
Computational Phonology

Page 1 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Computational Phonology
Jane Chandlee, Haverford College and Jeffrey Heinz, University of Delaware

https://doi.org/10.1093/acrefore/9780199384655.013.116
Published online: 29 March 2017

Summary
Computational phonology studies the nature of the computations necessary and sufficient for
characterizing phonological knowledge. As a field it is informed by the theories of
computation and phonology.

The computational nature of phonological knowledge is important because at a fundamental
level it is about the psychological nature of memory as it pertains to phonological knowledge.
Different types of phonological knowledge can be characterized as computational problems,
and the solutions to these problems reveal their computational nature. In contrast to syntactic
knowledge, there is clear evidence that phonological knowledge is computationally bounded
to the so-called regular classes of sets and relations. These classes have multiple
mathematical characterizations in terms of logic, automata, and algebra with significant
implications for the nature of memory. In fact, there is evidence that phonological knowledge
is bounded by particular subregular classes, with more restrictive logical, automata-theoretic,
and algebraic characterizations, and thus by weaker models of memory.

Keywords: phonology, phonotactics, alternations, computational linguistics, finite-state automata,

finite-state transducers, monadic-second order logic, subregular hierarchy, learning algorithms and

models

Subjects: Computational Linguistics, Linguistic Theories, Phonetics/Phonology, Psycholinguistics,
Syntax

1. Phonology and Computation

Phonology is a theory that characterizes the knowledge people have regarding the way
morphemes, words, and phrases are pronounced in their language. Computational phonology
studies the nature of the necessary and sufficient computations entailed by such knowledge.

Computationally, phonological knowledge is a problem. A problem can be thought of as a

function that takes instances of the problem as input and generates answers to the problem as
output. As an example, consider the knowledge of how to sort lists of numbers in increasing
order. As a problem, this is expressed as a function from its instances (lists of numbers) to
their solutions (a sorted list). For example, an instance of this sorting problem is [20, 6, 18, 5]
and its answer is [5, 6, 18, 20]. We define an algorithm as a procedure that correctly supplies

Jane Chandlee, Haverford College and Jeffrey Heinz, University of Delaware

https://doi.org/10.1093/acrefore/9780199384655.013.116
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=phonology
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=phonotactics
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=alternations
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=computational linguistics
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=finite-state automata
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=finite-state transducers
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=monadic-second order logic
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=subregular hierarchy
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=learning algorithms and models
https://oxfordre.com/linguistics/search?btog=chap&f_0=keyword&q_0=learning algorithms and models

Computational Phonology

Page 2 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

an answer to problem when given any instance of it. A problem is considered solved if there
exists an algorithm that for it. Different problems may require different kinds of computations
of the algorithms that solve them.

Three classes of important problems in phonology are discussed from this perspective:
membership problems, translation problems, and learning problems. These problems
correspond to three critical aspects of the nature of phonological knowledge: phonotactic
knowledge, knowledge of phonological transformations, and the fact that this knowledge is
acquired through experience. These problems are discussed primarily in terms of string
representations. (Here, a string is a finite sequence of symbols. Following traditional notation,
the set of all logically possible strings constructed from a finite set of symbols is denoted

.) Issues involving alternative representations are also discussed. Other articles discussing
computational phonology are Heinz (2011a, 2011b) and Daland (2014).

2. Phonotactic Knowledge and the Membership Problem

Phonotactic knowledge is the knowledge speakers have regarding the well-formedness of
possible words in their language. For example, gdark is not a possible word in English but
blark is a possible word. Phonotactic knowledge is language-specific: gdark, for example, is a
possible Polish word.

In classical terms, the membership problem can be stated for any two sets such that A is
a subset of B (written). The problem is to determine which elements of are members
of . So every element of is an instance of the membership problem and its answer is 1 iff

 is in and 0 otherwise. The membership problem may also be considered in non-classical
ways. For instance, one non-classical interpretation is in terms of fuzzy membership. In this
case, the answers to instances of the membership problem may be taken to be points in the
real interval [0,1]. These values can be interpreted as ‘degrees of membership’. (They may
also be interpreted as probability values.)

Classically, phonotactic knowledge of a particular language is thus a membership problem

. (Note: we write for a function that maps elements of set to
elements of set ; is called the domain and the co-domain of .) Out of the logically
possible strings, which strings are well-formed (and therefore are ‘members’ of the set of
possible words in the language)? Many phonologists today—but not all—prefer to view
phonotactic knowledge in terms of fuzzy membership (Coleman &
Pierrehumbert, 1997; Hayes & Wilson, 2008; Daland et al., 2011; Gorman, 2013), in which
case the question becomes: out of all the logically possible strings, to what degree are
individual strings well-formed?

Both the classical and fuzzy membership problems for phonotactic knowledge have the same
instance space: . Formal language theory studies the nature of the necessary and sufficient
computations that algorithms must make when solving membership problems with this

Computational Phonology

Page 3 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

instance space. The classical membership problem is focused on because the computational
nature of the problem changes little when the fuzzy membership problem is considered
instead.

Two additional related problems help illustrate how different problems are similar in terms of
their computational nature. One—familiar to contemporary phonologists—is determining the
number of times a string violates a constraint. Letting refer to the set of non-negative
integers, this problem is a function , which maps strings to numbers. For any
constraint posited in phonology, we are interested in algorithms that solve this ‘problem’; that
is, algorithms that correctly compute the number of violations for each string in the instance
space of the problem. Another problem is , where is another finite set of
symbols of (not necessarily disjoint from). This is the ‘translation problem’.

The fuzzy membership problem and the others mentioned here are significantly informed by
the nature of the classical membership problem. This is because if the instance space of the
problem is and if the answer space has the properties of a semiring, then there is a level at
which all of these problems can be analyzed in the same way (Goodman, 1999).

A semiring is a set of values equipped with two operations with certain properties (a formal
definition is given Figure 1). By convention these operations are called ‘addition’ and
‘multiplication’, though their actual interpretation will depend on the nature of the values of
the semiring. The simplest example of a semiring is the set of natural numbers, in which case
addition and multiplication have their familiar interpretations. In this example, 0 is the

additive identity, since adding 0 to any integer gives the integer itself, and likewise 1 is the

multiplicative identity. This is the semiring employed in Harmonic Grammar (HG) (Potts,
Pater, Bhatt, & Becker, 2008) when constraint weights are required to be nonnegative
integers.

Figure 2 presents three additional semirings. The answer space for the classical problem is
the Boolean semiring. This is the set {true, false}, with the addition operator being OR ()
and the multiplication operator being AND (). The Boolean semiring is one of the simplest
semiring structures, which makes it convenient to use it for exposition as we do here. Another
semiring is the Viterbi semiring, which is often used in natural language processing tasks
(Jurafsky & Martin, 2008). The Language semiring has not been studied much, but it is a
natural choice for studying transformations.

Computational Phonology

Page 4 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 1. Definition of a semiring.

Figure 2. Some semirings.

Many computational results transfer directly to the other cases when the answer space
changes from one semiring to another. This is because the abstract structure of all semirings
is responsible for the results, not the particulars of the semiring itself.

2.1. Formal Language Theory

A cornerstone of formal language theory is the Chomsky Hierarchy (see Figure 3), which
divides subsets of into nested regions: Finite, Regular, Context-Free, Context-Sensitive, and
Computably Enumerable. Each of these terms corresponds to a level of computational power,
with Finite computations being the weakest and Computably Enumerable computations being
the strongest. The nesting of the levels entails that subsets in the Finite region are also in the
Regular region, subsets in the Regular region are also in the Context-Free region, and so on.

Every region in the Chomsky Hierarchy can be defined in multiple ways. Each of these ways
highlights different features of the different algorithms that may be employed to solve the
membership problem for languages in those regions. However, the fact that these different
definitions converge to the same regions shows that they have something deep in common.

Computational Phonology

Page 5 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Ultimately, it may be said that these regions correspond to different types of memory models.
In order to solve the membership problem, an algorithm must be able to remember certain
features of each input string as it is processed. When viewed in this light, these regions have
immediate interpretations in psychology and cognition.

Figure 3. The Chomsky Hierarchy. Points in this space are subsets of .

Statements like “Phonotactic Knowledge is Regular but not Finite” is an example of how
formal language theory provides a way to bound the nature of the computations entailed by
phonotactic knowledge both from above and from below. More detail will be provided about
what it means for knowledge to ‘be finite’ and ‘be regular’. What is at stake for such
hypotheses in terms of the insights formal language theory can offer is briefly discussed.

For a phonotactic constraint to be a regular language means there is a fixed, finite bound on
the amount of information any computational device (including a speaker/parser, for example)
needs to remember to solve the membership problem. For example, consider Navajo sibilant
harmony (Sapir & Hojier, 1967), in which suffix sibilants must agree with sibilants in the root
in anteriority. A parser has the capacity to determine whether strings of arbitrary length obey
the constraint, and to do so it only needs to scan the string left to right and determine which
of the following statements along the way: (1) no sibilant has been found, (2) a [+anterior]
sibilant was found first, or (3) a [anterior] sibilant was found first. If statement (1) is true
and the scanner reaches the end of the string, the string is in the language. If statement (2) or
(3) is true and the scanner finds a [anterior] sibilant or a [+anterior] sibilant, respectively,
then the string is not in the language. As will become clear later, these disjoint statements
that the scanner keeps track of correspond to the ‘states’ of any finite state machine (see

 2.3) that describes this pattern.

In contrast, a pattern that cannot be represented with a fixed finite set of states is non-
regular. As an example, consider a language in which all words must be palindromes (i.e., in a
word with segments, , as with masakasam). Any parser in
this case must remember every segment encountered until the end of the word and then test

§

Computational Phonology

Page 6 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

for the needed equalities. Since the length of words is unbounded (see 2.2), the memory
requirements are also unbounded in the relevant way (specifically, not finite state). Note also
that while sibilant harmony is well-attested in natural language, the ‘palindrome’ phonotactic
constraint is both unattested and intuitively non-phonological.

These two examples show how formal language theory draws a clear and well-defined
boundary between an attested, regular phonotactic pattern and an unattested, non-regular
one. Furthermore, the classification reflects computational memory requirements that have a
clear interpretation for cognitive load and processing. In sum, formal language theory is a
framework that leads to restrictive and testable predictions about what is possible in natural
languages.

2.2. The Finite Region

The finite region includes all and only those subsets of with finitely many strings. If
 has finite cardinality, there is a simple algorithm that can solve the classical

membership problem for . The algorithm contains a table that lists every element of . For
every instance of the problem, the algorithm checks whether occurs in this table. If it does,
it returns 1; if not, it returns 0.

With this in mind, we can ask: is the phonotactic knowledge of every human language finite?
One reason to think that phonotactic knowledge is finite is because there are only finitely
many words in any human’s mental lexicon at any one time. However, humans can also coin
new words (like blark), which shows that the number of possible words in the language always
exceeds the number of actual words.

The answer to the prior question hinges on whether there is an upper bound on the length of
words. If there are finitely many possible well-formed words then there is an upper bound on
the length of words (this bound will be one more than the longest word). Conversely, an upper
bound on the length of words entails there are only finitely many well-formed ones. Many
scholars believe there is no upper bound on the length of possible words in languages. For
example, here is a long nonce word of English that we think is well-formed:
kàpalàsakòulapinìpisàukimàlagàlanú. Given any positive integer , we believe we can
construct a possible word of English of length larger than (see also Daland, 2015). (We
recognize that for large these words are never fully pronounceable because human lives are
not long enough to utter them.)

One reason to think the answer is No has an element of practicality to it. Savitch (1993)
argues that even if there are only finitely many words, in some cases it is better to treat the
language as infinite anyway. This is because large finite sets of strings can often be factored
into two parts: an infinite set of strings and a separate finite-length condition.

Here is a concrete example illustrating the point. Consider the set .

Here means the symbol is repeated times. is a finite set of strings. As stated, an
algorithm can solve the membership problem for this set by containing a table with 1,000

§

Computational Phonology

Page 7 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

entries. Given any string , it can check this table entry by entry to see whether occurs
in this list. Of course there is another alternative. For any string, an algorithm can simply
check whether every symbol in the string is a and also check that the length of the string is
between one and 1,000, inclusive. This latter algorithm also solves the membership problem
for , but does so by factoring out the length requirement from the question of whether every
symbol in the input string is a. The question of whether every symbol in any string in is a is
a problem that does not fall in the finite region. Solving this problem cannot be done with any
finite list of strings. Instead it requires a different kind of computational power (regular
power; see 2.3).

This example illustrates Savitch’s point that treating finite sets as essentially infinite has
benefits. The program that checks whether every symbol in a string is a requires substantially
less memory than storing a table with 1,000 entries. On the other hand, it requires a (slightly)
more complex procedure than one that checks entries in a table to see if one matches the
instance of the problem.

2.3. The Regular Region

2.3.1. Overview

There are several kinds of algorithms that can solve the membership problem for sets of
strings in the regular region. These algorithms rely on different formal expressions that
specify regular subsets of . They can be specified in many ways, including three well-
studied ones: in terms of Monadic Second-Order (MSO) logic, in terms of finite-state
acceptors, and in terms of regular expressions. For each type of grammar, there is an effective
procedure (algorithm) that takes as input a grammar in that formalism and a string in and
correctly outputs the solution to the membership problem defined by that string and grammar.

For any regular set , MSO logic has the advantage that it is a high-level specification
language (not unlike a programming language such as Python or Haskell). This allows one to
state in an unambiguous, readable manner. On the other hand, finite-state acceptors are a
low-level language and so it is easy to define procedures that operate on automata (not unlike
low-level computer languages like assembler languages). For this reason, the most widely
used algorithms that solve the membership problem are based on finite-state acceptors.
However, finite-state acceptors can be difficult to read, especially if they are not small.
Regular expressions can also be difficult to read if they are large, and so many convenient
abbreviations have been introduced for them and are in wide use. Unlike MSO logic and
finite-state acceptors, regular expressions are most commonly employed for the classical
membership problem and only for problems whose answer space is the Boolean semiring (see
Figure 2; an important exception is discussed in 3).

These three formalisms will be introduced informally with examples. Readers are referred to
Hopcroft, Motwani, and Ullman (2001) and Enderton (2001) for formal definitions. The first
example (Figure 4) shows each formalism for the problem of determining whether a string

§

§

Computational Phonology

Page 8 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

contains only . The second example (Figure 5) shows each formalism for the problem of
determining whether a string of stressed and unstressed syllables is well-formed in
Maranungku.

2.3.2. Example: Only-a

Consider the three grammars in Figure 4, each of which describes the set of strings

.

MSO formulae. MSO formulae contain variables like , which range over positions in the
string. Positions are standardly represented with numbers. For example string has three
positions {1,2,3}. MSO formulae are constructed recursively from primitive formulae. The
primitive formulae for strings typically include predicates for how the positions are labeled.
For example, the primitive formulae each evaluate to true for the string

 when takes on the values 1, 2, and 3, respectively. So the above MSO expression says
“For all positions , is a and there is a position such that is a.” (This particular example is
actually an example of First-Order (FO) logic, which is a fragment of MSO logic.)

Figure 4. Three different descriptions of the same set of strings .

Regular Expressions. In the previous regular expression, the Kleene star (*) operation
means “zero or more occurrences” so means zero or more a’s in sequence, and means a
string with one a followed by zero or more a’s.

Finite-state Acceptors. Finite-state acceptors are a kind of graph. The labeled arrows in the
graph are called transitions and the circles of the graph are called states. The transitions that
occur among states define a set of paths. A word satisfies the acceptor provided there is a
path that begins at the start state (here indicated by the incoming arrow in state 0), ends at a
final state (here indicated by the double circle of state 1), and whose concatenation yields .

Here is the path for : . Observe there is no path for .

2.3.3. Example: Maranungku Stress

Maranungku places primary stress on the first syllable and secondary stress on subsequent
alternating syllables (Halle & Vergnaud, 1987). For instance, the following strings of syllables
are well-formed. (Maranungku actually has a prohibition against monosyllabic words; we do
not treat this fact here.)

Computational Phonology

Page 9 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 5 shows three descriptions of the linguistic generalization that these forms are
examples of: one in terms of MSO logic, one in terms of a regular expression, and one in terms
of a finite-state acceptor.

MSO formulae. Here, the grammar given by MSO formula defines several constraints and
Maranungku is simply the conjunction of four constraints: the first) requires that the first
syllable bear primary stress, and the others forbid primary stress on any syllable but the first (

), lapses (lapse) and clashes (clash). The auxiliary formulae first() is only true for
positions for which there is no position where is the successor of (written ‘ ’). The
successor relation is one of the atomic formulae in MSO logic with successor. In general,
atomic formulae correspond to the representational primitives.

Figure 5. Three descriptions of Maranungku stress.

Computational Phonology

Page 10 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Regular expressions. The regular expression for Maranungku uses the ‘ ’ (plus) operator,
which denotes the union of the denotations of the two expressions it combines. The denotation
of the expression on the left is all strings that begin with followed by zero or more
occurrences of the string . The denotation of the expression on the left is the same as the
one on the right except that the strings must end with .

Finite-state acceptors. The finite-state acceptor for Maranungku has two final states,
corresponding to whether the string ends with a or . Here is the path for :

.

2.3.4. Additional Important Facts

The equivalence of regular expressions and finite-state acceptors was determined by Kleene
(1956). The equivalence of finite-state acceptors and MSO logic (with successor, see 2.4) was
determined by Büchi (1960).

Of the three types of descriptions, the MSO logical formulae may appear to be most similar to
traditional linguistic theory at first glance. This is because new expressions can be
compositionally combined from more primitive ones to define constraints recognizable from
the phonological literature. For example, in Maranungku (Figure 5) constraints akin to
*CLASH and *LAPSE (Tesar & Smolensky, 1998) were defined. However, regular expressions
also build up complex expressions from simpler ones. In terms of regular expressions, LAPSE

could be defined as all and only those strings containing a lapse.

Generalized regular expressions extend regular expressions by adding symbols for relative
complement and intersection (McNaughton & Papert, 1971). This notation allows one to easily
express all the words that do not contain a lapse. This constraint can then be intersected with
the sets of strings corresponding to those that do not contain a clash, and so on. Despite the
extra symbols and their interpretations, generalized regular expressions are equivalent to
regular expressions; that is, both define the same sets of strings—the regular stringsets.

MSO formulae naturally allow ‘weights’ to be added by changing the nature of the semiring
(Figure 2). When using the Natural semiring instead of the Boolean semiring, MSO logical
formulae provide a constraint definition language in the sense of de Lacy (2011), which can
count the number of violations.

§

Computational Phonology

Page 11 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

The ‘ ’ has the effect of assigning one to each pair that satisfies the existential clause.
Then the existential quantifier is interpreted as the sum of these values. If we wanted to
define lapse so that each violation is counted twice we would only need to replace ‘ ’ with ‘

’. See Droste and Gastin (2009) for details.

On the other hand, we are unaware of a general solution to weighting regular expressions,
though there has been considerable work on extending regular expressions for both the
membership and translation problems (Beesley & Karttunen, 2003; Hulden, 2009a), as
discussed in 5.4.

Finite-state acceptors are just one kind of finite-state machine. Finite-state machines (also
called finite-state automata) come in several varieties: they can be either one-way or two-way,
they can read strings either left-to-right or right-to-left, they can be either deterministic or
non-deterministic, and in addition to input symbols on the transitions, the transitions may
include output labels (Savitch, 1982; Sipser, 1997). Typically, the output labels include
elements from a semiring such as natural numbers, real values, or strings (Eisner, 2003). The
automata shown in Figures 4 and 5 are one-way, deterministic finite-state machines without
output labels that read strings left-to-right. (In general, the term ‘acceptor’ is reserved for
finite-state machines without output labels on the transitions.) When the transitions do not
include output labels, all of the varieties are equally expressive. For instance, any membership
problem solvable with two-way, non-deterministic finite-state acceptors are also solvable with
one-way, deterministic finite-state acceptors, and vice versa (Savitch, 1982).

2.4. The Subregular Hierarchy

It is natural to ask whether better bounds on the computational nature of phonotactic
knowledge can be obtained. The Subregular Hierarchy is shown in Figure 6 (McNaughton &
Papert, 1971; Rogers & Pullum, 2011; Rogers et al., 2013). Like the classes in the Chomsky
Hierarchy, these classes are nested and are interpretable in terms of memory load and
processing requirements. If a line connects region A to region B in the diagram, and region A
is higher than region B, then region A properly contains region B. The Subregular Hierarchy
divides the regular regions along two dimensions: choice of representational primitives and
logical power. The logical dimension is split into four types of logic in decreasing power: MSO
logic, First-Order (FO) logic, Propositional logic, and Conjunctions of Negative Literals (CNL),
which is a fragment of propositional logic. The representational dimension is split into the two
ways linear order can be represented: immediate successor () and general precedence ().
The distinction between these representations of order can be illustrated with a word like .
It has two successor relations: and , but three precedence relations: , and

.

§

Computational Phonology

Page 12 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 6. The Subregular Hierarchy.

As explained by Rogers et al. (2013), each of the classes in the Subregular Hierarchy
corresponds to a particular algorithmic model of memory and perception. For instance, the
CNL classes correspond to the simplest, non-finite memory models. These algorithms scan
words in terms of sub-structures (of some fixed size) as determined by the representational
primitives. On the successor side, these sub-structures are substrings (for instance , , and

 are substrings of length two in), but on the precedence side, these sub-structures are
subsequences (for instance , , , , , and are subsequences of length 2 in). Thus
the Strictly Local class contains exactly those membership problems that can be solved by
algorithms that check the substrings in words against a finite list of forbidden substrings.
Similarly, the Strictly Piecewise class contains exactly those membership problems that can be
solved by algorithms that check the subsequences in words against a finite list of forbidden
subsequences.

The membership problems in the higher classes can be solved by algorithms with more
elaborate, enriched memories. For instance the Locally Testable and Piecewise Testable
classes are the Boolean closure of the Strictly Local and Strictly Piecewise classes,
respectively. Algorithms solving membership problems in these regions must not only check
which sub-structures of fixed size are present in words but must also run the results of these
checks through a Boolean circuit to correctly decide whether the answer to a given instance
of the problem is 0 or 1.

The classes in the Subregular Hierarchy provide a striking example of the interplay between
representation and algorithmic power. The analysis of certain types of long-distance
phonotactic patterns depends critically on how linear order is represented. To explain,
consider one type of phonotactic pattern found in natural language: the one derived from a

Computational Phonology

Page 13 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

productive process of asymmetric sibilant harmony like in Sarcee (Cook, 1978, 1984). In this
language there are no words with a non-anterior sibilant (like) following an anterior
sibilant (like [s]). The examples below (from Cook, 1978) illustrate this generalization in
Sarcee: anterior sibilants like [s] may occur after, but not before, non-anterior sibilants like

.

This generalization is conventionally represented with notation like (Hansson, 2010). If
linear order is represented with successor () then full MSO logical power is needed to solve
the membership problem for this pattern as shown in Figure 7. (In the following
formalizations and in the figures, we represent with [S].) The formula sarcee defines
general precedence in terms of successor. General precedence is the transitive closure of
successor. This is expressed in the formula closed(), which takes a monadic second-order
variable that ranges over subsets of the domain. The necessity of this second-order variable
is what makes MSO power necessary for defining precedence from successor. On the other
hand, if linear order is represented with precedence (), the same membership problem can
be solved merely with the conjunction of negative literals! Now the formula is simply .

Figure 7. A MSO() formula for Sarcee sibilant phonotactics.

This example shows that the difference in terms of memory requirements between local and
long-distance phonotactics is qualitative because it depends on the representation.

For completeness, Figure 8 presents a generalized regular expression and finite-state
acceptor description for the same Sarcee phonotactics. In the finite-state acceptor, ‘x’ is an
abbreviation for any non-sibilant.

ɣ

ʔ

ɣá

í í àʔ í í àʔ

Computational Phonology

Page 14 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Heinz (2010a) hypothesizes that all phonotactic knowledge is Strictly Local (i.e., based on
successor) or Strictly Piecewise (i.e., based on precedence). The appeal of this hypothesis is
that, as indicated in Figure 6, the computations needed to solve the membership problem in
phonology would be on the most restrictive level of the hierarchy (aside from Finite).
However, long-distance patterns with blocking are a problem for this hypothesis (see Heinz,
2010a for details).

Figure 8. A generalized regular expression and finite-state acceptor for Sarcee sibilant
phonotactics.

An alternative hypothesis is that phonotactic knowledge is Tier-based Strictly Local (Heinz,
Rawal, & Tanner, 2011), a class of languages with the option of designating a subset of as a

tier over which Strictly Local constraints can then be defined. Similar to phonological analyses
that assume autosegmental representations (Goldsmith, 1979), the Tier-based Strictly Local
class allows one to capture dependencies among segments that are non-string-adjacent (i.e.,
these segments are only adjacent on the tier). The Tier-based Strictly Local class properly
includes the Strictly Local class, which means local phonotactics describable with Strictly
Local constraints are also describable with Tier-based Strictly Local constraints, and can also
describe long-distance patterns including those with blocking. The Tier-based Strictly Local
class is not shown in Figure 6, but it is properly included by the Non-Counting class.

One way to define the Non-Counting class is as the class of patterns that can be described
with generalized regular expressions without the ‘*’ notation (McNaughton & Papert, 1971).
(Recall that an expression like means a string of any number of). Since the Non-
Counting class properly includes the Tier-based Strictly Local class, a weaker hypothesis is
that phonotactic knowledge is Non-Counting. This hypothesis is weaker because—if indeed all
phonotactic knowledge is Tier-based Strictly Local—then generalizing ‘up’ to Non-Counting
fails to capture an important generalization regarding the nature of phonology.

Nonetheless, the hypothesis that phonotactic patterns fall no higher than Non-Counting on
the hierarchy asserts that they are properly subregular. This hypothesis enjoys broad support
and there are only two potential counterexamples to our knowledge: the predictable stress
patterns of Creek and Cairene Arabic, which Graf (2010a) shows are more powerful than Non-
Counting. The Cairene Arabic (Mitchell, 1960; Graf, 2010a) pattern is described as follows:
stress the final syllable if it’s superheavy, else stress the penultimate syllable if it’s heavy, else
stress whichever syllable (between the penultimate or antepenultimate) is separated from the

Computational Phonology

Page 15 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

closest heavy syllable by an even number of syllables. Satisfying the third part of this
description requires counting modulo 2, which the Non-Counting class is not capable of. Thus,
this is an example of a pattern that is properly regular.

Whether the reported generalizations for Creek and Cairene Arabic are accurate merits
further study (in particular whether secondary stress is perceptible is a crucial point that
affects the pattern’s computational status; see Graf, 2010a, for details). As mentioned, these
are the only known counterexamples to the hypothesis that phonotactics are subregular. If
subregularity was not a significant property of phonology one would expect to find many more
such cases.

3. Morpho-phonological Alternations and the Translation Problem

Alternations in phonology refer to morphemes that have multiple pronunciations; the
morphemes ‘alternate’ among them. How to predict the pronunciation of a morpheme in a
particular context is one of the long-standing questions in theoretical linguistics. The
hypothesis that forms the cornerstone of generative phonology is that humans store a single
‘underlying representation’ for each morpheme in their mental dictionary, and these
underlying representations are transformed into the ‘surface’ variants (Kenstowicz &
Kisseberth, 1979; Odden, 2014) according to language-specific conditions. Thus the
alternations are explained in terms of a transformation of one representation into another.

These transformations are examples of the translation problem. The translation problem

 maps strings to strings (again, is another alphabet of symbols, possibly distinct
from). The instances of the problem are possible underlying representations and the
answers to the problem are the corresponding surface representations. For example, if we
consider a phonology that only contains a process of word-final obstruent devoicing, then the
following pairs are instances of the problem with their answers: (rat,rat), (rad,rat),
(mab,map), (milo,milo).

What is the computational nature of phonological transformations? As with phonotactic
knowledge, there is consensus that the statement “Phonological transformations are not
Finite but Regular” is true. Before we present the evidence in favor of this statement, let us
make clear the claim itself.

3.1. Types of Transducers

Within formal language theory, the computational landscape for translation problems is
different from the one for membership problems, and this difference can be seen when
comparing the finite-state representations used in the two problems. For the membership
problem we used finite-state acceptors; for the translation problem we use finite state

transducers. The distinction between these two types of finite-state machine is that the
transitions in transducers have both input and output labels. These output labels are strings
from (or the set of all subsets of , to accommodate variation/optionality).

Computational Phonology

Page 16 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 9 shows different subclasses of the translation problem in terms of the kinds of
transducers necessary to generate them. Like the classes in the Chomsky and Subregular
Hierarchies (Figures 3 and 6), these classes are nested.

Unlike the case with finite-state acceptors, where the 1-way/2-way, deterministic/non-
deterministic, left-to-right/right-to-left distinctions make no difference with respect to
expressivity, these distinctions do matter for finite-state transducers. These terms are defined
informally.

Determinism vs. Non-determinism. A FST is deterministic if for each state and for each
symbol in the input alphabet there is at most one transition from labeled . A non-
deterministic FST is not held to this requirement.

Figure 9. Subregular classes of transductions.

1-way vs. 2-way. A 2-way transducer is permitted to re-read parts of the input string. For
instance, it may process the string once (and write some output) and then read it again (and
write some more output). A 1-way transducer can read each part of the input string only once.

Left vs. Right. Left transducers process input strings left-to-right and build output strings
with right-concatenation, whereas Right transducers process input strings from right-to-left
and build output strings with left-concatenation. Right concatenation is the usual
concatenation: . Left concatenation is the reverse: . To illustrate, consider
the identity translation, which can be described with both Left and Right transducers and
consider the input string abcd. The Left transducer reads as a-b-c-d and outputs

. The Right transducer would read it from the right as d-c-b-a and
output .

It is particularly striking that the 2-way deterministic string transductions are incomparable
with 1-way non-deterministic transductions (so neither is a subset of the other). The former
are exactly those transformations describable with MSO formulae (Engelfriet & Hoogeboom,

Computational Phonology

Page 17 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

2001) and the latter are exactly the regular relations (Beesley & Karttunen, 2003). Recall that
in the case of formal languages (Figure 6) MSO formulae corresponds exactly to regular. We
see in Figure 9 that the situation is different for transductions. There are some non-regular
transformations that can be described with MSO formulae. For example, total reduplication
(where each input string is mapped to) is non-regular (i.e., it cannot be described with a
finite-state transducer), but this relation is definable with a MSO formula (in fact it can be
defined with a First Order [FO] formula). Readers are referred to the recent survey by Filiot
and Reynier (2016) for more details on these different types of transductions.

3.2. Why Phonological Transformations Are Regular Relations

As with the subregular hierarchy of formal languages, at the bottom of the hierarchy for
transductions we again have the finite class. A finite transformation is only defined for a finite
number of input strings. An algorithm can solve finite translation problems with a table with
finitely many rows and two columns. It simply looks up the input in the first column and then
writes out its corresponding output form (found in the second column). The reasons for not
considering phonological transformations as finite are essentially the same as those
previously given for the membership problem. We do not believe there is an upper bound on
the length of underlying representations, and even if there were, it pays to treat them as
essentially infinite.

Can phonological transformations be bounded from above? As mentioned, there is evidence
that all phonological transformations are regular relations. Johnson (1972) and Kaplan and
Kay (1994) show that phonological grammars that are defined as a list of rewrite rules like A

B/C____D can be interpreted as regular relations, which as indicated in Figure 9 correspond
to 1-way Non-deterministic FSTs. This is the first ingredient to the argument that phonological
transformations are regular.

The second ingredient is composition. The list of rules transform underlying
forms to surface forms as follows: applies to the underlying form, then for each greater
than or equal to but less than or equal to , applies to the output of , and the surface
form is the output of . Regular relations are closed under composition (Scott & Rabin,
1959). This means that if and are regular relations, their composition is also a
regular relation. Hence, the entire grammar can also be expressed by a single FST. (The fact
that a grammar of rules can be represented by a single non-deterministic FST means the
UR-SR mapping can be achieved without intermediate representations [Karttunen, 1993]; see
also Bromberger and Halle [1989].)

The third ingredient is that the phonologies of the world’s languages appear amenable to
descriptions as lists of ordered rules. These grammars may not be the most elegant or
succinct, but they are sufficient to accurately describe the map from underlying forms to
surface forms. In other words, we know of no phonology that cannot be described as a regular
relation. However, can a stronger (i.e. more restrictive) characterization of the UR-SR
mapping be given?

Computational Phonology

Page 18 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

3.3. Subregular Classes of Transductions

Graf (2010b, 2010a) compares dependency-based theories of phonology such as Government
Phonology (GP) (Kaye, Lowenstamm, & Vergnaud, 1990; van der Hulst, 2011, inter alia) with
the Sound Pattern of English (SPE) (Chomsky & Halle, 1968). He finds that GP can be
characterized by a modal logic with successor. Modal logic is generally recognized as being
stronger than Propositional logic but strictly weaker than First Order Logic. He concludes
that GP is more restrictive than SPE. He identifies a class of phonological patterns (spreading
patterns) that cannot be captured by GP. He further concludes that GP as formulated is too
restrictive unless it is extended in some ways he discusses. His discussion leaves open the
question of whether there are proper subclasses of the regular relations that encompass all
phonological transformations.

Other recent work seeks to answer this question by identifying subclasses of the regular
relations to which phonological maps can be shown to belong. Several classes of
transformations are represented in Figure 9, including the Input Strictly Local functions, Left
and Right Output Strictly Local functions, and Left and Right Subsequential functions.

Input Strictly Local (ISL). Above the finite class are the Input Strictly Local FSTs
(Chandlee, 2014; Chandlee & Heinz, forthcoming). ISL functions are those in which the output
string associated with each input symbol depends only on the input symbol itself and the

 input symbols read. Figure 10 illustrates how the output of input symbol is , and

 only depends on and the input symbols preceding (in this example). Thus,
Input Strictly Local FSTs (like all FSTs) read an input string left-to-right, one symbol at a time,
and produce some portion of the output string at each step (i.e., the complete output string is
the concatenation of the output strings produced by each transition). The ‘Input’ designation
means only information in the underlying representation is used to determine what to output.
The ‘Strictly Local’ designation means the output produced at each transition is only based on
the most recent input, where ‘most recent’ is parameterized by a fixed integer (see Figure

10). A -Input Strictly Local FST thus has states for all possible sequences from of length

, and the transitions are defined such that the FST is always in the state that matches the
most recently read input symbols. In this way the FST keeps track of the most recent
input and, importantly, nothing else. This restriction amounts to a short-term memory model,
with the effect that only local, not global, properties of a string can be used in the
transformation.

Computational Phonology

Page 19 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 10. Input Strictly Local functions.

An example of a transformation that can be described with such a FST is post-nasal obstruent
voicing (Pater, 2004), in which a voiceless obstruent that follows a nasal surfaces in its voiced
form. Figure 11 presents the Input Strictly Local FST for this process, for which . For
readability, a reduced alphabet is used, such that N nasal, T voiceless obstruent, D

 voiced obstruent, and V vowel.

The start state of the FST (shown in bold) is , which represents the empty string (i.e., the
string with no symbols). Again, by definition the FST is always in the state that corresponds to
the most recently read input symbols, so it starts in a state that indicates it has not read
anything. (Note: the ‘: ’ attached to each state label represents the value of the final output
function, which appends additional output to strings that end in that state. In this example
that function plays no role, because its value in all states is . See Chandlee, 2014 for more
details.) The transitions are labeled with input and output (because this is a transducer and
not an acceptor); a label such as N:N means an N is read from the input and an N is produced
as output. The diagram makes clear that from any state, the N:N transition leads to state N
(and likewise the other transitions lead to the respective T, D, and V states).

As an example, the path for the map of VNTV VNDV is shown.

Computational Phonology

Page 20 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Figure 11. 2-ISL FST for post-nasal obstruent voicing.

Processes such as post-nasal obstruent voicing are traditionally categorized as ‘local’ because
the target of the process is adjacent to the trigger. Input Strictly Local processes, however,
also include those for which the target is a bounded number of segments away from the
trigger. For example, in Ndonga nasal agreement (Viljoen, 1973; Rose & Walker, 2004), the
liquid in the /-el/ suffix becomes nasal if the last segment in the stem it attaches to is a nasal
(e.g., /kam-el-a/ [kamena], ‘press for’). Here the trigger of the agreement is the stem-final
nasal, but it is separated from the target by an intervening vowel. Importantly, the process
does not occur if more than one vowel intervenes (i.e., the amount of intervening material is
bounded by 1). This process has been classified as long-distance because it involves non-
adjacent segments (Rose & Walker, 2004; Hansson, 2010), but the existence of a bound on the
intervening material gives it the property of being Input Strictly Local (for 3).

More generally, transformations describable with rules of the form A B/C____D that apply
simultaneously can be modeled with Input Strictly Local FSTs provided that CAD is a finite set
of strings (Chandlee, 2014; Chandlee & Heinz, forthcoming).

Computational Phonology

Page 21 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Output Strictly Local (OSL). OSL functions come in two varieties: left and right. Left and
Right OSL functions are those in which the output string associated with each input symbol
depends only on the input symbol itself and the last output symbols written. Whether an
OSL function is left or right depends on whether it reads the input string from the left or from
the right. (Left and Right ISL functions could be defined similarly, but those two classes would
be equally expressive, which makes the distinction artificial.) The diagrams in Figure 12

illustrate how Left and Right OSL functions make computations. For Left (Right) OSL
functions, the output of symbol is , and only depends on and the output symbols
preceding (following) (again 3 in the example).

Figure 12. Left and Right Output Strictly Local functions.

As an example, consider an iterative nasal spreading process by which nasality spreads from a
nasal segment to a following contiguous span of vowels and glides. So if the input form
contains a sequence like NVVV (where N is a nasal and V is a vocalic segment), this sequence
in the output will be . Unlike the Input Strictly Local example of post-nasal obstruent
voicing, because the vowels that trigger additional nasalization in are not
nasalized in the input, the FST instead needs to keep track of the most recent output. This is
what distinguishes Input Strictly Local and Output Strictly Local FSTs.

More generally, a -Output Strictly Local FST is one in which the states correspond to
sequences from of length , and the transitions are defined such that the FST is always
in the state that matches the previous segments of the output (Chandlee, Eyraud, &
Heinz, 2015). The example of nasal spreading is progressive, because the triggering nasalized
segment precedes the target, and so it can be modeled with a FST that reads the string from
left-to-right (i.e., a Left Output Strictly Local FST). In the case of regressive spreading, the
analysis is the same except the string is read starting from the right (i.e., a Right Output
Strictly Local FST). See Johnson (1972), Kaplan and Kay (1994), and Hulden (2009a) for more
on modes of rule application and matching contexts in the input versus output.

Together the Input Strictly Local and Output Strictly Local FST classes can describe virtually
all local phonological transformations, here characterized as those processes for which the
target and triggering context form a contiguous substring of bounded length. As for long-
distance/unbounded transformations, an Input Strictly Local or Output Strictly Local analysis

Computational Phonology

Page 22 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

will not work in cases where a potentially unbounded number of segments can intervene
between the target and trigger. The classic example is vowel harmony, in which one vowel
harmonizes to another despite the presence of any number of intervening consonants. Though
not describable with the very restrictive Input Strictly Local/Output Strictly Local FSTs, such
long-distance processes still belong to well-defined subregular classes of regular relations.

Subsequential. Subsequential functions also come in two varieties: left and right. Left and
Right subsequential functions are those in which the output string associated with each input
symbol depends only on the input symbol itself and the state of the transducer as determined
by the input read so far. Importantly, there are only finitely many states and the transducer
can only be in one state at each moment, as Figure 13 illustrates. (Note that Sakarovitch
[2009] and Filiot and Reynier [2016] use the term ‘sequential’ where we have used
‘subsequential’.)

Figure 13. Left and Right Subsequential functions.

Gainor, Lai, and Heinz (2012) and Heinz and Lai (2013) establish that progressive vowel
harmony can be modeled with a Left Subsequential transducer and regressive harmony can
be described with a Right Subsequential transducer. Beyond vowel harmony, it has been
shown that long-distance consonant agreement (Luo, 2013) and dissimilation (Payne, 2013)
can also be described with Subsequential FSTs. As shown in Figure 9, the Subsequential FSTs
properly include the Input Strictly Local and Output Strictly Local classes, but are themselves
proper subclasses of the regular relations (Mohri, 1997).

However, it may be the case that the complexity of the Subsequential classes is actually more
than what is needed for long-distance transformations. By conjecture, long-distance processes
like vowel harmony and consonant agreement and dissimilation might belong to additional
classes that are more restrictive than Left and Right Subsequential but less restrictive than
Input Strictly Local and Output Strictly Local. Such classes are not represented in Figure 9

because they remain to be discovered. But additional subregular classes of functions can be
established that correspond to other regions of the Subregular Hierarchy of languages in
Figure 6. The Input Strictly Local and Output Strictly Local classes, for example, are based on
the Strictly Local formal languages. As noted in 2.4, the Strictly Piecewise and Tier-based §

Computational Phonology

Page 23 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Strictly Local formal language classes can represent long-distance phonotactic knowledge
(Heinz, 2010a; Heinz, Rawal, & Tanner, 2011), so it’s possible that the corresponding long-
distance transformations will be shown to be Strictly Piecewise or Tier-based Strictly Local
functions.

In sum, it has been shown that when it comes to the translation problem, the strong
hypothesis is that phonological transformations are properly subregular. In particular,
traditionally labeled ‘local’ transformations—here described as those transformations that
involve contiguous substrings of bounded length—belong to the Input Strictly Local, Right
Output Strictly Local, and Left Output Strictly Local classes of functions. The long-distance
transformations that are excluded from the Input Strictly Local and Output Strictly Local
classes can instead be represented with Left or Right Subsequential FSTs.

In addition to the as-yet undefined Strictly Piecewise and Tier-based Strictly Local function
classes, another open question is to what extent transformations at the suprasegmental level
support the subregular hypothesis. This discussion of transformations has focused on
segmental phenomena, but there are also transformations of tone and stress patterns. Less is
known about the computational complexity of suprasegmental transformations, but there is
evidence that their computational nature is distinct from segmental phenomena (Jardine,
2016a).

4. The Learning Problem

There are several learning problems in phonology. Roughly, these problems are ones where
the instance space are finite bodies of linguistic experience and answers are bodies of
phonological knowledge. A learning algorithm solves this problem: it maps experience to
grammars that represent phonological knowledge.

The problem of learning is commonly studied along one of two general approaches: the
development of algorithms that provably solve well-defined problems and the development of
computer programs that are run with some input data and whose resulting outputs are
examined and measured with respect to some criteria. There are advantages and
disadvantages to both approaches. Niyogi (2006) explains the differences this way in his book
(which adopts the former method).

Another aspect of the book is its focus on mathematical models where the relationship
between various objects may be formally (provably) studied. A complementary approach is to
consider the larger class of computational models where one resorts to simulations.
Mathematical models with their equations and proofs, and computational models with their
equations and simulations provide different and important windows of insight into the
phenomena at hand. In the first, one constructs idealized and simplified models but one can
now reason precisely about the behavior of such models and therefore be very sure of one’s
conclusions. In the second, one constructs more realistic models but because of the
complexity, one will need to resort to heuristic arguments and simulations. In summary, for

Computational Phonology

Page 24 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

mathematical models the assumptions are more questionable but the conclusions are more
reliable—for computational models, the assumptions are more believable but the conclusions
more suspect.

Heinz and Riggle (2011, pp. 67–68) elaborate, explaining why computational learning
theorists focus on the mathematical approach:

having observed that an algorithm and human subject give similar responses for
a particular set of test items after being exposed to a set of training data , it is not
clear what we can conclude about the relationship between and because they
might wildly diverge for some other data and . The goal of determining which
properties of the data critically underlie learnability—or in this case the correlation
between and is precisely why learning theory focuses mainly on the properties
of classes of languages or the general behavior of specific algorithms, as opposed to
the specific behavior of specific algorithms. (emphasis in original)

Here we briefly summarize both threads of research. Overviews of learning in phonological
theory are given by Albright and Hayes (2011) and Heinz and Riggle (2011).

4.1. Formal Research

There are many ways the learning problem can be stated (Heinz & Riggle, 2011; Heinz, 2016).
A detailed explanation of different learning paradigms is not provided here. Instead we
assume that linguistic experience is composed solely of positive examples and that the
algorithm must be able to make efficient computations.

There are three general problems. The phonotactic learning problem and the transformation
learning problem can be viewed as steppingstones to the grammar learning problem, which is
the ultimate goal. The phonotactic learning problem asks how a speaker learns what is and
isn’t a possible string in his or her language given a finite set of words that are in the
language. The transformation learning problem asks how a speaker learns the map from
underlying to surface representations given a finite set of (underlying form, surface form)
pairs. The instance space of the grammar learning problem includes morpho-phonological
paradigms of the kind we find in textbook phonology exercises (but including ones on much
larger scales), and the answers are grammars that include a lexicon (the underlying forms of
morphemes), a specification of how the morphemes combine to form words, and a
specification of the phonological map that transforms underlying to surface forms.

There are formal results with respect to the first two problems, but none with respect to the
third. Researchers have, however, developed computer programs that run simulations for all
three problems.

Computational Phonology

Page 25 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

For phonotactic knowledge, Heinz (2007, 2010b, 2010a) presents learning algorithms for both
local and long-distance phonotactics. These algorithms crucially rely on the fact that such
knowledge is properly subregular. Jardine and Heinz (2015b) also prove that constraints over
phonological tiers can be learned even when the tier is not known a priori.

Chandlee, Heinz, and Eyraud (2014), Jardine, Chandlee, Eyraud, and Heinz (2014), and
Chandlee, Eyraud, and Heinz (2015) present learners for transformations based on the
defining properties of the Input Strictly Local and Output Strictly Local classes. The algorithm
OSTIA (Onward Subsequential Transducer Inference Algorithm) (Oncina & Garcia, 1991) also
provably learns the class of total, Left Subsequential functions from positive data, and, given
the results reviewed in Section 3, can also be used for the transformation learning problem
(see Gildea & Jurafsky, 1996).

There are also formal results for the transformation learning problem, when the output of the
algorithm is an OT grammar. Tesar and Smolensky (1998) present Recursive Constraint
Demotion, which provably and efficiently returns an OT grammar consistent with the data
input to the algorithm (if such a grammar exists). Riggle (2009) shows that the set of OT
grammars entailed by a set of constraints is also learnable under a different set of learning
conditions (the Probably Approximately Correct learning paradigm). On the other hand, Magri
(2013a) establishes the problem of finding an OT grammar consistent with the data that
generates a smallest language and shows that it is intractable. Magri (2013b) also supplies a
convergence proof for learning stochastic OT grammars (Boersma, 1997; Boersma & Hayes,
2001).

A Harmonic Grammar (HG) weights constraints instead of ranking them (Potts, Pater, Bhatt, &
Becker, 2008). Pater (2008) shows how HG grammars will correctly converge to the correct
one (if it exists); this approach is based on the perceptron learning algorithm (Rosenblatt,
1958). An important difference between HG and OT grammar learning is that the number of
errors the learner of OT grammars will make is provably bounded whereas it is not for HG
learners (Riggle, 2009; Heinz & Riggle, 2011).

With respect to the grammar learning problem, there are currently no general algorithmic
results. One interesting approach relies on the hypothesis that phonological maps are
structured in a way according to a similarity metric among representations. Let be
the relevant distance metric that measures the degree of disparity between and

 according to a pre-determined similarity metric. A map is output-driven if
 and if underlying form maps to surface form then underlying form must

also map to (Tesar, 2014). Tesar shows that a learner based on this idea is useful in certain
cases because it outputs accurate lexicons and grammars, but a general learnability theorem
remains to be stated and proved.

Computational Phonology

Page 26 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

4.2. Modeling Research

Many programs have been developed for the phonotactic learning problem. Many of these
programs return representations of functions with co-domain , which can be evaluated
against human judgements collected from experiments (Coleman & Pierrehumbert, 1997;
Hayes & Wilson, 2008; Albright, 2009; Daland et al., 2011). Gorman (2013) presents a
program whose output is a representation of a function with co-domain {0,1} that still
accounts for human acceptability judgements (his analysis accounts for the gradient
judgements with other factors).

Goldsmith and Riggle (2012) present experiments that suggest that vowel tiers can be
induced from distributional information, which can also be used to learn constraints that
operate over these tiers.

Dresher and Kaye (1990) present one of the first learning algorithms for learning stress
patterns in words, which was later implemented by Gillis, Durieux, and Daelemans (1995).
Other programs developed for learning stress patterns are explored in Goldsmith (1994),
Gupta and Touretzky (1994), and Heinz (2009).

With respect to the learning of transformations, there have been some investigations of
programs that learn phonological rules (Albright & Hayes, 2003; Calamaro & Jarosz, 2015).
Within constraint-based formalisms there has been modeling work that builds on the ideas of
Recursive Constraint Demotion. Boersma and Hayes (2001) explore a stochastic version of OT
on some different language patterns. One wrinkle is the problem of learning when the
phonological surface forms contain ‘hidden structure’. This means some aspects of the surface
representation are not pronounced (such as metrical feet) and thus they are ’hidden’. A
common approach to this problem modifies Recursive Constraint Demotion with a sub-
procedure (Robust Interpretive Parsing), which uses the current grammatical hypothesis to
guess the hidden structure and then continue learning (Tesar & Smolensky, 2000; Jarosz,
2013).

With respect to the grammar learning problem, one approach has been based on maximum
likelihood estimation (in particular it adapts the expectation-maximization method) to
simultaneously learn both the grammar and the lexicon (Jarosz, 2006b, 2006a). Another
approach uses loopy belief propagation in Bayesian networks to identify underlying forms and
the phonological transformation, which is modeled with a finite-state transducer (Cotterell,
Peng, & Eisner, 2015). Further research along these lines should help us to better understand
the limits of these techniques. Both methods represent progress and are successful on certain
cases; future work may aim to characterize those cases where these methods are guaranteed
to work.

Computational Phonology

Page 27 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

5. Other Related Topics

What if the representations of phonological forms changes from strings to something else?
What does the computational analysis of phonological patterns presented in Sections 2 and 3
mean for phonological theories? Do they make any psycholinguistic predictions? And finally,
how do the results of computational phonology inform real-world applications?

5.1. Representations and Data Structures

The previous studies represent words with strings, but theoretical phonology often invokes
richer representations. One of the most celebrated examples is autosegmental phonology
(Leben, 1973; Goldsmith, 1979). These representations can be formalized as graphs (Coleman
& Local, 1991).

Figure 14 shows an autosegmental representation of some words from Mende, a tonal
language. Some words like ‘rice’ [mbǎ] have a rising tone, as indicated by the diacritic on the
vowel. Other vowels in other words only carry low or high tones. For example the word
‘sling’ [ndàvúlá] has a low tone on the first vowel and high tones on the other vowels as
indicated by the diacritics. Figure 14 shows non-string representations of these words. The
defining feature of these graphs is that the tones are autonomous from the segmental level of
the features. (Our notation comes from Jardine & Heinz, 2015a; Jardine, 2016a.)

Figure 14. Autosegmental representations in Mende.

Autosegmental representations similar to the ones in Figure 14 have been employed to
account for other aspects of phonological theory, including long-distance and local
assimilation processes (Clements, 1976; Poser, 1982).

An important question is how are constraints over such representations to be defined? How
are phonological transformations over them to be defined? There has been substantial work
on this using multi-tape finite-state transducers (Kornai, 1995). Another approach being
explored is based on MSO-definable transductions (Engelfriet & Hoogeboom, 2001). Jardine
(2016b) argues that Strictly-Local-like constraints over autosegmental representations
provides the best phonological theory of tone in terms of characterizing the attested typology
and in obtaining purchase on the learning problem.

Computational Phonology

Page 28 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

5.2. Implications for Phonological Theories

Some implications of the computational analysis presented in Sections 2 and 3 for
phonological theories like the ones presented in Chomsky and Halle (1968) and Prince and
Smolensky (2004) are discussed.

As mentioned in Section 3, grammars that apply rewrite rules in a particular order to
underlying forms are able to express phonological transformations for all known languages.
So these theories do not undergenerate the known typology. On the other hand, because these
grammars are equivalent in expressivity to the regular relations, there is a sense in which
they overgenerate. For example, a logically possible regular relation is one that changes
underlying sibilants so that they agree on the surface only if there are an even number of
underlying sibilants but not if there are an odd number.

On the other hand, consider a theory that posits that phonological transformations must be
Strictly Local (ISL, LOSL, or ROSL), which we will call Subregular Theory. Subregular Theory
will not overgenerate this bizarre even/odd sibilant harmony transformation. However, as
mentioned, no Strictly Local function can compute the attested sibilant harmony
transformations. Thus Subregular Theory is currently incomplete. It needs a functional
equivalent to the Tier-based Strictly Local or the Strictly Piecewise classes of stringsets.

Koskenniemi (1983) proposes a theory of morpho-phonological transformations based on
constraints (see also Yli-Jyrä & Koskenniemi, 2006). This theory posits constraints on relations

and an underlying form maps to a surface form if it violates no constraint. In this sense, the
constraints are inviolable and language-specific. This theory has been used to develop large-
scale implementations of the morpho-phonology for several languages (Arppe, 2005). It turns
out that two-level morpho-phonology is also equally expressive to regular relations. Thus, they
overgenerate to the same extent as rule-based grammars.

Next we turn to Optimization-based theories such as Optimality Theory, Harmonic Grammar
(Potts, Pater, Bhatt, & Becker, 2008), Harmonic Serialism (McCarthy, 2008), and Maximum
Entropy (Goldwater & Johnson, 2003; Hayes & Wilson, 2008). A well-known problem for these
theories is phonological opacity (Idsardi, 1998; Kager, 1999; Idsardi, 2000; Baković, 2007;
McCarthy, 2007). In this way, optimization theories undergenerate.

The issue has less to do with optimization itself than it does with the division of constraints
into the two varieties known as markedness and faithfulness constraints (Buccola, 2013).
Several strategies reviewed by McCarthy (2007) introduce new constraint types to address
this problem. For example, if two-level constraints are adopted then this undergeneration
problem goes away (see Kager, 1999, chap. 9, for additional discussion). Of course, once two-
level constraints are adopted, then the constraints can be inviolable (Koskenniemi, 1983),
obviating the need for optimization (though they then must be language-specific).

Optimization theories can also generate non-regular patterns (Frank & Satta, 1998; Riggle,
2004; Gerdemann & Hulden, 2012) with very simple constraints. Majority Rules harmony is
one example (Baković, 2000; Finley, 2008; Heinz & Lai, 2013). This is not controversial. While

Computational Phonology

Page 29 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

it may be possible to eliminate some overgeneration with carefully chosen constraints, it is not
at all clear how to ensure this. This overgeneration seems to be a direct consequence of
optimization itself. The ability to examine the entire phonological representation and choose
the best output representation involves a kind of global comparison and computation. This
strikes us as very different from the Strictly Local computations that operate on local sub-
structures of the representations independently of the other sub-structures.

Each of the above theories overgenerates in some manner. How does one compare theories
that overgenerate in different ways? One answer is to choose the one that overgenerates in a
computationally simple way. In this respect, a theory that is sufficiently expressive for
phonology but fails to generate every regular pattern (the goal of Subregular Theory) is better
than one that is sufficiently expressive but generates every regular pattern (rule-based
theories), which in turn is better than one that generates non-regular patterns (optimization-
based theories).

5.3. Psycholinguistic Predictions

Rogers and Pullum (2011) and Jäger and Rogers (2012) discuss psychological predictions that
the computational complexity of natural language patterns make. In principle these can be
examined with artificial grammar learning experiments where subjects are trained on some
forms that are generated according to some grammar of some complexity. Subjects are then
tested to see if they accept or reject novel forms according to the underlying generative
grammar. As Rogers and Pullum (2011) and Jäger and Rogers (2012) point out, such
experiments must be designed carefully and their results must also be interpreted with care.
Moreton and Pater (2012a, 2012b) discuss similar ideas, but not in the context of formal
language theory.

Rogers et al. (2013) provide cognitive correlates for the classes in the Subregular Hierarchy
(Figure 6). Each subregular class corresponds to a particular kind of memory model. It follows
that lower classes in the hierarchy have simpler memory models than higher levels in the
hierarchy. It is reasonable to expect then that patterns that can only be described at the
higher levels ought to be more difficult to learn than those that can be described at the lower
levels.

The first artificial grammar learning experiments that bear on computational complexity were
conducted by Finley (2008) and Finley and Badecker (2009), who compared a non-regular
pattern (Majority Rules vowel harmony) with a regular one (left-to-right directional harmony).
They found that subjects had no difficulty learning the vowel harmony pattern that is regular
but they could not learn the Majority Rules pattern with a similar training regimen.

In a series of artificial grammar learning experiments, Lai (2015) compared the learning of a
Locally Testable pattern with a Strictly Piecewise pattern and found that subjects could more
easily learn the Strictly Piecewise pattern than the Locally Testable pattern. Recently
Hwangbo (2015) conducted artificial grammar learning experiments to compare the

Computational Phonology

Page 30 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

learnability of a Locally Testable pattern with a Non-counting pattern. She too found that
subjects had more difficulty learning the pattern higher in the Subregular Hierarchy (the Non-
counting pattern) than the one lower (the Locally Testable one).

The aforementioned results are the only ones to our knowledge that have examined the
predictions of the Subregular Hierarchy, and they are consistent with those predictions.

5.4 Applications

The well-supported hypotheses that phonotactic knowledge can be represented by regular
sets and phonological transformations by regular relations have had a significant impact on
the development of software for automatic language analysis.

Two industrial-scale toolkits for the development of morpho-phonological language models are
in use by both theoretical and computational linguists. The first, xfst, was produced by Xerox
corporation (Beesley & Karttunen, 2003) and the second, foma, is an open-source alternative
developed by Hulden (2009a, 2009b).

These toolkits extend the regular expression syntax and semantics for sets of strings to
relations over strings. This allows researchers to describe regular relations in a high-level
language, which the software then compiles into low-level finite-state transducers. Readers
are encouraged to consult Beesley and Karttunen (2003) for details.

The xfst and foma software packages allow researchers to implement phonological analyses in
various theoretical traditions, including rule-based theories (Chomsky & Halle, 1968;
Gerdemann & Hulden 2015), Optimality Theory (under certain conditions) (Prince &
Smolensky, 2004; Karttunen, 1998), and two-level morpho-phonology (Koskenniemi, 1983).
Such toolkits allow analysts to be more confident that their analyses are without error
(Karttunen, 2006).

Riggle (2004) provides another finite-state approach to computing maps defined by OT
grammars. Finite-state models also form the basis of the constraint-based maximum entropy
phonotactic learner presented in Hayes and Wilson (2008).

More broadly, finite-state machines typically form the backbone of models for speech and
language processing (Mohri, 1997; Carson-Berndsen, 1998; Mohri, 2005; Roark & Sproat,
2007). This is because the membership and translation problems have efficient solutions when
the problems are Regular. It is also because several operations over relations (such as union
and composition) can be computed when the relations are Regular. This “finite-state calculus”
makes it possible that linguistic generalizations that are Regular may be factored into simpler,
distinct parts that work together to model language.

Computational Phonology

Page 31 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

6. The Computational Nature of Phonology

The nature of the computations entailed by phonological knowledge has revealed that there is
strong support for the hypothesis that “they are regular but not finite.” These insights have
played a role in the development of technologies that many of us now carry on our phones. As
better subregular computational characterizations of phonological knowledge are obtained we
can expect better theories of phonology whose predictions more tightly match the known
typology, more psycholinguistic predictions that can be studied in the lab, as well as better
algorithmic solutions to learning problems in phonology.

References
Albright, A. (2009). Feature-based generalisation as a source of gradient acceptability.
Phonology, 26(1), 9–41.

Albright, A., & Hayes, B. (2003). Rules vs. analogy in English past tenses: A computational/
experimental study. Cognition, 90, 119–161.

Albright, A., & Hayes, B. (2011). Learning and learnability in phonology. In J. Goldsmith, J.
Riggle, & A. Yu (Eds.), Handbook of phonological theory (pp. 661–690). Chichester, U.K.: Wiley-
Blackwell.

Arppe, A. (2005). Kimmo Koskenniemi’s first 60 years. In A. Arppe, L. Carlson, K. Lindn, J.
Piitulainen, M. Suominen, M. Vainio, et al. (Eds.), The very long way from basic linguistic
research to commercially successful language business: The case of two-level morphology (pp.
2–17). Stanford, CA: CSLI Publications.

Baković, E. (2000). Harmony, dominance and control (Ph.D. thesis). Rutgers University.

Baković, E. (2007). A revised typology of opaque generalisations. Phonology, 24, 217–259.

Beesley, K., & Karttunen, L. (2003). Finite state morphology. Stanford, CA: CSLI Publications.

Boersma, P. (1997). How we learn variation, optionality, and probability. Proceedings of the
Institute of Phonetic Sciences 21. University of Amsterdam.

Boersma, P., & Hayes, B. (2001). Empirical tests of the gradual learning algorithm. Linguistic
Inquiry, 32, 45–86.

Bromberger, S., & Halle, M. (1989). Why phonology is different. Linguistic Inquiry, 20, 51–70.

Buccola, B. (2013). On the expressivity of optimality theory versus ordered rewrite rules. In G.
Morrill & M. Nederhof (Eds.), Proceedings of formal grammar 2012 and 2013, Vol. 8306 of
Lecture notes in computer science 8036 (pp. 142–158). Berlin: Springer-Verlag.

Büchi, J. R. (1960). Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1–6), 66–92.

Computational Phonology

Page 32 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Calamaro, S., & Jarosz, G. (2015, April). Learning general phonological rules from distributional
information: A computational model. Cognitive Science, 39(3), 647–666.

Carson-Berndsen, J. (1998). Time map phonology: Finite state models and event logics in speech
recognition. Dordrecht, The Netherlands: Kluwer Academic.

Chandlee, J. (2014). Strictly local phonological processes (Ph.D. thesis). University of Delaware.

Chandlee, J., Eyraud, R., & Heinz, J. (2015, July). Output strictly local functions. In M. Kuhlmann,
M. Kanazawa, & G. M. Kobele (Eds.), Proceedings of the 14th Meeting on the Mathematics of
Language (MOL 2015) (pp. 112–125). Association for Computational Linguistics, Chicago.

Chandlee, J., & Heinz, J. (forthcoming). Strict locality and phonological maps. Linguistic Inquiry.

Chandlee, J., Heinz, J., & Eyraud, R. (2014). Learning strictly local subsequential functions.
Transactions of the Association for Computational Linguistics, 2, 491–503.

Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York: Harper & Row.

Clements, G. (1976). Vowel harmony in nonlinear generative phonology: An autosegmental
model. Bloomington: Indiana University Linguistics Club.

Coleman, J., & Local, J. (1991). The “no crossing constraint” in autosegmental phonology.
Linguistics and Philosophy, 14(3), 295–338.

Coleman, J. S., & Pierrehumbert, J. (1997). Stochastic phonological grammars and acceptability.
In Proceedings of the Third Meeting of the ACL Special Interest Group in Computational
Phonology (pp. 49–56). Somerset, NJ: Association for Computational Linguistics.

Cook, E. D. (1978). Palatalizations and related rules in Sarcee. In E. D. Cook & J. Kaye (Eds.),
Linguistic studies of Native Canada (pp. 19–35). Vancouver, BC: University of British Columbia
Press.

Cook, E. D. (1984). A Sarcee grammar. Vancouver, BC: University of British Columbia Press.

Cotterell, R., Peng, N., & Eisner, J. (2015). Modeling word forms using latent underlying morphs
and phonology. Transactions of the Association for Computational Linguistics, 3, 433–447.

Daland, R. (2014). What is computational phonology? Loquens, 1(1), e004.

Daland, R. (2015). Long words in maximum entropy phonotactic grammars. Phonology, 32(3),
353–383.

Daland, R., Hayes, B.White, J.Garellek, M.Davis, A., & Normann, I. (2011). Explaining sonority
projection effects. Phonology, 28(197), 197–234.

de Lacy, P. (2011). Markedness and faithfulness constraints. In M. V. Oostendorp, C. J. Ewen, E.
Hume, & K. Rice (Eds.), The Blackwell companion to phonology. Malden, MA: Wiley-Blackwell.

Computational Phonology

Page 33 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Dresher, E., & Kaye, J. (1990). A computational learning model for metrical phonology. Cognition,
34, 137–195.

Droste, M., & Gastin, P. (2009). Weighted automata and weighted logics. In M. Droste, W. Kuich,
& H. Vogler (Eds.), Handbook of Weighted Automata (pp. 175–212). Monographs in Theoretical
Computer Science. Berlin: Springer.

Droste, M., Kuich, W., & Vogler, H. (Eds.). (2009). Handbook of Weighted Automata. Monographs
in Theoretical Computer Science. Berlin: Springer.

Eisner, J. (2003). Simpler and more general minimization for weighted finite-state automata. In

M. Hearst & M. Ostendorf (Eds.), Proceedings of the Joint Meeting of the Human Language
Technology Conference and the North American Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003) (pp. 64–71). Association for Computational Linguistics,
Edmonton, Canada.

Enderton, H. B. (2001). A mathematical introduction to logic (2d ed.). New York: Academic
Press.

Engelfriet, J., & Hoogeboom, H. J. (2001, April). MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2(2), 216–254.

Filiot, E., & Reynier, P. A. (2016, July). Transducers, logic and algebra for functions of finite
words. SIGLOG News, 3(3), 4–19.

Finley, S. (2008). The formal and cognitive restrictions on vowel harmony (Doctoral thesis).
Johns Hopkins University, Baltimore.

Finley, S., & Badecker, W. (2009). Right-to-left biases for vowel harmony: Evidence from artificial
grammar. In A. Shardl, M. Walkow, & M. Abdurrahman (Eds.), Proceedings of the 38th North
East Linguistic Society Annual Meeting, October 26–28, 2007, Ottawa, ON. Vol. 1 (pp. 269–282).
Amherst, MA: GLSA.

Frank, R., & Satta, G. (1998). Optimality Theory and the generative complexity of constraint
violability. Computational Linguistics, 24 (2), 307–315.

Gainor, B., Lai, R., & Heinz, J. (2012). Computational characterizations of vowel harmony
patterns and pathologies. In J. Choi, E. A. Hogue, J. Punske, D. Tat, J. Schertz, & A. Trueman

(Eds.), WCCFL 29: Proceedings of the 29th West Coast Conference on Formal Linguistics, April
22–24, 2011, University of Arizona (pp. 63–71). Somerville, MA: Cascadilla.

Gerdemann, D., & Hulden, M. (2012, July). Practical finite state optimality theory. In Proceedings
of the 10th International Workshop on Finite State Methods and Natural Language Processing,
July 23–25, University of Basque, Donostia-San Sebastián (pp. 10–19). Stroudsburg, PA:
Association for Computational Linguistics.

Gerdemann, D., & Hulden, M. (2015). Grammar design with multi-tape automata and
composition. In Proceedings of the 12th International Workshop on Finite State Methods and

Computational Phonology

Page 34 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Natural Language Processing, June 22–24, Dusseldorf, Germany. Stroudsburg, PA: Association
for Computational Linguistics.

Gildea, D., & Jurafsky, D. (1996). Learning bias and phonological-rule induction. Computational
Linguistics, 24(4), 497–530.

Gillis, S., Durieux, G., & Daelemans, W. (1995). A computational model of P&P: Dresher & Kaye
(1990) revisited. In F. Wijnen & M. Verrips (Eds.), Approaches to parameter setting (pp. 135–

173). Amsterdam: Instituut voor Algemene Taalwetenschap.

Goldsmith, J. (1979). Autosegmental phonology. New York: Garland.

Goldsmith, J. (1994). A dynamic computational theory of accent systems. In J. Cole & C.
Kisseberth (Eds.), Perspectives in Phonology (pp. 1–28). Stanford, CA: Center for the Study of
Language and Information.

Goldsmith, J., & Riggle, J. (2012). Information theoretic approaches to phonological structure:
the case of Finnish vowel harmony. Natural Language and Linguistic Theory, 30(3), 859–896.

Goldwater, S., & Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy
model. In J. Spenader, A. Eriksson, & O. Dahl (Eds.), Proceedings of the Stockholm Workshop on
Variation within Optimality Theory (pp. 111–120). April 26–27, Department of Linguistics,
Stockholm University, Sweden.

Goodman, J. (1999, December). Semiring parsing. Computational Linguistics, 25(4), 573–606.

Gorman, K. (2013). Generative phonotactics. University of Pennsylvania dissertation.

Graf, T. (2010a). Comparing incomparable frameworks: A model theoretic approach to
phonology. University of Pennsylvania Working Papers in Linguistics, 16(2), Article 10.

Graf, T. (2010b). Logics of phonological reasoning (Master’s thesis). University of California, Los
Angeles.

Gupta, P., & Touretzky, D. (1994). Connectionist models and linguistic theory: Investigations of
stress systems in language. Cognitive Science, 18(1), 1–50.

Halle, M., & Vergnaud, J. R. (1987). An essay on stress. Cambridge, MA: The MIT Press.

Hansson, G. (2010). Consonant harmony: Long-distance interaction in phonology. Number 145
in University of California Publications in Linguistics. Berkeley: University of California Press.

Hayes, B., & Wilson, C. (2008). A maximum entropy model of phonotactics and phonotactic
learning. Linguistic Inquiry, 39, 379–440.

Heinz, J. (2007). The inductive learning of phonotactic patterns (Doctoral thesis). University of
California, Los Angeles.

Heinz, J. (2009). On the role of locality in learning stress patterns. Phonology, 26(2), 303–351.

Computational Phonology

Page 35 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Heinz, J. (2010a). Learning long-distance phonotactics. Linguistic Inquiry, 41(4), 623–661.

Heinz, J. (2010b). String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, July 11–16, Uppsala, Sweden (pp. 897–906).
Stroudsburg, PA: Association for Computational Linguistics.

Heinz, J. (2011a). Computational phonology part I: Foundations. Language and Linguistics
Compass, 5(4), 140–152.

Heinz, J. (2011b). Computational phonology part II: Grammars, learning, and the future.
Language and Linguistics Compass, 5(4), 153–168.

Heinz, J. (2016). Computational theories of learning and developmental psycholinguistics. In J.
Lidz, W. Synder, & J. Pater (Eds.), The Oxford handbook of developmental linguistics. Oxford:
Oxford University Press.

Heinz, J., & Lai, R. (2013, August). Vowel harmony and subsequentiality <http://

www.aclweb.org/anthology/W13-3006>. In A. Kornai & M. Kuhlmann (Eds.), Proceedings of the
13th Meeting on the Mathematics of Language (MoL 13) (pp. 52–63), Association for
Computational Linguistics, Sofia, Bulgaria.

Heinz, J., Rawal, C., & Tanner, H, G. (2011). Tier-based Strictly Local constraints for phonology.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics,
June 19–24, Portland, OR (pp. 58–64). Red Hook, NY: Curran Associates.

Heinz, J., & Riggle, J. (2011). Learnability. In M. van Oostendorp, C. Ewen, B. Hume, & K. Rice

(Eds.), Blackwell companion to phonology. Malden, MA: Wiley-Blackwell.

Hopcroft, J., Motwani, R., & Ullman, J. (2001). Introduction to Automata Theory, languages, and
computation. Boston: Addison-Wesley.

Hulden, M. (2009a). Finite-state machine construction methods and algorithms for phonology
and morphology (Ph.D. thesis). University of Arizona.

Hulden, M. (2009b). Foma: A finite-state compiler and library. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics, March
30–April 3, Athens, Greece (pp. 29–32). Morristown, NJ: Association for Computational
Linguistics.

Hwangbo, H. J. (2015). Learnability of two vowel harmony patterns with neutral vowels. Talk
presented at the 3rd Annual Meeting of Phonology, Vancouver, BC.

Idsardi, W. (1998). Tiberian Hebrew spirantization and phonological derivations. Linguistic
Inquiry, 29, 37–73.

Idsardi, W. J. (2000). Clarifying opacity. Linguistic Review, 17, 337–350.

Jäger, G., & Rogers, J. (2012). Formal language theory: Refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B, 367(1598), 1956–1970.

http://www.aclweb.org/anthology/W13-3006
http://www.aclweb.org/anthology/W13-3006
http://www.aclweb.org/anthology/W13-3006

Computational Phonology

Page 36 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Jardine, A. (2016a). Computationally, tone is different. Phonology, 33(2), 247–283.

Jardine, A. (2016b). Locality and non-linear representations in tonal phonology (Doctoral thesis).
University of Delaware.

Jardine, A., Chandlee, J.Eyraud, R., & Heinz, J. (2014, September). Very efficient learning of
structured classes of subsequential functions from positive data. In A. Clark, M. Kanazawa, & R.
Yoshinaka (Eds.), Proceedings of the Twelfth International Conference on Grammatical Inference
(ICGI 2014), September 17–19, Kyoto, Japan, Vol. 34 (pp. 94–108). JMLR: Workshop and
Conference Proceedings <http://www.jmlr.org/proceedings/>.

Jardine, A., & Heinz, J. (2015a, July). A concatenation operation to derive autosegmental graphs.
In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), July 25–26,
Chicago (pp. 139–151). Stroudsburg, PA: Association for Computational Linguistics.

Jardine, A., & Heinz, J. (2015b, April). Learning Tier-based Strictly 2-Local Languages.
Transactions of the Association for Computational Linguistics, 4(2307–387X), 87–98. Accepted
with minor revisions.

Jarosz, G. (2006a). Rich lexicons and restrictive grammars—maximum likelihood learning in
Optimality Theory (Doctoral thesis). Johns Hopkins University.

Jarosz, G. (2006b). Richness of the base and probabilistic unsupervised learning in optimality
theory. In Proceedings of the Eighth Meeting of the ACL Special Interest Group in
Computational Phonology at HLT-NAACL, June 8, New York City (pp. 50–59). Stroudsburg, PA:
Association for Computational Linguistics.

Jarosz, G. (2013). Learning with hidden structure in optimality theory and harmonic grammar:
Beyond robust interpretive parsing. Phonology, 30(1), 27–71.

Johnson, C. D. (1972). Formal aspects of phonological description. The Hague: Mouton.

Jurafsky, D., & Martin, J. (2008). Speech and language processing: An introduction to natural
language processing, speech recognition, and computational linguistics (2d ed.). Upper Saddle
River, NJ: Prentice-Hall.

Kager, R. (1999). Optimality theory. Cambridge, U.K.: Cambridge University Press.

Kaplan, R., & Kay, M. (1994). Regular models of phonological rule systems. Computational
Linguistics, 20(3), 331–378.

Karttunen, L. (1993). Finite-state constraints. In J. Goldsmith (Ed.), The last phonological rule

(chap. 6). Chicago: University of Chicago Press.

Karttunen, L. (1998). The proper treatment of optimality in computational phonology. In L.
Karttunen & K. Oflazer (Eds.), FSMNLP’98, International Workshop on Finite-State Methods in
Natural Language Processing, June 30–July 1: Bilkent University, Ankara, Turkey (pp. 1–12).
Stroudsburg, PA: Association for Computational Linguistics.

http://www.jmlr.org/proceedings/
http://www.jmlr.org/proceedings/
http://www.jmlr.org/proceedings/

Computational Phonology

Page 37 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Karttunen, L. (2006). The insufficiency of paper-and-pencil linguistics: The case of Finnish
prosody. Rutgers Optimality Archive #818-0406.

Kaye, J., Lowenstamm, J., & Vergnaud, J. R. (1990). Constituent structure and government in
phonology. Phonology, 7, 193–231.

Kenstowicz, M., & Kisseberth, C. (1979). Generative phonology. New York: Academic Press.

Kleene, S. (1956). Representation of events in nerve nets. In C. Shannon & J. McCarthy (Eds.),
Automata Studies (pp. 3–40). Princeton, NJ: Princeton University Press.

Kornai, A. (1995). Formal phonology. Outstanding Dissertations in Linguistics. New York:
Garland Publishing.

Koskenniemi, K. (1983). Two-level morphology. Publication 11, Department of General
Linguistics. Helsinki: University of Helsinki.

Lai, R. (2015). Learnable vs. unlearnable harmony patterns. Linguistic Inquiry, 46(3), 425–451.

Leben, W. (1973). Suprasegmental phonology (Doctoral thesis). Massachusetts Institute of
Technology.

Luo, H. (2013). Long-distance consonant harmony and subsequentiality (Unpublished
manuscript). University of Delaware.

Magri, G. (2013a). The complexity of learning in OT and its implications for the acquisition of
phonotactics. Linguistic Inquiry, 44(3), 433–468.

Magri, G. (2013b). HG has no computational advantages over OT: Toward a new toolkit for
computational OT. Linguistic Inquiry44(4), 569–609.

McCarthy, J. (2007). Hidden Generalizations. Advances in Optimality Theory. London: Equinox
Publishing.

McCarthy, J. J. (2008). The gradual path to cluster simplification. Phonology, 25(2), 271–319.

McNaughton, R., & Papert, S. (1971). Counter-Free Automata. Cambridge, MA: MIT Press.

Mitchell, T. F. (1960). Prominence and syllabification in arabic. Bulletin of the School of Oriental
and African Studies, 23, 369–389.

Mohri, M. (1997). Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2), 269–311.

Mohri, M. (2005). Statistical natural language processing. In M. Lothaire (Ed.), Applied
Combinatorics on Words. Cambridge, U.K.: Cambridge University Press.

Moreton, E., & Pater, J. (2012a). Structure and substance in artificial-phonology learning: Part I,
structure. Language and Linguistics Compass, 6(11), 686–701.

Computational Phonology

Page 38 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Moreton, E., & Pater, J. (2012b). Structure and substance in artificial-phonology learning: Part II,
substance. Language and Linguistics Compass, 6(11), 702–719.

Niyogi, P. (2006). The computational nature of language learning and evolution. Cambridge, MA:
MIT Press.

Odden, D. (2014). Introducing phonology (2d ed.). Cambridge, U.K.: Cambridge University Press.

Oncina, J., & Garcia, P. (1991). Inductive learning of subsequential functions. Technical Report
DSIC II-34, University Politécnia de Valencia.

Pater, J. (2004). Austronesian nasal substitution and other NC effects. In J. McCarthy (Ed.),
Optimality theory in phonology: A reader (pp. 271–289). Oxford: Blackwell.

Pater, J. (2008). Gradual learning and convergence. Linguistic Inquiry, 39, 334–345.

Payne, A. (2013). Dissimilation as a subsequential process. In J. Iyer & L. Kusmer (Eds.), NELS
44: Proceedings of the 44th Meeting of the North East Linguistic Society, 2 (pp. 79–90).
Amherst, MA, GLSA (Graduate Linguistics Student Association).

Poser, W. (1982). Phonological representation and action-at-a-distance. In H. van der Hulst & N.
Smith (Eds.), The structure of phonological representations (pp. 121–158). Dordrecht, The
Netherlands: Foris.

Potts, C., Pater, J., Bhatt, R., & Becker, M. (2008). Harmonic grammar with linear programming:
From linear systems to linguistic typology. Rutgers Optimality Archive ROA-984.

Prince, A., & Smolensky, P. (2004). Optimality theory: Constraint interaction in generative
grammar. Malden, MA: Blackwell Publishing.

Riggle, J. (2004). Generation, recognition, and learning in Finite State Optimality Theory

(Doctoral thesis). University of California, Los Angeles.

Riggle, J. (2009). The complexity of ranking hypotheses in optimality theory. Computational
Linguistics, 35(1), 47–59.

Roark, B., & Sproat, R. (2007). Computational approaches to morphology and syntax. Oxford:
Oxford University Press.

Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Cognitive and sub-
regular complexity. In G. Morrill & M. J. Nederhof (Eds.), Formal grammar (pp. 90–108). Lecture
Notes in Computer Science 8036. Heidelberg, Germany: Springer.

Rogers, J., & Pullum, G. (2011). Aural pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Information, 20, 329–342.

Rose, S., & Walker, R. (2004). A typology of consonant agreement as correspondence. Language,
80, 475–531.

Computational Phonology

Page 39 of 39

Printed from Oxford Research Encyclopedias, Linguistics. Under the terms of the licence agreement, an individual user may print out
a single article for personal use (for details see Privacy Policy and Legal Notice).
Subscriber: SUNY Stony Brook University; date: 28 December 2021

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65, 386–408.

Sakarovitch, J. (2009). Elements of Automata Theory. Cambridge, U.K.: Cambridge University
Press. Translated by Reuben Thomas from the 2003 edition published by Vuibert, Paris.

Sapir, E., & Hojier, H. (1967). The phonology and morphology of the Navaho language.
University of California Publications 50, Berkeley: University of California.

Savitch, W. (1982). Abstract machines and grammars. Boston: Little, Brown.

Savitch, W. J. (1993). Why it may pay to assume that languages are infinite. Annals of
Mathematics and Artificial Intelligence, 8, 17–25.

Scott, D., & Rabin, M. (1959). Finite automata and their decision problems. IBM Journal of
Research and Development, 5(2), 114–125.

Sipser, M. (1997). Introduction to the Theory of Computation. Boston: PWS Publishing Company.

Tesar, B. (2014). Output-driven phonology. Cambridge, U.K.: Cambridge University Press.

Tesar, B., & Smolensky, P. (1998). Learnability in optimality theory. Linguistic Inquiry, 29, 229–

268.

Tesar, B., & Smolensky, P. (2000). Learnability in Optimality Theory. Cambridge, MA: MIT Press.

van der Hulst, H. (2011). Dependency-based phonologies. In J. A. Goldsmith, J. Riggle, & A. C. L.
Yu (Eds.), The Blackwell handbook of phonological theory (pp. 533–570). Chichester, U.K.: Wiley-
Blackwell.

Viljoen, J. J. (1973). Manual for Ndonga: Part 1. Pretoria, South Africa: University of South
Africa.

Yli-Jyrä, A., & Koskenniemi, K. (2006). Compiling generalized two-level rules and grammars. In

FinTAL (pp. 174–185). Lecture Notes in Artificial Intelligence 4139. Berlin: Springer-Verlag.

Related Articles

Variation in Phonology

Computational Approaches to Morphology

Morphology and Phonotactics

https://oxfordre.com/linguistics/viewbydoi/10.1093/acrefore/9780199384655.013.368
https://oxfordre.com/linguistics/viewbydoi/10.1093/acrefore/9780199384655.013.259
https://oxfordre.com/linguistics/viewbydoi/10.1093/acrefore/9780199384655.013.613

	Computational Phonology
	Computational Phonology
	Summary
	1. Phonology and Computation
	Keywords
	Subjects

	Computational Phonology
	2. Phonotactic Knowledge and the Membership Problem

	Computational Phonology
	Computational Phonology
	2.1. Formal Language Theory

	Computational Phonology
	Computational Phonology
	2.2. The Finite Region

	Computational Phonology
	2.3. The Regular Region
	2.3.1. Overview

	Computational Phonology
	2.3.2. Example: Only-a
	2.3.3. Example: Maranungku Stress

	Computational Phonology
	Computational Phonology
	2.3.4. Additional Important Facts

	Computational Phonology
	2.4. The Subregular Hierarchy

	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	3. Morpho-phonological Alternations and the Translation Problem
	3.1. Types of Transducers

	Computational Phonology
	Computational Phonology
	3.2. Why Phonological Transformations Are Regular Relations

	Computational Phonology
	3.3. Subregular Classes of Transductions

	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	4. The Learning Problem

	Computational Phonology
	4.1. Formal Research

	Computational Phonology
	Computational Phonology
	4.2. Modeling Research

	Computational Phonology
	5. Other Related Topics
	5.1. Representations and Data Structures

	Computational Phonology
	5.2. Implications for Phonological Theories

	Computational Phonology
	5.3. Psycholinguistic Predictions

	Computational Phonology
	5.4 Applications

	Computational Phonology
	6. The Computational Nature of Phonology
	References

	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Computational Phonology
	Related Articles

