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This chapter provides a computational analysis of the variation in the pronunciation of
some Tibetan numbers.1 In Tibetan, the names for numbers greater than ten are formed
by concatenating the word for a number less than ten with the word that means ‘ten.’ We
refer to these combinations as “compound numerals.” In particular, numbers from eleven to
nineteen are formed by prefixing [

>
dZu] ‘ten’ to the number being added to ten. For example,

[
>
dZuNa] ‘fifteen’ has the number [Na] ‘five’ as the first element of the compound, so it can be

analyzed as [
>
dZu-Na], literally meaning ‘ten-five.’ To form multiples of ten greater than ten,

the root meaning ‘ten’ is concatenated as a suffix to the number being multiplied by ten,
as in [Nab

>
dZu] ‘fifty’ (literally ‘five-ten’). This example shows that there is some variation

in pronunciation across different compound numerals. While it appears that [Na] ‘five’ is

prefixed to [
>
dZu] ‘ten’, we also see the additional segment [b] between the two. As the table

below shows, there are a number of other such consonant alternations (highlighted in bold).

>
dZig ‘one’

>
dZug

>
dZig ‘eleven’

Si ‘four’
>
dZubSi ‘fourteen’ Sib

>
dZu ‘forty’

Na ‘five’
>
dZuNa ‘fifteen’ gub

>
dZu ‘ninety

gu ‘nine’
>
dZurgu ‘nineteen’ Nab

>
dZu ‘fifty’

>
dZu ‘ten’

Table 1: Tibetan numbers and compound numerals.

We see that [b] follows the first root and precedes [
>
dZu] in all multiples of ten greater

than ten: [Sib
>
dZu] ‘forty,’ [Nab

>
dZu] ‘fifty,’ and [gub

>
dZu] ‘ninety.’ In each case, [b] is preceded

by a vowel and followed by the affricate [
>
dZ]—there is no more specific generalization we

can make about the environment of this [b]. Assuming that this [b] does not appear in
the underlying form of either the root meaning ‘five’ or the root meaning ‘ten,’ we might
propose some phonological process that epenthesizes [b] between a vowel and the affricate

[
>
dZ]. However, this process would incorrectly predict the surface form [*

>
dZub

>
dZig] instead

of [
>
dZug

>
dZig] ‘eleven.’

1The “Tibetan Numeral Problem” is presented in Halle and Clements (1983, p. 105) and Odden (2014,
p. 112).
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Furthermore, as Table 1 shows, the roots used to form other numbers in the teens vary in
pronunciation as well. ‘Fourteen’ is [

>
dZubSi] rather than [*

>
dZuSi] and ‘nineteen’ is [

>
dZurgu]

rather than [*
>
dZugu]. This variation is not easily explained by a single process of epenthesis

because the consonants that appear in the compound numerals are not predictable based
on the environments. Although we may be able to conceive of multiple epenthetic processes
that could explain all of this variation, there is a much simpler answer: the underlying forms
of certain numerals contain a consonant which is absent in the morphologically bare surface
form.

Under this latter hypothesis, there are several possible combinations of underlying forms
one might suggest. Let us first reconsider the example above: [Nab

>
dZu] ‘fifty’ can either be

morphologically analyzed as /Nab-
>
dZu/ or /Na-b

>
dZu/. If the underlying form of ‘ten’ were

/
>
dZu/ and the underlying form of ‘five’ were /Nab/, we might suppose that the underlying
forms of ‘four’ and ‘nine’ were /Sib/ and /gub/, respectively, conforming to the pattern
we see in multiples of ten. We could explain the surface forms of the multiples of ten by
positing a phonological process which deletes word-final consonants. This would accurately
predict the absence of a word-final [b] in the morphologically bare surface forms and in the
surface forms for ‘fourteen’, ‘fifteen’, and ‘nineteen’; it would also correctly predict the word-
internal [b] that appears in the surface forms for ‘forty’, ‘fifty’, and ‘ninety’. However, the

surface forms [
>
dZig] ‘one’ and [

>
dZug

>
dZig] ‘eleven’ would not be predicted because both have

a word-final consonant, [g]. We could modify our hypothesis to say that only /b/ is deleted
word-finally, but such a specific process seems ad hoc. It also fails to explain why the surface
forms [

>
dZubSi] ‘fourteen’ and [

>
dZurgu] ‘nineteen’ also include consonants not present in the

underlying forms of the supposed roots that make up these compound numerals.
A more reasonable alternative is that the underlying form of ‘five’ is actually [/Na/] and

the underlying form of ‘ten’ is /b
>
dZu/. Under this assumption, we would also posit the

underlying forms: /g
>
dZig/ ‘one,’ /bSi/ ‘four,’ and /rgu/ ‘nine.’ The surface variation among

numerals and their roots in compound numerals can be explained by a phonological pro-
cess which deletes the first consonant of a word-initial consonant cluster (CC). Hence /bSi/
surfaces as [Si] ‘four.’ This would accurately predict the absence of word-initial consonant
clusters throughout the data, as well as the pattern of consonants seen in compound nu-
merals. Because this explanation is both accurate and economical (in the sense that it only
requires one phonological process to predict all observed variation in surface forms), this
hypothesis is preferred over the ones previously mentioned.

The theory of prosodic licensing (Ito, 1986; Itô, 1989) provides a reason why initial
consonant clusters may be simplified. Under this theory, extra-syllabic segments fail to
surface. In other words, segments which fail to be incorporated into syllables are deleted,
a process known as stray erasure since the “stray” consonants are erased (McCarthy, 1979;
Steriade, 1982; Harris, 1983).

In what follows, we provide a computational analysis of this generalizations. Underlying
representations are analyzed in terms of a word model which contains the binary successor
relation (⊳) for order with a standard set of phonological features F represented as unary
relations. In this analysis we will refer specifically to the features consonantal and vocalic.
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Underlying word model

〈D, ⊳, feature (∀ feature ∈ F)〉

Surface word model

〈D, ⊳, onset, coda, nucleus, feature(∀ feature ∈ F)〉

Figure 1: Models for underlying and surface forms.

We will not specify other features in F but we assume they are there and are sufficient to
distinguish the transcribed speech sounds in Tibetan.

Per standard phonological theory, syllabic structure is only present in surface forms, and
not in underlying forms. Therefore, the surface representations are analyzed with a word
model that includes —like the model for underlying forms—the binary successor relation
(⊳) for order and a standard set of phonological features F , but also includes—unlike the
model for underlying forms—unary relations describing syllabic roles such as onset, coda,
and nucleus.

These models are summarized in Figure 1.
With these models in place, we can begin to specify the transformation from underlying

to surface forms. Recall that in order to specify this transformation, we must specify the
following items.

• A formula with no free variables that establishes the domain of the transformation
ϕdom. This determines those structures to which the function can apply.

• A copy set C of k ≥ 1 elements which determines, along with the size of the input’s
domain, the maximal size of the output’s domain. Each pairing (c, x) with c ∈ C and
x in the domain of the input form is a possible element in the domain of the model of
the surface form.

• For each element c in the copy set, a licensing formula of one free variable ϕc

license
(x)

which determines whether (c, x), which is the cth copy of element x, is licensed in
the model of the surface form. Unlicensed elements are not part of the domain of the
surface form, but licensed ones are.

• For each binary relation in the model of the surface forms, a formulae of two free
variables. Here, there is only one such formula ϕ⊳.

• For each unary relation in the model of the surface forms, a formula of one free variable.
Hence, we will have one for each feature in F as well as one for each of onset, coda,
and nucleus.
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Also, the formulae can be specified in any order as long as they are well-defined. Thus one
formula ϕ can be defined in terms of another formula ψ only if ψ has been defined previously.

We now define a transformation from underlying to surface forms which captures the
aforementioned linguistic generalizations in Tibetan. Specifically, we will enforce deletion of
unsyllabified consonants through the licensing formula.

We assume the domain of the transformation is any structure which can be represented
by the underlying word model.

ϕdom

def
= true (1)

For example, a valid input is given by /g
>
dZig/ ‘one’ is shown in Figure 2.

0

cons

dorsal

voiced

1

cons

coronal

voiced

2

vocalic

high

front

3

cons

dorsal

voiced

⊳ ⊳ ⊳

Figure 2: A graph representing the word model of /g
>
dZig/ ‘one.’ If x ⊳ y then there is a

labeled directed edge from x to y. Some unary relations to which element x belongs are
shown above x.

Since the size of the domain of every output is no larger than the size of the input we set
the copy set to contain a single element.

C
def
= {1} (2)

Consequently this means the size of the domain of the output is maximally the size of the
input domain. This “workspace” is illustrated in Figure 3.

0 1 2 3 (Copy set 1)

Figure 3: The possible elements of the domain of the model of the surface form.

Next, Equation 3 defines the the binary successor relation in the output form.

ϕ⊳(x, y)
def
= x ⊳ y (3)

ϕ⊳(x, y) will evaluate to true only if it is true that x ⊳ y in the model of the underlying
form. If ϕ⊳(x, y) is true then (x, y) will stand in the successor relation in the model of the
surface form. Figure 4 shows which relations would be present if every possible domain
element in the workspace is licensed.

Next, for each unary relation in the model for the surface forms, we need a formula which
identifies those elements that property. Since no element changes features, this is relatively
straightforward.

(∀ feature ∈ F) ϕfeature(x)
def
= feature(x) (4)
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0 1 2 3 (Copy set 1)⊳ ⊳ ⊳

Figure 4: The binary relations that would be present in the model of the surface form if
every domain element is licensed.

Equation 4 is actually several equations that are all similar in character, which is why we
bundle them together. Essentially it says that if an element x in the underlying model
belonged to a unary relation feature then its corresponding element x also belongs to that
unary relation. In other words, elements in the surface form (if they exist) carry the same
features they carried in the underlying form.

Of more interest is of course the unary relations which determine the syllabic roles sylla-
bles will play. These are defined next.

ϕnucleus(x)
def
= vocalic(x) (5)

ϕonset(x)
def
= consonantal(x) ∧ (∃y)[vocalic(y) ∧ x ⊳ y] (6)

ϕcoda(x)
def
= ¬ϕonset(x) ∧ consonantal(x) ∧ (∃y)[vocalic(y) ∧ y ⊳ x] (7)

Essentially, what these equations guarantee is that vowels will be nuclei, consonants immedi-
ately preceding vowels will be onsets, and non-prevocalic consonants immediately succeeding
vowels will be codas. Consequently, as illustrated in Figure 5, if every possible element in
the model of the surface form is realized, the elements would belong to the unary relations
as shown.

0

cons

dorsal

voiced

1

cons

coronal

voiced

onset

2

vocalic

high

front

nucleus

3

cons

dorsal

voiced

coda

⊳ ⊳ ⊳

Figure 5: The binary and unary relations that would be present in the model of the surface
form if every domain element is licensed.

The last formula needed to specify the transduction is the formula which indicates which
of the possible elements in the workspace are actual elements. In our case, this is simply
those elements that have syllabic roles.

ϕlicensed(x)
def
= ϕnucleus(x) ∨ ϕonset(x) ∨ ϕcoda(x) (8)

Elements in the domain which are licensed are precisely those which belong to one of the
unary relations. Clearly, every element x except for x = 0 makes ϕlicensed(x) true. Hence,
in the running example, element 0 is not part of the final model.
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Together, Equations 1 to 8 define a transduction that transforms models of underlying
forms to models of surface forms. There is a domain formula (ϕdom), a copyset C, one formula
of two free variables (ϕ⊳(x, y)), formulae of one free variable for each unary relation in the
model of the surface forms, and finally one formula of one free variable which determines
which of the possible elements are actually realized.

Figure 6 illustrates the model output by the specified transformation when given the
model of the input [

>
dZig] ‘one,’ shown in Figure 2.

1

cons

coronal

voiced

onset

2

vocalic

high

front

nucleus

3

cons

dorsal

voiced

coda

⊳ ⊳

Figure 6: A graphical visualization of the relational structure which is the output of the
input [

>
dZig] ‘one’ shown in Figure 2 under the transductions defined in Equations 1 through

8.

The prosodic theory of licensing is of course not the only way to analyze the alternation in
Tibetan numerals. Another analysis could have forgone the syllabic roles and simply licensed
all positions except word-initial consonants immediately succeeded by other consonants.
Such an analysis would also successfully account for the present data. These two analyses
however are not extensionally equivalent: the prosodic licensing analysis predicts that if triple
consonant clusters were to occur word-internally in underlying forms, the middle consonant
would delete (since it would be the only one unsyllabified). However the latter hypothesis
makes no such prediction.

Another analysis is possible in Optimality Theory (Prince and Smolensky, 2004). Here,
similar to the prosodic licensing analysis, syllable structure plays a motivating role. An
unbounded markedness constraint banning complex syllable margins motivates consonant
cluster reduction. The first consonant, and not the second, deletes because of the faithfulness
constraint IO-Contig which prefers deletions to occur at edges and not internally. Unlike
the prosodic licensing analysis however, this analysis as stated makes no predictions which
consonant deletes in word-internal triple consonant clusters. It would fall to other constraints
to determine which one deletes (for instance the least marked consonant, whichever one it
may be).

In the second part of this chapter, we explore how the generalizations identified in the
aforementioned OT analysis may be presented in the computational framework utilized here.

[To be completed. . . ]
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