Doing Computational Phonology

July 3, 2019

i

July 3, 2019 (© Jeffrey Heinz

Contents

I Foundations

1 Intensional and Extensional Descriptions of Phonological Gen-

eralizations

1.1 Generative Phonology
1.2 Extensional and Intensional Descriptions
1.3 Issues with Familiar Grammars
1.4 Computational Theory of Language
1.5 Doing Computational Phonology

2 Representations, Models, and Constraints

2.1 Logic and Constraints in Phonology
2.2 Chapter Outline
2.3 The Successor Model
2.4 First Order Logic
2.5 Feature-based Word Models
2.6 Monadic Second-Order Logic.
2.7 The Precedence Word Model
2.8 Discussion

2.8.1 Tradeoffs between representations and power

2.8.2 Typology, learnability, and psychological reality

2.8.3 Well-formedness and Transformations
2.9 Further Reading L.

3 Transformations, Logically
3.1 Strings-to-string Transformations
3.1.1 Word-final obstruent devoicing
3.1.2 Word-final vowel deletion
3.2 Getting Bigger Lo

il

23
23
25
26
29
35
39
46
50
50
20
20
20

iv

CONTENTS

3.2.1

3.3.1

IT Case Studies

2 Weighted Logics

IT Theoretical Contributions

III Horizons

July 3, 2019

Word-final vowel epenthesis
3.2.2 Duplication
3.2.3 Summary

3.3 Power of MSO-definable Transformations

Mirroring
3.3.2 Sorting

3.4 Conclusion

25

27

(© Jeffrey Heinz

Part 1

Foundations

DRAFT

Chapter 1

Intensional and Extensional
Descriptions of Phonological
Generalizations

JEFFREY HEINZ

1.1 Generative Phonology

Within languages, the pronunciation of a morpheme often differs depending
on the word in which it occurs. Examples like English go/went may indicate
that these different pronunciations have almost nothing in common, it is
much more typical that the pronunciations of the same morpheme in different
words are in fact similar, as with common English plural cat/s//dog[z]. The
main empirical conclusion linguists have drawn is that the variation in the
pronunciation of morphemes is systematic. It is no accident that the plural
form of tip uses [s] just like cat/s/ and that the plural form of dud is [z] just
like dog/[z]. Explaining this systematic variation is thus an important goal of
linguistic theory.

The central hypothesis of Generative Phonology (GP) holds is presented
below.

T The observed systematic variation in the pronunciation of morphemes
is best explained if people hold a single mental representation of the
pronunciation of each morpheme (the underlying representation, UR)
which is lawfully transformed into its pronounced variants (the surface

3

4 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

representation, SR).

This book assumes this hypothesis is correct, and does not review any argu-
ments for it.! Readers interested in arguments for this position are directed
to Odden (2014, chapter 4) and Kenstowicz and Kisseberth (1979, chapter
6).

If this hypothesis is correct, then there are three questions every theory
of generative phonology must address:

1. What is the nature of the underlying representations?
2. What is the nature of the surface representations?

3. What is the nature of the transformations between these representa-
tions?

These questions are certainly not exhaustive but they are centrally impor-
tant. For instance, another important question “How different can the under-
lying representations be from the surface representations?” (the question of
abstraction) has been raised and studied (Kenstowicz and Kisseberth, 1977).

This book provides a general framework which addresses these questions
from a computational perspective. The computational perspective addresses
both the nature of the representations and the nature of the transformations.
It is flexible in the sense that different representational schemes can be stud-
ied and compared. This is accomplished through model-theoretic representa-
tions of words and phrases. It is also flexible in the sense that different types
of computational power can be studied and compared. This is accomplished
by studying what can be accomplished with logical expressions of different
types. As will be explained, model theory and logic provide a mathematical
foundation for theory construction, theory comparison, and even descriptive
linguistics.

The study of phonology from the computational perspective allows one to
construct theories of phonology which provide answers to the above questions.
Representational choices and choices of logical power essentially determine
the theory and its empirical predictions. Theories of phonology developed

!The words transformed and transformation are used here in their original meaning
simply to signify that the URs become SRs, and that the SR derived from some UR may
not be identical to this UR. If a UR is related to a SR via the transformative component
of a phonological grammar, it is also often said the UR is mapped to the SR. These words
are deliberately neutral with respect to the specific type of grammar being employed.

July 3, 2019 (© Jeffrey Heinz

1.1. GENERATIVE PHONOLOGY 5

under this framework are examples of Computational Generative Phonology
(CGP).

To begin motivating CGP, I would like to give some examples of how
phonological theories aim to answer these questions. It is not possible to
comprehensively survey here the range of answers that have been offered.
Therefore, I only highlight some answers (and only in very broad strokes).

Rule-based theories, as exemplified by Chomsky and Halle (1968a), for ex-
ample, have argued that the abstract underlying representations are subject
to language-specific morpheme structure constraints (MSCs). The transfor-
mation from underlying forms to surface forms are due to language-specific
rules, which are applied in a language-specific order. Constraints on surface
representations were, generally speaking, not part of the ontology of these
theories, and therefore were not posited to have any psychological reality.
Such generalizations—the phonotactic generalizations—were derivable from
the interaction of the MSCs and the rules.

On the other hand, in classic Optimality Theory (Prince and Smolensky,
1993, 2004), there are no constraints on underlying representations (rich-
ness of the base), but there are psychologically real, universal constraints
on surface forms (markedness constraints). The transformation from un-
derlying forms to surface forms is formulated as an optimization over these
markedness constraints, in addition to constraints which penalize differences
between surface and underlying forms (faithfulness constraints). While both
the markedness and faithfulness constraints are universal, their relative im-
portance is language-specific. So in every language the surface pronunciation
of an underlying representation is predicted to be the optimal form (the one
that violates the most important constraints the least). Of course what is
optimal varies across languages because the relative importance of the con-
straints may vary across languages.

These two theories are radically different in what they take to be psy-
chologically real. The ontologies of the theories are very different. Perhaps
this is most clear with respect to the concept of phonemes (Dresher, 2011).
Phonemes exist as a consequence of the ontology of rule-based theories, but
they do not as a consequence of the ontology of OT. This is simply because
phonemes are a kind of MSC; underlying representations of morphemes must
be constructed out of them, and nothing else. In OT, there are no MSCs and
hence there are no phonemes. The principle of Lexicon Optimization guar-
antees that the URs of pit and spit are [p"it] and [spit], respectively (Kager,
1999). The underlying, mental representation of the voiceless labial stops in

July 3, 2019 © Jeffrey Heinz

6 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

both words are not the same. Consequently, the complementary distribution
of speech sounds are explained in a very different manner in the two theories,
and these theories promote different views of the notion of contrast. Despite
these differences however, there is an important point of agreement: In both
theories, complementary distribution of speech sounds in surface forms is the
outcome of a transformation of underlying forms to surface forms.

This is the point I wish to emphasize: neither theory abandons the fun-
damental insight stated in 1.1.2 The theories offer radical different answers
to the questions in 1.1, but they agree on the questions being asked.

In the remainder of this chapter, I motivate a computational approach
to phonology. I first make an important distinction between extensional and
intensional descriptions of linguistic generalizations and argue that the for-
mer is important for understanding the latter. I then argue that neither
rule-based or constraint-based formalisms as practiced provide adequate in-
tensional descriptions of phonological generalizations.

This is then contrasted with automata and logical descriptions of lan-
guage. The chapter concludes that logical descriptions of linguistic general-
izations are preferable to automata-theoretic descriptions for several reasons.
This is not to say automata are not useful (they are!) but that logic offers
more in the short term to linguists interested in writing and analyzing gram-
mars. So when we consider the ways in which we spend our time, logic is a
good place to start.

1.2 Extensional and Intensional Descriptions

McCarthy (2008, pp. 33-34) emphasizes the importance of descriptive gen-
eralizations in preparing analyses. “Good descriptive generalizations,” he
writes “are accurate characterizations of the systematic patterns that can be
observed in the data.” They are, as he explains, “the essential intermediate
step between data and analysis.” This is because descriptive generalizations
go beyond the data; they make predictions about things not yet observed.

Descriptive generalizations are important for computational phonology
too. They are typically stated in prose. For example, consider the phonolog-
ical generalizations below.

2Tt is true that periodically some work is published in that direction, for example the
work on output-to-output correspondence (Benua, 1997, and others).

July 3, 2019 (© Jeffrey Heinz

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 7

1. Word final vowels are prohibited.
2. Consonant clusters are prohibited word-finally.

These generalizations are good ones because they allow the analyst to
recognize that potentially unobserved forms like tapaka is ill-formed but tanak
is well-formed with respect to 1. Similarly, we recognize that 2 distinguishes
between forms like tapakt and tanakta.

The generalizations above divide every word of every length cleanly into
two sets: those that obey the description and those that do not. This is
illustrated in the figure below. The set of words that is well-formed according

apa, api, ape,

pataka, pataga,

medinakatapa,

Figure 1.1: Generalizations about well-formedness partition the set of all
possible forms.

to 1 is called the extension of 1.

Importantly, this set—the extension—is infinite in size. For instance, it is
not possible to write down every word that obeys 1. If a set of words formed
from a finite alphabet is infinite then there is no upper bound on the length
of words. Likewise, if there is no upper bound on the length of words, then
the set of words formed from a finite alphabet is also infinite. Thus whether
the size of a set of words is infinite or not is intertwined with whether or

July 3, 2019 (© Jeffrey Heinz

8 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

not there is an upper bound on the length of words. These issues are so
important to get clear that they are discussed in further detail below.

Extensional descriptions contrast with intensional descriptions of gener-
alizations. For now, intensional descriptions can be thought of as grammars
that denote the extension. The prose in 1 and 2 are examples of intensional
descriptions. Rule-based grammars and OT grammars are also examples of
intensional descriptions. A good intensional description is one where the
the extension can be rigorously and precisely defined from the intensional
description. Generally, English prose does not make for good intensional
descriptions. Further below, I will argue that in their current forms and
practice, rule-based grammars and OT grammars are more like English prose
than good intensional descriptions.

Let us now return to the infinitely-sized extensions. Is it reasonable for
descriptive generalizations 1 to denote an infinite set of words? Yes, it is.
One reason is that these generalizations make no reference to length at all.
If the length of words mattered, it ought to be part of the generalization.
Another way of thinking about this is that if there were a principled upper
bound on the length of words, then that would be a generalization distinct
from 1 above, and hence ought not be included within it. Finally, even if
for some reason 1 ultimately denoted a finite set, there are reasons to treat
its extension as infinite anyway. Savitch (1993) argues that large finite sets
of strings are often best understood if they are factored into two parts: an
infinite set of strings and a separate finite-length condition. They are, in his
words, “essentially infinite.” The basis of the argument is a demonstration
that intensional descriptions of infinite sets can be smaller in size than the
intensional descriptions of finite sets.

These infinite-sized extensions do not exist in the same way that your
fingernails, your bed, or your brain exists. Instead they exist mathematically.
Each generalization is an infinite object like a circle, a set of infinitely many
points each exactly the same distance from a center. But we can never see the
mathematical object in its entirety in the real world. It is a fact that circles
as infinite objects do not exist. The situation with linguistic generalizations
is similar. The extension is there mathematically, but we cannot write down
every element of the extension in a list for the same reason all points of a
circle cannot be written down in a list since there are infinitely many. But we
can write down a grammar which can be understood as generating the infinite
set, in the same way that a perfect circle can be generated by specifying a
center point and a distance, the radius.

July 3, 2019 © Jeffrey Heinz

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 9

The same circle can be described in other ways as well. If we employ
the Cartesian plane, we could generate a circle with an equation of the form
(r —a)* + (y — b)*> = r?* where the r is the radius of the circle and (a,b) is
its center. The equation is interpreted as follows: all and only points (z,y)
which satisfy the equation belong to the circle. The equation is an intensional
description and the set of points, the circle, is its extension.

We can also describe a circle on a plane with polar coordinates instead of
Cartesian ones. Recall that polar coordinates are of the form (r,) where r is
the radius and 6 is an angle. The equation r = 2a cos(#) + 2bsin(#) provides
the general form of the circle with the radius given by v/a2? + b? and the
center by (a,b) (in Cartesian coordinates). The polar equation is interpreted
like the Cartesian one: all and only points (r,#) which satisfy the equation
belong to the circle.

There are some interesting differences between these two coordinate sys-
tems. Each point in the Cartesian system has a unique representation, but
each point in the polar system has infinitely many representations (since the
same angle can be described in infinitely many ways, e.g. 0° = 360° = 720° =
...). If the center of the circle is the origin, the polar equation simplifies to
r = a whereas the Cartesian equation remains more complicated z2 +y? = r2.
Thus, the polar equation 7 = 4 and the Cartesian equation z2 4 y? = 16 are
different equations with different interpretations, but they describe the same
unique circle: one of radius four centered around the origin. The two equa-
tions differ intensionally, but their extension is the same.

It seems strange to ask which of these two descriptions is the ‘right’
description of a circle. They are different descriptions of the same thing.
Some descriptions might be more useful than others for some purposes. It also
interesting to ask what properties the circles have irrespective of a particular
description. For instance the length of the perimeter and the area of a circle
are certainly relatable to these descriptions, but they are also in a sense
independent of the particulars. The perimeter and area depend on the radius
but not the center, though both the radius and the center appear in the
equations. This suggests that the radius is a more fundamental structure to
a circle than its center, though both certainly matter.

The analogy I wish to draw is that rule-based and OT-theoretic for-
malisms are like the Cartesian and polar systems. The analogy is far from
perfect, but it is instructive. Both rule-based and OT analyses provide de-
scriptions of platonic, infinitely sized objects. In many cases, but not all, the
two formalisms describe the same object, insofar as the empirical evidence

July 3, 2019 (© Jeffrey Heinz

10 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

allows.

What is this object? The transformations from underlying forms to sur-
face forms can be thought of as a function, in the mathematical sense of
the word. Another word for function becoming prevalent in the phonolog-
ical literature is map (Tesar, 2014). For example, consider the descriptive
generalizations below.

1. Word final vowels delete.
2. Word final vowels delete except when preceded by a consonant cluster.

These generalizations also have infinite-sized extensions, but the extensions
are better understood as functions.

apa— ap
api — ap
ape — ap

pataka — patak
pataga — patag

medinakatapaka — medinakatapak

Figure 1.2: Generalizations about transformations are functions.

There are three parts to a function. One, there is its domain, which is
the set of objects the function applies to. Two, there is its co-domain, which
is the set of objects to which the elements of the domain are mapped. Three,
there is the map itself, which says which domain elements are transformed
to which co-domain elements. Thus to specify a function, one needs to pro-
vide a description of its domain, its co-domain, and a description of which

July 3, 2019 (© Jeffrey Heinz

1.2. EXTENSIONAL AND INTENSIONAL DESCRIPTIONS 11

domain elements become which co-domain elements. Following traditional
phonological terminology, I use the term constraint to refer to intensional
descriptions of either the domain or co-domain.

This lines up nearly perfectly with the fundamental questions of phono-
logical theory. The underlying representations correspond to the domain.
The surface representations are the co-domain. And the transformation from
underlying to surface forms is the map from domain elements to co-domain
elements. From this perspective, describing the phonology of a language
requires describing aspects of this function.

Further, in linguistic typology we are actually interested in the class
of such functions that correspond to possible human phonologies. If the
phonologies of languages are circles we would be interested in the univer-
sal properties of circles and the extent of their variation. Circles are pretty
simple, so the answers are straightforward. All circles have a center and a
radius, but their centers can be different points and their radii can have dif-
ferent lengths. What universal properties do phonological functions share?
What kind of variation does the human animal permit across these functions?

The point is that when we develop a linguistic generalization, it is im-
portant to know what its extension is. Ultimately, the intensional (gram-
matical) description we provide must generate this extension. The emphasis
placed here on the extensional description as an infinite object should not
be taken to mean intensional descriptions do not matter. Of course they
matter — theories of these intensional descriptions ought to make predictions
about what is psychologically real, predictions that in principle are testable
with the right kinds of psycholinguistic and neurolinguistic experimentation.
They also make predictions about linguistic typology: the available inten-
sional descriptions limit the extensions accordingly. In addition to making
correct predictions, phonologists expect that intensional descriptions express
the ‘right’ generalizations.

Extensional descriptions are an essential, intermediate step between the
prose descriptive generalizations and the formal intensional descriptions (the
grammatical analysis).

It is critically important that it is well-understood how the intensional
descriptions relate to the extensional ones. We want to be able to answer
questions like the following:

1. Given a word w and an intensional description of a constraint C, does
w violate C7 (We may also be interested in the number of violations

July 3, 2019 (© Jeffrey Heinz

12 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

and their locations in the word.)

2. Given a word w in the domain of a transformation f what words in the
co-domain of f does f map w to, if any?

3. Given a word v in the co-domain of a transformation f what words in
the domain of f map to v, if any?

Question 1 is often called the membership problem. Question 2 is often
called the generation problem. Question 3 is often called the recognition
or parsing problem. Good intensional descriptions allow answers to these
questions to be computed effectively. In the next section, I argue that rule-
based intensional descriptions and OT grammars are not good intensional
descriptions in this narrow sense.

1.3 Issues with Familiar Grammars

Chomsky and Halle (1968b) present a formalization based on rewrite rules.
The basic rewrite rule is of the foom A — B / C _ D . This notation
is intended to mean that if an input string contains CAD then the output
string will output CBD (so A is rewritten as B in the context C __ D). To
understand the extension of a rule, we need to know how to apply it. Orig-
inally, Chomsky and Halle (1968a, p. 344) intended for the rules to apply
simultaneously to all the relevant targets in an input string. They wrote,
“To apply a rule, the entire string is first scanned for segments that satisfy
the environmental constraints of the rule. After all such segments have been
identified in the string, the changes required by the rule are applied simulta-
neously.” For many phonological rules, this explanation appears sufficient to
denote the extension. For instance the rules corresponding to the descriptive
generalizations (1) is V — @ / __ # . Humans have no difficulty using
this rule to answer the generation and parsing problems above given this
intensional description. However, it is much less clear what the extension of
any rule would be.?

The phonological literature after SPE addressed the question of rule ap-
plication (Anderson, 1974), and other types of rule application were identified
such as left-to-right or right-to-left. It was clear that the mode of applica-
tion determined the extension of the rule. For example, for the input string

30f course this depends in part on what A, B, C and D themselves are able to denote.

July 3, 2019 (© Jeffrey Heinz

1.3. ISSUES WITH FAMILIAR GRAMMARS 13

iana and rule V — [4nasal] / __ [+nasal] simultaneous application
yields output idna but right-to-left application yields output idna. While
linguistically-chosen examples served to distinguish one mode of application
from another, general solutions to the generation and recognition questions
by Johnson (1972) and Kaplan and Kay (1994) were for the most part ignored
by generative phonologists.

It is my contention that rule application is still not well-understood by
most students of phonology, despite the careful computational analyses by
Johnson (1972); Kaplan and Kay (1994) and Mohri and Sproat (1996). In
informal surveys of phonologists in-training, many have difficulty of applying
the rule aa — b simultaneously to the input aaa. People wonder whether
the right output is ab, ba, or aa. According to Kaplan and Kay’s analysis,
there are two outputs for this input when the rule aa — b is applied
simultaneously. They are ab and ba. Their analysis translates rewrite rules
into finite-state automata, which are grammars whose extensions are very
well defined and understood. These will be explained in a bit more detail in
the next section.

Interestingly, Kaplan and Kay’s analyses of rule application, which has
been implemented in software programs like xfst (Beesley and Kartunnen,
2003) and foma (Hulden, 2009a,b), do not exhaust the possible natural in-
terpretations of the rewrite rule A — B / C _ D . Like Johnson and
Kaplan and Kay’s analyses, Chandlee’s (2014) analysis also uses finite-state
automata to determine an extension of a rule A — B / C _ D | provided
that CAD is a finite set of strings. Unlike Kaplan and Kay, her interpretation
of the extension of the rule aa — b maps input aaa to bb. This result
is arguably what Chomsky and Halle in mind when they described simul-
taneous application because each aa sequence satisfies “the environmental
constraints of the rule.”

The point of the foregoing discussion is simply this: a rule A — B /
C _ D underdetermines its extension. The extensions are a critical part of
any rule-based theory and there is more than one way such rules determine
extensions. This point is not news nor is it controversial. It is a well-known
chapter in the history of phonological theory. Chandlee (2014) shows a good
understanding of the extensions of SPE-style rules is not a closed chapter in
a phonological theory based on rewrite rules. Bale and Reiss (2018) may be
the first textbook on phonology that provides an adequate interpretation of
the application of rewrite rules.

Optimality Theory is an improvement in some sense. Given an OT gram-

July 3, 2019 (© Jeffrey Heinz

14 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

mar, and an input form there is a well-defined solution to the generation
problem. This solution follows from the architecture of the OT grammar.
The GEN component generates the set of possible candidates and the EVAL
component uses the grammar of ranked constraints to select the optimal
candidates.

Nonetheless in actual phonological analyses the generation problem faces
two difficulties, each acknowledged in the literature. The first one is ensuring
that all the possible candidates are actually considered by EVAL. The ab-
sence of an overlooked candidate can sink an analysis. The proposed optimal
candidate turns out to be less harmonic than some other candidate that the
analysts failed to consider. How can analysts ensure that every candidate
has been considered?

The second is ensuring that all the relevant constraints are present in
the analysis. The absence of a relevant constraint can also sink an analysis.
(Prince, 2002, p. 276) makes this abundantly clear. He explains that if a
constraint is ignored that must be dominated by some other constraint then
the analysis is “dangerously incomplete.” Similarly, if a constraint is omitted
that may dominate some other constraint then the analysis is “too strong
and may be literally false.”

As a result, any phonological analysis of a language which does not in-
corporate the entire set of constraints is not guaranteed to be correct. This
makes studying some aspect of the phonology of the language difficult. The
constraints deemed irrelevant to the fragment of the phonology under inves-
tigation (and which are therefore excluded) actually need to be shown to be
irrelevant for analysts to establish the validity of their analyses.

Both these problems in OT can be overcome. The solution again comes
from the theory of computation, in particular from the theories of finite-
state automata and so-called regular languages (defined and discussed in
the next section). The primary result is that even if the constraints and
GEN can be defined in these terms, the maps OT produces are not guar-
anteed to be definable in these terms — unless the constraints have a finite
bound on the maximum number of violations they can assign (Frank and
Satta, 1998). Karttunen (1998) uses this fact to provide a solution and soft-
ware for the generation and recognition problems (see also (Gerdemann and
Hulden, 2012)), and he assumes each constraint has some maximum num-
ber of violations. While some theoretical phonologists have argued for this
position (McCarthy, 2003), most do not adopt it. Riggle (2004) provides a
different solution which does not require bounding the number of violations

July 3, 2019 © Jeffrey Heinz

1.3. ISSUES WITH FAMILIAR GRAMMARS 15

constraints assign. His solution is guaranteed to be correct provided the map
the OT grammar is in fact representable as a finite-state relation (not all of
them are). Another solution is present in Albro’s (2005) dissertation, which
provides a comprehensive OT analysis of the phonology of Malagasy.

Each of these authors make use of finite-state automata to guarantee the
correctness of their solutions. However, none of these approaches have yet to
make its way into the more commonly used software for conducting OT anal-
yses such as OTSoft (Hayes et al., 2013), OT-Help (Staubs et al., 2010), and
OTWorkplace (Prince et al., 2016). A particular weakness of this software,
unlike Karttunen’s, Riggle’s, and Albro’s is that they can only work with
finite candidate sets, despite the fact that GEN is typically understood as
generating an infinite candidate set. Consequently, the commonly used soft-
ware amounts to nothing more than pen-and-paper approaches with lots of
paper and lots of pens, and so the aforementioned issues remain (Karttunen,
2006).

McCarthy (2008, p. 76) argues the aforementioned computational ap-
proaches are only possible in “narrowly circumscribed phenomenon,” which
ignores Albro’s detailed, thorough analysis of the whole phonology of Mala-
gasy. He also argues the methods are only as good as the algorithm that
generates the candidates. That may be true, but the alternatives are man-
ual, heuristic methods.* People may differ on which is better, but I will place
my bets on the algorithm which is guaranteed not to leave out candidates
that GEN produces. McCarthy’s dismissal of the value of computational
approaches is unfortunate, but it is representative of attitudes in the field.

Regardless of the extent the which different researchers appreciate the
computational treatments of phonological theories, it is noteworthy and no
accident that every attempt to guarantee a solution of the recognition and
generation problems (and the membership problem when constraints are in-
volved) makes use of finite-state automata and the theory of regular lan-
guages. Even OTWorkplace employs the finite-state calculus (with regular
expressions) to automatically assign candidates constraint violations. What
are these devices and what makes them so good for denoting extensions of
generalizations?

41t is true that the GEN function in the Albro’s, Karttunen’s, and Riggle’s methods
is not exactly the same as the one assumed in Correspondence Theory (McCarthy and
Prince, 1995), but it is instructive to understand why.

July 3, 2019 (© Jeffrey Heinz

16 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

1.4 Computational Theory of Language

Automata are a cornerstone of the computational theory of language. Au-
tomata are machines that process specific types of data structures like strings
or trees. They form a fundamental chapter of computer science. There are
many kinds of automata. The Turing machine is just one example. Pushdown
automata are another. Readers are referred to texts such as Sipser (1997)
and Hopcroft et al. (2001) for overviews of the theory of computation.

There are also deep connections between automata and logic. In this
section, I will briefly review finite-state automata for string processing. Then
I will informally introduce logic as another way of providing an intensional
description of phonological generalizations. Their extensions are also well-
defined; and in fact in many cases there are algorithms which convert a logical
description into an automaton that describes exactly the same extension.

We begin with a simple automaton, the finite-state acceptor. It is an
intensional description with a well-defined extension. As a matter of fact, it
is a precise finite description of a potentially infinite set of strings.

A finite-state acceptor contains a finite set of states. We give the states
names so we can talk about them; for instance they are often indexed with
numbers. Some states are designated ‘start’ states. Some states are desig-
nated ‘accepting’ states. (Some states can be both ‘start’ and ‘accepting’
states.) Transitions lead from one state to another; they are labeled with
letters from some alphabet. That’s it. So a finite-state acceptor is of finite
size. What is its extension? Well the extension is defined as follows. A word
w is accepted/generated /recognized by a finite-state acceptor A if there is
a path along the transitions of A which begins in a start state of A, which
ends in a final state of A, and which spells out w exactly.

As an example, consider Figure 1.3, which shows the finite-state acceptor
for the generalization that word-final vowels are prohibited. Per convention,
the start state is designated by the unanchored incoming arrow and final
states are marked with a double perimeter. The word nok is generated by
this machine since there is a path beginning in a start state and ending in a
final state which spells it out. This path is shown below.

Input: n 0 k
States: 0 — 1 — 0 — 1

A minute of inspection reveals that every path for every word which ends in
a vowel ends in state 0, which is not an accepting state. But every path for

July 3, 2019 (© Jeffrey Heinz

1.4. COMPUTATIONAL THEORY OF LANGUAGE 17

B

Figure 1.3: A finite state acceptor for the generalization “Word final vowels
are prohibited.” A simple alphabet {nk,a,0} is assumed.

every word which does not end in a vowel ends in state 1, which is accepting.
Algorithms which solve membership problem for finite-state acceptors are
well understood (Hopcroft et al., 2001).

Finite-state automata are not limited to acceptors. String-to-string func-
tions can be described with automata that are called transducers. These are
acceptors whose labels have been augmented with an additional coordinate.
Labels are now pairs instead of a single point. Figure 1.4, which shows the
finite-state acceptor for the generalization that word-final vowels delete. As
before, valid paths through this machine (those that begin in start states
and end in accepting states) spell out input words and the output word they
map to. In the figure, the colon separates the left coordinate (input) from
the right coordinate (output). The symbol A\ denotes the empty string. To

Figure 1.4: A finite state acceptor for the generalization “Word final vowels
delete.” A simple alphabet {n,k,a,0} is assumed.

illustrate, consider the path which shows that the output of nako is nak.

Input: n a k 0
States: 0 — 0 — 0 — 0 — 1
Output: n a k A

As with the membership problem and finite-state acceptors, there are algo-
rithms which solve the generation and recognition problems for finite-state
transducers.

July 3, 2019 (© Jeffrey Heinz

18 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

There are some interesting things to observe about the finite-state trans-
ducer. The first is that it is non-deterministic. This means for a given input,
there is more than one path. For instance, the input nok maps to nok, and
there are two paths that spell it out. But only one is valid: the one that
reads and writes & and moves from state 0 to state 1.°

Another point is that the transducer in Figure 1.4 maps the input word
nakao to naka. Thus, this machine provides the extension of the rule V
— & / _ # applying simultaneously. In OT, if FINAL-C outranks MAX,
then the output would be nak with the last two vowels deleting. With rules,
this could be accomplished by applying the former rule right-to-left. The
finite-state transducer shown in Figure 1.5

Figure 1.5: A finite state acceptor for the generalization “Strings of vowels
word-finally delete.” A simple alphabet {nk.a,0} is assumed.

Transducers can also map strings to numbers. The simple one shown in
Figure 1.6 counts the number of os in a word. The idea here is that instead
of combining the output side of valid paths with concatenation as for strings,
they are combined with addition. Below is an example of the only valid path
for the word naoko which would be mapped to 2.

Input: n a 0 k 0
States: A —- A — A —- A —> A — A
Output: 0 0 1 0 1

This is exactly the approach used by Riggle (2004) to define markedness and
faithfulness constraints in OT. Again, the extension of the transducer in Fig-

5Non-determinism is one way optionality can be handled with finite-state transducers.
If state A was also an accepting state then there would be two valid paths for the input
noko: one would write the output nako and the other the output nak.

July 3, 2019 © Jeffrey Heinz

1.4. COMPUTATIONAL THEORY OF LANGUAGE 19

Figure 1.6: A finite state transducer which counts the number of os in words.
A simple alphabet {nk,a,0} is assumed.

ure 1.5 is precisely defined and the corresponding generation and recognition
problems solvable.

There are many generalizations of this kind available to transducers made
possible by the study of semirings (Droste and Kuich, 2009; Goodman, 1999).
Semirings are discussed in more detail in Chapter 2.

What of the recognition problem? Another important advantage of finite-
state automata is that they are invertible. Consequently, a solution to the
generation problem entails a solution to the recognition problem. Given a
string nak, the transducer can tell you that it is the output of the any of the
following inputs: nak, naka, nako.

Nonetheless, despite the advantage of a well-defined extensions, there are
some shortcomings to using finite-state automata for phonological analyses.
One is that letter of the alphabet are treated atomically. For instance, there is
no sense in which the symbols [p,t,k]| share any properties. It remains unclear
how to incorporate phonological features and natural classes in a natural way
into these machines. The most common way seems to just group the letters
together that behave together as I have done int he examples above. While
this is certainly sufficiently expressive, it is not satisfying. We want our
intensional descriptions to somehow speak directly to the descriptive ones.
In the case of “Word final vowels are prohibited” we want to be able to
express this directly.

Another drawback is that as the generalizations become more complex,
so do the finite-state automata. They become spaghetti-like and difficult to
read. This drawback is mitigated, however, in a couple of ways. The first
is that it is very well understood how to combine different finite-state au-
tomata to produce new ones. This allows the generalizations instantiated
by the ‘primitive’ ones to persist to some degree in the complex ones. For

July 3, 2019 (© Jeffrey Heinz

20 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

instance, it is straightforward to construct a finite-state acceptor that gener-
ates exactly the intersection of two infinite sets of strings which are generated
by two acceptors. Similarly, it is straightforward to construct a finite-state
transducer that generates the composition of two functions which are gener-
ated by finite-state transducers. In this way, more complex finite-state au-
tomata can be constructed from simpler parts, much in the same way more
complex phonological grammars are built up from identifying generalizations
that interact in some manner.

A third problem is that even simple machines are not easy to write in text.
They are often pictured as diagrams, and in the same way it can be tiring to
read them, it can be tiring to draw them as well. This problem is mitigated
in a couple of ways. Some researchers use tables or matrix notation, others
use regular expressions (Beesley and Kartunnen, 2003; Hulden, 2009b), and
still others use logic.

In this book, we are going to use logic and not automata to represent
linguistic generalizations. There are several reasons for this. Most impor-
tantly, like automata, the extensions of logical formula are precisely defined.
Another key reason is that the representations are flexible. We can repre-
sent words exactly as any phonologist would want to. As this book will
show, phonological features, syllable structure, autosegmental representa-
tions, phonetic information, and a host of as-of-yet unconsidered possibilities
are available and directly representable with logic. Thirdly, as this book will
show, the combination of logical power and representation provides a natural
way to entertain distinct theories of phonology and compare them. Addition-
ally, there is a literature showing how logical formula can be translated into
automata which are equivalent in the sense that they solve the same mem-
bership, generation, and recognition problems. While this literature does
not address every phonological representation proposed, the basic analytical
methods which show how this can be done for strings and trees are there.

Finally, logic is not going anywhere. This is very important. If a linguist
describes a generalization with logic and the representations they want, they
can be guaranteed that people in will be able to read their description and
understand it hundreds of years later.

In short, logical formula have all of the advantages, and none of the
disadvantages, of automata.

July 3, 2019 © Jeffrey Heinz

1.5. DOING COMPUTATIONAL PHONOLOGY 21

1.5 Doing Computational Phonology

How does one do computational generative phonology? This book provides
an answer.

In the first part, logical foundations and model theory are presented in the
context of strings. It is explained how model theory allows one to precisely
describe different representations of words and phrases. It is explained how
the primitive elements in these representations would have ontological status
in the theory. It is also explained how logical expressions can be used to
define constraints to delimit possible representations in words and phrases
and transformations to show how one representation is mapped to another. It
is explained how weighted logical expressions allow ones to express a variety
of linguistic generalizations, including gradient ones. These definitions and
techniques are illustrated with examples drawn from phonology, as well as
examples showing the terrific expressivity of the framework. The first part
of this books opens a large umbrella of techniques and possibilties.

In the second part, these techniques are applied to the kinds of phonology
problems one finds in standard textbooks on phonology. The focus here is
descriptive in the following sense. The linguist marshalls arguments from a
collection of linguistic forms before her in favor of particular linguistic gen-
eralizations. These arguments are presented and then the linguistic general-
izations are formalized in terms of model-theoretic representations and logic.
The chapters are short, each dealing with a relatively small and straight-
forward phonological problems. These examples serve as models for how
analysis of other small and straightforward can be analyzed within CGP.

In the third part, the chapters address a variety of theoretical issues ad-
dressing both aspects of representation and computional power. Sebastian
shows how to incorporate insights from phonetically-based phonology into
CGP representationally. Hwangbo shows how representing vowel height in
terms of degrees of aperture leads to straightforward analysis of vowel lower-
ing. Strother-Garcia analyzes syllable structure and the sonority sequencing
principle. Rogers and company show how the stress patterns in the world’s
languages can be understood as particular the combination of primitive con-
straints, characterizes their complexity and identifies sources of complexity.
Lindell and Chandlee provide a logical characterization of Input Strictly Lo-
cal functions, which Chandlee showed earlier to well-characterize an impor-
tant natural class of phonological transformations. Deovletian shows that
the Raimy-style linearization is computationally very complex. Once the

July 3, 2019 © Jeffrey Heinz

22 CHAPTER 1. DESCRIPTIONS OF PHONOLOGICAL GENERALIZATIONS

source of the complexity is identified, he suggests way to mitigate it. Payne
shows the comptuational complexity of GEN is also very complex. Vu shows
how transformations can also be expressed as constraint on correspondence
structures. These chapters are but a small sample of the kinds of research
questions and investigations that can be addressed with the tools introduced
in part one.

Computational generative phonology is not hard. We believe theories of
generative phonology developed in this tradition will lead to advances in our
understanding of the nature of phonological grammars and the minds which
know them.

July 3, 2019 © Jeffrey Heinz

Chapter 2

Representations, Models, and
Constraints

JEFFREY HEINZ AND JAMES ROGERS

2.1 Logic and Constraints in Phonology

In this chapter, we show how to use logic and model-theoretic representations
to define constraints on the well-formedness of those representations. The
power in this kind of computational analysis comes from the framework’s
flexibility in both the kind of logic used and the choice of representation.

As will be explained, those choices provides a “Constraint Definition Lan-
guage” (CDL) in the sense of (de Lacy, 2011). Each CDL has psychological,
typological, and learnability ramifications which can be carefully studied.
Conversely, the psychological, typological, and learnability considerations
provide evidence for the computational nature of phonological generaliza-
tions on well-formedness.

This is not the first instance logic has been used in phonological theory.
In fact, there is considerable history. A notable turning point occurred in the
early 1990s with the developments of two theories: Declarative Phonology
and Optimality Theory.

Declarative Phonology made explicit use of logical statements in describ-
ing the phonology of a language. For instance (Scobbie et al., 1996, p. 688)
expressed a general principle of theories of syllables which prohibit ambisyl-
labicity this way: Vz—(onset(z) A coda(x)), which in English reads “For all

23

24 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

segments x, it is not the case that x is both a onset and a coda.”

In Optimality Theory, first-order logic was often used implicitly to define
constraints. For example, the definition of the constraint MAX-IO in OT
given by McCarthy and Prince (1995, p. 16) is “Every segment of the input
has a correspondent in the output.” On page 14, they define the correspon-
dence relation: “Given two strings S; and Ss, correspondence is a relation R
from the elements of S; to those of So. Elements o« €S and 3 €S, are referred
to as correspondents of one another when aRS5.” As will be clear by the
end of this chapter, this definition of MAX-IO is essentially a statement in
First Orer Logic: For all o €S; there exists 5 €S, such that aRf.

Unlike Optimality Theory, the CDLs introduced in this chapter provide
language-specific, inviolable constraints. For a representation to be well-
formed it must not violate any constraint. This is a property the CDLs in
this chapter have in common with Declarative Phonology. Scobbie et al.
explain:

The actual model of constraint interaction adopted is maximally
simple: the declarative model. In such a model, all constraints
must be satisfied. The procedural order in which constraints are
checked (or equivalently, in which they apply) is not part of the
grammar, but part of an implementation of the grammar (as a
parser, say) which cannot affect grammaticality. (Scobbie et al.,
1996, p. 692)

What Scobbie et al. are emphasizing is that logical specifications of grammar
specify what is being computed as opposed to how it is being computed. We
agree with Scobbie et al. (1996) that this is an attractive property of logical
languages.

While this chapter, and others in this book, assume the constraints are
language-specific and inviolable, it is a mistake to conclude that this line
of work only applies to grammars that make binary distinctions between
well-formed and ill-formed structures. In fact, weighted logical languages
allow one to specify what is being computed when structures are going to be
assigned natural numbers (for instance in the case of counting the number of
times a a structure violates a constraint) or real numbers (for instance in the
case of assigning some probability to a structure) (Droste and Gastin, 2009).
We review the basics and provide some examples in Chapter ?7.

July 3, 2019 © Jeffrey Heinz

2.2. CHAPTER OUTLINE 25

2.2 Chapter Outline

In the remainder of this chapter, we informally introduce model-theoretic
representations of strings and different logics. Most mathematical details for
the models and logical languages discussed in this chapter are provided in
Appendix A to Part I of this book. Some readers may benefit by consulting
Appendix A in parallel with this chapter. Readers for whom this does not
satisfy their appetite are referred to the textbooks on logic and model theory
provided in the Further Reading section below.

We focus on strings because they are widely used and well-understood.
Most importantly, they are sufficient to illustrate how different CDLs can
be defined and how these CDLs have consequences for psychological models,
typology, and learnability. Several chapters later in the book provide concrete
examples of non-string representations motivated by phonological theory. A
mathematical treatment of representations and logic is given in the appendix
of part I of this book. Concepts and definitions introduced here are presented
there precisely and unambiguously.

First, we introduce the canonical word model, which is known as the
successor model. This is followed by an informal treatment of First-Order
(FO) logic. This yields the first CDL (FO with successor) and we show how
to define a constraint like *NT-—voiceless obstruents are prohibited from
occuring immediately after nasals—in this CDL.

Next we alter the successor model so that the representations makes use
of phonological features. This yields another CDL (FO with successor and
features). We comment on some notable points of comparison between the
two CDLs, again using the *NT constraint.

The narrative continues by discussing one typological weakness the afore-
mentioned CDLs: they are unable to describe long-distance constraints which
are arguably part of the phonological competence of speakers of some lan-
guages. This provides some motivation for a CDL defined in terms of a more
powerful logic, Monadic Second Order (MSO) logic. The CDL we call ‘MSO
with successor and features’ and we explain how it is able to define such
long-distance constraints. The key is that with MSO logic it is possible to
deduce that one element in a string precedes another element, no matter how
much later the second element occurs. The availability of the precedence
relation makes it possible to define long-distance constraints.

We continue to evaluate the MSO with successor CDL from a typological
perspective. We argue that there are significant classes of constraints defin-

July 3, 2019 (© Jeffrey Heinz

26 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

able in this CDL that are bizarre from a phonological perspective. In other
words, we motivate seeking a more restrictive CDL capable of describing
local and long-distance constraints in phonology.

One solution is to make the precedence relation part of the representation.
This model of words is called the precedence model, which stands in contrast
to the successor model. We show how the CDL “FO with precedence” is also
able to describe both local and long-distance constraints of the kind found
in the phonologies of the world’s languages.

Finally, the chapter concludes with a high-level discussion seeking to em-
phasize the following points. First, there is a tradeoff between representations
and logical power. Second, as mentioned, the choice of representation and
the choice of logic has consequences for typology, psychological reality, mem-
ory, and learnability. Third, the representations and logics discussed in this
chapter are only the tip of the iceberg. Readers undoubtedly will have asked
themselves “What is possible with this representation?” and “Why don’t
we consider this variety of logic?” Some chapters in this book address such
questions. Comprehensively answering such questions, however, is beyond
the scope of this book. But it is not beyond the scope of phonological the-
ory. If some readers of this book pose and answer such questions, then this
book will have succeeded in its goals.

2.3 The Successor Model

This section introduces the central ideas of model-theoretic representations
with a concrete example. The concrete example comes from the “successor”
model, which is arguably the canonical model for strings.

Model-theoretic representations provide a uniform framework for repre-
senting all kinds of objects. Here the objects under study are strings. We
need to be clear about two things: what the objects are, and what counts as
a successful model-theoretic representation of a set of objects.

Strings are sequences of events. If we are talking about words, the events
could be given as speech sounds from the International Phonetic Alphabet.
Strings are typically defined inductively. Each event corresponds is assigned
some symbol. The set of symbols in use is called the alphabet. Each
symbol on its own is a string, and if w is a string and a is a symbol then
the concatenation of w and a, written wa, is also a string. This inductive
definition yields a set of objects: all logically possible sequences of symbols

July 3, 2019 © Jeffrey Heinz

2.3. THE SUCCESSOR MODEL 27

of the alphabet of finite length.

A successful model theoretic-representation of a set of objects must pro-
vide a representation for each object and must provide distinct representa-
tions for distinct objects. It may be strange to ask the question “How can we
represent strings?” After all, if we are talking about the string tent isn’t tent
itself a representation of it? It is, but the information carried in such repre-
sentations is implicit. Model-theoretic representations make the information
explicit.

Model-theoretic representations for objects of finite size like strings con-
tain two parts. The first is a finite set of elements called the domain. The
second is a finite set of relations. The relations provide information about the
domain elements. The model signature summarizes two parts and serves to
define the nature of model in terms of the information in the representation.
In this book, it is written like this: (D | Ry, Ra, ... R,).

We first show a model-theoretic representation of a word and then we
explain it. While this may seem backwards to some, it seems to work better
pedagogically. It can be helpful to refer to the end-product as one goes about
explaining how one got there.

Figure 2.1 shows the successor model for the word tent in addition to a
graphical diagram of it on its right. The graphical diagram puts the domain
elements in circles. Edges labeled with < indicate the binary relation called
“successor.” Finally, the unary relations, one for each symbol in the alpha-
bet, are shown in typewriter face above the domain elements that belong to
them. Throughout this book we will often use graphical diagrams instead of
displaying the literal mathematical representation on the left. The order of
the relations in the signature is fixed but it is also arbitrary.

Mtent
=(D|t,e,nab,...,zd)

— <{1,2,3,4} | {1,4}, {2}, {3}, . : :

2,0,...0,

{(1,2),(2.3), (3,4)})

Figure 2.1: At left, the successor model of the word tent. At right, a graphical
diagram of this model.

July 3, 2019 © Jeffrey Heinz

28 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

In the case of strings, the number of domain elements matches the length
of the string. So a model-theoretic representation of a word like tent would
have a domain with four elements, one for each event in the sequence. We can
represent these domain elements with the suits in a deck of cards (O, {, &, #)
or we could use numbers (1,2,3,4) as we did in Figure 2.1. We will usually
use numbers because as strings get longer we can always find new numbers.
However, keep in mind that the numbers are just names of elements in the
model in the same way the suits would have been. They get their mean-
ing from the relationships they stand in, not from anything inherent in the
numbers themselves.

In the successor word model, there is a unary relation a for each symbol a
in the alphabet. We use the typewriter font to distinguish the relations from
the symbols. It is customary to denote the alphabet with ¥. We write (a)4ex
to mean this finite set of relations. If a domain element belongs to the unary
relation a then it means this element has the property of being a. So for the
word tent, two elements will belong to t, a different element will belong to e
and the remaining element will belong to n. For every other symbol a in the
alphabet the relation a will be empty. When we write = € a and/or a(x) we
mean that domain element = belongs to the unary relation a.

There is also a single binary relation called “successor”. A domain element
x stands in the successor relation to y if the event y corresponds to comes
in fact immediately after the event x corresponds to. In this book, we use
the symbol < to indicate the successor relation. For the word tent, if 2 € R,
and 3 € R, then (2,3) would be in the successor relation. We will write
(2,3) € <, <(2,3), and/or 243 to mean that domain elements 2 and 3 stand
in the successor relation.

The model signature for the successor model is thus (D | (a)sex, <). The
successor model is not the only way to represent words. From a phono-
logical perspective, it is arguably a strange model. We will consider more
phonologically natural models of words below.

It is easy to see that there is a general method for constructing a unique
model for each logically possible string. Given a string of w of length n we
can always construct the successor model as follows. Since w is a sequence of
n symbols, we let w = ajas . . . a,. Then set the domain D = {1,2,...n}. For
each symbol a € ¥ and 7 between 1 and n inclusive, ¢ € a if and only if a; = a.
And finally, for each ¢ between 1 and n — 1 inclusive, let the only elements
of the successor relation be (7,7 + 1). This is summarized in Table 2.8. This
construction guarantees the model’s soundness: each string has a model and

July 3, 2019 © Jeffrey Heinz

2.4. FIRST ORDER LOGIC 29

D = {1,2,...n}
a {i € D | a; = a} for each unary relation a
& {(4,i+1)C D x D}

Table 2.1: Creating a successor model for any word w = aqas ... a,.

distinct strings will have distinct models. It is also important to recognize
that removing any one of the unary or binary relations will result in a model
which does not guarantee that models of distinct strings are distinct.

Model-theoretic representations provide an ontology and a vocabulary
for talking about objects. They provide a primitive set of facts from which
we can reason. For instance in the word rent, we know that the ¢ occurs
sometime after the r. However this fact is not immediately available from
the successor model. It can be deduced, but that deduction requires some
computation. Measuring the cost of such computations is but one facet of
what model theory accomplishes. On the other hand, the successor model
makes immediately available the information that ¢ occurs immediately after
the n. As will hopefully be clear by the end of this chapter, this distinction
can shed light on differences between local and long-distance constraints in
phonology.

From a psychological perspective, the primitive set of facts can be thought
of as the primitive psychological units. In its strongest form, the model-
theoretic representation of words as embodied in its signature makes a con-
crete claim about the psychological reality of the ways words are represented.

2.4 First Order Logic

Now that the models provide representations, what do we do with them?
Logic provides a language for talking about these representations. First Or-
der logic is a well-understood logical language which we introduce informally
here. For those already familiar with FO logic, you will see take advantage
of things like prenex normal form without discussion.

In addition to the Boolean connectives such as conjunction, disjunction,
implication, and negation, FO logic also includes existential and universal
quantification over variables that range over domain elements. These vari-
ables are called first order variables. Apart from these “logical connec-

July 3, 2019 (© Jeffrey Heinz

30 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

tives” and quantified variables, the basic vocabulary of FO logic comes from
the relations in the model signature. Thus each model-theoretic represen-
tation supplies the ingredients for the logical language. Table 2.2 summa-
rizes the vocabulary of FO logic with an arbitrary model (D | Ry, Ry, ... R,).
Model vocabulary are also called atomic formulas because they are the

Boolean Connectives

conjunction
disjunction
negation
implication
biconditional

T4 <>

Syntactic Elements

left parentheses
right parentheses
, comma for separating variables

Variables, Quantifiers, and Equality

Y, 2 variables which range over elements of the domain
= existential quantifier

v universal quantifier

= equality between variables

Model Vocabulary

R(x) for each unary relation R in {Ry, Ry, ...
R(z,y) for each binary relation R in {Ry, R, ...
TRy for each binary relation R in {Ry, Ry, . ..

Ry}
Ry}
Ry}
B}

Table 2.2: Symbols and their meaning in FO logic. Certain sequences of
these symbols are valid FO sentences and formulas. Note we write binary
relations in one of two ways.

R(x1,%2...1x,) for each m-ary relation R in {R;, Ry,

primitive terms from which larger logical expressions are built. As will be
explained they play a special role in the ontology of model-theoretic linguistic
theories.

July 3, 2019 (© Jeffrey Heinz

2.4. FIRST ORDER LOGIC 31

Since the appendix defines FO logic formally, here we define valid sen-
tences and formulas of FO logic ostensively. Below we give examples of three
types of expressions: sentences of FO logic, formulas of FO logic, and syn-
tactically ill-formed expressions.

Example 1 (Sentences of FO logic.). Sentences of FO logic are complete
sentences that can be interpreted with respect to a model. Below are five
sentences of FO logic with English translations below.

1. Sentences of FO logic.

Y,z (H(z=y)A=(z=2) A=(y = 2))
y (n(z) At(y) ANz <ay)

xy((z) Nt(y) A Qy)
y (~(n(z) At(y) A ay))

3y(() = (t(y) Nway))

(a
(b
(c
(d
(e

2. English translation (in terms of the models).

) Tz,
) Jz,
) —3
) Vz,
) Vz

(a) There are three distinct domain elements.

(b) There are two domain elements in the successor relation; the for-
mer has the property of being n; the latter has the property of
being t.

(c) Tt is not the case that there exists two domain elements in the
successor relation of which the former has the property of being n
and the latter has the property of being t.

(d) For every pair of domain elements that stand in the successor
relation, it is not the case that the former has the property of
being n and the latter has the property of being t.

(e) For all domain element which have the property of being n, it is
succeeded by a domain element which has the property of being t.

3. English translation (in terms of the strings the models represent).

(a) There are at least three symbols.
(b) There is a substring nt.

(c) There is no substring nt.

(d) There is no substring nt.

(e) If there is n then there is a ¢t immediately following it.

July 3, 2019 (© Jeffrey Heinz

32 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Sentences of FO logic are interpreted with respect to models. Models
for which the sentence is true are said to satisfy the sentence. If a model
M of string w satisfies a sentence ¢ we write M,, = ¢. Consequently, every
FO sentence ¢ divides the objects being modeled into two classes: those
that satisfy ¢ and those that do not. In this way, logical sentences define
constraints. The strings whose models satisfy the sentence do not violate
the constraint; strings whose models do not satisfy the constraint do violate
it.

Table 2.3 provides examples of strings whose models satisfy the formulas
in Example 1 and examples of strings whose models do not. An important

¢ MyEo¢ My ¢

(a) too, tent, ttt to, a

(b) tent, rent, ntnt ten, to, phobia
(c) ten, to, phobia tent, rent, nint
(d) ten, to, phobia tent, rent, nint
(

@
~—

rent, antler ten, nantucket

Table 2.3: Some strings whose models satisfy the formulas in Example 1 and
some whose models do not.

feature of FO logic is that there are algorithmic solutions to the problem of
deciding whether a given model satisfies a given sentence. This algorithm
works because the syntactic rules that build up larger sentences from smaller
ones have clear semantic interpretations with respect to the model under
consideration. In short, it is an unambiguous and compositional system. For
instance, M = ¢ A ¢ if and only if M = ¢ and M = . The interpretation
of quantifiers is discussed after introducing formulas below.

Example 2 (Formulas of FO logic.). Formulas of FO logic are incomplete
sentences in the sense that they contain variables that are not bound. A
variable is bound only if it is has been introduced with a quantifier and is
within that quantifier’s scope. Variables that are not bound are called free.
The formulas below are only interpretable with respect to a model M if the
free variables are assigned some interpretation as an elements of the domain

of M.

1. Formulas of FO logic.

July 3, 2019 (© Jeffrey Heinz

2.4. FIRST ORDER LOGIC 33

) n(z) Vm(x) Vy(z)

) Jy (n(z) At(y) Az <y)

) =y (z<y)

) =3y (y<x)

) (@=y)A-(z=2)A~(y=2)
) xAy Ay<z

2. English translation.

(a) x has the property of being n, m, or .

(b) x has the property of being n and coming immediately before an
element which has the property of being t.

(c¢) There is no element which succeeds z.

(d) There is no element which = succeeds.

(e) z, y and z are distinct.

(f) « is succeeded succeeded by y which is succeeded by z.

The difference between formulas and sentences is that sentences admit
no free variables. Because these formulas can only be interpreted in terms
of one or more un-instantiated variables, formulas are often used to define
predicates. Predicates are essentially abbreviations for formulas with the
unbound variables serving as parameters. Below we repeat the formulas from
above, but use them to define new predicates. We write predicates in sans
serif font.

= n(x) Vn(z) Vy(z)

(
nt(z) = Jy (n(x) At(y) Ax<y)
last(z e gy (x<y)
first(x) = -3y (y<x)

= “lw=y) Aoz =2)A=(y =2

def

= TAYyANydz

These predicates can then be used to define new sentences. For example,
the sentence Vz(—nt(z)) is equivalent to (1d) in Example 1 above. In the
same way that programmers write functions which encapsulate snippets of

often-used programming code, predicates generally help writing and reading
complex logical sentences.

July 3, 2019 (© Jeffrey Heinz

34 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Since sentences have no free variables, they must begin with quantifiers.
Determining whether a model satisfies a sentence is compositional. It also
depends on the assignment of variables to elements in the domain. For
instance, to determine whether M satisfies ¢ = Jz(¢(z)), we must find an
element of the domain of M, which if assigned to x, means that ¢ evaluates
to true. If no such element exists, then M does not satisfy ¢. Similarly, M
satisfies ¢ = Va(¢(z)) if and only if every element of the domain M, when
assigned to x, results in ¢ evaluating to true.

Finally we give some examples of syntactically ill-formed sequences. The
following expressions are junk; they are not interpretable at all.

Example 3 (Syntactically ill-formed sequences). 1. Syntactically ill-formed
sequences.

(a) x3)x(
(b) V3 (nVt)
(c) "I(n<t)

2. Comments.

(a) Quantifiers always introduce variables to their left and parentheses
are used normally.

(b) No quantifier can be introduced without a variable and n-ary rela-
tions from the model vocabulary must always include n variables.

(¢) Many beginning students make this sort of error when trying to
express a logical sentence which forbids nt sequences. This ex-
pression breaks the same rules as the one before it.

We conclude this section by providing an example of a logical sentence
defining a constraint which bans voiceless obstruents after nasals. This is con-
straint in the literature is often abbreviated *NT. Since the model signature
does not include relations for concepts like nasals and voiceless consonants,
we first define predicates for these notions. We assume the alphabet is limited
to the following IPA symbols: a,b,d,e,q,i,k,l,m,n,o0,p,r,s,t,u,z

Example 4 (The constraint *NT defined under the FO with successor

July 3, 2019 © Jeffrey Heinz

2.5. FEATURE-BASED WORD MODELS 35

model.).
nasal(z) & n(z)Vm(z) (2.1)
voiceless(z) & p(z) Vt(z) V k(z) V s(z) (2.2)
*NT < 3z, y(z <y A nasal(z) A voiceless(y)) (2.3)

It is easy to see that models of words like tent and lampoon do not satisfy
*NT but models of words like ten and moon do. For example, in the model
of tent, the expression Iz, y(z <y A nasal(z) A voiceless(y)) is true when x = 3
and y = 4. Hence, *NT evaluates to false. On the other hand, in the
model of the word moon, every value assigned = and y results in the sentence
Jz, y(z <y A nasal(z) A voiceless(y)) evaluating to false. Hence the sentence
*NT evaluates to true and 80 M 00n = *NT.

This section has presented the first CDL: FO with successor. The FO with
successor model has been studied carefully and it is known precisely what
kinds of constraints can and cannot be expressed with this CDL (Thomas,
1982), as will be discussed below.

2.5 Feature-based Word Models

One way in which the successor model above is strange from a phonological
perspective is its absence of phonological features. The properties associated
with the elements of the domain are whole segments. However, nothing in
model theory itself prohibits domain elements from having more than one
property. It is a consequence of the construction in Table 2.8 that each
domain element will satisfy exactly one of the unary relations a, no more
and no less. We can formalize this statement of the successor model in
Remark 1 as follows.

Remark 1 (The successor model entails disjoint unary relations). For all
successor models M = (D | (a)4ex,<), and for all a,b € (a)4eyx, it is the case
that anNb = @.

Therefore it is possible to design different models of words, where the
unary relations do not represent segments like a, b, or n but phonological
features such as vocalic, labial, or nasal. Crucially, in these models would not
entail disjoint unary relations: a domain element could be both voiced and
labial for instance.

July 3, 2019 (© Jeffrey Heinz

36 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

In this part of the chapter, we give one example of such a model. There
are many others, as many as there are theories of phonological features. The
model we give here is primarily for pedagogical reasons; we are not stating
particular beliefs or arguments regarding the nature of feature systems. We
are only choosing a simple system that illustrates some key points.

We set up a feature system with privative features for the simple alpha-
bet ¥ discussed earlier a,b,d,e,qg,h,i,k,[,m,n,0,p,r,s,t,u,z. The use of privative
features contrasts with the typical assumption in phonological theory that
features are binary. We choose not to pick a minimal nor maximal set of
features for distinguishing this set. Instead we choose somewhat arbitrarily
a middle ground based on standard descriptive phonetic terms used for de-
scribing the manner, place and laryngeal qualities in articulating sounds. We
call this model the “successor model with features.” Its signature is shown
below.

(D | vocalic, low,high, front,stop, fricative,nasal,lateral

rhotic,voiced, voiceless, labial, coronal,dorsal,<) (2.4)

Table 2.4 shows how to construct a successor model with features for any
string in X*. Again this model ensures that distinct strings from ¥* have
different models and that every string has some model.

Figure 2.2 shows the successor model with features of the word tent.

The successor model with features contrasts sharply with the successor
model with features in an important way. To see how, first consider the
constraint *NT. Under the successor model with features, this constraint
would be defined as in Example 2.5

Example 5 (The constraint *NT defined under the FO with successor model
with features.).

ANT 4o -3z, y(x <y Anasal(x) A voiceless(y)) (2.5)

This looks similar to the definition of *NT under the successor model
(Example 2.1), but there is a critical difference. The predicates above in
Example 2.5 are atomic formula and not user-defined predicates as they are
in Example 2.1.

This is an important ontological difference between these two models. In
the successor model with features there is no primitive representational con-
cept that corresponds to a sound segment like ¢ like there is in the successor

July 3, 2019 © Jeffrey Heinz

2.5. FEATURE-BASED WORD MODELS 37

D ¥ {1,2,...n}
vocalic & {ieD|a €{a,eio,u}}
lowv ¥ {ieD|a=a}
high < {ieD|a € {iu}}
front & {ic D |a; € {e,i}}
stop dof {i€D|a; €{bd qg,k,pt}}
fricative = {ie D]a; €{h,s,z}}
nasal = {ieD]a; € {m,n}}
lateral < {ieD]a =1}
rhotic & {ieDla =7}
voiced & {ieD|a €{bdg,z}}
voiceless = {ieD|a e{k,p,s,t h}}
labial ¥ {i€ D |a; € {b,p,m}}
coronal & {i€D|a; €{ds,t z}}
dorsal & {ieD|a; €{d g, k}}
a ¥ {Gi+1)|1<i<n}

Table 2.4: Creating a successor model with features for any word w =
aiag . ..0ay.

model without features. Conversely, in the successor model without features
there is no primitive representational concept that corresponds to a phono-
logical like woiceless like there is in the successor model with features. In
the successor model with features we can write user-defined predicates that
define properties of domain elements that we can interpret to mean “being ¢”.

is_t(x) oo stop(x) A coronal(x) A voiceless(z) (2.6)

Other sound segments would be defined similarly.

One way to put this difference is that in the successor model with fea-
tures one can immediately determine whether a domain element is voiced
or not, but in the successor model without features one cannot immediately
determine this fact. Instead one can deduce it by checking the appropriate
user-defined predicate. Likewise, in the successor model with features one
cannot immediately determine whether a domain element is ¢ or not. With

July 3, 2019 (© Jeffrey Heinz

38 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Mtent =
<{1, 2,3,4} | vocalic = {2},
front = {2}’ voiceless voiceless
stop = {1,4}, coronal front coronal coronal
nasal = {3}, stop vocalic nasal stop

voiceless = {l,4}, a . a : a - a

coronal = {1,3,4}
@ = {(1,2,23),6.49})

Figure 2.2: At left, the successor model with features of the word tent. Unary
relations which equal the empty set are omitted for readability. At right, a
graphical diagram of this model.

the featural representations, such a fact must be deduced with a user-defined
predicate like the one above.

Also, the fact that such user-defined predicates exist should not be taken
for granted. They exist here because the only logical system discussed so
far is FO. With FO logic, it is possible to define a predicate for any subset
of the alphabet ¥ for both successor models with and without features. If
the logical system was restricted in some further way then some user-defined
predicates may not be possible to define. For example, if the logical system
only permitted conjunction and no other Boolean connective then it would
not be possible to define a predicate for voiceless stops in the successor model
without features. This interplay between representations and logical power
with respect to expressivity is an important theme of this chapter. It will be
discussed at length with respect to the successor relation, and we will return
to it in the context of features when restricted logics are introduced towards
the end of the chapter.

As a consequence of FO logic then, any constraint definable with one
of the representations discussed so far is definable in the other. This leads
to the conclusion that there are no typological distinctions between the FO
with successor theory and the FO with successor with features theory. Both
admit exactly the same class of constraints.

However, while the two models do not make different typological predic-

July 3, 2019 © Jeffrey Heinz

2.6. MONADIC SECOND-ORDER LOGIC 39

tions, they do make different psychological ones. In regard to phonological
theory, the signature of the model is an ontological commitment to the psy-
chological reality of the model vocabulary. Taken seriously, the successor
model with features says that the mental representations of words carries
only the information shown in Figure 2.2. Thus, taken seriously, the suc-
cessor model with features says that the segments in the word tent are not
perceived as such but are instead perceived in terms of their features. Clever
psycholinguistic experiments might be able to bring evidence to bear on
which model more accurately resembles them actual mental representations
of words.

2.6 Monadic Second-Order Logic

This section introduces Monadic Second-Order (MSO) logic. This logic
is strictly more expressive than FO logic. We motivate the discussion of
MSO logic from a linguistic perspective by showing that FO with successor,
both with and without features, is not sufficient to account for long-distance
phonotactic constraints.

What are long-distance phonotactic constraints? Odden (1994) draws at-
tention to an unbounded nasal assimilation in Kikongo whereby underlying
/ku-kinis-il-a/ becomes [kukinisina] ‘to make dance for.” From one perspec-
tive, this assimilation could be said to be driven by a phonotactic constraint
that forbids laterals from occuring after nasals. Similar long-distance con-
straints have been posited for a variety of long-distance assimilation and
dissimilation processes (Hansson, 2010).

We first show that the phonotactic constraint which bans laterals from
occuring anywhere after nasals cannot be expressed in the FO with successor
model. As we hope to make clear, the problem is that the notion of precedence
is not FO-definable from successor. To illustrate, in Kikongo, [kukinisila] is
an ill-formed string. The nasal has only one successor [i], but [n] precedes
many segments including the second and third [i]s and the [s,]] and [a]. It is
the fact that [n] precedes [I] which makes [kukinisila] ill-formed according to
the phonotactic constraint which bans laterals from occuring anywhere after
nasals. We refer to this constraint as *N..L.

Constraint *N..L is not FO definable with successor. To prove this we
use an abstract characterization of the constraints definable with FO and
successor due to Thomas (1982) and reviewed in Rogers and Pullum (2011).

July 3, 2019 (© Jeffrey Heinz

40 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Theorem 1 (Characterization of FO-definable constraints with successor).
A constraint is FO-definable with successor if and only if there are two natural
numbers k and t such that for any two strings w and v, if w and v contain
the same substrings x of length k the same number of times counting only
up to t, then either both w and v violate the constraint or neither does.

Essentially, this theorem says constraints that are FO-definable with suc-
cessor cannot distinguish among strings that are composed of the same num-
ber and type of substrings of some length k, where substrings can be counted
only up to some threshold .

We can use this theorem to show that *N..L is not FO definable with
successor by presenting two strings which *N..L distinguishes but which are
not distinguishable according to the criteria in Theorem 1. This would prove
that *N..L is not LTT and thus not FO-definable with successor. Impor-
tantly, for any k£ and ¢ we have to present two strings. These strings can
depend on k and t.

We use notation a* to mean the string consisting of k consecutive as.
So @®* = aaa. For any numbers k and t larger than 0, consider the words
w = a*na*la* and v = a*fa*na®. Table 2.6 below shows the substrings
up to length k, and their number of occurrences. Each word has the same
substrings and the same number of them. Note the left and right word
boundaries (x and x respectively) are customarily included as part of the
strings.

In the discussion below, the following concept will prove useful. For every
number ¢ and every number n let the t-number of n equal n if n < t otherwise
let it be t. So if n is our count than the t-number of n is just the count of n
up to the threshold ¢.

As can be seen from the above table, the two strings have exactly the
same number of occurrences of each k-long substring. Consequently, the t-
numbers of each k-long substring is also the same for any t. It follows, from
Theorem 1 that these two strings cannot be distinguished by any constraint
which is FO-definable with successor. More precisely, any constraint which
is FO-definable with successor is unable to distinguish in strings w and v
whether n precedes ¢ or whether ¢ precedes n. As such, no FO-definable
constraint with successor can be violated by w but not by v and vice versa.
It follows that *N..L is not FO definable with successor because for the reason
that it this is precisely the distinction it makes.

Having established that linguistically motivated long-distance phonotac-

July 3, 2019 © Jeffrey Heinz

2.6. MONADIC SECOND-ORDER LOGIC 41

1 xakf—1

3 aF

1 a‘na’ (foreach 0 <i,j <k—1,i+j=k—1)
1 ala’ (foreach 0 <i,j <k—1,i+j=Fk—1)
1 akF=1x

_count | v = xa*la*nafx | Notes

1 xakf—1

3 aF

1 a‘na’ (foreach 0 <i,j <k—1,i+j=k—1)
1 a*la’ (foreach 0 <i,j <k—1,i+j=k—1)
1 a1

Table 2.5: The k-long substrings with their number of occurrences in the
strings w = a*na*la* and v = a*fa*na* with word boundaries.

tic constraints are not FO-definable with successor, we turn to the question
of how such constraints can be defined from the logical perspective offered
here. Essentially, there are two approaches. One is to increase the power of
the logic. The other is to change the model—the representation—of strings.
This section examines the first option and the next section examines the sec-
ond option. This interplay between logical power and representations and
how it affects the expressivity of the linguistic system is a running theme of
this book.

Monadic Second Order (MSO) logic is a logical language that is strictly
more powerful than FO logic. Constraints that are MSO-definable with suc-
cessor include every constraint which is FO-definable with successor because
every sentence and formula in FO logic with successor is also a sentence and
formula in MSO logic with successor and is interpreted in the same way. In
addition to first order variables, MSO comes with second order variables.
Generally, variables that are second order are allowed to vary over n-ary rela-
tions. The restriction to monadic second order variables means the variables
in this logic can only vary over unary relations, which corresponds to sets of
domain elements. This contrasts with first order variables, which recall vary
only over elements of the domain.

MSO logic is defined formally in the appendix to Part I, so here we

July 3, 2019 (© Jeffrey Heinz

42 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

introduce it informally with examples. In MSO logic, the MSO variables
are expressed with capital letters such as X,Y, and Z to distinguish them
from first order variables which use lowercase letters like z, y, and z. Observe
that x € X and X(z) are synonyms. As with first order variables, second
order variables are introduced into sentences and formula with quantifiers.

Additional Symbols in MSO logic

X.,Y,Z wvariables which range over sets of elements of the domain
x € X checks whether an element x belongs to a set of elements X
X(z) checks whether an element = belongs to a set of elements X

Table 2.6: Together with the symbols of FO logic shown in Table 2.2, these
symbols make up MSO logic.

With MSO logic over successor, it is now possible to define the precedence
relation as shown below.

closed(X) oo (Vo,y)[(z € X Az<y) =y € X] (2.7)

x <y & (VX)[(z € X Aclosed(X) — y € X] (2.8)
Intuitively, a set of elements X in the domain of a model of some word w
satisfies closed(X) only if every successor of every element in X is also in X.
In short, closed(X) is true only for sets of elements X which are transitively
closed under successor. Then x precedes y only if for every closed set of
elements X which z belongs to, y also belongs to X.

Figure 2.3 below illustrates these ideas. The successor model for the string
alaana is shown. Six ellipses are shown, which represent the six nonempty
sets of domain elements which are closed under successor and thus satisfy
closed(X).

We can conclude that ¢ precedes n because every closed set which element
2 (which corresponds to £) belongs to (X; and X5) also includes the element 5
(which corresponds to n). Similarly, we can conclude that n does not precede
¢ because it is not the case that all closed sets which contain element 5 (which
corresponds to n) also include element 2 (which corresponds to £). Set X,
for instance contains element 5 but not element 2.

Once the binary relation for precedence (<) has been defined, it is now
straightforward to define the constraint *N..L with features.

*N.L & —(3z,y)[r < y Anasal(x) A lateral(y)] (2.9)

July 3, 2019 (© Jeffrey Heinz

2.6. MONADIC SECOND-ORDER LOGIC 43

Figure 2.3: The successor model for the word alaana. Rectangular regions
indicate the sets of domain elements (X;) which are closed under successor.

The sentence above may look like a sentence of FO logic since no second
order variables are present. However, it is important to remember that the
precedence relation (<) is just an abbreviation for a longer formula, which is
defined in MSO logic, and not within FO logic. Often whether a predicate is
atomic or derived is not something that can be determined from inspecting
a sentence or formula since the notation does not distinguish them. Usually
one must be being acutely aware of the model signature to know whether a
predicate is atomic or derived.

At this point, we have established that the linguistically motivated long-
distance phonotactic constraint is not definable with FO logic with successor
but it is definable with MSO logic with successor. We thus ask: What other
kinds of constraints are MSO-definable with successor?

Another constraint that is not FO-definable with successor but is MSO-
definable constraint with successor is a constraint that requires words to
have an even number of nasals. Words like man and neonatology obey this
constraint since they have two nasals but words like mannequin and nan-
otechnology do not since they have three nasals.

To see that this constraint is not FO-definable with successor, we use
Theorem 1 as before. For any nonzero numbers k and ¢, consider the words
w = a®(na®)? and v = a*(na*)*na®. Observe that w obeys the constraint
since it contains 2¢ nasals and 2t is an even number. On the other hand,
v contains 2t + 1 nasals and therefore violates the constraint. However, as
Table 2.7 shows, these words have the same substrings of length £k, and the
same t-numbers of each substring.

However, this constraint is expressible with MSO logic with successor.
We make use of some additional predicates, including general precedence
(<) defined in Equation 2.8. The predicate firstN is true of x only if = is the

July 3, 2019 (© Jeffrey Heinz

44 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

w = xa®(na®)*akx

count ‘ t-number ‘ k-long substrings ‘ notes

1 1 xak1

2t + 2 t a”

2t + 2 t a‘na’ (foreach 0<i,j<k—1,i+j=k—1)
1 1 a1

2t,, 4k

v = xa*(na*)*na* x

count ‘ t-number ‘ k-long substrings ‘ notes

1 1 xak1

2t + 2 t a”

2t + 2 t a‘na’ (foreach 0<i,j<k—1,i+j=k—1)
1 1 a1

Table 2.7: The k-long substrings and the ¢t-numbers of their counts in w =
a*(na®)? and v = a*(na*)*na* with word boundaries.

first nasal occuring in the word (Equation 2.10). The predicate lastN is true
of x only if = is the last nasal occuring in the word (Equation 2.11). Also,
two variables x and y stand in the <y only if y is the first nasal to occur after
z (Equation 2.12). So <y is a a successor relation relativized to nasals.

firstN(x) Lof nasal(z) A ~(Jy)nasal(y) Ay < z] (2.10)

) A
lastN(x) Lof nasal(z) A —(3y)nasal(y) Az < y] (2.11)
zany & nasal(z) Anasal(y) Az <y

A —(3z)[nasal(z) Az < z < y] (2.12)

Note we use the shorthand x <y < zforz < z Az < y.
With these predicates in place, we write EVEN-N as in Equation 2.13.

EvEN-N % (HX)[(V) firstN(z) — X (2)]

A (v2) lastN(z) = =X (2)] |
A (Vz,y)[zany A (X (z) & =X (y)] (2.13)

In English, this says that a model of word w satisfies EVEN-N provided
there is a set of domain elements X that includes the first nasal (if one

July 3, 2019 (© Jeffrey Heinz

2.6. MONADIC SECOND-ORDER LOGIC 45

occurs), does not include the last nasal (if one occurs) and for all pairs of
successive nasals (if they occur), exactly one belongs to X. Consequently,
words containing zero nasals satisfy the EVEN-N because the empty set of
domain elements vacuously satisfies these three conditions. Words containing
exactly one nasal do not satisfy EVEN-N because the first nasal and the last
nasal are the same element x and it cannot both belong and not belong to X.
However, words with exactly two nasals do satisfy EVEN-N because the first
nasal belongs to X (satisfying the first condition), the last nasal does not
(satisfying the second condition), and these two nasals are successive nasals
and so are subject to the third condition, which they satisfy because exactly
one of them (the first nasal) belongs to X. A little inductive reasoning along
these lines lets one conclude that only words with an even number of nasals
will satisfy EVEN-N as intended.

It is natural to wonder whether there is an abstract characterization of
constraints that are MSO-definable with successor in the same way that
Thomas (1982) provided an abstract characterization of constraints that are
FO-definable with successor. In fact there is. Biichi (1960) showed that these
constraints are exactly the ones describable with finite-state automata.

Theorem 2 (Characterization of MSO-definable constraints with successor).
A constraint is MSO-definable with successor if and only if there is a finite-
state automata which recognizes the words obeying the constraint.

From the perspective of formal language theory, they are exactly the reg-
ular languages. Informally, these are formal languages for which the mem-
bership problem can be solved with a constant, finite amount of memory.

In this section we showed that FO-definable constraints with successor
are not sufficiently powerful to express long-distance phonotactic constraints.
One approach is to then increase the power of the logic. One logical sys-
tem extends FO by adding quantification over monadic second order vari-
ables. This logic—MSO logic with successor—is able to express long-distance
phonotactic constraints. However, MSO logic with successor also is also suf-
ficiently expressive as a CDL to express constraints like EVEN-N.

Another way of putting it is like this. In the successor model, the informa-
tion that in the word afaana the ¢ precedes the n is not immediately available
from the representation. That information can be deduced but the deduction
requires some computational effort. From the logical perspective taken here,
this deduction requires MSO power and not FO power. Furthermore, once

July 3, 2019 (© Jeffrey Heinz

46 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

MSO power is admitted then it becomes possible to similarly deduce whether
or not there are even numbers of elements with certain properties.

Another approach to developing a CDL which can express long-distance
phonotactic constraints but not EVEN-N is to change the representation of
strings; that is, to change the model signature. This is precisely the topic of
the next section.

2.7 The Precedence Word Model

So far, the logics we have considered have been defined with respect to the
successor model of words. However, as we have seen with phonological fea-
tures vis a vis atomic letters, there are different models of strings. In this
section, we consider the precedence model of strings. Simply, this model con-
tains the precedence relation instead of the successor relation in its signature.

As with the successor model, there is a general construction for the de-
termining the precedence model for any string. Given a string of w of length
n the precedence model is constructed as follows. Since w is a sequence of n
symbols, we let w = ajay...a,. Then set the domain D = {1,2,...n}. For
each symbol a € ¥ and ¢ between 1 and n inclusive, ¢ € a if and only if a; = a.
And finally, for each 7 and j between 1 and n inclusive, the only elements
of the precedence relation are (i, j) so long as ¢ < j. This is summarized in
Table 2.8. This construction guarantees the model’s soundness: each string

def

D = {1,2,...n}
a o {i € D | a; = a} for each unary relation a
< € {(,)SDxD|i<j}

Table 2.8: Creating a successor model for any word w = aqas ... a,.

has a model and distinct strings will have distinct models.

Figure 2.4 shows the precedence model for the word tent in addition to
a graphical diagram of it on its right.

The difference between the precedence model and the successor model is
how the order of segments in the word are represented. In the precedence
model, the fact that the n is preceded by t in the word tent is immediately
available because the element corresponding to ¢ is in the precedence relation
with the element corresponding to the first t. Under the successor model,

July 3, 2019 (© Jeffrey Heinz

2.7. THE PRECEDENCE WORD MODEL 47

Mtent
=(D|t,e,n,ab, ...,z <)

= ({1234} | {14}, {2). 43}, (V=2 (3) <(0)
(13,009, 0.9) W
(2,3),(2,4), (3,)})

Figure 2.4: At left, the precedence model of the word tent. At right, a
graphical diagram of this model.

this information was not immediately available as it was not part of the
representation. However, under the precedence model it is.

Take seriously from a psychological perspective, the precedence model can
be taken to mean that as words are perceived, information about the prece-
dence relations is being stored in memory as part of the lexical representation
of the word.

Also, in the same way that we considered the successor model both with
and without features, we can also consider a precedence model with and
without features. The precedence model introduced above was without fea-
tures, but it is a simple matter to replace the unary relations in that model
with the ones in Table 2.4.

It is straightforward to now write the constraint *N..L in the CDL which
we call “FO with precedence with features.”

*N.L L 3y, y(x < y Anasal(z) A lateral(y)) (2.14)

Equation 2.14 looks identical to Equation 2.9. However, there is critical
difference. In Equation 2.14, the precedence relation is an atomic formula
but in Equation 2.9 it is a user-defined predicate in MSO logic.

It is natural to ask of course whether a constraint like *NT is express-
ible in this CDL. The answer is Yes because successor is FO-definable from

precedence. Equation 2.15 shows how. Essentially, x is succeeded by y only
if x precedes y and there is no element z such that z < y and = < z.

zay ¥ r<yA-(Iz)r <z <y (2.15)

It is a striking fact that successor is FO-definable from precedence but

July 3, 2019 (© Jeffrey Heinz

48 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

precedence is MSO-definable from successor. This is a considerable asymme-
try between the successor and precedence models of strings.

There are two important consequences. The first is the CDL “FO with
precedence” properly subsumes the CDL “FO with successor.” Not only is
every constraint expressible with the CDL “FO with successor” also express-
ible with the CDL “FO with precedence”, but there are constraints like *N..L
above that expressible with the CDL “FO with precedence” but not with the
CDL “FO with successor.”

Another important consequence is that the CDL “MSO with precedence”
is equivalent in expressive power to the CDL “MSO with successor” discussed
in the previous section. This is because with MSO logic, precedence can
be defined from successor as shown previously. Likewise because MSO logic
properly extends FO logic, successor can also be defined from precedence. So
at the level of MSO, these two models make no distinctions among the kinds
of constraints that can be expressed. Constraints in each CDL correspond
to exactly the regular stringsets.

There is also an abstract characterization of the FO-definable constraints
with precedence due to McNaughton and Papert (1971).

Theorem 3 (Characterization of FO-definable constraints with precedence).
A constraint is FO-definable with precedence if and only if there is a poistive
integer n such that for all strings x,y, z if xy™z obeys the constraint then for
all k > n, xy*z obeys the constraint too.

This characterization says that FO-definable constraints with precedence
can only distinguish iterations within strings up to some finite n. Two strings
xy'z and xy’z with both 4,5 > n but i # j cannot be distinguished by any
FO-definable constraint with precedence. As McNaughton and Papert (1971)
amply document, there are other independently-motivated characterizations
of this class as well.

The above characterization can be used to show that EVEN-N is not
FO-definable with precedence. Again, the strategy is to consider any n and
then to find strings w,v,x,y, z and numbers 7,5 > n such that w = xy'z
and v = 2’z where EVEN-N distinguishes w and v in the sense that one
violates EVEN-N and the other does not. If the constraint were FO-definable
with precedence such strings could not exist by Theorem 3. In this case, one
solution is to set * = z = A (the empty string), y = ma, i = 2n and
j =2n+ 1. Then w = (ma)*" and v = (ma)* . Clearly, w has an even
number of nasals since it has 2n [m]s but v has an odd number since it has

July 3, 2019 © Jeffrey Heinz

2.7. THE PRECEDENCE WORD MODEL 49

2n+1 [m]s. Thus EVEN-N distinguishes these strings and thus by Theorem 3
it cannot be FO-definable with precedence.

In this section, we considered a model of words where order is represented
with the precedence relation instead of the successor relation. It was shown
that long-distance constraints can readily be expressed in the CDL “FO with
precedence.” Furthermore, local phonotactic constraints like *NT can also
be expressed because successor is FO-definable from precedence. However,
the converse is not true. This asymmetry means that FO with precedence
is strictly more expressive than “FO with successor.” It was also shown
that EVEN-N is not expressive in this system. Finally, it was noted that
“MSO with precedence” is equally expressive as “MSO with successor”. Once
there is MSO power, successor and precedence are each definable from the
other. Which constraints can be expressed by which CDLs is summarized in
Figure 2.5.

MSO | *N..L, EVEN-N EVEN-N
FO *NT *NT, *N..L

| q <

Figure 2.5: Classifying the constraints *NT, *N..L., and EVEN-N.

More generally, this section established the following. Although one way
to increase the expressivity of a CDL is to increase the power of the logic,
another way is to change the representations underlying the models. This
speaks directly to the interplay between representations and computational
power, one of the themes of this chapter.

We conclude that the only CDL discussed so far that can express both
local and long-distance phonotactic constraints (like *NT and *N..L) and
fails to express constraints like EVEN-N is the CDL “FO with precedence.”

July 3, 2019 (© Jeffrey Heinz

50 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

2.8 Discussion

2.8.1 Tradeoffs between representations and power
2.8.2 Typology, learnability, and psychological reality

2.8.3 Well-formedness and Transformations

2.9 Further Reading

July 3, 2019 (© Jeffrey Heinz

Chapter 3

Transformations, Logically

JEFFREY HEINZ

This chapter explains how transformations from one representation to an-
other can be described with the same logical tools introduced in the last
chapter. Transformations are a central component of phonological theory,
which posits a transformation exists between the abstract mental represen-
tations of the pronunciation of morphemes (the underlying form) to the more
concrete, more directly observable, surface representation (the surface form).
The mathematical and computational basis for this work is summarized in
Courcelle (1994).

This chapter aims to introduce these ideas in an accessible way to lin-
guists with a basic knowledge of phonology. However, the techniques have
application beyond the theory of phonology to any other subfield of linguis-
tics, notably morphology and syntax, in part because these methods apply
equally well to trees and graphs, not just strings. Also this chapter is merely
an introduction to these methods. As such, it introduces them in the context
of string-to-string transformations; that is, functions from strings to strings.
As a matter of fact, these methods have been generalized by computer sci-
entists to describe weighted relations between strings . These generalizations
permit one to describe and characterize optionality and exceptionality, in
addition to gradient and probabilistic generalizations. Such generalizations
are not discussed until the end of the book (Chapter XYZ) for two reasons.
First they are unnecessarily complicate the central ideas, which are easier
to first understand without them. Second, much valuable work can be done
without them, as exemplified by the chapters in parts 2 and 3 of this book.

51

52 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

The application of these methods for phonological description and the-
ory is what primarily distinguishes this work from One-Level Declarative
Phonology developed by Bird, Coleman, and Scobbie twenty five years ago.
That research, like the research in this book, emphasizes the importance of a
declarative approach to phonological description and theory. The key differ-
ence is that twenty-five years ago transformations were studied within “one
level.” In other words, transformations were understood as constraints on
unspecified representations. As such, those ‘transformations’ could only add
(further specify) information to representations. In contrast, in this chapter
we will see how logic can be used to literally add, subtract, change, or more
generally transform one representation into another. For this reason, one
could say that the Computational Generative Phonology apperoach in this
book is essentially a form of Two-level Declarative Phonology.

3.1 Strings-to-string Transformations

A logical description of a string-to-string function uses logic to explain how to
an input string is mapped to an output string. As with the constraints in the
previous chapter, the logic does not operate over the strings themselves, but
over the model-theoretic representation of those strings. Therefore, a logical
description of a string-to-string function uses logic to convert an input model
of a string into another model (of a possibly different string). Recall that
the model of a string is understood in terms of its signature. The signature
includes the relations over the domain of the model that must be specified
in order to uniquely identify some string. Therefore, the logical description
needs to specify the domain and relations in the output model in terms of
the the domain and relations in the input model.

A logical description of a function specifies the domain of the function,
and for each input, it must specify the domain of the output model and the
relations over it with logical formulas, interpreted with respect to the input
model.! The domain of the function is specified by the domain formula. The
domain of the output model is specified by three ingredients: the copy set

Note there are two distinct meanings of the word ‘domain’ in use here. The first
has to do with the domain of a function and the second with the domain of a model. A
function’s domain is the set of elements over which the function is defined. For instance
for F: A — B, the domain is the set A. In contrast, the domain of a model is the elements
in the ‘universe’ the model is describing. In finite model theory, which is used in this book,
the domain of a model is a finite set of natural numbers 1,...n, representing the finitely

July 3, 2019 © Jeffrey Heinz

3.1. STRINGS-TO-STRING TRANSFORMATIONS 53

and the licensing formula. The relations over the output model are specified
by relational formulas for each of the relations in the signature of the output
model. These formulas are evaluated with respect the input model in a way
that will be made clear below. In our first examples, we leave out the copy
set and return to it in section 3.2.

3.1.1 Word-final obstruent devoicing

For concreteness, let us provide a logical description of the phonological pro-
cess of word-final obstruent devoicing. This process maps strings with word-
final voiced obstruents to voiceless ones. For example, this process maps the
string hauz to haus and the string bad to bat. Words without word-final
voiced obstruents surface faithfully so this process also maps the string haus
to haus.

We choose to model this process with the feature-based successor model
described in 2.5 (see Table 2.4). Strings in both the input and the output
will be represented with the feature-based successor model. Note this is a
choice. One can choose to model the input, the output, or both, will some
other word model, such as the conventional word model with successor. It
follows we want to provide a logical transformation which maps the model of
hauz to the model of haus, as shown in Figure 3.1. We introduce the logical
formulas one at a time and then summarize them at the end of the example.

We must specify the domain of the function f with a logical formula with
no free variables @gomain. For a string w, the function f is defined if and
only if its model M, = @gomain- In this case, we want word-final obstruent

devoicing to apply to every string. Hence we let @gonain &f ¢ rue.

How is the domain of the output model of f(M,) determined? Logical
transductions fix the domain of the output as a copy of the input domain. For
example, as shown in Figure 7?7, the domain of M, is {1,2,3,4}. Therefore,
the domain of f(Mau.) is also {1,2,3,4}. An immediate consequence is that
it appears that functions cannot alter the size of the input upon which they
are acting. However, it is precisely the copy set (section 3.2) and the licensing
formula @1;cense (3.1.2) which determines the size of the output model. Basi-
cally, the copy set allows transformations to relate larger outputs to smaller
inputs and the licensing formula (section ??) allows transformations to re-
late smaller outputs to larger inputs. Working together these ingredients

many elements in the universe.

July 3, 2019 (© Jeffrey Heinz

54 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

voiced
voiceless low high coronal
fricative vocalic vocalic fricative

(O
!

voliceless
voiceless low high coronal
fricative vocalic vocalic fricative

(===
Figure 3.1: A graphical diagram of the feature-based successor model of hauz
being mapped to the feature-based successor model of haus.

let one relate any input model of size n to an output model of size m, for
any n,m € N. For now, since the word-final voiced obstruent devoicing does
preserve the size of each input in the output, we set aside the copy-set and
licensing formula for now.?

Thus given My, f sets the domain of the output model to {1,2,3,4}.
Finally, we must determine the relations which hold over these elements. For
each relation R of arity n in the signature of output model, we must specify
a formula ¢y with n free variables ¢g(x1,...2,). Since the signature of the
output model has one binary relation (the successor relation <) and several
unary features (the phonological features), we need a formula for each of
these.

How are these formula interpreted? As follows. For any string-to-string

2For completeness, in this case the copy set C' = {1} and the ¢1;cense def true.

July 3, 2019 © Jeffrey Heinz

3.1. STRINGS-TO-STRING TRANSFORMATIONS 55

function f and input model M,,, the elements x4, ...x, in the domain of the
output model f(M,,) stand in the n-ary relation R in the output signature
if and only if ¢g(x1,...2,) E M,.

For example, the successor relation is a binary relation in the output
signature. So we must define ¢4(z,y). Since word-final obstruent devoicing
does not affect the successor relations, we define this function as follows.

def
¢<1(x7 y) = A y
N—— ——
Do x and y in the output model =~ Evaluate with respect to the
stand in the successor relation? input model.

This means the following: elements = and y in the output stand in the succes-
sor relation if and only if corresponding elements x and y in the input satisfy
the successor relation in the input model. Since 1 <2 in the input model, it
follows that elements 1 and 2 likewise stand in the successor relation in the
output model. Similarly, since elements 1 and 3 do not stand in the successor
relation in the input model, it follows that they do not stand in the successor
relation in the output model. Consequently, the formula above guarantees
(in fact literally says) that the successor relation in the output will be the
same as the successor relation in the input.

As another example, consider the unary relation vocalic. As this is a
unary relation, we must define a formula with one free variable ¢yocaic().
Let us define it as follows.

¢voca1ic(x) = vocalic(x)
N—_— — ——
Does x have the feature Evaluate with respect to the

vocalic in the output model? input model.

It follows from this definition that domain element x in the output model
is vocalic if and only if the corresponding domain element z in the input is
vocalic. Thus, as we expect word final obstruent devoicing does not affect
the vocalic nature of elements within a string.

As we know, the only features affected by word-final devoicing are voicing
features, which in our model are voiced and voiceless. All other unary
relations in the signature of the output model will be defined similarly to
Gvocaric () (as shown in Table 3.1 on page 57). However, the voicing features
are affected by this process, so how do we specify which domain elements
are voiced or voiceless? The voiced elements will be the ones that were

July 3, 2019 (© Jeffrey Heinz

56 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

voiced in the input and are not the ones which are word-final obstruents.
We can formalize this as follows. It will be useful to write some user-defined
predicates.

word-final(z) %' 3y (z<y) (3.1)
obstruent(z) = stop(z)V fricative(x) (3.2)

We thus define ¢yoicea() as follows.

def . .
Broicea(T) = voiced(x) A —(word-final(x) A obstruent(x))
H—/ . ~- v
Does x have the feature voiced Evaluate with respect to the
in the output model? input model.

Similarly, the domain elements in the output which are voiceless are those
that are voiceless in the input or those that are word-final obstruents.

def . .
Gvoiceless (L) = voiceless(x) V (word-final(x) A obstruent(x))
%ﬁ NS ~~ e
Does x have the feature Evaluate with respect to the
voiceless in the output input model.

model?

For completeness, we show the complete logical description of word-final
devoicing.

3.1.2 Word-final vowel deletion

Let us consider another example, word-final vowel deletion, which will illus-
trate the role played by the licensing formula. Word-final vowel deletion has
been argued to be a process in Yawelmani Yokuts. It essentially maps strings
like paka to pak and pilot to pilot.

As before, the domain of this function is all strings and S0 @gomain © true.
Also as before, the domain of the output model is a copy of the domain
elements of the input model. However, these domain elements of the output
model do not automatically exist in the output model; they must be licensed
by a formula with one free variable called the licensing formula ¢1;cense().
In other words, the domain elements of the output model are really the
licensed copies of the domain elements of the input model. Since word-final

July 3, 2019 (© Jeffrey Heinz

3.1. STRINGS-TO-STRING TRANSFORMATIONS

57

def
¢domain = true
c = {1}
def
¢1lcense («T) = true
do(wy) = way
Pyocaric () & vocalic(x)
def
brow(z) = low(x)
def . .
Pnign(v) = high(x)
def
¢front («T) = front (.CL’)
def
Pstop(¥) = stop(a)
Gsricavive (T) dof fricative(x)
def
¢nasa1 («T) = nasal(x)
def
Praterar(¥) = lateral(w)
def :
¢rhot1c («T) = I'hOth(Jj‘)
def :
Prapiar(z) = labial(w)
def
Georonar () = coronal(x)
def
¢dorsa1 («T) = dorsal (.I‘)
Gvoiced(T) oo voiced(z) A —(word-final(z) A obstruent(z))
Guoiceress () = voiceless(z) V (word-final(z) A obstruent(z))

Table 3.1: The complete logical specification for word-final obstruent de-
voicing when the input and output string models are both the feature-based
successor model.

vowels delete in this process, all domain elements which do not correspond
to word-final vowels are licensed.

G11cense () &' (word-final(z) A vocalic(z))
N——— ~ ”

Does x belong to the domain of Evaluate with respect to the
the output model? input model.

Since this process does not affect the phonological features in the string,
each of the unary relations R in the signature of the output model can be

July 3, 2019 (© Jeffrey Heinz

58 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

voiceless voiceless
labial low dorsal low
stop vocalic stop vocalic

(O
!

voiceless voiceless
labial low dorsal
stop vocalic stop

oMo RIS

Figure 3.2: A graphical diagram of the feature-based successor model of paka
being mapped to the feature-based successor model of pak.

defined as follows: ¢g(x) & R(x). In other words, ¢yocaric() oo vocalic(x)

and @yoicea(T) dof voiced(z) and so on. What about the binary successor

relation? Letting ¢4(z,y) L y is sufficient. While it is true that 3 <4 is
true in the input, the fact that 4 is not licensed is sufficient to ensure that
the pair (3,4) is not an element of the successor relation in the output model.
The relations in the output model are always restricted to tuples which only
contain licensed domain elements.

For completeness, Table 3.2 shows the complete logical description of
word-final vowel deletion.

This section explained in more detail how the domain elements of the
output model are determined. While these are always copies of the domain
elements of the input model, it is not the case that every domain element in
the input model is always copied as a domain element of the output model.

July 3, 2019 © Jeffrey Heinz

3.2. GETTING BIGGER

59

def
¢doma1n = true
c = {1)
Pricense (T) oo —(word-final(z) A vocalic(z))
f
¢o(z,y) = xqy
Gvocatic(T) &f vocalic(x)
def
brow(r) = low(w)
def - .
¢high($) = high(x)
def
¢front (J;) = front (.I‘)
def
Psrop(¥) = stop()
Gtricative (T) f fricative (x)
def
¢nasa1 (J;) = nasal (.I‘)
def
Pratera1(¥) = lateral(x)
def .
Prhotic(T) = rhotic(z)
def :
Prapiar(z) = labial(w)
def
Georonar () = coronal(x)
def
¢dorsa1 (Z’) = dorsal (J})
def .
¢voiced (J;) = VOlCGd(.ﬁL’)
def _
Broiceless(T) = voiceless(w)

Table 3.2: The complete logical specification for word-final obstruent de-
voicing when the input and output string models are both the feature-based

successor model.

Only those elements = which satisfy ¢1;cense () become domain elements in

the output model.

3.2 Getting Bigger

So far we have exemplified logical transductions with phonological processes
that change segmental material and processes that delete segmental material.

July 3, 2019

(© Jeffrey Heinz

60 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

How can logical transductions be used to define processes that add segmental
material?

The answer to this question lies in the copy set. We have set aside this
ingredient until now. In the previous examples, the copy set contained only
one element. Thus each input element in the domain was copied exactly
once. More generally, the copy set may contain n elements. It follows that
the domain of the output model may contain n copies of each domain ele-
ment of the input model. The copies of a domain element x in the input
model are distinguished from each other using the names of the elements
in the copy set. For example, consider the word hauz so that the domain
elements of My, are {1,2,3,4}. If we are defining a logical transduction

and define the copy set C' & {1,2} then there are as many as eight domain
elements in the output structure. It is customary to name these domain
elements as pairs; the first coordinate indicates the domain element in the
input model being copied and the second coordinate indicates which copy.
Thus the pair (1,2) indicates the second copy of the first domain element
of the input model and (3,1) indicates the first copy of the third element
and so on. The eight possible domain elements in the output model are thus
{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2), (4, 1), (4,2)}.

Whenever the copy set contains more than one element, the number of li-
censing formulas and relational formulas needed to describe the logical trans-
duction multiplies as well. For each ¢ € C, there is a licensing formula
DL conse (T). As before, this formula is evaluated with respect to the corre-
sponding domain element in the input model. If it evaluates to true on x
then the domain element (x,1) is licensed and belongs to the domain of the
output model. Thus for a copy set C, there are |C| licensing formulas.

Similarly, for each unary relation R in the signature of the output model,
there are |C] relational formulas: for each ¢ € C, we must define R'(z). The
domain element (x,7) — the ith copy of x in the output model — belongs
to R in the output model if and only if R(x) evaluates to true in the input
model.

For each binary relation R in the output signature, there are |C]? rela-
tional formulas R*(z,y) with i,j € C. If and only if R"(z,y) evaluates to
true with respect to the input model then the ith copy of = stands in the R
relation to the jth copy of y in the output model. In which case, we have
((z,4), (y,7)) € R. If R%(x,y) evaluates to false with respect to the input
model then ((z,17), (y,j)) does not belong to R. For relations of higher arity,

July 3, 2019 © Jeffrey Heinz

3.2. GETTING BIGGER 61

the licensing and relational formula multiply out similarly. Since the word
models developed so far involve at most binary relations, we ignore relations
of higher arity here (though they are discussed in the mathematical appendix
77).

How the copy set works along with the additional formulas it entails are
illustrated next with word-final vowel epenthesis and total reduplication. We
provide complete logical descriptions of these transformations.

3.2.1 Word-final vowel epenthesis

Hindi speakers epenthesize the low vowel a to words which end in sonorant
consonants (Shukla, 2000). We provide a logical description of this process
given the the segments describable with the feature-based model. For exam-
ple, this process would map the hypothetical word pan to pana as well as
pak to pak. Figure 3.3 visualizes the mapping between the model structures
pan and pana.

voliceless
labial low coronal
stop vocalic nasal

1

voiceless
labial low coronal low
stop vocalic nasal vocalic

OanOnnOnn®
Figure 3.3: A graphical diagram of the feature-based successor model of pan

being mapped to the feature-based successor model of pana.

First we can define sonorant consonants as follows.

sonorant_C(z) oo nasal(z) V lateral(z) V rhotic(z) (3.3)

Next, we need a copy set of at least size 2 and so we define C' o {1,2}.
Consequently, for the input pan which has three domain elements {1, 2, 3},

July 3, 2019 (© Jeffrey Heinz

62 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

there are maximally 6 domain elements in the output model:
{(1,1),(2,1),(3,1),(1,2),(2,2),(3,2)}. Since the copy set C' has two ele-
ments, we must define two licensing formula, each with one free variable.

def

¢iicense (LU) = Ttrue (34)

B conee (T) &f sonorant_C(x) A word-final(x) (3.5)

B cense () 1s always true so the first copy of each element is present. ¢2; . ()
is only true when sonorant_C(x) A word-final(x) evaluates to true in the in-
put model. For the word pan this occurs for z = 3, but for the word pak
no x satisfies ¢?; .. (z). Consequently, the output model of the process
applied to pan has four domain elements {(1,1),(2,1),(3,1),(3,2)} but the
the output model of the process applied to pak has three domain elements
[(1,1),(2,1), (3, 1)},

This is illustrated in Figure 3.4, where the first and second copies of the
domain elements of pan are arranged in rows and the unlicensed elements

Gy ey @y
©® @ @&

Figure 3.4: The possible domain elements of the output model for input pan
when the copy set C' o {1,2}. The unlicensed elements are colored gray.

Next, we turn to the binary successor relation in the output model. Here,
we must have four formulas to specify the successor relation in the output
signature. We define these as follows

< (@y) = zay (3.6)
L2z, y) &f sonorant_C(z) A word-final(x) A word-final(y) (3.7)
2z, y) ' false (3.8)
22(2,7) ' false (3.9)

July 3, 2019 © Jeffrey Heinz

3.2. GETTING BIGGER 63

Consequently, the successor relations are preserved among the first copy of
the domain elements and the only successor from an element of the first copy
to an element of the second copy is satisfied when x satisfies both word-final(x)

and sonorant_C(x).
L)@)61
q

Figure 3.5: The successor relations in the output model for input pan when
the copy set C' A {1,2}. The unlicensed elements are colored gray.

Finally, we must define two formulas for each unary relation R in the
output signature, ¢i(x) and ¢2(z). For each unary relation R, we define
on(z) oo R(x). Thus, the first copy of the domain elements are faithful to
the unary relations they satisfied in the input. For the second copy, we can
also let the domain elements be faithful to the unary relations they satisfied
in the input with two exceptions. In our model,the low vowel a is low and
vocalic and so ¢?2__1;.(z) and @2 _(x) must be defined to be true only when
x corresponds to an element in the input that satisfies sonorant_C(z) and
word-final(z). For other unary relations R, we can define ¢2(z) & false.

For completeness, Table 3.3 shows the complete logical description of

word-final vowel epenthesis.

3.2.2 Duplication

Here we provide another example of a logical transduction, total reduplica-

tion. Obviously, we set the copy set C dof {1,2}. Then we essentially make

all unary relations be faithful to their input so for all unary relations R in

the output signature we have ¢l(z) = ¢2(z) & R(z). As for the successor

relation, two elements (z,7) and (y, j) stand in the successor relation if only
if either 7 = j and x <y in the input model or ¢ = 1 and 7 = 2 and x is word-
final in the input and y is word-initial in the input. We define word-initial(x)
as follows.

word-initial(z) & -3y (y < z) (3.10)

July 3, 2019 (© Jeffrey Heinz

64 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

voiceless
labial low coronal
stop vocalic nasal

(L) 3.

<

low
G @) (2 ocanc

Figure 3.6: The model representing pana which is output for the input pan.
The unlicensed elements are colored gray.

To illustrate, Figure 3.7 shows the output model for the input pan. In this
way the copy set and the logical make it straightforward to define total
reduplication.

voiceless
labial low coronal
stop vocalic nasal

stop vocalic nasal
labial low coronal
voiceless

Figure 3.7: The model representing panpan is the output of the input pan to
the process of reduplication.

For completeness, Table 3.4 shows the complete logical description of total
reduplication.

July 3, 2019 © Jeffrey Heinz

3.2. GETTING BIGGER

65

Poomain = true c {1,2}
Plicense (T) ' true B2, conse (T) 4 Sonora nt_C(z) A word-final(z)
Wzy) ¥ zay L2(24) ¥ sonorant_C(z) A word-final(z)
A word-final(y)
2,1 def 2.2 def
< (.f(f,y) = false sﬁcc(xvy) = false
L earic(T) dof vocalic(z) 2 earic(T) 2 sonora nt_C(z) A word-final(z)
1 (x) j:ei low(x) 2 () déi sonorant_C(z) A word-final(x)
: d
Ohign(r) = high(x) Gn(r) £ false
def def
Jlfront ([E’) = fI'OIlt(ZlZ') %ront ([E’) = false
def def
;top ([E’) :O Stop(l') ztop (l') é false
¢115ricative ([E’) d:Of fricative ([L’) ¢125ricative ([E’) déf false
def def
I () = nasal(z) 2 () = false
def def
A rerar(T) = lateral(w) DFrerar () = false
def . def
11”hot1c ([E’) = I’hOth([L’) 12”hot1c ([L’) = false
def . def
labia1 (7) = labial(z) Zabia1 (T) = false
def def
! cona1(T) = coronal(w) 2 () = false
def def
Q%.orsal ([E’) = dorsal ([L’) ¢§.orsal ([L’) = false
def . def
\lloiced ([E’) = VOlCGd([L’) \2loiced ([L’) = false
def . def
D iceless () = voiceless(x) | @2 icess () = false

Table 3.3: The complete logical specification for word-final vowel epenthesis
when the input and output string models are both the feature-based successor

model.

3.2.3 Summary

At this point, we have covered how to define transformations logically. One
remarkable aspect about these methods is that these can be used for different
representations. We will see this is the case

July 3, 2019

(© Jeffrey Heinz

66 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

®domain = trUE C = {1,2}
def def
gb}.icense ([L‘) = true ¢%icense(x) = true
Yz, y) C P Y L2 (x,y) of word-final(x)
A word-initial(y)
2,1 def def
< (l’,y) = false succ(x7y> = T4y
def . def .
xllocalic ('T) = VOC8.11C(.CL’) vocallc (.CL’) = VOC8.11C(.Z’)
(7)< Low(a) () = Low(a)
def . def .
Onign(r) = high(z) Frign(r) = high(z)
def def
Jlfront ([E’) = fI'OIlt(ZlZ') ¢front(x) = front ([L‘)
def def
sop(¥) = stop(z) 2op(¥) = stop(z)
Ohricavive (1) 2 fricative(s) | dfcanne(r) & fricative(r)
def def
Illasal ([E’) :O nasal(:L') nasal(x) :C nasal ([E’)
def def
gbi}.ateral ([E’) = lateral(x) ¢1atera1(x) = lateral(x)
def . def .
11"h°t1C ([E’) — I’hOth({L’) rhotlc(x) = I’hOth([L’)
def . def .
laiar(¥) = labial(z) Prpiar () = labial(z)
def def
loronal ([E’) - COI’OIlal(:)j') coronal(x) = coronal(x)
def def
¢dorsal ([E’) = dorsal ([L’) ¢dorsal(x) = dorsal ([L’)
def . def .
\lloiced ([E’) = VOlCGd([L’) vomed(x) = VOlCGd([L’)
def . def .
xlloiceless ([E’) = v01celess(x) v01celess (ZIZ’) = v01celess(1’)

Table 3.4: The complete logical specification of total reduplication when the
input and output string models are both the feature-based successor model.

3.3 Power of MSO-definable Transformations

What other kinds of transformations can be described with logical transfor-
mations? As the astute reader may no doubt have already gathered, many
phonologically or morphologically unnatural processes are also easy to de-
scribe with logical transformations. As explained more detail in the next
chapter, this is a strength, not a weakness, of the formal methods advocated
here. Basically, the formal methods do not constitute a theory of phonology;

July 3, 2019 (© Jeffrey Heinz

3.3. POWER OF MSO-DEFINABLE TRANSFORMATIONS 67

rather, they constitute a meta-language in which theories of phonology can
be stated.

In this section, however, we simply wish to establish the fact that two
unnatural processes — string mirroring and sorting — also permit logical de-
scriptions.

3.3.1 Mirroring

String mirroring is a process that takes any string w as input and outputs
ww"” where w" is the reverse of the string w. For example if the string pan
is submitted to the mirroring process, then the output would be pannap.
Similarly, if paka were input to the mirroring process, the output would be
pakaakap.

This can be modeled with a logical transduction that is nearly identical
to the one for total reduplication. The unary relations are defined in the
same way. The only differences lie in two of the formulas for the successor
relation in the output model. Specifically we define ¢1!(z,y) and ¢%!(z,y) as

def . .
before. However, ¢2%(x,y) = y <, which essentially reverses the successor

relations in the second copies of the domain elements. Also, ¢L?(x,vy) o
word-final(z) A word-final(y). Thus mirroring places the copies of the element
which is word-final in the input model into the successor relation. Figure 3.8
shows the output model of the string pannap that is produced by this logical
description of string mirroring given the input pan.

3.3.2 Sorting

String sorting is a process that takes any string as input and outputs a string
of the same length where the symbols are sorted in leixographic order. For
instance if the input string is paka the output string would be aakp. Similarly,
if the input string was banapi the output string would be aabinp. While, we
can do this for any word model of strings, we will assume an alphabet ¥ and
a conventional precedence model for strings (see section 2.7) for convenience.
We also assume that the alphabet is totally ordered under some lexicographic
order (<y).

Then sorting can be modeled with a logical transduction as follows. We
let the copyset C' = ». This may seem unusual, but what we are saying is
that we make as many copies as there are letters in the alphabet. Then for

July 3, 2019 (© Jeffrey Heinz

68 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

voiceless
labial low coronal
stop vocalic nasal

stop vocalic nasal
labial low coronal
voiceless

Figure 3.8: The model representing pannap is the output of the input pan to
the process of mirroring.

each a # b € X define the licensing formulas and the relational formulas as
follows.

o ¢i(z) ¥ a(r)
o 0%z, y) Y <y

o ¢“’(x,y) & true whenever a <, b and false otherwise

® Oiconse(r) € al(2)

The first item defines all the unary relations in the output (for each a € ¥).
It says that each copy of a domain element in the input which belonged to
the unary relation a also belongs to a in the output.

The second item defines the binary precedence relations for domain el-
ements in the output that belong to the same copy. In this case, domain
elements (x,a) and (y,a) stand int the precedence relation in the output
only if z < y in the input. This ensures the familiar left-to-right ordering
among elements, at least within a copy.

The third item defines the binary precedence relations for domain ele-
ments in the output that belong to different copies. The basic idea is that
alhabetically earlier copies will precede alphabetically later ones. Recall we
are defining multiple formulas ¢“°(z, y) for each a # b € £. Whenever a <, b

July 3, 2019 © Jeffrey Heinz

3.3. POWER OF MSO-DEFINABLE TRANSFORMATIONS 69

(a is alphabetically earlier than b) we let ¢%°(z,) & true. Whenever b <, a,

we let ¢%"(z,y) & false.

Finally, we get to the licensing formulas, of which there will be |X|. We
define these formulas so that only those domain elements that belong to the
unary relation a in the ath copy are licensed. Everything else is unlicensed.
Recall that relations in the output model are restricted to the licensed domain
elements.

Figure 3.9 illustrates this construction when the input is paka.

Figure 3.9: The model representing the output aakp of the input paka to
the process of sorting with all potential domain elements shown. Unlicensed
elements are in gray.

July 3, 2019 (© Jeffrey Heinz

70 CHAPTER 3. TRANSFORMATIONS, LOGICALLY

3.4 Conclusion

This chapter has explained how transformations can be expressed logically
between model-theoretic representations. The signature of the output model
determines the relational formulas that need to be defined.

July 3, 2019 (© Jeffrey Heinz

Part 11

Case Studies

71

DRAFT

24

July 3, 2019 (© Jeffrey Heinz

Part 11

Theoretical Contributions

25

DRAFT

Part 111

Horizons

27

DRAFT

Bibliography

Albro, Dan. 2005. A large-scale, LPM-OT analysis of Malagasy. Doctoral
dissertation, University of California, Los Angeles.

Anderson, Stephen. 1974. The Organization of Phonology. Academic Press.

Bale, Alan, and Charles Reiss. 2018. Phonology: A Formal Introduction. The
MIT Press.

Beesley, Kenneth, and Lauri Kartunnen. 2003. Finite State Morphology.
CSLI Publications.

Benua, Laura. 1997. Transderivational identity: Phonological relations be-
tween words. Doctoral dissertation, University of Massachusetts, Amherst.

Biichi, J. Richard. 1960. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly 6:66-92.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral disser-
tation, The University of Delaware.

Chomsky, Noam, and Morris Halle. 1968a. The Sound Pattern of English.
New York: Harper & Row.

Chomsky, Noam, and Morris Halle. 1968b. The Sound Pattern of English.
New York: Harper & Row.

Courcelle, Bruno. 1994. Monadic second-order definable graph transductions:
a survey 126:53-75.

Dresher, Elan B. 2011. The phoneme. In The Blackwell Companion to
Phonology, edited by Elizabeth Hume Marc van Oostendorp, Colin J. Ewen
and Keren Rice, vol. 1, 241-266. Malden, MA & Oxford: Wiley-Blackwell.

29

30 BIBLIOGRAPHY

Droste, Manfred, and Paul Gastin. 2009. Weighted automata and weighted
logics. In Droste et al. (2009), chap. 5.

Droste, Manfred, and Werner Kuich. 2009. Semirings and formal power
series. In Droste et al. (2009), chap. 1.

Droste, Manfred, Werner Kuich, and Heiko Vogler, eds. 2009. Handbook
of Weighted Automata. Monographs in Theoretical Computer Science.
Springer.

Frank, Robert, and Giorgo Satta. 1998. Optimality Theory and the gen-
erative complexity of constraint violability. Computational Linguistics
24:307-315.

Gerdemann, Dale, and Mans Hulden. 2012. Practical finite state optimal-
ity theory. In Proceedings of the 10th International Workshop on Finite
State Methods and Natural Language Processing, 10-19. Donostia—San Se-
bastiAjn: Association for Computational Linguistics.

URL http://www.aclweb.org/anthology/W12-6202

Goodman, Joshua. 1999. Semiring parsing. Computational Linguistics
25:573-606.

Hansson, Gunnar. 2010. Consonant Harmony: Long-Distance Interaction in
Phonology. No. 145 in University of California Publications in Linguistics.
Berkeley, CA: University of California Press. Available on-line (free) at
eScholarship.org.

Hayes, Bruce, Bruce Tesar, and Kie Zuraw. 2013. Otsoft 2.3.2. software
package.
URL http://www.linguistics.ucla.edu/people/hayes/otsoft

Hopcroft, John, Rajeev Motwani, and Jeffrey Ullman. 2001. Introduction to
Automata Theory, Languages, and Computation. Boston, MA: Addison-
Wesley.

Hulden, Mans. 2009a. Finite-state machine construction methods and algo-

rithms for phonology and morphology. Doctoral dissertation, University
of Arizona.

July 3, 2019 © Jeffrey Heinz

BIBLIOGRAPHY 31

Hulden, Mans. 2009b. Foma: a finite-state compiler and library. In Proceed-
ings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, 29-32. Association for Computational Lin-
guistics.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. The
Hague: Mouton.

Kager, René. 1999. Optimality Theory. Cambridge University Press.

Kaplan, Ronald, and Martin Kay. 1994. Regular models of phonological rule
systems. Computational Linguistics 20:331-378.

Karttunen, Lauri. 1998. The proper treatment of optimality in compu-
tational phonology. In FSMNLP’98, 1-12. International Workshop on
Finite-State Methods in Natural Language Processing, Bilkent University,
Ankara, Turkey.

Karttunen, Lauri. 2006. The insufficiency of paper-and-pencil linguistics: the
case of Finnish prosody. Rutgers Optimality Archive #818-0406.

Kenstowicz, Michael, and Charles Kisseberth. 1977. Topics in Phonological
Theory. New York: Academic Press.

Kenstowicz, Michael, and Charles Kisseberth. 1979. Generative Phonology.
Academic Press, Inc.

de Lacy, Paul. 2011. Markedness and faithfulness constraints. In The Black-
well Companion to Phonology, edited by M. V. Oostendorp, C. J. Ewen,
E. Hume, and K. Rice. Blackwell.

McCarthy, John. 2003. OT constraints are categorical. Phonology 20:75-138.
McCarthy, John. 2008. Doing Optimality Theory. Malden, MA: Blackwell.

McCarthy, John, and Alan Prince. 1995. Faithfulness and reduplicative iden-
tity. In Papers in Optimality Theory, edited by Jill Beckman, Laura Walsh
Dickey, and Suzanne Urbanczyk, no. 18 in University of Massuchusetts Oc-
casional Papers in Linguistics, 249-384.

McNaughton, Robert, and Seymour Papert. 1971. Counter-Free Automata.
MIT Press.

July 3, 2019 (© Jeffrey Heinz

32 BIBLIOGRAPHY

Mohri, Mehryar, and Richard Sproat. 1996. An efficient compiler for weighted
rewrite rules. In Proceedings of the 34th Meeting of the Association for
Computational Linguistics (ACL °96).

Odden, David. 1994. Adjacency parameters in phonology. Language 70:289—
330.

Odden, David. 2014. Introducing Phonology. 2nd ed. Cambridge University
Press.

Prince, Alan. 2002. Entailed ranking arguments. In Rutgers Optimality
Archive. ROA-500, http://roa/rutgers.edu.

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory: Constraint
interaction in generative grammar. Tech. Rep. 2, Rutgers University Center
for Cognitive Science.

Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint
Interaction in Generative Grammar. Blackwell Publishing.

Prince, Alan, Bruce Tesar, and Nazarré Merchant. 2016. Otworkplace. soft-
ware package. Additions by Luca lacoponi and Natalie DelBusso.
URL https://sites.google.com/site/otworkplace/home

Riggle, Jason. 2004. Generation, recognition, and learning in finite state
Optimality Theory. Doctoral dissertation, University of California, Los
Angeles.

Rogers, James, and Geoffrey Pullum. 2011. Aural pattern recognition ex-

periments and the subregular hierarchy. Journal of Logic, Language and
Information 20:329-342.

Savitch, Walter J. 1993. Why it may pay to assume that languages are
infinite. Annals of Mathematics and Artificial Intelligence 8:17-25.

Scobbie, James M., John S. Coleman, and Steven Bird. 1996. Key aspects
of declarative phonology. In Current Trends in Phonology: Models and
Methods, edited by Jacques Durand and Bernard Laks, vol. 2, 685-709.

Manchester, UK: European Studies Research Institute. University of Sal-
ford.

July 3, 2019 (© Jeffrey Heinz

BIBLIOGRAPHY 33

Shukla, Shaligram. 2000. Hindi Phonology. Muenchen: Lincom Europa.

Sipser, Michael. 1997. Introduction to the Theory of Computation. PWS
Publishing Company.

Staubs, Robert, Michael Becker, Christopher Potts, Patrick Pratt, John J.
McCarthy, and Joe Pater. 2010. Ot-help 2.0. software package.
URL http://people.umass.edu/othelp/

Tesar, Bruce. 2014. OQutput-driven Phonology. Cambridge University Press.

Thomas, Wolfgang. 1982. Classifying regular events in symbolic logic. Jour-
nal of Computer and Systems Sciences 25:370-376.

July 3, 2019 (© Jeffrey Heinz

