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Abstract

We introduce a learning paradigm called sensor-identification in the limit from positive
data, where sensor is a perception module that obfuscates the learner’s input. We show
state-merging algorithms for learning subclasses of regular languages can be successfully
applied in this framework and demonstrate its utility for robotic planning and control.
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1. Motivation

In the present ongoing work, we introduce a learning paradigm called sensor-identification
in the limit from positive data, where sensor is a perception module that obfuscates the
learner’s input. In this scenario, exact identification is eschewed for converging to a grammar
which generates a language approximating the target language. Successful approximation
is understood as matching up to observation-equivalence. Theoretical work exists which
addresses other kinds of imperfect presentations, oracles, and the kinds of results obtainable
with them (Angluin and Laird, 1988; Stephan, 1995; Fulk and Jain, 1996; Case and Jain,
2001; Tantini et al., 2006).

Our motivation primarily comes from robotics, where a robot is attempting to satisfy
a behavior specification while facing dynamic, adversarial rule-governed behavior from its
environment. Its sensors are limited in that it cannot observe every parameter of the envi-
ronment at each moment. If it could then grammatical inference can be used in conjunction
with standard game theoretic analysis to identify the environment and plan accordingly
(Chandlee et al., 2012; Fu et al., 2013, 2014a). However, the game-theoretic literature
(Arnold et al., 2003; Chatterjee et al., 2006) shows that it is possible to synthesize correct
controllers (i.e. find winning strategies) even for games with imperfect information (where
players only have partial information about the state of the game). The techniques in
Chandlee et al. (2012); Fu et al. (2013) and Fu et al. (2014a) allow imperfect games to be
constructed from imperfect, but consistent, models of the environment. What is missing
then is a way to identify these models from imperfect observations.
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This work fills this gap. Our basic strategy is to convert learning solutions for the
identification in the limit from positive data paradigm to solutions in the paradigm below.
We focus on regular classes of languages learnable with state-merging algorithms, which are
well-studied (de la Higuera, 2010).

2. Main results

For any L, let ∼L be the Myhill-Nerode equivalence relation for L: so w ∼L w′ ⇔ {v ∈ Σ∗ |
wv ∈ L} = {v ∈ Σ∗ | w′v ∈ L}. Given as input a finite sample S ⊂ Σ∗, a state-merging
algorithm A determines an equivalence relation ∼A over Σ∗. States in a prefix tree acceptor
(PTA) of S which correspond to equivalent prefixes according to ∼A are then merged. For
any L, if ∼A is of finite index and refines ∼L then A identifies L in the limit from positive
data. If A does this for every L ∈ L then A identifies L in the limit from positive data.

Sensor models have been proposed before (Cassandras and Lafortune, 2008; Luo et al.,
2011; Fu et al., 2014b); the definition below subsumes them all.

Definition 1 (Sensor model) A sensor model is sensor = 〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉 where

• Θ and Σ are finite, ordered sets of alphabets (the former being the sensor configura-
tions).

• For all θ ∈ Θ, ∼θ is an equivalence relation on Σ. If σ1 ∼θ σ2 then σ1 is indistin-
guishable from σ2 under sensor configuration θ. Let [σ]θ = {σ′ ∈ Σ | σ′ ∼θ σ}.

• LΘ ⊆ Θ∗ is regular and represents the permissible sequences of sensor configurations.

Define the left (π1) and right (π2) projections of words w ∈ (Θ × Σ)∗ recursively as
follows: π1(λ) = π2(λ) = λ, and π1(w · (θ, σ)) = π1(w) · θ and π2(w · (θ, σ)) = π2(w) · σ.
Letting Σ̂ = {[σ]θ | σ ∈ Σ, θ ∈ Θ}, we also define π1 and π2 for words ŵ ∈ (Θ× Σ̂)∗ in the
same way. For each w ∈ (Θ×Σ)∗, the possible observations of w are defined recursively with
obs : (Θ×Σ)∗ → Σ̂∗ as follows. obs(λ) = {λ} and obs(w ·(θ, σ)) = obs(w)·[σ]θ. Similarly, for
each u ∈ Θ∗, a sensor model recursively induces an equivalence relation ∼u over Σ∗: λ ∼λ λ,
and (∀σ1, σ2 ∈ Σ, v1, v2 ∈ Σ∗, θ ∈ Θ, u ∈ Θ∗)

[
v1 ∼u v2 ⇒ (v1σ1 ∼uθ v2σ2 ⇔ σ1 ∼θ σ2)

]
. Let

[v]u = {v′ ∈ Σ∗ | v ∼u v′}, which denotes equivalent strings in Σ∗ according to u ∈ Θ∗.

Lemma 2 For all w ∈ (Θ × Σ)∗, if π1(w) = u and π2(w) = v then |w| = |u| = |v| and
[v]u = obs(w) is a finite subset of Σ∗.

Definition 3 (Observation-equivalence) For any L ⊆ Σ∗, let L=n = {w ∈ L | |w| =
n}. According to model sensor, languages L,L′ ⊆ Σ∗ are observation-equivalent if

(∀v ∈ L)(∃v′ ∈ L′)(∀u ∈ L
=|v|
Θ )[v ∼u v′] ∧ (∀v′ ∈ L′)(∃v ∈ L)(∀u ∈ L

=|v′|
Θ )[v ∼u v′].

Definition 4 (Sensor-identification in the limit) We consider a sensor model sensor =
〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉 and family of languages L over Σ.

• For each L ∈ L, let Lsystem = {w ∈ (Θ × Σ)∗ | π1(w) ∈ LΘ ∧ π2(w) ∈ L} and
Lsensor = {ŵ ∈ (Θ× Σ̂)∗ | (∃w ∈ Lsystem ∧ π1(ŵ) = π1(w) ∧ π2(ŵ) = obs(w)}. Lsystem

represents the actual behavior of the system and Lsensor represents its possible behaviors
consistent with the possible observations under the model sensor.
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• L is Sensor-identifiable in the limit from positive data if there exists an algorithm A
such that for all L ∈ L, for any presentation φ of Lsensor, there exists n ∈ N such that
for all m ≥ n, A(φ[m]) = A(φ[n]) = G, and L(G) is observation-equivalent to L.

Lemma 5 If LΘ and L are regular then ∼system is of finite index and a right congruence.
Furthermore, w ∼system w′ ⇔ π1(w) ∼LΘ

π1(w
′) ∧ π2(w) ∼L π2(w

′).

A right congruence ∼ over Σ∗ induces a relation ≈ among elements of P(Σ∗): X ≈ Y ⇔
(∀x ∈ X)(∃y ∈ Y )(x ∼ y) ∧ (∀y ∈ Y )(∃x ∈ X)[x ∼ y]. Since elements of Σ̂∗ can be
understood as subsets of Σ∗, ≈L is meaningful on Σ̂∗.

Lemma 6 If ∼system is of finite index and a right congruence then so is ∼sensor. Further-
more, w ∼sensor w

′ ⇔ π1(w) ∼LΘ
π1(w

′) ∧ π2(w) ≈L π2(w
′).

By Lemmas 5 and 6, there is a DFA A accepting Lsensor. A defines a class of languages
Lsensor over Σ. Each L ∈ Lsensor is obtained by replacing each label (which is an element
of Θ× Σ̂) of each transition in A with one element drawn from the label’s right projection
(thus the drawn element belongs to Σ). These choices can be made consistent since Σ is
ordered.

Lemma 7 Any L′ ∈ Lsensor is observation equivalent to L.

Theorem 8 (Main result) Let L be identifiable in the limit from positive data by a state-
merging algorithm A and consider sensor = 〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉. There exists an
algorithm B which Sensor-identifies L in the limit from positive data.

Proof. The state-merging algorithm A which identifies L, the equivalence relations θ ∈ Θ
on Σ, and LΘ define another algorithm B which takes as input a finite set S ⊂ Lsensor. B
builds a PTA for S and merges prefixes according to ∼B, defined as follows:

ŵ ∼B ŵ′ ⇔ π1(ŵ) ∼LΘ
π1(ŵ

′) ∧ π2(ŵ) ≈A π2(ŵ
′).

Since LΘ is regular, we assume it is given in terms of its minimal DFA and so ∼LΘ
can

be computed. Also, ≈A can be computed since ∼A can be computed and every obs(w)
(w ∈ Lsystem) is a finite set. In the limit, ∼B is of finite index because ∼A is of finite index.
Also in the limit, ∼B refines ∼sensor because ∼A refines ∼L in the limit and by definition of
≈. Thus this acceptor recognizes the same language as Lsensor, and by Lemma 7, a language
L′ observation-equivalent to L can be obtained. Convergence to L′ is guaranteed by drawing
least elements to find it. �

We also demonstrate the effectiveness of the methods above with a robot motion plan-
ning problem in an office-like environment based on the one in Fu et al. (2013). Once a
model of partially observed language for the environment is identified, a product operation
of the transition system of the robot and the learned model of partially observed environ-
ment yields a game with imperfect information, on which existing tools from algorithmic
game theory can be applied to construct an observation-based strategy. We refer readers to
Chandlee et al. (2012) for details on the construction of this game, and to Chatterjee et al.
(2006) for the synthesis algorithm with partial information.
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