
USING MODEL THEORY IN PHONOLOGY:

A NOVEL CHARACTERIZATION OF SYLLABLE STRUCTURE AND

SYLLABIFICATION

by

Kristina Strother-Garcia

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Linguistics

Summer 2019

© 2019 Kristina Strother-Garcia
All Rights Reserved

USING MODEL THEORY IN PHONOLOGY:

A NOVEL CHARACTERIZATION OF SYLLABLE STRUCTURE AND

SYLLABIFICATION

by

Kristina Strother-Garcia

Approved:
Benjamin Bruening, Ph.D.
Chair of the Department of Linguistics and Cognitive Science

Approved:
John Pelesko, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Douglas J. Doren, Ph.D.
Interim Vice Provost for Graduate and Professional Education and
Dean of the Graduate College

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jeffrey Heinz, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Irene Vogel, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Kathryn Franich, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Adam Jardine, Ph.D.
Member of dissertation committee

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support and guidance of

my committee, colleagues, family, and friends. There are far too many people to thank,

but I will do my best. I am especially grateful to my advisor, Jeff Heinz, for being

a captivating instructor, supportive mentor, and top-notch colleague. His passion for

science is contagious, and I never would have ventured into the realm of computational

phonology had it not been for his seminars at UD. He also introduced me to several

of the brilliant minds whose names appear below, fostering connections that have

influenced my career and my personal life for the better.

Having Irene Vogel, Adam Jardine, and Katie Franich on my committee has been a

privilege. I cannot overstate the value of Irene’s critical eye toward this work. She

challenges me to carefully consider the broader implications of my analyses, and her

expertise has greatly improved this dissertation.

It has has been amazing to see Adam go from a fellow student at UD to a professor

at Rutgers, and I am so glad he was able to serve on my committee. Not only has he

aided with the technical aspects of my analyses, but he has also helped me learn how

to present my work more effectively and persuasively. He never lets me undersell my

accomplishments, and I truly appreciate that.

When I asked Katie to join my committee at nearly the last minute, she agreed without

batting an eye. She brought a fresh perspective to the table, and this dissertation has

certainly benefited from her feedback. I would also like thank Katie for attending the

doctoral hooding ceremony to initiate me into the Ph.D. club.

iv

To my cohort, I thank you all for walking through the fire with me: Abdullah Alghamdi,

Mai Ha Vu, Myrto Grigoroglou, Ryan Rhodes, and Young-Eun Kim. I don’t think I

could have survived my first year at UD without you.

Extra thanks are due to Mai Ha for her endless support, as both a colleague and a

beloved friend. I would also like to acknowledge Hossep Dolatian, who provided techni-

cal and moral support—along with his amazing sense of humor—and for proofreading

this dissertation. There are many other students and recent graduates of the depart-

ment who have contributed to my success and well-being: Hung Shao Cheng, Lexi

Robbins, Olga Parshina, Taylor Miller, Hyunjin Hwangbo, Amanda Payne, and Stefan

Bartell, to name just a few.

I am also grateful to Jane Creswell and Laura Edmanson for keeping all the plates

spinning. I thank Nina Straitman for much wisdom, many needed laughs, and lots of

lunches.

I would be remiss not to mention my colleagues and mentors at the Child’s Play,

Learning and Development Lab, who were instrumental in my development as a sci-

entist and a scholar: Roberta Michnick Golinkoff, Giovanna Morini, Haruka Konishi,

Natalie Brezack, Kate Ridge, Brian Verdine, Ilyse Resnick, Vinaya Rajan, and Ratna

Nandakumar. Thank you for all that you taught me.

To my colleagues at the Treatment Efficacy and Language Learning Lab, I truly appre-

ciate your encouragement and positivity: Amanda Owen Van Horne, Maura Curran,

and our team of undergraduate research assistants. Thanks also to Emily Fritzson,

Julie Campagna, Aquiles Iglesias, and the entire department of Communication Sci-

ences and Disorders for welcoming and supporting me.

I would also like to acknowledge my collaborators, coauthors, and those who have

brainstormed with me over the years: Kathy Hirsh-Pasek, Dani Levine, Bert Tanner,

Ashkan Zehfroosh, Bill Idsardi, Jim Rogers, Eric Baković, Jane Chandlee, Thomas

Graf, Kevin McMullin, Eric Raimy, Remi Eyraud, Ben Parrell, Jon Rawski, Aniello

v

de Santo, Alëna Aksënova, Nick Danis, and Eileen Blum. There are many others who

deserve thanks, no doubt—I hope you will all forgive me for cutting the list short here.

Finally, I would have never made it this far without the support of my family and

friends. I cannot thank you all enough. My parents, Carol and Todd Smith, deserve

special mention for everything they have done for me. You have my undying gratitude.

To my husband, Michael: your confidence in me and your tireless encouragement kept

me going when things got tough. Thank you, thank you, thank you. Go Team SG!

vi

TABLE OF CONTENTS

LIST OF TABLES . x
LIST OF FIGURES . xi
ABSTRACT . xvi

Chapter

1 INTRODUCTION . 1

2 THE SYLLABLE . 5

2.1 Evidence for the Syllable . 5
2.2 Previous Accounts of the Syllable . 6
2.3 Methodological Problems of Previous Approaches 9
2.4 Moving Forward . 12

3 FORMAL BACKGROUND . 13

3.1 Word Models and Model Theories . 13

3.1.1 The Successor Model Theory 15
3.1.2 A Brief Aside: Notational Conventions 17
3.1.3 The Precedence Model Theory 18
3.1.4 Visual Representations . 19

3.2 Enriching Conventional Word Models 20

3.2.1 Enriching the Alphabet . 20
3.2.2 Enriching the Structure . 22

3.3 Transductions . 22
3.4 Substructures . 24
3.5 Formal Languages and Substructure Constraints 25
3.6 Logics and Locality . 27

vii

3.7 User-defined Formulas . 29

4 SYLLABLE REPRESENTATIONS 31

4.1 Notational Equivalence . 31
4.2 Representations of Syllable Structure 32

4.2.1 The Dot Model Theory . 34
4.2.2 The Flat Model Theory . 35
4.2.3 The Tree Model Theory . 37

4.3 Comparing Different Models . 39

4.3.1 L-interpretability . 39
4.3.2 The Flat-to-Tree Transduction 40
4.3.3 The Tree-to-Flat Transduction 54
4.3.4 The Flat-to-Dot Transduction 58
4.3.5 The Dot-to-Flat Transduction 66

4.4 Discussion . 72

5 UNIVERSAL PRINCIPLES, SONORITY SEQUENCING, AND
CV TYPOLOGY . 77

5.1 Structural Well-formedness Constraints 77
5.2 Sonority Sequencing . 80

5.2.1 Sonority Relations . 81
5.2.2 Constraints on Sonority Sequencing 83

5.3 CV Typology . 86

6 CASE STUDY: IMDLAWN TASHLHIYT BERBER 90

6.1 Motivation . 90
6.2 The Basics . 93
6.3 Surface Well-Formedness in ITB . 95

6.3.1 Structural Constraints . 95
6.3.2 Sonority Sequencing Constraints 98
6.3.3 The Formal Language for ITB 100

viii

6.3.4 Extended Example: /t-xzn-t/ 101

6.4 Syllabification in Imdlawn Tashlhiyt Berber (ITB) 104

6.4.1 Sonority and Other Considerations 105
6.4.2 Identifying Syllable Constituents 107
6.4.3 The ITB Syllabification Transduction 107
6.4.4 Extended Example: /saulx/ 110

7 CASE STUDY: MOROCCAN ARABIC 112

7.1 The Basics . 114
7.2 Surface Well-formedness in MA . 115

7.2.1 Structural Constraints . 115
7.2.2 Sonority Sequencing Constraints 120
7.2.3 Exceptions to the Epenthesis Pattern 122
7.2.4 The Formal Language for Moroccan Arabic (MA) 126

7.3 Syllabification in MA . 127

7.3.1 Identifying (Some) Syllable Constituents 127
7.3.2 Identifying Insertion Sites . 128
7.3.3 Identifying the Remaining Syllable Constituents 132
7.3.4 The MA Syllabification Transduction 134
7.3.5 Extended Example: /krkbk/ 138

8 DISCUSSION . 141

8.1 Computational Complexity . 141

8.1.1 Graph Transductions . 141
8.1.2 Substructure Constraint Grammars 143

8.2 Other Issues in Syllable Theory . 143

8.2.1 Additional Syllable Structures 144
8.2.2 Additional Processes Related to Syllable Structure 146

8.3 Other Directions for Future Work . 147

9 CONCLUSION . 149

ix

LIST OF TABLES

5.1 Possible Syllable Types in Basic CV Typology 89

6.1 Alternations in ITB Perfective Verb Forms: 2ms vs. 3fs with a dative
masc. object . 91

6.2 Alternations in ITB Perfective Verb Forms: 3ms vs. 3fs 91

6.3 Phonemic Singleton Consonants in ITB 93

6.4 Pharyngealized Consonants in ITB 94

6.5 Unpredictable Vowel/Glide Contrasts in ITB 94

6.6 Words with GR Syllables . 98

6.7 Truth Table for /saul-x/ . 110

7.1 Epenthesis in MA Verbs (Perfective Forms) 113

7.2 Phonemic Singleton Consonants in MA 114

7.3 Geminate C@CC Forms in MA . 123

7.4 MA 1sg Past Tense Verb Forms . 124

7.5 Additional Examples of Epenthesis in MA Nouns 125

7.6 Truth Table for /krkbk/ . 140

x

LIST OF FIGURES

3.1 A visual representation of MC
ball . 16

3.2 A visual representation of M<
ball . 19

3.3 Γb)a(MC
ball) . 23

3.4 ψll . 25

4.1 Dot representation: a string of segments and syllable boundaries . . 32

4.2 Flat representation: a string of segments labeled with syllable
constituents . 33

4.3 Tree representation: hierarchical structure 33

4.4 Mdot
plenty . 35

4.5 Mflat
plenty . 36

4.6 Mtree
plenty . 38

4.7 The codomain for Γft(Mflat
plenty) . 41

4.8 Labels for Copy Set 1 in Γft(Mflat
plenty) 42

4.9 A nucleus-adjacent onset defined with the Flat Model theory 43

4.10 Labels for Copy Sets 1 and 2 in Γft(Mflat
plenty) 44

4.11 Labels for all three copy sets in Γft(Mflat
plenty) 45

4.12 The successor function in Γft(Mflat
plenty) 46

xi

4.13 Some dominance information in Γft(Mflat
plenty) 47

4.14 Additional dominance information in Γft(Mflat
plenty) 48

4.15 An onset of length n . 49

4.16 Γft(Mflat
plenty) fully specified . 51

4.17 The licensed output of Γft(Mflat
plenty) 52

4.18 The codomain for Γtf (Mtree
plenty) . 55

4.19 Unary relations for Γtf (Mtree
plenty) . 56

4.20 Γtf (Mtree
plenty) fully specified . 57

4.21 The licensed output of Γtf (Mtree
plenty) 58

4.22 The codomain for Γfd(Mflat
plenty) . 59

4.23 Labeling Copy Set 1 in Γfd(Mflat
plenty) 60

4.24 Labeling Copy Set 2 in Γfd(Mflat
plenty) 61

4.25 Some successor information in Γfd(Mflat
plenty) 63

4.26 All successor information in Γfd(Mflat
plenty) 64

4.27 Γfd(Mflat
plenty) fully specified . 65

4.28 The licensed output of Γfd(Mflat
plenty) 66

4.29 The codomain for Γdf (Mdot
plenty) . 67

4.30 Some unary relations for Γdf (Mdot
plenty) 67

4.31 Some unary relations for Γdf (Mdot
plenty) 68

4.32 Additional unary relations for Γdf (Mdot
plenty) 70

4.33 Γdf (Mdot
plenty) fully specified . 71

xii

4.34 The licensed output of Γdf (Mdot
plenty) 72

4.35 Mtree
CO , a complex onset in the Tree Model 74

4.36 The output of Γtf (Mtree
CO) . 75

5.1 ψNR, the substructure required by κNR “Nucleus Required” 78

5.2 ψNU , the substructure banned by κNU “Nucleus Unique” 78

5.3 Mtree
plenty . 79

5.4 ψOC , the substructure banned by κOC “No Onset-Coda” 80

5.5 ψright, the substructure banned by κright “Right of Onset” 84

5.6 An onset followed by a nucleus of lesser sonority 84

5.7 Mlbik . 85

5.8 Mblik . 85

5.9 ψleft, the substructure banned by κleft “Left of Coda” 86

5.10 ψOR, the substructure required by κOR “Onset Required” 87

5.11 ψCF , the substructure banned by κCF “Coda Forbidden” 88

6.1 ψNIOS, the substructure banned by κNIOS “No Internal Onsetless
Syllable” . 95

6.2 ψNFO, the substructure banned by κNFO “No Final Obstruent” . . 96

6.3 ψNCO, the substructure banned by κNCO “No Complex Onset” . . . 97

6.4 ψNCC , the substructure banned by κNCC “No Complex Coda” . . . 97

6.5 ψson, the substructure banned by κson 99

6.6 ψa, the substructure banned by κa “No Onset [a]” 99

6.7 ψleft, the substructure banned by κleft “Left of Coda” 100

xiii

6.8 M[tx
"
.zn

"
t] . 101

6.9 Mtree
[t
"
x.zn

"
t] . 102

6.10 Mtree
[tx

"
z.nt

"
] . 102

6.11 Mtree
[txz

"
.n
"
t] . 103

6.12 Mtree
[t
"
.x
"
.z
"
.n
"
.t
"
] . 103

6.13 MC
saulx . 110

6.14 ΓITB(MC
saulx) . 111

7.1 ψNCO, the substructure banned by κNCO “No Complex Onset” . . . 116

7.2 ψNISC , the substructure banned by κNISC “No Internal Syllabic
Consonants” . 117

7.3 ψNIOS, the substructure banned by κNIOS “No Internal Onsetless
Syllables” . 117

7.4 ψN3C , the substructure banned by κN3C “No Trisegmental Coda” . 118

7.5 ψN@σ, the substructure banned by κ@σ “No Open Schwa
(Word-Internal)” . 119

7.6 ψN@n, the substructure banned by κ@n “No Open Schwa
(Word-Final)” . 120

7.7 ψright, the substructure banned by κright “Right of Onset” 121

7.8 ψleft1, the substructure banned by κleft1 “Left of Coda
(Word-Internal)” . 122

7.9 ψleft2, the substructure banned by κleft2 “Left of Coda (Word-Final)” 122

7.10 The Tree Word Model for [S@kk] . 123

7.11 ψ1sg, the substructure banned by κ1sg “No Epenthesis Preceding 1sg
Suffix” . 124

xiv

7.12 ψexc, the substructure banned by κexc “No CC@C for Exceptional
Stems” . 125

7.13 The Successor Word Model for /ktf/ 129

7.14 The Successor Word Model for /klb/ 130

7.15 Mtree
[k.t@b] . 134

7.16 The licensed output of ΓMA(MC
[k.t@b]) 135

7.17 MC
krkbk . 138

7.18 The output of ΓMA(MC
krkbk) . 139

8.1 The substructure corresponding to ons 1(x) 142

8.2 ψNIOS, the substructure banned by κNIOS “No Internal Onsetless
Syllable” . 144

8.3 The Rhyme Model for cat [kæt] . 145

8.4 A tree-like representation of lemon [lEm@n] 146

xv

ABSTRACT

This dissertation investigates the computational properties of syllable-based phenom-

ena using tools from Model Theory. Although the syllable has been studied by linguists

for over a century, the computational complexity of syllable well-formedness and syl-

labification processes has not yet been investigated. After introducing the necessary

formalisms from Model Theory, I present three main findings. First, I show that

three types of syllable structure representations from the literature are notationally

equivalent, meaning we can ‘translate’ between them very easily without loss of infor-

mation. Second, I formalize syllable well-formedness patterns in Imdlawn Tashlhiyt

Berber (ITB) and Moroccan Arabic (MA) as grammars of local, inviolable constraints.

Third, I formalize syllabification processes in ITB and MA using Quantifier-Free (QF)

logic, a weak logical language that can only make local computations. Taken together,

these findings support the hypothesis—contrary to constraint-based paradigms which

emphasize global optimization—that syllable-based phenomena are fundamentally lo-

cal in nature.

xvi

Chapter 1

INTRODUCTION

This dissertation investigates the computational properties of syllable well-formedness

patterns and syllabification processes using tools from Model Theory. The syllable is

one of the most referenced phonological domains; it is central to economical accounts

of many patterns and processes, both synchronic and diachronic. Any useful frame-

work of phonology must therefore provide a way to represent syllable structure and

to explain syllable-based phenomena. In particular, this dissertation focuses on three

main questions:

1. How do we evaluate competing representations of syllable structure?

2. What is the nature of the syllable well-formedness patterns that we observe in

surface forms?

3. What is the nature of the processes that generate syllabified Surface Represen-

tations (SRs) from unsyllabified Underlying Representations (URs)?

To answer these questions, I turn to Model Theory, which is the branch of mathematics

that applies formal logic to the study of structures. Several theorists have noted the

value of formal logic in phonology (e.g., Bird et al., 1992; Coleman, 1998; Graf, 2010;

Heinz, 2011a; Heinz & Idsardi, 2013; Potts & Pullum, 2002; Rogers et al., 2013; Scobbie,

1991). It gives us a way of characterizing the structures, patterns, and processes that

are crucial to theoretical phonology while abstracting away from the details of any

particular grammatical formalism. With formal logic, we can directly evaluate and

1

address expressivity problems in existing theories of phonology because the ability of

a grammar to over- or under-generate is directly related to its computational power

or complexity—that is, the types of statements or computations the grammar allows

(Gainor et al., 2012; Graf, 2010; Potts & Pullum, 2002). In this way, computational

complexity is an indicator of the types of patterns that are possible (or impossible) for

a given grammar to generate.

One useful way of limiting computational complexity in phonology is to allow only

local (as opposed to global) well-formedness evaluation, which constrains the grammar

to a handful of highly restricted classes of patterns (Heinz, 2010b; Rogers et al., 2013;

Rogers & Pullum, 2011a). These classes have already been demonstrated to encompass

many patterns of local and long-distance phonotactics (Heinz, 2007, 2009, 2010a),

vowel harmony (Blum, 2018; Heinz et al., 2011), tone contour well-formedness (Jardine,

2016, 2017), and stress assignment (Heinz, 2009; Rogers et al., 2013), while ruling out

unattested patterns (Heinz & Lai, 2013). UR-to-SR mappings for several phonological

processes (e.g., metathesis, vowel harmony, partial reduplication, dissimilation) have

also been represented with mathematical formalisms that are similarly limited in terms

of locality (Chandlee, 2014; Chandlee & Heinz, 2018; Heinz & Lai, 2013; Payne, 2017;

Rawski, 2018).

Importantly, logical formalisms make no commitment to the real-world implementation

of the grammar. In this respect, the approach here is similar to Declarative Phonol-

ogy (DP) (Bird et al., 1992; Scobbie et al., 1996). However, there are two main differ-

ences. First, DP considers only SRs and not UR-to-SR maps. Second, the goal of DP is

purely descriptive, unlike later model-theoretic approaches to phonology which seek to

better understand characteristics of linguistic generalizations independent of grammat-

ical formalisms (e.g., Heinz, 2011a,b; Potts & Pullum, 2002). The aim here is not to

show that the brain somehow prefers formal logic over other methods of computation,

but to use logic as a tool to gain insight into the nature of phonological patterns and

processes. This approach tries to answer the question of what kinds of representations

2

and computations are sufficient to account for phonological generalizations.

To that end, this dissertation presents three main findings. First, I show that three

types of syllable structure representations from the literature are notationally equiva-

lent, meaning we can ‘translate’ between them very easily without loss of information.

This is accomplished by providing effective translations between these representations

and showing that it is sufficient to use First-Order (FO) logic without quantification.

This restricted logic, called Quantifier-Free (QF) logic, is fundamentally related to lo-

cality. Moreover, it follows from these translations that any analysis stated in terms of

one representation can be automatically translated into an analysis stated in terms of

one of the others.

Second, I formalize syllable well-formedness patterns in Imdlawn Tashlhiyt Berber

(ITB) and Moroccan Arabic (MA) as grammars of local, inviolable constraints. In other

words, it is sufficient to account for the surface syllable structures in both languages

simply by referring to connected substructures, without recourse to global evaluation.

Third, I formalize the syllabification processes themselves in ITB and MA using QF

logic. Again, not only does this mean that they are fundamentally local in a strict sense,

but it also implies that the UR-to-SR maps for syllabification in these languages do not

require global optimization, contrary to dominant paradigms in theoretical phonology.

Together these findings support the hypothesis that local computations are sufficient

to account for syllable structures and syllabification in the world’s languages.

Chapter 2 gives a brief overview of the syllable as a unit of interest in phonology. The

formal mathematical background for the proposed approach is presented in Chapter 3.

In Chapter 4, I discuss three types of syllable representations from the phonological

literature and formalize them as mathematical objects. I then develop formalisms for

translating between these representation types, and I show that they are notationally

equivalent. In Chapter 5, I turn to universal principles and CV typology. Chapters 6

and 7 are case studies on syllable structure: the first on ITB and the second on MA.

3

Each presents its own challenges, but both turn out to be computationally simple. In

Chapter 8, I discuss what these results can tell us about computational complexity

in phonology and which aspects of syllable theory are compatible with the present

analysis; I also suggest some directions for future work. Finally, Chapter 9 concludes

with a brief summary of the findings herein.

4

Chapter 2

THE SYLLABLE

References to the syllable as a phonological unit abound in linguistic theory. While

some phonologists have questioned the universality of the syllable (e.g., Blevins, 2003;

Côté, 2000; Gimson, 1970; Hyman, 1983; Kohler, 1966; Steriade, 1998, 1999), very

few reject its existence outright (as discussed in Goldsmith, 2011). In this chapter, I

first present support for the syllable from studies of synchronic phonological patterns,

diachronic change, and articulatory gestures. I then review established theoretical

approaches to the syllable and discuss some of their shortcomings.

2.1 Evidence for the Syllable

Syllable structure is central to economical descriptions of many phonological processes.

For example, Kahn (1976) notes that many rewrite rules can be simplified by referring

to the coda position rather than the otherwise unrelated environments “before/after

a consonant or word boundary.” Since the 1960s, syllable-based approaches have been

proposed to account for a variety of phonological processes in Spanish (Harris, 1969),

Finnish (Harms, 1964), German (Vennemann, 1968a), Japanese (McCawley, 1968),

Akan (Schachter & Fromkin, 1968), and Italian (Vogel, 1977), among many others.

Davis (1985) provides additional examples of string-based descriptions of phonological

processes that miss key generalizations due to their omission or dismissal of syllables.

Accounts of stress assignment (e.g, Broselow, 1976; Harris, 1983) and phonotactics (e.g.,

Kahn, 1976) typically rely on syllable structure. In general, processes of assimilation,

weakening, and deletion are more common syllable-finally than syllable-initially (Bell

5

& Hooper, 1978; Kahn, 1976; Ohala & Kawasaki, 1984). For example, syllable-final

laterals are more likely to be ‘dark’ (i.e., more backed) following a back vowel than are

syllable-initial laterals (Giles & Moll, 1975; Lehiste, 1960). It is also more common for

regressive nasalization to be triggered by syllable-final nasals, as opposed to syllable-

initial nasals (Schourup, 1973).

In addition to these synchronic patterns, many diachronic phonological changes are

easily explained if syllable structure is taken into account. Compared to syllable-initial

stops, syllable-final stops are more likely to be deleted over time (Kent & Read, 1992;

Locke, 1983; Manuel & Vatikiotis-Bateson, 1988). Similarly, laterals and nasals in coda

position are more susceptible to diachronic weakening. Weakening of a syllable-final

nasal sometimes leads to the genesis of contrastive vowel nasalization (Kawasaki, 1986),

while syllable-final lateral weakening can leave a high or mid back vowel in place of a

true [l] (Chen & Wang, 1975).

Studies of articulatory gestures in speech production provide additional insight. Krakow

(1999, 1989) proposes that syllabic positions are associated with certain patterns of ar-

ticulatory organization. She relates differences in lip-velum coordination to the greater

likelihood for assimilation to affect a vowel preceding a coda /m/ than a vowel in

an open syllable that precedes an onset /m/. Similarly, Browman & Goldstein (1995)

show that syllable-final laterals tend to involve less tongue contact/closure at the palate

and alveolar ridge than do syllable-initial laterals. This explains the backing process

observed independently by Lehiste (1960), Giles & Moll (1975), and others.

Taken together, these studies strongly suggest that the syllable has explanatory value

in descriptions of synchronic phonological patterns and historical sound changes, as

well as a basis in articulatory phonetics.

2.2 Previous Accounts of the Syllable

The development of syllable theory began with some of the earliest works in modern

linguistics. Whitney (1874), Osthoff & Burgmann (1878), Sievers (1881), and Jespersen

6

(1904) all discuss phonological constituents smaller than the word and larger than

the segment, often directly referencing sonority peaks as the defining feature of these

constituents. Making use of the notion of sonority, Saussure developed what might be

the first set of ordered rules for partially syllabifying a string (Goldsmith, 2011; Laks,

2003). Saussure’s focus on the syllable as the primary unit of interest in phonological

theory informed many subsequent endeavors, including experimental studies of the

physiological and/or acoustic correlates of syllable boundaries (e.g., Draper et al., 1959;

Gay, 1978; Kent & Minifie, 1977; Kozhevnikov & Chistovich, 1965; Stetson, 1951).

While these studies had mixed results at best, they paved the way for future work,

both theoretical and experimental.

Perhaps in part due to the failure of early experiments to offer a definition of the sylla-

ble in physical terms, work in generative phonology at first eschewed syllable theory in

favor of string-based approaches (e.g., Chomsky & Halle, 1968). In this view, phono-

logical processes are thought to apply to strings of segments (and sometimes word and

morpheme boundaries), without any notion of word-internal phonological structure.

However, the shortcomings of string-based accounts led Generativists to reconsider the

importance of the syllable as a phonological domain (e.g., Clements & Keyser, 1983;

Davis, 1985; Hooper, 1972; Kahn, 1976; Vogel, 1977). Early generative approaches

typically viewed syllabification as a predictable process defined by an ordered set of

rules (e.g., Borowsky, 1990; Giegerich, 1992; Kahn, 1976; see Kenstowicz (1994) for a

review), just as Saussure had originally proposed.

To illustrate a rule-based approach, consider the set of rules in (1), reproduced from

Basbøll (1999). These rules encode a process for syllabifying Danish consonants and

consonant clusters between a stressed short vowel and a schwa.

(1) 1. A postvocalic C is adjoined to the left (i.e., to the syllable of the preceding

V).

2. /g/ is adjoined to the left.

7

3. Non-adjoined C’s are adjoined to the right if they form a possible onset

together with all following C’s (which are then also adjoined to the right),

otherwise to the left.

Take, for instance, the word entre /"3ntK5/, ‘to board.’ Rule 1 applies to the /n/

because it follows a stressed short vowel, /3/, and precedes a schwa. The /n/ therefore

adjoins to the first syllable, occupying the coda position. Rule 2 does not apply. Rule

3 applies to /t/ because it too follows a stressed /3/ and precedes a shwa. Because

[tK] is a valid onset in Danish, both consonants adjoin to the second syllable. The end

result is ["3n.tK5].

Some later rule-based approaches make limited use of inviolable constraints. Reiss

(2008) describes two main uses of constraints in these frameworks: to trigger phonologi-

cal rule application to repair ill-formed structures (as in Calabrese, 1988; Paradis, 1988)

and to block rule application where it would result in an ill-formed structure (as in Halle

& Idsardi, 1995; McCarthy, 1986). One such framework—templatic syllabification—

garnered interest alongside the development of prosodic phonology in the 1980s (e.g.,

Selkirk, 1980; Nespor & Vogel, 1986/2007). In the templatic approach to syllabifica-

tion, each language has a template for a maximal core syllable (e.g., Duanmu, 2009; Itô,

1988, 1989). For example, epenthesis in Spanish can be explained as a necessary con-

sequence of mapping URs to a maximal CCVC syllable template (Kenstowicz, 1994).

Consider the loanword esplin, from the English spleen. Mapping /splin/ to the CCVC

template from right to left, we obtain two partial syllables: s.plin. While the second

syllable is well-formed, the first syllable needs, minimally, a nucleus. Epenthesis of [e]

corrects this, resulting in the SR [es.plin].

The template is, in a sense, an inviolable constraint on possible syllable types. The

process of syllabification can then be conceptualized as a mapping from the UR to the

SR that matches this template, deleting and epenthesizing where necessary to avoid any

deviations from the template. As Kenstowicz (1994) points out, carefully constructed

sets of rewrite rules can encode the same information as a templatic syllabification

8

approach. In a sense, both treatments rely primarily on an ordered set of rules that

map URs to SRs.

In stark contrast, the treatment of syllables in Optimality Theory (OT) is, of course,

focused on surface well-formedness rather than the syllabification process itself. Cru-

cially, well-formedness is evaluated globally across the entire SR. Prince & Smolensky

(1993) offer several violable constraints relevant to syllable structure, two of which are

given in (2) and (3). The tableaux in (4) (reproduced from Kager, 1999) shows how

both of these constraints are violated if /baba/ is syllabified as [bab.a] rather than

[ba.ba]. This is a universal outcome in OT; the mere presence of Onset and No-

Coda (and the lack of constraints like No-Onset and Coda) guarantees that [ba.ba]

will always be more optimal than [bab.a].

(2) Onset: ‘Syllables must have onsets.’

(3) No-Coda: ‘Syllables are open.’

(4)

/baba/ Onset No-Coda

� a. ba.ba

b. bab.a ∗ ∗

Additional constraints ban syllabic nuclei of low sonority, complex syllable margins,

and other marked syllable structures. The ranking of these markedness constraints

with respect to faithfulness constraints such as Max (‘Don’t delete’) and Dep (‘Don’t

epenthesize’) determines the language-specific principles of syllable well-formedness.

2.3 Methodological Problems of Previous Approaches

In terms of accounting for types of phonological patterns, derivation via rewrite rules

and optimization over violable constraints both overgenerate in undesirable ways (Frank

& Satta, 1998; Gainor et al., 2012; Heinz, 2018; Heinz & Lai, 2013; Riggle, 2004). In

other words, both approaches allow for the description of patterns that are unattested

(and thought to be unnatural).

9

To illustrate this point, I will expound on one such pattern that is notoriously problem-

atic for OT: Majority Rules (Baković, 1999, 2000; Lombardi, 1999). Consider a lan-

guage with front-back vowel harmony. Assuming the harmonizing feature is [±front],

the two relevant constraints are Agree[front] and Ident[front]. The first of these is a

markedness constraint, defined in (5). It assigns one violation for every pair of consec-

utive vowels that does not share the same value for [front]. The faithfulness constraint

Ident[front], defined in (6), assigns one violation for every change in the [front] value

of a vowel from the UR to the SR.

(5) Agree[front]: ‘Two vowels in adjacent syllables must have the same [front]

value.’

(6) Ident[front]: ‘Do not change the value of [front].’

If Agree[front] outranks Ident[front], an odd pattern arises: the SR will harmonize

to whichever type of vowel is more common in the UR (i.e., front or back). Hence the

name: Majority Rules.

Abstracting away from other vocalic features and ignoring consonants altogether, let

us consider sequences of [+front] and [–front] vowels using only the symbols – and +.

The following tableaux will help to illustrate the Majority Rules result.

(7)

/– – +/ Agree[front] Ident[front]

a. – – + ∗!

� b. – – – ∗

c. + + + ∗∗!

The UR in (7) is /– – +/. The fully faithful candidate violates Agree[front] twice: the

first and second vowels differ in value for [front], as do the second and third. Because

Agree[front] outranks Ident[front], this candidate is less harmonic than the other

two—in fact, any candidate without complete harmony will be less harmonic than

10

the two candidates with complete vowel harmony. In this case, the back-harmonizing

candidate incurs fewer violations of Ident[front] and is therefore optimal.

Given the UR /+ – +/ in (8), the fully faithful candidate violates Agree[front]

twice, just as in the previous example. Among the remaining candidates, the front-

harmonizing one incurs the fewest violations of Ident[front] and is therefore optimal.

(8)

/+ – +/ Agree[front] Ident[front]

a. + – + ∗!∗

b. – – – ∗∗!

� c. + + + ∗

In the general case, any input with a majority of front vowels will front-harmonize

completely and any input with a majority of back vowels will back-harmonize com-

pletely. One might wonder what happens when the input has an equal number of

front and back vowels. In this case, the two constraints given here cannot determine a

single optimal candidate. As (9) shows, the front-harmonizing and back-harmonizing

candidates incur exactly the same violations.

(9)

/+ – + –/ Agree[front] Ident[front]

a. + – + – ∗!∗∗

� b. – – – – ∗∗

� c. + + + + ∗∗

These examples illustrate how the simple ranking of two constraints can result in

an unattested, unnatural pattern (Finley, 2008; Finley & Badecker, 2008). There is

nothing particular about the constraints shown here that lead to this pattern. It is

global optimization itself that forces the Majority Rules result.

11

2.4 Moving Forward

The syllable has received ample attention over the past century and a half, under two

main approaches: rule-based accounts of the syllabification process, and Optimality-

Theoretic constraint-based accounts of input-output mappings based on surface well-

formedness. While both approaches have produced adequate descriptions of many

phonological processes related to syllable structure, they have major disadvantages due

to the expressivity of their formalisms. This dissertation offers a third approach using

a highly restricted logical language, drawing from previous work in formal language

theory. The next chapter provides the formal background for the analyses to follow.

12

Chapter 3

FORMAL BACKGROUND

This chapter presents the mathematical tools to be used in my analyses of syllable

structure and syllabification. First I introduce word models as a way of representing

the structure of words, with examples using two commonly used model theories. I

then present some modifications to conventional model theories in §3.2. In §3.3 I

define mappings from underlying forms to surface forms using graph transductions.

§3.4 shows how to characterize surface generalizations by referring to substructures

and §3.5 introduces logical expressions called substructure constraints to define formal

languages—sets of phonologically well-formed words. In §3.6, I discuss three different

logical languages and the relationship between logical power and locality. Finally, §3.7

introduces user-defined formulas for shorthand.

3.1 Word Models and Model Theories

A word model is a type of graph used for representing relational structures such as

words. Take the orthographic word ball, for instance. It consists of four symbols in a

particular order. This can be formalized as a string of four ordered positions, each of

which is labeled with a letter of the alphabet. For example, the second position in ball

is labeled a.

There are many ways one such string can be represented. Model theories define classes

of word models that share a common signature. Given an alphabet Σ (a set of symbols

or labels), a model theory M has the signature 〈D;R;F〉 where D is a domain (a set

of positions), R is a a set of relations among elements of the domain (positions), and

F is a set of functions.

13

Domain. The domain D is somewhat like the skeleton of the word model, but domain

positions have no inherent properties or order. Relations and functions determine

what each position means in the context of the object being modeled. By convention,

the domain D is the set of natural numbers—the positive counting numbers (e.g.,

1, 2, 3 . . .). Although strings are sometimes represented starting at position 0, this

creates confusion as to whether position 1 is the ‘first’ or ‘second’ position. I use 1 to

index (number) the initial position, so the final position in a string of length n has the

index n. In the string ball, for instance, the first position is 1 and the final position is

4.

Relations. The set R includes a relation Rσ for every every symbol σ in the alphabet

Σ. For example, let Σ = {a, b, l}. Then R includes the unary relations Ra, Rb, Rl. In

the word ball, the first position is a member of the set Rb because it is labeled b. Set

membership is denoted with the ∈ symbol, as in 1 ∈ Rb, which is read “1 is in Rb” or

“1 belongs to Rb.” In contrast, the /∈ symbol denotes non-membership, as in 2 /∈ Rb,

meaning “2 is not in Rb”—in other words, position 2 is not labeled b.

The relations described thus far are all unary, meaning that they only refer to a single

position. Formally, a unary relation is one that takes a single argument. In principle,

R may contain relations of higher arity, meaning they take more than one argument.

Functions. Unary functions in F are similar to unary relations in that they both take

a single position as an argument. However, the relations used here are evaluated as

Boolean expressions : they are either TRUE or FALSE. Position 1 is either labeled a or

it is not. In contrast, functions map domain positions to domain positions.

The following examples will help to make these definitions clear.

14

3.1.1 The Successor Model Theory

Given an alphabet Σ, the Successor Model Theory MC is defined in (3.1).

MC def
=
〈
N; {Rσ | σ ∈ Σ}; {pred(x), succ(x)}

〉
(3.1)

Domain. As is tradition, the domain is N.

Relations. The only relations in MC are those corresponding to each member σ of

the alphabet Σ. This set is denoted {Rσ | σ ∈ Σ}, where the | symbol stands for “such

that.” Thus the meaning of {Rσ | σ ∈ Σ} is “the set of relations Rσ, such that σ is in

Σ.”

Functions. Given a position x, the unary functions pred(x) and succ(x) pick out the

immediate predecessor and successor of x, respectively.1 For example, succ(1) = 2

means that the successor of 1 is 2 and pred(2) = 1 means the predecessor of 2 is 1.

This may seem trivial, but recall that the domain has no inherent order. It could

just as well be true that succ(4) = 3, succ(3) = 2, and so on—this would be similar to

reading right-to-left instead of left-to-right. The successor and predecessor functions as

I have defined them impose the left-to-right order tacit in English orthography. Model

theories, as mathematical objects, must have all properties defined explicitly.

For a function to be total, it must yield an output for every position of its domain. In

the general case, succ(x) = x + 1 and pred(x) = x − 1. But what is the predecessor

of the first position? To make pred(x) a total function, the initial position is defined

to be its own predecessor, i.e., pred(1) = 1, as in Thomas (1982). Similarly, the final

position in a string is its own successor, making succ(x) total as well. Then in a string

of n positions, succ(n) = n.

1 The use of unary functions (rather than binary relations) for predecessor and suc-
cessor is due to Chandlee & Lindell (2016).

15

The Successor Model for ball

The model for the string ball under the Successor Model Theory is denoted MC
ball.

Using the alphabet Σ = {a, b, l}, MC
ball is defined in (3.2) and represented visually in

Figure 3.1.

Figure 3.1: A visual representation of MC
ball

b

1

a

2

l

3

l

4

C C C
C

Domain. While the domain for MC is N, the domain for a particular word model is

a finite subset of N. Domain positions in a word model are sometimes called nodes. In

MC
ball, the domain D is a set of four nodes, each of which is visually represented as a

circle with its index below and to the left.

Relations. Unary relations of the form Rσ are given as sets, the members of which

are positions labeled σ. For example, position 1 is a member of the set Rb, so it is

labeled b.

Functions. The successor function is illustrated by directed edges (arrows) labeled

with the C symbol. The final position is its own successor by definition, so this illus-

trated with a self-loop. In the remaining figures, I will generally omit these word-final

self-loops for the sake of visual clarity. The predecessor function is also left out of the

visual representation because this information is largely redundant, given the successor

information.

Following Chandlee & Lindell (to appear), I use a notational extension of FO logic that

includes definition by cases. As the authors note, “any extended formula is equivalent

to an ordinary formula involving Boolean combinations of the terms and formulas

16

appearing in those cases.” Thus the use of cases does not increase the power of the

logic; it is simply a convenient notation. This notation is particularly useful for defining

the successor and predecessor functions, as in in (3.2). These definitions should be

interpreted as follows: succ(x) = 2 iff x = 1; succ(x) = 3 iff x = 2; and so on.2

MC
ball

def
=
〈
D; {Ra, Rb, Rl}; {pred(x), succ(x)}

〉
(3.2)

D def
= {1, 2, 3, 4}

Ra
def
= {2}

Rb
def
= {1}

Rl
def
= {3, 4}

succ(x)
def
=

2 ⇔ x = 1

3 ⇔ x = 2

4 ⇔ x ∈ {3, 4}

pred(x)
def
=

1 ⇔ x ∈ {1, 2}

2 ⇔ x = 3

3 ⇔ x = 4

3.1.2 A Brief Aside: Notational Conventions

There are several types of notation used for relations and functions. I have already used

set membership notation, as in 1 ∈ Rb. For unary relations like this, it is equivalent

to write Rb(1) or simply b(1). Moving forward, I will use the latter notation for most

unary relations. For the successor function, I write succ(1) = 2 or 1C 2. Similarly, the

formula pred(2) = 1 is equivalent to 2 B 1.

2 “Iff” is shorthand for “if and only if,” which indicates that two logical formulas are
materially equivalent. This means that if either formula is true, the other must be
true; and if either one is false, the other must be false. The⇔ symbol denotes material
equivalence.

17

3.1.3 The Precedence Model Theory

Another common model theory for strings is the Precedence Model. Its signature M<

is given in (3.3). The key differences between (3.3) and the Successor Model Theory

(3.1) are in the relations and functions.

M< def
=
〈
N; {R<, Rσ | σ ∈ Σ};∅

〉
(3.3)

Domain. The domain for M< is N, the same as that for MC.

Relations. The Precedence Model Theory includes the general precedence relation

(i.e., the order of two positions with respect to one another), denoted R<. When

determining general precedence, the presence or absence of intervening positions is

disregarded, just as the expression 3 < 5 is true regardless of the fact that the number

4 intervenes between 3 and 5. Because precedence relates two positions to each other,

it is called a binary relation. To express the precedence relation between two positions,

x and y, I write R<(x, y) or, equivalently, x < y.

Functions. Using the above definition, there are no functions needed for the Prece-

dence Model Theory, so F is equal to ∅, the empty set. Note that precedence cannot

be encoded as a function because it is a one-to-many relation. For example, position 3

is preceded by positions 2 and 1.

The Precedence Model for ball

The model for the string ball under this theory is denoted M<
ball. Taking the same

alphabet Σ = {a, b, l}, the precedence word model for ball is shown in (3.4). Figure 3.2

is a visual representation of M<
ball.

18

Figure 3.2: A visual representation of M<
ball

b

1

a

2

l

3

l

4

<

<

<

<

<

<

M<
ball

def
=
〈
D; {R<, Ra, Rb, Rl};∅

〉
(3.4)

D def
= {1, 2, 3, 4}

R<
def
= {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈3, 4〉}

Ra
def
= {2}

Rb
def
= {1}

Rl
def
= {3, 4}

Domain. Again the domain consists of four positions, 1 through 4.

Relations. Unary relations are the same as inMC
ball. Precedence relations are given as

tuples, ordered pairs of the form 〈x, y〉. The tuple 〈0, 2〉 belongs to the set of precedence

relations R<, for instance, because 0 precedes 2. Precedence relations are depicted as

directed edges with the < label, similar to the depiction of the successor function in

Fig 3.1.

3.1.4 Visual Representations

As a final caveat to this introduction to word models, it is important to consider the

subtle distinction between the word model and its visual representation. A word model

19

is a type of graph in the mathematical, rather than colloquial, sense of the word.

The visual representation of this object is exactly that—a representation: a visual

aid, but not the object itself. Many different visualizations are possible for a given

word model. For brevity and clarity, I caption the remaining visual representations

in this dissertation with the name of the word models they represent, taking it to be

understood that these are merely visual aids.

3.2 Enriching Conventional Word Models

The objects of interest in formal language theory are generally strings (as in Büchi,

1960; Rozenberg & Salomaa, 2012). Take for example the string ball, as illustrated

above. Both the Successor and Precedence Word Models have a very simple type of

structure: essentially, an ordered sequence of alphabetic characters. I refer to these

as conventional word models. Although conventional word models are adequate for

many purposes, linguistic descriptions of words tend to be more complex. Individual

segments of a word may have multiple properties that would be better expressed as

separate labels, rather than a single symbol. Furthermore, linguists discuss other types

of structural relations besides precedence and successor, such as dominance in a hierar-

chical structure. To represent words in a manner more faithful to phonological theory,

I propose two modifications to conventional word models: enriching the alphabet and

enriching the structure.

3.2.1 Enriching the Alphabet

The alphabet can be conceptualized as a set of primitives—labels defined outside of

the model theory itself. In conventional word models, each position has exactly one

label (i.e., it belongs to a single unary relation). Formally, we say that the sets of

labeling relations for any two symbols in the alphabet are disjoint, meaning that they

have no elements in common. The set of elements shared by two sets is called the

intersection of these sets. Intersection is denoted with the ∩ symbol, as in A∩B, “the

20

intersection of the sets A and B.” Using these terms, the mutual exclusivity of labels

in conventional word models is expressed in (3.5).

(∀x, y ∈ Σ)[Rx ∩Ry = ∅] (3.5)

“For all symbols x, y in Σ, the intersection of the sets Rx and Ry is

empty.”

In line with recent work in computational phonology (Daland et al., 2011; Heinz &

Strother-Garcia, to appear; Strother-Garcia, 2018; Strother-Garcia et al., 2017; Vu

et al., 2018), I permit each position to have more than one label. As Strother-Garcia

et al. (2017) point out, abandoning the assumption that labeling relation sets are

disjoint “allows similarities among different alphabetic symbols to be fully expressed,”

opening the door to a variety of new types of word models. Non-mutually-exclusive

labels can be used to reflect the well-accepted phonological description of segments as

feature bundles, rather than wholly separate entities.

For example, say the segment [b] is composed of the features [voice, labial, stop]. The

feature [voice] is the only difference between [b] and [p], but this similarity is obscured in

conventional word models. I therefore use an ‘alphabet’ of phonological features rather

than phonetic symbols, taking advantage of the phonological insight that phones share

common features.

Let F be a set of primitive phonological features. I adopt the features given in (3.6)

for now.3

F def
= {voice, cons, high, lab, alv, post, pal, vel, uv, phar, glot, stop,

fric, nas, approx, lat}
(3.6)

3 cons = consonantal; lab = labial; alv = alveolar; post = postalveolar; pal =
palatal; vel = velar; uv = uvular; phar = pharyngeal; glot = glottal; approx =
approximant; lat = lateral.

21

Then the alphabet is simply Σ = F . For each feature f in F , there is a unary relation

Rf ∈ R that represents a particular position being labeled with that feature. Let Rf

be the set of such relations, defined in (3.7).

Rf
def
= {Rf | f ∈ F} (3.7)

As with alphabetic primitives in conventional word models, Rf(x) can also be written

as f(x) for any feature f . For example, Rvoice(x) is equivalent to voice(x). Crucially,

a single position may belong to several of these relations. In the word ball, for instance,

the first position is labeled voice, lab, and stop.

3.2.2 Enriching the Structure

Another avenue for enriching word models is to consider additional relations and func-

tions. While conventional word models only encode linear order (general or immedi-

ate), additional relationships among positions are important when considering syllable

structure. In particular, the hierarchical structure of the syllable relies on dominance

information, formalized in the following chapter. Because sonority plays a role in syl-

lable well-formedness in many languages, it will also be prudent to encode sonority

relations explicitly. I will discuss this in detail in Chapter 5.

3.3 Graph Transductions

As word models are a type of graph, graph transductions can be used to represent input-

output maps from one word model MA to another MB. A transduction is defined with

a set of formulas, one for each relation R and function F in MB, the output structure.

These formulas are interpreted with respect the input structure in MA.4

4 See Courcelle (1994), Courcelle & Engelfriet (2012), and Engelfriet & Hoogeboom
(2001) for details.

22

For example, consider a transduction Γb)a that changes every b in a word model to a.

Here MA = MB = MC. When applied to the input MC
ball, the transduction changes

the label of the first position from b to a and leaves the remaining positions unchanged,

as illustrated in Figure 3.3.

Figure 3.3: Γb)a(MC
ball)

a

0

a

1

l

2

l

3

C C C

Γb)a is defined by the set of formulas (3.8-3.12) where the superscript ω indicates an

output position. Logical disjunction is denoted with the ∨ symbol, read “or.”

Ra(x
ω)

def
= Ra(x) ∨Rb(x) (3.8)

Rb(x
ω)

def
= FALSE (3.9)

Rl(x
ω)

def
= Rl(x) (3.10)

succ(xω)
def
= succ(x) (3.11)

pred(xω)
def
= pred(x) (3.12)

(3.8) states that an output position is labeled a iff the corresponding input position is

labeled a or b. Rb(x
ω) is always FALSE because no output position may be labeled b.

Rl(x
ω) is true for any input position labeled l, since no changes are made to input ls.

Finally, (3.11) and (3.12) express that successor and predecessor are preserved in the

output.

In this example, the input and output share the same model theory, but this need not

be the case. As will be seen in the following chapter, the model theories for the input

and output can differ in many ways.

23

3.4 Substructures

One way of conceptualizing a logical formula in the context of a word model is to

consider the structure that corresponds to it. For instance, consider φll(x) defined in

(3.13). Logical conjunction is denoted with the ∧ symbol, read “and.”

φll(x)
def
= l(x) ∧ l(succ(x)) (3.13)

“φll is true of position x iff x is labeled l and its successor is also

labeled l.”

The structure that is ‘targeted,’ in a sense, by φll(x) is the first position in a pair of

adjacent ls. Thus if ll is a substructure of the word model, there must be some position

x that satisfies φll(x). In MC
ball, φll(x) is true for x = 3.

Substructures are formalized as Existentially Quantified Conjunctions (EQCs). Given

a domain D = {1, . . . , n} and a set of relations R = {R1, . . . , Rm}, an EQC is the

conjunction of expressions that specify which positions belong to which relations. The

general form of an EQC is given in (3.14). The set of positions belonging to a given

relation may contain any finite number of nodes from zero to n. I write these sets as

{xa, . . . , xb} and {xc, . . . , xd}, but no implication of order or set size is intended. The∧
symbol indicates iterative conjunction over values of i ranging from 1 to m.

(∃x1 . . . , xn)[
m∧
i=1

Ri(xa, . . . , xb)] (3.14)

“There exist a set of positions x1, . . . , xn such that some relation R1 is

true of positions xa, . . . , xb, and some relation R2 is true of positions

xc, . . . , xd, and so on.”

For example, the EQC corresponding to φll(x) is defined in (3.15).

ψll
def
= (∃x, y)[l(x) ∧ l(y) ∧ xC y] (3.15)

“There exist two positions, x and y, such that x is labeled l, y is

labeled l, and x immediately precedes y.”

24

An EQC can be visually represented in the same way as a word model, as shown in Fig-

ure 3.4. This visual representation drives home the fact that an EQC is a substructure

of a word model.

Figure 3.4: ψll

l l
C

In sum: If a formula φa(x) is true of some position x in model M, then ψa, the EQC

corresponding to φa(x), must be a substructure of M. A word model M satisfies a

formula φa iff M contains the substructure defined by the corresponding EQC ψa.

Satisfaction is denoted by the |= symbol, as in M |= φa, read “M satisfies φa.” For

example, it is clear from the definitions above thatMC
ball |= φll becauseMC

ball contains

ψll.

3.5 Formal Languages and Substructure Constraints

Just as graph transductions represent UR-to-SR maps, formal languages can be used to

represent surface generalizations. The use of the term language here is an unfortunate

carry-over from the computer science literature. It does not refer to a natural language

(e.g., English), but to a set of words—a stringset or, more generally, a graphset (as in

Jardine, 2016). For my purposes, a formal language can be thought of as the set of

phonologically well-formed words in a given natural language.

Given any alphabet Σ, the term Σ∗ denotes the infinite set of words of arbitrary length

comprised of members of Σ. For example, {a, b}∗ contains a, b, aa, ba, aba, abb, bbb,

and so on. Any subset of Σ∗ is a formal language.

Rather than attempting to list all the words in a formal language outright, it is useful

to define the formal language using some logical formula. Take any logical formula κ,

25

an alphabet Σ, and a model theory M. Let w be a word in Σ∗ and Mw be the model

of that word under model theory M. Then the formal language defined by κ is simply

the set of words in Σ∗ whose word models satisfy κ. This language is denoted L(κ), as

defined in (3.16).

L(κ)
def
= {w ∈ Σ∗ | Mw |= κ} (3.16)

“L(κ) is the set of words w in Σ∗ whose word models Mw satisfy κ.”

For example, consider the expressions ψd and κball defined below.

ψd
def
= (∃x)[d(x)] (3.17)

“There exists a position x labeled d.”

κball
def
= ψll ∧ ¬ψd (3.18)

“κball is true iff ψll is true and ψd is false.”

Then L(κball) is the simply set of all words whose models satisfy κball. To be precise,

L(κball) consists of every word model that contains two adjacent ls and does not contain

a d, as formalized in (3.19). The logical negation operator is denoted with the ¬ symbol,

read “not.”

L(κball) = {w ∈ Σ∗ | MC
w |= (ψll ∧ ¬ψd)} (3.19)

“The language of κball is the set of words in Σ∗ whose models (in the

Successor Model Theory) contain ψll and do not contain ψd.”

This includes, of course, MC
ball.

A formula like κball can be thought of as a well-formedness constraint. It mandates

which substructures must or must not be present for a word to be phonologically well-

formed in a given language. It takes the form of a conjunction of positive and negative

literals, where a positive literal is an EQC (requiring that all words contain a particular

substructure) and a negative literal is the negation of an EQC (banning any word from

26

containing particular substructure). I refer to a conjunction of one or more such literals

as a substructure constraint.5 Thus κball is a substructure constraint, and so are each

of its individual conjuncts, ψll and ¬ψd.

I will use K to denote a logical formula that is the conjunction of all substructure

constraints needed to define a particular pattern. K can also be called a substructure

constraint grammar. Then L(K) is the set of all words generated by the grammar K.

3.6 Logics and Locality

Three logical languages in order of decreasing power are Monadic Second Order (MSO),

First-Order (FO), and Quantifier-Free (QF), which differ according to the types of

allowable quantification. Here I informally discuss the differences in expressivity among

these logics. For formal definitions, I refer the reader to: Enderton (2001), Fagin et al.

(1995), and Shoenfield (1967).

Statements in FO logic can use universal (∀) and existential (∃) quantifiers to quantify

over positions of the domain. This allows for statements like (∀x)[voice(x)] meaning

“for all positions x, x is voiced.” MSO statements can also quantify over sets of domain

positions. For example, consider the following definitions from Jardine & Heinz (2015).

First, (3.20) defines set closure under successor is in FO logic. Then the MSO sentence

(3.21) defines the general precedence relation <. Capital X denotes a set, while low-

ercase x and y denote elements of such sets. The ⇒ symbol represents implication in

one direction—its meaning is equivalent to ‘if,’ in contrast with ‘iff.’

5 This comes from the substring constraints of Garcia et al. (1990), Heinz (2010b),
Rogers et al. (2013), and others. Following Jardine (2016, 2019), I extend this notion
to subgraphs and therefore use the more general term substructures. To be precise, the
substructures I am concerned with are connected subgraphs, as in Jardine (2016).

27

closed(X)
def
= (∀x, y)(x ∈ X ∧ xC y)⇒ y ∈ X (3.20)

“A set X is closed (under successor) iff for all elements x, y, if x

belongs to X and y is the successor of x, then y also belongs to X.”

x < y
def
= (∀X)(x ∈ X ∧ closed(X)⇒ y ∈ X (3.21)

“An element x precedes y iff for all sets X, if position x is in X and X

is closed, then y is also an element of X.”

Because (3.21) involves universal quantification over some set X, it is strictly MSO

and not FO. Because (3.20) has quantification over positions but not over sets, it is

FO. Sentences of FO without quantification over elements (i.e., no quantification at

all) are QF.

To see why quantification is important, compare (3.22) to (3.8), which is reproduced

in (3.23). The former states that an output position x will be labeled a if the corre-

sponding input position is an a or if there is a position labeled b somewhere in the

input. Checking whether

Rω′
a (x)

def
= Ra(x) ∨ (∃y)[Rb(y)] (3.22)

Rω
a (x)

def
= Ra(x) ∨Rb(x) (3.23)

This example illustrates the relationship between quantification and locality. If a for-

mula is stated with quantification, computing its truth value requires global evaluation

of the string. If the formula is QF, truth evaluation must be possible over a substring

of bounded size. A transduction defined entirely by QF formulas is called a QF trans-

duction. Thus a QF transduction is one that operates locally, computing truth values

for a given position by ‘looking’ only finitely many positions away. Note that Γb)a is

QF, with all formulas referring to a single position.

28

3.7 User-defined Formulas

Given a model theory M and an alphabet Σ, logical formulas can be defined to make

it easier to refer to certain types of information in word models. For example, writing

voice(x)∧ lab(x)∧ stop(x) to refer to a /b/ is cumbersome. Instead, I use the unary

formula b(x), defined in (3.24).

b(x)
def
= voice(x) ∧ lab(x) ∧ stop(x) (3.24)

“Position x is a b iff x has the features voice, lab, and stop.”

Although I write stop(x) and b(x) similarly, note that the former is the labeling

relation for a primitive of M while the latter is a formula derived from such primitives.

I use typewriter font for primitives and sans serif font for user-defined formulas. IPA

symbols should also be assumed to be user-defined formulas.

Natural classes can be defined similarly to b(x). Given the primitives in Rf , I define

obs(x) and son(x) in (3.25-3.26).6

obs(x)
def
= stop(x) ∨ fric(x) (3.25)

“x is an obstruent iff x is a stop or x is a fricative.”

son(x)
def
= ¬obs(x) (3.26)

“Position x is a sonorant iff x is not an obstruent.”

Unary formulas can also describe certain positions in the word. Initial and final posi-

tions are defined as in §3.1.1. That is, the initial position is its own predecessor and

the final position is its own successor. Then a medial position is one that is neither

initial nor final. These definitions are formalized in (3.27-3.29).

6 obs = obstruent; son = sonorant; init = initial; fin = final; med = medial; pk = peak;
prom = prominence; mrkd = marked.

29

init(x)
def
= pred(x) = x (3.27)

fin(x)
def
= succ(x) = x (3.28)

med(x)
def
= ¬(init(x) ∨ fin(x)) (3.29)

Additional shorthand formulas will be defined in subsequent chapters.

Note that whether a formula is MSO, FO, or QF is determined by its interpretation

in terms of primitives. For example, the statement obs(x) ∨ b(x) is QF because it

is a conjunction of two formulas (obs(x) and b(x)) that are both QF. User-defined

formulas are not meant to obscure the logical nature of the description; they are just

well-defined abbreviations.

30

Chapter 4

SYLLABLE REPRESENTATIONS

One key issue in all areas of theoretical linguistics is the best way of representing

abstract structures, and syllable theory is no exception. A variety of syllable represen-

tations have been employed in the phonological literature (e.g., Davis, 1985; Duanmu,

2009; Hooper, 1972). A natural question is to what extent the differences between

competing representations are significant or merely matters of notation—and how can

we even determine whether representation types are equivalent or not? In this chapter,

I first introduce the notion of notational equivalence and discuss how model theory can

be used to compare representation types. Then I formalize three popular representa-

tions of syllable structure and show that they are notationally equivalent, in a strict

sense.

4.1 Notational Equivalence

We encounter many types of abstract representations in our everyday lives without giv-

ing much thought to which aspects of notation are meaningful and which are merely

stylistic. For example, intuitions are clear that font choice is irrelevant to the rep-

resentation of a set of numbers: both {1,2} and {1,2} describe the same set. As

practitioners, we abstract away from font choice when representing such sets and con-

fidently choose among fonts arbitrarily. In contrast, there are meaningful differences

between bracket types in mathematical notation: {1, 2} is an unordered set, while (1, 2)

is an ordered pair.

31

Are different syllabic representations interchangeable in the same way as fonts, or do

they constitute truly different structures, like sets and ordered pairs? If they are nota-

tionally equivalent, it stands to reason that any constraint stated in one representation

can be readily ‘translated’ and stated in another. If not, different predictions about

syllable typology could be made based on the types of constraints admitted by each

representation.

No previous literature addresses the question of whether different representations of syl-

lable structure truly encode different information, but model theory and logic provide

a foundation for doing just that (Danis & Jardine, 2019; Potts & Pullum, 2002; Pul-

lum, 2007; Strother-Garcia & Heinz, 2017). The expressive power of the logic needed

to ‘translate’ between two representational structures can be used as a measure of the

meaningful difference between the representations. Before we can assess these differ-

ences, however, we must first define model-theoretic structures corresponding different

syllable representation types.

4.2 Representations of Syllable Structure

Consider the following representations of the word plenty. The first simply demar-

cates syllable boundaries, as in Hooper (1972); Vennemann (1968b); and others. I call

this the dot representation due to the popularity of marking syllable boundaries with

periods or dots, as in Figure 4.1.

Figure 4.1: Dot representation: a string of segments and syllable boundaries

[plEn.ti]

The remaining two representations refer to the syllable constituents onset, nucleus, and

coda. Daland et al. (2011), Heinz & Strother-Garcia (to appear), and Strother-Garcia

(2018) use the representation in Figure 4.2, which I call the flat representation. It

32

treats syllable constituents as secondary labels of each segment. For example, the p

and l in plenty are both labeled ons.

Figure 4.2: Flat representation: a string of segments labeled with syllable con-

stituents

p

ons

l

ons

E

nuc

n

cod

t

ons

i

nuc

Finally, the representation in Figure 4.3 was introduced in Saporta & Contreras (1962)

and subsequently argued for in Davis (1985) and others.1 It represents syllables hi-

erarchically, with syllable nodes σ dominate syllable constituent nodes, which in turn

dominate segment nodes. For this reason I call it the tree representation.

Figure 4.3: Tree representation: hierarchical structure

nucons

σ

cod ons nuc

σ

E n t ilp

These three examples have been illustrated here using the same conventions typically

used in the literature. In the following subsections, I define formal model theories

corresponding to each type of representation. This formalization is a necessary first

step towards developing graph transductions between the representation types.

1 A representation of this type is also intimated in Pike & Pike (1947), although no
visual aid is provided.

33

4.2.1 The Dot Model Theory

The Dot Model Theory is a formalization of the dot representation. Its alphabet is the

union of F (the set of primitive phonological features) and the • symbol, as in (4.1).

The union of two sets is simply a new set containing all the elements of the original

two sets. Then the set of relations Rdot is simply the set of labels corresponding to

members of the alphabet, as in (4.2).

Σdot def
= F ∪ {•} (4.1)

Rdot def
= {Rs | s ∈ Σdot} (4.2)

The Dot Model signature is given in (4.3). As in the traditional Successor Model, there

are no binary relations, but there are two unary functions: pred(x) and succ(x).

Mdot def
=
〈
N;Rdot; {pred(x), succ(x)}

〉
(4.3)

The dot word model for plenty [plEnti] is given in (4.4) illustrated in Figure 4.4. Recall

that terms in sans serif font (e.g., p, l) are user-defined formulas used as shorthand for

sets of phonological feature labels.

Mdot
plenty

def
=
〈
D;Rdot; {pred(x), succ(x)}

〉
(4.4)

D def
= {1, . . . , 7}

stop
def
= {1, 6}

nas
def
= {4}

• def
= {5}

...

34

succ(x)
def
=

2 ⇔ x = 1

3 ⇔ x = 2

4 ⇔ x = 3

5 ⇔ x = 4

6 ⇔ x = 5

7 ⇔ x ∈ {6, 7}

pred(x)
def
=

1 ⇔ x ∈ {1, 2}

2 ⇔ x = 3

3 ⇔ x = 4

4 ⇔ x = 5

5 ⇔ x = 6

6 ⇔ x = 7

Figure 4.4: Mdot
plenty

p

1

l

2

E

3

n

4

•

5

t

6

i

7

C C C C C C

Comparing Figure 4.1 to Figure 4.4, it is clear that both figures illustrate the dot

representation of the word plenty, but the latter explicitly encodes the order of seg-

ments, which is left implicit in the former. The word model also has explicit position

indices, making it easy to refer to a given position and its properties. In general, formal

word models encode information about positions that is only implicit in the traditional

representations of phonological structure.

4.2.2 The Flat Model Theory

The Flat Model Theory is a formalization of the flat representation. Its alphabet is

the union of F and the set of syllable constituent labels, {ons, nuc, cod}, as in (4.5).

Its set of relations and its model signature are given in (4.6) and (4.7), respectively.

35

Σflat def
= F ∪ {ons, nuc, cod} (4.5)

Rflat def
= {Rs | s ∈ Σflat} (4.6)

Mflat def
=
〈
N;Rflat; {pred(x), succ(x)}

〉
(4.7)

Recall that, in the flat representation, words are represented as strings of segments

with additional labels for onset, nucleus, and coda. The flat word model for plenty is

given in (4.8) and illustrated in Figure 4.5.

Mflat
plenty

def
=
〈
D;Rflat; {pred(x), succ(x)}

〉
(4.8)

D def
= {1, . . . , 6}

voice
def
= {2, 3, 4, 6}

ons
def
= {1, 2, 5}

...

succ(x)
def
=

2 ⇐ x = 1

3 ⇐ x = 2

4 ⇐ x = 3

5 ⇐ x = 4

6 ⇐ x ∈ {5, 6}

pred(x)
def
=

1 ⇐ x ∈ {1, 2}

2 ⇐ x = 3

3 ⇐ x = 4

4 ⇐ x = 5

5 ⇐ x = 6

Figure 4.5: Mflat
plenty

p

ons

1

l

ons
2

E

nuc

3

n

cod

4

t

ons

5

i

nuc
6

C C C C C

36

4.2.3 The Tree Model Theory

The Tree Model Theory is a formalization of the tree representation, which is a hier-

archical structure. I define hierarchical word models similarly to simple string models

under the Successor Model Theory, with the addition of the function, par(x). For a

given position x, this function returns the parent of that position, i.e., the position

that immediately dominates x. Thus, if position 1 immediately dominates position 3, I

write par(3) = 1. Similar to pred(x), par(x) is defined such that the root node σ is its

own parent, i.e., it immediately dominates itself. Note that each position is dominated

by exactly one node.

The alphabet for the Tree Model Theory is the union of F and the set {σ, ons, nuc, cod},

as in (4.9). The set of relations and the Tree Model signature are given in (4.10–4.11).

Σtree def
= F ∪ {σ, ons, nuc, cod} (4.9)

Rtree def
= {Rs | s ∈ Σtree} (4.10)

Mtree def
=
〈
N;Rtree; {pred(x), succ(x), par(x)}

〉
(4.11)

The tree word model for plenty is given in (4.12) and illustrated in Figure 4.6.

Mtree
plenty

def
=
〈
D;Rtree; {pred(x), succ(x), par(x)}

〉
(4.12)

D def
= {1, . . . , 13}

ons
def
= {3, 6}

σ
def
= {1, 2}

...

37

succ(x)
def
=

1 ⇐ x ∈ {1, 2}

2 ⇐ x = 3

3 ⇐ x = 4

4 ⇐ x = 5

5 ⇐ x = 6

6 ⇐ x = 7

7 ⇐ x = 8

8 ⇐ x = 9

9 ⇐ x = 10

10 ⇐ x = 11

11 ⇐ x = 12

12 ⇐ x = 13

pred(x)
def
=

1 ⇐ x ∈ {1, 2}

2 ⇐ x = 3

3 ⇐ x = 4

4 ⇐ x = 5

5 ⇐ x = 6

6 ⇐ x = 7

7 ⇐ x = 8

8 ⇐ x = 9

9 ⇐ x = 10

10 ⇐ x = 11

11 ⇐ x = 12

12 ⇐ x = 13

par(x)
def
=

1 ⇐ x ∈ {1, 3, 4, 5}

2 ⇐ x ∈ {2, 6, 7}

3 ⇐ x ∈ {8, 9}

4 ⇐ x = 10

5 ⇐ x = 11

6 ⇐ x = 12

7 ⇐ x = 13

Figure 4.6: Mtree
plenty

σ1

nuc4ons3 cod5 ons6 nuc7

σ2

E

10

l

9

p

8

n

11

t

12

i

13

p p p p p

p p p p p p

C C C C C

The parent function is represented by directed edges (arrows) labeled p, pointing from

a child to its parent. While dominance in a hierarchical structure is often represented

38

with edges directed in the other direction (from parent to child), I want to highlight the

fact that this function points out a given position’s parent, of which there is exactly

one. In contrast, a dominance ‘function’ would point from a parent to each of its

children, meaning it could not be a function at all, because functions map a given

input to only one output.

4.3 Comparing Different Models

On one hand, the flat and tree models may seem superior because they refer directly

to syllable constituents. Yet it appears that the dot model has its own advantage

over the flat model; marking syllable boundaries explicitly distinguishes two adjacent

sounds that happen to be the same type of element from two adjacent sounds that

belong to the same constituent of a single syllable, like the pl onset in plenty. The

tree model also makes this distinction by having each syllable ultimately dominated

by a single σ node. But is there a true difference in the information encoded in each

representation—or are these apparent differences illusory?

4.3.1 L-interpretability

Word models can be compared on the basis of L-interpretability. A word modelM1 is

L-interpretable in terms of another,M2, if one can write a graph transduction (in the

sense of Engelfriet & Hoogeboom, 2001) from M1 to M2 using logic L. As explained

in §3.3, a transduction is a way of translating information from one model to another

using a logical language, L. If M1 is L-interpretable in terms of M2 and vice versa,

then we say the two are L-bi-interpretable.

Informally, L-bi-interpretability means the two models are interchangeable with respect

to logic L. It follows that the weaker the logic, the less meaningful the differences are

between the models. A QF transduction is extremely restricted in the degree to which

the output can differ from the input because QF is a weak logical language limited to

39

local operations. QF-bi-interpretability can therefore be considered an indication of

notational equivalence.

In the remaining sections, I will show that the Dot, Flat, and Tree model theories

are all QF-bi-interpretable, provided there is a bound on syllable size. This condition,

while not universally adopted, has ample precedent in the phonological literature (e.g.

Duanmu, 2009). In Sections 4.3.2 and 4.3.3, I define transductions from the Flat Model

to the Tree Model and vice versa. The Flat-to-Dot and Dot-to-Flat transductions are

defined in Sections 4.3.4 and 4.3.5, respectively. In each case, I illustrate an example

of the transduction with the word model for plenty as input.

4.3.2 The Flat-to-Tree Transduction

I refer to this transduction as Γft. It is the mapping from Mflat to Mtree, as expressed

in 4.13.

Γft (4.13)

Mflat Γ→Mtree〈
N;Rflat; {pred(x), succ(x)}

〉 Γ→
〈
N;Rtree; {pred(x), succ(x), par(x)}

〉
The crucial difference between the two lies in the sets of relations and functions. Rtree

includes everything in Rflat, as well as the unary relation σ. Mtree has all the functions

of Mflat, with the addition of the unary function par(x).

Copy Sets

Observe that the Flat Model for a given word will always have fewer positions than

the Tree Model for the same word. Each segmental position must have as its parent

a syllable constituent node (onset, nucleus, or coda), and each nucleus must have a

parent σ node. How do we account for the fact that the output of the transduction

must have more positions than the input? Put simply: copy sets.

40

Recall the transduction Γb)a from the Chapter 3, whose input and output domains were

the same size. This output domain consists of a copy set, a set of positions identical

to the input domain. While only one copy set was required for Γb)a, transductions

in general allow an arbitrary, but fixed number of copy sets. Three copy sets will be

necessary for Γft because a given segmental position is immediately dominated by a

syllable constituent node, which in turn is immediately dominated by a σ node.

Given the inputMflat
plenty (see Figure 4.5), the output domain (also called the codomain)

for this transduction is constructed as in Figure 4.7.

Figure 4.7: The codomain for Γft(Mflat
plenty)

13

C3:

23 33 43 53 63

12

C2:

22 32 42 52 62

11

C1:

21 31 41 51 61

Each copy set has exactly the same number of positions as the input domain, which

is 6 in this case. Instead of using ω to refer to the codomain as a whole, each output

position is given a superscript indicating which copy set it belongs to. For example,

output position 23 corresponds to position 2 in Copy Set 3, which is the third copy of

input position 2. Altogether the codomain of Γft(Mflat
plenty) has 18 positions.

In the remaining subsections, I will develop the transduction Γft in a piecemeal fashion.

Note that the transduction itself is not procedural; that is, formulas need not be

evaluated in any particular order. The order of presentation here is arbitrary.

41

Unary Relations

Unary Relations for Copy Set 1. While a single position in the Flat Model is

labeled with segmental features and syllable constituents, these labels are applied to

distinct positions in the Tree Model. Segmental features are labeled in Copy Set 1, as

specified in (4.14).

(∀f ∈ Rf)[f(x1)
def
= f(x)] (4.14)

“For all features f in the set Rf , the first copy of x in the output is

labeled f iff x is labeled f in the input.”

The following figure illustrates the contribution of these segmental feature formulas to

the output, with user-defined formulas like p standing in for feature bundles.

Figure 4.8: Labels for Copy Set 1 in Γft(Mflat
plenty)

13

C3:

23 33 43 53 63

12

C2:

22 32 42 52 62

p

11

C1: l

21

E

31

n

41

t

51

i

61

It should be noted that, for every feature f in F and for every position x in the

output, the formula f(x) evaluates to either true or false. While it is obvious that

stop(11) = TRUE, it is also true that fric(11) = FALSE, stop(21) = FALSE, and so on.

All of these values must be specified to fully define the transduction. Moving forward,

42

I focus on only those formulas that may be true of some positions in the output form.

I will also omit position indices in figures for clarity.

Unary Relations for Copy Set 2. Syllable constituent labels are preserved from the

input to the output in a similar way, but crucially in Copy Set 2. For now, I assume

that each nucleus is comprised of a single segment, so the nuc relation is preserved

exactly. However, a single ons/cod node in the Tree Model can dominate multiple

segment nodes. In fact, contiguous segments labeled ons/cod in the Flat Model should

all be dominated by the same ons/cod node in the Tree Model, in accordance with

the syllable theory literature. To capture this generalization, it will be useful to refer

directly to the onset/coda segment that is adjacent to the nucleus in the input. For

reasons that will soon become apparent, I call these ons 1 and cod 1, respectively. I

will also refer to them as nucleus-adjacent segments. Note that (4.15) and (4.16) are

user-defined formulas that refer to input positions only.

ons 1(x)
def
= ons(x) ∧ nuc(succ(x)) (4.15)

cod 1(x)
def
= cod(x) ∧ nuc(pred(x)) (4.16)

“Position x is nucleus-adjacent (ons 1/cod 1) iff x is labeled ons/cod

and its successor/predecessor is labeled nuc.”

For example, Figure 4.9 illustrates a nucleus-adjacent onset which (by definition) sat-

isfies ons 1.

Figure 4.9: A nucleus-adjacent onset defined with the Flat Model theory

l

ons

E

nuc

C

Then the output labeling formulas for nuc, ons, and cod are as follows. As will be seen

43

in §4.3.2, labeling only the nucleus-adjacent onsets and codas in the output ensures

that only nodes in Copy Set 2 that dominate a segmental node in Copy Set 1 will end

up being licensed.

nuc(x2)
def
= nuc(x) (4.17)

ons(x2)
def
= ons 1(x) (4.18)

cod(x2)
def
= cod 1(x) (4.19)

“Position x in Copy Set 2 is labeled nuc/ons/cod iff x satisfies

nuc/ons 1/cod 1 in the input.”

The figure below illustrates the contribution these formulas make to the output.

Figure 4.10: Labels for Copy Sets 1 and 2 in Γft(Mflat
plenty)

C3:

C2: ons nuc cod ons nuc

pC1: l E n t i

Unary Relations for Copy Set 3. The third copy set is reserved for σ nodes. Every

σ node corresponds to a position labeled nuc in the input.

σ(x3)
def
= nuc(x) (4.20)

“Position x in Copy Set 3 is labeled σ iff x is labeled nuc in the input.”

An illustration of this addition to the output is given below.

44

Figure 4.11: Labels for all three copy sets in Γft(Mflat
plenty)

C3: σ σ

C2: ons nuc cod ons nuc

pC1: l E n t i

Successor and Predecessor functions

Successor and predecessor functions are also preserved in Copy Set 1 in this trans-

duction. Recall that, while labeling relations are either true or false, functions take

one position as an argument and return another position. It is therefore necessary to

specify the copy set index for both the input to and output of the function.

succ(x1)
def
= (succ(x))1 (4.21)

pred(x1)
def
= (pred(x))1 (4.22)

“The successor/predecessor of the first copy of x in the output is the

first copy of the successor/predecessor of x in the input.”

45

Figure 4.12: The successor function in Γft(Mflat
plenty)

C3: σ σ

C2: ons nuc cod ons nuc

pC1: l E n t i
C C C C C

Parent Functions

Dominance information is not explicitly encoded in the Flat Model, but it can be

deduced from information that is present in the Flat Model. Unlike the successor and

predecessor functions, the parent function must be defined across copy sets. In this

section, I will first define several specific cases of parent functions. The general parent

functions par(x2) and par(x1) will then be disjunctions of these cases.

Parent Functions for Nucleus Nodes. Dominance of σ nodes in Copy Set 3 over

nuc nodes in Copy Set 2 is established as follows:

nuc(x)⇒ par(x2) = x3 (4.23)

“If x is labeled nuc in the input, the parent of the second copy of x is

the third copy of x.”

Similarly, nuc nodes in Copy Set 2 dominate segmental nodes in Copy Set 1:

nuc(x)⇒ par(x1) = x2 (4.24)

“If x is labeled nuc in the input, the parent of the first copy of x is the

second copy of x.”

46

The figure below illustrates these additions to the output.

Figure 4.13: Some dominance information in Γft(Mflat
plenty)

C3: σ σ

C2: ons nuc cod ons nuc

pC1: l E n t i
C C C C C

p

p

p

p

Parent Functions for Onset and Coda Nodes. Making use of the notion of

nucleus-adjacency, the parent functions indicating dominance of σ nodes over ons/cod

nodes are given below. Restricting dominance from a σ node to only nucleus-adjacent

onsets and codas ensures that it will dominate at most one of each.

ons 1(x)⇒ par(x2) = (succ(x))3 (4.25)

cod 1(x)⇒ par(x2) = (pred(x))3 (4.26)

“If x is a nucleus-adjacent onset/coda in the input, the parent of

position x in Copy Set 2 is the third copy of the successor/predecessor

of x.”

47

Figure 4.14: Additional dominance information in Γft(Mflat
plenty)

C3: σ σ

C2: ons nuc cod ons nuc

pC1: l E n t i
C C C C C

p p p p p

p p

Parent Functions for Segment Nodes. In addition to nucleus-adjacency, it will

be useful to refer to the exact distance from the nucleus in the input. For example,

in plenty, the l is a nucleus-adjacent onset segment while p is 2 positions away from

the nucleus E. Starting with ons 1 (defined above) as the base case, I refer to prior

onset segments in increasing number from right to left (from the nucleus outward), as

follows:

ons 2(x)
def
= ons(x) ∧ ons 1(succ(x)) (4.27)

“Position x is ‘onset-2’ (2 positions before the nucleus) iff x is labeled

ons and its successor is ‘onset-1’ (a nucleus-adjacent onset).”

Taking n to be the maximum number of segments allowed in a single onset, there will

be n such formulas. In the general case:

ons i(x)
def
= ons(x) ∧ ons (i− 1)(succ(x)) for i ∈ {2, . . . , n} (4.28)

“Position x is ‘onset-i’ (i positions before the nucleus) iff x is labeled

ons and its successor is ‘onset-(i− 1)’, for i ranging from 2 to n.”

For example, Figure 4.15 shows an onset of length n, using indices that increase from

right-to-left to illustrate the use of indices in ons i(x).

48

Figure 4.15: An onset of length n

cons

ons

n

cons

ons

n− 1

. . .

. . .

cons

ons

1

C C C

Formulas analogous to ons i(x) can be written for codas, assuming a maximum length

m and counting from left to right (again, outward from the nucleus). Given cod 1(x)

defined in (4.16) above, the general case for codas is defined in (4.29).

cod i(x)
def
= cod(x) ∧ cod (i− 1)(pred(x)) for i ∈ {2, . . . ,m} (4.29)

“Position x is ‘coda-i’ (i positions after the nucleus) iff x is labeled cod

and its predecessor is ‘coda-(i− 1)’, for i ranging from 2 to m.”

Although these formulas allow a certain type of counting, so to speak, note that they

do not require counting over the entire input string. The bounds n and m enforce a

finite window of look-ahead/look-back. Were this not the case, we would need to use

quantifiers to identify a contiguous string of onset or coda segments with no intervening

segments of a different syllable constituent type. An example of this type of formula,

using the general predecessor relation <, is given in (4.30).

ons(x2)
def
= ons(x) ∧ (∃z)[nuc(z) ∧ x < z]∧

¬(∃y)[x < y < z ∧ ¬ons(y)]
(4.30)

“Position x in Copy Set 2 is labeled ons iff there exists a position z in

the input labeled nuc that is preceded by x, and there does not exist a

position y in the input such that x < y < z and y is not labeled ons .”

Assuming no a priori bound on the length of a word, checking if a given position

49

satisfies this formula requires looking back an arbitrary number of segments to the

very beginning of the string.

Given bounds n and m (or a single bound for the length of the entire word), however,

parent functions from ons and cod nodes to segment nodes can be defined as follows

in (4.31) and (4.32). I use the notation succn(x) and predm(x) to mean ‘the mth

successor/predecessor of x.’

par(x1) =

(succ(x))2 ⇔ ons 1(x)

(succ(succ(x)))2 ⇔ ons 2(x)

...
...

(succn(x))2 ⇔ ons n(x)

(4.31)

“The parent of position x in Copy Set 1 is the second copy of: the

successor of x if input position x is ‘onset-1’; the second successor of x

if input position x is ‘onset-2’; and so on, up to the nth successor of x.”

par(x1) =

(pred(x))2 ⇔ cod 1(x)

(pred(pred(x)))2 ⇔ cod 2(x)

...
...

(predm(x))2 ⇔ cod m(x)

(4.32)

“The parent of position x in Copy Set 1 is the second copy of: the

predecessor of x if input position x is ‘coda-1’; the second predecessor

of x if input position x is ‘coda-2’; and so on, up to the mth predecessor

of x.”

General Parent Functions. Now it is possible to write the general parent functions.

50

par(x2)
def
=

x3 ⇔ nuc(x)

(succ(x))3 ⇔ ons 1(x)

(pred(x))3 ⇔ cod 1(x)

(4.33)

par(x1)
def
=

x2 ⇔ nuc(x)

(succ(x))2 ⇔ ons 1(x)

(succi(x))2 ⇔ ons i(x) for i ∈ {2, . . . , n}

(pred(x))2 ⇔ cod 1(x)

(predi(x))2 ⇔ cod i(x) for i ∈ {2, . . . ,m}

(4.34)

Other than these cases, no positions have parents at all. The figure below shows the

fully specified output of the transduction.

Figure 4.16: Γft(Mflat
plenty) fully specified

C3: σ σ

C2: ons nuc cod ons nuc

pC1: l E n t i
C C C C C

p p p p p

p p p p p p

Licensing

Finally, I define a licensing function (as in Courcelle, 1994 and Engelfriet & Hoogeboom

2001), that indicates which positions in the codomain contribute meaningfully to the

51

output structure. Positions in the codomain that are not labeled are uninterpretable,

so I license all and only those positions that have at least one label, as in (4.35).

license(x)
def
= (∃R ∈ Rtree)[R(x)] (4.35)

“Output position x is licensed iff there is some relation R in Rtree such

that R(x) is true.”

Note that the definition of the licensing function is not QF; it uses the existential

quantifier ∃. This is not a problem for my analysis because the transduction itself is

QF—licensing is just a helpful way of carving out the meaningful part of the output.

Figure 4.17 shows the final output with unlicensed positions omitted. Comparing this

to Figure 4.6, it is clear that Γft(Mflat
plenty) is exactly Mtree

plenty.

Figure 4.17: The licensed output of Γft(Mflat
plenty)

σ σ

ons nuc cod ons nuc

p l E n t i
C C C C C

p p p p p

p p p p p p

Summary of the Flat-to-Tree Transduction and Licensing

Γft(M
flat) is partially defined as follows.

52

f(x1)
def
= f(x) for f ∈ F

nuc(x2)
def
= nuc(x)

ons(x2)
def
= ons 1(x)

cod(x2)
def
= cod 1(x)

σ(x3)
def
= nuc(x)

succ(x1)
def
= (succ(x))1

pred(x1)
def
= (pred(x))1

par(x2)
def
=

x3 ⇔ nuc(x)

(succ(x))3 ⇔ ons 1(x)

(pred(x))3 ⇔ cod 1(x)

par(x1)
def
=

x2 ⇔ nuc(x)

(succ(x))2 ⇔ ons 1(x)

(succi(x))2 ⇔ ons i(x) for i ∈ {2, . . . , n}

(pred(x))2 ⇔ cod 1(x)

(predi(x))2 ⇔ cod i(x) for i ∈ {2, . . . ,m}

license(x)
def
= (∃R ∈ Rtree)[R(x)]

For completeness, Γft(M
flat) must also include formulas for all logically possible values

for every relation in every copy set, even if no positions in that copy set have the

given label. For example, (4.36) states that no position in Copy Set 1 is labeled nuc.

Similarly, (4.37) states that no position in Copy Set 2 is labeled voice.

53

nuc(x1)
def
= FALSE (4.36)

voice(x2)
def
= FALSE (4.37)

. . .

I omit these types of formulas in the remaining transduction summaries for brevity.

4.3.3 The Tree-to-Flat Transduction

I refer to this transduction as Γtf . It is the mapping from Mtree to Mflat.

Mtree Γ→Mflat (4.38)〈
N;Rtree; {succ(x), pred(x), par(x)}

〉 Γ→
〈
N,Rflat; {succ(x), pred(x)}

〉
Copy Set(s)

Only one copy set is required because the Tree Model for a given word will always have

more positions than the Flat Model for the same word.

I illustrate this transduction using the input Mtree
plenty (given in Figure 4.6). Observe

that every position number has subscript 1, meaning they all belong to Copy Set 1. I

show these positions configured in a shape reminiscent of the tree model, but note that

they are not inherently ordered or related to each other. This configuration is simply

conducive to visualizing the output in a traditional way.

54

Figure 4.18: The codomain for Γtf (Mtree
plenty)

11

4131 51 61 71

21

1019181 111 121 131

Unary Relations

Just as in Γft, segmental features are preserved in Γtf .

(∀f ∈ Rf)[f(x1)
def
= f(x)] (4.39)

“For all features f in the set Rf , the first copy of x in the output is

labeled f iff x is labeled f in the input.”

Whereas onsets, nuclei, and codas in the Tree Model dominate corresponding segments,

this information is collapsed onto a single position in the Flat Model. Thus every

segmental position in the output bears the syllable constituent label of its parent in

the input. This is formalized in (4.40–4.42).

55

ons(x1)
def
= ons(par(x)) (4.40)

nuc(x1)
def
= nuc(par(x)) (4.41)

cod(x1)
def
= cod(par(x)) (4.42)

“Position x in Copy Set 1 is labeled ons/nuc/cod iff the parent of x in

the input is labeled ons/nuc/cod.”

The figure below illustrates the contribution of these formulas to the output.

Figure 4.19: Unary relations for Γtf (Mtree
plenty)

E

nuc

l

ons

p

ons

n

cod

t

ons

i

nuc

Successor and Predecessor functions

Successor and predecessor functions are preserved in Copy Set 1, just as in Γft.

56

succ(x1)
def
= (succ(x))1 (4.43)

pred(x1)
def
= (pred(x))1 (4.44)

“The successor/predecessor of position x in Copy Set 1 is the first copy

of the successor/predecessor of x in the input.”

The result of these formulas is illustrated in Figure 4.20.

Figure 4.20: Γtf (Mtree
plenty) fully specified

E

nuc

l

ons

p

ons

n

cod

t

ons

i

nuc

C C C C C

Dominance information is not encoded in the output at all. All that remains is to

license interpretable (labeled) nodes, as in (4.45).

license(x)
def
= (∃R ∈ Rflat)[R(x)] (4.45)

“Output position x is licensed iff there is some relation R in Rflat such

that R(x) is true.”

57

Summary of The Tree-to-Flat Transduction and Licensing

f(x1)
def
= f(x) for f ∈ F

nuc(x1)
def
= nuc(par(x))

ons(x1)
def
= ons(par(x))

cod(x1)
def
= cod(par(x))

succ(x1)
def
= (succ(x))1

pred(x1)
def
= (pred(x))1

license(x)
def
= (∃R ∈ Rflat)[R(x)]

Comparing Figure 4.21 to Figure 4.5, it is clear that the final output of Γft(Mtree
plenty)

is exactly Mflat
plenty.

Figure 4.21: The licensed output of Γtf (Mtree
plenty)

E

nuc

l

ons

p

ons

n

cod

t

ons

i

nuc

C C C C C

4.3.4 The Flat-to-Dot Transduction

I refer to this transduction as Γfd. It is the mapping from Mflat to Mdot.

Mflat Γ→Mdot (4.46)〈
N;Rflat; {pred(x), succ(x)}

〉 Γ→
〈
N;Rdot; {pred(x), succ(x)}

〉

58

Copy Set(s)

The Flat Model for a given word has exactly the number of positions as the number

of segments in the word, whereas the Dot Model has additional positions for syllable

boundaries (dots). I choose to mark only internal syllable boundaries and not word

boundaries, so a word of length n may have up to n − 1 syllable boundaries (if each

segment constituted its own syllable). The size of the codomain is therefore bounded

at n + n − 1, which is equal to 2n − 1. Thus the transduction will require two copy

sets.

Figure 4.22: The codomain for Γfd(Mflat
plenty)

12

C2:

22 32 42 52 62

11

C1:

21 31 41 51 61

Unary Relations

The only unary relations preserved from the input in this transduction are feature

labels. Additional labels are also defined over the output which are not present in the

input.

Unary relations for Copy Set 1. Feature labels are mapped onto Copy Set 1, just

as in the previous transductions developed in this chapter. Syllable constituents are

not labeled at all in the Dot Model.

f(x1)
def
= f(x) for f ∈ F (4.47)

59

Figure 4.23: Labeling Copy Set 1 in Γfd(Mflat
plenty)

12

C2:

22 32 42 52 62

p

11

C1: l

21

E

31

n

41

t

51

i

61

Unary Relations for Copy Set 2. Because syllable boundaries are not encoded

explicitly in the Flat Model, their placement must be deduced from information in the

input. In particular, a syllable boundary may occur in four environments:

1. Between a coda and the following onset.

2. Between a nucleus and the following onset.

3. Between a coda and the following nucleus.

4. Between two nuclei of adjacent syllables (hiatus).

Take the first example. The user-defined formula in (4.48) identifies the coda in a

coda-onset sequence, which I refer to as a ‘c.o’ coda.

c.o(x)
def
= cod(x) ∧ ons(succ(x)) (4.48)

“Position x is ‘c.o’ iff x is a coda and its successor is an onset.”

formulas identifying the first segment in each of the other three environments are as

follows in (4.49–4.51).

60

n.o(x)
def
= nuc(x) ∧ ons((succ(x)) (4.49)

c.n(x)
def
= cod(x) ∧ nuc((succ(x)) (4.50)

n.n(x)
def
= nuc(x) ∧ nuc((succ(x)) (4.51)

A position that satisfies any of these formulas must immediately precede a syllable

boundary. I therefore refer to them all as pre-boundary positions, defined in (4.52).

pre bound(x)
def
= c.o(x) ∨ n.o(x) ∨ c.n(x) ∨ n.n(x) (4.52)

“Position x is a pre-boundary position iff it satisfies c.o(x), c.n(x), or

n.n(x).”

These will be labeled with a dot (•) in Copy Set 2.

•(x2)
def
= pre bound(x) (4.53)

“Position x in Copy Set 2 is labeled • iff x is a pre-boundary position

in the input.”

Position 4 in the Mflat
plenty satisfies (4.48), so position 42 in the codomain is labeled •.

See Figure 4.24 below.

Figure 4.24: Labeling Copy Set 2 in Γfd(Mflat
plenty)

C2: •

pC1: l E n t i

61

Successor and Predecessor functions

For the most part, successor and predecessor information is preserved in Copy Set 1.

However, additional information about successors/predecessors between copy sets must

be deduced so that the dot positions in Copy Set 2 are ordered correctly with respect

to the segmental positions in Copy Set 1.

The Successor Function. In the case of a pre-boundary position, the successor

function operates as follows in (4.54) and (4.55). Note that (4.54) describes a particular

cases of succ(x1), but not the only case that is relevant here—the general successor

function for Copy Set 1 will be defined later. In contrast, (4.55) covers the only case

where the successor function is defined in Copy Set 2.

pre bound(x)⇒ succ(x1) = x2 (4.54)

“If x is a pre-boundary position in the input, then the successor of the

first copy of x is the second copy of x.”

succ(x2) = (succ(x))1 ⇔ pre bound(x) (4.55)

“The successor of the second copy of x is the first copy of the successor

of x iff x is a pre-boundary position in the input.”

The combined effect of these two labeling formulas is that a pre-boundary position is

followed by a dot, which is then followed by next the segmental position. See Figure 4.25

below.

62

Figure 4.25: Some successor information in Γfd(Mflat
plenty)

C2: •

pC1: l E n t i

C C

Excluding pre-boundary positions, the remaining successor information is preserved in

Copy Set 1. Hence the other case of succ(x1), given in (4.56).

¬pre bound(x)⇒ succ(x1) = (succ(x))1 (4.56)

“If x is not a pre-boundary position in the input, then the successor of

the first copy of x is the first copy of the successor of x.”

Then the general successor function for Copy Set 1 can be defined as follows in (4.57).

succ(x1)
def
=

x
2 ⇔ pre bound(x)

(succ(x))1 ⇔ ¬pre bound(x)

(4.57)

(4.58)

Figure 4.26 shows the successor function in the output.

63

Figure 4.26: All successor information in Γfd(Mflat
plenty)

C2: •

pC1: l E n t i
C C C

C C

C

The Predecessor Function. To develop the predecessor function, it will be useful

to refer to post-boundary positions.

post bound(x)
def
= pre-bound(pred(x)) (4.59)

“Position x is a post-boundary position iff its predecessor is a

pre-boundary position.”

The predecessor of position x in Copy Set 1 is either the first or second copy of its

input predecessor, depending on whether or not x is a post-boundary position. This is

defined in (4.60) using cases, just like succ(x1).

pred(x1)
def
=

(pred(x))2 ⇔ post bound(x)

(pred(x))1 ⇔ ¬post bound(x)

(4.60)

Finally, I define the predecessor function for Copy Set 2 as in (4.61).

pred(x2)
def
= (pred(x))1 ⇔ pre bound(x) (4.61)

“The predecessor of position x in Copy Set 2 is the first copy of the

predecessor of x in the input iff x is a pre-boundary position.”

64

Figure 4.27 illustrates the predecessor function in the output, which is essentially the

inverse of the successor function.

Figure 4.27: Γfd(Mflat
plenty) fully specified

C2: •

pC1: l E n t i
B B B

B B

B

Licensing

As before, all that is left is to license interpretable nodes, as in (4.62).

license(x)
def
= (∃R ∈ Rdot)[R(x)] (4.62)

“Output position x is licensed iff there is some relation R in Rdot such

that R(x) is true.”

65

Summary of The Flat-to-Dot Transduction and Licensing

f(x1)
def
= f(x) for f ∈ F

•(x2)
def
= pre bound(x)

succ(x1)
def
=

x
2 ⇔ pre bound(x)

(succ(x))1 ⇔ ¬pre bound(x)

pred(x1)
def
=

(pred(x))2 ⇔ post bound(x)

(pred(x))1 ⇔ ¬post bound(x)

license(x)
def
= (∃R ∈ Rdot)[R(x)]

The licensed output of this transduction is illustrated below. Note that it is mathemat-

ically identical to Mdot
plenty (illustrated in Figure 4.4), although the visual representations

differ slightly.

Figure 4.28: The licensed output of Γfd(Mflat
plenty)

•

p l E n t i
C C C

C C

C

4.3.5 The Dot-to-Flat Transduction

I refer to this transduction as Γdf . It is the mapping from Mdot to Mflat.

66

Mdot Γ→Mflat (4.63)〈
N;Rdot; {pred(x), succ(x)}

〉 Γ→
〈
N;Rflat; {pred(x), succ(x)}

〉
Copy Set(s)

The Flat Model for a given word always has an equal number or fewer positions than

the Dot Model for the same word, so this transduction will require only one copy set.

Figure 4.29: The codomain for Γdf (Mdot
plenty)

11 21 31 41 51 61 71

Unary Relations

Only the unary relations encoding segmental features are preserved. Note that position

51 does not belong to any of these relations because it is labeled with a dot in the input;

this label is not available in the output model signature.

Figure 4.30: Some unary relations for Γdf (Mdot
plenty)

p l E n t i

Additional formulas are needed for the syllable constituent labels ons, nuc, and cod.

Unlike the Tree and Flat Models, the Dot Model provides no information about syllable-

internal structure. Until this point, we have not questioned how segments are matched

67

to syllable constituents in the first place because this information was given in the

word models themselves. This need not be the case, however, as there is more to a

language’s phonology than just the models used to represent words.

I set aside the issue of how to syllabify underlying strings until Chapter 6. For now,

it suffices to assume that every language has some principles in place to syllabify un-

derlying strings. Minimally, the nucleus of each syllable must be identified by some

combination of universal and/or language-specific principles. Then onset and coda

membership can be inferred from position relative to syllable boundaries and nuclei

(i.e., onset consonants are between a dot its successor labeled nuc, while coda conso-

nants are between a nucleus and its successor labeled with a dot).

This being the case, I assume there is some relation Eng nuc(x) in the input word

model that is true of syllabic nuclei in English. Then output positions will be labeled

nuc if they satisfy Eng nuc(x).

nuc(x1)
def
= Eng nuc(x) (4.64)

“Position x in Copy Set 1 is labeled nuc iff x satisfies Eng nuc in the

input.”

These labeling relations yield the following partial output.

Figure 4.31: Some unary relations for Γdf (Mdot
plenty)

p l
E

nuc
n t

i

nuc

To label onset and coda segments, I again make use of formulas called ons 1, cod 1,

68

ons 2, cod 2, etc. Note that these differ from those defined in §4.3.2. In particular, the

formulas below do not refer to ons and Eng cod labels in the input because there are

none. Instead, syllable margin membership is inferred from the absence of nuc or •

labels and the ordering with respect to nucleus nodes.

ons 1(x)
def
= ¬(Eng nuc(x) ∨ •(x)) ∧ Eng nuc(succ(x)) (4.65)

cod 1(x)
def
= ¬(Eng nuc(x) ∨ •(x)) ∧ Eng nuc(pred(x)) (4.66)

“Position x is a nucleus-adjacent onset/coda iff x is not labeled Eng nuc

or •, and x immediately follows/precedes a position labeled Eng nuc.”

Similarly, ons i and cod i for the general case are defined below. Again I take n to be

the maximum number of segments allowed in a single onset and m to be the maximum

number of segments allowed in a single coda.

ons i(x)
def
= ¬(Eng nuc(x) ∨ •(x)) ∧ ons (i− 1)(succ(x)) for i ∈ {2, . . . , n} (4.67)

“Position x is ‘onset i’ iff x is not labeled Eng nuc or •, and its

successor is ‘onset (i− 1)’, for i ranging from 2 to n.”

cod i(x)
def
= ¬(Eng nuc(x) ∨ •(x)) ∧ cod (i− 1)(pred(x)) for i ∈ {2, . . . ,m} (4.68)

“Position x is ‘coda i’ iff x is not labeled Eng nuc or •, and its

predecessor is ‘coda (i− 1)’, for i ranging from 2 to m.”

It is now simple to define labeling formulas for ons and cod in the codomain.

ons(x1)
def
= ons n(x) ∨ ons (n− 1)(x) ∨ . . . ∨ ons 1(x) (4.69)

“Position x in Copy Set 1 is labeled ons iff x belongs to a contiguous

string of segments (up to length n) in the input that are not labeled

Eng nuc or •, ending with the nucleus-adjacent onset (ons 1).”

69

cod(x1)
def
= cod 1(x) ∨ . . . ∨ cod (m− 1)(x) ∨ cod m(x) (4.70)

“Position x in Copy Set 1 is labeled cod iff x belongs to a contiguous

string of segments (up to length m) in the input that are not labeled

Eng nuc or •, beginning with the nucleus-adjacent coda (cod 1).”

These contributions to the output are illustrated in Figure 4.32.

Figure 4.32: Additional unary relations for Γdf (Mdot
plenty)

p

ons

l

ons

E

nuc

n

cod

t

ons

i

nuc

Successor and Predecessor functions

The only caveat to the successor information in this transduction is that the position

after a dot in the input must succeed the position before the dot, essentially skipping

the dot position. I will use another type of a pre/post-boundary formula here.

pre dot(x)
def
= • (succ(x)) (4.71)

post dot(x)
def
= • (pred(x)) (4.72)

(4.73)

“Position x is a pre-dot/post-dot position iff its successor/predecessor

is labeled with a dot.”

The output successor function for pre-dot positions is given in (4.74).

70

pre dot(x)⇒ succ(x1) = (succ(succ(x)))1 (4.74)

“If x is a pre-dot position in the input, then the successor of the first

copy of x is the first copy of the second successor of x.”

Conversely, the output predecessor function for post-dot positions is given in (4.75).

post dot(x)⇒ pred(x1) = (pred(pred(x)))1 (4.75)

“If x is a post-dot position in the input, then the predecessor of the

first copy of x is the first copy of the second predecessor of x.”

The remaining successors and predecessors are preserved from the input. Full defini-

tions for output successor and predecessor functions are given in (4.76–4.77).

succ(x1)
def
=

(succ(succ(x)))1 ⇔ pre dot(x)

(succ(x))1 ⇔ ¬pre dot(x)

(4.76)

pred(x1)
def
=

(pred(pred(x)))1 ⇔ post dot(x)

(pred(x))1 ⇔ ¬post dot(x)

(4.77)

All output successor information is illustrated in Figure 4.33. Again I omit the prede-

cessor information for brevity, as it is largely redundant.

Figure 4.33: Γdf (Mdot
plenty) fully specified

p

ons

l

ons

E

nuc

n

cod

t

ons

i

nuc

C C C

C

C

71

Summary of The Dot-to-Flat Transduction and Licensing

f(x1)
def
= f(x) for f ∈ F

nuc(x1)
def
= Eng nuc(x)

ons(x1)
def
= ons n(x) ∨ ons (n− 1)(x) ∨ . . . ∨ ons 1(x)

cod(x1)
def
= cod 1(x) ∨ . . . ∨ cod (m− 1)(x) ∨ cod m(x)

succ(x1)
def
=

(succ(succ(x)))1 ⇔ pre dot(x)

(succ(x))1 ⇔ ¬pre dot(x)

pred(x1)
def
=

(pred(pred(x)))1 ⇔ post dot(x)

(pred(x))1 ⇔ ¬post dot(x)

license(x)
def
= (∃R ∈ Rflat)[R(x)]

Figure 4.34 shows the licensed output of this transduction.

Figure 4.34: The licensed output of Γdf (Mdot
plenty)

p

ons

l

ons

E

nuc

n

cod

t

ons

i

nuc

C C C C C

4.4 Discussion

I have shown that three popular types of syllable structure representations are nota-

tionally equivalent, in a strict mathematical sense. Model theory addresses the question

of whether some representations are more expressive than others. In particular, I have

demonstrated the QF-bi-interpretability of the Tree and Flat Models, and that of the

Flat and Dot Models. But are the Tree and Dot Models also QF-bi-interpretable?

72

Simply put: yes. While the result has yet to be proven, QF transductions are likely

closed under composition. This means that if Γdf and Γft are both QF, so is their

composition, Γdf (Γft). Notice that this composition takes a Dot Model as input and

produces the corresponding Tree Model—this is exactly the Dot-to-Tree transduction,

Γdt. Similarly, because Γtf and Γfd are QF, then so their composition Γtf (Γfd) is

likely also QF—and this is the Tree-to-Dot transduction. Thus, each pair of structures

examined is QF-bi-interpretable.

Even if it turns out that QF transductions are not closed under composition, defining

the remaining transductions in QF logic is trivial given the formulas previously defined

in this chapter. For example, Γdt is essentially the same as Γft, except that the syllable

constituent labels must be deduced—but I have already shown in Γdf that these labels

can be deduced from information in the Dot Model using only QF formulas.

While there may be subjective advantages to using different representation types, such

as highlighting certain aspects of the structure, the fact remains that they are all

equally capable of encoding the same information. Furthermore, they are not capable

of making different predictions about syllable typology. Assuming a bound on syllable

size, any constraint expressed in one model can be readily translated into a constraint

with the exact same effects in either of the other models.

For example, suppose we want to ban complex onsets. Let us first consider what a

complex onset looks like in the Tree Model: two adjacent positions both dominated by

a single position labeled ons. Figure 4.35 illustrates just that.

73

Figure 4.35: Mtree
CO , a complex onset in the Tree Model

y z

onsx

p p

C

Recall from Chapter 3 that a substructure is an Existentially Quantified Conjunction

(EQC) and a substructure constraint is a conjunction of one or more positive and/or

negative EQCs. A constraint against complex onsets in the Tree Model must simply

ban the substructure illustrated in Figure 4.35. This constraint is denoted κNCO,

formally defined in (4.78).

κNCO
def
= ¬(∃x, y, z)[ons(x) ∧ par(y) = x ∧ par(z) = x ∧ succ(y) = z] (4.78)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons, the parent of y is x, the parent of z is also x, and the successor of

y is z.”

So how do we translate this constraint into an equivalent one that uses the Flat Model?

We simply apply the transduction Γtf to the modelMtree
CO . The relevant formulas from

Γtf are reproduced below in (4.79–4.80).

ons(x1)
def
= ons(par(x)) (4.79)

succ(x1)
def
= (succ(x))1 (4.80)

Because x is labeled ons in the input, its children will be labeled ons in the output, as

formalized in (4.81–4.82).

74

ons(x) ∧ x = par(y)⇒ ons(y1) (4.81)

ons(x) ∧ x = par(z)⇒ ons(z1) (4.82)

“If x is labeled ons and x is the parent of y/z in the input, then the

first copy of y/z is labeled ons in the output.”

Additionally, the successor relation is preserved as in (4.83).

succ(y1)
def
= (succ(y))1 (4.83)

= z1 (4.84)

“The successor of the first copy of y is the first copy of the successor of

y in the input. This is equal to the first copy of z.”

The resulting output is illustrated in Figure 4.36.

Figure 4.36: The output of Γtf (Mtree
CO)

ons

y

ons

z

x

C

Note that x is an unlabeled position and can therefore be ‘erased’ by the licensing

function, as demonstrated previously. Considering the licensed output (positions y

and z only), it is clearly a licit structure in the Flat Model Theory. Furthermore, it is

exactly the structure we want to ban if complex onsets are disallowed. This example

75

shows how the transductions developed in this chapter can be applied not only to

words, but to substructure constraints as well.

In the remaining chapters, I use the Tree Representation because it is the prevailing

representation type used in the literature on Imdlawn Tashlhiyt Berber (ITB) and

Moroccan Arabic (MA).

76

Chapter 5

UNIVERSAL PRINCIPLES, SONORITY SEQUENCING, AND CV
TYPOLOGY

Regardless of which representation of syllable structure one adopts, certain structural

requirements and proclivities are generally accepted. For example, every syllable must

have exactly one nucleus, and languages around the world tend to favor vowels in

nucleic position over consonants. In this chapter, I first formalize some of the universal

principles of syllable well-formedness as substructure constraints. Then I examine

two generalizations that capture robust (although not exception-less) cross-linguistic

tendencies: sonority sequencing and CV typology.

5.1 Structural Well-formedness Constraints

A variety of structural well-formedness constraints can be expressed as substructure

constraints. Consider the requirement that every syllable must have exactly one nu-

cleus. This can be captured with two substructure constraints. First, every syllable

must have a sigma node dominating a nucleus node, the substructure illustrated in

Figure 5.1. I call this constraint κNR for “Nucleus Required,” formally defined in (5.1).

77

Figure 5.1: ψNR, the substructure required by κNR “Nucleus Required”

σ

x

nuc

y

p

κNR
def
= (∃x, y)[σ(x) ∧ nuc(y) ∧ par(y) = x]

= ψNR

(5.1)

“There exists a pair of nodes x, y, such that x is labeled σ, y is labeled

nuc, and the parent of y is x. ψNR is exactly this structure.”

Second, we must ban a single sigma node that dominates two distinct nucleus nodes.

This constraint, illustrated in Figure 5.2, is called κNU for “Nucleus Unique.” κNU is

formally defined in (5.2).

Figure 5.2: ψNU , the substructure banned by κNU “Nucleus Unique”

nuc

y

nuc

z

σx

p p

78

κNU
def
= ¬(∃x, y, z)[σ(x) ∧ nuc(y) ∧ nuc(z) ∧ par(y) = x ∧ par(z) = x ∧ y 6= z]

= ¬ψNU
(5.2)

“There does not exist a set of three nodes x, y, z, such that x is labeled

σ, y and z are both labeled nuc, the parent of y is x, the parent of z is

also x, and y is not equal to z. This is equivalent to ¬ψNU .”

A modelM satisfies both of the above constraints iff it contains ψNR and does not con-

tain ψNU . One model satisfying these constraints is Mtree
plenty, reproduced in Figure 5.3

below. The substructures equivalent to ψNR are bolded. Only one is necessary to sat-

isfy κNR. No substructure ofMtree
plenty includes a σ node dominating two unique nucleus

nodes, so κNU is also satisfied. To express that the model satisfies both constraints, I

write Mtree
plenty |= κNR ∧ κNU .

Figure 5.3: Mtree
plenty

σ

nucons cod ons nuc

σ

Elp n t i

p p p p p

p p p p p p

C C C C C

Additional structural well-formedness constraints can be expressed similarly. For ex-

ample, an onset may not immediately precede a coda. This substructure constraint is

represented by κOC , which is illustrated in Figure 5.4 and defined in (5.3).

79

Figure 5.4: ψOC , the substructure banned by κOC “No Onset-Coda”

ons

x

cod

y

C

κOC
def
= ¬(∃x, y)[ons(x) ∧ cod(y) ∧ xC y]

= ¬ψOC
(5.3)

“There does not exist a pair nodes x, y, such that x is labeled ons, y is

labeled cod, and the successor of x is y. This is equivalent to ¬ψOC”

Note that all of these constraints refer to subgraphs of size 3 or less. While some

are positive and some are negative, well-formedness with respect to each constraint is

always evaluated locally.

5.2 Sonority Sequencing

Sievers (1881) wrote one of the first versions of the Sonority Sequencing Principle

(SSP) (also called the Sonority Sequencing Generalization or SSG), observing that

sonority generally rises between a given segment and the sonority peak of its syllable.

This principle has been reiterated in one form or another by many influential linguists

(e.g., Clements, 1990; Hooper, 1976; Saussure, 1916; Selkirk, 1984). While there is a

great deal of disagreement regarding the psychological and physiological realizations of

sonority, some principles are generally agreed upon. Namely, vowels are more sonorous

than sonorant consonants (glides, liquids, and nasals), which are in turn more sonorous

than obstruents (fricatives, affricates, and stops). Finer distinctions between members

of these three natural classes are more contentious, but the exact details of the sonority

hierarchy do not matter for the purposes of this chapter. It is also worth noting that

80

many languages allow SSP violations, so this is not a universal principle in its most

strict interpretation.

In the following section, I define binary sonority relations that encode the relative

sonority of two segments. I then introduce two substructure constraints that enforce a

certain version of the SSP.

5.2.1 Sonority Relations

I assume for now that there is some known sonority hierarchy (either for a given lan-

guage or more universally) such that, for every pair of phonemes, it is known whether

or not one is less sonorous than the other. If segment x is less sonorous than segment

y, I write <s(x, y) or, equivalently, x<s y. In accordance with the traditional notion

of lesser sonority, I assume that the binary relation <s is irreflexive, asymmetric, and

transitive. The formal definitions of these terms are given in (1-3), along with examples.

Before delving into those, let us clarify some notational conventions. Positions corre-

sponding to a particular phoneme are denoted with square brackets, e.g., [t] denotes a

position labeled alv and stop.

[t]
def
= x s.t. alv(x) ∧ stop(x)

“[t] is defined as a position x such that alv(x) = TRUE and

stop(x) = TRUE.”

The symbol ⇒ represents implication in one direction. For example, the statement

2 < x⇒ 1 < x

can be read as “2 is less than x implies that 1 is less than x,” or, equivalently, “if 2 is

less than x, then 1 is less than x.”1

1 Note that implication in the other direction is not necessarily true; e.g., 1 < x does
not imply that 2 < x. Let x = 1.5, for instance. Then 1 < x and x < 2.

81

With these conventions established, the properties irreflexive, asymmetric, and transi-

tive are defined below.

1. The binary relation <s is irreflexive iff:

(∀x)[<s(x, x) = FALSE]

“For all x, x cannot be less sonorous than x.”

Example: <s([t], [t]) = FALSE because [t] cannot be less sonorous than itself.

2. The binary relation <s is asymmetric iff:

(∀x, y)[<s(x, y) = TRUE⇒ <s(y, x) = FALSE]

“For all x, y, if x is less sonorous than y, then y cannot be less

sonorous than x.”

Example: <s([t], [m]) = TRUE⇒ <s([m], [t]) = FALSE

That is, [t] is less sonorous than [m], so [m] cannot be less sonorous than [t].

3. The binary relation <s is transitive iff:

(∀x, y, z)[<s(x, y) = TRUE ∧<s(y, z) = TRUE⇒ <s(x, z) = TRUE]

“For all x, y, z, if x is less sonorous than y and y is less sonorous

than z, then x must be less sonorous than z.”

Example: <s([t], [m]) ∧<s([m], [a])⇒ <s([t], [a])

That is, [t] is less sonorous than [m] and [m] is less sonorous than [a], so [t] is

also less sonorous than [a].

Given these properties of <s, it is simple to define a relation =s to represent equal

sonority. Recall that ¬R(x, y) is synonymous with R(x, y) = FALSE. Moving forward,

I will use the former (more condensed) notation as it aids in readability.

82

=s(x, y)
def
= ¬<s(x, y) ∧ ¬<s(y, x) (5.4)

“x and y are equally sonorous iff x is not less sonorous than y and y is

not less sonorous than x.”

Similarly, I define the relation ≤s to represent equal or lesser sonority.

≤s(x, y)
def
= <s(x, y) ∨=s(y, x) (5.5)

“x is equally or less sonorous than y iff x is less sonorous than y or x

and y are equally sonorous.”

Finally, I also define the relation >s to represent greater sonority.

>s(x, y)
def
= ¬≤s(x, y) (5.6)

“x is more sonorous than y iff x is not equally or less sonorous than y.”

5.2.2 Constraints on Sonority Sequencing

As will be seen in Chapter 6, some languages allow equally sonorous consonants in a

complex onset/coda, meaning that a strict rise in sonority from the syllable boundaries

to the nucleus is not required. Instead, an interpretation of the SSP that is more com-

patible with these languages would forbid falling sonority from the syllable boundaries

to the nucleus.

To enforce this version of the SSP, it suffices to ban two substructures: first, an onset

segment must not be more sonorous than its successor; second, a coda segment must

not be more sonorous than its predecessor.

The constraint κright “Right of Onset” bans a segment dominated by an ons node

whose successor is more sonorous, the substructure illustrated in Figure 5.5. A formal

definition of κright is given in (5.7).

83

Figure 5.5: ψright, the substructure banned by κright “Right of Onset”

ons

x

y z

p

C

>s

κright
def
= ¬(∃x, y, z)[ons(x) ∧ par(y) = x ∧ succ(y) = z ∧<s(z, y)]

= ¬ψright
(5.7)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons and is the parent of y, the successor of y is z, and y is more

sonorous than z. This is equivalent to ¬ψright.”

Making use of the notion of substructure allows this single constraint to apply to

a variety of cases. For one, it forbids an onset from being more sonorous than the

nucleus immediately following it. Figure 5.6 illustrates such a structure, an onset w

with a nucleic s. The banned substructure ψright is bolded.

Figure 5.6: An onset followed by a nucleus of lesser sonority

ons

w s

nuc

p p

CCC

>s

Importantly, κright also bans a left-to-right fall in sonority among segments within a

complex onset. Consider the nonce word blick [blIk], which native English-speakers

84

generally agree is a viable (though unattested) word in English (Chomsky & Halle,

1965). Reversing the order of the onset segments yields lbick [lbIk], which is clearly

not acceptable as an English word. One explanation for this is that blick satisfies the

SSP while lbick does not. Figure 5.7 illustrates the tree model for Mlbik. The bolded

substructure is precisely the structure banned by κright.

Figure 5.7: Mlbik

ons

l b I k

nuc cod

p p p p

CCC

>s

C

<s

C

>s

In contrast, Figures 5.8 illustrates the tree word model for blick. Mblik satisfies κright

because it does not contain the banned substructure. Crucially, the first segment in

blick, [b], is less sonorous than its successor, [l].

Figure 5.8: Mblik

ons

b l I k

nuc cod

p p p p

C

<s

C

<s

C

>s

Of course, the SSP does not only concern onsets. Another substructure constraint is

necessary to ban a left-to-right sonority rise in complex codas and from the nucleus

to the coda: κleft. This constraint is defined in (5.8) and the corresponding banned

substructure is illustrated in Figure 5.9.

85

Figure 5.9: ψleft, the substructure banned by κleft “Left of Coda”

cod

x

zy

p

C

<s

κleft
def
= ¬(∃x, y, z)[cod(x) ∧ par(z) = x ∧ succ(y) = z ∧<s(y, z)] (5.8)

“There does not exist a set of three nodes, x, y, z, such that x is labeled

cod and is the parent of z, the successor of y is z, and y is less sonorous

than z.”

This constraint is the mirror image of κright. Conjoining the two constraints yields

κSSP , a statement of the SSP in formal logic.

κSSP
def
= κright ∧ κleft

= ¬ψright ∧ ¬ψleft
(5.9)

A word model satisfies κSSP iff it contains neither ψright nor ψleft.

5.3 CV Typology

The key insight from previous accounts of CV phonology (e.g., Clements & Keyser,

1983; Jakobson, 1962) is that, while some languages have obligatory onsets and some

forbid codas, virtually no languages ban onsets or require codas. Furthermore, inter-

vocalic consonants are thought to be universally syllabified as onsets to the following

86

syllable. That is, a /VCV/ sequence is syllabified as [V.CV] rather than [VC.V].2

These principles are easily describable with two substructure constraints: κOR, which

requires a syllable to have an onset; and κCF , which bans a syllable from having a

coda. Figure 5.10 illustrates the first of these, κOR, which is defined in (5.10). Its form

is identical to that of κNR, the positive substructure constraint requiring that every

syllable have a nucleus.

Figure 5.10: ψOR, the substructure required by κOR “Onset Required”

σ

x

ons

y

p

κOR
def
= (∃x, y)[σ(x) ∧ ons(y) ∧ par(y) = x]

= ψOR

(5.10)

“There exists a pair of nodes x, y, such that x is labeled σ, y is labeled

ons, and the parent of y is x. This is equivalent to ψOR.”

In contrast, κCF is a negative substructure constraint similar to κNU (which bans a

syllable from having multiple nuclei). κCF is illustrated in Figure 5.11 and defined in

(5.11).

2 It has been claimed that Arrernte (Breen & Pensalfini, 1999), Barra Gaelic
(Borgstrøm, 1935), and Kunjen (Sommer, 1981) lack this onset preference; see Clements
(1986), Blevins (1995), and Duanmu (2009) for discussion and counter-arguments.

87

Figure 5.11: ψCF , the substructure banned by κCF “Coda Forbidden”

σ

x

cod

y

p

κCF
def
= ¬(∃x, y)[σ(x) ∧ cod(y) ∧ par(y) = x]

= ¬ψCF
(5.11)

“There does not exist a pair of nodes x, y, such that x is labeled σ, y is

labeled cod, and the parent of y is x. This is equivalent to ¬ψCF .”

A given language may have one, both, or neither of these constraints in its phonology.

Recall that we can define a formal language L using a logical formula that is the

conjunction of all substructure constraints in the referenced natural language. Call

such a formula K. If K includes κOR as one of its terms, L(K) will only include words

where every syllable has an onset. Further, if K includes κCF , it will not include any

words with codas in them.

The logically possible combinations of κOR and κCF yield a four-way typology of basic

language types (as in Blevins, 1995). If a language requires onsets and forbids codas,

the only acceptable syllable type will be CV. If codas are forbidden and onsets not

required, V and CV syllables are allowed. Requiring onsets and allowing codas yields

CV and CVC syllables. Finally, when neither constraint is present, V, CV, VC, and

CVC syllables will all be grammatical. These four language types are summarized in

Table 5.1.

88

Table 5.1: Possible Syllable Types in Basic CV Typology

κOR No κOR

κCF CV (C)V

No κCF CV(C) (C)V(C)

Note that the constraints defined here differ from Optimality-Theoretic constraints like

Onset and NoCoda in that they are inviolable and non-universal. The formal lan-

guages defined by combinations of κOR and κCF may be extensionally identical to those

produced from a certain ranking of violable constraints. What I have demonstrated is

that the four-way typological distinction can easily be derived without optimization;

inviolable constraints work at least as well as violable ones in this regard.

89

Chapter 6

CASE STUDY: IMDLAWN TASHLHIYT BERBER

Imdlawn Tashlhiyt Berber (ITB) is unusual due to its tolerance of non-vocalic syllabic

nuclei. Rule-based and Optimality-Theoretic (OT) accounts of ITB syllabification

have been successful, but they do not directly address the question of how complex

the process is or what type of formal language might capture the well-formedness

conditions of ITB syllables. Model theory and formal logic allow for comparison of

complexity across different theories of phonology by identifying the computational

power (or expressivity) of linguistic formalisms in a grammar-independent way. With

these tools, I develop mathematical formalisms for characterizing well-formedness in

ITB and for representing ITB syllabification using QF logic. This result indicates

that ITB syllabification is relatively simple from a computational standpoint and that

grammatical formalisms could succeed with even less powerful mechanisms than are

currently accepted (e.g., optimization).1

6.1 Motivation

Accounting for syllabification in ITB has become a sort of litmus test for phonological

frameworks handling syllable theory (Ridouane, 2016). Any segment can be nucleic in

ITB in some environment, making words like [tr
"
.gl

"
t] ‘you (sg.) locked’ commonplace.

Notably, [tr
"
.gl

"
t] contrasts with [tr

"
g.las] ‘she locked it (masc.),’ as shown in Table 6.1.2

1 Part of this analysis appears in the Proceedings of the First Annual Meeting of the
Society for Computation in Linguistics (SCiL)—see Strother-Garcia (2018).

2 sg. = singular; masc. = masculine; 2ms = 2nd person masculine singular; 3fs = 3rd
person feminine singular.

90

These examples illustrate a great deal of variety in syllabic nuclei, ranging from vowels

like [a] to voiceless fricatives like [s].

Table 6.1: Alternations in ITB Perfective Verb Forms: 2ms vs. 3fs with a dative

masc. object

2ms Gloss 3fs Gloss

[tr
"
.gl

"
t] ‘you locked’ [tr

"
g.las] ‘she locked it (masc.)’

[ts
"
.kr

"
t] ‘you did’ [ts

"
k.ras] ‘she did it (masc.)’

Table 6.2 shows additional alternations in perfective verb forms.3 Note the difference

in the initial syllables here: masculine forms begin with [i], which forms an onset-less

syllable along with a single coda consonant; feminine forms begin with [t], which serves

as the onset to a syllable with a nucleic consonant.

Table 6.2: Alternations in ITB Perfective Verb Forms: 3ms vs. 3fs

3ms Gloss 3fs Gloss

[il.di] ‘he pulled’ [tl
"
.di] ‘she pulled’

[is.ti] ‘he selected’ [ts
"
.ti] ‘she selected’

Despite the unusual syllables in these words, careful study shows that syllable well-

formedness depends on only a few key principles. ITB syllables follow the SSP almost

perfectly, with a well-defined, language-specific class of exceptions (to be discussed

further in §6.3.2). Note that the syllabic consonants in the examples above are always

more sonorous than their neighboring segments.

3 3ms = 3rd person masculine singular.

91

As with other phonological processes, syllabification can be thought of as a map from

URs to SRs—but what is the nature of this map? Previous approaches have for-

malized ITB syllabification using rules (Dell & Elmedlaoui, 1985, 1988; Frampton,

2011) or rankings of OT constraints (Clements, 1997; Dell & Elmedlaoui, 2002; Prince

& Smolensky, 1993). While both of these frameworks can accurately represent the

syllabification process in ITB, previous research suggests they are, in a sense, more

powerful formalisms than are necessary.

As explained in Chapter 3, one way to compare the power of different grammatical

formalisms is to examine the kind of logic needed to express them. Under certain

assumptions, rule-based and OT grammars are both demonstrably as expressive as

regular relations (Frank & Satta, 1998; Johnson, 1972; Kaplan & Kay, 1994; Karttunen,

1993, 1998).4 Regular relations properly include regular functions (maps), which are

equivalent to transductions in MSO logic (Engelfriet & Hoogeboom, 2001; Rogers &

Pullum, 2011b). In contrast, I show that the transduction from URs to SRs in ITB is

QF, which is strictly weaker than FO, which is in turn strictly weaker than MSO.

Recall from Chapter 3 that QF formulas are evaluated with respect to a substructure

of finite size; that is, they are evaluated locally. Restricting the mapping to only local

computations substantially constrains the predicted typology of phonological patterns

and admits established learnability results (e.g., Chandlee et al., 2019; Heinz, 2010a,b;

Jardine, 2016; Strother-Garcia et al., 2017). A class of mappings known as Input

Stricly Local Functions, which rely on only local computations, is already known to

characterize a variety of phonological processes (Chandlee, 2014; Chandlee & Heinz,

2018; Chandlee & Lindell, to appear), raising the question of whether all phonological

mappings can be shown to be local in nature.

In the following sections, I first review the basic facts of ITB phonology relevant to the

surface pattern of syllabification. I then develop a set of local substructure constraints

4 See Heinz (2011b) for a review of the literature on computational complexity in
rule-based grammars and OT grammars.

92

to formalize the pattern mathematically. These constraints define the formal language

corresponding to all well-formed words in ITB (with respect to syllable structure).

Finally, I demonstrate that ITB syllabification can be represented as a QF graph

transduction.

6.2 The Basics

The phonemic consonant inventory for ITB is given in Table 6.3.5 Notably, the alveolars

and post-alveolars have pharyngealized counterparts, while the velars and uvulars have

labialized counterparts. All consonants also contrast with their geminate forms (not

represented in the table)—e.g., imi ‘mouth’ vs. immi ‘Mom.’

Table 6.3: Phonemic Singleton Consonants in ITB

Labial Alveolar Palato-alveolar Velar Uvular Pharyngeal Glottal

Stop b
t tQ

d dQ

k kw

g gw
q qw

Fricative f
s sQ

z zQ

S SQ

Z ZQ

X Xw

K Kw

è

Q
H

Nasal m n nQ

Approximant r rQ

Lateral l lQ

If a word contains an underlying pharyngeal (also called an emphatic consonant), pha-

ryngealization spreads rightward throughout the word. This yields minimal pairs like

5 Where Dell & Elmedlaoui (2002) use nonstandard symbols, I present their IPA
equivalents.

93

those in Table 6.4.6

Table 6.4: Pharyngealized Consonants in ITB

SR Gloss SR Gloss

[i.zi] ‘fly’ [!i.zi] ‘gall’

[fr
"
d] ‘graze!’ [!fr

"
d] ‘clear!’

There are only three phonemic vowels: /a/, /i/, and /u/. In general, the glide/vowel

distinction among the High Vocoids (HVs) [i∼j] and [u∼w] is predictable based on

syllable position. That is, a nucleic HV is vocalic, as in the second syllable of [tag.rurt]

‘stable,’ while a non-nucleic HV surfaces as a glide, as in [sa.wl
"
x] ‘I spoke.’ However,

there are some glides which must be specified in the UR (Dell & Elmedlaoui, 2002)—see

Table 6.5.

Table 6.5: Unpredictable Vowel/Glide Contrasts in ITB

SR Gloss SR Gloss

[suj] ‘let pass!’ [zwi] ‘beat down!’

[lur] ‘give back!’ [lwr
"
] ‘run away!’

These can be treated as lexical exceptions by adding a labeling relation to the input

word model. I will set these aside for the remainder of my analysis of ITB, but my

analysis of MA in the following chapter shows that lexical exceptions do not pose a

problem for inviolable substructure constraint grammars.

6 The ! symbol is used in SRs to indicate that pharyngealization spreads rightward
from the underlying pharyngealized consonant, as in Dell & Elmedlaoui (2002).

94

6.3 Surface Well-Formedness in ITB

In this section, I outline the inviolable constraints that govern surface well-formedness

in ITB and construct the corresponding formal language.

6.3.1 Structural Constraints

Certain types of segments are banned in certain syllable positions—I refer to these

restrictions as structural constraints, in contrast with sonority constraints, which will

be defined in §6.3.2. In addition to universal principles of syllable well-formedness

(like those described in Chapter 5), there are a few key language-specific structural

constraints governing the well-formedness of ITB syllables. First, although onsets are

not required in the general case, they are required in non-initial syllables. This can

be formalized as a negative substructure constraint banning the nucleic segment of

a non-initial syllable from immediately following a segment in another syllable. The

constraint κNIOS “No Internal Onsetless Syllable” is defined in (6.1) and illustrated in

Figure 6.1.

Figure 6.1: ψNIOS, the substructure banned by κNIOS “No Internal Onsetless Sylla-
ble”

σ

u

σ

v

w

nuc

x

y z

p p

p p

C

95

κNIOS
def
= ¬(∃u, v, w, x, y, z)[σ(u) ∧ σ(v) ∧ nuc(x) ∧ par(w) = u ∧ par(x) = v

∧ par(y) = w ∧ par(z) = x ∧ succ(y) = z] (6.1)

“There does not exist a set of six nodes u, v, w, x, y, z, such that u and

v are labeled σ, z is labeled nuc, the parent of w is u, the parent of x is

v, the parent of y is w, the parent of z is x, and the successor of y is z.”

Additionally, final obstruents are forbidden from being nucleic. Figure 6.2 illustrates

the structure banned by κNFO (a nucleic word-final obstruent).

Figure 6.2: ψNFO, the substructure banned by κNFO “No Final Obstruent”

nuc

x

obs

y

p

C

κNFO
def
= ¬(∃x, y)[nuc(x) ∧ obs(y) ∧ fin(y) ∧ par(y) = x] (6.2)

“There does not exist a set of nodes x, y, such that such that x is

labeled nuc, y is a final obstruent, and the parent of y is x.”

The loop labeled C in Figure 6.2 indicates that position y is its own successor; that is,

it is word-final.

Finally, we must ban complex onsets and codas. The constraint κNCO “No Complex

Onset” was first defined in (4.78) and is reproduced below in (6.3). The substructure

banned by the constraint is illustrated in Figure 6.3. Note that it has essentially the

same form as κNU “Nucleus Unique,” defined in (5.2).

96

Figure 6.3: ψNCO, the substructure banned by κNCO “No Complex Onset”

y z

onsx

p p

C

κNCO
def
= ¬(∃x, y, z)[ons(x) ∧ par(y) = x ∧ par(z) = x ∧ succ(y) = z] (6.3)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons, the parent of y is x, the parent of z is also x, and the successor of

y is z.”

Similarly, complex codas are banned by κNCC , defined in 6.4

Figure 6.4: ψNCC , the substructure banned by κNCC “No Complex Coda”

y z

codx

p p

C

κNCC
def
= ¬(∃x, y, z)[cod(x) ∧ par(y) = x ∧ par(z) = x ∧C(y) = z] (6.4)

“There does not exist a set of three nodes x, y, z, such that x is labeled

cod, the parent of y is x, the parent of z is also x, and the successor of

y is z.”

97

6.3.2 Sonority Sequencing Constraints

In addition to these structural constraints, we must also account for constraints on

sonority sequencing. Dell & Elmedlaoui (1985, 2002) report the following sonority

hierarchy for ITB.

voiceless stops <s voiced stops <s voiceless fricatives

<s voiced fricatives <s nasals <s liquids <s high vowels <s [a]

Recall that κright bans a segment dominated by an ons node whose successor is less

sonorous. In ITB, there is one exception to this principle. If the onset is a HV, it may

be followed by a sonorant of equal or lesser sonority (i.e., a nasal, liquid, or another

high vowel). Syllables of this type are called Glide-Sonorant (GR) syllables.7 Some

examples are given in Table 6.6. 8 In GR syllables, the glide forms the onset to the

nucleic sonorant, following an open syllable. Consider the UR /saul-x/. The /a/ must

be nucleic because it is the most sonorous segment. If the /u/ were also nucleic, it

could have no onset. Instead, the /l/ becomes a nucleus and the /u/ becomes its onset,

surfacing as the glide [w].

Table 6.6: Words with GR Syllables

UR SR Gloss

/saul-x/ [sa.wl
"
x] ‘I spoke’

/t-iun-t-a-s/ [ti.wn
"
.tas] ‘you climbed on him’

/i-èaul=tn/ [i.èa.wl
"
.tn

"
] ‘he made them (m.) plentiful’

7 As in ‘glide-resonant’ from Dell & Elmedlaoui (1985).

8 Following Dell & Elmedlaoui (2002), the - symbol represents word-internal morpheme
boundaries and the = symbol represents the left edge of an enclitic. The difference
between these types of boundaries is not relevant to the present analysis.

98

Thus, a modified version of κright is needed for ITB, as defined in (6.5. In particular,

the SSP must only be enforced strictly if the first segment in the adjacent pair is an

obstruent.

Figure 6.5: ψson, the substructure banned by κson

ons

x

obs

y z

p

C

>s

κson
def
= ¬(∃x, y, z)[ons(x) ∧ obs(y) ∧ par(y) = x ∧ succ(y) = z∧ <s (z, y)] (6.5)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons, y is labeled obs, the parent of y is x, the successor of y is z, and y

is more sonorous than z.”

Note that κson does not prohibit a syllable in which [a] is the onset. While HVs can be

onsets in GR syllables, [a] is at the top of the sonority hierarchy and must always be

nucleic. I therefore define the constraint κa to ban [a] in onset position. This constraint

is defined in (6.6), with the banned substructure ψa illustrated in Figure 6.6.

Figure 6.6: ψa, the substructure banned by κa “No Onset [a]”

ons

x

a

y

p

99

κa
def
= ¬(∃x, y)[ons(x) ∧ a(y) ∧ par(y) = x] (6.6)

“There does not exist a set of nodes x, y, such that x is labeled ons, y

is an a, and the parent of y is x.”

On the coda side of things, ITB obeys κleft, first defined in (5.8) and reproduced below

in (6.7).

Figure 6.7: ψleft, the substructure banned by κleft “Left of Coda”

cod

x

zy

p

C

<s

κleft
def
= ¬(∃x, y, z)[cod(x) ∧ par(z) = x ∧ succ(y) = z ∧<s(y, z)] (6.7)

“There does not exist a set of three nodes, x, y, z, such that x is labeled

cod and is the parent of z, the successor of y is z, and y is less sonorous

than z.”

6.3.3 The Formal Language for ITB

The formula KITB defined in (6.8) encapsulates all of the above constraints on syllable

well-formedness in ITB.

KITB
def
= κNR ∧ κNU ∧ κNIOS ∧ κNFO ∧ κNCO ∧ κNCC ∧ κson ∧ κa ∧ κleft

= ψNR ∧ ¬ψNU ∧ ¬ψNIOS ∧ ¬ψNFO ∧ ¬ψNCO ∧ ¬ψNCC∧

¬ψson ∧ ¬ψa ∧ ¬ψleft

(6.8)

100

Under the Tree Model Theory, LITB is the formal language defined by this formula, as

defined in (6.9).

LITB
def
= L(KITB) (6.9)

= {w ∈ Σ∗ | Mtree
w |= KITB} (6.10)

Of course, LITB only accounts for basic syllable structure; a much longer formula would

be required to characterize the entire phonology of ITB. For this reason, LITB is not

precisely equivalent to the set of all phonologically well-formed words in ITB.

6.3.4 Extended Example: /t-xzn-t/

To illustrate how these constraints are evaluated, consider the correct tree word model

for /t-xzn-t/, ‘you (sg.) stored,’ given in Figure 6.8.

Figure 6.8: M[tx
"
.zn

"
t]

t x z n t

ons nuc ons nuc cod

σ σ

C

<s

C

<s

C

<s

C

>s

p p p p p

p p p p p

In Figures 6.9 through 6.12, I show how the proposed inviolable constraints rule out

all of the sub-optimal candidates offered by Prince & Smolensky (1993). Banned

substructures are bolded.

M[t
"
x.zn

"
t] violates κleft because the first syllable contains ψleft—in particular, because

[t] <s [x]. Similarly, M[tx
"
z.nt

"
] violates κleft because the second syllable contains ψleft,

101

with [x] <s [z]. Additionally, κson is violated because this word model contains ψson

(because [t] <s [n]), but one violation is enough to rule out this potential SR.M[txz
"
.n
"
t]

violates κNIOS because the first and second syllable together contain ψNIOS, the second

syllable having no onset. M[t
"
.x
"
.z
"
.n
"
.t
"
] also violates κNIOS because all four non-initial

syllables are onsetless. Again, any one violation would suffice.

Figure 6.9: Mtree
[t
"
x.zn

"
t]

t* x z n t

nuc cod ons nuc cod

σ σ

CCC

<s

C

<s

C

<s

C

>s

p p p p p

p p p p p

Figure 6.10: Mtree
[tx

"
z.nt

"
]

t* x z n t

ons nuc cod ons nuc

σ σ

C

<s

CCC

>s

C

<s

CCC

<s

p p p p p

p p p p p

This extended example illustrates how the surface well-formedness of ITB syllables can

be accounted for using inviolable constraints, without recourse to the optimization that

OT is based on.

102

Figure 6.11: Mtree
[txz

"
.n
"
t]

t* x z n t

ons nuc nuc cod

σ σ

C

<s

C

<s

CCC

<s

C

>s

p p p p p

p p p p

Figure 6.12: Mtree
[t
"
.x
"
.z
"
.n
"
.t
"
]

t* x z n t

nuc nuc nuc nuc nuc

σ σ σ σ σ

CCC

<s

CCC

<s

CCC

<s

CCC

>s

p p p p p

p p p p p

103

6.4 Syllabification in ITB

The input to the transduction is a word model of an UR. I will use the Successor

Word Model to represent this input and I will refer to several formulas first defined in

Chapter 3, reproduced below. First, recall the set of primitive phonological features

F and the corresponding set of unary relations (labels), Rf , reproduced in (6.11) and

(6.12).

F def
= {voice, cons, high, lab, alv, post, pal, vel, uv, phar, glot, stop,

fric, nas, approx, lat}
(6.11)

Rf
def
= {Rf | f ∈ F} (6.12)

Additionally, I define formulas to pick out certain natural classes and certain positions

in a word:

obs(x)
def
= stop(x) ∨ fric(x) (6.13)

“x is an obstruent iff it is a stop or a fricative.”

son(x)
def
= ¬obs(x) (6.14)

“x is a sonorant iff x is not an obstruent.”

init(x)
def
= pred(x) = x (6.15)

“x is word-initial iff its predecessor is itself.”

fin(x)
def
= succ(x) = x (6.16)

“x is word-final iff its successor is itself.”

med(x)
def
= ¬(init(x) ∨ fin(x)) (6.17)

“x is word-medial iff it is neither initial nor final.”

104

init stop(x)
def
= init(x) ∧ stop(x) (6.18)

“x is an initial stop iff it is word-initial and a stop consonant.”

fin obs(x)
def
= fin(x) ∧ obs(x) (6.19)

“x is a final obstruent iff it is word-final and an obstruent.”

I will make use of these as I develop the ITB syllabification transduction.

6.4.1 Sonority and Other Considerations

To label syllable positions in the output, it is first necessary to identify sonority peaks,

other positions that may be nucleic, and marked positions that are prohibited from

being nucleic.

A word-medial sonority peak is simply a segment that is more sonorous than both its

neighboring segments, as defined in (6.20). To be exhaustive, I also define word-initial

and word-final ‘peaks’ as segments more sonorous than their word-medial neighbors

(see (6.21) and (6.22)). Then a sonority peak (6.23) is any of these three.9

med pk(x)
def
= med(x) ∧ x >s pred(x) ∧ x >s succ(x) (6.20)

“x is a word-medial sonority peak iff it is medial, more sonorous than

its predecessor, and more sonorous than its successor.”

init pk(x)
def
= init(x) ∧ x >s succ(x) (6.21)

“x is a word-initial sonority peak iff it is initial and more sonorous than

its successor.”

9 med = medial; init = initial; fin = final; pk = peak.

105

fin pk(x)
def
= fin(x) ∧ x >s pred(x) (6.22)

“x is a word-final sonority peak iff it is final and more sonorous than its

predecessor.”

son pk(x)
def
= med pk(x) ∨ init pk(x) ∨ fin pk(x) (6.23)

“x is a sonority peak iff it is a medial peak, an initial peak, or a final

peak.”

Given two adjacent segments of equal sonority, Frampton (2011) observes that “a slot

x is ‘more prominent’ than an adjacent slot y . . . if they are equally sonorous and x is

to the left of y, unless x is initial.” In other words, the leftmost segment of a sonority

plateau takes prominence when it comes to assigning nucleic status, unless it is word-

initial. For example, consider the /sx/ sequence in /rks-x/ ‘I hid.’ The two segments

are of equal sonority, and it is the /s/ which syllabifies in the surface form [r
"
.ks

"
x]

(compare to *[rk
"
.sx

"
]).

Left-prominence is captured by the formula l prom, defined in (6.24).10

l prom(x)
def
= x =s succ(x) ∧med(x) (6.24)

“x is left-prominent iff it is of equal sonority with its successor and it is

word-medial.”

Note that word-final positions are explicitly excluded. Were this left out of the defi-

nition, every final position would satisfy l prom due to it being its own successor and,

therefore, equally sonorous to its successor (itself). Then a prominence peak is either

a sonority peak or a segment that satisfies l prom, as in (6.25.

prom pk(x)
def
= son pk(x) ∨ l prom(x) (6.25)

“x is a prominence peak iff it is a sonority peak or left-prominent.”

10 prom = prominence.

106

Prominence peaks are typically syllabic nuclei, with two exceptions. The first exception

is simple: final obstruents cannot be nucleic. The second exception occurs when a

prominence peak precedes a GR sequence. In this case, the glide becomes an onset

despite being more sonorous than its successor. The shorthand formula GR (6.26) picks

out the sonorant (resonant) in a GR syllable, which is always nucleic.

GR(x)
def
= prom pk(pred(pred(x))) ∧ HV(pred(x)) ∧ son(x) (6.26)

“x is the nucleus of a GR syllable iff its predecessor’s predecessor is a

prominence peak, x is a HV, and x is a sonorant.”

6.4.2 Identifying Syllable Constituents

Now it is easy to identify the syllable constituent for any given segment. formula (6.27)

states that a segment is nucleic iff it is a) a prominence peak or b) the sonorant in

a GR sequence and iff it is not a final obstruent. A segment is an onset iff it is not

nucleic, but its successor is; this satisfies ons, defined in (6.28). Finally, a segment is a

coda iff it is immediately preceded by a nucleus but it does not satisfy ons (i.e., it is

not the onset for the following syllable), as in (6.29).

nuc(x)
def
= ¬(prom pk(x) ∨ GR(x)) ∧ ¬fin obs(x) (6.27)

ons(x)
def
= ¬nuc(x) ∧ nuc(succ(x)) (6.28)

cod(x)
def
= nuc(pred(x)) ∧ ¬ons(x) (6.29)

6.4.3 The ITB Syllabification Transduction

The transduction ΓITB is a set of formulas that use information in the UR (the input)

to construct and label the SR (the output). For every relation R in the input word

model, there is a corresponding relation Rω defined over each copy set of the output

107

word model. With the formulas defined in the previous section, the transduction itself

is simple to define.

Binary Relations. Sonority relations are all preserved in Copy Set 1 under ΓITB.

These relations are defined in (6.30–6.31).

<s (x1, y1)
def
= <s (x, y) (6.30)

=s (x1, y1)
def
= =s (x, y) (6.31)

“The first copy of x in the output is less/equally sonorous than/to the

first copy of y iff x is less/equally sonorous than/to y in the input.”

All the other sonority relations can be derived from these two, as demonstrated in

Chapter 5.

Feature Labels. Recall that Rf is the set of unary relations for phonological features.

These feature labels are also preserved in Copy Set 1, as specified by (6.32).

(∀f ∈ Rf)[f(x1)
def
= f(x)] (6.32)

“For all features f in the set Rf , the first copy of x in the output is

labeled f iff x is labeled f in the input.”

Syllable Constituent Labels and Sigma Nodes. I have already done the work of

identifying onsets, nuclei, and codas in the input form. All that remains is to formalize

the formulas that label the syllable constituents in the output form—specifically, in

Copy Set 2. The relevant formulas are given in (6.33–6.35).

nuc(x2)
def
= nuc(x) (6.33)

ons(x2)
def
= ons(x) (6.34)

cod(x2)
def
= cod(x) (6.35)

“The second copy of x in the output is labeled nuc/ons/cod iff x

satisfies nuc/ons/cod in the input.”

108

Similarly, σ nodes are simply the 3rd copy of those positions that satisfy nuc(x).

σ(x3)
def
= nuc(x) (6.36)

“The third copy of x in the output is labeled σ iff x satisfies nuc in the

input.”

Functions. The successor and predecessor functions are preserved in Copy Set 1, as

defined in (6.37–6.38)

succ(x1)
def
= (succ(x))1 (6.37)

pred(x1)
def
= (pred(x))1 (6.38)

“The successor/predecessor of the first copy of x in the output is the

first copy of the successor/predecessor of x in the input.”

As in the Flat-to-Tree transduction Γtf , we must also ‘build’ the hierarchical structure

from the flat underlying string. This is accomplished with the formulas given in (6.39–

6.40).

par(x2)
def
=

x3 ⇐ nuc(x)

(succ(x))3 ⇐ ons(x)

(pred(x))3 ⇐ cod(x)

(6.39)

par(x1)
def
=

x2 ⇐ nuc(x)

(succ(x))2 ⇐ ons(x)

(pred(x))2 ⇐ cod(x)

(6.40)

(6.41)

Finally, (6.42) licenses only those nodes which are labeled.

license(x)
def
= (∃R ∈ RITB)[R(x)] (6.42)

109

6.4.4 Extended Example: /saulx/

To illustrate how the transduction works, consider the underlying form /saul-x/ ‘I

spoke.’ Its word model (in the Successor Model Theory) is illustrated in Figure 6.13.

Figure 6.13: MC
saulx

s a u l x
C

<s

C

>s

C

>s

C

>s

There are five positions, 1 through 5, and each position has a set of feature labels which

I abbreviate with the shorthand segment formulas s, a, u, l, and x. Table 6.7 gives the

truth values for the formulas relevant to syllable structure in the word saulx.

Table 6.7: Truth Table for /saul-x/

x 1 2 3 4 5

s(x) 3
a(x) . 3 . . .
u(x) . . 3 . .
l(x) . . . 3 .
x(x) 3

<s(x, succ(x)) 3
=s(x, succ(x))
>s(x, succ(x)) . 3 3 3 3

son pk(x) . 3 . . .
l prom(x)

prom pk(x) . 3 . . .
fin obs(x) 3

GR(x) . . . 3 .
nuc(x) . 3 . 3 .
ons(x) 3 . 3 . .
ons(x) 3 . 3 . .
cod(x) 3

110

The first position is less sonorous than the second, with sonority falling monotonically

after that. There are no sonority plateaus, so no position may satisfy l prom. The

only prominence peak is then the single sonority peak, position 2. Because position 5

is a final obstruent, it is marked (in the sense that it cannot be nucleic). Note that

position 2 is a sonority peak, position 4 is a glide, and position 5 is a sonorant. This

configuration means that position 4 satisfies GR and therefore satisfies nuc, even though

it is not a prominence peak. Position 2 satisfies nuc by virtue of satisfying prom pk.

Positions 1 and 3 satisfy ons because their successors are both nucleic. Finally, position

5 satisfies cod because its predecessor is a nucleus and it does not satisfy ons.

The resulting output ΓITB(MC
saulx) is illustrated in Figure 6.14. Recall that the vowel-

glide distinction is predictable from syllable constituency. Because position 2 satisfies

u and ons, it surfaces as the glide [w]. Thus, the surface form is pronounced [sa.wl
"
x].

Figure 6.14: ΓITB(MC
saulx)

s a u l x

ons nuc ons nuc cod

σ σ

C

<s

C

>s

C

>s

C

<s

p p p p p

p p p p p

Notice that ΓITB(MC
saulx) =Mtree

saulx. The syllabification transduction has taken a flat

string in the Successor Model and produced the Tree Model of the syllabified word.

111

Chapter 7

CASE STUDY: MOROCCAN ARABIC

While ITB is a crucial case study for syllable theory, its tolerance of obstruents as

syllabic nuclei and its general adherence to the SSP actually limit the range of syllable-

related phenomena to study in the language—for example, there is little to no epenthe-

sis or deletion because well-formed syllables can be readily formed from the underlying

phonemes. In Moroccan Arabic (MA), on the other hand, short vowels are frequently

inserted to break up consonant clusters in certain positions. The quality of these

epenthetic vowels varies somewhat from a fronted pronunciation similar to [I] to a

backed pronunciation closer to [U] (Heath, 1987), but I will abstract away from these

distinctions and simply represent all epenthetic vowels as [@] (in line with, e.g., Benhal-

lam, 1990; Boudlal, 2001; Dell & Elmedlaoui, 2002; Keegan, 1986).1 Some examples of

epenthesis in perfective verb forms are given in Table 7.1.2

1 Heath (1987) first assumes that [@] and [U] are phonemic, but later reanalyzes both
as epenthetic, with [U] being an allophone of [@].

2 As in the previous chapter, the ! symbol indicates rightward spreading of pharyn-
gealization; the - symbol represents word-internal morpheme boundaries; and the =
symbol represents the left edge of an enclitic.

112

Table 7.1: Epenthesis in MA Verbs (Perfective Forms)

UR SR Gloss

1. a. /dQrb/ [!d
"
.r@b] ‘he hit’

b. /dQrb-at/ [!d@r.bat] ‘she hit’

c. /dQrb=k/ [!d@r.b@k] ‘he hit you’

2. a. /krkb/ [k@r.k@b] ‘he rolled’

b. /krkb-at/ [k@rk.bat] ‘she rolled’

c. /krkb=k/ [k@rk.b@k] ‘he rolled you’

These examples are representative of where epenthesis most often occurs in MA. In

a triconsonantal (CCC) root like (1a), the first consonant syllabifies and a schwa is

inserted after the second consonant; that is, /CCC/ → [C.C@C]. Additional examples

include /ktb/→ [k.t@b] ‘he wrote’ and /ktf/→ [k.t@f] ‘shoulder,’ among many others.

With the addition of suffixes, as in (1b) and (1c), epenthesis does not necessarily follow

the first consonant. Rather, it appears preferable to create C@C syllables when possible.

In a quadriconsonantal (CCCC) root like (2a), schwas are inserted before the second

and fourth consonants; that is, /CCCC/ → [C@C.C@C]. Notice that the heteromor-

phemic /CCCC/ sequence in (1c) behaves identically, producing two C@C syllables.

Moreover, (2b) and (2c) illustrate how word-internal complex codas can form, indicat-

ing that C@C syllables may be especially preferred in word-final position. If they were

always preferred word-internally, we would expect to see forms like *[k@r.kabt].

As will be seen, the landscape of epenthesis in MA is even more complicated than it

appears from this brief introduction.In the remainder of this chapter, I review the basic

facts regarding syllable structure in MA, highlighting similarities to and differences

113

from ITB. Then I develop mathematical formalisms for characterizing syllable well-

formedness in § 7.2 and syllabification in § 7.3.

7.1 The Basics

The Arabic and Berber languages are not phylogenetically related, but due to the

history of language contact, multilingualism, and colonialism in Morocco (see Ennaji,

2005 and the references therein), MA is more similar to ITB in some aspects of its

phonology than it is to Arabic dialects spoken in other regions. For one, the MA and

ITB consonant inventories are very similar. Table 7.2 shows the consonant inventory

of MA according to Heath, 1997 (compare to Table 6.3 for ITB).3

Table 7.2: Phonemic Singleton Consonants in MA

Labial Alveolar Palato-alveolar Velar Uvular Pharyngeal Glottal

Stop b
t tQ

d dQ

k

g
q

Fricative f
s sQ

z zQ

S

Z

X

K

è

Q
h

Nasal m n

Approximant r rQ

Lateral l

As in ITB, the alveolar consonants have pharyngealized counterparts that trigger right-

ward spreading, as in [!d@r.b@k] ‘he hit you’ from /dQrb=k/. Consonant length is also

3 Where Heath (1997) uses nonstandard symbols, I present their IPA equivalents.

114

contrastive (e.g. [m@n] ‘from’ vs. [m@nn] ‘to boast’). The most notable difference be-

tween the two consonant inventories is that MA lacks the labialized velar and uvular

consonants found in ITB, as well as some of the contrastive pharyngeals.

MA shares the same three phonemic vowels as ITB: /a/, /i/, and /u/.4 Unlike Classical

Arabic (CA) and many modern Arabic dialects, MA has no contrastive vowel length.

The long vowels of CA lexical items have shortened in their corresponding MA forms,

and the CA short vowels have disappeared altogether (Lahrouchi, 2018). For example,

compare the CA [ki.ta:b] to the MA [k
"
.tab] ‘he wrote.’ The first syllable has a short

[i] in CA that is absent in MA; the second syllable has a long low vowel in CA and a

short low vowel in MA.

The glide/vowel distinction among the HVs [i∼j] and [u∼w] is sometimes predictable

in MA, but not always. The glides must be considered independent phonemes because

their distribution is not easily explained by allophonic variation alone (Dell & Elmed-

laoui, 2002; Heath, 1987). Thus I use the feature voc (vocalic) to differentiate between

vowels and glides: vowels are [+voc, -cons], while glides are [-voc, -cons].

7.2 Surface Well-formedness in MA

In this section, I outline the inviolable constraints that govern surface well-formedness

in MA and construct the corresponding formal language LMA, the set of all phonolog-

ically well-formed words.

7.2.1 Structural Constraints

As pointed out by Shaw et al. (2009), scholars of MA phonology fall broadly into

two camps regarding syllable-internal structure: those who adopt the ‘complex onset

hypothesis’ (e.g., Benhallam, 1990; Heath, 1987; Keegan, 1986) and those who adopt

4 This holds true for native MA words. Some scholars (e.g., Heath, 1987; Sayed, 1982)
have suggested that [o] might also be phonemic, but it is almost entirely restricted to
loan words such as [lokal] ‘premises, site’ from the French locale.

115

the ‘simplex onset hypothesis’ (e.g., Boudlal, 2001; Dell & Elmedlaoui, 2002; Kiparsky,

2003. The former group would syllabify skru ‘they got drunk’ as a monosyllable [skru],

while the latter would find the same string to comprise two syllables: [sk
"
.ru]. Dell

& Elmedlaoui (2002) present a compelling argument in favor of the simplex onset

hypothesis using evidence from syllabification in verse and song; Shaw et al. (2009) and

Gafos et al. (2010) offer further evidence from articulatory data. For these reasons,

I adopt the simplex hypothesis. One consequence of this is that some word-initial

consonants will be nucleic (as in [k
"
.tab] ‘he wrote’), but they are much more restricted

than in ITB.

The constraint κNCO “No Complex Onset” was first defined in (4.78) and is reproduced

below in (7.1).

Figure 7.1: ψNCO, the substructure banned by κNCO “No Complex Onset”

y z

onsx

p p

C

κNCO
def
= ¬(∃x, y, z)[ons(x) ∧ par(y) = x ∧ par(z) = x ∧ succ(y) = z] (7.1)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons, the parent of y is x, the parent of z is also x, and the successor of

y is z.”

If we accept the simplex onset hypothesis, we must also accept that syllabic conso-

nants are allowed, but are restricted to word-initial position. Word-internal syllabic

consonants are banned by κNISC , defined in (7.2) below.

116

Figure 7.2: ψNISC , the substructure banned by κNISC “No Internal Syllabic Conso-
nants”

nuc

x

cons

zy

p

C

κNISC
def
= ¬(∃x, y, z)[nuc(x) ∧ cons(z) ∧ par(z) = x ∧ succ(y) = z ∧ y 6= z] (7.2)

“There does not exist a set of three nodes x, y, z, such that x is labeled

nuc, z is labeled cons, the parent of z is x, the successor of y is z, and

y 6= z.”

Just as in ITB, onsets are required in all non-initial syllables. So MA has the constraint

κNIOS, originally defined in (6.1) and reproduced below in (7.3).

Figure 7.3: ψNIOS, the substructure banned by κNIOS “No Internal Onsetless Sylla-
bles”

σ

w

σ

x

y

nuc

z

p p

C

117

κNIOS
def
= ¬(∃w, x, y, z)[σ(w) ∧ σ(x) ∧ nuc(z) ∧ par(y) = w ∧ par(z) = x

∧ succ(y) = z] (7.3)

“There does not exist a set of four nodes w, x, y, z, such that w and x

are labeled σ, z is labeled nuc, the parent of y is w, the parent of z is x,

and the successor of y is z.”

The effect of this constraint is to ban any structure where the nucleus of one syllable

immediately follows material in a different syllable (whether that be a nucleus or a

coda).

Turning to codas, it is generally agreed that complex codas consisting of only two

segments are allowed. Three-segment codas are therefore banned by κN3C , defined in

(7.4) below. Note that any coda longer than three segments will also be banned by

this constraint, since it would necessarily contain the substructure ψN3C .

Figure 7.4: ψN3C , the substructure banned by κN3C “No Trisegmental Coda”

codw

yx z

p p p

118

κNCO
def
= ¬(∃w, x, y, z)[ons(w) ∧ par(x) = w ∧ par(y) = w

∧ par(z) = w ∧ x 6= y ∧ x 6= z ∧ y 6= z] (7.4)

“There does not exist a set of four nodes w, x, y, and z, such that w is

labeled ons; w is the parent of x, y, and z; x 6= y; x 6= z; and y 6= z.”

In addition to these constraints on syllable margins, the position of epenthetic vowels

is also restricted. Schwas are prohibited from surfacing in open syllables, meaning two

substructures must be banned: 1) a schwa immediately preceding material in another

syllable; and 2) a word-final schwa.

κ@σ “No Open Schwa (Word-Internal)” is defined in (7.5) below.

Figure 7.5: ψN@σ, the substructure banned by κ@σ “No Open Schwa (Word-Internal)”

σ

w

σ

x

@

y z

p p

C

κ@σ
def
= ¬(∃w, x, y, z)[σ(w) ∧ σ(x) ∧ @(y) ∧ par(y) = w ∧ par(z) = x

∧ succ(y) = z] (7.5)

“There does not exist a set of four nodes w, x, y, z, such that w and x

are labeled σ, y is a @, the parent of y is w, the parent of z is x, and the

successor of y is z.”

This would prohibit a form like *[k@.t@b], for example.

119

Dell & Elmedlaoui (2002) point out that schwas can appear in word-internal open

syllables in verse, but this is only after word-level syllabification is overwritten by line-

level resyllabification. As I am concerned only with word-level syllabification, κ@σ is

inviolable for the purposes of this analysis.

Similarly, κ@n “No Open Schwa (Word-Final)” is defined in (7.6).

Figure 7.6: ψN@n, the substructure banned by κ@n “No Open Schwa (Word-Final)”

σ

x

@

y

p

C

κ@n
def
= ¬(∃x, y)[σ(x) ∧ @(y) ∧ par(y) = x ∧ succ(y) = y] (7.6)

“There does not exist a pair of nodes x, y, such that x is labeled σ, y is

a @, the parent of y is x, and y is word-final.”

This would prohibit a form like *[k@t.b@]. There is no exception to this constraint, even

in verse and song.

7.2.2 Sonority Sequencing Constraints

According to Dell & Elmedlaoui (2002), the sonority hierarchy of MA is much less

fine-grained than that for ITB. They distinguish between only four natural classes:

obstruents <s nasals <s liquids <s vocoids

Here vocoids may be vowels or glides, including the low vowel which has no semivowel

counterpart.

120

Sonority sequencing constraints in MA are slightly different from those ITB. The

constraint on segments to the right of an onset, κright remains the same. This constraint

was first defined in (5.7) and is reproduced below in (7.7).

Figure 7.7: ψright, the substructure banned by κright “Right of Onset”

ons

x

y z

p

C

>s

κright
def
= ¬(∃x, y, z)[ons(x) ∧ par(y) = x ∧ succ(y) = z ∧<s(z, y)] (7.7)

“There does not exist a set of three nodes x, y, z, such that x is labeled

ons and is the parent of y, the successor of y is z, and y is more

sonorous than z.”

In addition to this, two versions of κleft are needed. For word-internal codas, a

strict decrease in sonority is required, meaning that adjacent coda segments cannot

have equal sonority. For example, /krkb=k/ ‘he rolled you’ syllabifies as [k@rk.b@k],

not *[k.r@k.b@k]; whereas /ktb-l=k/ ‘he wrote to you’ syllabifies as [k.t@b.l@k], not

*/k@tb.l@k/. This generalization is captured by κleft1, defined in (7.8).

κleft1
def
= ¬(∃w, x, y, z)[cod(w) ∧ par(y) = w ∧ succ(x) = y ∧ x≤s y

∧ succ(y) = z ∧ y 6= z] (7.8)

“There does not exist a set of four nodes, w, x, y, z, such that w is

labeled cod, the parent of y is w, the successor of x is y, x is of lesser or

equal sonority to y, the successor of y is z, and y 6= z.”

121

Figure 7.8: ψleft1, the substructure banned by κleft1 “Left of Coda (Word-Internal)”

cod

w

yx z

p

C

≤s

C

In contrast, word-final codas may have a sonority plateau, as evidenced by forms like

[k@db] ‘lie’ and [ss@bt] ‘Saturday.’ This is enforced by the constraint κleft2, defined in

(7.9).

Figure 7.9: ψleft2, the substructure banned by κleft2 “Left of Coda (Word-Final)”

cod

x

zy

p

C

<s
C

κright
def
= ¬(∃x, y, z)[cod(x) ∧ par(z) = x ∧ succ(y) = z ∧ succ(z) = z ∧ y <s z] (7.9)

“There does not exist a set of three nodes, x, y, z, such that x is labeled

cod and is the parent of z, the successor of y is z, z is its own successor

(i.e., is word-final), and y is less sonorous than z.”

7.2.3 Exceptions to the Epenthesis Pattern

There are three types of exceptions to the generalization that /CCC/ stems syllabify as

[CC.@C]. First, geminates are inseparable, so stems that end in a geminate must have

122

a schwa inserted before the penultimate consonant. Table 7.3 gives some examples of

such stems, with both verbs and nouns represented.

Table 7.3: Geminate C@CC Forms in MA

UR SR Gloss

1. a. /Skk/ [S@kk] ‘he doubted’

b. /Sdd/ [S@dd] ‘he held’

2. a. /dmm/ [d@mm] ‘blood’

b. /fkk/ [f@kk] ‘jaw’

Geminates could be handled in a number of ways. Perhaps the most straightforward

is to add a labeling relation to the model signature. The label gem is true for any

position corresponding to a geminate consonant. For example, Figure 7.10 illustrates

the word model for [S@kk], with the gem label indicating that the third domain position

is a geminate.

Figure 7.10: The Tree Word Model for [S@kk]

σ

onsnuc cod

S @
k

gem

p p p

p p p

C C

123

With geminates defined in this way, no constraint is needed to ban the splitting of

geminates; it is simply not possible to split a single position in two.

We must also make an exception for words ending in the suffix -t, which is the first-

person singular agreement marker in the past tense. Table 7.4 shows some of these

forms, alongside the forms we would expect if they were syllabified according to the

typical pattern.

Table 7.4: MA 1sg Past Tense Verb Forms

UR SR Expected Gloss

1. /ktb-t/ [k.t@bt] *[k@t.b@t] ‘I wrote’

2. /krkb-t/ [k@r.k@bt] *[k.r@k.b@t] ‘I rolled’

To account for this exception, I will use the label 1sg to mark the 1sg past-tense

suffix in the underlying form. Then it suffices to ban an epenthetic vowel immediately

preceding this suffix, as in κ1sg defined in (7.10).

Figure 7.11: ψ1sg, the substructure banned by κ1sg “No Epenthesis Preceding 1sg
Suffix”

@ 1sg
C

κ1sg
def
= ¬(∃x, y)[@(x) ∧ 1sg(y) ∧ succ(x) = y] (7.10)

“There does not exist a pair of nodes x, y, such that x is labeled @, y is

the 1sg suffix, and the successor of x is y.”

In addition to these systematic exceptions, there is also a class of nouns that simply

do not conform to the typical epenthesis pattern. These are CCC stems that syllabify

124

as [C.@CC] instead of [CC.@C]. In Table 7.5, the stems in (1) conform to the typical

pattern, while those in (2) do not.

Table 7.5: Additional Examples of Epenthesis in MA Nouns

Surface Representation Gloss

1. a. [k.t@f] ‘shoulder’

b. [S.t@g] ‘loaf (of bread)’

2. a. [b@rd] ‘wind’

b. [k@lb] ‘dog’

Stems that fall into the latter category will have to be marked as a lexical exception.5

I will use the label exc for this purpose. In the representations to follow, all three

consonants in an exceptional stem will bear this feature. Alternatively, the feature exc

could be reserved for initial/final position only, as a sort of tag rather than a feature of

individual segments. The difference is inconsequential here, given the fact that stems

of this type only ever have three consonants, and it is trivial to refer to a segment 2

positions away.

The constraint against epenthesizing after the second consonant in an exceptional stem

is κexc, defined in (7.11) below.

Figure 7.12: ψexc, the substructure banned by κexc “No CC@C for Exceptional Stems”

exc exc @ exc
C C C

5 See Al Ghadi (2014) and Boudlal (2006/2007) for a sonority-based account of C@CC
nouns, which is not adopted here.

125

κexc
def
= ¬(∃w, x, y, z)[exc(w) ∧ exc(x) ∧ @(y) ∧ exc(z) ∧ succ(w) = x

∧ succ(x) = y ∧ succ(y) = z] (7.11)

“There does not exist a set of four nodes w, x, y, z, such that: w, x, and

z are labeled exc; y is labeled @; the successor of w is x; the successor

of x is y; and the successor of y is z.”

7.2.4 The Formal Language for MA

The formula KMA defined in (7.12) encapsulates all of the above constraints on syllable

well-formedness in MA.

KMA
def
= κNR ∧ κNU ∧ κNCO ∧ κNISC ∧ κNIOS ∧ κN3C ∧ κN@σ ∧ κN@n ∧ κright

∧ κleft1 ∧ κleft2 ∧ κ1sg ∧ κexc

= ψNR ∧ ¬ψNU ∧ ¬ψNCO ∧ ¬ψNISC ∧ ¬ψNIOS ∧ ¬ψN3C ∧ ¬ψN@σ ∧ ¬ψN@n ∧ ¬ψright

∧ ¬ψleft1 ∧ ¬ψleft2 ∧ ¬ψ1sg ∧ ¬ψexc

(7.12)

The alphabet of labels ΣMA must include the phonological feature labels, syllable con-

stituent labels, and the additional unary relations defined above to handle exceptions.

A formal definition of ΣMA is given in (7.13).

ΣMA
def
= F ∪ {ons, nuc, cod, σ} ∪ {1sg, exc} (7.13)

Under the Tree Model Theory, the formal language LMA (i.e., the set of correctly

syllabified MA words) is defined in (7.14).

126

LMA
def
= L(KMA) (7.14)

= {w ∈ Σ∗ | Mtree
w |= KMA} (7.15)

As with LITB in the previous chapter, LMA only accounts for basic syllable struc-

ture, not the entire phonology of MA. Nonetheless, it captures many of the surface

constraints in MA that make it distinct from other dialects of Arabic.

7.3 Syllabification in MA

Just like the ITB syllabification transduction, ΓMA is a transduction from a certain

version of the Successor Word Model to the Tree Word Model. Throughout the re-

mainder of this chapter, I will refer to several formulas (concerning natural classes,

position within the word, sonority, etc.) that were first defined in Chapters 4–6.

7.3.1 Identifying (Some) Syllable Constituents

The easiest syllable constituents to identify are the nuclei formed from underlying

vowels, as stated in (7.16). Epenthetic vowels will, of course, also be nucleic, but I will

set that aside for the next section.

nuc-V(x)
def
= voc(x) (7.16)

“x satisfies nuc-V iff it is labeled voc.”

A consonant is an onset if its successor is nucleic; this type of onset segment satisfies

ons 1(x), as defined below in (7.17).

ons 1(x)
def
= cons(x) ∧ nuc-V(succ(x)) (7.17)

“x is a nucleus-adjacent onset iff it is a consonant and its successor

satisfies nuc-V.”

127

Note that this only accounts for onsets to underlying vowels. To capture additional

generalizations, we must first identify positions in the underlying form where epenthesis

will occur.

7.3.2 Identifying Insertion Sites

An insertion site is the position in the word where an epenthetic vowel appears in the

SR. For my purposes, the formula ins-aft(x) (meaning “insert @ after x”) will be true

of any consonant present in the UR which immediately precedes an epenthetic vowel

in the SR.

Let us first turn to epenthesis in the word-final syllable. For all words ending in

/CCC/ that follow the typical pattern, epenthesis should occur between the final two

consonants, as in /tbQ/ → [t.b@Q] ‘he followed.’ Epenthesis should also occur after the

penultimate C if the word ends in a typical /VCC/ sequence, as in /kadb/ → [ka.d@b]

‘to be lying.’ In both of these cases, we should “insert @ after” the penultimate C—so

long as the final consonant is not a member of a geminate or the 1sg suffix. The formula

ins-aft1(x), defined in (7.18), identifies such insertion sites, which I will call ‘type 1.’

ins-aft1(x)
def
= cons(x) ∧ cons(succ(x)) ∧ fin(succ(x))

∧ ¬gem(x, succ(x)) ∧ ¬1sg(succ(x)) ∧ ¬exc(x) (7.18)

“x is a type-1 insertion site iff x is a consonant, the successor of x is a

consonant and is word-final, x does not form a geminate with its

successor, the successor of x is not the 1sg suffix, and x is not marked

as a lexical exception.”

By definition, ins-aft1(x) does not account for words ending in geminates or the 1sg

suffix, as well as nouns that are marked as lexical exceptions. If any of these criteria are

met in a word-final /CCC/ sequence, we should “insert @ after” the antepenultimate

128

C, as in /klb/ → [k@lb] ‘dog.’ The formula ins-aft2(x) is true of the antepenultimate C

in such a sequence, as defined in (7.19).

ins-aft2(x)
def
= cons(x) ∧ cons(succ(x)) ∧ cons(succ2(x)) ∧ fin(succ2(x))

∧
(
gem(succ(x), succ2(x)) ∨ 1sg(succ2(x)) ∨ exc(x)

)
(7.19)

“x is a type-2 insertion site iff x is a consonant, the successor of x is a

consonant, the second successor of x is a consonant and is word-final,

and at least one of the following is true: the successor of x forms a

geminate with the second successor of x; the second successor of x is

the 1sg suffix; or x is marked as a lexical exception.”

To further illustrate the evaluation of ins-aft1(x) and ins-aft2(x), consider the Successor

Word Models for the URs /ktf/ ‘shoulder’ and /klb/ ‘dog,’ illustrated in Figures 7.13

and 7.14, respectively. Insertion sites are bolded.

Figure 7.13: The Successor Word Model for /ktf/

k

1

t

2

f

3

C C

In /ktf/, ins-aft1(2) = TRUE because position 2 is a consonant followed by a word-final

consonant, and because it doesn’t fall into any of the exceptional categories: it is not a

member of a geminate, nor does it precede the 1sg suffix, nor is it marked as a lexical

exception. Hence epenthesis should occur after position 2, producing the expected SR,

[k.t@f].

On the other hand, position 2 in /klb/ does not satisfy ins-aft1 because it is marked

as a lexical exception. Instead, ins-aft2(1) = TRUE because position 1 is a consonant

followed by a consonant, which is in turn followed by a word-final consonant, and

129

Figure 7.14: The Successor Word Model for /klb/

k
exc

1

l
exc

2

b
exc

3

C C

because exc(1) = TRUE. Epenthesis is therefore predicted to occur after position 1,

which is borne out in the SR [k@lb].

Recall that epenthetic vowels are banned in open syllables and that word-internal

syllables must have onsets. This entails that every epenthetic vowel must have an

onset and a coda. Hence

ins-aft(x)⇒ ons(x) ∧ cod(succ(x))

It may not be obvious, but we have stumbled upon a surefire way to find an onset in

the final 3 segments of any word. Consider the following possibilities:

1. /. . . CCV/: The penultimate C is an onset to an underlying V

e.g., /kbda/ → [k@b.da] ‘liver’

2. /. . . CVC/: The antepenultimate C is an onset to an underlying V

e.g., /ktab/ → [k.tab] ‘book’

3. /. . . VCC/: The penultimate C is an onset to an epenthetic V

e.g., /wsf-at=k/ → [w@s.fa.t@k] ‘she described you’

4. /. . . CCC/: Either the penultimate or the antepenultimate C is an onset to an

epenthetic V

(a) e.g., /krkb/ → [k@r.k@b] ‘he rolled’

130

(b) e.g., /krkb-t/ → [k@r.k@bt] ‘I rolled’

Once we identify an onset (whether it is an insertion site or not), we can make sense

of the material to its left. In particular, a consonant immediately followed by an onset

must be a coda. That is,

cons(x) ∧ ons(succ(x))⇒ cod(x)

When a sequence of two consonants precedes an onset, sonority plays a role in deter-

mining whether the leftmost C becomes an insertion site or becomes part of a complex

coda. For instance, compare /krkb=k/ → [k@rk.b@k] ‘he rolled you’ to /ktb-l=k/ →

[k.t@b.l@k] ‘he wrote to you.’ Underlyingly, both are of the form C1C2C3C4C5, where C4

satisfies ins-aft1. The difference is in the relative sonority of the 2nd and 3rd consonants.

In /krkb=k/, C2 is more sonorous than C3, so they form a licit complex coda and a

schwa is inserted after C1. In cases like this, the consonant 3 positions to the left of

the onset satisfies ins-aft3(x), as defined in (7.20).

ins-aft3(x)
def
= cons(x) ∧ cons(succ(x)) ∧ cons(succ2(x))

∧ ons(succ3(x) ∧>s(succ(x), succ2(x)) (7.20)

“x is a type-3 insertion site iff x is a consonant, the successor of x is a

consonant, the second successor of x is a consonant, the third successor

of x is an onset, and the successor of x is more sonorous than the

second successor of x.”

Put simply, x satisfies ins-aft3 if it is the first C in a C1C2C3C4 sequence, where C4 is

an onset and C2 >sC3.

In /ktb-l=k/, on the other hand, C2 and C3 are of equal sonority (both are obstruents),

so they cannot form a licit word-internal coda. In these cases, the consonant 2 positions

131

to the left of the onset satisfies ins-aft4(x), as defined in (7.21), so C2 and C3 end up

on either side of an epenthetic vowel.

ins-aft4(x)
def
= cons(pred(x)) ∧ cons(x) ∧ cons(succ(x))

∧ ons(succ2(x)) ∧ ≤s(x, succ(x)) (7.21)

“x is a type-4 insertion site iff the predecessor of x is a consonant, x is

a consonant, the successor of x is a consonant, the second successor of

x is an onset, and x is equally or less sonorous than its successor.”

In this case, x satisfies ins-aft4 if it is the second C in a C1C2C3C4 sequence, where C4

is an onset and C2 ≤sC3.

Now we can define the general formula ins-aft(x) as a disjunction of the four specific

cases of insertion outlined above, as in (7.22).

ins-aft(x)
def
= ins-aft1(x) ∨ ins-aft2(x) ∨ ins-aft3(x) ∨ ins-aft4(x) (7.22)

7.3.3 Identifying the Remaining Syllable Constituents

In the general case, an onset is either an insertion site (satisfying ins-aft(x)) or the

predecessor of an underlying V (satisfying ons 1(x)). This is formalized in (7.23).

ons(x)
def
= ins-aft(x) ∨ ons 1(x) (7.23)

This definition may appear to be circular, as ins-aft(x) itself refers to ons(x). However,

as established above, an onset can be identified in the final three positions of any word

without referring to insertion sites at all. So long as this single onset is identified,

ins-aft(x) can refer to this onset and ons(x) can refer to insertion sites.

132

To identify all syllabic nuclei, we need to account for the syllabic consonants that

sometimes appear in word-initial position, such as in [k.t@b] ‘he wrote.’ As defined

below in (7.24), nuc-C(x) is true of a word-initial consonant whose successor is an

onset.

nuc-C(x)
def
= cons(x) ∧ init(x) ∧ ons(succ(x)) (7.24)

Then the general formula nuc(x) is defined in (7.25)

nuc(x)
def
= nuc-V(x) ∨ nuc-C(x) (7.25)

Note that nuc(x) is not satisfied by insertion sites. This is because the insertion site

itself is an onset; the epenthetic vowel is nucleic, but it is not present in the input, so

it cannot be referred to directly using a shorthand formula like nuc(x).

Finally, codas may be identified in two ways. A consonant satisfies cod 1(x) iff it does

not satisfy ons(x) and its predecessor is an underlying vowel or an insertion site, as in

(7.26).

cod 1(x)
def
= ¬ons(x) ∧

(
nuc-V(pred(x)) ∨ ins-aft(pred(x))

)
(7.26)

This is exemplified by the final consonants in [k.t@b] and [k.tab].

A consonant satisfies cod 2(x) iff it satisfies neither ons(x) nor nuc-C(x) and its succes-

sor satisfies ons(x). As defined in (7.27), cod 2(x) is true of the first [k] in [k@rk.b@k],

for example.

cod 2(x)
def
= ¬ons(x) ∧ ¬nuc-C(x) ∧ ons(succ(x)) (7.27)

133

Then the general case, cod(x), is defined in (7.28).

cod(x)
def
= cod 1(x) ∨ cod 2(x) (7.28)

With these shorthand formulas, we are now able to define the transduction from URs

to SRs in MA.

7.3.4 The MA Syllabification Transduction

In this section, I develop the transduction ΓMA in a piecemeal fashion, as with pre-

viously presented transductions. Recall that, in fact, all formulas in the transduction

apply to the input simultaneously.

Copy Sets. As established previously, three copy sets are needed to get from a

Successor Model input to a Tree Model output. In ΓMA, an additional copy set is

needed for epenthetic vowels. To see why, consider the fully-specified Tree Word Model

for [k.t@b] ‘he wrote,’ as illustrated in Figure 7.15.

Figure 7.15: Mtree
[k.t@b]

nuc

k t @ b

ons nuc cod

σ σ

p p p p

p p p p

C C C

Compare this to the input string ktb, with only 3 positions. Not only are additional

positions needed for the syllable constituent nodes dominating underlying segments,

but even more positions are needed to accommodate the epenthetic vowel and its

134

parent nucleus node. For visual clarity and consistency, I use Copy Set 1 for epenthetic

vowels and their parent nucleus nodes, Copy Set 2 for underlying segments, Copy Set

3 for underlying segments’ syllable constituent nodes, and Copy Set 4 for σ nodes.

Figure 7.16 offers a preview of the licensed output of ΓMA(MC
[k.t@b]), demonstrating

this usage of copy sets.

Figure 7.16: The licensed output of ΓMA(MC
[k.t@b])

nuc

k t

@

b

ons

nuc

cod

σ σC4:

C3:

C2:

C1:

p p

p

p

p p

p

p

C

C C

Note that the graphs represented in Figures 7.15 and 7.16 are mathematically equiva-

lent, although their visual representations appear different at face value.

Binary Relations. Sonority relations are all preserved in Copy Set 2 under ΓMA, as

defined in (7.29–7.30).

<s(x
2, y2)

def
= <s(x, y) (7.29)

=s(x
2, y2)

def
= =s(x, y) (7.30)

“The second copy of x in the output is less/equally sonorous than/to

the second copy of y iff x is less/equally sonorous than/to y in the

input.”

135

The geminate relation is also preserved in Copy Set 2; see (7.31).

gem(x2, y2)
def
= gem(x, y) (7.31)

“The second copy of x forms a geminate with the second copy of y iff x

forms a geminate with y in the input.”

Feature Labels. Recall that Rf is the set of unary relations for phonological features.

These feature labels are also preserved in Copy Set 2, as specified by (7.32).

(∀f ∈ Rf)[f(x2)
def
= f(x)] (7.32)

Syllable Constituent Labels and Sigma Nodes. The formulas defined in (7.33-

7.36) are analogous to (6.33-6.36) for ITB. The interesting additions are (7.37), which

gives the @ label to the first copy of an insertion site, and (7.38), which gives the nuc

label to the 1st copy of the successor of an insertion site. The choice of successor or

predecessor is arbitrary here; the point is this: for every insertion site, we need two

corresponding positions in Copy Set 1.

nuc(x3)
def
= nuc(x) (7.33)

ons(x3)
def
= ons 1(x) (7.34)

cod(x3)
def
= cod(x) (7.35)

σ(x4)
def
= nuc(x) ∨ ins-aft(pred(x)) (7.36)

@(x1)
def
= ins-aft(x) (7.37)

nuc(x1)
def
= ins-aft(pred(x)) (7.38)

Functions. Similar to the ITB transduction, the parent function must be carefully

defined for each copy set, as in (7.39).

136

par(x3)
def
=

x4 ⇐ nuc(x)

(succ(x))4 ⇐ ons 1(x)

(pred(x))4 ⇐ cod 1(x)

(7.39)

par(x2)
def
=

x3 ⇐ nuc(x)

x3 ⇐ ons 1(x)

x3 ⇐ cod 1(x)

(pred(x))3 ⇐ cod 2(x)

(7.40)

par(x1)
def
= (succ(x))1 ⇐ @(x) (7.41)

The successor function is mostly preserved in Copy Set 2, except where insertion sites

occur (similar to the Flat-to-Dot Transduction from Chapter 3). If a consonant satisfies

ins-aft(x), the successor of its second copy is its first copy, and the successor of its first

copy is the second copy of its successor. This is formalized in (7.42).

succ(x2)
def
=

(succ(x))2 ⇐ ¬ins-aft(x)

x1 ⇐ ins-aft(x)

(7.42)

succ(x1)
def
= (succ(x))2 ⇐ ins-aft(x) (7.43)

license(x)
def
= R(x) forR ∈ Rtree (7.44)

As in previous transductions, (7.45) licenses only labeled nodes.

license(x)
def
= (∃R ∈ RMA)[R(x)] (7.45)

137

7.3.5 Extended Example: /krkbk/

To illustrate how the transduction works, consider the underlying form /krkb=k/ ‘he

rolled you.’ Its word model (in the Successor Model Theory) is illustrated in Fig-

ure 7.17.

Figure 7.17: MC
krkbk

k r k b k
C

<s

C

>s

C
=s

C
=s

There are five positions, 1 through 5, and each position has a set of feature labels which

I abbreviate with the shorthand segment formulas k, r, and b. Table 7.6 gives the truth

values for the formulas relevant to syllable structure.

The first position is less sonorous than the second, which is more sonorous than the

third. The remaining segments form a sonority plateau. Position 4 satisfies ins-aft1(x)

because it is the penultimate C and it doesn’t meet any exclusionary criteria (e.g.,

being part of a geminate). Position 1 satisfies ins-aft3(x) because it is a consonant

followed by a consonant, followed by an onset, and because it is more sonorous than

its successor. Consequently, positions 1 and 4 are both onsets. Because positions 2

and 5 immediately follow insertion sites, they each satisfy cod 1(x). Finally, position

3 satisfies cod 2(x) because its predecessor satisfies cod 1(x) and its successor satisfies

ons(x).

The resulting output ΓMA(MC
krkbk) is illustrated in Figure 7.18.

138

Figure 7.18: The output of ΓMA(MC
krkbk)

C2: k r k b k

C1: @ nuc @ nuc

C3: ons cod ons cod

C4: σ σ

C C

C C

C C

p p p p p

p p p p

p p

p

p

139

Table 7.6: Truth Table for /krkbk/

x 1 2 3 4 5

k(x) 3 . 3 . 3

r(x) . 3 . . .
b(x) . . . 3 .

<s(x, succ(x)) 3
=s(x, succ(x)) . . 3 3 3

>s(x, succ(x)) . 3 . . .
gem(x, succ(x))

1sg(x)
exc(x)

ins-aft1(x) . . . 3 .
ins-aft2(x)
ins-aft3(x) 3
ins-aft4(x)
ins-aft5(x)

nuc(x)
ons(x) 3 . . 3 .

cod 1(x) . 3 . . 3

cod 2(x) . . 3 . .

140

Chapter 8

DISCUSSION

In the previous chapters, I have shown how model theory provides insight into a variety

of issues in syllable theory. This chapter will further discuss my findings and highlight

broader implications. First, I revisit the topic of computational complexity as it relates

the results established herein. I then discuss some limitations of the present work with

respect to the diversity of attested syllable structures and syllable-related processes.

Finally, I suggest directions for future work.

8.1 Computational Complexity

I have focused thus far on the low computational power of QF formulas in comparison

with other logical languages, but there are also different degrees of complexity within

the class of QF formulas. This section discusses finer distinctions to be made among

QF transductions and substructure constraint grammars.

8.1.1 Graph Transductions

Recall from Chapters 3–4 that locality depends on the ability to compute the result of a

formula by examining a connected substructure without unbounded look-ahead/look-

back. The exact bound on our look-ahead/look-back window is an important parameter

of the computation that has not yet been addressed; call this bound k. Every QF

formula has its own k value, depending on the size of the substructure it must evaluate.

141

For example, consider the formula ons 1(x) from the Flat-to-Tree transduction, Γft.

First defined in (4.15), ons 1(x) is reproduced in (8.1) below.

ons 1(x)
def
= ons(x) ∧ nuc(succ(x)) (8.1)

To determine if a given position x satisfies ons 1, we need only look at two connected

positions: x and succ(x). Thus the k value for the formula is 2. This is made even

clearer if we consider the substructure that corresponds to ons 1(x), illustrated in

Figure 8.1, which consists of only two nodes.

Figure 8.1: The substructure corresponding to ons 1(x)

ons

x

nuc

y

C

One measure of the complexity of a transduction is the largest k value needed to

compute any formula in the transduction. Call such a transduction k-QF. For Γft,

the largest k value depends on the values of n and m (the upper limits on onset and

coda length, respectively). All other formulas in the transduction have a k value of

2, so the largest k will be 2, m, or n, whichever is greatest. In this way, Γft could

differ in computational complexity across languages. For example, complex codas are

restricted to two consonants in MA, but can be as long as four consonants in Polish

(e.g., lgarstw [wgarstf] ‘lie (gen. pl.).’ Translating from the Flat Model to the Tree

Model for a Polish word is therefore more computationally costly than it is for a word

in MA (though the difference is small).

In contrast, Γtf is unequivocally 2-QF because there are no additional parameters like

m and n. This confirms the intuition that there truly is something simpler about

142

‘flattening’ a hierarchical word model rather than expanding a flat one into a multi-

tiered model. It does not indicate that the Flat Model is somehow better than the

Tree Model, only that the cost of translating between them is slightly cheaper in one

direction than in the other.

It is worth noting that increasing the k value does not increase computational complex-

ity in the same way as upping the power of the logical language. The former introduces

a quantitative difference: the same method of computation can be used for all k-QF

transductions, with computation time increasing with the the size of k. In contrast,

using a more powerful logical language like FO introduces a qualitative difference: the

method of scanning the input word model using a window of size k simply does not

work for transductions involving quantification, no matter the size of k. More complex

computations are required to handle quantification and, therefore, global evaluation.

8.1.2 Substructure Constraint Grammars

Just like the formulas in graph transductions, the formulas that make up a substructure

constraint grammar also have k values: k is simply the number of connected nodes in

a given substructure. Moreover, the largest k value of any substructure constraint

in the grammar can be used as the overall measure of the grammar’s computational

complexity.

In the grammars for both ITB and MA, the substructure constraint with the largest

k value is κNIOS “No Internal Onsetless Syllable.” This bans the substructure ψNIOS,

first defined in (6.1) and visually represented in Figure 8.2 below. Because ψNIOS has

6 nodes, its k value is 6. This means it takes a window of size 6 to scan any word

model and determine if it represents a well-formed word in ITB or MA.

8.2 Other Issues in Syllable Theory

The case studies in this dissertation touch on only a handful of key topics in syllable

theory: atypical nuclei (i.e., syllabic obstruents), geminates, epenthesis, and lexical

143

Figure 8.2: ψNIOS, the substructure banned by κNIOS “No Internal Onsetless Sylla-
ble”

σ

u

σ

v

w

nuc

x

y z

p p

p p

C

exceptions. Yet there are many more syllable-related structures and phenomena seen

in the world’s languages. In particular, three structures not yet considered are ripe

for future study: complex nuclei, rhymes, and ambisyllabic segments. Additionally, I

will discuss two common phonological processes related to syllabification: deletion and

stress assignment.

8.2.1 Additional Syllable Structures

Complex nuclei can be accounted for in the same way as I have handled complex

syllable margins. No one would argue that nuclei can be of unbounded length, so this

just introduces another parameter to go along with n (maximum onset length) and m

(maximum coda length).

Rhymes are also straightforward to incorporate; it only takes a small change to the

Tree Model to produce the Rhyme Model (a hierarchical word model with the rhyme

constituent), as illustrated in Figure 8.3.1

1 rhm = rhyme

144

Figure 8.3: The Rhyme Model for cat [kæt]

ons rhm

σ

nuc cod

k æ t

p p

p p

p

p p

C C

Starting from a flat string, a syllabification transduction that includes the rhyme is

analogous to those presented in Chapters 6–7. If my intuitions are correct, the trans-

duction would still be QF. The main differences would be that 4 copy sets are needed

instead of 3, and the k value of the transduction would likely be larger.

Handling ambisyllabicity is more challenging. The hierarchical word models used

throughout this dissertation include the parent function, which picks out the unique

parent of any position. If a segment is ambisyllabic, the traditional view is that it has

two parents, one in either syllable (Gussenhoven, 1986; Hayes, 2009; Kahn, 1976). For

instance, Figure 8.4 illustrates a tree-like representation of the word lemon, in which

the [m] is ambisyllabic. Directed edges representing dominance are left unlabeled for

the sake of clarity.

145

Figure 8.4: A tree-like representation of lemon [lEm@n]

ons

3

nuc

4

cod

5

ons

6

nuc

7

cod

8

σ1 σ2

l

9

E

10

m

11

@

12

n

13

C C C C

I call this representation ‘tree-like’ because it has hierarchical structure, but the in-

dividual syllables are not true trees. The issue is that position 11 has two parents,

so there is more than one output for the expression par(11). Whether redefining the

parent function as a binary dominance relation, similar to the precedence relation,

changes much in the way of computational properties remains to be shown, and I leave

the details to future work.

8.2.2 Additional Processes Related to Syllable Structure

Along with epenthesis, which was covered in Chapter 7, processes of deletion and stress

assignment are so intertwined with syllable structure that they must be touched upon

here. The Dot-to-Flat transduction, Γdf , illustrates the basic approach to deletion. This

transduction essentially deletes the position in the input labeled with a dot. Deleting

a phoneme instead of a dot is the same; it simply requires ‘skipping’ over an input

position when computing the output successor/predecessor functions.

Stress assignment could be handled in this framework by adding the label stress to the

output word model (or prim and sec for primary and secondary stress, respectively).

Then it would simply be a question of how to determine which positions get this label,

146

which varies quite a lot across languages (see, e.g., Goedemans & van der Hulst, 2009;

Halle et al., 1994; Heinz, 2007; Van der Hulst, 2014). Bounded stress patterns (e.g.,

stress falling on the initial syllable, final syllable, penult, etc.) can easily be character-

ized using local computations, because they only require counting a small number of

positions from the word edge (Rogers et al., 2013). Even certain types of unbounded

stress patterns have been characterized with local substructure constraint grammars

(e.g., Strother-Garcia et al., 2017), which suggests that the corresponding stress as-

signment transduction would be QF. It is unclear whether or not stress patterns that

fall outside of these categories could also be captured with QF graph transductions.

8.3 Other Directions for Future Work

One obvious next step would be to develop learning algorithms to learn the patterns

and processes described in the previous chapters. Learners have already been estab-

lished for several types of substructure constraint grammars (e.g., Chandlee et al.,

2019; Heinz, 2010b; Jardine & Heinz, 2016; Strother-Garcia et al., 2017), which could

be straightforwardly extended to learn the types of constraints presented here. A

more substantial challenge would be to develop a learning algorithm for QF graph

transductions. Chandlee et al. (2014) present a learner for Input Strictly Local (ISL)

functions, a class of mappings which includes QF graph transductions for conventional

string models. How to adapt this learning method to QF transductions over syllabic

structures (or arbitrary data structures) is an area of future study.

Another extension of this work would involve writing a program to implement the

ITB syllabification transduction on strings and testing its accuracy using data from

CoTaSS, the Corpus of Tashlhiyt Semi-spontaneous Speech (Bruggeman & Roettger,

2017). CoTaSS currently consists of 39 minutes of audio, along with time-aligned

transcription in Praat’s TextGrid format. This could be readily analyzed (and re-

formatted as necessary) using Python or another programming language.

It would also be valuable to model a whole language phonology as a graph transduction,

147

rather than focusing on 1–2 related processes (e.g., syllabification and epenthesis) as I

have done here. If a transduction accounting for all phonological processes in a given

language could be shown to be QF, it would be a compelling addition to the evidence

which suggests that computation in phonology is fundamentally local.

148

Chapter 9

CONCLUSION

This dissertation presents three main results. I have demonstrated that three popular

types of syllable structure representations are notationally equivalent, in a strict math-

ematical sense—that is, they are QF-bi-interpretable. I have also shown that syllable

well-formedness in ITB and MA can be characterized with grammars of local, inviolable

substructure constraints. Furthermore, I have shown that the syllabification process in

either language can be represented by a QF graph transduction, a formalism that al-

lows for substantially lower computational complexity than those previously proposed.

It is worth noting that these findings hold true regardless of which syllable represen-

tation type is used, due to the results established in Chapter 4. Taken together, these

findings strongly suggest that syllable-based phenomena can be formalized in Model

Theory using only local computations.

It is surprising that QF logic, being fundamentally local, is sufficient to account for a

variety of syllabification processes, because the dominant paradigm in phonology (OT)

uses global optimization. The results of this dissertation indicate that syllabification

is not evidence for global optimization, contrary to the argument made in Prince &

Smolensky (1993) on the basis of ITB. The case studies in this dissertation highlight

an insight that is obfuscated by grammatical formalisms: the local nature of comput-

ing syllable constituency is exactly what precludes the need for quantification (and,

therefore, global optimization).

So which aspects of complexity are genuinely linguistic and which ones are by-products

of the chosen formalism? Model Theory provides a foundation for studying this ques-

tion. The minimal power of the logical language needed to define a transduction over

149

representational structures is a measure of the computational complexity of the map-

ping. Similarly, the minimal power of the logic used to define a substructure constraint

grammar is a measure of how computationally complex it is to decide whether a given

word is grammatical. A fruitful avenue of future research in rule-based and OT frame-

works alike would be to identify which properties of these grammatical formalisms are

responsible for their relatively high computational complexity. It is possible that care-

ful modifications may increase restrictiveness in a way that makes these formalisms

equivalent to QF transductions or substructure constraint grammars.

150

REFERENCES

Al Ghadi, Abdellatif. 2014. Moroccan Arabic plurals and the organization of the lexicon:

University Mohammed V, Faculty of Letters and Human Sciences dissertation.

Baković, Eric. 1999. Assimilation to the unmarked. Penn Working Papers in Linguis-

tics 6(1).

Baković, Eric. 2000. Harmony, dominance and control : Rutgers University disserta-

tion.

Basbøll, Hans. 1999. Syllables in Danish. In Harry van der Hulst & Nancy A. Ritter

(eds.), The syllable: Views and facts, New York: Mouton de Gruyter.

Bell, Alan & J. Bybee Hooper. 1978. Issues and evidence in syllabic phonology. In

Alan Bell & J. Bybee Hooper (eds.), Syllables and segments, 3–22. Amsterdam:

North Holland.

Benhallam, Abderrafi. 1990. Moroccan Arabic syllable structure. Langues et littératures

8. 177–191.

Bird, Steven, John S Coleman, Janet Pierrehumbert & James M Scobbie. 1992. Declar-

ative Phonology. In Proceedings of the XVth International Congress of Linguists,

Université Laval, Québec.

Blevins, Juliette. 1995. The syllable in phonological theory. In John A. Goldsmith

(ed.), The handbook of phonological theory, 206–244. Cambridge, Mass: Blackwell.

Blevins, Juliette. 2003. The independent nature of phonotactic constraints: an alter-

native to syllable-based approaches. In Caroline Féry & Ruben van de Vijver (eds.),

The syllable in Optimality Theory, 375–404. Cambridge University Press.

151

Blum, Eileen. 2018. On the locality of vowel harmony over multi-tiered autosegmental

representations. Unpublished manuscript.

Borgstrøm, Carl Hjalmar. 1935. The dialect of Barra in the Outer Hebrides. Norsk

Tidsskrift for Sprogvidenskap 8. 71–242.

Borowsky, Toni Jean. 1990. Topics in the lexical phonology of English. New York:

Garland.

Boudlal, Abdelaziz. 2001. Constraint interaction in the phonology and morphology of

Casablanca Moroccan Arabic: Mohammed V University dissertation.

Boudlal, Abdelaziz. 2006/2007. Sonority-driven schwa epenthesis in Moroccan Arabic.

Languages and Linguistics 18/19. 59–81.

Breen, Gavan & Rob Pensalfini. 1999. Arrernte: A language with no syllable onsets.

Linguistic Inquiry 30(1). 1–25.

Broselow, Ellen I. 1976. The phonology of Egyptian Arabic: University of Mas-

sachusetts, Amherst dissertation.

Browman, Catherine P & Louis Goldstein. 1995. Gestural syllable position effects in

American English. Producing speech: Contemporary issues 19–33.

Bruggeman, Anna & Timo Benjamin Roettger. 2017. CoTaSS: Corpus of Tashlhiyt

Semi-spontaneous Speech. Online database. cotass.uni-koeln.de/.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Mathe-

matical Logic Quarterly 6(1-6). 66–92.

Calabrese, Andrea. 1988. Towards a theory of phonological alphabets : Massachusetts

Institute of Technology dissertation.

Chandlee, Jane. 2014. Strictly local phonological processes : University of Delaware

dissertation.

152

cotass.uni-koeln.de/

Chandlee, Jane, Rémi Eyraud & Jeffrey Heinz. 2014. Learning strictly local subse-

quential functions. Transactions of the Association for Computational Linguistics 2.

491–503.

Chandlee, Jane, Remi Eyraud, Jeffrey Heinz, Adam Jardine & Jonathan Rawski. 2019.

Learning with partially ordered representations. arXiv preprint arXiv:1906.07886 .

Chandlee, Jane & Jeffrey Heinz. 2018. Strict locality and phonological maps. Linguistic

Inquiry 49(1). 23–60.

Chandlee, Jane & Steven Lindell. 2016. Local languages. Paper presented at the 4th

Workshop on Natural Language and Computer Science, in affiliation with LICS at

Columbia University, NY.

Chandlee, Jane & Steven Lindell. to appear. A logical characterization of input strictly

local functions. In Jeffrey Heinz (ed.), Doing computational phonology, Oxford Uni-

versity Press.

Chen, Matthew Y & William S-Y Wang. 1975. Sound change: actuation and imple-

mentation. Language 255–281.

Chomsky, Noam & Morris Halle. 1965. Some controversial questions in phonological

theory. Journal of linguistics 1(2). 97–138.

Chomsky, Noam & Morris Halle. 1968. The sound pattern of English. New York:

Harper & Row.

Clements, George. 1990. The role of the sonority cycle in core syllabification. In John

Kingston & Mary Beckmann (eds.), Papers in laboratory phonology, vol. 1, 283–333.

Cambridge: Cambridge University Press.

Clements, George N. 1986. Syllabification and epenthesis in the Barra dialect of Gaelic.

In K. Bogers, M. Maus & H. van der Hulst (eds.), The phonological representation

of suprasegmentals, 317–336. Dodrecht: Foris.

153

Clements, George N. 1997. Berber syllabification: derivations or constraints? In

Derivations and constraints in phonology, 289–330. Clarendon Press Oxford.

Clements, George N & Samuel Jay Keyser. 1983. CV phonology: A generative theory

of the syllable. Cambridge, Mass: MIT Press.

Coleman, John. 1998. Phonological representations: their names, forms and powers.

Cambridge University Press.

Côté, Marie-Hélène. 2000. Consonant cluster phonotactics: a perceptual approach:

Massachusetts Institute of Technology dissertation.

Courcelle, Bruno. 1994. Monadic second-order definable graph transductions: a survey.

Theoretical Computer Science 126(1). 53–75.

Courcelle, Bruno & Joost Engelfriet. 2012. Graph structure and monadic second-order

logic: a language-theoretic approach, vol. 138. Cambridge University Press.

Daland, Robert, Bruce Hayes, James White, Marc Garellek, Andreas Davis & Ingrid

Normann. 2011. Explaining sonority projection effects. Phonology 28(197). 197–234.

Danis, Nick & Adam Jardine. 2019. Q-theory representations are logically equivalent

to autosegmental representations. Proceedings of the Society for Computation in

Linguistics 2(1). 29–38.

Davis, Stuart Michael. 1985. Topics in syllable geometry (phonology): The University

of Arizona dissertation.

Dell, François & Mohamed Elmedlaoui. 1985. Syllabic consonants and syllabification in

Imdlawn Tashlhiyt Berber. Journal of African Languages and Linguistics 7. 105–130.

Dell, François & Mohamed Elmedlaoui. 1988. Syllabic consonants in Berber: Some

new evidence. Journal of African Languages and Linguistics 10(1). 1–17.

154

Dell, François & Mohamed Elmedlaoui. 2002. Syllables in Tashlhiyt Berber and in

Moroccan Arabic, vol. 2. Dordrecht, The Netherlands: Berlin: Springer.

Draper, MH, Peter Ladefoged & David Whitteridge. 1959. Respiratory muscles in

speech. Journal of Speech, Language, and Hearing Research 2(1). 16–27.

Duanmu, San. 2009. Syllable structure: The limits of variation. Oxford University

Press.

Enderton, Herbert B. 2001. A mathematical introduction to logic. Academic Press 2nd

edn.

Engelfriet, Joost & Hendrik Jan Hoogeboom. 2001. MSO definable string transductions

and two-way finite-state transducers. ACM Transactions on Computational Logic

(TOCL) 2(2). 216–254.

Ennaji, Moha. 2005. Multilingualism, cultural identity, and education in Morocco.

Berlin: Springer.

Fagin, R., L.J. Stockmeyer & M.Y. Vardi. 1995. On monadic NP vs monadic co-NP.

Information and Computation 120(1). 78 – 92.

Finley, Sara. 2008. Formal and cognitive restrictions on vowel harmony : Johns Hopkins

University dissertation.

Finley, Sara & William Badecker. 2008. Analytic biases for vowel harmony languages.

In Wccfl, vol. 27, 168–176.

Frampton, John. 2011. GDE syllabification: A generalization of Dell and Elmedlaoui’s

syllabification algorithm. The Linguistic Review 28(3). 241–279.

Frank, Robert & Giorgio Satta. 1998. Optimality Theory and the generative complexity

of constraint violability. Computational Linguistics 24(2). 307–315.

155

Gafos, Adamantios I, Philip Hoole, Kevin Roon, Chakir Zeroual, Cécile Fougeron, Bar-

bara Kühnert, Mariapaola D’Imperio & Nathalie Vallée. 2010. Variation in overlap

and phonological grammar in Moroccan Arabic clusters. Laboratory Phonology X,

Mouton de Gruyter, Berlin/New York 657–698.

Gainor, Brian, Regine Lai & Jeffrey Heinz. 2012. Computational characterizations of

vowel harmony patterns and pathologies. In The proceedings of the 29th west coast

conference on formal linguistics, 63–71.

Garcia, Pedro, Enrique Vidal & José Oncina. 1990. Learning locally testable languages

in the strict sense. In Proceedings of the workshop on algorithmic learning theory,

325–338.

Gay, Thomas. 1978. Articulatory units: Segments or syllables. Syllables and segments

121–132.

Giegerich, Heinz J. 1992. English phonology: An introduction. Cambridge: Cambridge

University Press.

Giles, Stephen B & Kenneth L Moll. 1975. Cinefluorographic study of selected allo-

phones of English /l/. Phonetica 31(3-4). 206–227.

Gimson, Alfred Charles. 1970. An introduction to the pronunciation of English. London:

Arnold.

Goedemans, Rob & Harry van der Hulst. 2009. Stresstyp: A database for word ac-

centual patterns in the world’s languages. The use of databases in cross-linguistics

research 235–282.

Goldsmith, John. 2011. The syllable. In John A. Goldsmith, Jason Riggle & Alan

C. L. Yu (eds.), The blackwell handbook of phonological theory, vol. 2, 164–196.

Wiley-Blackwell.

156

Graf, Thomas. 2010. Comparing incomparable frameworks: A model theoretic ap-

proach to phonology. University of Pennsylvania Working Papers in Linguistics

16(2). Article 10.

Gussenhoven, Carlos. 1986. English plosive allophones and ambisyllabicity. Gramma

10(2). 119–141.

Halle, Morris & William Idsardi. 1995. General properties of stress and metrical struc-

ture. In John A. Goldsmith (ed.), The handbook of phonological theory, 403–443.

Cambridge, Mass: Blackwell.

Halle, Morris, William Idsardi & John A Goldsmith. 1994. General properties of stress

and metrical structure. In Eric Sven Ristad (ed.), Language computations: DIMACS

workshop on human language, march 20-22, 1992 Center for Discrete Mathematics

and Theoretical Computer Science New Brunswick, NJ: DIMACS series in discrete

mathematics and theoretical computer science, American Mathematical Society.

Harms, Robert Thomas. 1964. Finnish structural sketch. Bloomington: Indiana Uni-

versity.

Harris, James W. 1969. Spanish phonology. Cambridge, MA: Massachusetts Institute

of Technology Press.

Harris, James W. 1983. Syllable structure and stress in Spanish. a nonlinear analysis.

Linguistic Inquiry Monographs Cambridge, Mass. 8. 1–158.

Hayes, Bruce. 2009. Introductory phonology. Wiley-Blackwell.

Heath, Jeffrey. 1987. Ablaut and ambiguity: Phonology of a Morcoccan Arabic dialect.

SUNY Press.

Heath, Jeffrey. 1997. Moroccan Arabic phonology. In Alan S. Kaye (ed.), Phonologies

of Asia and Africa (including the Caucasus), vol. 1, 205–217. Eisenbrauns.

157

Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns : University of

California, Los Angeles dissertation.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology

26(2). 303–351.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41(4).

623–661.

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th annual

meeting of the association for computational linguistics, 897–906. Uppsala, Sweden:

Association for Computational Linguistics.

Heinz, Jeffrey. 2011a. Computational phonology part I: Foundations. Language and

Linguistics Compass 5(4). 140–152.

Heinz, Jeffrey. 2011b. Computational phonology part II: Grammars, learning, and the

future. Language and Linguistics Compass 5(4). 153–168.

Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In

Larry Hyman & Frans Plank (eds.), Phonological typology, 126–195. Mouton.

Heinz, Jeffrey & William Idsardi. 2013. What complexity differences reveal about

domains in language. Topics in cognitive science 5(1). 111–131.

Heinz, Jeffrey & Regine Lai. 2013. Vowel harmony and subsequentiality. In Andras Ko-

rnai & Marco Kuhlmann (eds.), Proceedings of the 13th meeting on the mathematics

of language (mol 13), 52–63. Sofia, Bulgaria.

Heinz, Jeffrey, Chetan Rawal & Herbert G. Tanner. 2011. Tier-based strictly local

constraints for phonology. In Proceedings of the 49th annual meeting of the associ-

ation for computational linguistics, 58–64. Portland, Oregon, USA: Association for

Computational Linguistics.

158

Heinz, Jeffrey & Kristina Strother-Garcia. to appear. Cluster reduction in Tibetan. In

Jeffrey Heinz (ed.), Doing computational phonology, Oxford University Press.

Hooper, Joan B. 1972. The syllable in phonological theory. Language 525–540.

Hooper, Joan B. 1976. An introduction to natural generative phonology. New York:

Academic Press.

Van der Hulst, Harry. 2014. Word stress: Theoretical and typological issues. Cambridge

University Press.

Hyman, Larry M. 1983. Are there syllables in gokana. Current approaches to African

linguistics 2. 171–179.

Itô, Junko. 1988. Syllable theory in prosodic phonology. New York: Garland Press.

Itô, Junko. 1989. A prosodic theory of epenthesis. Natural Language & Linguistic

Theory 7.

Jakobson, Roman. 1962. Selected writings. The Hague: Mouton.

Jardine, Adam. 2016. Locality and non-linear representations in tonal phonology : Uni-

versity of Delaware dissertation.

Jardine, Adam. 2017. The local nature of tone-association patterns. Phonology 34(2).

363–384.

Jardine, Adam. 2019. The expressivity of autosegmental grammars. Journal of Logic,

Language and Information 28(1). 9–54.

Jardine, Adam & Jeffrey Heinz. 2015. A concatenation operation to derive autoseg-

mental graphs. In Proceedings of the 14th Meeting on the Mathematics of Language

(MoL 2015), 139–151. Chicago, USA.

Jardine, Adam & Jeffrey Heinz. 2016. Learning tier-based strictly 2-local languages.

Transactions of the Association for Computational Linguistics 4. 87–98.

159

Jespersen, Otto. 1904. Lehrbuch der Phonetik. Leipzig and Berlin: B. G. Teubner.

Johnson, C Douglas. 1972. Formal aspects of phonological description. The Hague:

Mouton.

Kager, René. 1999. Optimality Theory. Cambridge: Cambridge University Press.

Kahn, Daniel. 1976. Syllable-based generalizations in English phonology : Massachusetts

Institute of Technology dissertation.

Kaplan, Ronald M & Martin Kay. 1994. Regular models of phonological rule systems.

Computational linguistics 20(3). 331–378.

Karttunen, Lauri. 1993. Finite-state constraints. The last phonological rule 173–194.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational phonol-

ogy: plenary talk. In Proceedings of the international workshop on finite state meth-

ods in natural language processing, 1–12. Association for Computational Linguistics.

Kawasaki, Haruko. 1986. Phonetic explanation for phonological universals: The case

of distinctive vowel nasalization. Experimental phonology 81–103.

Keegan, John M. 1986. The role of syllabic structure in the phonology of Moroccan

Arabic. Current Approaches to African Languages and Linguistics 3(6). 209–226.

Kenstowicz, M. J. 1994. Phonology in generative grammar. Cambridge, Mass.: Black-

well.

Kent, Raymond D & Fred D Minifie. 1977. Coarticulation in recent speech production

models. Journal of Phonetics 5(2). 115–133.

Kent, Raymond D & Charles Read. 1992. The acoustic analysis of speech. San Diego:

Singular Publishing Group.

Kiparsky, Paul. 2003. Syllables and moras in Arabic. In The syllable in optimality

theory, 147–182. Cambridge University Press.

160

Kohler, Klaus J. 1966. Is the syllable a phonological universal? Journal of Linguistics

2(2). 207–208.

Kozhevnikov, Valerĭi Aleksandrovich & L�iudmila Andreevna Chistovich. 1965. Speech:

Articulation and perception. Washington: Joint Publications Research Service.

Krakow, Rena A. 1999. Physiological organization of syllables: a review. Journal of

Phonetics 27(1). 23–54.

Krakow, Rena Arens. 1989. The articulatory organization of syllables: A kinematic

analysis of labial and velar gestures : Yale University dissertation.

Lahrouchi, Mohamed. 2018. Syllable structure and vowel/zero alternations in Moroccan

Arabic and Berber. In The routledge handbook of african linguistics, 168–180. New

York: Routledge. doi:10.4324/9781315392981.

Laks, Bernard. 2003. Saussure’s phonology. Take Danish for instance. Linguistic

studies in honour of Hans Basbøll 199–211.

Lehiste, Ilse. 1960. An acoustic–phonetic study of internal open juncture. Phonetica

5(1). 5–54.

Locke, John L. 1983. Phonological acquisition and change. Academic Press.

Lombardi, Linda. 1999. Positional faithfulness and voicing assimilation in Optimality

Theory. Natural Language & Linguistic Theory 17(2). 267–302.

Manuel, Sharon Y & Eric Vatikiotis-Bateson. 1988. Oral and glottal gestures and acous-

tics of underlying/t/in English. The Journal of the Acoustical Society of America

84(S1). S84–S84.

McCarthy, John J. 1986. OCP effects: Gemination and antigemination. Linguistic

inquiry 207–263.

161

McCawley, James D. 1968. The phonological component of a grammar of Japanese 2.

The Hague: Mouton.

Nespor, Marina & Irene Vogel. 1986. Prosodic phonology, vol. 28. Dordrecht, Holland:

Foris.

Ohala, John J. & Haruko Kawasaki. 1984. Prosodic phonology and phonetics. Phonol-

ogy 1. 113–127.

Osthoff, Hermann & Karl Burgmann. 1878. Morphologische Untersuchungen auf dem

Gebiete der indogermanischen Sprachen. Leipzig: Hirzel.

Paradis, Carole. 1988. On constraints and repair strategies. The Linguistic Review 6.

71–97.

Payne, Amanda. 2017. All dissimilation is computationally subsequential: Supplemen-

tal material. Language 93(4).

Pike, Kenneth L & Eunice Victoria Pike. 1947. Immediate constituents of Mazateco

syllables. International Journal of American Linguistics 13(2). 78–91.

Potts, Christopher & Geoffrey K. Pullum. 2002. Model theory and the content of OT

constraints. Phonology 19. 361–393.

Prince, Alan & Paul Smolensky. 1993. Optimality Theory: Constraint interaction in

generative grammar. Malden, Mass: Blackwell.

Pullum, Geoffrey K. 2007. The evolution of model-theoretic frameworks in linguistics.

In James Rogers & Stephan Kepser (eds.), Model-theoretic syntax at 10, 1–10. Dublin,

Ireland.

Rawski, Jon. 2018. Subregular complexity across speech and sign. Proceedings of the

Society for Computation in Linguistics 1(1). 225–226.

162

Reiss, Charles. 2008. Constraining the learning path without constraints, or the ocp

and nobanana. In Bert Vaux & Andrew Nevins (eds.), Rules, constraints, and

phonological phenomena, 252–302. Oxford University Press.

Ridouane, Rachid. 2016. Leading issues in tashlhiyt phonology. Language and Linguis-

tics Compass 10(11). 644–660.

Riggle, Jason Alan. 2004. Generation, recognition, and learning in finite state Opti-

mality Theory : University of California, Los Angeles dissertation.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert & Sean

Wibel. 2013. Cognitive and sub-regular complexity. In Glyn Morrill & Mark-Jan

Nederhof (eds.), Formal grammar, vol. 8036 Lecture Notes in Computer Science,

90–108. Berlin: Springer.

Rogers, James & Geoffrey K Pullum. 2011a. Aural pattern recognition experiments

and the subregular hierarchy. Journal of Logic, Language and Information 20(3).

329–342.

Rogers, James & Geoffrey K. Pullum. 2011b. Aural pattern recognition experiments

and the subregular hierarchy. Journal of Logic, Language and Information 20. 329–

342.

Rozenberg, Grzegorz & Arto Salomaa. 2012. Handbook of formal languages: Word

language grammar, vol. 1. Berlin: Springer.

Saporta, Sol & Heles Contreras. 1962. A phonological grammar of Spanish. University

of Washington Press.

Saussure, Ferdinand de. 1916. Cours de linguistique générale. Paris: Payot.

Sayed, Abdelrahman Ahmed. 1982. The phonology of Moroccan Arabic: A generative

phonological approach: University of Texas, Austin dissertation.

163

Schachter, Paul & Victoria Fromkin. 1968. A phonology of Akan: Akuapem, Asante,

Fante. UCLA Working Papers in Phonetics 9.

Schourup, Lawrence C. 1973. A cross-language study of vowel nasalization. Ohio State

University Working Papers in Linguistics 15. 190–221.

Scobbie, James M. 1991. Towards Declarative Phonology. Edinburgh Working Papers

in Cognitive Science 7. 1–27.

Scobbie, James M, John S Coleman & Steven Bird. 1996. Key aspects of Declarative

Phonology. Salford: European Studies Research Institute.

Selkirk, Elisabeth O. 1980. The role of prosodic categories in English word stress.

Linguistic inquiry 11(3). 563–605.

Selkirk, Elisabeth O. 1984. On the major class features and syllable theory. In M. Halle,

M. Aronoff & R. T. Oehrle (eds.), Language sound structure: Studies in phonology,

Cambridge, Mass: MIT Press.

Shaw, Jason, Adamantios Gafos, Philip Hoole & Chakir Zeroual. 2009. Syllabification

in Moroccan Arabic: evidence from patterns of temporal stability in articulation.

Phonology 26(1). 187–215.

Shoenfield, Joseph R. 1967. Mathematical logic, vol. 21. Reading: Addison-Wesley.

Sievers, Eduard. 1881. Grundzuge der Phonetik. Leipzig: Breitkopf and Hartel.

Sommer, Bruce. 1981. The shape of Kunjen syllables. In D. L. Goyvaerts (ed.),

Phonology in the 1980s, Ghent: E. Story-Scientia.

Steriade, Donca. 1998. Phonetics in phonology: the case of laryngeal neutralization.

UCLA Working Papers in Phonology 3. 25–146.

Steriade, Donca. 1999. 9 alternatives to the syllabic interpretation of consonantal

phonotactics. In O. Fujimura, B. Joseph & B. Palek (eds.), Proceedings of the 1998

linguistics and phonetics conference, 205–242. The Karolinum Press.

164

Stetson, RH. 1951. Motor phonetics: a study of speech movements in articulation.

Amsterdam: North Holland.

Strother-Garcia, Kristina. 2018. Imdlawn Tashlhiyt Berber syllabification is quantifier-

free. In Proceedings of the society for computation in linguistics, vol. 1, .

Strother-Garcia, Kristina & Jeffrey Heinz. 2017. Logical foundations of syllable rep-

resentations. Poster presented at the 5th Annual Meeting on Phonology, New York

University, New York City.

Strother-Garcia, Kristina, Jeffrey Heinz & Hyun Jin Hwangbo. 2017. Using model the-

ory for grammatical inference: A case study from phonology. In Sicco Verwer, Menno

van Zaanen & Rick Smetsers (eds.), Proceedings of the 13th International Confer-

ence on Grammatical Inference (ICGI), vol. 57 Proceedings of Machine Learning

Research, 66–78. Delft: PMLR.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Journal of

Computer and System Sciences 25(3). 360–376.

Vennemann, Theo. 1968a. German phonology : University of California, Los Angeles

dissertation.

Vennemann, Theo. 1968b. On the use of paradigmatic information in a competence

rule of modern German phonology. In Proceedings of the 30th annual LSA summer

meeting, Urbana, IL, .

Vogel, Irene. 1977. The syllable in phonological theory: with special reference to Italian:

Stanford University dissertation.

Vu, Mai H, Ashkan Zehfroosh, Kristina Strother-Garcia, Michael Sebok, Jeffrey Heinz

& Herbert G Tanner. 2018. Statistical relational learning with unconventional string

models. Frontiers in Robotics and AI 5. 76.

165

Whitney, William Dwight. 1874. Oriental and linguistic studies: The east and west;

religion and mythology; orthography and phonology; Hindu astronomy, vol. 2. New

York: Scribner, Armstrong, and Co.

166

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 The Syllable
	2.1 Evidence for the Syllable
	2.2 Previous Accounts of the Syllable
	2.3 Methodological Problems of Previous Approaches
	2.4 Moving Forward

	3 Formal Background
	3.1 Word Models and Model Theories
	3.1.1 The Successor Model Theory
	3.1.2 A Brief Aside: Notational Conventions
	3.1.3 The Precedence Model Theory
	3.1.4 Visual Representations

	3.2 Enriching Conventional Word Models
	3.2.1 Enriching the Alphabet
	3.2.2 Enriching the Structure

	3.3 Transductions
	3.4 Substructures
	3.5 Formal Languages and Substructure Constraints
	3.6 Logics and Locality
	3.7 User-defined Formulas

	4 Syllable Representations
	4.1 Notational Equivalence
	4.2 Representations of Syllable Structure
	4.2.1 The Dot Model Theory
	4.2.2 The Flat Model Theory
	4.2.3 The Tree Model Theory

	4.3 Comparing Different Models
	4.3.1 L-interpretability
	4.3.2 The Flat-to-Tree Transduction
	4.3.3 The Tree-to-Flat Transduction
	4.3.4 The Flat-to-Dot Transduction
	4.3.5 The Dot-to-Flat Transduction

	4.4 Discussion

	5 Universal Principles, Sonority Sequencing, and CV Typology
	5.1 Structural Well-formedness Constraints
	5.2 Sonority Sequencing
	5.2.1 Sonority Relations
	5.2.2 Constraints on Sonority Sequencing

	5.3 CV Typology

	6 Case Study: Imdlawn Tashlhiyt Berber
	6.1 Motivation
	6.2 The Basics
	6.3 Surface Well-Formedness in ITB
	6.3.1 Structural Constraints
	6.3.2 Sonority Sequencing Constraints
	6.3.3 The Formal Language for ITB
	6.3.4 Extended Example: /t-xzn-t/

	6.4 Syllabification in ITB
	6.4.1 Sonority and Other Considerations
	6.4.2 Identifying Syllable Constituents
	6.4.3 The ITB Syllabification Transduction
	6.4.4 Extended Example: /saulx/

	7 Case Study: Moroccan Arabic
	7.1 The Basics
	7.2 Surface Well-formedness in MA
	7.2.1 Structural Constraints
	7.2.2 Sonority Sequencing Constraints
	7.2.3 Exceptions to the Epenthesis Pattern
	7.2.4 The Formal Language for MA

	7.3 Syllabification in MA
	7.3.1 Identifying (Some) Syllable Constituents
	7.3.2 Identifying Insertion Sites
	7.3.3 Identifying the Remaining Syllable Constituents
	7.3.4 The MA Syllabification Transduction
	7.3.5 Extended Example: /krkbk/

	8 Discussion
	8.1 Computational Complexity
	8.1.1 Graph Transductions
	8.1.2 Substructure Constraint Grammars

	8.2 Other Issues in Syllable Theory
	8.2.1 Additional Syllable Structures
	8.2.2 Additional Processes Related to Syllable Structure

	8.3 Other Directions for Future Work

	9 Conclusion

