
D
R
A
F
T

Chapter 2

Representations, Models, and

Constraints

Jeffrey Heinz and James Rogers

2.1 Logic and Constraints in Phonology

In this chapter, we show how to use logic and model-theoretic representations
to define constraints on the well-formedness of those representations. The
power in this kind of computational analysis comes from the framework’s
flexibility in both the kind of logic used and the choice of representation.

As will be explained, those choices provides a “Constraint Definition Lan-
guage” (CDL) in the sense of (de Lacy, 2011). Each CDL has psychological,
typological, and learnability ramifications which can be carefully studied.
Conversely, the psychological, typological, and learnability considerations
provide evidence for the computational nature of phonological generaliza-
tions on well-formedness.

This is not the first instance logic has been used in phonological theory.
In fact, there is considerable history. A notable turning point occurred in the
early 1990s with the developments of two theories: Declarative Phonology
and Optimality Theory.

Declarative Phonology made explicit use of logical statements in describ-
ing the phonology of a language. For instance (Scobbie et al., 1996, p. 688)
expressed a general principle of theories of syllables which prohibit ambisyl-
labicity this way: ∀x¬(onset(x) ∧ coda(x)), which in English reads “For all

23

D
R
A
F
T

24 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

segments x, it is not the case that x is both a onset and a coda.”

In Optimality Theory, first-order logic was often used implicitly to define
constraints. For example, the definition of the constraint MAX-IO in OT
given by McCarthy and Prince (1995, p. 16) is “Every segment of the input
has a correspondent in the output.” On page 14, they define the correspon-
dence relation: “Given two strings S1 and S2, correspondence is a relation R
from the elements of S1 to those of S2. Elements α ∈S1 and β ∈S2 are referred
to as correspondents of one another when αRβ.” As will be clear by the
end of this chapter, this definition of MAX-IO is essentially a statement in
First Orer Logic: For all α ∈S1 there exists β ∈S2 such that αRβ.

Unlike Optimality Theory, the CDLs introduced in this chapter provide
language-specific, inviolable constraints. For a representation to be well-
formed it must not violate any constraint. This is a property the CDLs in
this chapter have in common with Declarative Phonology. Scobbie et al.
explain:

The actual model of constraint interaction adopted is maximally
simple: the declarative model. In such a model, all constraints
must be satisfied. The procedural order in which constraints are
checked (or equivalently, in which they apply) is not part of the
grammar, but part of an implementation of the grammar (as a
parser, say) which cannot affect grammaticality. (Scobbie et al.,
1996, p. 692)

What Scobbie et al. are emphasizing is that logical specifications of grammar
specify what is being computed as opposed to how it is being computed. We
agree with Scobbie et al. (1996) that this is an attractive property of logical
languages.

While this chapter, and others in this book, assume the constraints are
language-specific and inviolable, it is a mistake to conclude that this line
of work only applies to grammars that make binary distinctions between
well-formed and ill-formed structures. In fact, weighted logical languages
allow one to specify what is being computed when structures are going to be
assigned natural numbers (for instance in the case of counting the number of
times a a structure violates a constraint) or real numbers (for instance in the
case of assigning some probability to a structure) (Droste and Gastin, 2009).
We review the basics and provide some examples in Chapter ??.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.2. CHAPTER OUTLINE 25

2.2 Chapter Outline

In the remainder of this chapter, we informally introduce model-theoretic
representations of strings and different logics. Most mathematical details for
the models and logical languages discussed in this chapter are provided in
Appendix A to Part I of this book. Some readers may benefit by consulting
Appendix A in parallel with this chapter. Readers for whom this does not
satisfy their appetite are referred to the textbooks on logic and model theory
provided in the Further Reading section below.

We focus on strings because they are widely used and well-understood.
Most importantly, they are sufficient to illustrate how different CDLs can
be defined and how these CDLs have consequences for psychological models,
typology, and learnability. Several chapters later in the book provide concrete
examples of non-string representations motivated by phonological theory. A
mathematical treatment of representations and logic is given in the appendix
of part I of this book. Concepts and definitions introduced here are presented
there precisely and unambiguously.

First, we introduce the canonical word model, which is known as the
successor model. This is followed by an informal treatment of First-Order
(FO) logic. This yields the first CDL (FO with successor) and we show how
to define a constraint like *NT—voiceless obstruents are prohibited from
occuring immediately after nasals—in this CDL.

Next we alter the successor model so that the representations makes use
of phonological features. This yields another CDL (FO with successor and
features). We comment on some notable points of comparison between the
two CDLs, again using the *NT constraint.

The narrative continues by discussing one typological weakness the afore-
mentioned CDLs: they are unable to describe long-distance constraints which
are arguably part of the phonological competence of speakers of some lan-
guages. This provides some motivation for a CDL defined in terms of a more
powerful logic, Monadic Second Order (MSO) logic. The CDL we call ‘MSO
with successor and features’ and we explain how it is able to define such
long-distance constraints. The key is that with MSO logic it is possible to
deduce that one element in a string precedes another element, no matter how
much later the second element occurs. The availability of the precedence
relation makes it possible to define long-distance constraints.

We continue to evaluate the MSO with successor CDL from a typological
perspective. We argue that there are significant classes of constraints defin-

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

26 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

able in this CDL that are bizarre from a phonological perspective. In other
words, we motivate seeking a more restrictive CDL capable of describing
local and long-distance constraints in phonology.

One solution is to make the precedence relation part of the representation.
This model of words is called the precedence model, which stands in contrast
to the successor model. We show how the CDL “FO with precedence” is also
able to describe both local and long-distance constraints of the kind found
in the phonologies of the world’s languages.

Finally, the chapter concludes with a high-level discussion seeking to em-
phasize the following points. First, there is a tradeoff between representations
and logical power. Second, as mentioned, the choice of representation and
the choice of logic has consequences for typology, psychological reality, mem-
ory, and learnability. Third, the representations and logics discussed in this
chapter are only the tip of the iceberg. Readers undoubtedly will have asked
themselves “What is possible with this representation?” and “Why don’t
we consider this variety of logic?” Some chapters in this book address such
questions. Comprehensively answering such questions, however, is beyond
the scope of this book. But it is not beyond the scope of phonological the-
ory. If some readers of this book pose and answer such questions, then this
book will have succeeded in its goals.

2.3 The Successor Model

This section introduces the central ideas of model-theoretic representations
with a concrete example. The concrete example comes from the “successor”
model, which is arguably the canonical model for strings.

Model-theoretic representations provide a uniform framework for repre-
senting all kinds of objects. Here the objects under study are strings. We
need to be clear about two things: what the objects are, and what counts as
a successful model-theoretic representation of a set of objects.

Strings are sequences of events. If we are talking about words, the events
could be given as speech sounds from the International Phonetic Alphabet.
Strings are typically defined inductively. Each event corresponds is assigned
some symbol. The set of symbols in use is called the alphabet. Each
symbol on its own is a string, and if w is a string and a is a symbol then
the concatenation of w and a, written wa, is also a string. This inductive
definition yields a set of objects: all logically possible sequences of symbols

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.3. THE SUCCESSOR MODEL 27

of the alphabet of finite length.

A successful model theoretic-representation of a set of objects must pro-
vide a representation for each object and must provide distinct representa-
tions for distinct objects. It may be strange to ask the question “How can we
represent strings?” After all, if we are talking about the string tent isn’t tent
itself a representation of it? It is, but the information carried in such repre-
sentations is implicit. Model-theoretic representations make the information
explicit.

Model-theoretic representations for objects of finite size like strings con-
tain two parts. The first is a finite set of elements called the domain. The
second is a finite set of relations. The relations provide information about the
domain elements. Themodel signature summarizes two parts and serves to
define the nature of model in terms of the information in the representation.
In this book, it is written like this: 〈D | R1, R2, . . . Rn〉.

We first show a model-theoretic representation of a word and then we
explain it. While this may seem backwards to some, it seems to work better
pedagogically. It can be helpful to refer to the end-product as one goes about
explaining how one got there.

Figure 2.1 shows the successor model for the word tent in addition to a
graphical diagram of it on its right. The graphical diagram puts the domain
elements in circles. Edges labeled with ⊳ indicate the binary relation called
“successor.” Finally, the unary relations, one for each symbol in the alpha-
bet, are shown in typewriter face above the domain elements that belong to
them. Throughout this book we will often use graphical diagrams instead of
displaying the literal mathematical representation on the left. The order of
the relations in the signature is fixed but it is also arbitrary.

Mtent

= 〈D | t, e, n, a, b, . . . , z, ⊳ 〉
=

〈

{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,

{(1, 2), (2, 3), (3, 4)}
〉

1

t

2

e

3

n

4

t
⊳ ⊳ ⊳

Figure 2.1: At left, the successor model of the word tent. At right, a graphical
diagram of this model.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

28 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

In the case of strings, the number of domain elements matches the length
of the string. So a model-theoretic representation of a word like tent would
have a domain with four elements, one for each event in the sequence. We can
represent these domain elements with the suits in a deck of cards (♥,♦,♣,♠)
or we could use numbers (1, 2, 3, 4) as we did in Figure 2.1. We will usually
use numbers because as strings get longer we can always find new numbers.
However, keep in mind that the numbers are just names of elements in the
model in the same way the suits would have been. They get their mean-
ing from the relationships they stand in, not from anything inherent in the
numbers themselves.

In the successor word model, there is a unary relation a for each symbol a
in the alphabet. We use the typewriter font to distinguish the relations from
the symbols. It is customary to denote the alphabet with Σ. We write (a)a∈Σ
to mean this finite set of relations. If a domain element belongs to the unary
relation a then it means this element has the property of being a. So for the
word tent, two elements will belong to t, a different element will belong to e

and the remaining element will belong to n. For every other symbol a in the
alphabet the relation a will be empty. When we write x ∈ a and/or a(x) we
mean that domain element x belongs to the unary relation a.

There is also a single binary relation called “successor”. A domain element
x stands in the successor relation to y if the event y corresponds to comes
in fact immediately after the event x corresponds to. In this book, we use
the symbol ⊳ to indicate the successor relation. For the word tent, if 2 ∈ Re

and 3 ∈ Rn then (2, 3) would be in the successor relation. We will write
(2, 3) ∈ ⊳, ⊳(2, 3), and/or 2 ⊳ 3 to mean that domain elements 2 and 3 stand
in the successor relation.

The model signature for the successor model is thus 〈D | (a)a∈Σ, ⊳ 〉. The
successor model is not the only way to represent words. From a phono-
logical perspective, it is arguably a strange model. We will consider more
phonologically natural models of words below.

It is easy to see that there is a general method for constructing a unique
model for each logically possible string. Given a string of w of length n we
can always construct the successor model as follows. Since w is a sequence of
n symbols, we let w = a1a2 . . . an. Then set the domain D = {1, 2, . . . n}. For
each symbol a ∈ Σ and i between 1 and n inclusive, i ∈ a if and only if ai = a.
And finally, for each i between 1 and n − 1 inclusive, let the only elements
of the successor relation be (i, i+ 1). This is summarized in Table 2.8. This
construction guarantees the model’s soundness: each string has a model and

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 29

D
def
= {1, 2, . . . n}

a
def
= {i ∈ D | ai = a} for each unary relation a

⊳
def
= {(i, i+ 1) ⊆ D ×D}

Table 2.1: Creating a successor model for any word w = a1a2 . . . an.

distinct strings will have distinct models. It is also important to recognize
that removing any one of the unary or binary relations will result in a model
which does not guarantee that models of distinct strings are distinct.

Model-theoretic representations provide an ontology and a vocabulary
for talking about objects. They provide a primitive set of facts from which
we can reason. For instance in the word rent, we know that the t occurs
sometime after the r. However this fact is not immediately available from
the successor model. It can be deduced, but that deduction requires some
computation. Measuring the cost of such computations is but one facet of
what model theory accomplishes. On the other hand, the successor model
makes immediately available the information that t occurs immediately after
the n. As will hopefully be clear by the end of this chapter, this distinction
can shed light on differences between local and long-distance constraints in
phonology.

From a psychological perspective, the primitive set of facts can be thought
of as the primitive psychological units. In its strongest form, the model-
theoretic representation of words as embodied in its signature makes a con-
crete claim about the psychological reality of the ways words are represented.

2.4 First Order Logic

Now that the models provide representations, what do we do with them?
Logic provides a language for talking about these representations. First Or-
der logic is a well-understood logical language which we introduce informally
here. For those already familiar with FO logic, you will see take advantage
of things like prenex normal form without discussion.

In addition to the Boolean connectives such as conjunction, disjunction,
implication, and negation, FO logic also includes existential and universal
quantification over variables that range over domain elements. These vari-
ables are called first order variables. Apart from these “logical connec-

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

30 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

tives” and quantified variables, the basic vocabulary of FO logic comes from
the relations in the model signature. Thus each model-theoretic represen-
tation supplies the ingredients for the logical language. Table 2.2 summa-
rizes the vocabulary of FO logic with an arbitrary model 〈D | R1, R2, . . . Rn〉.
Model vocabulary are also called atomic formulas because they are the

Boolean Connectives

∧ conjunction
∨ disjunction
¬ negation
→ implication
↔ biconditional

Syntactic Elements

(left parentheses
) right parentheses
, comma for separating variables

Variables, Quantifiers, and Equality

x, y, z variables which range over elements of the domain
∃ existential quantifier
∀ universal quantifier
= equality between variables

Model Vocabulary

R(x) for each unary relation R in {R1, R2, . . . Rn}
R(x, y) for each binary relation R in {R1, R2, . . . Rn}
xRy for each binary relation R in {R1, R2, . . . Rn}
. . .
R(x1, x2 . . . xm) for each m-ary relation R in {R1, R2, . . . Rn}

Table 2.2: Symbols and their meaning in FO logic. Certain sequences of
these symbols are valid FO sentences and formulas. Note we write binary
relations in one of two ways.

primitive terms from which larger logical expressions are built. As will be
explained they play a special role in the ontology of model-theoretic linguistic
theories.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 31

Since the appendix defines FO logic formally, here we define valid sen-
tences and formulas of FO logic ostensively. Below we give examples of three
types of expressions: sentences of FO logic, formulas of FO logic, and syn-
tactically ill-formed expressions.

Example 1 (Sentences of FO logic.). Sentences of FO logic are complete
sentences that can be interpreted with respect to a model. Below are five
sentences of FO logic with English translations below.

1. Sentences of FO logic.

(a) ∃x, y, z (¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z))
(b) ∃x, y (n(x) ∧ t(y) ∧ x ⊳ y)
(c) ¬∃x, y (n(x) ∧ t(y) ∧ x ⊳ y)
(d) ∀x, y (¬(n(x) ∧ t(y) ∧ x ⊳ y))
(e) ∀x∃y (n(x) → (t(y) ∧ x ⊳ y))

2. English translation (in terms of the models).

(a) There are three distinct domain elements.
(b) There are two domain elements in the successor relation; the for-

mer has the property of being n; the latter has the property of
being t.

(c) It is not the case that there exists two domain elements in the
successor relation of which the former has the property of being n
and the latter has the property of being t.

(d) For every pair of domain elements that stand in the successor
relation, it is not the case that the former has the property of
being n and the latter has the property of being t.

(e) For all domain element which have the property of being n, it is
succeeded by a domain element which has the property of being t.

3. English translation (in terms of the strings the models represent).

(a) There are at least three symbols.
(b) There is a substring nt.
(c) There is no substring nt.
(d) There is no substring nt.
(e) If there is n then there is a t immediately following it.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

32 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Sentences of FO logic are interpreted with respect to models. Models
for which the sentence is true are said to satisfy the sentence. If a model
M of string w satisfies a sentence φ we write Mw |= φ. Consequently, every
FO sentence φ divides the objects being modeled into two classes: those
that satisfy φ and those that do not. In this way, logical sentences define
constraints. The strings whose models satisfy the sentence do not violate
the constraint; strings whose models do not satisfy the constraint do violate
it.

Table 2.3 provides examples of strings whose models satisfy the formulas
in Example 1 and examples of strings whose models do not. An important

φ Mw |= φ Mw 6|= φ

(a) too, tent, ttt to, a
(b) tent, rent, ntnt ten, to, phobia
(c) ten, to, phobia tent, rent, ntnt
(d) ten, to, phobia tent, rent, ntnt
(e) rent, antler ten, nantucket

Table 2.3: Some strings whose models satisfy the formulas in Example 1 and
some whose models do not.

feature of FO logic is that there are algorithmic solutions to the problem of
deciding whether a given model satisfies a given sentence. This algorithm
works because the syntactic rules that build up larger sentences from smaller
ones have clear semantic interpretations with respect to the model under
consideration. In short, it is an unambiguous and compositional system. For
instance, M |= φ ∧ ψ if and only if M |= φ and M |= ψ. The interpretation
of quantifiers is discussed after introducing formulas below.

Example 2 (Formulas of FO logic.). Formulas of FO logic are incomplete
sentences in the sense that they contain variables that are not bound. A
variable is bound only if it is has been introduced with a quantifier and is
within that quantifier’s scope. Variables that are not bound are called free.
The formulas below are only interpretable with respect to a model M if the
free variables are assigned some interpretation as an elements of the domain
of M.

1. Formulas of FO logic.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.4. FIRST ORDER LOGIC 33

(a) n(x) ∨ m(x) ∨ N(x)
(b) ∃y (n(x) ∧ t(y) ∧ x ⊳ y)
(c) ¬∃y (x ⊳ y)
(d) ¬∃y (y ⊳ x)
(e) ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z)
(f) x ⊳ y ∧ y ⊳ z

2. English translation.

(a) x has the property of being n, m, or N.
(b) x has the property of being n and coming immediately before an

element which has the property of being t.
(c) There is no element which succeeds x.
(d) There is no element which x succeeds.
(e) x, y and z are distinct.
(f) x is succeeded succeeded by y which is succeeded by z.

The difference between formulas and sentences is that sentences admit
no free variables. Because these formulas can only be interpreted in terms
of one or more un-instantiated variables, formulas are often used to define
predicates. Predicates are essentially abbreviations for formulas with the
unbound variables serving as parameters. Below we repeat the formulas from
above, but use them to define new predicates. We write predicates in sans
serif font.

nasal(x)
def
= n(x) ∨ m(x) ∨ N(x)

nt(x)
def
= ∃y (n(x) ∧ t(y) ∧ x ⊳ y)

last(x)
def
= ¬∃y (x ⊳ y)

first(x)
def
= ¬∃y (y ⊳ x)

distinct3(x, y, z)
def
= ¬(x = y) ∧ ¬(x = z) ∧ ¬(y = z)

string3(x, y, z)
def
= x ⊳ y ∧ y ⊳ z

These predicates can then be used to define new sentences. For example,
the sentence ∀x(¬nt(x)) is equivalent to (1d) in Example 1 above. In the
same way that programmers write functions which encapsulate snippets of
often-used programming code, predicates generally help writing and reading
complex logical sentences.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

34 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Since sentences have no free variables, they must begin with quantifiers.
Determining whether a model satisfies a sentence is compositional. It also
depends on the assignment of variables to elements in the domain. For
instance, to determine whether M satisfies φ = ∃x(ψ(x)), we must find an
element of the domain of M, which if assigned to x, means that φ evaluates
to true. If no such element exists, then M does not satisfy φ. Similarly, M
satisfies φ = ∀x(ψ(x)) if and only if every element of the domain M, when
assigned to x, results in φ evaluating to true.

Finally we give some examples of syntactically ill-formed sequences. The
following expressions are junk; they are not interpretable at all.

Example 3 (Syntactically ill-formed sequences). 1. Syntactically ill-formed
sequences.

(a) x∃)x(

(b) ∀∃ (n ∨ t)

(c) ¬∃(n ⊳ t)

2. Comments.

(a) Quantifiers always introduce variables to their left and parentheses
are used normally.

(b) No quantifier can be introduced without a variable and n-ary rela-
tions from the model vocabulary must always include n variables.

(c) Many beginning students make this sort of error when trying to
express a logical sentence which forbids nt sequences. This ex-
pression breaks the same rules as the one before it.

We conclude this section by providing an example of a logical sentence
defining a constraint which bans voiceless obstruents after nasals. This is con-
straint in the literature is often abbreviated *NT. Since the model signature
does not include relations for concepts like nasals and voiceless consonants,
we first define predicates for these notions. We assume the alphabet is limited
to the following IPA symbols: a,b,d,e,g,i,k,l,m,n,o,p,r,s,t,u,z.

Example 4 (The constraint *NT defined under the FO with successor

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.5. FEATURE-BASED WORD MODELS 35

model.).

nasal(x)
def
= n(x) ∨ m(x) (2.1)

voiceless(x)
def
= p(x) ∨ t(x) ∨ k(x) ∨ s(x) (2.2)

*NT
def
= ¬∃x, y(x ⊳ y ∧ nasal(x) ∧ voiceless(y)) (2.3)

It is easy to see that models of words like tent and lampoon do not satisfy
*NT but models of words like ten and moon do. For example, in the model
of tent, the expression ∃x, y(x⊳ y∧nasal(x)∧ voiceless(y)) is true when x = 3
and y = 4. Hence, *NT evaluates to false. On the other hand, in the
model of the word moon, every value assigned x and y results in the sentence
∃x, y(x ⊳ y ∧ nasal(x) ∧ voiceless(y)) evaluating to false. Hence the sentence
*NT evaluates to true and so Mmoon |= *NT.

This section has presented the first CDL: FO with successor. The FO with
successor model has been studied carefully and it is known precisely what
kinds of constraints can and cannot be expressed with this CDL (Thomas,
1982), as will be discussed below.

2.5 Feature-based Word Models

One way in which the successor model above is strange from a phonological
perspective is its absence of phonological features. The properties associated
with the elements of the domain are whole segments. However, nothing in
model theory itself prohibits domain elements from having more than one
property. It is a consequence of the construction in Table 2.8 that each
domain element will satisfy exactly one of the unary relations a, no more
and no less. We can formalize this statement of the successor model in
Remark 1 as follows.

Remark 1 (The successor model entails disjoint unary relations). For all
successor models M = 〈D | (a)a∈Σ, ⊳ 〉, and for all a,b ∈ (a)a∈Σ, it is the case
that a ∩ b = ∅.

Therefore it is possible to design different models of words, where the
unary relations do not represent segments like a, b, or n but phonological
features such as vocalic, labial, or nasal. Crucially, in these models would not
entail disjoint unary relations: a domain element could be both voiced and
labial for instance.

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

36 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

In this part of the chapter, we give one example of such a model. There
are many others, as many as there are theories of phonological features. The
model we give here is primarily for pedagogical reasons; we are not stating
particular beliefs or arguments regarding the nature of feature systems. We
are only choosing a simple system that illustrates some key points.

We set up a feature system with privative features for the simple alpha-
bet Σ discussed earlier a,b,d,e,g,h,i,k,l,m,n,o,p,r,s,t,u,z. The use of privative
features contrasts with the typical assumption in phonological theory that
features are binary. We choose not to pick a minimal nor maximal set of
features for distinguishing this set. Instead we choose somewhat arbitrarily
a middle ground based on standard descriptive phonetic terms used for de-
scribing the manner, place and laryngeal qualities in articulating sounds. We
call this model the “successor model with features.” Its signature is shown
below.

〈D | vocalic, low, high, front, stop, fricative, nasal, lateral
rhotic, voiced, voiceless, labial, coronal, dorsal, ⊳〉 (2.4)

Table 2.4 shows how to construct a successor model with features for any
string in Σ∗. Again this model ensures that distinct strings from Σ∗ have
different models and that every string has some model.

Figure 2.2 shows the successor model with features of the word tent.
The successor model with features contrasts sharply with the successor

model with features in an important way. To see how, first consider the
constraint *NT. Under the successor model with features, this constraint
would be defined as in Example 2.5

Example 5 (The constraint *NT defined under the FO with successor model
with features.).

*NT
def
= ¬∃x, y(x ⊳ y ∧ nasal(x) ∧ voiceless(y)) (2.5)

This looks similar to the definition of *NT under the successor model
(Example 2.1), but there is a critical difference. The predicates above in
Example 2.5 are atomic formula and not user-defined predicates as they are
in Example 2.1.

This is an important ontological difference between these two models. In
the successor model with features there is no primitive representational con-
cept that corresponds to a sound segment like t like there is in the successor

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.5. FEATURE-BASED WORD MODELS 37

D
def
= {1, 2, . . . n}

vocalic
def
= {i ∈ D | ai ∈ {a, e, i, o, u}}

low
def
= {i ∈ D | ai = a}

high
def
= {i ∈ D | ai ∈ {i, u}}

front
def
= {i ∈ D | ai ∈ {e, i}}

stop
def
= {i ∈ D | ai ∈ {b, d, g, k, p, t}}

fricative
def
= {i ∈ D | ai ∈ {h, s, z}}

nasal
def
= {i ∈ D | ai ∈ {m,n}}

lateral
def
= {i ∈ D | ai = l}

rhotic
def
= {i ∈ D | ai = r}

voiced
def
= {i ∈ D | ai ∈ {b, d, g, z}}

voiceless
def
= {i ∈ D | ai ∈ {k, p, s, t, h}}

labial
def
= {i ∈ D | ai ∈ {b, p,m}}

coronal
def
= {i ∈ D | ai ∈ {d, s, t, z}}

dorsal
def
= {i ∈ D | ai ∈ {d, g, k}}

⊳
def
= {(i, i+ 1) | 1 ≤ i < n}

Table 2.4: Creating a successor model with features for any word w =
a1a2 . . . an.

model without features. Conversely, in the successor model without features
there is no primitive representational concept that corresponds to a phono-
logical like voiceless like there is in the successor model with features. In
the successor model with features we can write user-defined predicates that
define properties of domain elements that we can interpret to mean “being t”.

is t(x)
def
= stop(x) ∧ coronal(x) ∧ voiceless(x) (2.6)

Other sound segments would be defined similarly.
One way to put this difference is that in the successor model with fea-

tures one can immediately determine whether a domain element is voiced
or not, but in the successor model without features one cannot immediately
determine this fact. Instead one can deduce it by checking the appropriate
user-defined predicate. Likewise, in the successor model with features one
cannot immediately determine whether a domain element is t or not. With

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

38 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Mtent =
〈

{1, 2, 3, 4} | vocalic = {2},
front = {2},
stop = {1, 4},
nasal = {3},

voiceless = {1, 4},
coronal = {1, 3, 4}

⊳ = {(1, 2), (2, 3), (3, 4)}
〉

1 2 3 4

stop vocalic nasal stop

coronal front coronal coronal

voiceless voiceless

⊳ ⊳ ⊳

Figure 2.2: At left, the successor model with features of the word tent. Unary
relations which equal the empty set are omitted for readability. At right, a
graphical diagram of this model.

the featural representations, such a fact must be deduced with a user-defined
predicate like the one above.

Also, the fact that such user-defined predicates exist should not be taken
for granted. They exist here because the only logical system discussed so
far is FO. With FO logic, it is possible to define a predicate for any subset
of the alphabet Σ for both successor models with and without features. If
the logical system was restricted in some further way then some user-defined
predicates may not be possible to define. For example, if the logical system
only permitted conjunction and no other Boolean connective then it would
not be possible to define a predicate for voiceless stops in the successor model
without features. This interplay between representations and logical power
with respect to expressivity is an important theme of this chapter. It will be
discussed at length with respect to the successor relation, and we will return
to it in the context of features when restricted logics are introduced towards
the end of the chapter.

As a consequence of FO logic then, any constraint definable with one
of the representations discussed so far is definable in the other. This leads
to the conclusion that there are no typological distinctions between the FO
with successor theory and the FO with successor with features theory. Both
admit exactly the same class of constraints.

However, while the two models do not make different typological predic-

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 39

tions, they do make different psychological ones. In regard to phonological
theory, the signature of the model is an ontological commitment to the psy-
chological reality of the model vocabulary. Taken seriously, the successor
model with features says that the mental representations of words carries
only the information shown in Figure 2.2. Thus, taken seriously, the suc-
cessor model with features says that the segments in the word tent are not
perceived as such but are instead perceived in terms of their features. Clever
psycholinguistic experiments might be able to bring evidence to bear on
which model more accurately resembles them actual mental representations
of words.

2.6 Monadic Second-Order Logic

This section introduces Monadic Second-Order (MSO) logic. This logic
is strictly more expressive than FO logic. We motivate the discussion of
MSO logic from a linguistic perspective by showing that FO with successor,
both with and without features, is not sufficient to account for long-distance
phonotactic constraints.

What are long-distance phonotactic constraints? Odden (1994) draws at-
tention to an unbounded nasal assimilation in Kikongo whereby underlying
/ku-kinis-il-a/ becomes [kukinisina] ‘to make dance for.’ From one perspec-
tive, this assimilation could be said to be driven by a phonotactic constraint
that forbids laterals from occuring after nasals. Similar long-distance con-
straints have been posited for a variety of long-distance assimilation and
dissimilation processes (Hansson, 2010).

We first show that the phonotactic constraint which bans laterals from
occuring anywhere after nasals cannot be expressed in the FO with successor
model. As we hope to make clear, the problem is that the notion of precedence
is not FO-definable from successor. To illustrate, in Kikongo, [kukinisila] is
an ill-formed string. The nasal has only one successor [i], but [n] precedes
many segments including the second and third [i]s and the [s,l] and [a]. It is
the fact that [n] precedes [l] which makes [kukinisila] ill-formed according to
the phonotactic constraint which bans laterals from occuring anywhere after
nasals. We refer to this constraint as *N..L.

Constraint *N..L is not FO definable with successor. To prove this we
use an abstract characterization of the constraints definable with FO and
successor due to Thomas (1982) and reviewed in Rogers and Pullum (2011).

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

40 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

Theorem 1 (Characterization of FO-definable constraints with successor).
A constraint is FO-definable with successor if and only if there are two natural
numbers k and t such that for any two strings w and v, if w and v contain
the same substrings x of length k the same number of times counting only
up to t, then either both w and v violate the constraint or neither does.

Essentially, this theorem says constraints that are FO-definable with suc-
cessor cannot distinguish among strings that are composed of the same num-
ber and type of substrings of some length k, where substrings can be counted
only up to some threshold t.

We can use this theorem to show that *N..L is not FO definable with
successor by presenting two strings which *N..L distinguishes but which are
not distinguishable according to the criteria in Theorem 1. This would prove
that *N..L is not LTT and thus not FO-definable with successor. Impor-
tantly, for any k and t we have to present two strings. These strings can
depend on k and t.

We use notation ak to mean the string consisting of k consecutive as.
So a3 = aaa. For any numbers k and t larger than 0, consider the words
w = aknakℓak and v = akℓaknak. Table 2.6 below shows the substrings
up to length k, and their number of occurrences. Each word has the same
substrings and the same number of them. Note the left and right word
boundaries (⋊ and ⋉ respectively) are customarily included as part of the
strings.

In the discussion below, the following concept will prove useful. For every
number t and every number n let the t-number of n equal n if n < t otherwise
let it be t. So if n is our count than the t-number of n is just the count of n
up to the threshold t.

As can be seen from the above table, the two strings have exactly the
same number of occurrences of each k-long substring. Consequently, the t-
numbers of each k-long substring is also the same for any t. It follows, from
Theorem 1 that these two strings cannot be distinguished by any constraint
which is FO-definable with successor. More precisely, any constraint which
is FO-definable with successor is unable to distinguish in strings w and v

whether n precedes ℓ or whether ℓ precedes n. As such, no FO-definable
constraint with successor can be violated by w but not by v and vice versa.
It follows that *N..L is not FO definable with successor because for the reason
that it this is precisely the distinction it makes.

Having established that linguistically motivated long-distance phonotac-

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 41

count w = ⋊aknakℓak⋉ Notes

1 ⋊ak−1

3 ak

1 ainaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 aiℓaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 ak−1

⋉

count v = ⋊akℓaknak⋉ Notes

1 ⋊ak−1

3 ak

1 ainaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 aiℓaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 ak−1

⋉

Table 2.5: The k-long substrings with their number of occurrences in the
strings w = aknakℓak and v = akℓaknak with word boundaries.

tic constraints are not FO-definable with successor, we turn to the question
of how such constraints can be defined from the logical perspective offered
here. Essentially, there are two approaches. One is to increase the power of
the logic. The other is to change the model—the representation—of strings.
This section examines the first option and the next section examines the sec-
ond option. This interplay between logical power and representations and
how it affects the expressivity of the linguistic system is a running theme of
this book.

Monadic Second Order (MSO) logic is a logical language that is strictly
more powerful than FO logic. Constraints that are MSO-definable with suc-
cessor include every constraint which is FO-definable with successor because
every sentence and formula in FO logic with successor is also a sentence and
formula in MSO logic with successor and is interpreted in the same way. In
addition to first order variables, MSO comes with second order variables.
Generally, variables that are second order are allowed to vary over n-ary rela-
tions. The restriction to monadic second order variables means the variables
in this logic can only vary over unary relations, which corresponds to sets of
domain elements. This contrasts with first order variables, which recall vary
only over elements of the domain.

MSO logic is defined formally in the appendix to Part I, so here we

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

42 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

introduce it informally with examples. In MSO logic, the MSO variables
are expressed with capital letters such as X, Y , and Z to distinguish them
from first order variables which use lowercase letters like x, y, and z. Observe
that x ∈ X and X(x) are synonyms. As with first order variables, second
order variables are introduced into sentences and formula with quantifiers.

Additional Symbols in MSO logic

X, Y, Z variables which range over sets of elements of the domain
x ∈ X checks whether an element x belongs to a set of elements X
X(x) checks whether an element x belongs to a set of elements X

Table 2.6: Together with the symbols of FO logic shown in Table 2.2, these
symbols make up MSO logic.

With MSO logic over successor, it is now possible to define the precedence
relation as shown below.

closed(X)
def
= (∀x, y)

[

(x ∈ X ∧ x ⊳ y) → y ∈ X
]

(2.7)

x < y
def
= (∀X)

[

(x ∈ X ∧ closed(X) → y ∈ X
]

(2.8)

Intuitively, a set of elements X in the domain of a model of some word w

satisfies closed(X) only if every successor of every element in X is also in X .
In short, closed(X) is true only for sets of elements X which are transitively
closed under successor. Then x precedes y only if for every closed set of
elements X which x belongs to, y also belongs to X .

Figure 2.3 below illustrates these ideas. The successor model for the string
aℓaana is shown. Six ellipses are shown, which represent the six nonempty
sets of domain elements which are closed under successor and thus satisfy
closed(X).

We can conclude that ℓ precedes n because every closed set which element
2 (which corresponds to ℓ) belongs to (X1 andX2) also includes the element 5
(which corresponds to n). Similarly, we can conclude that n does not precede
ℓ because it is not the case that all closed sets which contain element 5 (which
corresponds to n) also include element 2 (which corresponds to ℓ). Set X4

for instance contains element 5 but not element 2.
Once the binary relation for precedence (<) has been defined, it is now

straightforward to define the constraint *N..L with features.

*N..L
def
= ¬(∃x, y)[x < y ∧ nasal(x) ∧ lateral(y)] (2.9)

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 43

1 2 3 4 5 6
⊳ ⊳ ⊳ ⊳ ⊳

a l a a n a

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✬

✫

✩

✪

✤

✣

✜

✢
X1

X2
X3

X4
X5

X6

Figure 2.3: The successor model for the word aℓaana. Rectangular regions
indicate the sets of domain elements (Xi) which are closed under successor.

The sentence above may look like a sentence of FO logic since no second
order variables are present. However, it is important to remember that the
precedence relation (<) is just an abbreviation for a longer formula, which is
defined in MSO logic, and not within FO logic. Often whether a predicate is
atomic or derived is not something that can be determined from inspecting
a sentence or formula since the notation does not distinguish them. Usually
one must be being acutely aware of the model signature to know whether a
predicate is atomic or derived.

At this point, we have established that the linguistically motivated long-
distance phonotactic constraint is not definable with FO logic with successor
but it is definable with MSO logic with successor. We thus ask: What other
kinds of constraints are MSO-definable with successor?

Another constraint that is not FO-definable with successor but is MSO-
definable constraint with successor is a constraint that requires words to
have an even number of nasals. Words like man and neonatology obey this
constraint since they have two nasals but words like mannequin and nan-
otechnology do not since they have three nasals.

To see that this constraint is not FO-definable with successor, we use
Theorem 1 as before. For any nonzero numbers k and t, consider the words
w = ak(nak)2t and v = ak(nak)2tnak. Observe that w obeys the constraint
since it contains 2t nasals and 2t is an even number. On the other hand,
v contains 2t + 1 nasals and therefore violates the constraint. However, as
Table 2.7 shows, these words have the same substrings of length k, and the
same t-numbers of each substring.

However, this constraint is expressible with MSO logic with successor.
We make use of some additional predicates, including general precedence
(<) defined in Equation 2.8. The predicate firstN is true of x only if x is the

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

44 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

w = ⋊ak(nak)2tak⋉

count t-number k-long substrings notes

1 1 ⋊ak−1

2t+ 2 t ak

2t+ 2 t ainaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 1 ak−1

⋉

v = ⋊ak(nak)2tnak⋉

count t-number k-long substrings notes

1 1 ⋊ak−1

2t+ 2 t ak

2t+ 2 t ainaj (for each 0 ≤ i, j ≤ k − 1, i+ j = k − 1)
1 1 ak−1

⋉

Table 2.7: The k-long substrings and the t-numbers of their counts in w =
ak(nak)2t and v = ak(nak)2tnak with word boundaries.

first nasal occuring in the word (Equation 2.10). The predicate lastN is true
of x only if x is the last nasal occuring in the word (Equation 2.11). Also,
two variables x and y stand in the ⊳N only if y is the first nasal to occur after
x (Equation 2.12). So ⊳N is a a successor relation relativized to nasals.

firstN(x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ y < x] (2.10)

lastN(x)
def
= nasal(x) ∧ ¬(∃y)[nasal(y) ∧ x < y] (2.11)

x ⊳N y
def
= nasal(x) ∧ nasal(y) ∧ x < y

∧ ¬(∃z)[nasal(z) ∧ x < z < y] (2.12)

Note we use the shorthand x < y < z for x < z ∧ z < y.
With these predicates in place, we write Even-N as in Equation 2.13.

Even-N
def
= (∃X)

[

(∀x)[firstN(x) → X(x)]

∧ (∀x)[lastN(x) → ¬X(x)]
]

∧ (∀x, y)
[

x ⊳N y ∧
(

X(x) ↔ ¬X(y)
)]

(2.13)

In English, this says that a model of word w satisfies Even-N provided
there is a set of domain elements X that includes the first nasal (if one

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.6. MONADIC SECOND-ORDER LOGIC 45

occurs), does not include the last nasal (if one occurs) and for all pairs of
successive nasals (if they occur), exactly one belongs to X . Consequently,
words containing zero nasals satisfy the Even-N because the empty set of
domain elements vacuously satisfies these three conditions. Words containing
exactly one nasal do not satisfy Even-N because the first nasal and the last
nasal are the same element x and it cannot both belong and not belong to X .
However, words with exactly two nasals do satisfy Even-N because the first
nasal belongs to X (satisfying the first condition), the last nasal does not
(satisfying the second condition), and these two nasals are successive nasals
and so are subject to the third condition, which they satisfy because exactly
one of them (the first nasal) belongs to X . A little inductive reasoning along
these lines lets one conclude that only words with an even number of nasals
will satisfy Even-N as intended.

It is natural to wonder whether there is an abstract characterization of
constraints that are MSO-definable with successor in the same way that
Thomas (1982) provided an abstract characterization of constraints that are
FO-definable with successor. In fact there is. Büchi (1960) showed that these
constraints are exactly the ones describable with finite-state automata.

Theorem 2 (Characterization of MSO-definable constraints with successor).
A constraint is MSO-definable with successor if and only if there is a finite-
state automata which recognizes the words obeying the constraint.

From the perspective of formal language theory, they are exactly the reg-
ular languages. Informally, these are formal languages for which the mem-
bership problem can be solved with a constant, finite amount of memory.

In this section we showed that FO-definable constraints with successor
are not sufficiently powerful to express long-distance phonotactic constraints.
One approach is to then increase the power of the logic. One logical sys-
tem extends FO by adding quantification over monadic second order vari-
ables. This logic—MSO logic with successor—is able to express long-distance
phonotactic constraints. However, MSO logic with successor also is also suf-
ficiently expressive as a CDL to express constraints like Even-N.

Another way of putting it is like this. In the successor model, the informa-
tion that in the word aℓaana the ℓ precedes the n is not immediately available
from the representation. That information can be deduced but the deduction
requires some computational effort. From the logical perspective taken here,
this deduction requires MSO power and not FO power. Furthermore, once

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

46 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

MSO power is admitted then it becomes possible to similarly deduce whether
or not there are even numbers of elements with certain properties.

Another approach to developing a CDL which can express long-distance
phonotactic constraints but not Even-N is to change the representation of
strings; that is, to change the model signature. This is precisely the topic of
the next section.

2.7 The Precedence Word Model

So far, the logics we have considered have been defined with respect to the
successor model of words. However, as we have seen with phonological fea-
tures vis a vis atomic letters, there are different models of strings. In this
section, we consider the precedence model of strings. Simply, this model con-
tains the precedence relation instead of the successor relation in its signature.

As with the successor model, there is a general construction for the de-
termining the precedence model for any string. Given a string of w of length
n the precedence model is constructed as follows. Since w is a sequence of n
symbols, we let w = a1a2 . . . an. Then set the domain D = {1, 2, . . . n}. For
each symbol a ∈ Σ and i between 1 and n inclusive, i ∈ a if and only if ai = a.
And finally, for each i and j between 1 and n inclusive, the only elements
of the precedence relation are (i, j) so long as i < j. This is summarized in
Table 2.8. This construction guarantees the model’s soundness: each string

D
def
= {1, 2, . . . n}

a
def
= {i ∈ D | ai = a} for each unary relation a

<
def
= {(i, j) ⊆ D ×D | i < j}

Table 2.8: Creating a successor model for any word w = a1a2 . . . an.

has a model and distinct strings will have distinct models.
Figure 2.4 shows the precedence model for the word tent in addition to

a graphical diagram of it on its right.
The difference between the precedence model and the successor model is

how the order of segments in the word are represented. In the precedence
model, the fact that the n is preceded by t in the word tent is immediately
available because the element corresponding to t is in the precedence relation
with the element corresponding to the first t. Under the successor model,

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 47

Mtent

= 〈D | t, e, n, a, b, . . . , z, < 〉
=

〈

{1, 2, 3, 4} | {1, 4}, {2}, {3},
∅,∅, . . .∅,

{(1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4)}

〉

1

t

2

e

3

n

4

t
< < <

<

<

<

Figure 2.4: At left, the precedence model of the word tent. At right, a
graphical diagram of this model.

this information was not immediately available as it was not part of the
representation. However, under the precedence model it is.

Take seriously from a psychological perspective, the precedence model can
be taken to mean that as words are perceived, information about the prece-
dence relations is being stored in memory as part of the lexical representation
of the word.

Also, in the same way that we considered the successor model both with
and without features, we can also consider a precedence model with and
without features. The precedence model introduced above was without fea-
tures, but it is a simple matter to replace the unary relations in that model
with the ones in Table 2.4.

It is straightforward to now write the constraint *N..L in the CDL which
we call “FO with precedence with features.”

*N..L
def
= ¬∃x, y(x < y ∧ nasal(x) ∧ lateral(y)) (2.14)

Equation 2.14 looks identical to Equation 2.9. However, there is critical
difference. In Equation 2.14, the precedence relation is an atomic formula
but in Equation 2.9 it is a user-defined predicate in MSO logic.

It is natural to ask of course whether a constraint like *NT is express-
ible in this CDL. The answer is Yes because successor is FO-definable from
precedence. Equation 2.15 shows how. Essentially, x is succeeded by y only
if x precedes y and there is no element z such that z < y and x < z.

x ⊳ y
def
= x < y ∧ ¬(∃z)[x < z < y] (2.15)

It is a striking fact that successor is FO-definable from precedence but

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

48 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

precedence is MSO-definable from successor. This is a considerable asymme-
try between the successor and precedence models of strings.

There are two important consequences. The first is the CDL “FO with
precedence” properly subsumes the CDL “FO with successor.” Not only is
every constraint expressible with the CDL “FO with successor” also express-
ible with the CDL “FO with precedence”, but there are constraints like *N..L
above that expressible with the CDL “FO with precedence” but not with the
CDL “FO with successor.”

Another important consequence is that the CDL “MSO with precedence”
is equivalent in expressive power to the CDL “MSO with successor” discussed
in the previous section. This is because with MSO logic, precedence can
be defined from successor as shown previously. Likewise because MSO logic
properly extends FO logic, successor can also be defined from precedence. So
at the level of MSO, these two models make no distinctions among the kinds
of constraints that can be expressed. Constraints in each CDL correspond
to exactly the regular stringsets.

There is also an abstract characterization of the FO-definable constraints
with precedence due to McNaughton and Papert (1971).

Theorem 3 (Characterization of FO-definable constraints with precedence).
A constraint is FO-definable with precedence if and only if there is a poistive
integer n such that for all strings x, y, z if xynz obeys the constraint then for
all k > n, xykz obeys the constraint too.

This characterization says that FO-definable constraints with precedence
can only distinguish iterations within strings up to some finite n. Two strings
xyiz and xyjz with both i, j > n but i 6= j cannot be distinguished by any
FO-definable constraint with precedence. As McNaughton and Papert (1971)
amply document, there are other independently-motivated characterizations
of this class as well.

The above characterization can be used to show that Even-N is not
FO-definable with precedence. Again, the strategy is to consider any n and
then to find strings w, v, x, y, z and numbers i, j > n such that w = xyiz

and v = xyjz where Even-N distinguishes w and v in the sense that one
violates Even-N and the other does not. If the constraint were FO-definable
with precedence such strings could not exist by Theorem 3. In this case, one
solution is to set x = z = λ (the empty string), y = ma, i = 2n and
j = 2n + 1. Then w = (ma)2n and v = (ma)2n+1. Clearly, w has an even
number of nasals since it has 2n [m]s but v has an odd number since it has

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

2.7. THE PRECEDENCE WORD MODEL 49

2n+1 [m]s. Thus Even-N distinguishes these strings and thus by Theorem 3
it cannot be FO-definable with precedence.

In this section, we considered a model of words where order is represented
with the precedence relation instead of the successor relation. It was shown
that long-distance constraints can readily be expressed in the CDL “FO with
precedence.” Furthermore, local phonotactic constraints like *NT can also
be expressed because successor is FO-definable from precedence. However,
the converse is not true. This asymmetry means that FO with precedence
is strictly more expressive than “FO with successor.” It was also shown
that Even-N is not expressive in this system. Finally, it was noted that
“MSO with precedence” is equally expressive as “MSO with successor”. Once
there is MSO power, successor and precedence are each definable from the
other. Which constraints can be expressed by which CDLs is summarized in
Figure 2.5.

MSO *N..L, Even-N Even-N

FO *NT *NT, *N..L

⊳ <

Figure 2.5: Classifying the constraints *NT, *N..L, and Even-N.

More generally, this section established the following. Although one way
to increase the expressivity of a CDL is to increase the power of the logic,
another way is to change the representations underlying the models. This
speaks directly to the interplay between representations and computational
power, one of the themes of this chapter.

We conclude that the only CDL discussed so far that can express both
local and long-distance phonotactic constraints (like *NT and *N..L) and
fails to express constraints like Even-N is the CDL “FO with precedence.”

June 27, 2019 c© Jeffrey Heinz

D
R
A
F
T

50 CHAPTER 2. REPRESENTATIONS, MODELS, AND CONSTRAINTS

2.8 Discussion

2.8.1 Tradeoffs between representations and power

2.8.2 Typology, learnability, and psychological reality

2.8.3 Well-formedness and Transformations

2.9 Further Reading

June 27, 2019 c© Jeffrey Heinz

