
The computational nature of phonological generalizations∗

Jeffrey Heinz

February 21, 2016

Abstract

This chapter studies the nature of the typology of phonological markedness constraints and
the nature of the typology of the transformation from underlying to surface forms from a com-
putational perspective. It argues that there are strong computational laws that constrain the
form of these constraints and transformations. These laws are currently stated most clearly
in terms of the so-called subregular hierarchies, which have been established for stringsets (for
modeling constraints) and are currently being established for string-to-string maps (for mod-
eling the transformations). It is anticipated that future research will reveal equally powerful
laws applicable to non-string-based representations. Finally, this chapter argues that these
laws arise as a natural consequence of how humans generalize from data.

Contents

1 Illuminating the phonological component of grammar 2

2 What is phonology? 4

3 Representing constraints and transformations 7

3.1 Phonotactic knowledge and markedness constraints 7
3.2 Transformations . 8

4 Expressivity and restrictiveness 10

4.1 Why restrictiveness matters . 10
4.2 The Chomsky Hierarchy . 11
4.3 Phonology is regular . 12
4.4 The Subregular Hypothesis . 13

∗I am in indebted to Jane Chandlee, Rémi Eyraud, Bill Idsardi, Adam Jardine, Regine Lai, Jason Riggle, and
Jim Rogers for invaluable discussion. I am also grateful to Jane Chandlee, Alex Cristia, Thomas Graf, Larry Hyman
and Lisa Pearl for helpful comments on an earlier draft. I also thank the students in computational phonology course
at the 2015 LSA Summer Institute, and the students in the Spring 2015 computational phonology seminar at the
University of Delaware, in particular Hossep Dolatian, Hyun Jin Hwangbo, Huan Luo, Amanda Payne, Kristina
Strother-Garcia, and Mai Ha Vu. Of course I assume full responsibility for flaws present in this chapter.

1

5 Constraints 15

5.1 The encyclopedia of types: stringsets . 15
5.1.1 Four types of constraints . 15
5.1.2 Explaining the typology . 17

5.2 The encyclopedia of categories . 19
5.2.1 Conjunctions of Negative Literals . 19
5.2.2 Propositional Logic . 22
5.2.3 First Order Logic . 23
5.2.4 Monadic Second Order Logic . 25

5.3 Further evidence supporting the Subregular Hypotheses 26
5.4 Constraints: A Summary . 27

6 Transformations 28

6.1 The encyclopedia of types: maps . 28
6.2 An encyclopedia of categories: string-to-string maps 32

6.2.1 Input Strictly Local Functions . 34
6.2.2 Output Strictly Local Functions . 35
6.2.3 Subsequential Functions . 37
6.2.4 Weakly Deterministic Functions . 40
6.2.5 Non-deterministic Regular Functions and Regular Relations 41

6.3 Further evidence . 42
6.4 Transformations: a summary . 43

7 Summary and Implications for the phonological component 43

7.1 Phonological generalizations have strong computational properties 43
7.2 Problems with optimization . 44
7.3 Organizing phonological theory around these computational properties 45
7.4 Next steps . 46

8 Representational Issues 47

8.1 Extensions without strings . 48
8.2 Why string representations matter . 49

9 Conclusion 50

1 Illuminating the phonological component of

grammar

Wilhelm von Humboldt’s phrase “language makes infinite use of finite means” (1836/1999)
is oft-cited by Chomsky because not only does it encapsulate an important characteristic of
natural language, but it also highlights why generative grammars play an important role in
understanding this aspect of language. In brief, the generative grammars are the finite means,
but the linguistic knowledge they represent can be applied to unboundedly many linguistic
forms. The psychological reality of generative grammars is the powerful scientific hypothesis
which underlies all work in generative linguistics.

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

In this chapter, we will study generative grammars from both a typological and computa-
tional perspective. The same Wilhelm von Humboldt is reported (Frans Planck, p.c.) to have
written that in order to do linguistic typology, two encyclopedias are necessary. The first is
“an encyclopedia of categories” and the second is “an encyclopedia of types.” The encyclo-
pedia of categories provides an ontology with which the encyclopedia of types—the linguistic
generalizations—can be studied. The object of inquiry is natural language and the linguistic
generalizations. But the light we shine on them comes from the encyclopedia of categories.

This chapter will argue that the theory of computation provides a meaningful and insightful
encyclopedia of categories, with which linguistic generalizations ought to be studied. (My
discussion is limited to phonological generalizations, though much important work in a similar
vein exists for other kinds of linguistic generalizations (Chomsky, 1956; Gazdar and Pullum,
1982; Shieber, 1985; Rogers, 1994; Kobele, 2006; Graf, 2013).) I will endeavor to explain that
when phonological generalizations are studied in this light, there are computational laws which
govern important aspects of their nature. I will also argue that current phonological theory
does not account for these laws, and I will make suggestions as to how phonological theory
might be modified to do so.

In this way, the goals of this chapter are similar to the goals of Charles Kisseberth in his
1970 paper “On the Functional Unity of Phonological Rules.” There he writes

I will show . . . that a rather rich set of diverse phenomenon is related in a com-
plex, but quite coherent way. The theory of phonology has hitherto been blind to
phenomena of this sort. . . and I will attempt to make some suggestions about the
kind of apparatus the facts. . . seem to require that a theory of phonology contain.
I am not, however, principally interested in proposing detailed formalism; instead
I would like to encourage phonologists to look at the phonological component of a
grammar in a particular way. [emphasis in original] (Kisseberth, 1970a, p. 293)

Kisseberth argued that important generalizations in languages were missed by not paying
attention to the functional unity of phonological rules. The introduction of surface constraints
into phonological theory followed, and later became one of the cornerstones of Optimality
Theory (Prince and Smolensky, 1993, 2004).

Similarly, I am arguing that important generalizations in languages are being missed by
not paying attention to the computational nature of phonological generalizations. Yes, I am
talking about computational generalizations of phonological generalizations. I argue these
meta-generalizations are important because they too suggest a conspiracy of sorts: phonolog-
ical generalizations across languages are distinct, but they exhibit a very strong tendency to
exhibit particular computational properties.

I will argue that, when phonological generalizations are studied under this light, the hy-
pothesized computational laws are sufficiently expressive to account for the impressive range
of cross-linguistic variation, and are simultaneously very restrictive in the sense that strong
predictions are made about which logically possible phonological generalizations are not hu-
manly possible ones. I will argue that in this respect these computational laws better match
the attested typology than what is predicted by classical Optimality Theory (and many of its
variants), which, I will argue, is neither sufficiently expressive nor restrictive. I will also argue
that the restrictive nature of the computational laws help answer questions about how such
phonological generalizations can be learned.

The arguments that I am making in this chapter are not novel. They have previously been
published in articles and conference proceedings. This chapter thus provides a road-map for

3

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

phonologists of this literature, and attempts to present a unified, overarching perspective on
both the importance of this computational encyclopedia of categories, and its implications for
a theory of phonology.1

2 What is phonology?

The fundamental insight in the 20th century which shaped the development of generative
phonology is that the best explanation of the systematic variation in the pronunciation of
morphemes is to posit a single underlying mental representation of the phonetic form of
each morpheme and to derive its pronounced variants with context-sensitive transforma-
tions. This development, present in Chomsky (1951); Halle (1959), was perhaps most stated
fully and completely with Chomsky and Halle (1968), and persists in Optimality Theory
(Prince and Smolensky, 2004) today.

Thus there is a point of agreement between different theories of phonology, which is stated
in (1).

(1) There exist underlying representations of morphemes which are transformed to surface
representations.

As a result of this fundamental insight, every particular theory of phonology grapples with
three fundamental questions, shown in (2).

(2) a. What is the nature of the abstract, underlying, lexical representations?
b. What is those nature of the concrete, surface representations?
c. What is the nature of the transformation from underlying forms to surface forms?

I would like to give some examples of how phonological theories aim to answer these questions.
It is not possible in this chapter to comprehensively survey the range of answers that have
been offered. Therefore, I only highlight some answers (and only in very broad strokes).

Rule-based theories, as exemplified by Chomsky and Halle (1968), for example, have ar-
gued that the abstract underlying representations are subject to language-specific morpheme
structure constraints (MSCs). The transformation from underlying forms to surface forms are
due to language-specific rules, which are applied in a language-specific order. Constraints on
surface representations were, generally speaking, not part of the ontology of these theories,
and therefore were not posited to have any psychological reality. Such generalizations—the
phonotactic generalizations—were derivable from the interaction of the MSCs and the rules.

On the other hand, in classic Optimality Theory (Prince and Smolensky, 1993, 2004), there
are no constraints on underlying representations (richness of the base), but there are psycho-
logically real, universal constraints on surface forms (markedness constraints). The transfor-
mation from underlying forms to surface forms is formulated as an optimization over these
markedness constraints, in addition to constraints which penalize differences between surface
and underlying forms (so-called faithfulness constraints). While both the markedness and
faithfulness constraints are universal, their relative importance is language-specific. So in ev-

1The roadmap is not exhaustive. Notable earlier research which examines the nature of phonological gener-
alizations from a computational perspective but which will not receive as much discussion as it should includes
Potts and Pullum (2002) and Graf (2010b), which also come from an intellectually similar perspective.

4

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

ery language the surface pronunciation of an underlying representation is predicted to be the
optimal form (the one that violates the most important constraints the least), though what is
optimal can vary across languages because the relative importance of the constraints can vary
across languages.

These two theories are radically different in what they take to be psychologically real. The
ontologies of the theories are very different. Perhaps this is most clear with respect to the
concept of phonemes (Dresher, 2011). Phonemes exist as a consequence of the ontology of
rule-based theories, but they do not as a consequence of the ontology of OT. This is simply
because phonemes are a kind of MSC; underlying representations of morphemes must be
constructed out of them, and nothing else. In OT, there are no MSCs and hence there are no
phonemes. Consequently, generalizations regarding complementary distribution are explained
in a very different manner in the two theories, and they promote different views of the notion
of contrast. Despite these differences however, there is an important point of agreement: In
both theories, complementary distribution of speech sounds in surface forms is the outcome of
a transformation of underlying forms to surface forms.

This is the point I wish to emphasize: neither theory abandons the fundamental insight
stated in (1).2 The theories offer radical different answers to the questions in (2), but they
agree on the questions being asked.

Like earlier research in generative grammar, research in computational phonology agrees
with the insight in (1) and the questions being asked in (2). In this chapter we ask three
derivative questions. In theories like SPE, which posit morpheme structure constraints, what
does the theory of computation bring to the nature of these generalizations regarding under-
lying representations? In theories like OT, which posit markedness constraints, what does it
bring to the nature of these phonotactic generalizations? And for all theories of phonology,
What does it bring to the study of the nature of the transformations?

The theory of computation provides a way to answer these questions. The encyclopedia
of categories it provides allows these different generalizations to be classified according to
computational criteria. What makes this approach valuable is that it is about as atheoretical
as one can get. This is because it explicitly separates the intensional descriptions of the
generalizations from their extensions. The intensional description of the generalization is the
one given by a phonologist in their grammatical description of the generalization. It is the
‘finite means’ in von Humboldt’s sense. The extension of this intensional description is one
that typically describes an infinite-sized object. It is the ‘infinite use’ in von Humboldt’s sense.

Mathematically, this infinitely-sized object exists. It is like a perfect circle, a set of infinitely
many points each exactly the same distance from a center. But we can never see the object in
its entirety. We cannot see an infinity of points, even if we know they are there. The situation
with linguistic generalizations is similar. The extension is there, but they cannot be written
down in their entirety since they are not finite. But we can write down a grammar which
can be understood as generating the infinite set, in the same way that a perfect circle can be
generated by specifying a center point and a distance, the radius.

The same perfect circle can be described in other ways as well. If we employ the Cartesian
plane, we could generate a circle with an equation of the form (x− a)2 + (y − b)2 = r2 where
the r is the radius of the circle and (a, b) is its center. The equation is interpreted as follows:
all and only points (x, y) which satisfy the equation belong to the circle. The equation is an

2It is true that periodically some work is published in that direction, for example the work on
output-to-output correspondence (Benua, 1995, 1997, and others).

5

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

intensional description and the set of points, the circle, is its extension.
We can also describe a circle on a plane with polar coordinates instead of Cartesian ones.

Recall that polar coordinates are of the form (r, θ) where r is the radius and θ is an angle.
The equation r = 2a cos(θ) + 2b sin(θ) provides the general form of the circle with the radius
given by

√
a2 + b2 and the center by (a, b) (in Cartesian coordinates). The polar equation is

interpreted like the Cartesian one: all and only points (r, θ) which satisfy the equation belong
to the circle.

There are some interesting differences between these two coordinate systems. Each point
in the Cartesian system has a unique representation, but each point in the polar system
has infinitely many representations (since the same angle can be described in infinitely many
ways, e.g. 0◦ = 360◦ = 720◦ = . . .). If the center of the circle is the origin, the polar equation
simplifies to r = a whereas the Cartesian equation remains more complicated x2 + y2 = r2.
Thus, the polar equation r = 4 and the Cartesian equation x2+y2 = 16 are different equations
with different interpretations, but they describe the same unique circle: one of radius four
centered around the origin. The two equations differ intensionally, but their extension is the
same.

It seems strange to ask which of these two descriptions is the ‘right’ description of a circle.
They are different descriptions of the same thing. Some descriptions might be more useful than
others for some purposes. It also interesting to ask what properties the circles have irrespective
of a particular description. For instance the length of the perimeter and the area of a circle
are certainly relatable to these descriptions, but they are also in a sense independent of the
particulars. The perimeter and area depend on the radius but not the center, though both
appear in the equations. This suggests that the radius is a more fundamental structure to a
circle than its center, though both certainly matter.

The analogy I wish to draw is that rule-based and OT-theoretic formalisms are like the
Cartesian and polar systems. The analogy is far from perfect, but it is instructive. Both
rule-based and OT analyses provide descriptions of platonic, infinitely sized objects. In many
cases, but not all, the two formalisms describe the same object, insofar as the empirical evidence
allows.

What is this object? The transformations from underlying forms to surface forms can be
thought of as a function, in the mathematical sense of the word. Another word for function
becoming prevalent in the phonological literature is map (Tesar, 2014). There are three parts
to a function. One, there is its domain, which is the set of objects the function applies to.
Two, there is its co-domain, which is the set of objects to which the elements of the domain are
mapped. Three, there is the map itself, which says which domain elements are transformed to
which co-domain elements. Thus to specify a function, one needs to provide a description of its
domain, its co-domain, and a description of which domain elements become which co-domain
elements.

This lines up nearly perfectly with the fundamental questions of phonological theory. The
underlying representations correspond to the domain. The surface representations are the co-
domain. And the transformation from underlying to surface forms is the map from domain
elements to co-domain elements. From this perspective, describing the phonology of a language
requires describing aspects of this function, regardless of whether the function is described
intensionally with SPE-style or OT grammars.

Further, in linguistic typology we are actually interested in the class of such functions that
correspond to possible human phonologies. If the phonologies of languages are circles we would

6

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

be interested in the universal properties of circles and the extent of their variation. Circles are
pretty simple, so the answers are straightforward. All circles have a center and a radius, but
their centers can be different points and their radii can have different lengths. What universal
properties do phonological functions share? What kind of variation does the human animal
permit in this function?

This is why computational approaches to language have much to offer. In a paper being
revised for publication, Chandlee and Heinz (2014) summarize the benefits this way:

The approach is to identify the formal properties of these. . . [infinite objects], which
will be meaningful for either. . . [rule-based or constraint-based theories] since they
speak directly to the nature of the object that . . . [such theories] describe. In partic-
ular, they can shed light on the kinds of rules, constraints, and constraint rankings
that ought to be admissible in SPE and OT. [emphasis added]

In other words, studying the extensions of constraints and transformations through the lens of
a computationally-grounded encyclopedia of categories helps us better understand the nature
of phonological component of grammar.

3 Representing constraints and transformations

Ultimately, phonological grammars represent the functions mentioned earlier. However unlike
circles, phonologies are not described with single equations; instead phonological grammars
contain multiple, interacting parts. In OT grammars those parts are constraints. In rule- based
grammars those parts are rules. In this section, we put these intensions aside and examine
the extensions of phonotactic constraints and the extensions of phonological transformations.
Then in the next sections we examine the computational nature of those extensions.

3.1 Phonotactic knowledge and markedness constraints

Halle (1978) gives phonotactic knowledge as an example of knowledge that is learned but not
taught. He provides an experiment demonstrating this knowledge, whose results are shown
in Table 1. I have informally conducted this experiment myself on dozens, if not hundreds of
young adults, who are native speakers of English. When presented visually with orthographic
representations of the words in Table 1 (but ungrouped), student reliably and uniformly iden-
tify thole, plast and flitch as the English words.3 Just as circles are fruitfully thought of as
an infinite set of points, phonotactic knowledge can likewise be thought of as an infinite set of
strings. All possible English words are in the set; all logically possible, impossible words are
out of the set. This is but one concrete way to see that “language makes infinite use of finite
means”; generative grammars allow us to distinguish among infinitely many logically possible
forms. One question linguists address is What is the nature of this infinite set?

Markedness constraints in Optimality Theory (Prince and Smolensky, 1993, 2004) express
phonotactic knowledge. Markedness constraints are said to prohibit marked structures so they
distinguish well-formed structures from ill-formed ones. We will consider their extensions as

3A small minority of students suggest that vlas and sram might be English words but they agree they are
less sure about these than the others. For more on gradient versus categorical distinctions in phonotactics, see
Hayes and Wilson (2008) and Gorman (2013). In this chapter, we assume a categorical distinction for expositional
purposes, but as discussed in Heinz (2010a) nothing really hinges on this.

7

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

possible impossible
English words English words

thole ptak
plast hlad
flitch sram

mgla
vlas
dnom
rtut

Table 1: Words from Halle (1978).

follows: all surface forms with zero violations are in the set; all surface forms with nonzero
violations are out of the set (cf. McCarthy (2003)). Therefore, the extensions of these con-
straints can be interpreted as all and only those strings which are well-formed according to
the constraint; they are those structures which do not contain the marked structure as a
sub-structure.

For example, consider the constraint *NC
˚

(Pater, 2001), which states that nasals followed
by voiceless consonants are marked sequences. The extension of this constraint can be con-
ceived as the set of strings not containing marked structure, some of which are explicitly shown
in (3).

(3) {a, b, aba, anda, anba, . . . }.

In fact every logically possible string which does not contain this marked sub-structure is in
the extension of the *NC

˚
constraint. As will be discussed in greater detail in §5.1, substrings

like NC
˚

are sub-structures of strings.
Another example comes from syllable structure. It is widely held that codas are marked.

Words with codas are said to violate the constraint NoCoda. Thus the well-formed structures
picked out by this constraint are all and only those strings which do not contain codas as
indicated by(4).

(4) {a, a.ba, pa.pa, . . . }

The representations in (4) differ from those in (3) because they include a symbol for the
syllable boundary. The available symbols, and the choice of representation more generally is
an important issue, to which I will return at the end of this chapter.

3.2 Transformations

Extensions of transformations can also be described as infinite sets. In this case the elements
of the set are pairs: the first element of the pair represents the input and the second element
the output. Such extensions have been called maps by Bruce Tesar (2014) and others.

As an example, consider the SPE-style rule shown in (5), which epenthesizes [1] between
stridents.

8

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

(5) ∅ → 1 / [+strident] [+strident]

The extension of this rule can interpreted as every pair of strings (i, o) such that if i is the
input to the rule o would be the output. The extension of (5) is shown in (6).

(6) { (wISz, wIS1z), (
>
dZ2

>
dZz,

>
dZ2

>
dZ1z), (dAgz, dAgz), . . . }

Here is another example. Consider the rule in (7), which devoices word-final obstruents.

(7) [-sonorant] → [-voice] / #

This rule describes the infinite set of pairs, indicated in (8).

(8) { (rat, rat), (sap, sap), (rad, rat), (sab, sap), (sag, sat), (flugenrat, flugenrat), (flugen-
rad, flugenrat), . . . }

OT descriptions of [1]-epenthesis and word-final obstruent devoicing describe the same exten-
sions. Baković (2013, chapter 4) shows how to translate any rule of the form A −→ B / C
D into a core ranking where a markedness constraint like *CAD outranks those faithfulness
constraints violated by A→B. As he explains, this ranking “is assumed to be embedded within
a constraint hierarchy” whose other constraints must also be ranked a certain way.

In other words, the ranking in (9) is the core ranking necessary to describe the pairs of
strings in (6).

(9) *[+strident][+strident] >> Dep(1)

Obviously, if there is a candidate which does not violate *[+strident][+strident] but vi-
olates some other faithfulness constraint F, then F must outrank Dep(1). These and other
constraints are part of the presumed constraint hierarchy to which Baković refers.

Similarly, in order to describe the set of pairs in (8), the core ranking in (10) must be
embedded in the constraint hierarchy.

(10) *[+voice,-sonorant]# >> ID(voice)

Both OT grammars and rule-based grammars can be used to describe the same sets of pairs.
In cases where they define the same extension, they are like the polar and Cartesian systems
which can describe the same circles with different equations, which are interpreted differently
according to the system they inhabit.

Here we have focused on simple transformations—ones that in rule-based theories could
be described by a single rule. But phonologies in the world’s languages are more complex
than that. There are multiple, interacting factors. Still, both OT grammars and rule-based
grammars ultimately generate pairs of strings like the ones in (6) and (8). They do this
in different ways, but they do it nonetheless. Furthermore, the way phonology is taught,
practiced and studied—both rule-based and constraint-based theories—is exactly by examining
fragments of grammars and building up to larger and larger analyses.4 The approach here is

4In fact, both rule-based and OT grammars predict there to be complete phonological grammars which only
instantiate the process of inter-strident epenthesis or word-final devoicing. The fact no known phonology only
contains a map which would correspond to a single traditional phonological rule has never been taken as a problem
for either rule-based theories or OT.

9

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

no different. Thus, the object of interest in both cases is these sets of pairs, which are the
transformations from underlying to surface forms. As discussed earlier in (1), this is the basis
for modern generative phonology. What is the nature of these maps?

4 Expressivity and restrictiveness

Before continuing, I would like to emphasize a common typological goal of every theory of
phonology. A good theory must be both sufficiently expressive to accurately describe the
actual phonologies in the world’s languages and maximally restrictive. It is clear enough why
expressive adequacy matters. To be clear, by “sufficiently expressive,” I am referring to theories
that, for every natural language phonology P, provide a descriptively adequate grammar for
P. It may be less clear why maximal restrictiveness matters, but it does and no less so.

4.1 Why restrictiveness matters

There are three reasons why restrictiveness matters. First, it helps address the problem of how
children quickly learn the phonology of their language (so it helps us reach an explanatorily
adequate theory of phonology; cf. Chomsky (1965, chapter 1)).

Second, scientific hypotheses are stronger when they are more restrictive. The hypothesis
that outlaws the most logically possible phonologies as humanly impossible can be said to be
the strongest because it is the most readily falsifiable (Popper, 1959). For a restrictive theory,
it is possible to identify logically possible patterns, which would serve as a counterexample to
the theory, if in fact it were found in the phonology of some language.

Third, it is easy to find a sufficiently expressive theory of phonology which is not restric-
tive. The widely held Church-Turing thesis states that anything that can be calculated or
computed can be computed by Turing machines (and equivalently Church’s lambda calculus).
If phonologists believe their theories and models of phonology are computable (no matter how
complex or intricate the computations) then there is already a sufficiently expressive theory
of phonology available. The problem with this theory is that it is unrestrictive because it says
everything that is computable is possible. The mere existence of a phonology will never be
sufficient grounds for dismissing the Church-Turing Theory of Phonology. All of this is a way
of saying that a theory not only needs to explain what there is, but also what there is not.

The larger point is that expressiveness needs to be balanced against restrictiveness. Failure
to be sufficiently expressive does not automatically disqualify a theory. It is enough for theories
to be “nearly sufficiently expressive” to be viable. I say this because sometimes theories, espe-
cially when newly posited, are not sufficiently expressive (though they are very restrictive). For
example, the Copernican theory of the solar system was originally not sufficiently expressive
to predict the retrograde motion of the planets, at least as compared to the best Ptolemaic
models at the time. Still the predictions were close. The Copernican theory was more restric-
tive however (since fewer types of retrograde motions were possible with the sun as the center
of the system.) Closer to home, classic OT was not abandoned simply because of its inherent
inability to represent opaque maps (see McCarthy (2008a); Baković (2007); Baković (2011) for
discussion and examples of opaque maps in phonology). Instead, subsequent research focused
on trying to modify the theory to make it more expressive.

Theories are rarely monolithic entities; they contain many parts working together. Ulti-
mately, restrictiveness matters for the whole theory, as the sum of its parts, as opposed to the

10

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

individual parts themselves. One aspect of the theory may overgenerate in an unrestricted
manner, provided some other component of the theory excludes the problematic cases. Thus
evaluating some aspect of the restrictiveness of a theory is by no means a straightforward
affair: it means evaluation must occur with respect to other components which can be said to
plausibly exclude the problematic cases.

There are degrees of expressivity and degrees of restrictiveness. Once we recognize the
extensions of the constraints and transformations posited in phonological theories are infinite
sets and functions, then we will see that the theory of computation naturally provides an
encyclopedia of categories which measures these degrees of expressivity and restrictiveness.
Furthermore, in this regard, the theory of computation is without peer.

4.2 The Chomsky Hierarchy

In this section, I will provide an overview of why the theory of computation provides a valuable
way to examine the expressivity and restrictiveness of linguistic theories. Figure 1 shows the
Chomsky Hierarchy which classifies stringsets according to the kind of grammars that generates
them. Points in the space represent stringsets. The larger regions properly include the smaller
ones so for instance all regular stringsets are context-free but not vice versa. As shown in the
figure, linguistic generalizations (modeled as stringsets) have been argued to belong to certain
regions and not others within the hierarchy.

(The issue of representation—whether we want to model linguistic forms with string struc-
tures, tree structures, autosegmental structures, or other kinds of graph structures is taken up
in the discussion section 8. There, I will argue that even if string structures are left behind,
computational theory still provides an unmatched encyclopedia of categories for these other
structures, analogous to the ones I discuss here for strings.)

At the top of the hierarchy is the “computably enumerable” region which includes every-
thing. These are essentially the stringsets whose elements can are computable.5 This is the
most expressive, but least restrictive class.

At the bottom of the hierarchy are the “finite stringsets.” These stringsets are of finite
cardinality. Unlike infinite sets, which require a generative grammar to generate or recognize
them, elements of finite sets can be listed. In introduction to linguistics courses, we learn that
linguistic generalizations cannot be modeled with finite sets because there is no principled
upper bound on the length of possible words or sentences. The finite languages are the most
restrictive, but least expressive class. In between the computably enumerable and finite classes
are the regular, context-free and context-sensitive regions.

An important aspect of the hierarchy is that several regions have independently motivated,
equivalent descriptions. Regular stringsets for instance can be defined with monadic sec-
ond order logical formulae, finite-state acceptors, or regular expressions. Computer scientists
Engelfriet and Hoogeboom explain: “It is always a pleasant surprise when two formalisms,
introduced with different motivations, turn out to be equally powerful, as this indicates that
the underlying concept is a natural one. Additionally, this means that notions and tools from
one formalism can be made use of within the other, leading to a better understanding of the
formalisms under consideration” (Engelfriet and Hoogeboom, 2001, p. 216). At a high level of
abstraction, the different characterizations can be thought of as different views on the same

5More formally, it is decidable whether or a not any particular string belongs to the set. Interestingly, most
logically possible sets of strings are not computably enumerable (Turing, 1937).

11

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Computably Enumerable

Context-
Sensitive

Mildly
Context-
Sensitive

Context-FreeRegularFinite

Yoruba copying

Kobele 2006

Swiss German

Shieber 1985
English nested embedding

Chomsky 1957

English consonant clusters

Clements and Keyser 1983 Kwakiutl stress

Bach 1975

Chumash sibilant harmony

Applegate 1972

Figure 1: Natural language patterns in the Chomsky hierarchy.

underlying object roughly in the same way different equations in different coordinate systems
can describe the same circle. The more views we have, the better we can understand what it
is we are looking at.

Also, each region X describes a linguistic hypothesis: Linguistic generalizations must belong
to X. Early work in generative grammar was interested in establishing evidence for or against
such hypotheses in order to establish upper bounds on the nature of linguistic generalizations.
The weakest scientific hypothesis is that they are computably enumerable, which is what I
called the Church-Turing Theory of Phonology. As X moves down the hierarchy, the hypotheses
become stronger, so the claim that the weak generative capacity of human syntax is a regular
stringset is a strong scientific hypothesis. However, it is generally considered to be false
(Chomsky, 1956; Shieber, 1985).

4.3 Phonology is regular

The Chomsky Hierarchy is the most well-known hierarchy in formal language theory, but it
is not the only one. In fact there are several other hierarchies, some which only became well
understood in recent decades, and others which are still being formed. Also, the Chomsky
Hierarchy in Figure 1 classifies stringsets, but hierarchies exist (and are being developed)
for sets of pairs of strings (relations/maps/functions) as well. It is important to distinguish
hierarchies for one kind of set (e.g. stringsets) from another (e.g. sets of pairs of strings).

An important region in a hierarchy for relations (sets of pairs of strings) is also called
Regular. It is called this because it shares much in common with the regular class of stringsets.
For instance, one way to define the regular class of stringsets is with non-deterministic finite-

12

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

state acceptors and one way to define the regular class of string-to-string maps is with non-
deterministic finite-state transducers. Readers are referred to other texts for more information
about finite-state grammars (Sipser, 1997; Beesley and Kartunnen, 2003; Roark and Sproat,
2007; Jurafsky and Martin, 2008; Hulden, 2009).

The primary result in computational phonology to date is that the transformations from
underlying to surface forms—these phonological maps—are in fact regular. The argument
goes something like this: Optional, left-to-right, right-to-left, and simultaneous application
of SPE-style rules A→B/C D (where A,B,C,D are regular stringsets) describe regular rela-
tions, provided the rule cannot reapply to the locus of its structural change (Johnson, 1972;
Koskenniemi, 1983; Kaplan and Kay, 1994). Rule ordering is functional composition (finite-
state transducer composition). Regular relations are closed under composition (so the com-
position of two regular relations is also a regular relation). Rule-based grammars (finitely
many ordered rewrite rules of the above type) can describe virtually all attested phonological
patterns. This does not mean these grammars do so elegantly, that the rules correspond to
psychologically real constructs, or that they have any other desirable trait. It just means that
the input/output map is describable with a such a grammar.

The above argument constitutes significant evidence for the following statement.

(11) (Regular Hypothesis) Phonological maps are regular relations.

If this is true, then it is true regardless of whether they are described with SPE, OT, or other
grammar formalisms! Here are some other ways of saying the same thing.

• There are no non-regular phonological maps.

• A universal property of phonological maps is that they are regular.

Again, the fact that every rule-based grammar describes a regular relation, in addition to the
fact that there is no counterexample to the hypothesis that phonological maps are regular, is
strong evidence that the hypothesis in (11) is correct.

One consequence of this result is that finite-state grammars become a lingua franca for
different phonological theories describing some aspect of the phonology of a language. Hence
in addition to the work mentioned above which translates rule-based grammars into finite-state
machines, there exists much work which shows how to translate OT grammars into finite-state
machines (Frank and Satta, 1998; Karttunen, 1998; Gerdemann and van Noord, 2000; Jäger,
2002; Riggle, 2004). Thus, for attested phonological patterns—just as with circles—there at
several ways we can describe them. Those stringsets and maps can be described with rule-based
grammars, OT grammars, finite-state machines, and other tools (e.g. logical formulae).

Another consequence of (11) follows from a theorem by Scott and Rabin (1959). This theo-
rem establishes that the domain and image of regular relations are regular sets of strings. This
means the set of possible underlying representations and the set of possible surface represen-
tations are also regular. In other words, phonotactic knowledge and markedness constraints
describe regular stringsets. Or equivalently, every stringset defined by a markedness constraint
has the property of “being regular.”

4.4 The Subregular Hypothesis

“Being regular” is therefore plausibly a universal property of phonological patterns (both
stringsets and maps). Furthermore, it is restrictive: there are many logically possible, non-

13

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

regular patterns.
However, while “being regular” may be a necessary property, it is not restrictive enough.

There are many logically possible, regular patterns that are still bizarre from a phonological
perspective. We will encounter some of these strange creatures shortly.

There are many interesting subregular classes of stringsets, as shown in Figure 2. Figure 2
shows a “close-up” view of the regular region shown in Figure 1. This will constitute the
“encyclopedia of categories” and it will be explored in more detail in section 5.2, though an
overview will be given here.

REG

NC
LTT

LT PT

TSL

SL SP

FIN

+1 <

MSO

FO

P

CNL

Names of the classes of stringsets

REG Regular FIN Finite
LTT Locally Threshold Testable NC Non-Counting
LT Locally Testable PT Piecewise Testable
SL Strictly Local SP Strictly Piecewise
TSL Tier-based Strictly Local

Representational Primitives (order) Logical Power

+1 Successor MSO Monadic Second Order
< Precedence FO First Order

P Propositional
CNL Conjunction of Negative Literals

Figure 2: Subregular hierarchies of stringsets.

The subregular hierarchies are bounded by the Regular region at the top and Finite region
at the bottom. A region higher up in the diagram which is connected by a line to a region
lower down in the diagram indicates the lower region is a subset of the higher region. So every
generalization in the lower region is expressible in the higher one, but not vice versa.

There are two main branches in these hierarchies, the successor branch (+1) and the
precedence branch (<) (for now the Tier-Based Strictly Local can be ignored). The successor
branch is also known as the Local branch, and the precedence branch is also known as the
Piecewise branch. Along each branch, the regions are defined in logical terms. The Monadic

14

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Second Order regions are the most expressive and least restrictive. This is followed by (in order
of decreasing expressivity/increasing restrictiveness) the First Order, Propositional regions and
then the least expressive and most restrictive regions, the Conjunction of Negative Literals.
While the hierarchy is presented here in logical terms these regions can also be defined in other
ways and have multiple characterizations just like the regions in the Chomsky Hierarchy.

The Subregular Hypothesis refers to the idea that phonological patterns belong to small,
well-defined regions of regular stringsets and maps. Thus the term “Subregular Hypothesis”
on its own does not say much because it itself does not say which subregular regions are at
stake. To anticipate the remainder of this chapter, we distinguish between a strong and weak
subregular hypothesis for constraints (a similar hypothesis will be put forward for maps). The
“strong” subregular hypothesis is that phonological markedness constraints are Strictly Local
and Strictly Piecewise (at the bottom of the hierarchy). The “weak” subregular hypothesis
is that they are Tier-Based Strictly Local, which is a particular generalization of the Strictly
Local class (inspired by phonological tiers). Both of these hypotheses are discussed explicitly
in sections 5.2.1 and 5.2.3.

5 Constraints

This section is devoted to markedness constraints. The primary purpose is to describe the
Subregular Hierarchies in Figure 2 on page 14, which constitutes the encyclopedia of categories,
that I am arguing is important for understanding the nature of markedness constraints in
phonology. To help motivate the discussion, and help make it more accessible, I will begin by
discussing part of an encyclopedia of types (the actual constraints found in natural language).

5.1 The encyclopedia of types: stringsets

In this section, I present some constraints known to be attested in the world’s languages.
These will be contrasted with constraints that are unattested. This is not intended to be an
exhaustive or comprehensive encyclopedia of types. Only four types of markedness constraints
are presented. This is intended to be sufficient to motivate the encyclopedia of categories,
presented afterwards.

5.1.1 Four types of constraints

The first type of markedness constraint we encountered penalizes certain contiguous sequences
of sounds (substrings). The impossible English words in Halle’s (1978) example all begin with
illicit consonant clusters. We saw that *NC

˚
also penalizes substrings. This constitutes one

kind of markedness constraint.
There are other kinds of constraints employed by phonologists which identify structures

other than substrings as marked. For instance, if we were to ask native speakers of Samala
(Applegate, 1972, 2007) about the words in Table 2, they would reliably and uniformly dis-
tinguish them as shown in the table. How do Samala speakers know which of these words
belong to different columns?6 Well, it appears that Samala speakers know that words can’t
contain both [+anterior] sounds like [s] and [−anterior] sounds like [S].7 Applegate (1972)

6By the way, StoyonowonowaS means ‘it stood upright’ (Applegate 1972).
7The relevant feature could also be [distributed].

15

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

possible Samala words impossible Samala words

StojonowonowaS stojonowonowaS

stojonowonowas Stojonowonowas
pisotonosikiwat pisotonoSikiwat

nasipisotonosikiwa naSipisotonoSikiwa

Table 2: Phonotactic knowledge in Samala

modeled this knowledge as the result of a productive, regressive sibilant harmony process. In
Optimality Theory, this knowledge would be a consequence of a high ranking constraint of
the form *[+strident,α anterior]. . . [+strident,−α anterior] (Hansson, 2001; Rose and Walker,
2004; Heinz, 2010a). This constitutes a second type of attested markedness constraint in the
world’s languages.

Another logically possible type of constraint is illustrated with by speakers of a language
I will call “Language X” (its true identity will be revealed momentarily), shown in Table 3.
What constraint are the speakers of this language utilizing to reliably distinguish the logically
possible words shown there? In this case, we observe speakers of Language X reject words that

possible words of Language X impossible words of Language X

SotkoS sotkoS

SoSkoS Sotkos
SosokoS SoSkos

soSokos soskoS

sokosos
pitkol
pisol
piSol

Table 3: Phonotactic knowledge in Language X

begin and end in sibilants that disagree in the feature [anterior]. Unlike the Samala example,
sibilants interior to the word may disagree with edge-bound sibilants as evidenced by possible
words like [soSokos]. But if there are sibilants at word edges, they must agree in order for the
word to be a possible word of Language X. This type of constraint is distinct type of constraint
from the previous two types mentioned.

Next we consider Language Y. Table 4 shows how speakers of this language discriminate
logically possible words. How do they do it? The two columns in Table 4 are distinguished
as follows. Possible words have an even number of sibilant sounds, but impossible words have
an odd number of sibilant sounds. So speakers of Language Y are sensitive to the even/odd
parity of the number of sibilant sounds. This constitutes a fourth type of constraint, distinct
from the ones mentioned earlier.

So far we have considered four logically possible kinds of constraints. What is the actual
typology, the encyclopedia of types?

16

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

possible words of Language Y impossible words of Language Y

SotkoS SoSkoS

sotkoS SoskoS

Sotkos soSkos
pitkol SoSkos

soSkostoS soskoS

soksos
piskol
piSkol

Table 4: Phonotactic knowledge in Language Y

The actual typology of course looks like this. Attested phonotactic patterns include those
which forbid substrings of words (such as *NC

˚
). They also include ones where words don’t

contain both sounds like S and s (as in Samala). However, the logically possible phonotactic
patterns represented by languages X and Y are unattested. There are no known phonotactic
patterns where the last sound in a word depends in some fashion on its first sound (as in
Language X). And there are no known phonotactic patterns where the right generalization
is that words must contain an even number of members of a particular natural class (as in
Language Y).

5.1.2 Explaining the typology

We would like to have an explanation for this fact. We would like our theory of markedness
to explain why constraints like those found in English and Samala are possible, but the ones
found in Language X and Language Y are not.

So what’s the explanation? In Optimality Theory, constraints like *#mgl and
*[+strident,α anterior]. . . [+strident,−α anterior] structures would be part of CON. But con-
straints like *ODD-Sibilants or *#[+strident,α anterior]. . . [+strident,−α anterior]# would
not be. The explanation in OT largely comes down to constraints that are present in CON
and those that are absent in CON. (Whether complex markedness constraints can be derived
via constraint interaction is a matter I take up later in section 7.).

This is not controversial. The basic syllable typology is derived in OT by including the con-
straints NoCoda,Onset and excluding the constraints NoOnset,Coda. If the constraints
NoOnset,Coda were included in CON, then it would not be possible to derive a typology
where onsets may be required (but are never forbidden) and codas may be forbidden (but are
never required).

In phonetically-based phonology (Hayes et al., 2004), the explanation would be that there
are perceptual and/or articulatory reasons for constraints like *#mgl and
*[+strident,α anterior]. . . [+strident,−α anterior]. But there would be no such reasons for con-
straints like *ODD-Sibilants or #[+strident,α anterior]. . . [+strident,−α anterior]#. More
generally, this research program hypothesizes that constraints in CON are based on phonetic
principles, and that certain rankings of these constraints are also fixed according to these prin-
ciples. This is a significant improvement over stipulating certain constraints as belonging to
CON to the exclusion of others.

17

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

However, we should carefully examine the proposed perceptual and/or articulatory rea-
sons. Consider the case of the pattern in Language X. Following Lai (2012, 2015), let us
now refer to this pattern as First/Last Harmony. We know long-distance assimilation is well-
attested (Hansson, 2001; Rose and Walker, 2004) and arguments have been made for its per-
ceptual basis (Gallagher, 2010). We also know word edges in phonology are privileged positions
(Fougeron and Keating, 1997; Beckman, 1998; Endress et al., 2009). So what theory of per-
ception or articulation prevents there from being harmony only in privileged positions?8 This
is a case where the phonetic principles seem to overpredict the attested typology.

We may also wonder to what extent memory requirements could explain the difference
between the attested pattern in Samala and First/Last Harmony. In fact, however, it comes
down to the pattern type, or template. This is because both types can be described simply
by marking which pairs of sounds are permitted or forbidden in a given template as shown in
Figure 3. The 2x2 cells for are identical—it is only the templates that differ.

[s] [S]
[s] ✓ ✗

[S] ✗ ✓

[.]

[s] [S]
[s] ✓ ✗

[S] ✗ ✓

[# . . . #]

Figure 3: Pattern templates for Sibilant Harmony (left) and First/Last Har-
mony (right).

As for the pattern in Language Y, it is plausible that perception or articulation should
be able to explain the absence of even/odd parity constraints (or more generally constraints
which count mod n) in phonology, but I haven’t seen any explicit connection. Whatever the
explanation may be, it should connect to the computational properties discussed here. More
generally, if phonology is truly reducible entirely to phonetic principles then there ought to
be research showing how the computational laws being posited in this chapter can be clearly
derived from such phonetic principles.

This is not meant to deny any role to phonetic explanation in phonology. Instead this
discussion is intended to make clearer some of the limits of those explanations and to persuade
researchers in those areas that the computational principles discussed here are worth connect-
ing their work to. At the very least, a complete theory of of phonology will refer to phonetic
factors in addition to the computational principles discussed here. I return to this issue in
section 7.3.

The computational explanation offered in this chapter is simply this. The extensions of
constraints on substrings (like *NC

˚
) and constraints on subsequences (like [+strident, α ante-

rior]. . . [+strident, −α anterior] in Samala) are Strictly Local and Strictly Piecewise stringsets
respectively. With the exception of the finite languages, these are the most restrictive, least
expressive regions in the Subregular Hierarchies shown Figure Table 2 on page 14. On the

8Alan Yu also points out that there is a perceptually-motivated diachronic path to arriving at this language (pace
Ohala (1981) and Blevins (2004)). A language like Samala would be the precursor language to one with First/Last
Harmony. Since interior sibilants in the precursor language are not perceived as accurately as ones at word edges,
some of them may change over time to disagreeing sibilants. This would result in a language whose words obey
First/Last Harmony.

18

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

other hand, First/Last Harmony and *ODD-Sibilants belong to the Locally Testable and
Regular regions, respectively. In other words, the widely-attested constraints are the formally
simple ones, where the measure of complexity is determined according to these hierarchies.

5.2 The encyclopedia of categories

In the last section, extensions of phonological constraints and transformations were introduced
and it was argued that conceiving them as stringsets (formal languages), and string-to-string
maps was reasonable and potentially insightful. In this section, we explain what the theory
of computation has to say about this cast of characters. To do so requires some technical
details. I will try to keep them light and only provide a sketch. Readers interested in the all
the details are referred to Rogers et al. (2013), which also provides cognitive interpretations
of the different regions.

We are going to explore language-theoretic and logical descriptions of stringsets and string-
to-string maps from a generative perspective. The word “language” in “language-theoretic”
refers to a formal language, what we have been calling a stringset. We may as well call it
“stringset-theoretic”. The idea behind language-theoretic descriptions is that they are com-
pletely independent of any grammatical description. In other words, these descriptions are
statements that are simply true of the stringset itself (and not the grammar that generates
it). They can therefore be thought of as essential properties of the stringsets. Examples will
be provided shortly.

Logical descriptions are not agrammatical. Logical formulae are grammars in the sense
that they generate stringsets as extensions. However, they are useful here because the ex-
pressive power of different logics is well understood. In the encyclopedia of categories—the
Subregular Hierarchies—presented in Figure 2 on page 14, there were four types of logic. As
mentioned earlier, in order of strictly increasing expressive power, they are: conjunctions of
negative literals (CNL), propositional logic (P), first order logic (FO), and monadic second
order logic (MSO). The type of logic forms one parameter that is used to define the regions in
the Subregular Hierarchies (Rogers and Pullum, 2011).

There is one other parameter used to define the regions. This parameter specifies the kind
of structures used to model strings. The parameter specifies the kind of relation used to handle
the order of elements in the string. The relations that have been studied are successor (+1)
and precedence (<).

If strings are modeled so that the order of elements is handled by the successor relation,
then substrings will be sub-structures of strings. On the other hand, if strings are modeled
so that the order of elements is handled by the precedence relation, then subsequences will be
sub-structures of strings. As an example, with the successor relation, bcc is a sub-structure
of abccab, but with the precedence relation, aab is a sub-structure of abccab.

We will now examine the consequences of the ordering relation in terms of the logical power.

5.2.1 Conjunctions of Negative Literals

Stating constraints as a “negative literal” is logical talk for what phonologists simply call
marked structure. When conjunctions of such constraints are considered, we define stringsets
which do not contain any of the marked structures. The order parameter (successor or prece-
dence) tell us whether to interpret literals (the string structures) as substrings or subsequences.

19

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Let us begin with successor, so the literals are interpreted as substrings. The negative
literal ¬aa is thus interpreted to mean the substring aa is a marked structure. So any string
containing this marked structure violates the constraint and is not in the extension of the
constraint.

Here is an example. I will use ϕ to stand for logical formulae, and L(ϕ) to stand for the
stringset extension of ϕ. Following Rogers et al. (2013), I also will use ⋊ and ⋉ for the left
and right word boundaries. The the formula below can be read as “Strings which do not begin
with a b, do not contain aa as a substring, do not contain bb as a substring, and do not end
with a a, are well-formed.”

ϕ = (¬⋊ b) ∧ (¬aa) ∧ (¬bb) ∧ (¬a⋉)

The extension L(ϕ) is easy to write since conjunction is interpreted as set intersection. A
word about notation: Σ is a finite set of symbols (the alphabet); Σ∗ means all logically possible
strings one can write with this alphabet; and S means the complement of stringset S with
respect to Σ∗. Thus, a term by term translation of ϕ above into its extension is shown below.

L(ϕ) = bΣ∗ ∩ Σ∗aaΣ∗ ∩ Σ∗bbΣ∗ ∩ Σ∗a

It is not difficult to see that this is the same as the infinite set {ab, abab, ababab, . . .}.
So now we can provide one definition of the Strictly Local stringsets. A Strictly k-Local

(SLk) stringset is one which can be defined as the conjunction of negative literals, where the
literals are interpreted as substrings, and whose longest forbidden literal (substring) is of length
k. The Strictly Local stringsets are those that are SLk for some k.

If the order relation is precedence, then the literals are interpreted as subsequences. The
negative literal ¬aa is thus interpreted to mean the subsequence aa is a marked structure. So
any string containing this marked structure violates the constraint and is not in the extension
of the constraint.

Here is an example. The formula below can be read as “Strings which do not contain an a

followed by an a nor a b followed by a c are well-formed.” So here the literals aa and bc are
interpreted as subsequences, and not as substrings.

ϕ = (¬aa) ∧ (¬bc)

A term by term translation of ϕ above into its extension is shown below.

L(ϕ) = Σ∗aΣ∗aΣ∗ ∩Σ∗bΣ∗cΣ∗

Strictly Piecewise stringsets are defined analogously to Strictly Local stringsets. A Strictly
k-Piecewise (SLk) stringset is one which can be defined as the conjunction of negative literals,
where the literals are interpreted as subsequences, and whose longest forbidden literal (sub-
sequence) is of length k. The Strictly Piecewise stringsets are those that are SPk for some
k.

That many attested markedness constraints are SL and SP stringsets is not in dispute.
Clearly, constraints like *NC

˚
are SL and constraints like

[+strident, α anterior]. . . [+strident, −α anterior] are SP. The strong subregular hypothesis
states that all markedness constraints are either SL or SP (Heinz, 2010a).

(12) (Strong Subregular Hypothesis) Markedness constraints are SL or SP.

20

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

The one notable outstanding case Heinz (2010a) discusses is the set of surface forms derived
from long-distance dissimilation. These appear to be Non-Counting but do not belong to any
lower class (hence they are called ‘Properly Non-Counting’) (Heinz et al., 2011).9 They are
discussed further below.

Whether constraints like Onset are SL or not depends on the choice of representation. If
syllable boundaries are included in string representations, which is a common practice, then
constraints like Onset are SL since they can be represented this way: (¬ .V). The importance
of representations will be further discussed in section 8.

I would like to conclude the discussion of the “Strict” classes by providing
their language-theoretic characterizations. This characterization for SL stringsets is provided
in (13), which Rogers and Pullum (2011) name Suffix Substitution Closure.

(13) (Suffix Substitution Closure) A stringset L is SL if there is a k such that for all strings
u1, v1, u2, v2, x with the length x equal to k− 1, it is the case that if u1xv1 and u2xv2
belong to L then u1xv2 belongs to L as well.

Suffix Substitution Closure is ultimately a Markovian principle: the well-formedness of the
next symbol in the string depends only on the previous k−1 symbols (given as x above). So if
both v1 and v2 can follow x, what comes before x (u1 and u2) does not matter. This Markovian
notion is important in generalizing SL stringsets to SL functions discussed in section 6.

On the other hand, subsequence closure characterizes the SP class (Rogers et al., 2010).

(14) (Subsequence Closure) A stringset L is SP if for all u belonging to L, every subsequence
of u also belongs to L.

What is remarkable about the language-theoretic characterizations above is not only that
stringsets which have these properties are exactly the ones that can be defined as the con-
junction of negative literals, but also that these characterizations do not mention any sort of
grammar at all. In this way, they are more like definitions of circles which do not refer to either
the Cartesian or polar coordinate system. They are characterizations which speak directly to
the nature of the stringsets without getting bogged down in any particular grammatical for-
malism. Language-theoretic characterizations are about the shape of the language to which
any grammar must conform itself.

Another remarkable fact about these characterizations is that they immediately suggest
inference procedures. If one is observing words from a language L that is a priori known to
be SLk and one observes u1xv2, u2xv2, one can immediately deduce that u1xv2 also belongs to
L. Similarly, if one is observing words from a language L that is a priori known to be SP, and
one observes the word u, one can immediately determine all subsequences of u also belong to
L.

These facts lay at the basis of learning algorithms developed for the SLk and SPk classes.
Garcia et al. (1990) first proved that the SLk stringsets are identifiable in the limit from
positive data. I have argued elsewhere that identification in the limit from positive data is a
rigorous and insightful learning paradigm (Heinz, 2015), and I will not review the arguments
here. Heinz (2010a) shows how a similar algorithm provably identifies SPk languages in the
limit from positive data, and Heinz et al. (2011) generalizes these ideas to a family of learning

9The Non-Counting class also goes by the names Star-Free and Locally Testable with Order
(McNaughton and Papert, 1971).

21

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

algorithms, a result which was generalized even further by Heinz et al. (2012).
If the strong subregular hypothesis is correct, these learning results provide a deep expla-

nation of it. Constraints on phonological well-formedness are SL and SP because people learn
phonology in the way suggested by these algorithms. More specifically, people generalize in
accordance to inference procedures suggested by the closure properties in (13) and (14). But it
is the inference procedures themselves that are basic which structure the SLk and SPk classes;
the inference procedures are not auxiliaries to the classes.

5.2.2 Propositional Logic

Next we move up one level to the next kind of logic: propositional. Unlike the conjunction of
negative literals, where all formulae had the form (¬ℓ1)∧ (¬ℓ2)∧ . . .∧ (¬ℓn) for n literals (ℓi),
propositional logic allows any well-formed propositional formulae to generate a stringset. Not
only is any combination/ordering of negation and conjunction now permitted, but disjunction
(vee) is also allowed. As a consequence, mainly familiar propositional connectives are also
allowed, such as implication (→) and the biconditional (↔). Propositional logic is therefore
more expressive (and less restrictive) than the conjunction of negative literals.

For example, the following formula is a well-defined formula in propositional logic.

ϕ = b ∨ (aa ⇒ ac)

If these literals are interpreted with respect to the successor model of strings, then this for-
mula translates to the following English: “Words are well-formed if they contain the substring
b or if it is the case that if they contain the substring aa they also contain the substring ac.”
Below I provide the extension of ϕ under the successor interpretation of the literals.

L(ϕ) = Σ∗bΣ∗ ∪ (Σ∗aaΣ∗acΣ∗ ∪ Σ∗acΣ∗aaΣ∗)

If these literals are interpreted with respect to the precedence model of strings, then this
formulae translates to the following English: “Words are well-formed if they contain the sub-
sequence b or if it is the case that if they contain the subsequence aa they also contain the
subsequence ac.” Here is the extension of ϕ under the precedence interpretation of the literals.

L(ϕ) = Σ∗bΣ∗ ∪ (Σ∗aΣ∗aΣ∗cΣ∗ ∪ Σ∗aΣ∗cΣ∗aΣ∗)

I submit that both of these logically possible constraints seem more odd from a phono-
logical perspective than the SL or SP constraints. At first glance, it seems strange to have a
markedness constraint which requires that if one sub-structure is present another one must be
present as well.

This is perhaps the most notable difference between the kinds of constraints permitted using
propositional logic. Such constraints can require sub-structures to be present in well-formed
words (Rogers and Pullum, 2011). The interpretation of the simple formulae ϕ = b is that
well-formed words must contain the sub-structure b. Such examples exist in the phonological
literature. for instance, it is true that the constraint Onset has this flavor. As we have
mentioned with Onset, however, the choice of representation matters: this can be construed
as SL provided syllable boundaries are introduced as symbols in strings. Another constraint
like this is what Hyman (2009) calls Obligatoriness, the requirement that all well-formed words

22

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

bear an accent (or stress). Unlike Onset, there is no straightforward representational “fix”
for this constraint. I return to this issue in section 5.3.

Now we can provide one definition of the Locally Testable stringsets. A Locally k-Testable
(LTk) stringset is one which can be defined with a formula in propositional logic, where the
literals are interpreted as substrings, and whose longest literal (substring) is of length k. The
Locally Testable stringsets are those that are LTk for some k.

Similarly, a definition of the Piecewise Testable stringsets can be given. A Piecewise k-
Testable (PTk) stringset is one which can be defined with a formulae in propositional logic,
where the literals are interpreted as subsequences, and whose longest literal (subsequence) is
of length k. The Piecewise Testable stringsets are those that are PTk for some k.

There are language-theoretic characterizations of these classes too. This characterization
is given in (15) for the Locally Testable class.

(15) (Substring Equivalence) A stringset L is LT if there is a k such that for all strings u
and v, if u and v have the same set of substrings of length k then either both u and
v belong to L or both u and v do not belong to L.

In other words, Substring Equivalence means that membership in a LT stringset L only depends
on the set of substrings of some length k. If two distinct strings have the same substrings up
to some length k then no LTk stringset is able to distinguish them.

A similar characterization is given in (16) for the Piecewise Testable class.

(16) (Subsequence Equivalence) A stringset L is PT if there is a k such that for all strings
u and v, if u and v have the same set of subsequences of length k then either both u

and v belong to L or both u and v do not belong to L.

Subsequence Equivalence means that membership in a PT stringset L only depends on the set
of subsequences up to some length k. If two distinct strings have the same subsequences of
some length k then no PTk stringset is able to distinguish them.

Like the characterizations for the “Strict” classes, these characterizations naturally suggest
inference procedures. If one is observing words from a language L that is a priori known to
be LTk and one observes u, one can immediately deduce that all words with the exactly the
same substrings up to length k also belong to L. Similarly, if one is observing words from a
language L that is a priori known to be PTk, and one observes the word u, one can immediately
determine all words with the exactly the same subsequences up to length k also belong to L.

That the PTk and LTk stringsets are identifiable in the limit from positive data was es-
tablished by Garćıa and Ruiz (2004). Heinz et al. (2011) and Heinz et al. (2012) show there
are learning algorithms for these classes which have much in common with the ones for the
Strict classes. An interesting difference, however, between these algorithms and the ones for
the Strict classes has to do with time-complexity: there is a clear computational sense in which
learning these more expressive classes takes significantly longer than learning the Strict classes.

5.2.3 First Order Logic

The next rung up the logical hierarchy brings us to First Order (FO) Logic. The main differ-
ences between first order logic and propositional logic is that literals disappear and variables
appear. It is not necessary in this chapter to provide the technical details regarding FO models
of strings. For this, readers are referred to Rogers et al. (2013).

23

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

There are only three important items readers need to to understand. First, FO logic is
strictly more powerful logic than Propositional logic. Second, as usual, whether the ordering
relation is given as the successor relation or the precedence relation will determine the kinds of
stringsets expressible with FO formulae. FO logic with the successor relation yields the class
called the Locally Threshold Testable (LTT) class, and FO logic with the precedence relation
yields the class called Non-Counting (NC). Third, successor is FO-definable from precedence,
but not vice versa so the Non-Counting class properly includes the LTT class.

I will go straight to the language-theoretic properties. If the ordering relation is the succes-
sor, then the class of stringsets that is FO-definable is called the Locally Threshold Testable
(LTT) class, and it properly includes the LT class.

One important difference between the FO-definable classes and the Propositional-definable
classes is that the FO-definable classes are able to distinguish the presence of otherwise identical
sub-structures. In this way, FO-definable classes can count the number of sub-structures up
to some threshold. On the other hand, the Propositional classes can only detect the presence
or absence of sub-structures. So for a given sub-structure, Propositional logic can distinguish
zero of them from one of them. FO logic, however, can detect up to some number n of sub-
structures. So a limited ability to count is present at the FO-level. There is always some finite
number n after which the number of sub-structures cannot be distinguished. FO-definable
classes are not sufficiently expressive to be able to count indefinitely. Thus the difference
between LTT and LT is that in the LTT class, the number of substrings can be counted, but
only up to some threshold t (Thomas, 1997).

(17) (Substring Threshold Equivalence) A stringset L is LTT if there is a k and a t such
that for all strings u and v, if u and v have the same number, up to some threshold
t, of substrings of length k then either both u and v belong to L or both u and v do
not belong to L.

By now the reader may expect that language-theoretic characterization of FO-definable classes
with the precedence relation is similar except that the number of subsequences up to some
threshold is distinguishable. It is, however, in fact much simpler than that.

(18) (Non-Counting) A stringset L is NC if there is a k such that for all strings u, x, v if
uxkv belongs to L then so does uxk+1v.

The reason for this is that the Non-Counting class can do much more than count subsequences.
This is partly because the successor ordering relation is FO-definable from precedence, but
not vice versa.10 Consequently, every stringset in the LTT region is also in the Non-Counting
region, but not vice versa. NC is strictly more expressive than LTT. Thus, Figure 2 on page 14
shows that the the NC class properly includes the LTT class. McNaughton and Papert (1971)
comprehensively establish several other important characterizations of the Non-Counting class.

Are there markedness constraints that count up to some threshold? An example of such
a constraint would be something like *3NC

˚
where words with zero, one or two NC

˚
substrings

10For those familiar with the FO formulae, here is the definition where x⊳y means y is a successor of x, and x < y

means x precedes y.

x⊳ y
def
= x < y ∧ ¬(∃z)[x < z ∧ z < y]

24

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

are considered well-formed, but words with three or more are ill-formed. Needless to say, such
constraints do not seem like the kinds of constraints found in natural language.

On the other hand, there are constraints in natural language that have been argued to
be properly Non-Counting. These are the stringsets that are definable from long-distance
dissimilation (Heinz et al., 2011). Heinz et al. (2011) also show that such constraints belong
to subclasses of the Non-Counting region they call Tier-based Strictly Local (TSL). These
stringsets are defined with the common notion of phonological tier (Goldsmith, 1976). Like
the Strictly Local class, TSL stringsets can be defined with formulae that are conjunctions of
negative literals, interpreted under the successor relation after non-tier elements are ignored.
Thus the kind of long-distance behavior is limited in some kind of way. TSL stringsets are
not as well understood as the other classes (there are not multiple characterizations), but
Heinz et al. (2011) argue that every markedness constraint in natural language is describable
with TSL constraints. Of course an important issue is here what the tier is. Jardine and Heinz
(2015b) show that the tier can be identified from positive data when the bound k on the size
of the constraints are known a priori (the tier is not known a priori).

I will refer to the hypothesis that all markedness constraints are TSL as the weak subregular
hypothesis.

(19) (Weak Subregular Hypothesis) Markedness constraints are TSL.

Whether the evidence favors the strong or weak subregular hypothesis will be addressed in
section 7.

5.2.4 Monadic Second Order Logic

The next rung up the logical hierarchy and the highest to which we attend is Monadic Second
Order (MSO) Logic. The difference between first order and monadic second order logic is that
variables over sets of elements in the domain are allowed in addition to the variables which vary
over individual elements (which FO logic allows). There are several interesting consequences
of adding such variables, which I will now review.

First, the two branches in the subregular hierarchies merge at this point because precedence
is MSO-definable from successor.11 So the stringsets that are MSO-definable with successor
are exactly the stringsets that are MSO-definable with precedence.

Second, this class of stringsets corresponds exactly to the class of stringsets definable with
finite-state acceptors, i.e. the regular class of stringsets (Büchi, 1960).

Third, this class is strictly more expressive than both the Non-Counting and Locally
Threshold Testable class (McNaughton and Papert, 1971; Thomas, 1997). It can be shown
that the stringset defined by the constraint *ODD-Sibilants (see section 5.1) is not Non-
Counting, but it is a regular stringset.12

11For those familiar with MSO logic, here is a definition. Individual variables are denoted with x, y, and X denotes
a set variable. x⊳ y means y is a successor of x, and x < y means x precedes y.

closed(X)
def
= (∀x, y)

[

(x ∈ X ∧ x⊳ y) ⇒ y ∈ X
]

x < y
def
= (∀X)

[

(x ∈ X ∧ closed(X) ⇒ y ∈ X
]

12To see why the set of strings L containing only an even number of sibilants is not Non-Counting, the character-
ization in (18) can be used. For any k, observe that os2ko belongs to L, but os2k+1o does not.

25

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

5.3 Further evidence supporting the Subregular Hypotheses

So far in this section, we mentioned the most common types of attested markedness constraints.
We did not provide an exhaustive encyclopedia of types in Humboldt’s sense, but enough of one
to motivate the encyclopedia of categories that was presented. The discussion was designed
to convince readers that the markedness constraints found in natural language were present
at the lowest levels of the hierarchy and that as one moves up the hierarchy, the kinds of
constraints describable at these higher levels become less and less natural from a phonological
point of view.

This helped motivate two hypotheses. The Strong Subregular Hypothesis (12) says that
markedness constraints are SP or SL. The Weak Subregular Hypothesis (19) says that marked-
ness constraints are TSL.

While these constraints were motivated by appealing to common types of constraints,
readers may wonder whether the hypotheses have been subjected to more rigorous empirical
investigation. I would like to now give further evidence for the Strong and Weak Subregular
hypotheses. First I will discuss studies of stress patterns in terms of the Subregular Hierarchies.

Jim Rogers and his students examined the stress patterns in the stress typology in Heinz
(2007, 2009) with respect to the Strictly Local languages. There are 109 distinct patterns in this
typology from over 400 languages. Edlefsen et al. (2008) report that 72% (of the 109 patterns)
are SLk with k ≤ 6 and 49% are SL3. The 28% are which are not SL6 are unbounded stress
patterns and are shown to not be SL for any k. Heinz (2014) studies the four simplest types
of unbounded stress patterns and shows that these are SP2 once Culminativity (every word
contains exactly one stress) is factored out. Culminativity has been argued to be a universal
property of stress languages (Halle and Vergnaud, 1987; Hayes, 1995) and therefore this LT
constraint may be thought to come for free. While recently Hyman (2009) suggests a more
nuanced view, it seems ill-advised at this point to view the result regarding Culminativity in
Heinz (2014) as a rejection of the Subregular Hypotheses. Rogers et al. (2013) argue that the
other unbounded stress patterns similarly factor into the conjunction of SL and PT constraints
or SP and LT constraints. The other unbounded stress patterns continue to be the subject of
current research.

Two potential counterexamples come from work by Thomas Graf. Graf (2010a) provides a
formal analysis of the stress patterns of Creek and Cairene Arabic, as they have been character-
ized in the literature. According to Graf’s analysis, these stress patterns are not Non-Counting
and are properly regular. If the posited linguistic generalizations are correct, by Graf’s anal-
ysis, these cases would constitute clear counterexamples to the Subregular Hypotheses. A
critical aspect of the linguistic generalizations that Graf’s result relies on is that there is no
secondary stress in these languages. If the secondary stress were perceptible, however, the
constraints needed to describe the pattern would become SL. Whether secondary stress is
perceptible or not to speakers of these languages is not a settled issue, and so there is some
question regarding the accuracy of the linguistic generalizations.

Thus, with only a couple of potential counterexamples meriting further study, the current
understanding of the stress typology supports the Strong and Weak Subregular Hypotheses.

A second source of evidence in favor of these hypotheses comes from psycholinguistic ex-
perimentation (Lai, 2012, 2015). In a series of artificial language learning experiments, Lai
compared how well native English speaking young adults could internalize the phonotactic
pattern expressed by a SP constraint like *[+strident, α anterior]. . . [+strident, −α anterior]
and a LT constraint like First/Last Harmony (*#[+strident, α anterior]. . . [+strident, −α an-

26

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

terior] #). Subjects in these experiments participated in a training session followed by a test
session. In the training session, they are told they are going to hear the words of a foreign
language. In the test session, they are given two words and are asked which one more likely
belongs to the language they just heard.

Subjects belonged to one of three conditions, which determined the kind of training re-
ceived. In the “Sibilant Harmony” (SH) condition, they were exposed to words which were
well-formed according to the constraint *[+strident, α anterior]. . . [+strident, −α anterior]. In
the “First/Last Harmony” (FL) condition, they were exposed to words which were well-formed
according to the First/Last Harmony constraint. Subjects in the control condition received
no training (and during test were asked which word they thought was a better word).13 All
subjects were given the same test items in the test session.

As reported in Lai (2015), the results of this experiments were unambiguous. As expected,
subjects in the control condition behaved according to chance. In the test session, subjects in
the SH condition behaved in a manner consistent with internalizing the SP constraint because
they consistently chose words in the test session that did not violate the constraint. On the
other hand, subjects in the FL condition did not consistently choose words in the test session
that did not violate the constraint. In fact, they behaved just like subjects in the SH condition!
This is despite the fact that they were exposed to words like [soSos] in training, which violate
the constraint *[+strident, α anterior]. . . [+strident, −α anterior].

In sum, the experiments of Lai (2012, 2015) show that subjects find it easier to learn SP
(or TSL) stringsets as opposed to LT ones. This evidence is consistent with both the Strong
and Weak Subregular Hypotheses, but as far as I am aware, no other theory explains these
results.

5.4 Constraints: A Summary

A summary of the foregoing section can be made very simply. Phonologists have identified
many kinds of constraints on string representations. Stringsets can be classified according to
two core computational parameters: the type of ordering relation (successor or precedence)
and the type of logical power. Together, these provide a Constraint Definition Language in
the sense of de Lacy (2011). With only a few potential exceptions meriting further empirical
investigation, the stringsets corresponding to phonological constraints overwhelmingly belong
to the SL, SP, and TSL regions in the encyclopedia of categories shown in Figure 2 on page 14,
which are arguably the simplest.

Readers may wonder whether it is necessary to allow both ordering relations to be sub-
structures in words.14 If only the successor relation is permitted, then it is not possible to
describe constraints like [+strident, α anterior]. . . [+strident, −α anterior] at the CNL, P, and
FO levels. MSO logic is needed. MSO logic with successor, however, permits any regular
stringset to be described. Similarly, if only the precedence relation is permitted, it is not

13Finley and Badecker (2009) found no difference between the absence of training and a control condition where
the words in the training condition contained words which were well-formed and ill-formed according to each targeted
constraint type.

14Readers may also wonder why the substructure that picks out the first/last template [# . . . #] is not
available. Here the reason is simple: both the successor and precedence relations allow every word to have a model
and for distinct words to have distinct models. This is not the case with the substructure indicated by the template
[# . . . #] is used to model words.

27

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

possible to describe constraints like *NC
˚

at the CNL, and P levels. FO logic is needed. In
other words, the most restrictive theory is the Strong Subregular Hypothesis (12): phonological
constraints are defined by banning substrings or subsequences.

Finally, we may wonder why this would be the case. If the Strong Subregular Hypothesis is
correct, then the extensions of synchronic constraints are SL or SP stringsets (or conjunctions
thereof). Why would this be? The idea expressed in Heinz (2010a) is that human learners
generalize in particular ways—and the ways they generalize yield exactly these classes. Syn-
chronic constraints are aspects of grammar, and grammars are learned. They are systems
that grow and develop in response to environmental stimuli. The learning biases structure the
classes; it is not the case that the nature of the class is independent of the learners. As Dresher
(1999) and Heinz (2009) argue, this kind of explanation is not available to learners within OT
settings.

6 Transformations

Now we turn to transformations. From an OT perspective, this section is about faithfulness
constraints and the map derived from the interaction of all the OT constraints. It is also about
the typology of maps generated from a given CON. From a rule-based perspective, this section
is about the extensions of individual phonological rules and their composition.

The computational theory of subregular relations is not as well developed as the Subregular
Hierarchies. For example, logical characterizations of string relations have not yet been fully
carried out. Previous work on subclasses of subregular relations is primarily limited to two
classes known as the left subsequential and right subsequential. Essentially, these are classes
of transformations with finite look-ahead; so they are “myopic” in the sense of Wilson (2003).
More will be said about these classes in momentarily. I will keep the discussion at a high
level and readers can find the definitions of them and other technical details in many different
places, including Berstel (1979); Mohri (1997); Roche and Schabes (1997); Lothaire (2005);
Sakarovitch (2009). A linguistically motivated treatment is given in Heinz and Lai (2013).

Much recent work at the University of Delaware has been to develop a hierarchy for string
relations that is analogous to the one for stringsets shown in Figure 2 on page 14. The most
notable advance in this regard has been work by Jane Chandlee in her thesis (Chandlee, 2014),
and subsequent publications (Chandlee et al., 2014a; Jardine et al., 2014; Chandlee and Heinz,
2014). This work establishes relational counterparts to the Strictly Local stringsets, discusses
their significant coverage of empirical phenomena, and explains how they can be learned.

6.1 The encyclopedia of types: maps

Phonologists are familiar with many ways in which underlying forms can differ from surface
forms. Underlying segments may be deleted. Their order may be permuted (metathesis). The
features composing the segments may change. Additionally, there may be elements in surface
forms which were not present underlyingly (epenthesis).

Additionally, the contexts that trigger these changes are of different types. The contexts
may be local to where the changes occur, by which I mean the distance between the trigger and
the target falls within some fixed bound. A typical example is where the triggering context is
adjacent to the change. For instance regressive nasal place assimilation is typically written in
rule format as [+nasal] −→ [αplace] / [−sonorant, αplace] . Alternatively, the triggers

28

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

can be found arbitrarily far away, as found in examples of long-distance consonantal harmony
(Hansson, 2001; Rose and Walker, 2004) and disharmony (see Suzuki, 1998; Bennett, 2013).
Unlike the local cases, there appears to be no fixed bound on the distance between the trigger
and the target.

The long-distance cases are of special interest, so I will largely follow the analysis of
vowel harmony from Heinz and Lai (2013) to motivate the encyclopedia of categories in-
troduced in the next section. Vowel harmony is a well-studied phenomenon in phonology
(van der Hulst and van de Weijer, 1995; Baković, 2000; Finley, 2008; Nevins, 2010; Walker,
2011, and many others). Vowel harmony refers to a systematic pattern of pronunciation in
which certain features of vowels which are different at the underlying level are the same at
the surface level. Thus vowel harmony has been called a process of assimilation. One reason
it has attracted interest is because the affected vowels are not strictly speaking adjacent since
consonants may intervene between them.

Schematically, an example of harmony can be distilled to the following mapping:
/+−/7→[++]. We will read this mapping as follows. The underlying form and surface form
each contain two vowels. The mapping shows the values of the feature F for each vowel. Virtu-
ally all features defining vowels (roundness, height, backness, advanced/retracted tongue root)
have been shown to participate in harmony in some language, and F can be understood to
be any of these features. At the underlying level, the values of the first and second vowel are
/+/ and /−/, respectively. At the surface level, however, both vowels bear the value [+] for
feature F. Since consonants are irrelevant, they are not shown, but it should be understood
that the mapping above includes consonants which may precede or succeed any of the vowels.

Heinz and Lai (2013) analyze six types of logically possible vowel harmony maps discussed
in the phonological literature. These will be discussed, along with two other types, all of which
are summarized in Table 5 on page 32.

Following terminology introduced in the OT literature, I will refer to faithful vowels as
those whose value of feature F stays constant in the underlying and surface forms. Unfaithful
vowels are ones whose value of the feature F is not constant across the two levels.

One logically possible—but unattested—VH map maintains that the unfaithful vowels are
always fewer in number than the faithful ones. (In words with an equal number of faithful and
unfaithful vowels, which feature values would change would be determined according to some
default.) This map has been called been Majority Rules (MR) harmony. (20) shows some
examples of this MR.

(20) (Majority Rules Harmony) { (+ + −,+ + +), (+ − +,+ + +), (− + +,+ + +),
(−−+,−−−), (− +−,−−−), (+−−,−−−), . . . }

As has been discussed in the OT literature, this map is the optimal outcome of a two very
simple constraints: a markedness constraint banning successive vowels with different values of
feature F (Agree(F)) outranking the faithfulness constraint Ident(F). Baković (2000, 26)
defines the term this way:

When Agree[F] is dominant, it winnows the candidate set down to basically two
candidates, one with all [αF] segments and the other with all [−αF] segments. If
IO-Ident[F] gets the next crack at the evaluation process, it will choose the one of
these candidates that is least deviant from the input, regardless of the stem/affix or
+/− distinctions. In other words, what ends up mattering is the relative percentages

29

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

of [αF] and [−αF] vowels in the input: the underlyingly greater number of [−αF]
vowels in [a map where /+ − −/ → [− − −]] gangs up on the lesser number of
[αF] vowels, yielding the problematic effect that I call ‘majority rule.’ [emphasis in
original]

As recognized by Baković, MR is unattested and considered phonologically bizarre. His so-
lution adds certain locally conjoined constraints to CON, which he argues has the effect of
ridding Majority Rules maps from the typology, and which he argues is independently needed
for analyzing dominant/recessive types of vowel harmony. The point I wish to emphasize here
however is that Majority Rules is a logically possible map, which is quite easy to generate
in classic OT with a simple markedness constraint (depending on whether arbitrary many
consonants may intervene between vowels determines whether Agree(F) is SL or TSL) and
standard faithfulness constraints.

Another possible map is one where the first or last vowel determines the features of the
other vowels in the word. This has been called progressive harmony (PH) and regressive
harmony (RH), respectively. Examples of a PH map are shown in (21).

(21) (Progressive Harmony) { (++−,+++), (+−+,+++), (−++,−−−), (−−+,−−−),
(−+−,−−−), (+ −−,+++), . . . }

The inclusion of neutral vowels alters this map only slightly. Neutral are vowels resist harmo-
nizing and either are skipped (in which case they are called transparent) or force subsequent
vowels to harmonize with them (in which case they are called opaque). Following Heinz and Lai
(2013), I will use the symbols [⊖] and [⊟] to represent [−F] vowels that are transparent and
opaque, respectively, and the symbols [⊕] and [⊞] to represent [+F] vowels that are transparent
and opaque, respectively. With this expanded alphabet, mappings like /+⊖−/7→[+⊖+] and
/+⊟+/7→[+⊟−] would also belong to the PH map.

In contrast to the above, sometimes vowel harmony is bounded, in the sense that only the
subsequent vowel is affected. I will call this Local Assimilation (LA) and (22) below illustrates
this map where only the initial vowel is the trigger.15

(22) (Local Assimilation) { (+−−,++−), (−++,−−+), (+−+,+++), (−+−,−−−),
. . . }

Early analyses of vowel harmony analyzed many patterns with an extension like bounded or
unbounded PH or RH (van der Hulst and van de Weijer, 1995), but this type of analysis is
present in recent work as well (Nevins, 2010).

Another logically possible, but unattested type of vowel harmony process has been called
‘Sour Grapes’ (SG) (Padgett, 1995; Wilson, 2003). Informally, SG is like progressive harmony
except that later vowels only harmonize if no opaque vowels occur later in the word. If an
opaque vowel occurs somewhere after the initial vowel, then non-neutral vowels between it and
the initial vowel will not harmonize. (23) illustrates a SG map.

(23) (Sour Grapes) { (+−−,+++), (+−⊟,+−⊟), (+−−−,++++), (+−−⊟,+−−⊟),
. . . }

15Bounded spreading may be more common with the feature nasal. For convenience, the bound here is assumed
to be the next relevant segment, but in fact the syllable seems to be a natural domain (Odden, 1994). See discussion
in Nevins (2010, chapter 5).

30

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Like Majority Rules, Sour Grapes has been argued to be a phonologically bizarre vowel
harmony process. In particular, Wilson (2003) argues that harmony processes never ‘look
ahead beyond immediately adjacent segments. Wilson refers to the absence of look-ahead as
a kind of myopia, and characterizes spreading processes as ‘myopic. The Sour Grapes pattern
disobeys Wilson’s (2003) principle that phonological laws are myopic. In a Sour Grapes pat-
tern, each vowel gets to ‘look ahead’ arbitrarily far to the end of the word to see if there is an
opaque vowel downstream, and only harmonizes if it does not find one.

Classic OT has no difficulty generating SG maps. Under a typical analysis, there is a
markedness constraint against segments that are [+F] but share all other features with ⊟

(such as *⊞). Consequently, underlying /⊟/ can never surface as [⊞]. Finley (2008, p. 32)
describes the rest of the OT analysis this way.

Sour grapes harmony patterns occur when a blocker prevents spreading to vowels
intervening between the source and the blocker. For the input [/+ − ⊟/] . . . the
output [[+ − ⊟]] will be optimal rather than the desired [+ + ⊟]. This type of
pathology is produced when the harmony-inducing constraint [Agree(F)] does not
localize the violation of harmony. In both the sour grapes candidate [+−⊟] and the
spreading candidate [+ +⊟], there is only one locus of disagreement. . . . However,
because the sour grapes candidate incurs no faithfulness violations, it will emerge
as optimal.

Like MR, SG has received attention in the literature because it the optimal outcome of rela-
tively simple constraints in OT (Wilson, 2003; McCarthy, 2004; Finley, 2008).

Interestingly, in the domain of tone, there does seem to be some patterns that exhibit Sour
Grapes-like behavior. See Hyman (2007) and Kula and Bickmore (2015) for cases in Kuki
Thaadow and Copperbelt Bemba, respectively and Jardine (2015) for extensive analysis and
discussion.

Other analyses of vowel harmony argue that the right generalization is that vowels in a word
harmonize to a particular feature value, if it is present anywhere in the word. This analysis
has been called the dominant/recessive (DR) since the feature F appears to have a dominant
value (the one that vowels harmonize with) and a recessive value (the one that vowels don’t
harmonize with). In the example DR map below, the [+] value is the dominant one; so any
underlying representation containing the harmonizing feature with the value [+] will surface
so that the harmonizing feature in all vowels will also be [+].

(24) (Dominant/Recessive) { (++−,+++), (+−+,+++), (−++,+++), (−−+,+++),
(−+−,+++), (+ −−,+++), (−−−,−−−), . . . }

A similar analysis of VH patterns (shown in (25)) is one where the root vowel determines
the features of the other vowels in the word. This kind of analysis has been termed ‘Stem
Control’ (SC). Here the feature that spreads is determined by its morphological status, and
not its inherent vowel as in DR harmony. Typically vowels agree with the closest stem vowel.
Following Baković (2000), I use the

√
+ and

√
− to indicate root vowels that are +F and −F,

respectively.

(25) (Stem Control) { (
√
+ + −,

√
+ + +), (

√
+ − +,

√
+ + +), (

√− + +,− − −),
(
√−−+,−−−), (

√−+−,−−−), (
√
+−−,

√
+++), (−√

+−+,+
√
+−−), . . . }

The last logically possible harmony pattern to be discussed I will call Circumambient Un-

31

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

w LA(w) PH(w) RH(w) DR(w) SG(w) MR(w) CU(w)

a. /+−−/ [+ +−] [+ + +] [−−−] [+ + +] [+ + +] [−−−] [+−−]
b. /−++/ [−−+] [−−−] [+ + +] [+ + +] [−−−] [+ + +] [−++]
c. /−−−/ [−−−] [−−−] [−−−] [−−−] [−−−] [−−−] [−−−]
d. /−+−/ [−−−] [−−−] [−−−] [+ + +] [−−−] [−−−] [−+−]
e. /+−⊟/ [+ +⊟] [+ +⊟] [−−⊟] [+ +⊟] [+−⊟] [−−⊟] [+−⊟]
f. /+⊖−/ [+⊖−] [+⊖+] [−⊖−] [+⊖+] [+⊖+] [−⊖−] [+⊖−]
g. /+−+/ [+ + +] [+ + +] [+ + +] [+ + +] [+ + +] [+ + +] [+ + +]

Table 5: Example mappings of underlying forms (w) given by local assimilation
(LA), progressive harmony (PH), regressive harmony (RH), dominant/recessive
harmony (DR), sour grapes harmony (SG), majority rules harmony (MR), and
circumambient unbounded harmony (CU). Symbols [+] indicates a [+F] vowel
and [−] indicates a [−F] vowel where “F” is the feature harmonizing. Symbols
[⊟] and [⊖] are [−F] vowels that are opaque and transparent, respectively.
(From Heinz and Lai (2013, p. 57).)

bounded harmony (CU), following Jardine (2015). This pattern is also like dominant/recessive
harmony in that only one value of the feature triggers the harmony. However, CU harmony
requires two /+F/ triggers which must surround the affected vowels, and which may be arbi-
trarily far from them. The examples in (26) illustrate.

(26) (Circumambient Unbounded) { (+ − −,+ − −), (+ + −,+ + −), (+ − +,+ + +),
(+−−−,+−−−), (+−−+,++++), (−+−−+,−++++), . . . }

The term ‘circumambient’ refers to two surrounding triggers and the term ‘unbounded’ refers
to the absence of a bound on the distance between the two triggers. Yaka is the only language
which appears to have CU vowel harmony (Hyman, 1998), though Jardine (2015) argues
Sanskrit n-retroflexion is formally similar, and (Graf, 2010a) provides a logical analysis of it.
(As discussed further below in 6.3, unbounded high tone plateauing is a well-attested, common
tonal pattern which is circumambient unbounded (Hyman, 2011; Jardine, 2015).)

Table 5 is a reproduction of Table 3 from Heinz and Lai (2013), with the additions of
local assimilation and circumambient unbounded harmony. It summarizes the encyclopedia of
types outlined above. Phonological theory has posited maps like LA, PH, RH, DR, and SC,
the consensus appears to be that MR and SG are not only unattested but bizarre. In fact
they have been called pathological patterns in some works Wilson (2003, 2004); Finley (2008).
Lastly, setting aside tonal phonology for now, maps like CU are only marginally attested. As
before, we ask the question: What principle or principles separates the linguistically-motivated
generalizations (PH, RH, DR, SC) from the pathological ones (MR and SG) and the marginally
attested ones (CU)?

6.2 An encyclopedia of categories: string-to-string maps

Hierarchies of string-to-string transductions are not as well studied nor understood as classes
of stringsets. Part of the issue is that string-to-string maps are inherently more complex;

32

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

they have more parts than a stringset because in fact they are two stringsets—the domain
and co-domain—and a map from elements of one to the other. Consequently, properties that
converge for stringsets can diverge for string-to-string maps. One example is the class of reg-
ular stringsets. Regular stringsets are exactly those describable with MSO logical formulae
with successor, deterministic finite-state acceptors and non-deterministic finite-state accep-
tors. (Informally, a finite-state machine is deterministic only if there is at most one path
through the machine for each input; if there are some inputs with more than one path, it
is non-deterministic.) However when the corresponding classes of string-to-string maps are
considered, these three classes are distinct regions (Engelfriet and Hoogeboom, 2001).

The hierarchies of transductions that are known to exist, such as those described by
Roche and Schabes (1997, chapter 1) and Engelfriet and Hoogeboom (2001) focus on the more
expressive regions. There is very little work on regions that make the kinds of distinctions
made in the Subregular Hierarchies discussed in the previous section.

Therefore, current answers to the questions at the end of the preceding section at present
are unlikely to satisfy all readers since they are incomplete.

In this section, I will not explicate all the known regions, but only those that I think are
currently most relevant for phonology. These regions are shown in Figure 4 on page 33. As
before, lines connecting two regions indicate that the higher region properly includes the lower
region. I will begin at the bottom and go up.

REG

NDRF

WDRF

LSQ RSQ

ISLLOSL ROSL

Names of the classes of the sets of string pairs

Non-deterministic classes

REG Regular Relations
NDRF Non-Deterministic Regular Functions
WDRF Weakly Deterministic Regular Functions

Deterministic classes

LSQ Left Subsequential Functions RSQ Right Subequential Functions
LOSL Left Output Strictly Local ROSL Right Output Strictly Local
ISL Input Strictly Local

Figure 4: Subregular hierarchies of regular relations.

33

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

6.2.1 Input Strictly Local Functions

Input Strictly Local function generalize the notion of Strictly Local stringset. Recall the
Strictly Local stringsets are Markovian in nature: the well-formedness of a string can be
determined by examining the substrings of length k. Equivalently, this means that the well-
formedness of any position in the string can be determined by checking the k − 1 previous
symbols. This is illustrated in Figure 5, for the case where k = 2.

x

b a b b a ba aaa b... ...

Figure 5: A schematic illustrating the Markovian nature of Strictly k-Local
stringsets. Each element x of a string belonging to a strictly 2-local stringset
depends only on the previous element. In other words, the lightly shaded cell
only depends on the darkly shaded cell.

Input Strictly Local functions are similarly Markovian. The idea is that every element in
the input string corresponds to a string of symbols in the output string. For any input symbol
x its output string u will only depend on x and the previous k − 1 elements of x in the input
string. Figure 6 illustrates, for the case where k = 2.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 6: A schematic illustrating the Markovian nature of Input Strictly k-
Local functions. For every Input Strictly 2-Local function, the output string u

of each input element x depends only on x and the input element previous to x.
In other words, the lightly shaded cell only depends on the darkly shaded cells.

Local Assimilation (LA) is ISL with k = 3. Basically if the previous two elements are
/⋊+/ (or /⋊−/) then if the current input element is a non-neutral vowel, the output string
will be [+] (or [−]).

(Chandlee, 2014) shows that ISL functions can model a range of local phonological pro-
cesses, including substitution, insertion, deletion, and synchronic metathesis. More generally,
she shows that given a mapping describable with a rule of the form A −→ B / C D where
the set of strings in CAD is finite and the rule applies simultaneously then it is ISL for some
k.

34

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

This result may seem counter-intuitive given the current discussion. A reader may wonder
whether, especially given the diagram in Figure 6, how ISL functions can model any trans-
formation triggered by any right context at all. As mentioned, every element in the input
string corresponds to a string of elements in the output. These output strings can be any
length, including length zero (the so-called ‘empty’ string). The option to output the empty
string allows the function to wait until it has enough information to decide what to output.
But importantly, the amount of input it needs to see to make this decision is bounded, by the
specified value of k. For example consider regressive nasal place assimilation where underly-
ing /inpa/7→[impa]. Each row in Table 6 shows how the output string is determined by each
input element x and the input element preceding x. Since the output string at each point is

element input output
preceding element string

x x u

⋊ i i
i n λ

n p mp
p a a

Table 6: Illustrating why transformations with right contexts can still be ISL.
The symbol λ represents the empty string (the string of length zero).

determined by a window whose size is bounded by k, ISL maps are myopic in Wilson’s (2003)
sense.

Chandlee also investigated the approximately 5500 phonological processes (from over 500
languages) reported in the P-Base database (v1.95 Mielke, 2008). It was determined that
over 95% of these patterns are ISL. Chandlee acknowledges that P-Base ought not be taken
as representative of the cross-linguistic distribution of processes that target contiguous versus
non-contiguous segments. However, given that it is the most comprehensive collection of
processes of which we are aware, she deemed it necessary to survey.

Furthermore, Chandlee (2014); Chandlee et al. (2014a) also show how ISL functions can be
efficiently learned from finitely many examples in the sense of Gold (1967) and de la Higuera
(1997). This stands in stark contrast to the class of regular functions which cannot be so
learned. Remarkably, Jardine et al. (2014) generalize this result to obtain an even more effi-
cient learning algorithm for this class of functions.

6.2.2 Output Strictly Local Functions

A notable example of a map that Input Strictly Local functions are unable to model are ones
like progressive harmony (PH) (21) above. Recall that a mapping like
/+ − −−/7→[+ + ++] belongs to this map, and more generally for all numbers k,
/+ −k −/7→[+ +k +] and /− −k −/7→[− −k −]. Such a map cannot be Input Strictly Lo-
cal for any k. This is because whether the last input element surfaces as [+] or [−] depends
on an input element which is more than k input elements away.

Chandlee (2014) defines Left and Right Output Strictly Local functions (LOSL and ROSL)
to address such maps. These capitalize on the output-oriented nature of many phonological

35

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

processes (Kisseberth, 1970a; Prince and Smolensky, 1993, 2004). They are Markovian like
ISL functions, but this time the context is found in the output string, not the input string.
Specifically for Left (Right) OSL functions, for any input element x, its output string u will
only depend on x and the previous (following) k− 1 elements of the output string. The idea is
that a function is Left or Right, depending on whether the left or right context in the output
string matters. Figures 7 and 8 illustrate Left and Right OSL functions, respectively, for the
case where k = 2.

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Figure 7: A schematic illustrating the Markovian nature of Left Output Strictly
k-Local functions. For every Left Output Strictly 2-Local function, the output
string u of each input element x depends only on x and the output element
previous to u. As before, the lightly shaded cell only depends on the darkly
shaded cells.

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Figure 8: A schematic illustrating the Markovian nature of Right Output
Strictly k-Local functions. For every Right Output Strictly 2-Local function,
the output string u of each input element x depends only on x and the output
element succeeding u. As before, the lightly shaded cell only depends on the
darkly shaded cells.

Informally, Left and Right OSL functions can be thought of as characterizing the maps one
can describe with rewrite rules that apply left-to-right or right-to-left (Howard, 1972) (cf. the
treatment of rule-application by Kaplan and Kay (1994)). This appears to be approximately
correct, though certain details are still being worked out. However, we can say with certainty

36

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

that the map PH is LOSL and the map RH is ROSL. More generally, such functions capture
spreading processes such as progressive and regressive nasal spreading.

Left and Right OSL functions can both be computed by subsequential transducers. For
Right OSL functions, the input string must be processed right-to-left by the transducer and
the resulting output will then be reversed. See Heinz and Lai (2013) for details.

6.2.3 Subsequential Functions

In the abstract maps for vowel harmony discussed earlier, consonants were ignored. If arbitrary
many consonants are allowed to intervene between the vowels then the PH and RH maps
will not be LOSL nor ROSL, respectively. For the PH case, this means for all numbers k,
/+Ck−/7→[+Ck+] and /−Ck−/7→[−Ck−]. Such a map cannot be Left nor Right Output
Strictly Local for any k because whether the last input element surfaces as [+] or [−] depends
on an output element which is more than k output elements away. In a sense, at input element
x, the functions cannot remember whether the preceding vowel in the output string was [+]
or [−] because too many [C]s intervene.

We therefore move up the hierarchy in Figure 4. I note that as of yet there are no regions
for string-to-string maps corresponding to the SP, LT, PT, TSL, or LTT stringsets.16

Informally, for Left (Right) Subsequential functions, each logically possible input string is
classified as belonging to exactly one of finitely many regular stringsets. For any input element
x, the output string u will only depend on x and the regular stringset to which its preceding
input string belongs. Figure 9 illustrates left subsequential functions.

u

b a b a b aaa b... ...

x

b a b a ba aaa b... ...

b

b

S

a

Figure 9: A schematic illustrating Left Subsequential functions. For every Left
Subsequential function, the output string u of each input element x depends
only on x and the stringset S to which the preceding input string belongs. As
before, the lightly shaded cell only depends on the darkly shaded cells.

Even if arbitrary many consonants are allowed to intervene between the vowels then the
PH and RH are in fact left and right subsequential, respectively. To see why, consider Table 7.
Subsequential functions can ‘remember’ up to finitely many pieces of information about the
left context; in Table 7, that the first vowel was [+F]. Thus even if k or more Cs then occur

16Some work exists that characterizes string-to-string maps which correspond to the NC stringsets
(Lautemann et al., 2001). Also the author has work in progress characterizing string-to-string maps for each of
these regions.

37

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

in the input string, the function simply outputs each C as it reads each C, without changing
its memory state.

set to which input output
string preceding element string

x belongs x u

⋊ + +
⋊+ C∗ C C
⋊+ C∗ C C
.

⋊+ C∗ C C
⋊+ C∗ - +

Table 7: Illustrating why PH is left subsequential even if arbitrarily many Cs
intervene between vowels.

In the same way that ISL functions could ‘look ahead’ by writing empty output strings,
subsequential functions can do so do as well. However, like the ISL functions, there is a sense
in which left subsequential functions can look into the right context of the input element only
some finite distance. There is a bound k on how far they can look ahead, which relates to
the fact that it can only remember finitely much information about the input string. For this
reason it is not possible to remember the exact preceding input string.

An example will help make this idea clear. The dominant/recessive (DR) map is neither
left nor right subsequential. This is because, for all numbers k, /−k + −k/7→[+k + +k] and
/−k − −k/7→[−k − −k]. Such a map cannot be left subsequential because whether the first
k input elements all surface as [+] or [−] depends whether the next element is [+] or not.
Therefore, even though these functions might output λ for the first k input elements, if the [+]
comes next, such functions would have to output k [+] symbols (and one more). But this is
impossible because k can be any number and left subsequential functions can only classify the
preceding input string into one of finitely many categories. Table 8 illustrates this conundrum.
For this reason, left subsequential functions are myopic in the sense that they cannot look
unboundedly far into the right context.

Right subsequential functions are similar except that input strings following the input ele-
ment are categorized into finitely many regular stringsets. Also, right subsequential functions
can only ‘look ahead’ into the left context a finite distance (and an argument similar to the one
made above shows why). It may be useful to think of right subsequential maps as the ‘reverse’
of left subsequential maps: if L is a left subsequential map then there is a right subsequential
map Lr such that (w, v) ∈ L iff (wr, vr) ∈ Lr (where xr is the reverse of the string x so
(abc)r = cba). From a processing perspective, one could say that left subsequential functions
process strings left-to-right, and right subsequential functions process strings right-to-left.

At the University of Delaware in 2010, the question was asked whether the transformations
from underlying to surface forms are left or right subsequential. In other words, we investigated
what I will call the Subsequential Hypothesis.

38

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

set to which input output
string preceding element string
x belongs x u

− λ

− − λ

−− − λ

.
−−− . . . − λ

−−− . . .− + +++ . . .++

Table 8: Illustrating why the dominant/recessive DR map is not left subsequen-
tial. The symbol λ represents the empty string. The problem is that the left
subsequential function cannot remember exactly how many − symbols occurred
before the first + (It cannot always correctly fill in the ‘. . . ’).

(27) (Subsequential Hypothesis) Phonological transformations are left or right subsequen-
tial.

With one interesting class of exceptions discussed below, this hypothesis appears to be well-
supported. This matters for two reasons. First, it is a stronger more restrictive hypothesis
than the previously understood bound (phonology is regular, see section 4.3). Second, it has
been known for quite some time that left subsequential (and right subsequential) functions are
learnable in a particular sense (Oncina et al., 1993). The algorithm presented there has even
been adapted for use in phonology (Gildea and Jurafsky, 1996). In other words, if phonological
transformations are subsequential, then the computational nature of phonological transforma-
tions directly provides purchase on the learning problem.

So what is the evidence which favors (27)? I will use the term ‘subsequential’ to mean
either left or right subsequential. Chandlee (2014) proves that ISL, LOSL, and ROSL func-
tions are subsequential; therefore, all the maps they cover are subsequential. Synchronically
attested metathesis is also subsequential (Chandlee et al., 2012; Chandlee and Heinz, 2012).
Gainor et al. (2012) study the extensions of the vowel harmony maps in Nevins (2010) and
concludes they are subsequential. Since Nevins assumes a certain degree of underspecification,
Heinz and Lai (2013) show that progressive and regressive vowel harmony with no underspec-
ification pace OT (maps PH and RH above) are subsequential. Payne (2013) shows that
long-distance consonant dissimilation maps described by Suzuki (1998) and Bennett (2013) is
subsequential, and Luo (2013) shows that long-distance consonant assimilation maps described
by Hansson (2008) and Rose and Walker (2004) is subsequential.

In some sense, these results are not too surprising because ultimately these results support
Wilson’s intuition that phonology is myopic. Nonetheless, if phonological myopia is best char-
acterized as subsequentiality (or something stronger like ISL), then there is much concrete to
gain: a theory which not only appears sufficiently expressive, but which is also more restrictive
than previously entertained, and which has desirable learnability properties.

39

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

input output

−−+−− DRP7→ − −+++
DRR7→ +++++

Table 9: Map DRp converts every − after a + to + (like PH), and map DRR

convert every − before a + to + (like RH). As indicated, the composition of
these two maps yields the DR map.

input output

+−−−⊟
L7→ + ?− ?− ?−⊟

R7→ +−−−⊟

+−−−− L7→ + ?− ?− ?− ?− R7→ +++++

Table 10: Illustrations of the role of the new symbol [?−] in the deterministic
decomposition into a left subsequential function L and a right subsequential
function R.

6.2.4 Weakly Deterministic Functions

Weakly deterministic functions are defined by Heinz and Lai (2013) as those maps that can
be defined as the composition of a left subsequential and right subsequential function with-
out the introduction of new alphabetic symbols. Heinz and Lai (2013) show that the domi-
nant/recessive (DR) and stem-control (SC) maps are properly weakly deterministic. In fact
the DR map is the composition of a map like progressive harmony (DRP), which only spreads
the dominant feature progressively and a map like regressive harmony (DRR), which only
spreads the dominant feature regressively. Table 9 illustrates. Since DRp and DRR are left
and right subsequential, respectively, their composition is weakly deterministic.

Heinz and Lai (2013) conjecture that sour grapes (SG) is not weakly deterministic. They
explain that SG can be described as the composition of a left subsequential function and a
right subsequential function, but that crucially the intermediate form requires the use of an
additional alphabetic symbol which they write as [?−]. Table 10 (adapted from their paper)
illustrate the role an additional symbol plays in the decomposition. Essentially, [?−] records
the fact that this is a minus, which has a [+] in its left context. So the right subsequential
function R will rewrite this as [−] or [+] depending on whether there is a [⊟] in the right
context of the [?−].

While many theorists have argued in favor of dominant/recessive and stem-control analyses
of vowel harmony(Baković, 2000; Krämer, 2003), this is not a settled debate (Nevins, 2010).
What Heinz and Lai (2013) show is that DR and SC maps are more computationally complex
than PH and RH maps, and that SG maps are even more complex than these. If the debate
is settled in favor of DR and SC maps then it means the subsequential hypothesis would be
incorrect, and then the most restrictive hypothesis would retreat to the weakly deterministic
region.

Jardine (2015) argues that circumambient unbounded (CU) maps are also not weakly
deterministic. He shows that CU maps and SG maps are similar in that in both cases, the
information which determines whether a vowel is unfaithful is located in two distinct places:

40

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

one location is arbitrarily far before the vowel and the other location is arbitrarily far after the
vowel. While both CU and SG maps are the same with respect to the first place (an earlier +
is required), the CU map also requires a + in the second place but the SG map requires the
absence of a ⊟.

Jardine’s result is perhaps the most serious challenge to the Subsequential Hypothesis (or
a revised Weakly Deterministic hypothesis) because the best characterization of Yaka vowel
harmony seems to be that it is circumambient unbounded (Hyman, 1998). However, this is
the only known example of this type, and it is probably premature to reject the hypothesis on
these grounds alone. I will return to this issue below.

6.2.5 Non-deterministic Regular Functions and Regular Relations

Non-deterministic regular functions can be defined in at least two ways (Elgot and Mezei,
1965). First, they can be defined as the composition of a left and right subsequential func-
tion, provided the intermediate string is allowed to use additional alphabetic symbols. As we
have seen in the example of Sour Grapes (SG) in Table 10, these additional symbols allow
certain types of information to become present in the string. Second, non-deterministic reg-
ular functions can be defined as those string-to-string functions that can be described with a
non-deterministic finite-state transducer.

Both SG and CU maps thus properly belong to the non-deterministic regular function
region (Heinz and Lai, 2013; Jardine, 2015).

Non-deterministic finite-state transducers are a grammatical formalism that can also de-
scribe transformations which have more than one output for each input. In fact the class of
transformations describable with non-deterministic finite-state transducers are called regular
relations. Beesley and Kartunnen (2003) and Hulden (2009) develop toolkits for manipulating
regular relations for describing the phonology and morphology of languages.

The Majority Rules map cannot even be described with a non-deterministic finite-state
transducer. It is in fact non-regular (Riggle, 2004; Heinz and Lai, 2013). According to the
hierarchy presented here, it is the most complex kind of maps under discussion.

Given that many phonological rules are optional, one may wonder whether it is appropriate
to model individual transformations (as we have here) as functions instead of relations. There
are two responses to this.

The first response is to say that the optionality is handled at a higher level of control
than the individual transformation. This is essentially the position adopted in rule-based and
constraint-based phonology. In rule-based phonology, the idea was that a rule was marked
as optional. When deriving the output from an input and a rule marked as optional is en-
countered, additional, usually random, information is consulted (such as a coin flip) and the
outcome determines whether the rule is applied or skipped. Thus the extension of the rule it-
self is still functional. Similarly, in stochastic OT (Boersma, 1998; Boersma and Hayes, 2001),
a given constraint ranking has a functional extension, but a higher-level control process deter-
mines which particular constraint ranking will be utilized at any particular time.

The second response is to say that subclasses of regular relations are likely to follow the
same lines developed here. (Mohri, 1997) establishes that as long as there is a bound on the
amount of optionality, that many properties of subsequential functions are preserved. More
recently, Beros and de la Higuera (2014) also show how to generalize subsequential functions
in a way that permits a degree of optionality. While subclasses of classes have not been

41

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

studied the fact that they preserve important aspects of the underlying finite-state transducers
and that classes like ISL have automata-theoretic characterizations based on subsequential
transducers (Chandlee, 2014; Chandlee et al., 2014a) strongly suggests that subclasses like
ISL which permit a degree of optionality are only waiting to be discovered.

6.3 Further evidence

There is some psycholinguistic evidence which supports the hypothesis that phonological trans-
formations are regular. In a series of artificial language learning experiments, Finley (2008)
compared how well native English speaking young adults could learn a Majority Rules (MR)
type map as compared to a Progressive Harmony (PH) type map. These experiments were
artificial learning experiments and subjects were either assigned to the MR, PH, or control
conditions. Each subject received a training session and then performed in a test session. The
results clearly established that subjects learned the PH harmony pattern, but not the MR
pattern.

Finley (2008) also conducted a series of experiments to investigate the learnability of the
Sour Grapes (SG) map. This is one way to test the hypothesis that Subsequential Hypothesis.
Here the results were inconclusive, probably due to an interference of neutral vowels in the
particular paradigm (though see Finley (2015)). However the subsequential hypothesis clearly
predicts that SG should be more difficult to learn that PH, and so future research in this vein
should be conducted to see whether the prediction is borne out.

An interesting source of evidence in favor of (a revised) Subsequential Hypothesis comes
from work by Jardine (2015). Jardine studies Unbounded Tone Plateauing (UTP)
(Kisseberth and Odden, 2003; Hyman, 2011) and concludes that such transformations are
also circumambient unbounded. In UTP, a string of underlying low tones (or unmarked vow-
els) are realized as high only if there is a high tone at both the left and right edges of this
string. Jardine makes a persuasive case for a typological asymmetry between tonal patterns
and segmental patterns. Several well-documented cases of UTP exist in the literature, despite
the absence of comprehensive typological surveys. On the other hand, despite the existence of
several surveys on long-distance harmony, the only CU maps known to be present in segmental
phonology come from Yaka vowel harmony and Sanskrit n-retroflexion. Furthermore, Jardine
shows that the evidence that the segmental maps are truly unbounded is weaker than the
evidence that the UTP cases are unbounded.

In other words, Jardine’s work shows that UTP—because of its widespread and well-
documented existence—is a counterexample to the Subsequential Hypothesis (27). He suggests
that it be revised as follows.

(28) (Revised Subsequential Hypothesis) Segmental transformations in phonology are left
or right subsequential.

While Yaka vowel height harmony and Sanskrit n-retroflexion are arguably counterexamples
to this revised hypothesis, I think it is prudent to not reject the hypothesis on these grounds.
Unlike UTP, these cases are rare and the evidence that they are truly CU maps, while com-
pelling, is not as strong as it is for the UTP cases. Future research may lead to a better
understanding of these languages.

Thus, Jardine shows that tonal patterns are different than segmental patterns, since they
are arguably more complex. Paraphrasing Hyman (2011), tonal phonology really can do more

42

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

than segmental phonology!

6.4 Transformations: a summary

A summary of the foregoing section can be made very simply. Phonologists have identified
many ways in which underlying forms are transformed into surface forms. The study of
subregular string-to-string maps has not yet been as articulated as the one of subregular
stringsets. Nonetheless, the study of the typology of the attested transformations in the light
of the existing categories yields similar conclusions. With one interesting class of exceptions
which is largely confined to tonal phonology (CU maps), segmental transformations appear
to overwhelmingly belong to the simplest maps in the encyclopedia of categories shown in
Figure 4 on page 33.

Thus, even though an encyclopedia of categories for string-to-string maps as fine-grained
as the one for stringsets does not yet exist, the work to date has nonetheless made important
insights. The simplest maps are Markovian on the input or the output (ISL, LOSL, and
ROSL), and very many phonological transformations belong to these classes. Transformations
which are not Markovian in this sense involve long-distance harmony. Such patterns however
are subsequential, which means they are still myopic in an important sense. This stands in
contrast to the SG map which is not subsequential and the MR map, which is not even a
regular relation. It is anticipated other subregular regions for maps analogous to the SP or
TSL regions will be developed that better characterize long-distance transformations.

The asymmetry between tonal CU maps and segmental CU maps noticed by Jardine (2015)
is perhaps the most difficult to interpret. How can it be that some formal mechanism is avail-
able to one aspect of the grammar but not to another? Perhaps it is an indicator of the
modularity of grammar (Heinz and Idsardi, 2011, 2013). Jardine’s work then can be under-
stood as providing support for Hyman’s thesis, that tonal phonology is in fact different from
segmental phonology (Hyman, 2011). As a separate module of the grammar, it has resources
available to it that are not available everywhere else.

7 Summary and Implications for the phonological

component

In this section, I would like to review the main lessons for phonological theory to be taken
from the computational analyses reviewed so far in this chapter.

7.1 Phonological generalizations have strong computational

properties

From the computational perspective, most, if not all, phonological generalizations obey very
strong computational laws. This is what typological analysis of phonological constraints and
transformations that was reviewed in sections 5 and 6 reveals. Phonological generalizations
(both stringsets and maps) belong to small, well-defined regions within the region of regular
stringsets and maps, and these regions are at the bottom of the subregular hierarchies shown
in Figures 2 and 4.

43

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

7.2 Problems with optimization

Current phonological theories does not account for these laws. Since Prince and Smolensky
(1993), optimization has been a central feature of phonological theory including classical OT
(Kager, 1999), stratal OT (Kiparsky, 2000), harmonic grammar (Smolensky and Legendre,
2006; Potts et al., 2008), maximum entropy (Goldwater and Johnson, 2003; Hayes and Wilson,
2008), and harmonic serialism (McCarthy, 2008b). One of the most compelling features
of optimization is the idea that complex patterns within and across languages arise from
the interaction of simple constraints. The celebrated examples of syllabification in Berber
(Dell and Elmedlaoui, 1985), complex margin avoidance in Yokuts (Kisseberth, 1970b), and
the many solutions to the international conspiracy *NC

˚
(Pater, 2000) in terms of optimiza-

tion all attest to this. However, if “complex patterns arising from the interaction of simple
constraints” is optimization’s greatest strength, it is also its greatest weakness.

As explained in section 4.3, computational analysis has revealed that phonological transfor-
mations are regular. But even with regular constraints and a regular GEN, optimization can
result in non-regular maps (Frank and Satta, 1998). Optimization is very powerful because
very complex patterns can indeed arise from simpler constraints. Majority Rules is a case in
point (Riggle, 2004; Heinz and Lai, 2013).

This particular overgeneration problem is not specific to classical OT. It is a problem
for Stratal OT, Harmonic Serialism and Maximum Entropy theories as well. This is not a
controversial point. It is in fact just one more example of how “complex patterns arise from
the interaction of simple constraints.” It may be possible to add constraints to CON as in
Baković (2000) to avoid generating MR type maps. Different types of constraints, such as
targeted constraints (ColinWilson, 2001; Bakovic and Wilson, 2000; Baković, 2004), or ones
which operate over turbid structures (Finley, 2008) may be invoked.

However, it is not enough to show that MR is avoided. One must show that all non-regular
maps are avoided. Frank and Satta (1998) write “It remains an open problem to characterize
precisely the generative capacity. . . of [Optimality Systems]’s with other assumptions about
the formal power of GEN and the constraints.” While it still remains an open problem today,
the markedness constraints involved in generating Majority Rule patterns are SL or TSL. In
other words, even the simplest constraints under optimization can generate non-regular maps.
Perhaps future research will show there is an straightforward way to prevent non-regular maps
from occurring in the factorial typology, but to me the prospects seem dim.

For even if it were possible to add new constraints (or constraint types) to CON to avoid
deriving non-regular maps, there is a problem. These constraints would be in service of deriving
a generalization that is already very simple to state: phonological transformations are regular.
It means that in order for optimization to be the right theory of phonology that the constraints
over which optimization operates have to be designed to blunt the power of optimization!

And these problems are just to avoid generating non-regular maps. The revised Subse-
quential Hypothesis limits the kinds of humanly possible segmental maps. The same kinds
of problems mentioned above exist for developing a theory of CON which guarantees that
segmental maps are always subsequential and avoid generating non-myopic maps like Sour
Grapes (Jardine, 2015).

From a computational perspective then, optimization appears to be too powerful a tool.
Critics of optimization have generally focused on the fact OT undergenerates the typology with
respect to opacity(Idsardi, 1998, 2000; McCarthy, 2007; Buccola, 2013), but the overgeneration
problem is equally pressing. In both cases, new constraint types or optimizing architectures

44

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

are introduced with the ultimate purpose to make the optimal maps ones that conform to the
computational generalizations stated in the present chapter.

Thus, from a computational perspective, with respect to the dual goals of developing both
an adequately expressive theory and a maximally restrictive theory of phonology, optimization
misses the mark. It is neither adequately expressive (because of opaque maps) nor sufficiently
restrictive (because it generates non-regular maps like Majority Rules).

Of course the question can never be “Is Optimization the Right Theory?” After all, what
is the alternative?

7.3 Organizing phonological theory around these

computational properties

One alternative suggested by the work reviewed in this chapter is that the computational
properties highlighted here—and not optimization—be taken as the organizing principles of the
phonological component of grammar. Constraints on surface forms are, with few exceptions,
banning substrings and subsequences (section 5). Phonological transformations which are
intuitively ‘local’ are also among the simplest types of logically possible maps (section 6).

But is this theory adequately expressive? We have focused on maps which correspond to
individual rules, so can the theory being suggested handle opacity? This is work in progress,
but it appears so. Chandlee et al. (2014b) show that ISL functions can represent opaque
maps. In fact, Chandlee et al. (2015a,b) report that every opaque map described in Baković’s
(2007) is ISL (and as mentioned Chandlee and her collaborators have established algorithms
for learning the ISL functions).

Is there an overgeneration problem like optimization-based theories as well. It it true
that even the theory which adopts the strong subregular hypothesis (12) overgenerates in
some sense. For instance, it straightforward to write a grammar for a language which ban
subsequences like *sg. This means words in this language are ill-formed if [g] occurs anywhere
after [s]. So there is some overgeneration, though it is plausibly due to phonetic factors (see
below). Joe Pater helpfully points out (p.c.) that when two theories overgenerate in different
ways, it can be difficult to determine which overgenerates “less” or which is preferable along
the dimension of overgeneration. I agree and this is one area where computational analysis
has something to offer. The theory which overgenerates in a computationally simpler way
ought to be preferred. Under this assumption, theories of phonology which adopt subregular
properties overgenerate in a computationally simpler way as compared to theories organized
around optimization. This is for the simple reason that they cannot possibly generate non-
regular patterns like Majority Rules.

Another potential criticism is that computational properties highlighted here do not take
into account phonetic substance. As mentioned, this means many possible subregular con-
straints and maps are not likely phonological ones because they are phonetically unnatural. I
will put aside the important question of whether phonetically unnatural constraints and maps
are phonologically possible and learnable, and just assume for the purposes of discussion that
they are not.

In my view, it is a feature and not a bug that formal and substantive issues are separated.
I am not so extreme as Hale and Reiss (2000) as to deny substance a role altogether, but
I do think science proceeds by factoring complex systems. Ever since Chomsky and Halle
(1968, chapter 9), it has been clear that formal and substantive constraints on phonological

45

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

systems are distinct. While details have not yet been worked out, substantive constraints on
phonological systems would simply be in addition to the formal constraints being proposed
here. This is really no different than the program offered by Chomsky and Halle (1968) or, for
that matter, by Hayes et al. (2004), which adopts optimization as a formal system and adds
substantive constraints to the nature of CON.

Finally, another argument that could be put in favor of optimization is that it readily
lends itself to a theory of learning (Tesar, 1995; Tesar and Smolensky, 1998, 2000; Tesar, 2014,
and many others). This is a good argument. However, I have tried to highlight the fact
that the subregular regions to which phonological patterns appear to belong also readily lend
themselves to a theory of learning (Oncina and Garcia, 1991; Heinz, 2007, 2010a,b; Chandlee,
2014; Chandlee et al., 2014a; Jardine et al., 2014). Furthermore, if people generalize from data
in the way suggested by these learning procedures, it explains the computational nature of the
phonological patterns. This is contrast to the learners in optimization-based theories (and
variants thereof), where the nature of the phonological patterns is completely explained by
what belongs and what does not belong to CON.

7.4 Next steps

If the computational properties highlighted in this chapter are taken seriously, there are many
subsequent issues to attend to. There are several possibilities, but I will focus on the following
four:

• better characterizing long-distance transformations;

• better understanding the role of abstractness;

• better understanding the non-string representations of words; and

• testing the predictions of these hypotheses in imaginative ways.

Each of these is a current focus of research at the University of Delaware.
Chandlee (2014) provides clear definition of locality and shows that many maps, which are

intuitively local (and some that are not) meet this definition. Her definition generalizes the
notion of Strictly Local stringsets to maps. Strictly Piecewise stringsets (Rogers et al., 2010)
can describe many long-distance constraints (Heinz, 2007, 2010a) as can Tier-Based Strictly
Local stringsets (Heinz et al., 2011). What are the corresponding generalizations of the SP and
TSL stringsets for maps and what range of the phonological transformations do they cover?
Do they have learnability properties like the SP and TSL regions?

It is well known that deterministic regular functions are less expressive than
non-deterministic functions (see Figure 4 on page 33. Elgot and Mezei Elgot and Mezei
(1965) show a deep connection between non-determinism and abstractness: Basically any
non-deterministic function can be described as the composition of two deterministic functions
provided the intermediate form is allowed to make use of symbols not in the input alpha-
bet. The fact that the ‘intermediate’ alphabet contains symbols not in the input alphabet
introduces a degree of abstractness (the extra symbols represent abstract information). This
appears to be exactly the dividing line between dominant/recessive harmony patterns on one
side and sour grapes harmony on the other. Better understanding the role of abstractness in
maps (and stringsets is important).

Another example of the interplay comes from a theorem by Medvedev (1964), which says
that every regular language is the homomorphic image of strictly 2-local language. In layman’s

46

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

terms this means every regular stringset, which can be used to model complex kinds of con-
straints, can be derived from a strictly 2-local stringset, which belongs to the lowest level of
the Subregular Hierarchies. It suggests that what looks complex is actually very simple. But
the trick is that the SL2 language has a bigger alphabet and the latent information hidden in
the more complex regular language is made explicit in the SL2 language. Thus, by making our
alphabet larger and more abstract we simplify constraints we may want to state. But the price
is that the alphabet no longer represents observables (so one consequence is learning remains
as difficult as before).

A related issue is non-string based representations. The main idea is that there is an
interplay between the generative capacity of a formalism, the representation, and power of
logic. We have seen this already with respect to how order is represented. Representing order
with successor and precedence has the following implication: if you want to represent any
regular stringset you will need MSO logic with successor, but only FO logic with precedence.
Another example is discussed in in section 8 below has to do with constraints on syllabic
structure.

Finally, if these computational properties are to become part of the ontology of a theory of
phonology, then much research is possible which tests the psychological validity of this ontology.
The artificial language learning experiments by Finley (2008) and Lai (2012, 2015) are just
one example of the kind of research that can be carried out. So far this work supports the
hypotheses offered here. But currently there are more hypotheses than there are experiments
testing them.

8 Representational Issues

Before concluding, I would like to address the issue of representation. The above computational
analysis appears to rest on the assumption that words must be modeled as strings. We modeled
phonotactic knowledge and markedness constraints with infinite sets of strings and we modeled
the transformation from underlying to surface forms with infinite sets of string pairs. We
argued that it is these objects whose nature we are interested in. The nature of these objects
directly informs the questions in (2). As with circles (remember circles?), the nature of these
objects is to some extent independent of the grammars used to describe them.

Phonologists are well aware that other representations of words exist, which are not based
on strings and that phonological theories have employed many kinds of data structures. Non-
linear representations of words including autosegmental representations, (Goldsmith, 1976),
the grid (Liberman and Prince, 1977), feature-geometric representations (Clements, 1985), and
gestural scores (Browman and Goldstein, 1992). Instead of strings, these theories employ
graph-like data structures. Therefore, it is reasonable to wonder how much of the foregoing
analysis depends on the string-based representation employed.

In this section, I would first like to explain that the extensions are not limited to string
representations. The concept of “extension” of a grammar is much more general.

Then I would like to explain why the results in this chapter still matter, even though they
use string-based representations. There are two parts to this. The first part reiterates the fact
that string-based representations are in fact widely adopted in phonology and explains why
they are widely adopted. Insofar as these reasons are compelling, the results in this chapter
matter.

47

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

The second part argues that even if the right representations is not string-based, studies
like the ones reviewed in this chapter are a necessary step for understanding the computa-
tional nature of phonological patterns. I will explain why subregular hierarchies like the ones
presented in this chapter for strings exist for these other representational schemes for words,
even if they have not yet all been discovered.

The main conclusion is that the interplay between the choice of representation and the
computational principles presented here are likely to be fruitful areas of research in the coming
decades.

8.1 Extensions without strings

In section 3, I discussed the concept “extension of a grammar,” and suggested that for con-
straints the extensions are infinite sets of strings and for transformations they are infinite sets
of pairs of strings. More generally, the extension is an infinite set of objects, and the objects
can be anything so long as it is well-defined.

For instance, A constraint like NoCoda could be defined so that the well-formed elements
of its extension includes objects like the ones shown below.

(29)

{
p

×

a

×

NO

R

σ

,

p

×

a

×

b

×

a

×

NO

R

σ

NO

R

σ

, . . .}

Non-linear representations such as these are common in phonological theory, and have
brought much insight. Similarly, when discussing transformations from underlying to surface
forms, the left and right elements in each pair can also be represented with a non-linear,
graph-like representation similar to the ones shown in (29).

In order to think about the extensions of constraints and transformations, it is necessary
to think about the representations of words. The constraint definition will determine which
representations of the “logically possible” representations are well-formed and which are not.
For instance, we may wonder whether the following representation is permitted by the theory
and if so whether it violates NoCoda.

(30)

p

×

a

×

NO C

R

σ

48

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

At issue of course is the marked structure(s) NoCoda is supposed to define when graph-
like representations such as those in the preceding examples are adopted. There are several
possibilities. Just having a node in the graph labeled with “C” for instance could be sufficient,
in which case (30) would violate it. Or it may be necessary for the node labeled “C” to
dominate a phonetic element (in which case (30) would not violate it). Or it may be that the
labels in the preceding examples are just ornaments for phonologists for readability, and that
what really matters is that there is consonantal material after the nucleus dominated by the
same syllable node.

A more difficult question raises itself with these representations with respect to the con-
straint Onset. At the very least this constraint requires an “O” node to be present. It does
not ban a substructure, suggesting this constraint is at the Propositional level. Here again
we see an interplay between the choice of representation and the power of the constraint. To
state Onset, this enriched representation requires a more complex constraint type than the
string representation with the latent syllable boundary, which can defineOnset as the Strictly
2-Local constraint (*.V).

These are all interesting possibilities that have been explored to various degrees in the
phonological literature. The point I wish to make is a fairly obvious one: representation of
words matter when defining constraints or transformations. The extensions of the constraints
and transformations will be in terms of these representations. String representations were used
throughout this chapter, but some other representation could have been used, and computa-
tional analysis could have preceded on those representations instead.

8.2 Why string representations matter

I begin this discussion with the concept of string. Strings are one of the most basic data
structures (Lothaire, 1997, 2005). They are sequences of events. They are typically defined
inductively with the primitive operation of concatenation and an alphabet: there is a unique
string of zero length (the base case) and then if w is a string and there is a symbol a in the
alphabet then the concatenation of w and a (written wa) is also a string (the inductive case).
It is natural to think of phonological forms in terms of strings. The act of speech can be
thought of as a sequence of articulatory or acoustic events. Writing systems are string-based
representations of speech.

The most compelling reason to study string representations is that phonologists use them.
One reason may be practical: it is more convenient to typeset strings than graph-like repre-
sentations. But even from a theoretical perspective, the fact that representations were promi-
nently debated at one point in the history of phonological theory (mainly during the 1970s and
1980s) does not mean that such issues are necessarily live today. As Hyman (2014) discusses,
phonological theory has moved away from issues of representation (see also (Anderson, 1985)).
String-based representations are prominent nowadays, even in explaining long-distance har-
mony (Rose and Walker, 2004; Walker, 2011; Nevins, 2010), a domain in which at one time
autosegmental spreading analyses seemed particularly well suited (Hayes, 1986). Tonal phonol-
ogy is less amenable to string-based representations (for discussion, see also Marlo (2007)), but
even the principles governing autosegmental representations have yet to address every question
posed by every language (Hyman, 2014).

A second reason to work with strings is that the string is a fundamental data structure
that has been well-studied (Lothaire, 1997, 2005). This helps make studying stringsets and

49

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

string-to-string maps the easiest place to start. If we want to understand how computational
principles play out with complicated data structures, we better first understand how they play
out with simpler structures like strings.

The particular subregular hierarchies being established for strings are likely to have ana-
logues for other data structures. For instance, Strictly 2-Local sets of tree structures have
been studied and they can be used to describe context-free string sets (Rogers, 1994). More
generally, regular tree languages are also well-studied (Comon et al., 2007). While hierarchies
as articulated as the ones for strings do not yet exist for these other data structures, they are
in fact a focus in theoretical computer science (Rozenberg and Salomaa, 1997).

Closer to issues in phonological theory, Kornai (1995) shows how autosegmental repre-
sentations can processed by finite-state automata for recognition and generation. Similarly,
Jardine and Heinz (2015a) show that autosegmental representations have important string-like
properties and can be thought of as the concatenation of finitely many autosegmental primi-
tives. Jardine (2014) shows how Strictly Local autosegmental representations can be defined
(and how in certain circumstances the No Crossing Constraint is a Strictly Local constraint).

In short, the methodological points being made in this chapter stand regardless of whether
or not the representations are strings are something else. Computational principles provide a
natural encyclopedia of categories with which the typology of phonological generalizations can
be illuminated.

9 Conclusion

This has been a long chapter. Thankfully, the conclusion can be brief. Phonology is about how
underlying lexical representations are transformed into surface ones. An important question
asks about the cross-linguistic nature of these transformations. Grammars are typically con-
ceived as generating patterns; these patterns are extensions of the grammar in the same way
the extension of an algebraic equation is the set of points satisfying that equation. Compu-
tational analysis studies these extensions, and such analysis of phonological generalizations is
ongoing. Nonetheless, the results so far reveal that despite the cross-linguistic diversity, there
are very strong, specific, universal computational properties shared by almost all phonological
patterns. The few potential counter-examples are of special interest and deserve further study.

Explaining these plausibly universal computational properties of phonological patterns is
hard for theories that rely on optimization as a central organizing feature of the theory, but
is straightforward if the computational properties highlighted within this chapter become the
organizing principles themselves. These principles are natural for many reasons, only some
of which could be covered here. Also, there is a clear sense in which these principles derive
from principles of inference and learning. While there is still much work to do, a theory of
phonology built around these computational principles promises to be sufficiently expressive,
maximally restrictive, and learnable.

References

Anderson, Stephen. 1985. Phonology in the Twentieth Century . The University of Chicago
Press.

50

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Applegate, R.B. 1972. Ineseño Chumash grammar. Doctoral dissertation, University of Cali-
fornia, Berkeley.

Applegate, R.B. 2007. Samala-English dictionary : a guide to the Samala language of the
Ineseño Chumash People. Santa Ynez Band of Chumash Indians.

Baković, Eric. 2000. Harmony, dominance and control. Doctoral dissertation, Rutgers Univer-
sity.

Baković, Eric. 2004. Unbounded stress and factorial typology. In Optimality Theory in Phonol-
ogy: A Reader , edited by John McCarthy. Blackwell, London. ROA-244, Rutgers Optimality
Archive, http://roa.rutgers.edu/.

Baković, Eric. 2007. A revised typology of opaque generalisations. Phonology 24:217–259.

Baković, Eric. 2011. Opacity deconstructed. In The Blackwell Companion to Phonology , edited
by M. van Oostendorp, C. Ewen, B. Hume, and K. Rice. Blackwell.

Baković, Eric. 2013. Blocking and Complementarity in Phonological Theory . Bristol, CT:
Equinox.

Bakovic, Eric, and Colin Wilson. 2000. Transparency, strict locality, and targeted constraints.
In Proceedings of the 19th West Coast Conference on Formal Linguistics, edited by Roger
Billerey and Brook Danielle Lillehaugen, 43–56. Somerville, Mass.: Cascadilla Press.

Beckman, Jill. 1998. Positional faithfulness. Doctoral dissertation, University of Massachusetts,
Amherst.

Beesley, Kenneth, and Lauri Kartunnen. 2003. Finite State Morphology . CSLI Publications.

Bennett, William. 2013. Dissimilation, consonant harmony, and surface correspondence. Doc-
toral dissertation, Rutgers University.

Benua, Laura. 1995. Identity effects in morphological truncation. In Papers in Optimality
Theory , edited by Jill Beckman, Laura Walsh Dickey, and Suzanne Urbanczyk, 77–136.
Amherst, Mass.: GLSA Publications.

Benua, Laura. 1997. Transderivational identity: Phonological relations between words. Doc-
toral dissertation, University of Massachusetts, Amherst.

Beros, Achilles, and Colin de la Higuera. 2014. A canonical semi-deterministic transducer.
In Proceedings of the Twelfth International Conference on Grammatical Inference (ICGI
2014), edited by Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka, vol. 34, 33–148.
JMLR: Workshop and Conference Proceedings.

Berstel, Jean. 1979. Transductions and Context-Free languages. Teubner-Verlag.

Blevins, Juliette. 2004. Evolutionary Phonology . Cambridge University Press.

51

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Boersma, Paul. 1998. Functional phonology: Formalizing the interactions between articulatory
and perceptual drives. University of Amsterdam. LOT International Series 11. The Hague:
Holland. Http://www.fon.hum.uva.nl/paul/diss/.

Boersma, Paul, and Bruce Hayes. 2001. Empirical tests of the gradual learning algorithm.
Lingustic Inquiry 32:45–86.

Browman, C., and L. Goldstein. 1992. Articulatory phonology: An overview. Phonetica 155–
180.

Buccola, Brian. 2013. On the expressivity of optimality theory versus ordered rewrite rules.
In Proceedings of Formal Grammar 2012 and 2013 , edited by Glyn Morrill and MarkJan
Nederhof, vol. 8306 of Lecture Notes in Computer Science 8036 , 142–158. Berlin Heidelberg:
Springer-Verlag.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly 6:66–92.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral dissertation, The Uni-
versity of Delaware.

Chandlee, Jane, Angeliki Athanasopoulou, and Jeffrey Heinz. 2012. Evidence for classifying
metathesis patterns as subsequential. In The Proceedings of the 29th West Coast Conference
on Formal Linguistics, 303–309. Cascillida Press.

Chandlee, Jane, Rémi Eyraud, and Jeffrey Heinz. 2014a. Learning strictly local subsequential
functions. Transactions of the Association for Computational Linguistics 2:491–503.

Chandlee, Jane, and Jeffrey Heinz. 2012. Bounded copying is subsequential: Implications for
metathesis and reduplication. In Proceedings of the 12th Meeting of the ACL Special Interest
Group on Computational Morphology and Phonology , 42–51. Montreal, Canada: Association
for Computational Linguistics.

Chandlee, Jane, and Jeffrey Heinz. 2014. Strictly local phonological processes. Accepted with
revisions to Linguistic Inquiry .

Chandlee, Jane, Jeffrey Heinz, and Adam Jardine. 2015a. Learning Opaque Maps. University
of Maryland, College Park, MD. GALANA. Poster presentation.

Chandlee, Jane, Jeffrey Heinz, and Adam Jardine. 2015b. Representing and Learning Opaque
Maps with Strictly Local Functions. Paris, France. GLOW computational phonology work-
shop.

Chandlee, Jane, Adam Jardine, and Jeffrey Heinz. 2014b. Learning repairs for marked struc-
tures. Poster presented at the Annual Meeting of Phonology. MIT.

Chomsky, Noam. 1951. Morphophonemics of Modern Hebrew. Doctoral dissertation, Univer-
sity of Pennsylvania, Philadelphia. Published by Garland Press, New York, 1979.

Chomsky, Noam. 1956. Three models for the description of language. IRE Transactions on
Information Theory 113124. IT-2.

52

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Chomsky, Noam. 1965. Aspects of the theory of syntax . Cambridge, MA: MIT Press.

Chomsky, Noam, and Morris Halle. 1968. The Sound Pattern of English. New York: Harper
& Row.

Clements, George N. 1985. The geometry of phonological features. Phonology Yearbook 2:225–
252.

ColinWilson. 2001. Consonant cluster neutralisation and targeted constraints. Phonology
18:147–197.

Comon, H., M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. 2007. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata. Release October, 12th 2007.

Dell, Francois, and Mohamed Elmedlaoui. 1985. Syllabic consonants and syllabification in
Imdlawn Tashlhiyt Berber. Journal of African Languages and Linguistics 7:105–130.

Dresher, Elan. 1999. Charting the learning path: Cues to parameter setting. Linguistic Inquiry
30:27–67.

Dresher, Elan B. 2011. The phoneme. In The Blackwell Companion to Phonology , edited
by Elizabeth Hume Marc van Oostendorp, Colin J. Ewen and Keren Rice, vol. 1, 241–266.
Malden, MA & Oxford: Wiley-Blackwell.

Edlefsen, Matt, Dylan Leeman, Nathan Myers, Nathaniel Smith, Molly Visscher, and David
Wellcome. 2008. Deciding strictly local (SL) languages. In Proceedings of the Midstates
Conference for Undergraduate Research in Computer Science and Mathematics, edited by
Jon Breitenbucher, 66–73.

Elgot, C. C., and J. E. Mezei. 1965. On relations defined by generalized finite automata. IBM
Journal of Research and Development 9:47–68.

Endress, Ansgar D., Marina Nespor, and Jacques Mehler. 2009. Perceptual and memory
constraints on language acquisition. Trends in Cognitive Science 13:348–353.

Engelfriet, Joost, and Hendrik Jan Hoogeboom. 2001. Mso definable string transductions and
two-way finite-state transducers. ACM Trans. Comput. Logic 2:216–254.

Finley, Sara. 2008. The formal and cognitive restrictions on vowel harmony. Doctoral disser-
tation, Johns Hopkins University, Baltimore, MD.

Finley, Sara. 2015. Learning non-adjacent dependencies in phonology: Transparent vowels in
vowel harmony. Language In press.

Finley, Sara, and William Badecker. 2009. Artificial language learning and feature-based
generalization. Journal of Memory and Language 61:423–437.

Fougeron, Cécile, and Patricia A. Keating. 1997. Articulatory strengthening at edges of
prosodic domains. Journal of the Acoustic Society of America 101:3728–3740.

53

http://www.grappa.univ-lille3.fr/tata

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Frank, Robert, and Giorgo Satta. 1998. Optimality Theory and the generative complexity of
constraint violability. Computational Linguistics 24:307–315.

Gainor, Brian, Regine Lai, and Jeffrey Heinz. 2012. Computational characterizations of vowel
harmony patterns and pathologies. In The Proceedings of the 29th West Coast Conference
on Formal Linguistics, 63–71.

Gallagher, Gillian. 2010. Perceptual distinctness and long-distance laryngeal restrictions.
Phonology 27:435–480.

Garćıa, Pedro, and José Ruiz. 2004. Learning k-testable and k-piecewise testable languages
from positive data. Grammars 7:125–140.

Garcia, Pedro, Enrique Vidal, and José Oncina. 1990. Learning locally testable languages in
the strict sense. In Proceedings of the Workshop on Algorithmic Learning Theory , 325–338.

Gazdar, G., and G. Pullum. 1982. Natural languages and context-free languages. Linguistics
and Philosophy 4:469–470.

Gerdemann, Dale, and Gertjan van Noord. 2000. Approximation and exactness in finite state
optimality theory. In Proceedings of the Fifth Meeting of the ACL Special Interest Group in
Computational Phonology , 34–45.

Gildea, Daniel, and Daniel Jurafsky. 1996. Learning bias and phonological-rule induction.
Computational Linguistics 24:497–530.

Gold, E.M. 1967. Language identification in the limit. Information and Control 10:447–474.

Goldsmith, John. 1976. Autosegmental phonology. Doctoral dissertation, MIT, Cambridge,
MA.

Goldwater, Sharon, and Mark Johnson. 2003. Learning OT constraint rankings using a max-
imum entropy model. In Proceedings of the Stockholm Workshop on Variation within Op-
timality Theory , edited by Jennifer Spenader, Anders Eriksson, and Östen Dahl, 111–120.
Stockholm: Stockholm University.

Gorman, Kyle. 2013. Generative phonotactics. Doctoral dissertation, University of Pennsyl-
vania.

Graf, Thomas. 2010a. Comparing incomparable frameworks: A model theoretic approach
to phonology. University of Pennsylvania Working Papers in Linguistics 16:Article 10.
Available at: http://repository.upenn.edu/pwpl/vol16/iss1/10.

Graf, Thomas. 2010b. Logics of phonological reasoning. Master’s thesis, University of Califor-
nia, Los Angeles.

Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics. Doctoral
dissertation, University of California, Los Angeles.

Hale, Mark, and Charles Reiss. 2000. Substance abuse and dysfunctionalism: Current trends
in phonology. Linguistic Inquiry 31:157–169.

54

http://repository.upenn.edu/pwpl/vol16/iss1/10

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Halle, Morris. 1959. The Sound Pattern of Russian. The Hague, Mouton.

Halle, Morris. 1978. Knowledge unlearned and untaught: What speakers know about the
sounds of their language. In Linguistic Theory and Psychological Reality . The MIT Press.

Halle, Morris, and Jean-Roger Vergnaud. 1987. An Essay on Stress. The MIT Press.

Hansson, Gunnar. 2001. Theoretical and typological issues in consonant harmony. Doctoral
dissertation, University of California, Berkeley.

Hansson, Gunnary. 2008. Diachronic explanations of sound patterns. Language and Linguistics
Compass 2:859–893.

Hayes, Bruce. 1986. Assimilation as spreading in Toba Batak. Linguistic Inquiry 17:467–99.

Hayes, Bruce. 1995. Metrical Stress Theory . Chicago University Press.

Hayes, Bruce, Robert Kirchner, and Donca Steriade, eds. 2004. Phonetically-Based Phonology .
Cambridge University Press.

Hayes, Bruce, and Colin Wilson. 2008. A maximum entropy model of phonotactics and phono-
tactic learning. Linguistic Inquiry 39:379–440.

Heinz, Jeffrey. 2007. The inductive learning of phonotactic patterns. Doctoral dissertation,
University of California, Los Angeles.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology 26:303–351.

Heinz, Jeffrey. 2010a. Learning long-distance phonotactics. Linguistic Inquiry 41:623–661.

Heinz, Jeffrey. 2010b. String extension learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, 897–906. Uppsala, Sweden: Association for
Computational Linguistics.

Heinz, Jeffrey. 2014. Culminativity times harmony equals unbounded stress. In Word Stress:
Theoretical and Typological Issues, edited by Harry van der Hulst, chap. 8. Cambridge, UK:
Cambridge University Press.

Heinz, Jeffrey. 2015. Computational theories of learning and developmental psycholinguistics.
In The Oxford Handbook of Developmental Linguistics, edited by Jeffrey Lidz, William
Synder, and Joe Pater. Oxford University Press. In press.

Heinz, Jeffrey, and William Idsardi. 2011. Sentence and word complexity. Science 333:295–297.

Heinz, Jeffrey, and William Idsardi. 2013. What complexity differences reveal about domains
in language. Topics in Cognitive Science 5:111–131.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structured
hypothesis spaces. Theoretical Computer Science 457:111–127.

55

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Heinz, Jeffrey, and Regine Lai. 2013. Vowel harmony and subsequentiality. In Proceedings of
the 13th Meeting on the Mathematics of Language (MoL 13), edited by Andras Kornai and
Marco Kuhlmann, 52–63. Sofia, Bulgaria.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local con-
straints for phonology. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, 58–64. Portland, Oregon, USA: Association for Computational
Linguistics.

de la Higuera, Colin. 1997. Characteristic sets for polynomial grammatical inference. Machine
Learning 27:125–138.

Howard, Irwin. 1972. A directional theory of rule application in phonology. Doctoral disserta-
tion, Massachusetts Institute of Technology.

Hulden, Mans. 2009. Finite-state machine construction methods and algorithms for phonology
and morphology. Doctoral dissertation, University of Arizona.

van der Hulst, Harry, and Jeroen van de Weijer. 1995. Vowel harmony. In The Handbook
of Phonological Theory , edited by John A. Goldsmith, 495–534. Cambridge, Mass., and
Oxford, UK: Blackwell.

von Humboldt, Wilhelm. 1999. On Language. Cambridge Texts in the History of Philosophy.
Cambridge University Press. Edited by Michael Losonsky. Translated by Peter Heath.
Originally published 1836.

Hyman, Larry. 1998. Positional prominence and the ‘prosodic trough’ in yaka. Phonology
15:41–75.

Hyman, Larry. 2007. Kuki-Thaadow: An African tone system in Southeast Asia. UC Berkeley:
Department of Linguistics. UC Berkeley Phonology Lab Annual Report.

Hyman, Larry. 2011. Tone: Is it different? In The Blackwell Handbook of Phonological Theory ,
edited by John A. Goldsmith, Jason Riggle, and Alan C. L. Yu, 197–238. Wiley-Blackwell.

Hyman, Larry. 2014. How autosegmental is phonology? The Linguistic Review 31:363–400.

Hyman, Larry M. 2009. How (not) to do phonological typology: the case of pitch-accent.
Language Sciences 31:213 – 238. Data and Theory: Papers in Phonology in Celebration of
Charles W. Kisseberth.

Idsardi, William. 1998. Tiberian Hebrew spirantization and phonological derivations. Linguis-
tic Inquiry 29:37–73.

Idsardi, William J. 2000. Clarifying opacity. The Linguistic Review 17:337–350.

Jäger, Gerhard. 2002. Some notes on the formal properties of bidirectional optimality theory.
Journal of Logic, Language, and Information 11:427–451.

Jardine, Adam. 2014. Representing and learning phonological tiers. Talk presented at the
Northeast Computational Phonology Meeting (NECPHON). November 15. NYU.

56

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Jardine, Adam. 2015. Computationally, tone is different. Phonology Accepted with minor
revisions in August 2015.

Jardine, Adam, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2014. Very efficient learn-
ing of structured classes of subsequential functions from positive data. In Proceedings of the
Twelfth International Conference on Grammatical Inference (ICGI 2014), edited by Alexan-
der Clark, Makoto Kanazawa, and Ryo Yoshinaka, vol. 34, 94–108. JMLR: Workshop and
Conference Proceedings.

Jardine, Adam, and Jeffrey Heinz. 2015a. A concatenation operation to derive autosegmental
graphs. In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015),
139–151. Chicago, USA.

Jardine, Adam, and Jeffrey Heinz. 2015b. Learning tier-based strictly local languages. Trans-
actions of the Association for Computational Linguistics Accepted with minor revisions,
October 2015.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The Hague: Mouton.

Jurafsky, Daniel, and James Martin. 2008. Speech and Language Processing: An Introduction
to Natural Language Processing, Speech Recognition, and Computational Linguistics. 2nd
ed. Upper Saddle River, NJ: Prentice-Hall.

Kager, René. 1999. Optimality Theory . Cambridge University Press.

Kaplan, Ronald, and Martin Kay. 1994. Regular models of phonological rule systems. Com-
putational Linguistics 20:331–378.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational phonology. In
FSMNLP’98 , 1–12. International Workshop on Finite-State Methods in Natural Language
Processing, Bilkent University, Ankara, Turkey.

Kiparsky, Paul. 2000. Opacity and cyclicity. The Linguistic Review 17:351–366.

Kisseberth, Charles. 1970a. On the functional unity of phonological rules. Linguistic Inquiry
1:291–306.

Kisseberth, Charles. 1970b. On the functional unity of phonological rules. Linguistic Inquiry
1:291–306.

Kisseberth, Charles, and David Odden. 2003. Tone. In The Bantu Languages, edited by
D. Nurse and G. Philippson. New York: Routledge.

Kobele, Gregory. 2006. Generating copies: An investigation into structural identity in language
and grammar. Doctoral dissertation, University of California, Los Angeles.

Kornai, Andras. 1995. Formal Phonology . Outstanding Dissertations in Linguistics. Garland
Publishing.

Koskenniemi, Kimmo. 1983. Two-level morphology. Publication no. 11, Department of General
Linguistics. Helsinki: University of Helsinki.

57

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Krämer, Martin. 2003. Vowel Harmony and Correspondence Theory . Berlin: Mouton de
Gruyter.

Kula, Nancy C., and Lee S. Bickmore. 2015. Phrasal phonology in copperbelt bemba. Phonol-
ogy 32:147–176.

de Lacy, Paul. 2011. Markedness and faithfulness constraints. In The Blackwell Companion
to Phonology , edited by M. V. Oostendorp, C. J. Ewen, E. Hume, and K. Rice. Blackwell.

Lai, Regine. 2012. Domain specificity in phonology. Doctoral dissertation, University of
Delaware.

Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic Inquiry 46:425–451.

Lautemann, Clemens, Pierre McKenzie, Thomas Schwentick, and Heribert Vollmer. 2001. The
descriptive complexity approach to {LOGCFL}. Journal of Computer and System Sciences
62:629 – 652.
URL http://www.sciencedirect.com/science/article/pii/S0022000000917422

Liberman, Mark, and Alan Prince. 1977. On stress and linguistic rhythm. Linguistic Inquiry
8:249–336.

Lothaire, M., ed. 1997. Combinatorics on Words. Cambridge, UK, New York: Cambridge
University Press.

Lothaire, M., ed. 2005. Applied Combinatorics on Words. 2nd ed. Cmbridge University Press.

Luo, Huan. 2013. Long-distance consonant harmony and subsequantiality. Qualifying Paper,
UD Linguistics PhD Progam.

Marlo, Michael. 2007. The verbal tonology of Lumarachi and Lunyala: two dialects of Luluyia.
Doctoral dissertation, University of Michigan.

McCarthy, John. 2003. OT constraints are categorical. Phonology 20:75–138.

McCarthy, John. 2004. Headed spans and autosegmental spreading. Unpublished manuscript,
UMass, Amherst.

McCarthy, John. 2008a. Doing Optimality Theory . Malden, MA: Blackwell.

McCarthy, John J. 2007. Hidden Generalizations: Phonological Opacity in Optimality Theory .
London: Equinox.

McCarthy, John J. 2008b. The gradual path to cluster simplification. Phonology 25:271–319.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata. MIT Press.

Medvedev, Yu. T. 1964. On the class of events representable in a finite automaton. In Se-
quential Machines; Selected Papers, edited by Edward F. Moore, 215–227. Addison-Wesley.
Originally published in Russian in Avtomaty, 1956, 385–401.

Mielke, Jeff. 2008. The Emergence of Distinctive Features. Oxford: Oxford University Press.

58

http://www.sciencedirect.com/science/article/pii/S0022000000917422

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Mohri, Mehryar. 1997. Finite-state transducers in language and speech processing. Computa-
tional Linguistics 23:269–311.

Nevins, Andrew. 2010. Locality in Vowel Harmony . Cambridge, MA: The MIT Press.

Odden, David. 1994. Adjacency parameters in phonology. Language 70:289–330.

Ohala, J.J. 1981. The listener as a source of sound change. In Papers from the parasession on
language and behavior: Chicago Linguistics Society , edited by C.S. Masek, R.A. Hendrik,
and M.F. Miller, 178–203.

Oncina, Jose, and Pedro Garcia. 1991. Inductive learning of subsequential functions. Tech.
Rep. DSIC II-34, University Politécnia de Valencia.

Oncina, José, Pedro Garćıa, and Enrique Vidal. 1993. Learning subsequential transducers for
pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence
15:448–458.

Padgett, Jaye. 1995. Partial class behavior and nasal place assimilation. In Proceedings of the
1995 Southwestern Workshop on Optimality Theory , edited by K. Suzuki and D. Elzinga.

Pater, Joe. 2000. *NC
˚
. In Proceedings of NELS , edited by K. Kusumoto, vol. 26, 227–239.

Amherst, MA: GLSA.

Pater, Joe. 2001. Austronesian nasal substitution revisited: What’s wrong with *NC (and
what’s not). In Segmental Phonology in Optimality Theory: Constraints and Representa-
tions, edited by Linda Lombardi, 159–182. Cambridge: Cambridge University Press. Avail-
able (1995) on Rutgers Optimality Archive.

Payne, Amanda. 2013. Dissimilation as a subsequential process. Qualifying Paper, UD Lin-
guistics PhD Progam.

Popper, Karl. 1959. The Logic of Scientific Discovery . Basic Books, Inc. New York.

Potts, Christopher, Joe Pater, Rajesh Bhatt, and Michael Becker. 2008. Harmonic grammar
with linear programming: From linear systems to linguistic typology. Rutgers Optimality
Archive ROA-984.

Potts, Christopher, and Geoffrey Pullum. 2002. Model theory and the content of ot constraints.
Phonology 19:361–393.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint interaction in gener-
ative grammar. Tech. Rep. 2, Rutgers University Center for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint Interaction in Gen-
erative Grammar . Blackwell Publishing.

Riggle, Jason. 2004. Generation, recognition, and learning in finite state Optimality Theory.
Doctoral dissertation, University of California, Los Angeles.

59

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to Morphology and Syn-
tax . Oxford: Oxford University Press.

Roche, Emmanuel, and Yves Schabes. 1997. Finite-State Language Processing . MIT Press.

Rogers, James. 1994. Studies in the logic of trees with applications to grammatical formalisms.
Doctoral dissertation, University of Delaware. Published as Technical Report 95-04 by the
Department of Computer and Information Sciences.

Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome, and
Sean Wibel. 2010. On languages piecewise testable in the strict sense. In The Mathematics
of Language, edited by Christian Ebert, Gerhard Jäger, and Jens Michaelis, vol. 6149 of
Lecture Notes in Artifical Intelligence, 255–265. Springer.

Rogers, James, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. 2013. Cognitive and sub-regular complexity. In Formal Grammar , edited by Glyn
Morrill and Mark-Jan Nederhof, vol. 8036 of Lecture Notes in Computer Science, 90–108.
Springer.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information 20:329–342.

Rose, Sharon, and Rachel Walker. 2004. A typology of consonant agreement as correspondence.
Language 80:475–531.

Rozenberg, G., and A. Salomaa, eds. 1997. Handbook of Formal Languages: Beyond Words,
vol. 3. Springer.

Sakarovitch, Jaques. 2009. Elements of Automata Theory . Cambridge University Press. Trans-
lated by Reuben Thomas from the 2003 edition published by Vuibert, Paris.

Scott, Dana, and Michael Rabin. 1959. Finite automata and their decision problems. IBM
Journal of Research and Development 5:114–125.

Shieber, Stuart. 1985. Evidence against the context-freeness of natural language. Linguistics
and Philosophy 8:333–343.

Sipser, Michael. 1997. Introduction to the Theory of Computation. PWS Publishing Company.

Smolensky, Paul, and Géraldine Legendre. 2006. The Harmonic Mind: From Neural Compu-
tation to Optimality-Theoretic Grammar . Cambridge, MA: MIT Press.

Suzuki, Keiichiro. 1998. A typological investigation of dissimilation. Doctoral dissertation,
University of Arizona, Tucson, AZ.

Tesar, Bruce. 1995. Computational Optimality Theory. Doctoral dissertation, University of
Colorado at Boulder.

Tesar, Bruce. 2014. Output-driven Phonology . Cambridge University Press.

60

Computational Nature of Phonology (February 21, 2016 version) J. Heinz

Tesar, Bruce, and Paul Smolensky. 1998. Learnability in optimality theory. Linguistic Inquiry
229–268.

Tesar, Bruce, and Paul Smolensky. 2000. Learnability in Optimality Theory . MIT Press.

Thomas, Wolfgang. 1997. Languages, automata, and logic. In Handbook of Formal Languages,
vol. 3, chap. 7. Springer.

Turing, Alan. 1937. On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society s2:230–265.

Walker, Rachel. 2011. Vowel patterns in language. Cambridge: Cambridge University Press.

Wilson, Colin. 2003. Analyzing unbounded spreading with constraints: marks, targets, and
derivations. Unpublished manuscript, UCLA.

Wilson, Colin. 2004. Experimental investigation of phonological naturalness. In Proceedings
of WCCFL 22 , 534–546.

61

	Illuminating the phonological component of grammar
	What is phonology?
	Representing constraints and transformations
	Phonotactic knowledge and markedness constraints
	Transformations

	Expressivity and restrictiveness
	Why restrictiveness matters
	The Chomsky Hierarchy
	Phonology is regular
	The Subregular Hypothesis

	Constraints
	The encyclopedia of types: stringsets
	Four types of constraints
	Explaining the typology

	The encyclopedia of categories
	Conjunctions of Negative Literals
	Propositional Logic
	First Order Logic
	Monadic Second Order Logic

	Further evidence supporting the Subregular Hypotheses
	Constraints: A Summary

	Transformations
	The encyclopedia of types: maps
	An encyclopedia of categories: string-to-string maps
	Input Strictly Local Functions
	Output Strictly Local Functions
	Subsequential Functions
	Weakly Deterministic Functions
	Non-deterministic Regular Functions and Regular Relations

	Further evidence
	Transformations: a summary

	Summary and Implications for the phonological component
	Phonological generalizations have strong computational properties
	Problems with optimization
	Organizing phonological theory around these computational properties
	Next steps

	Representational Issues
	Extensions without strings
	Why string representations matter

	Conclusion

