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Model Theory: Logical Languages

Logical languages have a syntax and a semantics. The syntax tells us which sequences of
symbols are well-formed and can be interpreted. The semantics tells us how to interpret them. The
interpretation of a logical language is usually one of the Boolean values True or False. However,
there are also weighted logical languages in which case the interpretation of a logical language
can be just about anything: whole numbers, real numbers, probabilities, negative log likelihoods,
strings, languages, basically elements of any semiring. For now, we will interpret sentences of our
logical languages as True or False for simplicity.

We will look at three logical languages, in the following order.

1. propositional logic

2. monadic-second order (MSO) logic, and

3. first-order (FO) logic.

For now, the relational models we studied before will become relevant for FO and MSO logic. For
each of these logical languages, the syntax is defined recursively and the semantics is determined
compositionally on the basis of the syntactic structure.

Propositional Logic Propositional logic is also sometimes called Boolean logic. The syntax of
this logical language is defined as follows. Assume a countable set of atomic propositions P =
{p1, p2, . . .} We often use letters such as p, q, and r to indicate atomic propositions from this set.

Syntax Each p ∈ P is a sentence of propositional logic. If α, β are sentences of propositional logic,
then so are ¬α and (α∧β). The set of sentences of propositional logic are denoted PROP(P).

Semantics A valuation is a total function from v : P → {True, False}. For each sentence of
propositional logic ϕ, the interpretation of ϕ according to v, denoted JϕK(v), is determined
according to one of the following three cases.

1. There exists p ∈ P such that ϕ = p. Then JϕK(v) = JpK(v) = v(p).

2. There exists α ∈ PROP(P) such that ϕ = ¬α. Then JϕK(v) = J¬αK(v) = ¬JϕK(v).

3. There exists α, β ∈ PROP(P) such that ϕ = α ∧ β. Then JϕK(v) = Jα ∧ βK(v) =(
JαK(v) ∧ JβK(v)

)
.

Exercise 1. Which of the following are sentences of propositional logic with P = {p, q, r, p1, p2, . . .}?
1. ¬(p ∧ q)
2. ((p ∧ q) ∧ r)

3. (¬p ∧ ¬q)
4. (¬p)

5. p ∧ q ∧ r
6. p ∨ q

Exercise 2. Assume the valuation function is as follows: v[ p 7→ True, q 7→ False, r 7→ True].
(This means v(p) = True, v(q) = False, and v(r) = True.) For each ϕ in #1-3 in Exercise 1, what
is JϕK(v)?

This is a ‘bare bones’ approach to propositional logic. Mathematically, it is valuable because it
limits the number of cases in the proofs to one that are absolutely essential. Of course we can define
propositional logic to include other logical connectives such as ∨ (disjunction), → (implication),
and ↔ (biconditional). However, they can all be derived from negation (¬) conjunction (∧).

Exercise 3. Which logical connective is expressed by the sentence in Exercise 1 #3?

In practice, we often violate the simple but strict syntax defined above and write sentences such as
those in #4-6 in Exercise 1.
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MSO and FO Logic Both MSO and FO logic use quantification and variables. MSO makes us
of two kinds of variables: variables that range over individual elements of the domain and variables
that range over sets of individual elements of the domain. The former are denoted with lowercase
letters such as x, y, z and the latter with uppercase letters X,Y, Z. While MSO uses both kinds of
variables, FO logic only uses the former. That is the difference between the two logics. Formulas
of FO logic are literally those formulas of MSO logic without quantificaton over sets of individual
elements of the domain (so without variables like X,Y, Z).

MSO and FO logical languages depend on a model signature. Once we have a model signature
(which recall gives us representations of objects belonging to some class), we can employ the
recipes for syntax and semantics below to define logical languages for these model signatures. In
what follows, I provide a recipe for MSO and FO logical languages for purely relational models (so
signatures without functions).

Syntax of MSO Logic First, we establish symbols denoting variables. Consider two countable
sets, {x0, x1, . . .} and X ∈ {X0, X1, . . .}, which will ultimately be interpreted as variables over
individual elements in a domain and sets of individuals in the domain, respectively.

Next consider an arbitrary relational model signature. So the signature looks something like
this: M = 〈D;R1, R2, . . . Rm〉. For all variables x, y ∈ {x0, x1, . . .}, X ∈ {X0, X1, . . .}, formulas of
MSO logic over the relational model signature M include the following base cases.

• x = y (equality)
• x ∈ X (membership)
• R(x1, . . . xn) for each n-ary relation R ∈M (atomic relational formulas)

Next we have the inductive cases. If α, β are formulas of MSO logic, then so are

• ¬α (negation)
• (α ∧ β) (conjunction)
• ∀x [α] (universal quantification for individuals)
• ∀X [α] (universal quantification for sets of individuals)

Nothing else is a formula of MSO logic. We denote this logical language MSO(M).

Convenient notation As before, all the other logical connectives (∨,→,↔) can be derived
from negation (¬) and conjunction (∧). Inequality (6=) can be derived from negation and equal-

ity. Finally, existential quantification is derived from universal quantification: ∃x[ϕ]
def
= ¬∀x[¬ϕ].

Existential quantification over sets of individuals is done similarly.

Formulas of FO Logic The logical language FO(M) is defined as all formulas of MSO(M) which
do not contain quantification over sets of indviduals.

Sentences of MSO and FO logic The free variables of a formula ϕ are those variables in ϕ
that are not quantified. Variables that are not free are called bound. A formula is a sentence if
none of its variables are free. Only sentences can be interpreted.
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Exercise 4. Consider the formulas below from FO(M/). Which of them are sentences? For the
formulas that are not sentences, which variables are free and which are bound?

1. ¬∃y (x / y)

2. ¬∃y (y / x)

3. ¬∃x, y (n(x) ∧ t(y) ∧ x / y)

4. ∀x∃y (n(x)→ (t(y) ∧ x / y))

5. n(x) ∨ m(x) ∨ N(x)

6. ∃y (n(x) ∧ t(y) ∧ x / y)

7. ∃x, y (n(x) ∧ t(y) ∧ x / y)

8. ∀x, y ( ¬(n(x) ∧ t(y) ∧ x / y))

9. ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z)

10. ∃x, y, z (¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z))

11. x / y ∧ y / z

Semantics of MSO logic How do we evaluate sentences beloning to MSO(M) and FO(M) logic?
In order to examine expressions of equality, such as (x = y) and (x ∈ X), the variables need to
be assigned values. Also in order to evaluate an expression like R(x1, . . . xn), there needs to be a
model M whose relational structure accords to the signature M.

Therefore, we interpret a sentence ϕ with respect to a model M and a variable assignment
function v which assigns values to the variables in ϕ. We will treat the interpretation of ϕ, denoted
JϕK, as a function, which takes two arguments M and v. In other words, given M and v, we are
interested in evaluating JϕK(M,v).

The function v is a partial function because not all variables may have an assignment. If we
want to assign variable x to some element e in the domain D of M (written [x 7→ e]), we write
v ← [x 7→ e].

Example 1. Suppose currently v maps x1 to e1 and x2 to e2 and no other variable has an as-
signment. We indicate this by writing v[x1 7→ e1, x2 7→ e2]. Now suppose we want to add an
assignment, say variable x3 to element e3. We can write this as follows.

v[x1 7→ e1, x2 7→ e2]← [x3 7→ e3] = v[x1 7→ e1, x2 7→ e2, x3 7→ e3]

We can also use the same notation to reassign a variable to another domain element. However
here we assume without loss of generality that every variable introduced by quantification is distinct
from every other one, which avoids this issue. Finally, let v0 denote empty function v (so no variables
have an assignment). When variables assignments are clear from context, we just write v instead
of v[x1 7→ e1, . . . xn 7→ en].

The base cases are as follows. For all models M , variables x, y ∈ {x0, x1, . . .}, X ∈ {X0, X1, . . .},
and n-ary relations R in the model signature M, and sentences ϕ ∈ MSO(M), we have:
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• Jx = yK(M,v[x 7→ e1, y 7→ e2]) = True ↔ e1 = e2

• Jx ∈ XK(M,v[x 7→ e,X 7→ S]) = True ↔ e ∈ S

•
r
R(x1, . . . xn)

z(
M, v[x1 7→ e1, . . . xn 7→ en]

)
= True ↔ (e1, . . . en) ∈ R

The inductive cases are as follow.

• J¬ϕK(M,v) ↔ ¬JϕK(M,v)

•
r

(ϕ ∧ ψ)
z

(M, v) ↔ JϕK(M, v) ∧ JψK(M,v)

•
r
∀x[ϕ]

z
(M,v) ↔

∧
e∈D

(
JϕK(M, v ← [x 7→ e])

)
•

r
∀X[ϕ]

z
(M,v) ↔

∧
S⊆D

(
JϕK(M, v ← [X 7→ S])

)
If JϕK(M,v0) = True, we say M satisfies, or models ϕ ∈, which we write M |= ϕ. Otherwise we
write M 6|= ϕ.

Exercise 5. Assume the model signature M/ and consider the logical language FO(M/). Evaluate
the sentences in #3,4 in Exercise 4 with respect to the model of the word sent.
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