HW 2: Factors and Constraints defined with Propositional Logic

- 1. Locally Testable Constraints $(PROP(\triangleleft))$
 - (a) For each φ , write two words whose models satisfy it. (Assume $\Sigma = \{a, b, c\}$ and $\mathcal{M} = \langle D; \triangleleft, a, b, c \rangle$.)
 - i. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa}$? ii. $\varphi \stackrel{\text{def}}{=} \neg \mathcal{M}_{aa}$? iii. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \lor \mathcal{M}_{ab}$? iv. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \Rightarrow \mathcal{M}_{ab}$?
 - v. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \Leftrightarrow \mathcal{M}_{ab}$?
 - (b) Write a constraint that says "All words with a NT sequence also have a CC sequence" (You may assume a model with features for nasals, consonants, etc.)
 - (c) Prove that the constraint which says "Words have at least two as" is not LT.
 - (d) You are born on planet Locally 2-Testable, where everyone's DNA has a UG programmed for LT-2 constraints. You observe the word *aab*.
 - i. Can you infer that *aaab* is a word in your language?
 - ii. What about *ab*?
- 2. Piecewise Testable Constraints (PROP(<))
 - (a) For each φ , write two words whose models satisfy it. (Assume $\Sigma = \{a, b, c\}$ and $\mathcal{M} = \langle D; \langle a, b, c \rangle$.)
 - i. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa}$?
 - ii. $\varphi \stackrel{\text{def}}{=} \neg \mathcal{M}_{aa}?$
 - iii. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \vee \mathcal{M}_{ab}$?
 - iv. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \Rightarrow \mathcal{M}_{ab}$?
 - v. $\varphi \stackrel{\text{def}}{=} \mathcal{M}_{aa} \Leftrightarrow \mathcal{M}_{ab}$?
 - (b) You are born on planet Locally 2-Piecewise, where everyone's DNA has a UG programmed for PT-2 constraints. You observe the word *aabcb*.
 - i. Can you infer that *aaabcb* is a word in your language?
 - ii. What about *ab*? *aabbcb*? *ac*? *ca*?
- 3. Strictly Local Constraints $(CNL(\triangleleft))$
 - (a) Consider a Strictly 2-Local stringset L which contains the words aa and ab. Using Suffix Substitution Closure, explain what other words must be in L.
 - (b) Consider the constraint *s... f. Show this is not SL_k for any k.
 - (c) You are born on planet Strictly 2-Local, where everyone's DNA has a UG programmed for SL-2 constraints. You observe the word *aab*.
 - i. Can you infer that *aaab* is a word in your language?
 - ii. What about *ab*?
 - iii. Do inhabitants of planet Locally 2-Testable generalize in the same way (see above)?

- 4. Strictly Piecewise Constraints (CNL(<))
 - (a) Consider a Strictly 2-Piecewise stringset L which contains the words aa and ab. Using subsequence closure, explain what other words must be in L.
 - (b) Consider the constraint *nt. Show this is not SP_k for any k.
 - (c) You are born on planet Strictly 2-Piecewise, where everyone's DNA has a UG programmed for SP-2 constraints. You observe the word *aabcb*.
 - i. Can you infer that *aaabcb* is a word in your language?
 - ii. What about ab? aabbcb? ac? ca?
 - iii. Do inhabitants of planet Piecewise 2-Testable generalize in the same way (see above)?