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Syllable Structure and Model Theory (Strother-Garcia, 2019)

e rule-based account and OT models produce structures that are unattested in natural languages
— we need another, more restrictive formalism

1 Word Model and Model Theories

e used for representing words (strings), where each letter is associated with a particular position
e model theories define classes of word models that share a common signature
e model theory M has the signature (D;R; F), where:

— ® is the set of positions:
x unordered
x functions and relations determine the positions
x usually represented with a set of natural numbers
x example: ball
9% {1,2,3,4} |
— R is the set that includes a relation R, for every symbol ¢ in the alphabet .

x evaluated as Boolean expressions

x example: ball

Y ={ba,l}

R = {R,, R,, R}, where R; are unary relations

2 € R, or R,(2) or a(2) — position 2 is labeled as a, etc.

— § is the set of unary functions

* map domain positions to domain positions
x example: ball

g {pred(x), succ(z)}
succ(l) =2 or 1 <2

* total function yields output for every position of the domain; because succ(x) =
x + 1, the final position in the string will also be its own successor (succ(n) = n)

1.1 The Successor Model Theory
’ M = (N; {R,|o € 2} {pred(z), suce(z)}) ‘

Visual representation of M;!

10,0,0,0:5
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Word model:

M, & (D; {Ra, Ry, Ri}; {pred(z), succ(z)})
def

DL (1,234}
R, ¥ {2}
Ry {1y
R[ d:Cf {3*4}
2 =1
def
succ(r) = 43 o a=2

4 & xe{34}

1 eze{l2}

ef
pred() € {9 o =3

3 ©r=14

1.2 The Precedence Model Theory

e the domain is a set of natural numbers

e unary relations and general precedence relation — two positions (binary relation) are

ordered with respect to one another with a possibility of intervening positions, e.g. R-(x,y),
3<5H

e because of one-to-many relation, precedence cannot be encoded as a function — § Ly
| B (N {Ro, Ro|o € T} 2) |

Visual representation of M.

Word model:

My E (D;{Be, Ra, Ry, Ri}; @)
DY {1,234}
Re ®{(1,2),(1,3), (1,4), (2,3), (2,4). (3,4)}
R, ¥ {2}
Ry ¥ {1}
Rl dZEf {374}
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2

2.1

2.2

3

Enriching Conventional Word Models

conventional models are structured in a very simple way with an ordered sequence of alpha-
betic characters

for linguistic purposes we would want to allow for more complex representation of a segment,
e.g. phonological features

Enriching the Alphabet

in a conventional model, sets of labeling relations for any two symbols are disjoint: each
position belongs to a unary relation

[((Vz,y €S)[R N R, = 2] |

we enrich the model by allowing more than one label per position

it allows us to maintain similarities between segments, e.g. we want a model to be able to
represent similarity between |b| and [p] such that both segments are are composed of [labial,
stop| features bundle

let F be a set of primitive features; and then ¥ = F

’ F< {voice, cons, high, lab, alv, post, pal, vel, uv, phar, glot, stop, fric,nas, approx,lat} ‘

for each feature f in F, there is a unary relation Ry € R. Let Rs be the set of such relations

| Ry Z{Ry|f € F} |

— example: ball
Rovice() = {1}
Riapiar () = {1}
Rytop() = {1}

Enriching the Structure

conventional models allow for only linear order whether it is general or immediate

some linguistic representations, such as tone or syllable, require hierarchical representation
which relies on dominance (which Jeff will talk about)

Graph Transductions

in order to represent input-output mapping, we can use graphs transductions

in order to map word model M* (input) to another word model M? (output) we must define
a set of formulas, one for each relation R and function F in P
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Visual representation of I'y_,,(M;},):

10,0,0,0

Definition of the transduction I'y_,,(M;.,,), where:

e w indicates an output position

e in the example below both input and output are share the same model theory, however it is
not a requirement for such transductions

R.(z") = Rq(x) V Rp(x)
Ry(2*) < FALSE
Ri(z*) € Ri(z)
wy def
succ(z™) = suce(x)
pred(z®) o pred(x)

4 Substructures

e in the example discussed (ball), we could also represent double [ as a substructure if the
model

| du(x) = i(x) Al(suce(x)) |

e in M;l . ¢y(z) is true for x =3
e substructures are formalized as Existentially Quantified Conjunctions (EQCs)

e with the domain D = {1,2,...,n} and the set of relations R = {Ry, Ry, ..., R}, an EQC is
the conjunction of expressions that specify which positions belong to which relations

m

(Fz1...,20) [\ Ri(za, - ., )]

i=1

e example:

’ ¢ll ($) def ‘

= (Fz,y)[l(z) Al(suce(x)) ANz < y]
Visual representation of the EQC ¢y (x):

&:@
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5 Formal Languages and Substructure Constraints

e we can use formal languages (set of well-formed strings) to represent SRs

e let K be the logical formula, > the alphabet, M the model theory, w a word in ¥*, and M,,
the model of w. Then K defines a formal language (L) which is a set of words in ¥* whose
word models satisty. IC

L(k) = {w e £ | My | &}

e cxample:

If expression:

o & (Fe)[d())

and a substructure constraint — conjunction of one or more literal. This could be though
of as a well-formedness constraint:

def | ,
Kpall = W11 A g

Then the language L(/Cpau) consists of word models that contain two consecutive {l and no d:

L(l‘ﬁba“) = {w exr ‘ Mj |: (@‘i’ll A _‘Ud)}

— if N is a logical formula that is the conjunction of all substructure constraints needed to
define a particular pattern, L(N) is the set of all words generated by the substructure
constraint grammar N.

6 User-defined Formulas

e 1 is b ’ b(z) = voice(x) Alab(z) A stop(x) ‘

e 1 is an obstruent: ’ obs(x) = stop(x) V fric(z) ‘

e 1 is a sonorant: ’ son(z) = —obs(z) ‘

def

init(x) = pred(z) = x
e positions: | fin(z) = succ(z) =
med(z) = —(init(z) V fin(zx))

L




