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1 Propositional Logic

Recall the syntax and semantics of propositional logic.

Propositional Logic Assume a countable set of atomic propositions P = {p1, p2, . . .} We often
use letters such as p, q, and r to indicate atomic propositions from this set.

Syntax Each p ∈ P is a sentence of propositional logic. If α, β are sentences of propositional logic,
then so are ¬α and (α∧β). The set of sentences of propositional logic are denoted PROP(P).

Semantics A valuation is a total function from v : P → {True, False}. For each sentence of
propositional logic ϕ, the interpretation of ϕ according to v, denoted

q
ϕ
y
(v), is determined

according to one of the following three cases.

1. There exists p ∈ P such that ϕ = p. Then
q
ϕ
y
(v) =

q
p
y
(v) = v(p).

2. There exists α ∈ PROP(P) such that ϕ = ¬α. Then
q
ϕ
y
(v) =

q
¬α

y
(v) = ¬

q
ϕ
y
(v).

3. There exists α, β ∈ PROP(P) such that ϕ = α ∧ β. Then
q
ϕ
y
(v) =

q
α ∧ β

y
(v) =(q

α
y
(v) ∧

q
β
y
(v)

)
.

Today, we modify the semantics as follows. We let the atomic propositions denote connected
relational structures. Models of words are (typically) connected relational structures but not all
connected relational structures are models of words. We define a partial order (v) among such
structures. Then given a word w, and a sentence ϕ, we can check to see whether Mw |= ϕ as we
did with FO logic. The valuation function v will essentially be given by Mw. In particular, in the
semantic interpretation of the atomic proposition,

q
p
y
(v) =

q
p
y
(Mw) = p vMw. In other words,

if a connected relational structure is contained within Mw then
q
p
y
(Mw) is True; otherwise, it is

False. The set of atomic propositions is then {S | ∃w ∈ Σ∗(S vMw), S is connected}.

2 Connected Relational Structures

What follows is adapted from, sometimes verbatim, from section 3 of [1].
We introduce a partial ordering over relational structures which conform to some model sig-

nature M := 〈D; /,R1, . . . Rn〉. To do so, we define the terms connected, restriction, and factor.
For each structure S = 〈D; /,R1, . . . Rn〉 let the binary “connectedness” relation C be defined as
follows.

C
def
=

{
(x, y) ∈ D ×D | ∃i ∈ {1 . . . n}, ∃(x1 . . . xm) ∈ Ri, ∃s, t ∈ {1 . . .m}, x = xs, y = xt

}
Informally, domain elements x and y belong to C provided they belong to some non-unary relation.
Let C∗ denote the symmetric transitive closure of C.

Definition 1 (Connected structure) A structure S = 〈D; /,R1, R2, . . . , Rn〉 is connected iff
for all x, y ∈ D, (x, y) ∈ C∗.

For example, both M/(abba) and M<(abba) below are connected structures. However, the structure
Sab, ba shown below which is identical to M/(abba) except it omits the pair (2,3) from the order
relation is not connected since none of (1,3),(1,4), (2,3) nor (2,4) belong to C∗. For concreteness,
Sab, ba =

〈
D = {1, 2, 3, 4}; /= {(1, 2), (3, 4)}, Ra = {1, 4}, Rb = {2, 3}, Rc = ∅

〉
. Note that no string

in Σ∗ has structure Sab, ba as its model.
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Figure 1: Visualizations of the successor (left) and precedence (right) models of abba.

1

a

2

b

3

b

4

a
/ /

Figure 2: Visualization of the structure Sab, ba.

Definition 2 A = 〈DA; /,RA
1 , . . . , R

A
n 〉 is a restriction of B = 〈DB; /,RB

1 , . . . , R
B
n 〉 iff DA ⊆ DB

and for each m-ary relation Ri, we have RA
i = {(x1 . . . xm) ∈ RB

i | x1, . . . , xm ∈ DA}.

Informally, one identifies a subset A of the domain of B and strips B of all elements and relations
which are not wholly within A. What is left is a restriction of B to A.

Definition 3 Structure A is a subfactor of structure B (A v B) if A is connected, there exists
a restriction of B denoted B′, and there exists h : A → B′ such that for all a1, . . . am ∈ A and
for all Ri in the model signature: if h(a1), . . . h(am) ∈ B′ and Ri(a1, . . . am) holds in A then
Ri(h(a1), . . . h(am)) holds in B′. If A v B we also say that B is a superfactor of A.

In other words, properties that hold of the connected structure A hold in a related way within B.
[1] go on to prove the following two lemmas.

Lemma 1 For all strings x, y ∈ Σ∗, x is a substring of y iff M/(x) vM/(y).

Lemma 2 For all strings x, y ∈ Σ∗, x is a subsequence of y iff M<(x) vM<(y).

Exercise 1

1. Let ϕ = M/(abba). What is
q
ϕ
y

? How about
q
¬ϕ

y

2. Let ϕ = M<(abba). What is
q
ϕ
y

? How about
q
¬ϕ

y

3. Consider a successor model with features. How would you express the constraint *NT?

4. Consider a precedence model with features. How would you express the constraint *N. . . L?

5. How could you express the conjunction of *NT and *CCC?

6. How could you express the conjunction of *NT and *N. . . L?

3 Further reading

These notions are discussed in more detail in [1] and [2].
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