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Abstract— This paper presents a framework that integrates
grammatical inference with symbolic control on finite-state
transition systems interacting with partially unknown, adver-
sarial, rule-governed environments. We model the interaction
between a system and its environment as a two-player zero-sum
game on graphs. We show that with some prior knowledge of
the environment, the system can autonomously infer a game
equivalent to the one actually being played and thus successively
adapt its control strategy in polynomial time, and evolve its
controller into one that ensures the completion of the desired
task, whenever such a completion is possible.

Index Terms— Grammatical inference, system identification,
symbolic control, discrete event systems.

I. INTRODUCTION

The paper demonstrates how grammatical inference (GI)
[1] can support symbolic control design for finite-state transi-
tion systems operating in the presence of unknown, and ad-
versarial environments. Such finite-state transition systems
can arise as discrete abstractions of dynamical systems [2]–
[5]. Synthesizing symbolic control plans becomes adaptive
in the sense that the agent completes the information that
is missing from its model about its world, and subsequently
updates its plans, during execution time. The identification
of the unknown environment model occurs asymptotically,
based on observations of the interaction between agent
and environment. Through this learning process, symbolic
controllers are continuously refined until one that guarantees
the satisfaction of task specifications is built after a finite
number of steps.

In related literature, reactive synthesis has been introduced
for control in the presence of dynamical environments, in
which the system computes the control output based on real-
time information [6]–[9]. In this work, an assumption on the
environment is given [7], and the specification of the system
is satisfiable provided the environment dynamics satisfy
this assumption. Along these lines, an iterative planning
framework is developed [10] for an agent in a partially
unknown environment. When it is discovered that the envi-
ronment imposes constraints, which render the current plan
unrealizable, the agent replans. The discovered constraints
are generated by the environment dynamics, however the
dynamics itself is not identified. In this paper instead, it is
the unknown environment dynamics that causes the system
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to fail. The only assumption made here about this dynamics
is that it belongs to some general class.

We address the following question: is there a method
to convert the problem of designing a symbolic controller
for a system that interacts with an unknown adversarial
environment, into a synthesis problem where environment
dynamics is known?—then several known design solutions,
e.g., algorithmic game theory [11] and discrete event sys-
tem (DES) control theory [12], could be applied. A key
observation is that once abstracted, the behavior of both
agent and environment can be viewed as formal objects
(automata, languages, grammars, etc.), and the identification
of the environment model, and subsequently all possible
interactions with it, is essentially a process of inference—
to generalize any formal object that can describe this model
based on the finite amount of observed behaviors. GI, as a
sub-field of machine learning, is a paradigm that identifies
formal objects through presentation of examples with or
without a teacher [1], and thus the methodology naturally
fits in this problem formulation.

Incorporating learning in control has been pioneered by
studies on reinforcement learning (RL) and adaptive control.
RL offers a method for learning a control strategy by
formulating the control problem in an uncertain environment
as a Markov decision process (MDP) [13]. The difference
compared to the proposed GI-based framework is that in the
latter, learning is decoupled from control design: GI performs
system identification and the control design method of choice
implements a strategy based on the identified model. This
structure is reminiscent of the synergy between adaptation
and control in continuous dynamical systems.

Some earlier work [14] employs automata learning to
construct an MDP that captures the interaction between the
system and its environment. Alternatively, a game formula-
tion can be developed [15] for cases where the environment
is not stochastic and unintentional, but deterministic and
adversarial. There an assumption is made that the system
cannot inhibit the dynamics of the environment. In addition,
both aforementioned solutions need to produce an automaton
[15] or a Markov chain [14], a fact that restricts the classes
of learning algorithms that can be applied. In this paper we
relax these assumptions: the environment behavior can be
constrained by the actions of the system, and more impor-
tantly, the learner does not have to produce an automaton as
a model for the unknown adversary. Instead, what is learned
is the interaction itself: we learn the game being played
between the system and its environment, up to some notion of
equivalence. The equivalence considered here is a modified
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version of game equivalence in [16], and leads to guarantees
that even if the true model of the environment is never
found, the controllers built based on the equivalent model
are effective in terms of satisfying the system specification.
The result is a learning framework that combines concepts
of GI with ideas from action model learning [17], capable
of interfacing with a range of available symbolic control
methods.

II. LANGUAGES, AUTOMATA AND GAMES

Let Σ denote a fixed, finite alphabet, and Σ∗, Σ+, Σω be
sequences over this alphabet of any finite length, of any finite
length greater than 0, and of infinite length, respectively.
The empty string is denoted λ, and the length of string w
is denoted |w|. A regular (resp. ω-regular) language L is a
subset of Σ∗ (resp. Σω). Given an ω-word w, Occ(w) denotes
the set of symbols occurring in w and Inf(w) is the set of
symbols occurring infinitely often in w. For a finite word
w ∈ Σ∗, last(w) denotes the last symbol of w. Given a tuple
s = (s1, . . . , sN ) ∈ S1 × S2 . . .× SN , a projection operator
is defined as πi(s) = si, for 0 ≤ i ≤ N . For a set of tuples
S, we write πi(S) =

⋃
s∈S{πi(s)}, and for a sequence of

tuples w = s1s2 · · · we apply the projection element-wise:
πi(w) = πi(s1)πi(s2) · · · .

A semiautomaton (SA) deterministic in transitions is a
tuple A = 〈Q,Σ, T 〉 where Q is the finite set of states, Σ is
the alphabet and the transition function is T : Q× Σ→ Q.
The assignment T (q1, σ) = q2 is also written q1

σ→ q2, and
is expanded recursively, i.e., T (q1, λ) = q1 and T (q1, uw) =
T (T (q1, u), w), for u,w ∈ Σ∗. We write T (q, σ) ↓ to express
that the function T is defined for (q, σ), and T (q, σ) ↑
otherwise. A word w ∈ Σ∗ (resp. Σω) is admissible from
q ∈ Q iff T (q, w) ↓. A run of A on a word (resp. ω-
word) w = w(0)w(1) . . . ∈ Σ∗ (resp. Σω) is a finite (resp.
infinite) sequence of states ρ = ρ(0)ρ(1)ρ(2) . . . ∈ Q∗ (resp.
Qω) such that ρ(i + 1) = T (ρ(i), w(i)), i ≥ 0. In this
context, all SAs are deterministic in transition. The transition
function can be made total by adding a state sink such that
for all q ∈ Q, and for any σ ∈ Σ for which T (q, σ) ↑,
T (q, σ) = sink. For all σ ∈ Σ, let T (sink, σ) = sink. An SA
is total when its transition function is.

A deterministic automaton is a quintuple A =
〈Q,Σ, T, I,Acc〉 where 〈Q,Σ, T 〉 is an SA, I is the initial
state, and Acc is the acceptance component. An Acc can
give rise to: 1) a deterministic finite state automaton (DFA),
for which Acc = F ⊆ Q, and A accepts w ∈ Σ∗ iff the
run ρ ∈ Q∗ on w satisfies ρ(0) ∈ I and last(ρ) ∈ F ;
or 2) a deterministic Büchi automaton (DBA), for which
Acc = F ⊆ Q, and A accepts w ∈ Σω iff the run ρ ∈ Qω
on w satisfies ρ(0) ∈ I and Inf(ρ) ∩ F 6= ∅. The set of
words accepted by A is its language denoted L(A). Given
an automaton A, we assume that, unless otherwise specified,
A is the semiautomaton obtained from A by removing the
markings on the initial and final states from A.

Definition 1 (Two-player turn-based zero-sum game [11]):
A two-player zero-sum turn-based game is a tuple
G = 〈V1 ∪ V2, Σ1 ∪ Σ2, T, I, F 〉, where Vi is the

set of states where player i moves, Σi is the set of
actions for player i with V1 ∩ V2 = Σ1 ∩ Σ2 = ∅ and
V = V1 ∪ V2; T : Vi × Σi → Vj is the transition function,
(i, j) ∈ {(1, 2), (2, 1)}; I is the set of initial states, and
F ⊆ V1 ∪ V2 is the winning condition. If G is a reachability
(or safety) game, then a run ρ is winning for player 1 if
last(ρ) ∈ F (or Occ(ρ) ⊆ F ); if it is a Büchi game, then
the condition is Inf (ρ) ∩ F 6= ∅. In any case the condition
does not hold, player 2 wins.

A strategy for player i is a function Si : V ∗Vi → Σi which
maps a finite run ρ into an action Si(ρ) ∈ Σi to be taken
by player i. Player i follows strategy Si if she always plays
the action indicated by Si. A strategy WS is a winning for
player i if every run in G that starts in some v ∈ V with
player i following WSi, is winning for player i. The winning
set of player i, denoted Wini ⊆ V is a collection of states,
from each of which player i has a winning strategy.

III. PROBLEM FORMULATION

A. Problem statement

In this paper, we solve the following problem:
Problem 1: A controllable agent aims to accomplish a

task specified in a linear temporal logic (LTL) formula, while
interacting with an unknown yet rule-governed environment.
The agent has some limited prior knowledge of the envi-
ronment (as in [14], [15]), and must use this knowledge to
identify a model of environment’s behavior in the interaction
in order to adapt its own, for the purpose of accomplishing
its task whenever such an outcome is possible.

B. System interactions as a game

We think of the agent as player 1, its environment as player
2, and their interaction as a game.

The set of atomic propositionsAP is used to describe their
interactions. Given AP , let the set of world states over AP
be C = {c = `1∧`2 . . .∧`n | (∃α ∈ AP)[`i = α∨`i = ¬α]}
and for any c ∈ C, a proposition in AP appears at most once.

Discrete abstraction methods existing, we assume both
players are modeled as labeled transition systems: Ai =
〈Qi,Σi, Ti,APi, LBi〉, i = 1, 2 in which 〈Qi,Σi, Ti〉 is an
SA; APi is a subset of atomic propositions AP which can
be modified by player i’s actions and AP = AP1 ∪ AP2;
and LBi : Qi → C is the labeling function: for any q ∈ Qi,
let LBi(q) be a world state over APi.

We assume an action σ ∈ Σi has conditional effects:
1) PRE(σ) ∈ C is the sentence that needs to be satisfied

for the player to initiate action σ, and
2) POST(σ) ∈ C is the sentence that is satisfied when

action σ is completed.
Given c ∈ C, if c =⇒ PRE(σ) where =⇒ is the logical
connective for implication, then the effect of action σ on c,
denoted σ(c) ∈ C is the unique world state after performing
σ when the world state is c.

In our setting players act in alternation. However, with
the inclusion of the dummy action “idle,” they may not
necessarily play by turns. The following product captures
all their possible interactions, and with the understanding
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that AP is shared by both players, AP is omitted from the
product.

Definition 2 (Turn-based product): Given two players
A1 = 〈Q1,Σ1, T1, LB1〉 and A2 = 〈Q2,Σ2, T2, LB2〉, their
turn-based product P = 〈Q,Σ, δ, LB〉 is an SA denoted
A1 ◦A2, defined as follows:
Q = Q1×Q2×{1,0}, where t ∈ {0,1} marks whose

turn it is: 1 for player 1 and 0 for player 2.
Σ = Σ1 ∪ Σ2 is the alphabet.
LB : Q→ C is the labeling function, defined by

LB((q1, q2, t)) = LB1(q1) ∧ LB2(q2) ,

which maps a pair of player states into a world state
corresponding to this pair.

δ is the deterministic transition relation:
δ
(
(q1, q2,1), σ

)
= (q′1, q2,0) if [T1(q1, σ) =

q′1] ∧ [LB((q1, q2,1)) =⇒ PRE(σ)];
δ
(
(q1, q2,0), σ

)
= (q1, q

′
2,1) if [T2(q2, σ) =

q′2] ∧ [LB((q1, q2,0)) =⇒ PRE(σ)].
The objective of player 1 is represented by a language

over the set of world states C accepted by a total automaton
As = 〈S, C, Ts, Is, Fs〉, where sink ∈ S. The objective is
a reachability (resp. Büchi) objective if As is a DFA (resp.
DBA). Together, P and As define a game:

Definition 3 (Two-player turn-based game automaton):
Given the turn-based product P = 〈Q,Σ, δ, LB〉 and
the task specification As = 〈S, C, Ts, Is, Fs〉, a two-
player turn-based game automaton is constructed as a
special product of P and As, denoted G = P n As =
(A1 ◦ A2) n As = 〈V = V1 ∪ V2,Σ1 ∪ Σ2, T, I, F 〉, where
V1 ⊆ {(q, s) | q = (q1, q2,1) ∈ Q ∧ s ∈ S} and
V2 ⊆ {(q, s) | q = (q1, q2,0) ∈ Q ∧ s ∈ S}
T : V × Σ → V such that T ((q, s), σ) = (q′, s′) iff

δ(q, σ) = q′, and Ts(s, c) = s′ with c = LB(q′).
I = { (q, s) ∈ V | s = Ts(Is, LB(q)) } is the set

of possible initial game states.
F = { (q, s) ∈ V | s ∈ Fs } is the winning

condition.
With a slight abuse of notation, the labeling function in G
is defined as LB(v) = LB(π1(v)) where π1(v) ∈ Q and
expanded as LB(ρ1ρ2) = LB(ρ1)LB(ρ2), for ρ1, ρ2 ∈ V ∗.

For a fixed initial state v0 ∈ I , when As is a DFA, (G, v0)
is a reachability game. When As is a DBA, (G, v0) is a Büchi
game. The runs in (G, v0) and As are related as follows:

ρ,G: (q(0),s(0))
σ1−→ (q(1),s(1)) ...

ρs,As: Is
LB(q(0))−−−−−→s(0)

LB(q(1))−−−−−→s(1) ...

(1)

where LB(q(1)) = σ1(LB(q(0))).
Player 1 winning in (G, v0) means that the task specifica-

tion encoded in As is satisfied:
Proposition 1: For any winning run ρ ∈ V ∗(or V ω) of

player 1 in G, LB(ρ) ∈ C∗(or Cω) is accepted by As.
Proof: Since ρ is winning for player 1, in a reachability

(resp. Büchi) game, last(ρ) ∈ F (resp. Inf(ρ) ∩ F 6= ∅).
Projecting ρ on the state set S ofAs, we obtain last(π2(ρ)) ∈
π2(F ) ⊆ Fs (resp. Inf(π2(ρ)) ∩ Fs 6= ∅). Since the run in
As corresponding to ρ is ρs = Isπ2(ρ) by (1), we have

last(ρs) ∈ Fs (resp. Inf(ρs) ∩ Fs 6= ∅) and thus the word
generating ρs, which is LB(ρ), is accepted in As by the
definition of acceptance component.

The turn-based product and the game automaton can be
constructed in polynomial time in the size of their factors.
The winning strategy of player 1, if it exists, becomes the
controller that ensures that the task specification is satisfied,
irrespectively of the changes in the environment. For reach-
ability and Büchi games, WS1, if exists, can be computed
with methods in [11], [15], in linear (for reachability) and
polynomial (for Büchi) time in the size of the game.

IV. INCORPORATING GRAMMATICAL INFERENCE

When player 1 does not have complete knowledge of her
opponent, and as a result of the game, the integration of
GI as a learning mechanism in a setting where the game is
repeated sufficiently many times, can eventually give player
1 a winning strategy.

A. Preliminaries: Grammatical Inference

A positive presentation φ of a language L is a total
function φ : N → L ∪ {#} such that for every w ∈ L,
there exists n ∈ N such that φ(n) = w [18]. Here #
denotes a pause, a moment in time when no information
is forthcoming. A presentation φ can also be understood as
an infinite sequence φ(0)φ(1) · · · containing every element
of L, interspersed with pauses. Let φ[i] denote the finite
sequence φ(0)φ(1) . . . φ(i).

Grammars are finite descriptions of potentially infinite
languages. The language of grammar G is L(G). A learner
(learning algorithm, or grammatical inference machine
(GIM) ) is a program that takes the first i elements of a
presentation, i.e. φ[i], and outputs a grammar G, written
GIM(φ[i]) = G. The grammar outputted by GIM is the
learner’s hypothesis of the language. A learner GIM identifies
in the limit from positive presentations a class of languages
L if for all L ∈ L, and for all presentations φ of L, there
exists a n ∈ N such that for all m ≥ n, GIM outputs a
grammar GIM(φ[m]) = G, and L(G) = L [19].

B. Learning the game, or a game?

Consider the set of finite prefixes of all possible behaviors
of two players (sequences of interleaving actions) in (G, v0)
as a language, denoted L(G, v0) = L(〈V,Σ, T, v0, V 〉). The
finite prefixes of the behavior of player i ∈ {1, 2} is
the projection of L(G, v0) on Σi, denoted Li(G, v0). Due
to the existence of constraints that one player forces on
another through their interaction, for any v0 ∈ I , i = 1, 2,
Li(G, v0) ⊆ L(Ai), where Ai = 〈Qi,Σi, Ti, πi(v0), Qi〉 is
the DFA obtained from SA Ai by assigning πi(v0) as the
initial, and all states final.

We assume the following condition for the result to apply.
Assumption 1: L2(G, v0) belongs to a class of languages

identifiable in the limit from positive presentations, and
player 1 has correct prior knowledge of the class of languages
to which L2(G, v0) belongs.

Knowledge of the class of languages of L2(G, v0) is
required and important in reducing the size of hypothesis
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space. Such knowledge can be obtained by knowing some
restrictions on the dynamics of, or the strategy that can be
used by the adversary, and allows us to characterize the class
of the languages modeling her behavior.

By playing the game repeatedly, a positive presentation of
L(G, v0) can be obtained: let φ(0) = λ, and suppose that
after move i = 1, . . . , n, the obtained initial sequence of φ
is φ[i], with the understanding that the move index i counts
from the very first game, until the current move in the latest
game. If move i + 1 is the first in one of the games in the
sequence, and player k plays σ ∈ Σk then φ(i + 1) = σ;
otherwise φ(i+1) = φ(i)σ. The projection of a presentation
φ on the alphabet of player 2 is denoted φ2.

Let GIM be an algorithm that identifies a class of lan-
guages L in the limit from positive presentations and let
L2(G, v0) ∈ L. By definition [1], for any positive presenta-
tion φ of L2(G, v0), there exists n ∈ N such that ∀m ≥ n,
L(GIM(φ2[m])) = L2(G, v0), where GIM(φ2[m]) is the
grammar produced by the learning algorithm.

However, even if L2(G, v0) is identified by GIM, the
language of the game remains elusive, since the way these
two players interfere with the available actions of each is still
unknown. Moreover, due to this interference, Li(G, v0) ⊆
L(Ai), for i = 1, 2. Thus, even though there exists more that
one DFA B such that L(B) = L(GIM(φ2[m])), one cannot
just construct any DFA B with L(B) = L(GIM(φ2[m])) and
expect the game automaton to be (A1 ◦ B) n As (B is the
SA obtained from B), since 1) the set of player 2 behaviors
captured in B is a subset of that of A2 and consequently
2) the labeling function in A2 cannot be computed from B.

Hence, we instead use GIM to obtain a hypothesis of
the game being played. This hypothesis converges to an
equivalent one, which may not have the same transitions and
states as the actual game that unfolds (cf. [15]). Nonetheless,
it serves just as well: the winning strategy computed using
the hypothesis eventually converges to one that is isomorphic
to the true winning strategy for player 1 in the actual game.

C. Equivalence in games

Through the concept of bisimulation in transition systems
we establish the equivalence between two games.

Definition 4: [20] A bisimulation of two transition sys-
tems P = 〈Q,Σ, δ, LB〉 and P ′ = 〈Q′,Σ, δ′, LB′〉 is a binary
relation R ⊆ Q×Q′ that whenever (q, q′) ∈ R and σ ∈ Σ,
the following conditions hold:

(i) LB(q) = LB′(q′).
(ii) if δ(q, σ) = p, then δ′(q′, σ) = p′ for some p′ ∈ Q′

such that (p, p′) ∈ R.
(iii) if δ′(q′, σ) = p′, then δ(q, σ) = p for some p ∈ Q such

that (p, p′) ∈ R.
We write P ' P ′ if P and P ′ are bisimilar. For designated
initial states q0, q

′
0, we say (P, q0) is bisimilar to (P ′, q′0)

and write (P, q0) ' (P ′, q′0) if and only if after trimming all
states inaccessible from q0 and q′0, P ' P ′ and (q0, q

′
0) ∈ R.

The following definition is adapted from [16].
Definition 5 (Equivalence between games): Two games

(G, v0) = 〈V,Σ, T, v0, F 〉 and (G′, v′0) = 〈V ′,Σ, T ′, v′0, F ′〉

are equivalent if there exist two functions r : V ∗ → V ′∗

and r′ : V ′∗ → V ∗ such that given a winning strategy
of player 1 in (G, v0), WS1 : V ∗ → Σ1, the strategy
WS′1 : V ′∗ → Σ1 defined by ∀ρ′ = v′0v

′
1 . . . v

′
n ∈

V ′∗, WS′1(ρ′) = WS1(r′(ρ′)) is winning for player 1 in
(G′, v′0) and vice versa.

Proposition 2: If (P, q0) and (P ′, q0) are bisimilar, then
the games (G, v0) = (P, q0) nAs and (G′, v′0) = (P ′, q′0) n
As are equivalent, for any deterministic objective automaton
As = 〈S, C, T, Is, Fs〉.

Proof: Define r, r′ in Definition 5 using complete
induction: for initial states v0 = (q0, s0) and v′0 =
(q′0, s0) where s0 = Ts(Is, LB(q0)) = Ts(Is, LB

′(q′0)) since
LB(q0) = LB′(q′0), let r(v0) = v′0 and r′(v′0) = v0, we have
π2(v0) = π2(v′0) and (π1(v0), π1(v′0)) = (q0, q

′
0) ∈ R; then

suppose r, r′ are defined for finite runs ρ = v0v1 . . . vn and
ρ′ = v′0v

′
1 . . . v

′
n such that r(ρ) = ρ′, r′(ρ′) = ρ and for all

0 ≤ i ≤ n, π2(vi) = π2(v′i) ∈ S and (π1(vi), π1(v′i)) ∈ R.
Consider σ ∈ Σ for which T (vn, σ) ↓, and let vn+1 =

T (vn, σ). Suppose vn = (qn, sn) and v′n = (q′n, s
′
n),

by the assumption of r, r′, we have (qn, q
′
n) ∈ R and

s′n = sn. Since As is total and δ′(q′n, σ) ↓ by bisimulation,
T ′(v′n, σ) ↓. The transitions in G and G′ are related:

G : (qn, sn)
σ−→ (qn+1, sn+1)

l R l R
G′ : (q′n, sn)

σ−→ (q′n+1, s
′
n+1)

where sn+1 = Ts(sn, LB(qn+1)) and s′n+1 =
Ts(sn, LB

′(q′n+1)). Since q′n+1 is related to qn+1 through R,
from LB(qn+1) = LB′(q′n+1) we must have s′n+1 = sn+1.

Let r(ρvn+1) = ρ′v′n+1 and r′(ρ′v′n+1) = ρvn+1 and
inductively it follows that for two runs ρ ∈ V ∗ and ρ′ ∈ V ′∗
such that r(ρ) = ρ′ and r′(ρ′) = ρ, it holds

(∀i : 0 ≤ i < |ρ|)[π2(vi) = π2(v′i) ∧ (π1(vi), π1(v′i)) ∈ R] .

Now suppose WS1 : V ∗ → Σ1 is a winning strategy
for player 1 in (G, v0). For any run ρ produced by player
1 applying WS1, let r(ρ) be the run produced by player
1 applying WS′1 (Definition 5) and note that LB(ρ) =
LB′(r(ρ)), where LB and LB′ are the labeling functions of G
and G′, respectively. Because of this latter equality between
the images of the labeling functions, when ρ is winning for
player 1, by Proposition 1 we can infer LB(ρ) is accepted by
As, and consequently r(ρ) is winning for player 1 in (G′, v′0)
since LB′(r(ρ)) = LB(ρ) is accepted by As as well.

Proposition 2 sets the theoretical foundation that allows
us to compute a winning strategy for player 1 in a game
equivalent to the original one when the latter is unknown
but can be learned from positive presentations.

D. Learning an equivalent game from positive presentations

The learning module in our framework combines two
learning processes that work in parallel: one aims to identify
a transition system that keeps track of the updates of world
states during the course of the game, and the other is a typical
GIM. By combining these two we are able to compute a
game equivalent to the true game in the sense of Definition 5.
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We assume player 1 always knows whose turn it is (i.e.
the Boolean value t ∈ {0, 1}) and has full observation of
the set of atomic propositions AP , i.e., at any time instance
during the game, player 1 knows the current evaluation of α
for each α ∈ AP whose value can be determined (either true
or false). In the repeated game, the (move) index i counts
from the very first game until the current move.

Definition 6 (World state transition system): During the
game in which (G, v0) being played repeatedly, the world
state transition system constructed by player 1 at index n
is W (n) = 〈C × {0,1},Σ, Tw, (c0, t0)〉, where C × {0,1}
is a set of states and (c0, t0) is the initial state;1 Tw :
(C × {0,1}) × Σ → C × {0,1} is the transition relation
defined based on the observations of player 1 as follows:

1) t = 1: Tw((c,1), σ) = (c′,0) is defined if for c ∈ C
with c =⇒ PRE(σ), we have c′ = σ(c) is the world
state that captures the effect of σ on world state c.

2) t = 0: Tw((c,0), σ) = (c′,1) is defined if for c ∈ C,
after player 2 plays σ, the observed world state is c′.

In the course of the game G, player 1 updates W as follows.
Let the world state at index n be c ∈ C. At n + 1, suppose
player 2 plays σ ∈ Σ2 and the world state becomes c′.
Then W (n + 1) is obtained from W (n) incrementally by
first adding state (c′,1) if it is not already included in the
state set and then defining a transition Tw((c,0), σ) = (c′,1)
if not already existing. Outgoing transitions of (c′,1) are
subsequently added according to the definition of Tw: for
any σ ∈ Σ1 such that PRE(σ) is satisfied by c′, we add a
transition from (c′,1) to (σ(c′),0) labeled σ.

The incremental construction of W is reminiscent of learn-
ing an action model with full observation [17] by treating the
action of player 2 as the set of actions whose conditional
effects have to be learned. The convergence of learning is
guaranteed: informally, according to the turn-based product
P , the set of world states that may actually be encountered
during players’ interaction is fixed. Once the set of states in
W (i) for some i ∈ N converges to a set that contains LB(Q),
then one adds transitions with a known state set using the
rules defined above. The convergence is reached when no
more transition can be added.

Definition 7: Suppose that upon the initialization of the
game (G, v0) player 1 is at state I1, W (n) = 〈C ×
{0,1},Σ, Tw, (c0, t0)〉 has been constructed at index n
and a hypothesis of L2(G, v0) is given in the form of
a grammar G by a GIM, for which one finds a DFA
B = 〈Qh2 ,Σ2, T

h
2 , I

h
2 , F

h
2 〉 such that L(B) = L(G). The

hypothesized turn-based product is

HP = W (n)×s A1 ×s B
= W (n)×s〈Q1,Σ1, T1, I1, Q1〉×sB = 〈H,Σ, δ′, h0, LB

′〉

where H = C × {1,0} × Q1 × Qh2 is the state set and
h0 = (c0, t0, I1, I

h
2 ) is the initial state; the transition relation

δ′ is defined as follows: for h = (c, t, q1, q
h
2 ),

1) σ ∈ Σ1 ∧ t = 1: δ′(h, σ) = (Tw((c, t), σ), T1(q1, σ), qh2 );

1By construction, not all states in C × {0,1} can be accessed in W (n).

2) σ ∈ Σ2∧t = 0: δ′(h, σ) = (Tw((c, t), σ), q1, T
h
2 (qh2 , σ)) .

The labeling function LB′ : H → C is defined such that for
any h = (c, t, q1, q

h
2 ) ∈ H , LB′(h) = π1(h) = c.

Theorem 1: Let GIM be a learning algorithm that identi-
fies in the limit from positive presentations a class of regular
languages L. Suppose game (G, v0) with v0 = (q0, s0) is
such that L2(G, v0) ∈ L, and consider any positive presen-
tation of L2(G, v0) denoted φ2 : N→ L2(G, v0) ∪ {#}. Let
the algorithm Alg be defined by

Alg(φ2[n]) , (W (n)×s A1 ×s A2(φ2[n])) nAs ,

where n ∈ N, A2(φ2[n]) = 〈Qh2 ,Σ2, T
h
2 , I

h
2 , F

h
2 〉 is a

DFA that accepts the language generated by the grammar
GIM(φ2[n]), and A1 is obtained from A1 by assigning
I1 = π1(q0) as the initial state and all states final. Then
there exists some index N ∈ N, such that

1) L(GIM(φ2[N ])) = L2(G, v0);
2) W (n) = W (N) for all n ≥ N ;
3) Alg(φ2[N ]) is game equivalent to (G, v0).

Proof: It suffices to prove that at index N ∈ N, the hy-
pothesized turn-based product W (N)×sA1×sA2(φ2[N ]) '
(P, q0) = 〈Q,Σ, δ, q0, LB〉, because it follows from Proposi-
tion 2 that Alg(φ2[N ]) is equivalent to (G, v0).

At index N , let the hypothesized turn-based product be
HP = W (N) ×s A1 ×s A2(φ2[N ]) = 〈H,Σ, δ′, h0, LB

′〉.
Let the relation R ⊆ Q × H be defined as (q0, h0) ∈ R
with (q, h) ∈ R whenever there exists w ∈ Σ+ such
that δ(q0, w) = q and δ′(h0, w) = h. We show R is a
bisimulation:

First we show that if (q, h) ∈ R, then LB(q) = LB′(h):
given that LB′(h0) = c0 is the world state at the initialization
of game, LB′(h0) = LB(q0) = c0 due to the uniqueness of
the initial world state. For (q, h) ∈ R, we assume without
loss of generality that there exists σ ∈ Σ for which δ(q, σ) =
q′ and δ′(h, σ) = h′. Since in a deterministic game, for the
same world state c the world state resulting from applying
action σ on c is unique, and given LB(q) = LB′(h) = c we
can infer LB(q′) = LB′(h′) = σ(c) = c′ ∈ C. Inductively, it
follows that for any (q, h) ∈ R, LB(q) = LB′(h).

Next we show that if (q, h) ∈ R, then for every σ such that
δ(q, σ) = q′ ↓, there must exist h′ ∈ H such that δ′(h, σ) =
h′ and (q′, h′) ∈ R and vice versa. So far, we have

(q, h) ∈ R =⇒ LB(q) = LB′(h) = c

∧ (∃w ∈ Σ∗)[δ(q0, w) = q ∧ δ′(h0, w) = h] .

Consider any σ such that δ(q, σ) ↓ and let q′ = δ(q, σ) =
δ(q0, wσ). In showing that δ′(h, σ) ↓, two cases can arise:

Case 1: σ ∈ Σ1. By definition of the turn-based
product, and from the fact that σ is taken at state q of
P , we can infer LB(q) =⇒ PRE(σ), which means in
W (N), Tw((c,1), σ) = (σ(c),0) is defined. Meanwhile as
δ(q0, wσ) ↓, let u1 be the projection of w on Σ1, and note
that u1σ ∈ L1(G, v0) ⊆ L(A1) implies T1(I1, u1σ) ↓. By
Definition 7, we have δ′(h, σ) ↓. Let h′ = δ′(h0, wσ) =
δ′(h, σ). Then (q′, h′) ∈ R by the definition of R.
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Case 2: σ ∈ Σ2. Similarly to the previous case, since
δ(q0, wσ) ↓, let u2 be the projection of w on Σ2, and
note that u2σ ∈ L2(G, v0) ⊆ L(A2). As L(A2(φ2[N ])) =
L2(G, v0) in the limit, it follows that Th2 (Ih2 , u2σ) ↓. For
Tw((c,0), σ) to be defined in W (N), player 1 must have
observed player 2 taking action σ when the world state is
c. In the true turn-based product, given LB(q) = c, unless
player 2 never plays σ at q (in which case we can safely
assume wσ /∈ L(G, v0)), there must exist a time index
k ≤ N when the transition labeled σ from (c,0) is added
to W (k). Now since Th2 (Ih2 , u2σ) ↓ and Tw((c,0), σ) ↓, by
construction we have that h′ = δ′(h, σ) = δ′(h0, wσ) ↓, and
thus (q′, h′) ∈ R by the definition of R.

Till now, we have shown that P is simulated by HP: any
sequence of actions of player 1 and 2 in P can be matched
with a sequence of actions in HP. For the other direction
note that any sequence of actions in HP can also be matched
by a sequence of actions in P , because observed behaviors
originate from the true turn-based product P that captures
all possible interactions. Having shown W (N) ×s A1 ×s
A2(φ2[N ]) ' (P, q0), Proposition 2 allows us to conclude
that the game Alg(φ2[N ]) is equivalent to (G, v0).
We say Alg identifies a game equivalent to (G, v0) in the limit
from positive presentations of L2(G, v0). From Theorem 1
and Proposition 2, it follows that the winning strategy of
player 1 computed using Alg(φ2[N ]) ensures the satisfaction
of the task specification accepted by As. The winning strat-
egy computed in Alg(φ2[N ]) converges, through functions r,
r′, to the winning strategy for player 1 in the (G, v0). There is
no need to compute r and r′ explicitly because for any finite
run ρ in Alg(φ2[N ]), WS′1(ρ′) computed using Alg(φ2[N ])
is exactly the action given by WS1(r′(ρ′)) in (G, v0).

Until GIM converges, there can be no guarantee that an
effective strategy can be found. However, since the output
of GIM is always consistent with the history of observed
environment behavior, the adaptive controller performs at
least as good as any other synthesized one without making
any inference. With observations accumulating, the adaptive
controller is monotonically improving.

V. CASE STUDY

In which follows, we illustrate our method using an
example: a robot (player 1) aims to visit rooms 1 through 4
in Fig. 1a, when the doors a, b, c, d, e, f, g are controlled by
an adversary (player 2).

We assume player 2 adheres to the following rules:
1) doors b, c, e, f (around room 0) can be kept closed for
at most two rounds, and the rest can be closed for at most
one round.2 2) two doors closed consecutively, if not the
same, must be adjacent to each other (doors are adjacent if
connected via a wall; for example, doors b, c are adjacent to
a.). Player 1 can either stay in her current room or move to
an adjacent one, if the door connecting the two is open, but
cannot stay in rooms 3, 4, 0 for more than one round. Note

2Doors can be automatic sliding doors with different—designed—closing
time spans.

that although in principle our method applies to cases where
player 1 restricts the behavior of player 2, in this particular
example this is not the case.3

As the first game starts, player 1 is informed that the lan-
guage of player 2 is in the class of strictly 3-local languages
[21] (see Appendix for characterization and available GIMs
for this class of languages). Such information is inferred from
the fact that player 2 has a finite memory of size 3. Figure
1b gives a graphical description of a fraction of the game
automaton (G, v0), which totally has 1214 states and 3917
transitions. The winning region for player 1 contains 996
states.

a

b

c

d

e

f

g

1 2

3

0

4

(a) A graphical depiction of the
environment

cstart
ba

cc

cb

efce

ee

fe

b

c b

a

e

(b) A fragment of A2 where I2 = c.
Since player 2 cannot close b, c, e, f for
more than two rounds, she needs to main-
tain a memory of size 2 keeping track of
recently closed two doors, e.g. ab means
doors a is closed in previous turn and the
current closed door is b. Upon initializa-
tion, c means so far only door c has been
closed.

Fig. 1: The environment and its abstraction.

Figure 3 shows how the learning algorithm converges after
about 3895 turns (368 games). Convergence is quantified
by measuring the ratio of the size (cardinality) of grammar
GIM(φ[n]) over that of the grammar describing L2(G, v0);
the latter has 121 factors of length 3 (see Appendix for
background details). Interestingly, although it takes 368
games for the learning algorithm to converge, we observe
that after 7 games player 1 only loses once (in the 51st
game). This fact suggests that the controllers computed using
the hypothesized games, even when those are not game-
equivalent to the actual game, can still be effective. We
compare this outcome with the case where player 1 has no
capacity to learn, and replans in a way similar to [10] using
a naive model for player 2: when player 1 observes a door is
closed (open), she will assume the door will remain closed
(open) until she observes it opening (closing) again. With
player 2 exploiting every opportunity to prevail, player 1
achieves a win ratio of 27% when no learning is employed,
compared to a ratio of 98% when GIM is used.

VI. CONCLUSION

The interaction of two discrete dynamical systems, where
one of them needs to satisfy a specification without knowing
the dynamics of the other on the outset, can be captured in

3Perhaps that could happen if the robot were to remain at a certain door
thus preventing it from closing, but this would not be particularly beneficial
in terms of achieving its goal.
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Fig. 2: A fraction of (G, v0) where v0 = ((1, c,1), 1). A state
((q1, q2, t), qs) means the robot is in q1, the recent consecutively
closed (at most two) doors are q2, t = 1 if player 1 is to make a
move, otherwise player 2 is to make a move and the visited rooms
are encoded in qs, e.g. 12 means rooms 1, 2 have been visited.
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Fig. 3: Convergence of learning L2(G, v0): the ratio between the
size of the grammar inferred by the GIM and that of L2(G, v0), in
terms of number of moves made

a strictly competitive game of incomplete information. With
the introduction of grammatical inference and by playing
the game repeatedly, the agent tasked with satisfying the
specification eventually does so after completing the missing
information about its adversary. This completion takes the
form of a transition system, based on which a game equiva-
lent to the one actually being played can be constructed. Due
to this equivalence, strategies computed on the hypothesized
game, are just as effective as the true winning strategy
computed on the game with complete information. Provided
the right hypothesis of the class of unknown dynamics is
made—meaning that the appropriate grammatical inference
machine can be chosen—the hypothesized game converges
to the one that is equivalent to the true game, in finitely many
game rounds.

APPENDIX

A string u is a factor of string w iff ∃x, y ∈ Σ∗ such that
w = xuy. If in addition u has length k, then u is a k-factor of
w. The k-factor function Fk : Σ∗ → 2Σ≤k

maps a word w to
the set of k-factors within it if |w| > k; otherwise it maps w
to the singleton {w}. We can extend Fk to a whole language,
and write Fk(L) :=

⋃
w∈L Fk(w). A language L is Strictly

k–Local (SLk) if there exists a finite set G ⊆ Fk(]Σ∗]), such
that L = {w ∈ Σ∗ | Fk(]w]) ⊆ G}, where ] is a special
symbol indicating the beginning and ending of a string. The
set G is the grammar that generates L.

A poly-time, incremental and set-driven learning algorithm
for strictly k-local language is GIM defined by [21]: 1) i = 0:
GIM(φ[i]) := ∅; 2) φ(i) = #: GIM(φ[i]) := GIM(φ[i − 1]);
3) otherwise: GIM(φ[i]) := GIM(φ[i− 1]) ∪ Fk(]φ(i)]).

Example 1: Consider a strictly 2-local language L =
(Σ∗aaΣ∗){ ∪ (Σ∗baΣ∗){, for Σ = {a, b}, where S{ be the
complement of the set S with respect to Σ∗. In other words,
L is the set of strings that don’t have aa and ba factors.

We have the grammar G = Fk(L) = {]a, ]b, ab, bb, b], a]}.
Obviously, aaa /∈ L because F2(]aaa]) = {]a, aa, a]} * G.

Learning proceeds as follows: given a positive presentation
φ where φ(1) = ab, φ(2) = bb, φ(3) = a, applying the
learning algorithm GIM(φ[1]) = Fk(]ab]) = {]a, ab, b]};
GIM(φ[2]) = GIM(φ[1]) ∪ F2(]bb]) = {]a, ]b, ab, bb, b]};
GIM(φ[3]) = GIM(φ[2]) ∪ F2(]a]) = G. The learner
converges after only having observed 3 strings.
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