and ihere
is a sentence P such that

N =P if and only if H/ P.

24. While PA is Type 3 and satisfies (ss), PA does not satisfy a
formalized version of (ss): :
(fss): [DA = A] for all modal wifs A.

In fact, as is shown in this exercise, no sound axiomatized theory which
satisfies Axiom Scheme (fss) has a Godelian sentence. Prove this by
carrying out the following steps:

(a) Prove ,
J ko O[P & -0OP] = OP

where'J = {O[OP = P]}; in other words, J contains a single
instance of (fss) where A = P. : :

J+, 0P = -0P]=F.

354 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(¢) Conclude that if H is a sound axiomatized theory which satisfies
(fss), then H has no Godelian sentence. Hence PA does not
satisfy (fss). '

25. (L6b’s Theorem.) Although many instances of (fss) must fail in
most “reasonable” theories of arithmetic, there are some instances of
(fss) which hold in every axiomatized theory of arithmetic; for instance,
if P is a tautology, H - I(OP) = P. More generally, if H - P, then
HF [I(OP) = PJ.

In this exercise, the reader is asked to show that in PA, the only
sentences P for which

PA + I(OP) = P.
are those provable from PA, i.e., for all sentences P,
(%) PA I J(OP) = P implies PA F P

where I is the interpretation function relative to PRpa. The statement
(¥) is called Lob’s Theorem.. We state this theorem in a more general
form and outline the steps of proof in parts (a) - (¢) below.

Lob’s Theorem. Suppose H is a Type 3 theory. Then for each sen-
tence Q,
HFI(OQ)= Q, if and only if HF Q.

In particular, (x) holds.

(a) Prove the implication from right to left for any axiomatized theory
using modal tableaus; i.e., show .

WDinmrwmﬂ

(b) Use the Diagonalization Lemma to show that any axiomatized the-
ory H which includes WA has the following property (L):

(L) for every sentence Q, there is a sentence P such that
HFP & [I(OP) = Q).

[}

5.13. EXERCISES 35

(c) Prove

J k5 O[OP = Q]

where J consists of the modal wffs
OP « [OP = Q]
oeQ = Ql.
(d) Using the result of part (c), prove
K s 0Q,
where K consists of the modal wifs
0[P & [OP = Q]
o[oP = Q].
(e) Put parts (a) - (d) together to prove Lob’s Theorem.

L&b’s Theorem gives us another property of provability: Let Mod(5)
be the modal system whose axioms are those of Mod(3) together with
the axiom scheme

(g) D[DA = A] = DA for all modal wifs A

(“g” stands for “Godel.”) As the previous exercise shows, the axioms
of Mod(5) hold for PA. Remarkably, if I/s DA for some A, then
there is a way to assign the modal proposition symbols to sentences
of arithmetic so that the translation of A as a sentence of arithmetic

_ is not provable from PA! Thus Mod(5) “captures” PA in a modal

fashion and is an important modal system for studying arithmetic (see
Boolos [1979] for more discussion). In the following two exercises, we
use Mod(5) to establish several interesting facts about PA..

26. In this exercise, the reader is led to a modal proof that any Type 5
theory has a Goédelian sentence.

356 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) Show that if A,B, and C are ordinary propositional wifs, then

A=BF[A=C]=[B=C]

(b) Show that for any modal wif A,
(%) Fs O[[0A = A] & [O[0A = Al = A]].

(Note: Because we have a new axiom (g) in Mod(5), the Self-
Awareness Theorem is not guaranteed to hold; it can be proved,
however, and the reader may wish to assume it in working this
problem. The more thorough reader, after proving () with the
leftmost ‘0’ removed, will want to check that each step of his proof
can be formalized, so that (x) is established without assuming the
Self-Awareness Theorem.)

(c) Show that

where B is the moda,l wif OF = F.

27.

(a) Assume that PA is a Mod(5) theory. Suppose P provably asserts
its own provability, or, somewhat more generally, assume

PA P = I(OP).

Show that PA F P and hence that P is true. (Use Léb’s Theo-
rem.)

Such a sentence is called a Henkin sentence for PA.

(b) Show that any axiomatized theory including WA has a Henkin
sentence. (Hint: Use the Diagonalization Lemma.)

28.

(b) Asin (a), show

'5.13. EXERCISES 357

(a) Give an example of a axiomatized theory H and a sentence P to -

demonstrate that :
to ~OP = O-P. -

/o O[~OP = O-P].

(c) Show that if H is a sound Type 3 theory satisfying (s) and having
a Godelian sentence P, and if Q = [-OP = O-P], then

-0Q = 0-Q

is false (in N).
29. (Formalizations.) In this exercise, we present the formalized ver-
sions of several of the important theorems discussed in the text.
(a) (Part II of the First Iﬁcompleteness Theorem) Show that

I3 O[P ¢ —OP] = O[[-OF A [00OP = OP]] = —0-P].

(Hint: First prove 3 D[P & —0P] = [-O0-P = -00P)).

(b) (Second Incompleteness Theorem) Prove

s O[P < —-0P] = 0O[0-0F = OF].

(c) (Léb’s Theorem) Formulate a formalization of Lob’s Theorem and
prove it in the modal system Mod(5).

30. This exercise outlines Boolos’ proof [1989] of (a version of.) Godel’s
First Incompleteness Theorem, namely, that no sound recursively enu-

merable theory of arithmetic is complete. ~V . |
Recall from Exercise 3.9 that a wif A(z) having z as its only‘ free
variable names a natural number n in an axiomatized theory Hif

HEVz[A(z) &z i_rﬂ.

358 CHAPTER 5. THE INCOMPLETENESS THEOREMS

(a) Let H be a sound axiomatized theory. Show that for each natural

number m, there is a least natural number n,, which cannot be
named in H by any wff having < m symbols and whose variables
(bound or free) lie in the set {z1, z2,...,2,}. (In the present con-
text, the number of symbols in a wif is the length of the sequence
obtained by thinking of the wff as simply a string of symbols;
more formally, if A is a wif and z = #(A), then the number of
symbols of A equals Terms(z).

(b) Suppose H is'a sound axiomatized theory. Show that the following
relations are r.e.

Py —) the number n is named in H
=4 (n,0): by the wif coded by a .

the number n is named by a wff having
- Qu = {(n,b): exactly b symbols and whose variables
(bound or free) are among z1, s, ..., T

(c) Recall from part (e) of Exercise 11 that the relation Qg in part

- (b) - being r.e. - is weakly represented by some wff A. Use

A to build another wiff B which weakly represents the following
relation:

- n is the least natural number not named by
any wif that contains fewer than d symbols
and whose variables (bound or free) are
among i, Za,...,Iq '

R =14(n,d):

(d) Let B be as in (c); let k be the number of symbols in B. Why may
we assume that all variables (bound or free) which occur in B are
among 1, s,...,&; and that the only variables which occur free
in B are z; and z,?

(e) Continuing part (d), define the following wif C(z1):

C(z;) = B(zy,22//10 + k).

5.13. EXERCISES | 359

Using part (a), let n = n,, where m = 10 * k. First show that
C(z,) does not name the number n in H, i.e., that

H/Vz, [C(z1) & 21 =n].

(Hint: Count the number of symbols in C.)
Then show that

N EVz,[C(z1) & 71 = n).

Thus, show that there is a sentence, true in A/, which can neither
~ be proved nor disproved from H.

In addition to giving a new proof of the First Incompleteness Theorem,

“this problem suggests a resolution of Berry’s Paradox (as formulated at

the end-of Section 5.9): As we mentioned in the text, the paradoxical
nature of the fact that the sentence

(%) n is the smallest natural number which cannot be
described using fewer than 100 keystrokes.

“describes” the number n may hinge on a lack of preciseness in our
account of which strings of keystrokes actually count as “descriptions.”
Indeed, in the above problem the paradox dissolves once we make it
clear that a natural number n is “described” by a formula if and only if
n is named by the formula in the theory at hand, say PA; for then the

+ formal version of (%) — namely, C(z;) — does not actually “describe”

(name) the number n, although it does weakly represent it. It may be
that our experience with this problem generalizes to any attempt to be
precise about the meaning of “description” in Berry’s Paradox: Perhaps
(%), because it uses the notion of “description” in “describing” n, is
a description of an inherently different kind from strings of keystrokes
(like “100°) which do not refer to the notion of “description” at all. Thus,
one might reasonably conjecture at this point that any formalization
of Berry’s Paradox — and in particular, of the notion of “description”
~ would result in the conclusion that (%) does not describe n in the

~ formal sense, and the paradox is thereby resolved.

Appendix A

Sets and Functions

In this section of the appendix we discuss some of the basic notions of
- — what is sometimes called — naive set theory; these include the notions
of set, subset, set operations (union, intersection, etc.), functions, car-
dinality, finite sequences, and permutations. Although these concepts
are fairly easy to grasp, very little of higher level mathematics could be
developed without them. Probably because of its simplicity, naive set
theory is rarely taught ezplicitly in third and fourth year undergraduate
courses; students at this level are generally expected to “pick it up” as
they go along. Unfortunately, however, it often happens that areas of
+ confusion in courses like abstract algebra and analysis arise from a too
fragile grasp of the ideas to be discussed here. Our intention here is to
provide a straightforward development of these concepts, to be used by
the reader as necessary to supplement his knowledge.

A.1 Sets

Intuitively speaking, a set X divides the mathematical universe into
two parts: those objects z which belong to X and those which don’t.
The notation z € X means z belongs to X, the notation z ¢ X means
that = does not belong to X. The objects which belong to X are
called the elements of X or the members of X. Other words which
are roughly synonymous with the word set are class, collection, and
~ aggregate. These longer words are often used simply to avoid using the

361

362 ' APPENDIX A. SETS AND FUNCTIONS

word set twice in one sentence. (The situation typically arises when an
author wants to talk about sets whose elements are themselves sets; he
might say “ the collection of all finite sets of integers” rather than “the
set of all finite sets of integers.”) Authors typically try to denote sets by
capital letters (e.g. X) and their elements by the corresponding small
letters (e.g. = € X) but are not required to do so by any commonly
used convention.

The reader who has worked through Section 2.12 should be aware
that technically speaking, a set is, by definition, a member of a model of
ZFC (or of some other axiomatic theory of sets); and while the words
collection and aggregate do not have technical definitions, a class is
defined to be a collection defined by a predicate. Thus, every set is a
class, but not conversely. For example, the collection of all even natural
numbers is (by the Axiom of Comprehension) a set, and therefore a
class; but the collection of all sets is a class (defined by the predicate
z = z) which is not a set. In general, unless there is some danger that
the collection of objects at hand is “too big” to be a set (and this does
happen in some areas of mathematics), the collections referred to by
mathematicians are to be understood as sets.

The simplest sets are finite and these are often defined by simply
listing (enumerating) their elements between curly brackets. Thus if
X = {2,3,8} then 3 € X and 7 ¢ X. Often an author uses dots as
a notational device to mean “etcetera” and indicate that the pattern
continues. Thus if

- A={ay,a9,...,0,} (A.1)
then for any object b, the phrase “b € A” and the phrase “b = a; for
some i = 1,2,...” have the same meaning; i.e., one is true if and only

_ if the other is. Having defined A by (A.1) we have
bEA“‘;:}b:al orb=agor...orb=a,,

where the symbol <= means if and only if. In other words, the shorter
phrase “b € A” has the same meanmg as the more cumbersome phrase
“b=giorb=azor...b=a,”

The device of listing some of the elements with dots between curly
brackets can also be used to define infinite sets provided that the context
makes it clear what the dots stand for. For example we can define the

~A.l. SETS 363

set of natural numbers by

N ={0,1,2,3,...}

~ and the set of integers by

Z=1{.,-2-1,012,...}

and hope that the reader understands that 0 € N, 5 € N, =5 ¢ N,
$¢N,0€2,5€Z,-5€Z,2¢17,etc.
Certain sets are so important that they have names:

(the empty set)

(the natural numbers)
(the integers)

(the rational numbers)
(the real numbers)

(the complex numbers)

AamwoNZS

These names are almost universally used by mathematicians today,
but in- older books one may find other notations. Here are some true
assertions: 0 ¢ 0, 2 € Q, V2¢ Q,V2€R,2*# —1forallz € R, and
z? = —1 for some P € C (namely z = =%i).

If X is a set and P(z) is a property which either holds or fails for
each element 2z € X, then we may form a new set Y consisting of all
z € X for which P(z) is true. This set Y is denoted by

Y={z€X:P(z)} ‘ (A.2)

a,nd1 called “the set of all z € X such that P(z).” For example, if
Y={zeN:22<6+z},then2€Y (as22 <6+2),3 ¢V (as
32 £6+3),and —1 ¢ VY (as —1 ¢ N).
This is a very handy notation. Having defined Y by (A.2) we may
assert that for all

t€Y <>z € X and P(z)

1The symbol | is sometimes used instead of : here

364 APPENDIX A. SETS AND FUNCTIONS

‘and that for all z € X
T €Y < P(x).

where the symbol <= means if and only if. Since the property P(z)
may be quite cumbersome to state, the notation z € Y is both shorter
and easier to understand. The reader who has worked through Sec-
tion 2.12 will recognize that the collection Y is guaranteed by ZFC to
be a set (by the Axiom of Comprehension).

Example A.1.1 Using these notations, the set E of even natural
numbers may be denoted by any of the following three notations:

E = {0,2,4,...)
{m € N :m is divisible by 2}
= {2n:n e N}

A set Y is a subset of a set X, written
YcX

- iff every element of Y is an element of X.
" For example,

{1,8,4,73 ¢ {0,1,2,3,4,7,9}
since every element on the left appears on the right. On the other hand,
{1,3,4,7} ¢ {0,1,2,4,7,9}

since 3 € {1,3,4,7} but 3 ¢ {0,1,2,4,7,9}.

Note the following inclusions:
Ncz
(every natural number is an integer),

Z2cQ

A.l. SETS 365

(every integer is a rational number),
QcR
(every rational number is a real number), and

RcC.

(every real number is a complex number).
The empty set is a subset of every set:

@cX

for every set X. This is because every element z of the empty set lies
in X - or indeed satisfies any other property — since there are no such
elements z. However, while it is true that the empty set is a subset
of every set, it is certainly not an element of every set: for instance,
the set {1,2} contains only the numbers 1 and 2 and hence does not
contain § as a member. Also, do not confuse the empty set with the
set whose only element is 0: '

b#{0}

since 0 € {0} but 0 ¢ 0.

Let Y and X be two sets. Two sets are equal, written X =Y, if
X CcYandY C X, ie., if every element of X is an element of ¥ and
every element of Y is an element of X.

Example A.1.2 Let X = {n € N:n? 4+ 7<6n} and ¥ = {2,3,4}.
Then X =Y. In other words, the natural numbers n which satisfy the
inequality

n? +7<6n

are precisely n = 2,3, 4. (This may be proved by graphing the function

y=a>+7-—6z.)

It follows from the definitions that a set defined by an enumeration
is unaffected by the order of the enumeration and by any repetitions in
the enumeration. Thus

{1,3,7} = {3,1,7} = {3,1,7,1,3}.

366 .~ APPENDIX A. SETS AND FUNCTIONS

. The reader who has read Section 2.12 may wish to verify that the
statement “The sets X and Y are equal if and only if X and Y have
the same elements” is a theorem of ZFC ~ it follows from the Axiom of
Extensionality.

A.2 Boolean Operations

The intersection, X NY, of two sets X and Y is the set of objects in
both of them: ,
XNY={z2:z€ X and z€ Y}

X and Y are said to be disjoint if they have an empty intersection,
Le., if

Xny =40.

The union, X UY, of two sets X and Y is the set of objects invone
or the other of them:

XUY={z:2z€e XorzeY}.

There is a notation resembling the sigma notation for sums, for the
intersection and union of a collection of sets. If {X}ier is a family of
sets indexed by some index set I, then the intersection of the family is

ﬂX,‘={2iZ€XifOraMi€I}
i€l

and the union is

Ung{z:zeXiforsomeiEI}.

i€l
For example, if I = {1,2,3}, then

ﬂX{ :-‘X1 nXg nX3, and UX«g:Xl U.X‘ZUX3
el 1l

Two special cases of taking unions of indexed collections that occur

frequently in this book are increasing unions and disjoint unions.

" A.2. BOOLEAN OPERATIONS 367

L Increasing Unions Suppose Xy, X3,...,X;,... denote sets such that
- XoC X1 C...C X; C ..., so that each set is included in the next as

a subset. Suppose
x = X
ieN
Then X is called the increasing union of the X;. X has the property
that for each z € X, there is a natural number k such that for all j > k,
z € Xj. In other words not only is each z in X a member of some Xk,
but z is in every X; for 7 > k as well.

Disjoint Unions Suppose now that {X; : ¢ € I} is any collection

of sets, indexed by a set /. Sometimes it is useful to think of the
elements in all of the X; as collected together in a single set in such
a way that members of X; are distinguishable from members of X;

“whenever 1 # j. If the X; already happen to be pairwise d1830mt (i.e.,

for all i # j, X; N X; = 0), our goal is easily accomplished by sunply
taking the union of the Xi, as above. But if there is some object z for
which z € X; N X, and ¢ # j, then once we take the union of the X;,
& must be thought of as coming from both X; and Xj, and possibly
other sets. This situation can be undesirable; for instance, when we
described the set of all function symbols to be used in full predicate
logic, we wanted to collect all elements of the 7., n = 0,1,.... But if a
particular function symbol F occurs in both F, and F,, (and n # m)
then this lack of uniqueness causes ambiguity in the use of F in our
logic, since, for instance, we don’t have a unique arity associated with
it (it’s both n-ary and m-ary). To avoid this complication, we required
that the union of the F, be a disjoint union.

In practice, “taking the disjoint union” of a collection usually means
that we insist that the sets whose union we will take are already disjoint.
Thus, in our example above, we can simply define the sets F, so that
function symbols occurring in one of these sets do not occur in any
other. Occasionally however, one is presented with sets whose elements
one does not wish to redefine. For such (rare) occasions, we define the
disjoint union as follows:

Given sets X; as above, we first replace each X; by the set X; of all

pairs (¢, z) for which z € X;. Now X is essentially the same as X, only

now every member z of X; is “tagged” with the index :. The disjoint

368 APPENDIX A. SETS AND FUNCTIONS

~union of the X; is then defined to be the union of the X;:

U .

el
One other set operation which is often used is the difference X' \ Y
of two sets X and Y, defined by
X\Y={zjze Xandz ¢ Y}

When Y C X, this is also called the complement of Y in X.
Problem A.2.1 Provethat Y C Xifand onlyif Y\ X = 0.

Problem A.2.2 Prove DeMorgan’s Laws:

\(Ux) = (Nrix)

i€l iel

709 ()

1€l i€l

Problem A.2.3 Write out the elements of the disjoint union of the
sets {0,1} and {1,2}. How many elements are in the disjoint union?
How many are in the (ordinary) union of these two sets?

A.3 Functions

A function is a mathematical object f consisting of a set X called the
domain-of f, a set ¥ called the codomain of f, and an operation
which assigns to every element ¢ € X a unique value f(z) € Y. This
is summarized by the notation

f: X-Y

“A.3. FUNCTIONS : » 369

(Note that the arrow goes from domain to codomain.) Other words
which are roughly synonymous with the word function are map, map-
ping, and transformation?. When a function f is defined without
explicit mention of X as above, the domain of f is denoted (in this

" book at least)

Dom(f).

The unique value assigned by a function f to z € X is usually
denoted by f(z) but in some contexts other notations such as f; or fz
are customary. f(z)is sometimes called the value of f for argument z.
In the context of computability theory in which computable functions

are treated like computing machines (see Chapter 4) f(z) is called the

output of f for input z. We will use this latter terminology frequently
in this appendix because (we feel) it helps the beginner form a clearer
picture of the concept of function and its properties.

The set of all values (outputs) f(z) of a function f is called its
range and is denoted Ran(f):

Ran(f) = {f(z) : = € Dom(f)}.

Any numerical expression involving a real variable defines a func-

. tion. For example, the equation

1
__1_;?

f(z)

defines a function f : X — R whose domain is given by
X={zeR:z#£1}
and whose range is given by
Ran(f) = {z € R:a #0}.

(In elementary algebra and calculus texts, the domain of a function
defined by an explicit formula in this fashion is always assumed to be

21t should be mentioned that in some areas of mathematics, the word “map” (or
“mapping”) is reserved for “structure preserving” functions. For instance, in group

theory, a map is often understood to be a group homomorphism; in topology, it is

often taken to be a surjective continuous function.

370 APPENDIX A. SETS AND FUNCTIONS

- the largest set where the formula is meaningful and the codomain is
assumed to be the set R of real numbers. In more advanced books it is
customary to specify domain and codomain as part of the definition.)

Sometimes one wishes to refer to a function without giving it a
name. A good way to do this is with the symbol —. Thus one could
refer to the function f defined above as the function

1
1—z

{zeR:z2#1} >R: 2z

One might call this the function which maps the number z to the num-
ber 1/(1 — z).

Two functions f; : X3 — Y7 and f, : X3 — Y3 are equal if their
domains and codomains are equal (X; = X, and Y; = Y3), and they
return the same output for any input: fi(z) = fo(z) for all z € Xj.
This may be summarized symbolically by:

_ X1=X27)/1=1/2? and
fi=fa - { fi(z) = fa(z) for all z € Xj.

We caution the reader that according to this definition of equality the

two functions f : N - Nandg: N — E = {n : n is an even natural number

defined by
f(n) = g(n) = 2n

for n € N are not equal since their codomains are not equal. It may
seem like nit-picking to distinguish these two (and indeed until recently
most authors did not) but failure to make the distinction sometimes
leads to confusion. For instance, as we shall see below, the function
g is onto (since its codomain and range are equal) while f is not (3
is in the codomain of f, but not in its range). Hence, even in this
simple example, it makes sense to distinguish these functions. (In more
advanced areas of mathematics, such as algebraic topology and model
theory, this distinction is at times crucial.)

Beginners often confuse the function with the formula whlch deﬁnes
it. This leads to confusion because

ovNot every function is defined by a single formula. For example,

A.3. FUNCTIONS : 371

the function g : R — R defined by
2?2 ifz >0
glz)=< 7 ifz=0
3 ifz<0
requires three formulas to define it: the formula to use in evalu-
ating the output g(z) depends on the value of the input z.

o Different formulas can define the same function. For example, the
formulas '

g(e) ==
and

h(t) = ¢*
define the same function from R into R. As another example,
the function f; : R — R defined by

hlz) = (z+1)°
is the same as the function f, : R — R defined by
fa(z) = 2* 4+ 22 + 1.

The reason that f; = f; is that the domain of f; is the same
as the domain of f; (namely R), the codomain of f; is the same
as the codomain of f; (namely R), and fi(z) = fa(z) for every
z € R. The point is that the formulas (z + 1)* and z? + 2z + 1
are different (simply because they look different) but their values
are the same for all .

Suppose f: X — Y. For any subset A C X the set
flA) ={f(z):z € A}
is called the image of A by f. For any subset B C Y the set
“(B) = {z: f(z) € B}
is called the preimage of B by f. The image f(X) of the whole space
X by f is called the range of f (the reader may wish to check that

this definition is equivalent to the definition of “range” given earlier in
the appendix).

372 APPENDIX A. SETS AND FUNCTIONS

Problem A.3.1 Show that
fJ4) = UfA
O4) < N4
f_l(QAi) Qf'l(Ai)
f(@Ai) @f”l

Give an example which shows that the second inclusion need not be an
equality.

A notation which is often used to define sets is
Y = {f(z) :2 € X}

(where f is some function whose domain is the set X) which is to be
understood as an abbreviation for

Y ={y:y= f(z) for some z € X}
so that for any y

y €Y < y= f(z) for some z € X.

A.4 Composition and Restriction

Given functions f : X — Y and g : Y — Z the composition of f and
g is denoted g o f (read “ g after f”) and defined by go f : X — Z

with
(90 f)(z) =9(f(2))
for z € X. The operation of composition is associative:
(hog)of=ho(gof).

Suppose we are given a function f: X — Y and a sﬁbset
Xo C X. The restriction of f to Xo, denoted f|Xy, is defined by

Dom(f|Xo) = Xo,

A.5. IDENTITY, ONE-ONE, AND ONTO FUNCTIONS 373

(f]XO)(:B) = f(z) for all z € X,.

For example, if f : R — R is a function whose graph is the straight
line given by f(z) = 2z, and if [0,1] denotes the unit interval, then
f1[0,1], the restriction of f to [0,1], is a function whose graph is the -
closed line segment from the (0,0) to (1,2).

The opposite of restricting a function to a smaller domain is extend-
ing a function to a larger domain. Suppose g : X — Y is a function
and X C Z. Then any function h: Z — Y is called an extension of
gto Zifh|X =g,ie,if

h(z) g(z) for all z € X.

Thus, for example, if g is the function defined earlier by g : X — R.:
z — 72— with domain X = {z € R: z # 1}, then g has an extension §

defined by
= ifz#1
§(z) = { ifz=1.

The reader may recall from a calculus course that the function g de-
scribed above is continuous on its domain X, but has no continuous
extension to R. In particular, § : R — R is not continuous.

Problem A.4.1 SupposeY and Xg, X3,...,X;,... are sets such that
XoC X; C...CX; C...and for each 7, f; : X; — Y is a function
such that for all j < ¢, ’ A

filXi = f;

L.e., for each j <4, f;is the restriction of f; to X;. Let X be the increas-

ing union of the X;. Show that there is a unique function f X - Y
which extends each f;, (1 =10,1,...) to X.

A.5 Identity, One-one, and Onto Func-
tions

A function whose domain and codomain are equal and which returns
its argument unchanged is called an zdentzty function; more precisely
the functlon

' Iy:Y->Y

374 ‘ APPENDIX A. SETS AND FUNCTIONS

~ defined by
Iy(y)=y
for y € Y is called the identity function of Y. It satisfies the identities
Iyof=Ff

for f: X - Y and
goly=yg
forg:Y — Z.

A function f : X — Y is called one-one if its output determines
its input uniquely; ® i.e., if for all 1,2, € X we have z; = z, whenever
f(z1) = f(z3). A function f : X — Y is called onto if every point
of Y is the output of some input; i.e., if for every y € Y there is an
z € X such that f(z) = y. A function is called one-one and onto, or
a bijection, if it is both one-one and onto.

Think of the equation y = f(z) as a problem to be solved for z.
Then: ‘

one-one
the function f is onto
' one-one and onto

if and only if for every y € Y the equation

at most |
y = f(z) has at least 3} one solution z € X.
exactly

The function
R—R:zm2°

is both one-one and onto since the equation
y=z

possesses the unique solution z = y3 € R for every y € R. In contrast,

the function
R—oR:z—z?

30f course, for any function its input determines its output uniquely; that is the
definition of a function. '

" A.5. IDENTITY, ONE-ONE, AND ONTO FUNCTIONS 375

* is not one-one since the equation

4 = z?

has two distinct solutions, namely z = 2 and z = —2. It is also not
onto since —4 € R but the equation

—4 =z

has no solution z € R.

The equation —4 = z? does have a complex solution z = 27 € C but
that is not relevant to the question of whether the function R — R :
z — z? is onto. The functions C - C:z+— 22 and R » R: z — z?
are different: they have a different domain and codomain. The function
C — C:z+— 2% isonto.

The concepts of one-one and onto can be formulated in other ways.
For instance, a function f : Y — Z is called left cancellable if for all
sets X and all pairs of functions g; : X =Y, g2: X =Y,

whenever f o g, = f o gy, we have g1 = ¢gs.

Likewise, a function f : Y — Z is right cancellable if for all sets W
and all pairs of functions by : Z = W, hy: Z - W,

whenever hy o f = hy o f, we have hy = ha.

The next proposition demonstrates the connection between these
concepts; we leave its proof to the reader.

Proposition A.5.1 Suppose f : X — Y is a function.
1. The following are equivalent:

(a) f is one-one.

(b) Forally € Ran(f), the set f~'({y}) has ezactly one element.
(c) For all subsets Xo C X, f~1(f(Xo)) = Xo. ‘

(d) f is left-cancellable. ‘

2. The following are equivalent:

376 APPENDIX A. SETS AND FUNCTIONS

(a) f is onto.

(b) f(X)=Y

(c) The range and codomain of f are equal.
(d) For all subsets Yo C Y, f(f'(%)) = Yo.
(e) fis right-cancellable.

A.6 Cardinality

Two sets X and Y are said to have the same size, or cardinality, if
there is a one-one, onto function f : X — Y. This notion is familiar
when X and Y are finite sets: Given that X = {z1,zs,...,zx} and
Y = {y1,y2,---,Ym}, then X and Y have the same cardinality if k = m,
i.e., if they have the same number of elements. ,

On the other hand, two infinite sets which may at first appear to
have different sizes may in fact have the same cardinality. For instance,
if E = {n:nis an even natural number}, then F and N have the same
cardinality since the function g : N — £ defined by

g(n) = 2n

is one-one and onto.

Formally speaking, a set X is said to be finite if there is a natural
number n such that X and {0,1,...,n} have the same cardinality. X
is infinite if X is not finite. X is called countable or denumerable
if X and N have the same cardinality.

Is every set finite or countable? Or is there some enormous (un-
countable) infinite set X for which X and N do not have the same car-
dinality? This question plagued Georg Cantor at the end of the 19th
century; many mathematicians and philosophers of the time found this,
and related questions about infinite sets, to be outside the proper do-
main of mathematics. Even in present-day universities, some students,
when confronted with this question, feel somewhat disturbed since, af-
ter all, how could one infinite set be bigger than another?

Despite the controversy surrounding this and related questions, and

despite the apparent unlikeliness of the result, Cantor was able to show:

that uncountable sets exist. We give a proof of this fact below:

A.6. CARDINALITY ' ‘ 377 |

For any set X let P(X) denote the set of all subsets of X:
SePX)iff S C X.
The set P(X) is called the power set of X. Note that if X is a finite

* set having n elements, then P(X) is a finite set having 2" elements.

Theorem A.6.1 (Cantor’s Theorem) There is no onto function
f:X - PX). |

Proof: Suppose such a function f exists. We will derlve a contradic- -
tion. Deﬁne a subset S C X by

S={zeX:z¢ f(z)}.
Since f is onto and S € P(X) there must be an element y € X with

S = f(y). Now eithery € Sory ¢ S. If y € S, then y € f(y) (as

S=f(y)soygS. lHy¢gS, theny ¢ f(y)soy € 5. Either way we

get a contradiction, so no such function f exists. End of Proof.

The method used in the preceding proof, called Cantor’s diago-
nal method, resembles several other arguments in this book. (See the
discussion following the Halting Problem in Section 4.11). Using the
diagonal method, Cantor was also able to show that the set R of real

* numbers is uncountable. In fact, he showed that R and P(N) have

exactly the same cardinality!

" Problem A.6.2 Is the set Q of rationals countable or uncountable?

One question which Cantor was unable to answer is whether there
is an infinite set X whose size is strictly between that of N and that of
R,; more technically, is there a set X together with one-one functions
f:N — X and g : X — R such that N and X do not have the
same cardinality and X and R do not have the same cardinality? The

" assertion that no such set exists — or, stated more positively, that every
~ infinite set of reals either has the same cardinality as N or as R -

known as the Continuum Hypothesis. It was shown nearly 80 years
after Cantor’s time that the Continuum Hypothesis is neither provable
nor disprovable from any known (reasonable) set theory (i.e., it’s an

independent sentence for ZFC and many other set theories).

378 APPENDIX A. SETS AND FUNCTIONS

A.7 Inverses

Let f: X — Y. Aleft inverse to f is a function g : Y — X such that
go f=Ix.

Proposition A.7.1 A function f: X — Y is one-one if and only if
there is a left inverse g : Y — X to f. If f is one-one but not onto,
the left inverse is not unique.

Proof: If g: Y — X is a right inverse to f the problem y = f(z) has
at most one solution for if y = f(z1) = f(z2) then g(y) = 9(f(z1)) =
g(f(z2)) whence z; = =z since g(f(z)) = Ix(z) = z. Conversely, if
the problem y = f(z) has at most one solution, then any function
g Y — X which assigns to y € Y a solution z of y = f(z) (when
there is one) is a left inverse to f. (It does not matter what value ¢
assigns to y when there is no solution z.) End of Proof.

Let f: X — Y. A right inverse to f is a function g : ¥ — X
such that

fog=1Iy.

Proposition A.7.2 A function f: X — Y s onto if and only if there
is a right inverse g ©' Y — X to f. If [is onto but not one-one the
right inverse is not unique.

Proof: If g: Y — X is a right inverseto f : X — Y then z = g(y)isa
solution to y = f(z) since f(¢(y)) = Iy(y) = y. The converse assertion
that there is a right inverse g : ¥ — X to any onto function f: X —
Y may not seem obvious to someone who thinks of a function as a
computer program: even though the problem y = f(z) has a solution
z, it may have many, and how is a computer program to choose? (If
X C N one could define ¢(y) to be the smallest z € X which solves
y = f(z) but this will not work if X = Z for in this case there may
not be a smallest z.) In fact, this converse assertion is generally taken
as an axiom: the so called aziom of choice, and cannot be proved from
the other axioms of mathematics. End of Proof.

- A.7. INVERSES 379

Let f: X - Y. A two-sided inverse to f is a function which is
both a left inverse to f and a right inverse to f:

gof=Ix, fog=ly.

The word inverse unmodified means two-sided inverse.
The following easy proposition explains why the two-sided inverse
is necessarily unique.

Proposition A.7.3 If f : X — Y has both a left inverse and a right
inverse, then it has a two-sided inverse f~' :' Y — X, and f~! is the
only left inverse of f and the only right inverse of f

Proof: Let g : Y — X be a left inverse to f and 2 : Y — X be a right

inverse. Then

gof=Ix

a,nd’
foh=Iy.

Composg'on the right by 4 in the first equation to obtain
gofoh=1Ixoh
and use the second to obtain
Iyoh=1Ixoh.

Now composing a function with the identity (on either side) does not
change the function so we have ’

g=nh

i.e., g (= h) is a two-sided identity. Now if g; is another left inverse to
f then this same argument shows that

g =h

(e, g1 =g). Simﬂarly h is the only right inverse to f. End of Proof.

380 APPENDIX A. SETS AND FUNCTIONS

Proposition A.7.4 The function f : X — Y is one-one and onto if
“and only if there is a (necessarily unique) two-sided inverse f~1:Y —
X to f. This inverse function f~1 :' Y — X is characterized by the
equivalence :
y=flz)=z=1"(y)

forz e X andy € Y. (The symbol <= means if and only if.)

Proposition A.7.5 (1) The identity transformation Ix : X — X is
one-one and onto and is its own inverse:

It =1Ix

(2) If f : X = Y is one-one and onto, then so is its inverse f~! :
Y — X, and the inverse of f~! is given by

=1

(8) If the function f: X — Y is one-one and onto and the function
g:Y — Z is one-one and onto, then the compositegof : X — 2
is one-one and onto and its inverse (go f)™1 : Z — Y is given by

(gof) =fTog™

Proof of (1): We have Ix o Ix = Ix since (Ix o Ix)(z) = Ix(Ix(z)) =
Ix(z) for all z € X. End of Proof.

Proof of (2): The same formulas

flof=1Ix, fof'=

which say that f~! is the inverse of f also say that f is the inverse of
f End of Proof.

Proof of (3):

(gof)o(f_log_l)zgofyog_l=gog'1=]Z

and :
(fTrego(gof)=fToly =fTof=Ix.
End of Proof.

- A.7. INVERSES 381

Example A.7.6 Let RT denote the set of non-negative real numbers:
t={zeR:z2>0}

and consider the four functions:

fLi:R—=R fi(z)=z%for z € R;
fz:R— Rt fz(m)—m2fo;‘x€R;
fs: Rt >R fi(z) =2% for z € R
)

f4ZR+—>R+ f4(—332 fora:ER*‘.

Then

1 f1 is neither one-one nor onto. It is not one-one since f(3) =
fi(—=3) = 9 but 3 # —3. It is not onto since fl(x) # —4 for
all z € R.

2 f; is onto but not one-one. It is not one-one for the same reason that
f1 is not. The reason that f; is not onto does not apply to f2
since the negative numbers are not in the codomain of f;. The
function :

g:RT—>R

given by
‘ 92(¥) =y

is a right inverse to f, : R — R* since f5(g2(y)) = y for y > 0.
It is not a left inverse for f, since ga(f2(x)) = |z] for z € R and
z # |z| if z < 0. The function

§QZR+—+R

given by
§2(y) = -V

is a different right inverse to fs.

3 f3 is one-one but not onto. It is not onto for the same reason that
f1 is not. The reason that f; is'not one-one does not apply to
fs since the negative numbers are not in the domain of f3. The
function 4 ’

gs:R— R*

382 ' APPENDIX A. SETS AND FUNCTIONS

defined by

93(y) =

{\/gforyZO;

Tfory<0

is a left inverse to the function f3; namely, gs(f3(z)) = z for
z € Rt. It is not a right inverse for f3(gs(y)) = 49 # y for y < 0.
(Replacing 7 by some other constant gives a different left inverse

to f3.)

4 f4 is one-one and onto. The function
g :RT > RT

given By
9s(y) = V¥

is the (two-sided) inverse to the function f4

Example A.7.7 Let Y = {y ¢ R: -1 <y < 1} and define f :
R - Y and g : Y — R by f(6) = sin(6) and g(y) = sin™'(y). Then
flg(y)) =y fory € Y. Thus f is a left inverse for g, ¢ is a right inverse
for f, f is onto, and ¢ is one-one. However f is not one-one (since
f(2r) = f(0) although 27 # 0) and g is not onto (since g(y) # 2 for all
yevy).

Problem A.7.8 What is the value of g(f(#)) = sin™'(sin(f)) for
6 € R?

- The example and exercise point up the fact that it is very impor-
- tant to specify the domain and codomain when defining a function. In
order to define inverses for common functions one often restricts their
domains. '
Here are some common functions and their inverses. Note how
carefully the source and codomain are specified.

1. The linear function

R—-R:z—az+b

A.7. INVERSES 383

is one-one and onto if a # 0; its inverse is the function
| R—-R:ym— (y—bd)/a.
For z,y € R:

y=ar+be 2z =(y—b)/a

2. The cube function
R-R:zr~2?
is one-one and onto; its inverse is the cube root function
1
3

R—-R:yrys,
For z,y € R:

wp

y=z* ==y
3. The exponential function
R—)R'*\{O}:‘a:k—)ew
- 18 one-one énd onto; its inverse is the natural logarithm
RY\ {0} = R: y+~ In(y).
For z,y € R with y > 0:
y=e" <>z =In(y).
4. The restricted sine function
sin: {# eR: —%gesg}—»{yeR: -1<y<1}
is one-one and onto; its inverse is the inverse sine function
sinT' i {yeR:-1<y<1} > {#eR: —;—rgegg—}.
For -2 <f<Z}and -1 <y<1I:
y = sin(f) <= 0 = sin"'(y).

The inverse sine function is sometimes called the arcsine and de-
noted arcsin.

384 APPENDIX A. SETS AND FUNCTIONS

A.8 Cartesian Product

Let X and Y be sets. The Cartesian product of X and Y is the set
of all ordered pairs (z,y) withz € X and y € Y:

XxY={(z,y): z€ X, yeY}

The Cartesian product is also called the direct product.

In certain contexts the word operation is often used in place of the
word function; thus a unary operation on a set X is a function with
domain and codomain X and a binary operation on X is a function
with domain X X X and codomain X. ,

An example of a unary operation is the operation of negatzon of a
real number:

R-R:zw— —2

and an example of a binary operation is the operation of addition of
real numbers:

RxR—-R:(z,y)—~z+y.

Sometimes the value of a function for given inputs is denoted in
other ways. For example, we write z + y rather than +(z,y) Here,
parentheses play the crucial role of indicating the order in which the
operations are performed (z—(y+2) # (z—y)+2) and when parentheses
are omitted this order is determined according to some convention (e. g
¢ —y+ 2z means (z —y) + z and not z — (y + 2)).

The notation where the name of a binary function is placed between
(rather than in front of) the arguments is called infix notation. Occa-
sionally, the name of the function is placed after the operation — one
writes (z,y) f rather than f(z, y) - this is called postfix notation. The

notation f(z,y) is thus called prefix notation. It is possible to omit

parentheses unambiguously when using postfix (or prefix notation) and
some calculators (e.g., those made by Hewlett-Packard) and program-
ming languages (e.g., APL) do this. (Thus z =y + 2 is denoted zy — z+
in postfix notation.) *

“The observation that parentheses are not needed with prefix (or postfix) nota-
tion is due to a Pole named Lukasiewicz so parentheses-free notation is sometimes
called Polish (or reverse Polish) notation.

- A.9. GRAPHING FUNCTIONS 385

A.9 Graphing Functions

For any function
f: XY

 we may define its graph to be the set

G() = ((9) € X XY iy = [(2))
of all pairs (z,y) such that y = f().

(1) A subset G C X x Y is the graph of some function f if and only if
for every z € X there is a uniquey € Y (namely y = f(z) with

(z,y) € G(f)-

(2) The function f is one-one if and only if for every y € Y there is at
most one z € X with (z,y) € G(f).

(8) The function f is onto if and only if for every y € Y there is at
least one z € X with (z,y) € G(f).

(4) The function f is one-one and onto if and only if for every yey
there is exactly one z € X with (z,y) € G(f).

Suppose that both sets X and Y are intervals in the set R of real
numbers. For example,

X={zcR:a1<z<a}, Y={yeR:b <z b}

We may plot points in the usual fashion with the set X represented
by an interval on the horizontal axis and the set Y represented by an
interval on the vertical axis. The set X x Y will be a rectangle and the
graph G(f) of f will be a subset of the rectangle X x Y. Then

(1) A subset G C X xY is the graph of some function f if and only if
every vertical line through X intersects G in exactly one point.

(2) The function f is one-one if and only if every horizontal line through
Y intersects G(f) in at most one point.

386 ' APPENDIX A. SETS AND FUNCTIONS

(8) The function f is onto if and only if every horizontal line through
' Y intersects G(f) in at least one point.

(4) The function f is one-one if and only if every horizontal line through
Y intersects G(f) in exactly one point.

Problem A.9.1 For each of the following sets G specify whether or
not it is the graph of a function f: X — Y.

1. G={(z,y) e R?*: 22 + y* =1},
X={zeR:-1<z<1},
Y={yeR:-1<y<1}.

2. G={(z,y) eR*:2* +y> =1,y >0},
" X={zeR:-1<z<1},
Y={yeR:-1<y<1}

3. G={(z,y) e R*: 22 +y2 =1, z > 0},
X={zeR:-1<z <1},
Y={yeR:-1<y<1}

4. G={(z,y) eR*: 22+ y2 =1, y > 0},
X={zeR:-1<z<1},
Y={yeR:0<y<1}.

5. G={(z,y) eR?:y=2—2z, -1<z<1},
X={zeR:-1<z<1},
Y={yeR:-9<y <9}

6. G={(z,y) eR*:y=2"42, -1<z<1},
- X={reR:-1<z<1},
Y={yeR:-9<y<9}

7. G={(z,y) eER*:z =9’ -y, -1<y<1},
X={zeR:-9<z<9},
Y={yeR:-1<y<1}

8. G={(z,y) eR*:z=9"+y —1<y<1},
X={zeR:-9<2<9},
Y={yeR:-1<y<1}L

‘A.9. GRAPHING FUNCTIONS 387

Problem A.9.2 Graph each of the following functions f : X — Y
and specify whether or not it is one-one or onto or both. If the function
is not one-one, draw a horizontal line which intersects its graph at least
twice. If the function is not onto, draw a horizontal line which does not
intersect its graph.

. X={zeR: -1<z<1},
Y={yeR: -1<y<1},

flz) =+1—z%

2. X={zeR: -1<z <1},

Y={yeR:0<y<1}
flz) =1 —22

3. X={zeR:0<z<1},
Y={yeR: -1<y<1},
flz) =+v1—22

4. X={zeR: 0<2<1},
Y={yeR:0<y<1},
f(z) = V1 —22

5. X={reR: -1<z<1},
Y={yeR: -2<y<2}
flz)=2*>-1.

6. X={reR: -1<z<1},
Y={yeR:-2<y<1},
flz)=2*-1.

7. X={zeR: -1<z<1},
Y={yeR: -2<y<2}
flz)=2*+1

8. X={zeR: -1<z<1},
Y={yeR:0<y<2}
flz)=2%+1.

388 APPENDIX A. SETS AND FUNCTIONS

A.10 Finite Sequences
A sequence of length n is a list
T = (21, T2,. . ','zn)

of objects; z; is called the i-th element of the finite sequence z. Two
sequences
f=(21,22,...,%n)
and
9= (yl’yZa" aym)
areequalif m=nandz; =y; fort =1,2,...,n.

It is important to remember that for sequences the order is impor-
tant. Thus the sequences z = (4,7,9) and y = (7,4,9) are distinct (for
1y = 4 # 7 = y;) while the sets {4,7,9} and {7,4,9} are the same.
Similarly, for sequences repetition matters, whereas this is not so for
sets. Thus «

, {1,2,3,1,2} = {1,2,3}
but
(1,2,3,1,2) # (1,2,3)
since the two sequences have different length.

The set of all finite sequences of elements of X of length n is denoted
by X™ so that ‘

X" = {(.’1}1,(132,...,33"):x1,$2,.f.,wn € X}

It is also customary not to distinguish between a sequence of length
one and its sole element: (z) = z. In other words, we identify the set
X7 of sequences of length one of elements of X with the set X itself:

X'=X.

A sequence of length n is also called an n-tuple. Thus a 2-tuple is
a pair, a 3-tuple is a triple, a 4-tuple is a quadruple, etc..

Proposition A.10.1 Suppose f is an n-tuple of elements of {1,2,...,m},

that is, ,
f:{1,2,...,n} > {1,2,...,m}.

A.10. FINITE SEQUENCES A - 389

1. If f is one-one, then n < m.
2. If f is onto, then n > m.
3. If f is one-one and onto, them n = m.

There are m™ functions

f{y2,...,n} = {1,2,...,m}

from a finite set with n elements to a finite set with m elements: in

other words, there are m™ ways to form a sequence of length n (possibly
with repetitions) from a set of m objects. For example there are 8 = 2°

" functions

fi:{1,2,3} - {1,2} for j =1,2,...,8

from a three element set to a two element set. Let’s list them and their

values in a table:

[

e s g e, g, o,
. . L e, D, e, N, e,
RN N N N R N

~
[SR NI SR N R 2™
DO = BN — B M B | OO

BT rr R
PO B DD RO b= b s e b

o~

None of these is one-one since 2 < 3. For example f; is not one-one
since f4(2) = f4(3) = 2 but 2 # 3. On the other hand all but f; and fs
are onto. For example f; is onto since fo(1) = 1 and f5(3) = 2. There
are two right inverses g and h to fo; one of them is defined by ¢(1) = 1,
4(2) = 3 and the other by h(1) = 2, h(2) = & f(g(y)) = f(h(y)) = y
for y = 1,2. On the other hand, f; is not onto since the equation
fi(z) = 2 has no solution « € {1,2,3}.

Problem A.10.2 For each f: {1,2,3} — {1,2} which is onto, give

“all of its right inverses.

390 APPENDIX A. SETS AND FUNCTIONS

Problem A.10.3 Make a table of the 9 = 32 functions
F:{1,2} — {1,2,3}).

For each f say whether it is one-one. If it is give all its left inverses. If
it is not, find 1, z, with f(z1) = f(z2) but z, # z,.

A.11 Permutations
Now we deal with the case where m = n. Let

f:{52,...,n} = {1,2,...,n}

be a function from a finite set with n elements to itself. The function
f is called a permutation if f is one-one and onto.

Proposition A.11.1 Suppose f is a function from a finite set with n
. elements to itself. Then the following conditions are equivalent:

o f has a left inverse.

o f is one-one.

o f has a right inverse.

o [is onto.

o f is a permutation.

o [has a two-sided inverse 1, i.e., there is a function
{2, 0} = {1,2,...,n})

satisfying f(f7'(y)) = y and f71(f(2)) = z forz,y = 1,2,...,n.

Moreover, if f satisfies any of these conditions, f~' is the only left

inverse to f and f~! is the only right inverse to f.

Of the n™ functions from {1,2,...,n} to itself exactly n! =n-(n —
1)-(n—2)---3:2-1 of these are permutations. (This is the number of
ways we can rearrange n things without repetitions.)

A.12. INDUCTION : : 391

Problem A.11.2 There are 27 = 32 functions

f:{1,2,3} - {1,2,3}

and 6 of them are one-one and onto. For each of these 6 give its inverse.
Select one of the remaining 21, by specifying the three values f(1), f(2),
f(3). Show that this f is not one-one by finding z4,z, € {1,2,3} with
z1 # 29 and f(z1) = f(z;). Show that this