®

Check for
updates

Boolean Monadic Recursive Schemes
as a Logical Characterization
of the Subsequential Functions

Siddharth Bhaskar'®) | Jane Chandlee?, Adam Jardine?,
and Christopher Oakden?®

! DIKU, Kgbenhavns Universitet, 2100 Copenhagen, Denmark
sbhaskar@di.ku.dk
2 Haverford College, Haverford, PA, USA
jchandlee@haverford.edu
3 Rutgers University, New Brunswick, NJ, USA
{adam. jardine,chris.oakden}@rutgers.edu

Abstract. This paper defines boolean monadic recursive schemes
(BMRSSs), a restriction on recursive programs, and shows that when
interpreted as transductions on strings they describe exactly the sub-
sequential functions. We discuss how this new result furthers the study
of the connections between logic, formal languages and functions, and
automata.

Keywords: Subsequential functions - Logic + Recursive program
schemes - Finite automata

1 Introduction

A fundamental result in the connection between automata and logic is that
of Elgot [7], Biichi [1], and Trakhtenbrot [21], which states that sentences in
monadic second-order (MSO) logic describe exactly the same class of formal lan-
guages as finite-state acceptors (FSAs); namely, the regular class of languages.
Further work established many connections between restrictions on MSQO, restric-
tions on FSAs, and sub-classes of the regular languages [14,20].

More recently, a major result of Engelfriet and Hoogeboom shows the rela-
tionship between MSO and regular functions on strings—that is, exactly those
functions described by two-way finite state transducers [9]. Essentially, string
functions can be described by a MSO interpretation in which the binary succes-
sor relation and alphabet labels of the output string are defined by a series of
binary and unary predicates in the MSO logic of the input strings, relativized
over a copy set which allows the output string to be larger than the input string.
Each element in the output string is thus a copy of an index in the input string,
and the character it receives and where it is in the order is determined by which
predicates are satisfied by the input string at that index. This technique has

© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 157-169, 2020.
https://doi.org/10.1007/978-3-030-40608-0_10

jeffrey.heinz@stonybrook.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_10

158 S. Bhaskar et al.

allowed a rich study of the relationship between sub-MSO logics and restric-
tions on finite-state transducers [10,11] parallel to the earlier work on logic and
finite-state automata and languages.

However, there remain some interesting classes for which no logical char-
acterization has been previously established. In this paper, we investigate the
subsequential functions, a strict sub-class of the rational functions, or those that
are describable by one-way finite-state transducers.! While a weak class, there
are a number of reasons why the subsequential class is a worthy object of study.
From a theoretical perspective, the subsequential functions admit an abstract
characterization that generalizes the Myhill-Nerode equivalence classes of reg-
ular languages [19]. This property makes the subsequential functions learnable
from a sample of positive data [18]. In terms of practical applications, the sub-
sequential functions have applications to speech and language processing [16],
and form a hypothesis for the computational upper bound of functions in certain
domains of natural language phonology [12,13].

In this paper, we define boolean monadic recursive schemes (BMRSs), a
restriction on the general notion of a recursive program scheme in the sense
of Moschovakis [17]. As indicated by the name, these schemes recursively define
a series of unary functions that take as inputs indices from a string and return
a boolean value. A system of BMRS functions can be used to express a logi-
cal transduction in the sense of Engelfriet and Hoogeboom by assigning these
functions to symbols in an output alphabet. An output string then consists of
the characters whose functions are true at each index in the input string. We
show that string transductions defined by BMRS transductions with predecessor
or successor describe exactly the left- and right-subsequential functions, respec-
tively. This is an entirely novel result; the closest result in the literature is that of
[6], who give a fragment of least-fixed point logic that captures strict subsets of
the left- and right-subsequential functions. As we discuss at the end of the paper,
the current result allows for further study of the connections among subclasses
of the subsequential functions and of rational functions in general.

This paper is structured as follows. Sections 2 and 3 establish the notation
and definitions for strings, subsequential functions, and subsequential trans-
ducers. Section4 establishes BMRSs and BMRS transductions, and Sect.5
shows the equivalence between BMRS transductions and subsequential functions.
Sections 6 and 7 discuss the implications of this result and conclude the paper.

2 Preliminaries

An alphabet X is a finite set of symbols; let X* be all strings over X, including
A, the empty string. We will frequently make use of special left and right string
boundary symbols x, x € X. We denote by xX*x the set {xw x | w e X*}.
Let Xy = XY U{x}, likewise Xy = Y U{x} and X, = XU {x, x}. For a string
w, |w| indicates the length of w. We write w” for the reversal of w.

1 'We mean subsequential in the sense of Schiitzenberger and Mohri; other authors (e.g.
[11]) use the term sequential for the same class.

jeffrey.heinz@stonybrook.edu

Recursive Schemes for Subsequential Functions 159

A string w is a prefiz of w, written v C w, iff w = uv for some string v. For a
set L C X* of strings let the common prefizes be comprefs(L) = (), e {u | u E
w}. The longest common prefix of L is the maximum element in comprefs(L):
lep(L) = w € comprefs(L) s.t. for all v € comprefs(L), |v| < |w].

3 Subsequential Functions and Transducers

3.1 Abstract Definition

We first define the subsequential functions based on the notion of tails [16,19].
Let f : X* — I'* be an arbitrary function and f?(z) = lep({f(au) | u € X*}).
Then of course, for every u, fP(x) C f(zu). Now let the tail function f.(u) be
defined as v such that fP(z)v = f(zw). This function represents the tails of x.
This allows us to define the subsequential functions as follows.

Definition 1 (Left-subsequential). A function f is left-subsequential iff the
set {fy | x € X*} is finite.

Ezample 1. For input alphabet X' = {a}, the function f defined as

f(a™) = (abb)™?c if n is even;
(abb)=D/2qd if n is odd,

is left-subsequential. Note that for any 2 = a” for an even n, fP(z) = (abb)"/?,
and so f, = f. For any y = a” for an odd n, then fP(y) = (abb)®~Y/2a, and
so f, is the function f,(a™) = d if m = 0; bb- f(a™™ ') otherwise. Then f is
describable by these two tail functions { f5, fy}.

Conversely, the function g defined as

g(a™) = ca™ 1 if n is even;
da™ ! if n is odd,

is not left-subsequential. Note that for any z = a™, gP(x) = A. This is because
{g(zu) | w € X*} includes both ca’ and da’ for some i and j. Because g, (u) is
defined as v such that g?(z)v = g(zu), and because ¢gP(z) = A, g.(u) = g(zu).
The consequence of this is that for any z = a™ and y = a™ for a distinct m # n,
for any u, g,(u) # gy(u). Thus the set of tails functions for g is an infinite set
{9215 9o, ---} of distinct functions for each x; = a’.

The right-subsequential functions are those that are the mirror image of some
left-subsequential function.

Definition 2 (Right-subsequential). A function f is right-subsequential iff
there is some left-subsequential function f; such that for any string in the domain

of f, f(w) = (fe(w))".

We leave it to the reader to show that g is right-subsequential. Thus,
the subsequential functions are those functions that are either left- or right-
subsequential.

jeffrey.heinz@stonybrook.edu

160 S. Bhaskar et al.

3.2 Subsequential Finite-State Transducers

A (left-)subsequential finite-state transducer (SFST) for an input alphabet X
and an output alphabet I" is a tuple 7 = (Q, g0, @, J, 0,w), where Q is the set
of states, ¢o € @ is the (unique) start state, @y C @ is the set of final states,
0 : @ x X — (@ is the transition function, o : Q x X' — I'* is the output function,
and w: Q¢ — I'* is the final function. We define the reflexive, transitive closure
ofand oas " : Q x X* — @Q and o* : Q x X* — I'* in the usual way.

The semantics of a SFST is a transduction ¢(7") defined as follows; let t =
t(7T). Forw € X*, t(w) = uv where 0*(qo, w) = u, and w(qy) = v if 6*(qo, w) = gy
for some ¢y € Qy; t(w) undefined otherwise.

a:bb

Fig. 1. A graph representation of the SFST for the function f from Example 1.

Theorem 1 ([16,19]). The left-subsequential functions are ezactly those
describable by a SFST reading a string left-to-right. The right-subsequential func-
tions are exactly those describable by a SFST reading a string right-to-left and
reversing the output.

Theorem 2 ([16]). Both the left- and right-subsequential functions are a strict
subset of the rational functions.

For more properties of the subsequential functions and their application to
speech and language processing see [16].

4 Boolean Monadic Recursive Schemes

4.1 Syntax and Semantics

We identify strings in X* with structures of the form S = (D; 01,09, ...,0p,D, S)
where the domain D is the set of indices; for each character o € X, we also
write o; for the unary relation o; C D selecting the indices of that character
(and we assume that the least and greatest indices contain the characters x
and X, respectively); p is the predecessor function on indices (fixing the least
index); and s is the successor function on indices (fixing the greatest index). As
an abbreviatory convention we use x — i for 7 applications of p to x, and likewise
x + ¢ for ¢ applications of s. (E.g. x — 2 is the same as p(p(x))).

Boolean monadic recursive schemes are simple programs that operate over
such string structures. They are a particular case of the recursive programs of
Moschovakis [17]. We briefly review the syntax and semantics of such recursive
programs in this particular signature, then impose (Definition 3) the pertinent
syntactic restriction to obtain BMRSs.

jeffrey.heinz@stonybrook.edu

Recursive Schemes for Subsequential Functions 161

Data and Variables. We have two types of data: boolean values and string
indices. We have two countably infinite set of variables: (index) variables X,
which range over string indices, and recursive function names F. Each recur-
sive function name f € F comes with an arity n € N and an output type, either
“index” or “boolean”. Function names f of arity n and type s range over n-ary
functions from string indices to s.

Terms. Terms are given by the following grammar

T — X|T1:T2‘T‘J_|f(T1,,Tk)|
s(Ty) | p(Th) | o(Th) (0 € X)) | if Ty then Ty else T3

Terms inherit “boolean” or “index” types inductively from their variables and
function names, and term formation is subject to the usual typing rules: for
f(Ty,...,Tx), o(T1), s(Th) or p(T1), the type of each T7 must be “index”; for
T, = T3, the types of T1 and T must be the same; for and “if T then T3 else T53,”
then the type of 77 must be “boolean,” and the types of T5 and T3 must agree.

Programs. A program consists of a tuple (£1,...,fx) of function names, plus k
lines of the form f;(x1,,...,%n,) = T;, where T} is a term whose type agrees with
the output type of f;, every variable that occurs in 7; is some x;;, and every
function name that occurs in T; is some £;. Syntactically, we will write

£1(%1) = T1 (£, %1)

£u(%) = Ti(£, %)
to indicate that the above properties hold.

Semantics. We impose the usual least fixed-point semantics on recursive pro-
grams. Briefly; over a given string, terms denote functionals which are monotone
relative to extension relation on partial functions. We define the semantics of a
program to be the first coordinate fi of the least fixed-point (fi, ..., fx) of the

—

monotone operator (f,..., fx) — (Tv(f),. ... T(f)) [17].

Definition 3. A boolean monadic recursive scheme (BMRS) is a program in
which the arity of every function name in the program is one, and the output
type of every function name in the program is “boolean.”

Boolean monadic recursive schemes compute (partial) functions from string
indices to booleans, or equivalently (partial) subsets of indices. For example, the
following scheme detects exactly those indices with some preceding b.

f(x) =if x (p(x)) then L else if b(p(x)) then T else £(p(x)) (1)

jeffrey.heinz@stonybrook.edu

162 S. Bhaskar et al.

4.2 Schemes as Definitions of String Transductions

We can define a string transduction ¢ : X* — I'* via a BMRS interpretation as
follows. Fix a copy set C = {1,...,m} and for n = |I'| consider a system T of
equations with a set of recursive functions f = (G LR SRR ST SR F
that is, with a function ¢ for each v € I and ¢ € C.

Following the definition of logical string transductions [9,10], the semantics
of T given an input model S with a universe D as follows. For each d € D,
we output a copy d° of d if and only if there is exactly one v € I" for ¢ € C
such that v¢(x) € T evaluates to T when x is mapped to d. We fix the order of
these output copies to be derived from C and the order on D induced by the
predecessor function p: for any two copies d¢ and d¢ of a single index d, d° < d°¢
iff ¢ < e in the order on C', and for any copies df and df for distinct input indices
di,dj, di < dj iff d; < d; in the order on the indices in S. We fix the order
due to the relation between order-preserving logical transductions and one-tape
finite-state transducers [10].

This semantics of T’ thus defines a string transduction ¢t = ¢(T') where for a
string w € X* of length ¢, t(w) = wguy...ugtps1, where each u; = v1...7,. if and
only if for each ~;, 1 < j < 7, «; is the unique symbol in I' for j € C such
that ’yjj(x) evaluates to T when x is assigned to ¢ in the structure of xwx. An
example is given in Example 2.

To describe partial functions we can add to f a special function def(x) and
specify the semantics of ¢ to state that ¢(w) is defined iff def(x) evaluates to T
for element ¢ in w.

Example 2. The following is a BMRS definition of f from Example 1 using
strings models from xX*x. The copy set is C' = {1, 2}.

a*(x) = if a(x) then
if (p(x)) then T else b (p(x))
else L d'
a(x) = L d>
bl() = if a(x) then a’(p(x)) else L
b?(x) = if a(x) then a*(p(z)) else L

X (x) then b*(p(x)) else L

) =

) J_
x) = if x (x) then a'(p(x)) else L
)=1

The following shows how this maps aaaaa to abbabbad:

0123456
Input: xXaaaaax
Copyl: ababad
Copy 2: b b

We define two important variants of BMRS logic. For BMRS systems of
equations over a set of recursive function symbols £, we say a system of equations
T € BMRS? iff it contains no terms of the form s(73) for any term T3, and
likewise T € BMRS® iff it contains no terms of the form p(7}) for any term
Ti. We define these as they fix the ‘direction’ of the recursion, which will be
important in connecting them to the left- and right-subsequential functions.

jeffrey.heinz@stonybrook.edu

Recursive Schemes for Subsequential Functions 163

4.3 Convergence and Well-Definedness

We only want to consider BMRS that compute well-defined transductions.
Therefore, we require that for each string w € X*, each index ¢ of w, and each
c € C and v € I, every function +¢(¢) converges, and furthermore for each c,
there is a unique v such that v°(i) = T.

This is of course a semantic property, which is not an issue as far as the
following proofs of extensional equivalence are concerned. However, there is an
effective way of transforming a BMRS T into a BMRS T” such that 7" computes a
well-defined transduction, and agrees with 7" on inputs where T is well-defined.?
Therefore, considering partially-defined schemata do not increase the computa-
tional power in any appreciable way.

5 Equivalence

5.1 Subsequential Functions Are BMRS-Definable

For a left-subsequential function f : X* — I'*, we can define an equivalent
function in BMRS? over models of strings in xX*x. We do this by giving a
construction of its SFST.

For an SFST T = (Q,qo,Qy¢,0,0,w), where @Q is the set of k states, we
construct a BMRS? system of equations T' over the set of recursive functions

f =078 Y™, 0, - - -, dk—1), Where n = |I'| and m is the maximum
length of any output of 0o or w. The definitions in T are fixed as follows. First,
we define qg, ..., qr_1 to parallel the transition function §. For each state ¢ € @
we define its corresponding recursive function symbol q as
q(x) = if q1(p(x)) then oy (x) (2)

else if go(p(x)) then oo(x)

else ...

else if qu(p(x)) then o,(x)

else L

where q1, ..., q¢ is the set of states reaching ¢; that is, the set of states such
that for each g;, 6(¢;,0;) = ¢. For the start state we instead set the final ‘else’
statement to x is the minimum element in the string; i.e. that x(p(x)).

We then define the set of functions v1, ..., ¥, 74, ..., 7™ representing the sym-
bols in the output strings to parallel the output and final functions o and w:

~v(x) = if 91(x) then o1(x) (3)
else if go(x) then oa(x)
else ...
else if qo(x) then o, (x) else L

2 For example, we can augment a boolean monadic recursive scheme with a “clock”
that returns some default value if the program does not terminate within a given
polynomial number of steps. (For each BMRS, there is some polynomial which
bounds the number of steps in each terminating computation). Using a large “switch
statement,” we can ensure that exactly one character gets printed.

jeffrey.heinz@stonybrook.edu

164 S. Bhaskar et al.

for all states ¢; whose output on o; has ~ as the cth symbol. That is, for each
q; either o(q;, 0;) = uzyus or, if o; = X, that w(g;) = uiyus, where |ui| = c— 1.
If there are no such states we set v¢(x) = L.

Finally, in cases when @y C @ we can, via the definition of the semantics
of BMRS transductions for partial functions, we set the equation for the special
function def(x) determining when the function is defined as

def(x) = if q1(x) then T (4)
else if go(x) then T
else ...
else if qo(x) then T else L

for ¢; € Q. When Q5 = Q, we set def(x) = T.
An example definition modeling the SFST in Fig. 1, and an example compu-
tation for an input string aaaa is given in Table 1.

Table 1. A BMRS transduction for the SFST in Fig. 1 (left) and an example derivation
(right). The rows for a®(x), c*(x), and d?(x) have been omitted.

def(x) = T Input: XaaaakX
ef(x) =
012345
= if th 1
9 (x) : q1(p(x)) then a(x) else > (p(x)) wE) LTLTLT
a1(x) = if go(p(x)) then a(x) else L) LITLTL
al(x) = if qo(x) then a(x) else L qi *

o) — L al(x) LTLTLlL
2= blx) LLITLTL
b'(x) = if qi(x) then a(x) else L B2 (x) LLTLITL
b*(x) = if qi1(x) then a(x) else L l(X) LT
c'(x) = if qo(x) then x (x) else L cl *

Cl) - L dlx) LLl1l11
Output:

d*(x) = if qi(x) then x (x) else L e

Ex) =1 Copyl: ababdc
Copy 2 b b

Lemma 1. Any left-subsequential function has some BMRSP definition.

Proof. 1t is sufficient to show that the above construction creates from any SFST
T a BMRS? system of equations T whose transduction ¢(T') = ¢(7).

Consider any string in w = o01...0, € X* of length n; we refer to the positions
in Xwx as their indices 0,1, ...,n+ 1. From the construction qo(x) is always true
of position 1; likewise by definition 7 is in state ¢g at position 1. By definition
(2) for T, whenever 7 is in state g¢;, reads position ¢, and §(g;, 05) = ¢;, then
q;j(x) in T evaluates to T for ¢+1, because ‘if q; (x) then o;(x)’ is in the definition
for qj(x). By induction on 6* it is thus the case that whenever T is in state ¢;
at position i, position i satisfies q; (x) in 7.

jeffrey.heinz@stonybrook.edu

Recursive Schemes for Subsequential Functions 165

Let 0(g;, 04) = u = 71...7m, for any position ¢ in w. By (3), for each ~; there is
a function 7; (x) whose definition includes ‘if q; (x) then o;(z)’. Because i satisfies
qi(x) in T, then each jth copy of ¢ will be 7;, and so the output of ¢ under T
will also be 71...7; = u. This also holds for the output function w.

Thus for any w, ¢(7)(w) = w’ implies that ¢(T)(w) = w’, and it is not hard
to show that the reverse holds. O

The following lemma shows that the same is true for right-subsequential
functions and BMRS?®, which follows by the same logic as for Lemma 1.

Lemma 2. Any right-subsequential function has some BMRS® definition.

5.2 BMRS? and BMRS?*-Definable String Functions Are
Subsequential

To show the converse, we show that for any well-defined BMRS? transduction T,
for f =t(T), the sets {f; | x € X*} are finite. For a copy set C' = {1, ..., m} and
for n = |I'| consider a system T of equations with a set of recursive functions

—

= (v, Ve Vi £ - FR);

let F be the set of function names appearing in f, and let ¢ be the maximum
number such that x — ¢ appears as a term in 7.

First, define sats(w,i) = {f € T | £(i) = T in w} to identify the functions
in T true in w at index 7. The following fact will be used throughout this proof.

Remark 1. For any £ € F and string w € xX*x, the value of £(¢) can be calcu-
lated from the sets Fy, Fy_1, ..., F1, where for each 1 < j < ¢, F; = sats(w,i—j).

Proof. Let £(x) = T be the equation for £ in T. By the definition of T, £ is the
maximum number of times the p function can be applied to a variable in any
term in 7T'. Thus, for any function g € F', Ty can only contain g(x— h) for at most
some h < {. Thus, in terms of the semantics of £(i) for some index ¢ in w, the
value of g(i — h) can be determined by whether g is in F},. The remainder of the
semantics of £(4) then follows from the definition of the semantics of BMRSs. O

The following states that sats(w,) holds no matter how w is extended. This
follows directly from Remark 1.

Remark 2. For any w,v € xX* X, sats(w,i) = sats(wv,i).

Recall that among the functions in F' there is a function v¢ € F foreach vy € I'
and ¢ € C. Recall also that the semantics of BMRS transductions produces an
output string u; at each input index ¢ such that ~ is the cth position in w, if
and only if v¢(¢) evaluates to T. (The stipulation that there is only one such ~¢
ensures that only a single output string is produced for each index). To refer to
this string we define out(w,?) = y17y2...7, where each v; € sats(w,).

jeffrey.heinz@stonybrook.edu

166 S. Bhaskar et al.

Then let outr(w) = out(w, 1)-out(w,2)-...-out(w, last(w)), where last(w)
indicates the final index in w.

We can now connect these facts to the string function f = ¢(T") described
by T. Recall the technicality that the domain of f is X* but T is defined over
string models of the form »xX*x. First, the above allows us to make the following
assertion about the relationship between outr and f?.

Remark 3. outr(xw) C fP(w).

Proof. This follows directly from Remark 2: the output at each index at w will be
constant no matter how w is extended. Thus, fP(w) at least includes outp(xw).

The final piece is to define when two strings w and v are equivalent with
respect to T, which we then show that they are equivalent with respect to f;
that is, that f,, = f,. Intuitively, w and v are equivalent if their final ¢ indices
satisfy exactly the same functions in F'. Formally,

w =p v iff for all 0 <4 < ¢, sats(xw, last(xw) — i) = sats(>w, last(xw) — i)
Remark 4. The partition on X* induced by = is finite.

Proof. For any sequence of ¢ indices, there are at most (2|F |)Z possible sequences
of subsets of F' that they satisfy.

The following states the key implication that equivalence with respect to T’
implies equivalence with respect to f.

Lemma 3. For any two strings w,v € X*, w =7 v implies f, = fy.

Proof. First, for any o € Y, out(xwo, last(Xwo)) = out(xwo, last(xvo)).
In other words, the string output at any additional ¢ following w and v is the
same. This follows from Remark 1 and the fact that the final ¢ indices in xw
and xv satisfy the same sets of functions in F'.

For any string v € X*, then, by induction on the length of ux it is clear that
f(wu) = outy(xw)u’ and f(vu) = outp(xv)u’ for the same w’' € I'*. From this
and Remark 3, we know that fP(w) = outy(xw)u; and fP(v) = outr(xv)uy
for the same uy; € I'*. Clearly then for any v € X*, f(wu) = fP(w)u’ and
f(vu) = fP(v)u’ and so by the definition of f,, and f,, fu = fo-

Lemma 4. For any BMRSP transduction T, the function f = t(T) is a left-
subsequential function.

Proof. The set {f, | * € X*} is finite: from Remark 4, =r induces a finite
partition on X*, and by Lemma 3, for any two strings w, v in the same block in
this partition, f,, = f,. Thus there can only be finitely many such functions f,,.

We omit the proof for the following parallel lemma for BMRS?®.

Lemma 5. For any BMRS® transduction T, the function f = t(T) is a right-
subsequential function.

jeffrey.heinz@stonybrook.edu

Recursive Schemes for Subsequential Functions 167

5.3 Main Theorem
We now can give the central result of the paper.

Theorem 3. BMRSP (respectively, BMRS®) transductions are equivalent to the
left-subsequential (resp., right-subsequential) functions.

Proof. From Lemmas 1, 2, 4, and 5.

6 Discussion

The above result provides the first logical characterization of the subsequen-
tial functions. A consequence of this is we can get a better understanding of
subclasses of the subsequential functions. We sketch two here.

First, the input strictly local (ISL) functions are a strict subset of the subse-
quential class for which the output string is computed by referencing a bounded
window in the input string only [2,3]. Briefly, a function is ISL iff there is some
number k£ such that for any two strings w and v that share a k — 1 suffix,
fw = fv. This class has attractive learnability properties [3] and empirically is
relevant to processes in natural language phonology [5]. We omit a proof, but
it is almost certainly the case that a BMRS system of equations T" corresponds
to an ISL function iff for each function symbol £ € £, the definition of f con-
tains no recursive function calls. This is further interesting in that it suggests
that any left-subsequential function f has a ISL counterpart whose input alpha-
bet subsumes the recursive function symbols in the BMRS? definition of f.?
This is strongly reminiscent of the old result that any regular language is the
homomorphism of a strictly 2-local language [15].

A sister class to the ISL functions is the output strictly local (OSL) functions,
which are those subsequential functions which compute the output string by
referencing the current input and a bounded window in the output [2,4]. They
are divided into two classes the left- and right-OSL functions depending on
whether the string is read from the left or right. We conjecture that a BMRS
system of equations T corresponds to an OSL function iff for each function
f; € £ corresponding to v¢ € I, for any non recursively-defined o(t) (o € X),
then ¢ = x. BMRSP systems of equations of this type correspond to left-OSL
functions, while BMRS® systems of this type correspond to right-OSL functions.

Finally, this paper has limited its discussion to BMRS transductions restricted
to either p or s, so an obvious open question is to what functions are described
by BMRS transductions without this restriction. As any rational function is the
composition of a right- and left-subsequential function [8], it is clear that BMRS
transductions in general are strictly more expressive than either the BMRS? and
BMRS?® transductions. Based on this, we tentatively conjecture that the BMRS
transductions in general are equivalent to the rational functions, but this claim
requires more rigorous investigation than can be done here.

3 We thank Jeff Heinz for pointing this out.

jeffrey.heinz@stonybrook.edu

168 S. Bhaskar et al.

7 Conclusion

This paper has given the first logical characterization of the subsequential
functions. As with previous work connecting logical, language-theoretic, and
automata-theoretic characterizations of formal languages and functions, we are
confident this will further study of the connections between subclasses of the
subsequential functions, and subclasses of the rational functions in general.

References

1. Biichi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Log.
Grundl. Mathmatik 6, 66-92 (1960)

2. Chandlee, J.: Strictly Local Phonological Processes. Ph.D. thesis, University of
Delaware (2014)

3. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions.
Trans. Assoc. Comput. Linguist. 2, 491-503 (2014)

4. Chandlee, J., Eyraud, R., Heinz, J.: Output strictly local functions. In: Kornai,
A., Kuhlmann, M. (eds.) Proceedings of the 14th Meeting on the Mathematics of
Language (MoL 2014), Chicago, IL, pp. 52-63, July 2015

5. Chandlee, J., Heinz, J.: Strictly locality and phonological maps. Linguist. Inq. 49,
23-60 (2018)

6. Chandlee, J., Jardine, A.: Autosegmental input-strictly local functions. Trans.
Assoc. Comput. Linguist. 7, 157-168 (2019)

7. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21-51 (1961)

8. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. Res. Dev. 9, 47-68 (1965)

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2, 216-254 (2001)

10. Filiot, E.: Logic-automata connections for transformations. In: Banerjee, M.,
Krishna, S.N. (eds.) ICLA 2015. LNCS, vol. 8923, pp. 30-57. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-45824-2_3

11. Filiot, E., Reynier, P.: Transducers, logic, and algebra for functions of finite words.
ACM SIGLOG News 3(3), 4-19 (2016)

12. Heinz, J.: The computational nature of phonological generalizations. In: Hyman,
L., Plank, F. (eds.) Phonological Typology. Phonetics and Phonology, pp. 126-195.
De Gruyter Mouton, Berlin (2018). Chapter 5

13. Heinz, J., Lai, R.: Vowel harmony and subsequentiality. In: Kornai, A., Kuhlmann,
M. (eds.) Proceedings of the 13th Meeting on Mathematics of Language, Sofia,
Bulgaria, pp. 52-63 (2013)

14. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge
(1971)

15. Medvedev, Y.T.: On the class of events representable in a finite automaton. In:
Moore, E.F. (ed.) Sequential Machines - Selected Papers, pp. 215-227. Addison-
Wesley, New York (1964)

16. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269-311 (1997)

17. Moschovakis, Y.N.: Abstract Recursion and Intrinsic Complexity. Lecture Notes in
Logic, vol. 48. Cambridge University Press, Cambridge (2019)

jeffrey.heinz@stonybrook.edu

https://doi.org/10.1007/978-3-662-45824-2_3

18.

19.

20.

21.

Recursive Schemes for Subsequential Functions 169

Oncina, J., Garcia, P., Vidal, E.: Learning subsequential transducers for pattern
recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 15, 448-458 (1993)
Schiitzenberger, M.P.: Sur une variante des fonctions séquentielles. Theor. Comput.
Sci. 4, 47-57 (1977)

Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci.
25, 360-376 (1982)

Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Dokl. Akad.
Nauk SSSR 140, 326-329 (1961)

jeffrey.heinz@stonybrook.edu

