Beyond Abstract Versus Episodic

Janet B. Pierrehumbert

Why use an abstraction?

- Highly modular system using (minimal) discrete underlying representations
- Opacity no direct, transparent correlate to acoustics or articulation
 - Removes correlations between 'parameters'
- "The workhorse of phonological learning is the automatic and unconscious acquisition of implicit knowledge."

Episodic memory has capacity to represent gradient information

- Phonetic realization patterns require a mechanism for phonetic details to representations in memory
- Can also represent as updating of parameters

What do abstractions do for us?

Using **coding elements** (to define the parts of a word) we can define **equivalence classes** to explain productivity and adaptability.

Training set		Test set			
	G	ood	Е	Bad	
VC	VC	CV	VV	CC	
CVC	CVC	VCV	CCV	VVC	
CVCV	CVCV	VCVC	VVCV	CCVC	
VCVCV	VCVCV	CVCVC	CCVCV	VVCVC	

Precision vs. Recall

Table 2 Test performance of the pure memorization model^a

4/(4+0) = 1.0

	Memory list model			
	Accept	Reject	Recall	
Possible	VC	CV	4/(4+4) = 0.5	
	CVC	VCV		
	CVCV	VCVC		
	VCVCV	CVCVC		
Impossible		VV CC		
		CCV VVC		
		VVCV CCVC		
		CCVCV VVCVC		

Table 3 Test performance of the overgeneralizing unigram model^a

Perfect precision	1
-------------------	---

Precision

		Unigram model			
	Acc	Accept		Recall	
Possible	CVC V	CV /CV /CVC CVCVC		8/(8+0) = 1.0	
Impossible	CCV V VVCV C	CC VVC CCVC VVCVC			
Precision	8/(8+8) = 0.5	8/(8+8) = 0.5		1	

Balancing precision & recall

Table 4 Test performance of the Goldilocks digram model^a

	Digram model				
	Accept		F	Reject	
Possible	VC CVC CVCV VCVCV	CV VCV VCVC CVCVC			8/(8+0) = 1.0
Impossible			VV CCV VVCV CCVCV	CC VVC CCVC VVCVC	
Precision	8/(8+0) = 1	1.0			

Parameters to take into account

- Dimensions of similarity
- Markedness
- Type vs. token frequency
- Adapting categories instead of building new ones

- 1. Phrasal Context
- 2. Frequency/Predictability
- 3. Different Voices and Dialects
- 4. Indexical Information

Prosody

- Contextual information will tell us if a word is prominent or reduced
- Affects F0 and timing
- More prominent words will also be more carefully articulated

"I'm *giving* this to Sarah" vs. "I'm giving this *to* Sarah" vs. "I'm giving this to *Sarah*"

Frequency & Predictability

- More frequent words produced with less "effort"
- If a word is highly predictable, reduced in the sentence

"I'm giving this to Sarah" vs. *"It's next to the microwave"

Group speaker variation

- "Phonological learning means internalizing ambient patterns well enough."
- Balance between conformity and variation
- Distinguishing between effects of language and effects of attitude
 - Are they receiving the same exposure but imitating different people, or receiving different input entirely?

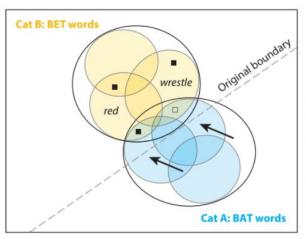
What information have I internalized about myself?

Indexical information

"Referential information is what speaker is talking about, whereas indexical information is information about the speaker, the social context, or the physical context."

- Self-referential: differences among speakers of different gender identities and sexualities, age groups (with some plasticity for older speakers)
- Using language cues to mark social group
- Differences persist even among groups in contact
- Indexical information interacts with other phonological info for variation conveyed concurrently with referential information

What information am I sharing?


Storage in memory

Phonology characterizes information from many contexts, over long timescale

- Word frequency weaker phonetic representation, or more salient?
- Highly predictable words are reduced
- Predictable word sequences less prosodically variable
- Longer reaction times for less standard forms (rhotic forms for nonrhotic dialects, etc)
- Phonological adaptation also affected by prestige of donor language (for the semantic domain)

New Zealand English

- Short front vowel rotation
 - o <bat> → [bɛt] (not [bæt])
 - o <bet> → [bet] (not [bɛt])
- Using birth year as proxy for time, low-frequency word lead the change
 - Need larger sample to detect change
 - 'Push chain' creates ambiguity, which puts low freq words at disadvantage

Examples of BET words

red: frequent wrestle: rare

Productions of BET words

- More likely to be encoded
- Least likely to be encoded
- Direction of motion

Episodie effects

- Phonetic memory constantly updated
 - Recognition better when same voice used; even ambient noise associated with memory
- New Zealand English
 - "New Zealand listeners shifted their vowel classification patterns depending on whether stuffed kangaroos and koalas (associated with Australia) or stuffed kiwis (associated with New Zealand) were present in the room."
 - Recent positive/negative news about Australia also affected vowel space
- Glaswegian English
 - Adjusting probability of allophone of same phoneme (flapped to aspirated) --
 - Remapping a known allophone to a different phoneme --
 - Creating new phonological category -- **

Episodie effects in morphophonology

- Some alternations can be generalizated others are specific to morphemes, must be learned paradigmatically
- People use different words with different frequencies
- So, the morphological system also varies between social groups
 - Morphology both episodic (indexical) and abstract (affect productivity of alternations)

Conclusions

- Lexical and indexical information not fully separable
 - Modules are 'leaky'
- Mental representations are very detailed - cannot be captured in abstractionist models
 - Representations must be *highly redundant*
- Word-specific effects *small*, and preferred to *adapt a category*