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For a given system , and will in gen-
eral yield quite different gain matrices, offering different performance
values, so both methods should be considered for optimal performance.
While Byers and Nash considered only the robustness, our method is
able to accommodate a combined robustness and gain minimization
approach, enabling the designer to obtain significantly reduced gain in
exchange for somewhat inferior conditioning.
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Adaptive Symbolic Control for Finite-State Transition
Systems With Grammatical Inference

Jie Fu, Herbert G. Tanner, Jeffrey Heinz, and Jane Chandlee

Abstract—This note presents an approach that integrates elements
from grammatical inference and game theory to address the problem
of supervising finite-state transition systems operating in adversarial,
partially known, rule-governed environments. The combined formulation
produces controllers which guarantee that a transition system satisfies
a task specification in the form of a logical formula, if and only 1) the
true model of the environment is in the class of models inferable from
positive data presentation (observations), 2) a characteristic sample of
the environment’s behavior is observed, and 3) the task specification is
satisfiable given the capabilities described by the abstractions of the system
and its environment.

Index Terms—Algorithmic game theory, grammatical inference, hybrid
systems, symbolic control.

I. INTRODUCTIONF

This note shows how grammatical inference can be used in con-
junction with standard game theoretic analysis to enable a transition
system to satisfy a behavior specification while interacting with an
adversarial, unknown, rule-governed environment. Transition systems
such as the ones considered here may arise as discrete abstractions of
hybrid dynamical systems. Specifics on the abstraction process itself
can be found elsewhere (see [1]–[3]).
Conceptually similar problems have been studied in the context of

reactive control [4]–[8],where systembehavior is replanned in real time
based on information observed. A common underlying assumption is
that the environment is admissible, that is, it cannot falsify the system’s
specification. This assumption is notmade here. Rather, we askwhether
there is a method that reduces the problem for a system interacting with
an unknown environment, into an instance where the environment is
known, to allow the application of existing synthesis methods.
One way to answer this question is to learn, or identify, a model for

the environment. The learning paradigm adopted here is grammatical
inference [9], [10], a methodology that identifies formal objects (e.g.,
languages) through presentation of examples of elements (e.g., strings
in the language) with or without a teacher or oracle. With some prior
knowledge about the object to be learned—narrowing down the search
usually helps—correct identification occurs once a sufficient number
of examples of the object’s features (the characteristic sample) is ob-
served. Inmodel diagnosis [11] and actionmodel learning [12], a system
is identified based on the observed behaviors and the predicated model
for the system. It thus seems plausible that with some prior knowledge
which helps to reduce our hypothesis space of the true system, we can
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start with an assumed model for the system and apply grammatical in-
ference to identify the complete true system from observations.
Reinforcement learning offers an alternative formal methodology

for regulating a system’s behavior while interacting with unknown dy-
namics (see [13] for an application in a discrete event system (DES)
context). There are fundamental differences between the concept of
reinforcement learning (RL) and that of grammatical inference. In a
Markov decision process (MDP) setting, where RL takes place, the un-
certainty about the environment interaction is expressed probabilisti-
cally, which is natural when there is inherent stochasticity in the models
of the system or the environment, but when dynamics are purely deter-
ministic, stochasticity becomes a modeling artifact. Furthermore, what
reinforcement learning does is to enable the system to learn how to ex-
ercise control; in contrast, grammatical inference informs the system
about how to learn its environment. Whereas grammatical inference
has some precedence in supervisory control of discrete event systems
[14], it has not been used for the model identification. Rather, it has
been employed as a tool for learning the supremal controllable sublan-
guage for given system specifications, and in a setting where queries
and the use of negative data are allowed. However, even when nature
is not adversarial, it is unlikely to respond to our queries.
In this note, we express the interaction between the system and

its environment as a two-player zero-sum game, corresponding to
the worst-case assumption typically made in DES theory. In this
form, the problem differs structurally from those treated using re-
inforcement learning approaches: when classifying games [15], an
MDP is a one-player stochastic game, whereas the games of this note
are two-player deterministic games. The note shows that with the
suggested introduction of grammatical inference, control synthesis
is decoupled from learning, and the latter can be performed outside
a probabilistic framework. While demonstrating the approach, we
perform synthesis using game-theoretic tools but different options
(e.g., [16]) are also available.
The rest of this note is organized as follows. Section II introduces the

technical background, the notation, and the models used. In Section III,
we briefly formulate the control problem into a game, in which the win-
ning strategy of one player becomes the controller. In Section IV, we
introduce a learner to identify asymptotically the abstract model of the
unknown and adversarial environment, and then how this knowledge
can be utilized in planning and control synthesis. Section V illustrates
the whole approach through an example. Section VI concludes.

II. PRELIMINARIES

A. Languages, Automata and Games

Let denote a fixed, finite alphabet, and be sequences over
this alphabet, of any finite length, and of infinite length, respectively.
The empty string is denoted , and the length of string is denoted
. A language is a subset of . A grammar for a language

is a finite description of via a well-defined function such that
(an example is given later). A string is a prefix (resp.

suffix) of a string if there exists a string such that (resp.
). The prefix (resp. suffix) of length of a string is denoted
(resp. ), and the set of prefixes (resp. suffixes) of a

string of length , (resp. ). Given an -word
, denotes the set of symbols occurring in and those

occurring infinitely often in . Given a finite word ,
denotes the last symbol of .
A semiautomaton is a tuple , where is a set of states

(here assumed finite), is the finite alphabet, and
is the transition function. The mapping from to via is
also written as , and can be expanded recursively in the usual
way. Here, semiautomata are assumed deterministic in transitions. If

is defined for a given , we write .
The active event function singles out the alphabet
symbols triggering outgoing transitions from a given state of , and
is defined as . A run in on an input
word (resp. -word) (resp. ) is a finite
(resp. infinite) sequence of states (resp.

) such that , . Then we say that is
generated by . A semiautomaton is total if for any ,

is defined. Any semiautomaton can be made total by adding
a non-final state such that in every state, all symbols that are not in

trigger transitions to , and at all symbols in produce
self-loops.
We think of a deterministic automaton as a quintuple

, where is a semiautomaton deterministic
in transitions, is the initial state, and is the acceptance compo-
nent. The semantics of an acceptance component is context-based: if
is a deterministic finite state automaton (DFA) with ,

then accepts iff run generated by satisfies
and ; if is a deterministic Büchi automaton

(DBA) with , then accepts iff run
on satisfies and . The language is
the set of words accepted by . In the context of this note, calligraphic
uppercase letters are reserved for DFAs.
The automaton form of a two-player turn-based game [17] is a tuple

, where is the set of states where
player plays, and is the set of actions for player . The sets of player
states and actions are disjoint: . The transition
function is , with the set of initial game states, and

the winning condition. If is a reachability (or safety)
game, then a run is winning for player 1 if (or
); if it is a Büchi game, then the condition is .
A memoryless strategy1 for player in game is a function

such that for every pair of preimage and image, a
transition is defined. Player follows strategy if at state ,
player always plays . A strategy is a winning strategy for player
, denoted , if every run in in which player follows , is
winning for him. The winning set of player , denoted is
the set of states from which there exists a winning strategy for player .

B. Grammatical Inference

A positive presentation of a language is a total function
such that for every , there exists such

that [10]. A presentation can also be understood as an infi-
nite sequence containing every element of , interspersed
with pauses (marked with the # symbol), which are moments in time
when no information is forthcoming. We will take initial finite sub-
sequences and denote them to mark the (time)
step at which the particular subsequence of symbols is observed. The
content of , written , is the set of elements of the se-
quence, less the pauses. A grammatical inference machine (GIM) ,
or learner for short, identifies in the limit from positive presentations a
class of languages if for all , and for all presentations of ,
there exists a such that for all , outputs a
grammar , and [18]. Let be a finite subset of , is a
characteristic sample of for if for any positive presentation ,
for all , implies [9].
For concreteness, this note introduces a GIM with respect to the class

of Strictly 2-Local languages; however, many other formal lan-
guage classes have been shown to be learnable [9], any of which could
be used in the current setting. A string is a factor of another string

1For two-player zero-sum reachability and Büchi games with perfect infor-
mation, there always exists a memoryless winning strategy for one of the players
[17].
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, if and only if such that . All such strings
of length are the -factors of . The -factor function

maps a word to the set of -factors in it, if ;
otherwise maps to itself. We can extend to a whole lan-
guage, and write . Let be a special
symbol marking the beginning and the end of a string. A language is
Strictly -Local if there exists a finite set ,
such that . Machines
generating strictly -local languages model processes where the next
event depends only on the previous events. Informally, learning
can occur because every observed string reveals some of the elements
of the grammar. Therefore, after enough strings from the language are
observed, the grammar—being a finite set—“fills out.” A formal defi-
nition of a GIMwhich learns in this way is provided later in Definition 3.
The languages are identifiable in the limit from positive presenta-
tions [19] with a poly-time iterative and set-driven learner [20].

III. SYSTEM BEHAVIOR AS GAME PLAY

In the interaction between two dynamical systems (the agent and
its environment)—the players in the game—the actions of one have
conditional effects over the state of their composition, which we refer
to as the world. The world can be described through a formal system
over a set of atomic propositions [12]. A literal is either an atomic
proposition in , or a negation of an atomic proposition. A sentence
is a conjunction of literals, in which each atomic proposition appears
at most once. The set of all sentences that can be formed in this way
makes a set of world states denoted .
In our context, a dynamical system is expressed as a special type of

a Kripke structure. This structure is a semiautomaton augmented with
a labeling function that maps a state to a sentence which is true at that
state. Thus, player is modeled as a tuple ,
where . The set may contain the empty action , in
which a player simply gives up his/her turn. All transitions in (the
system) are controllable, whereas transitions in (the environment)
are uncontrollable. We assume that the alphabets of the two players are
disjoint, i.e., .
The conditional effect of action is captured by its pre- and

post-conditions. The pre-condition is a sentence that has
to be true in order for to occur. The post-condition is a
sentence that must be true when the action is completed.Whenever

, the active event function of , we have ;
similarly, when we see a transition from to on action , denoted

, we infer that .
We capture how each player can interfere with the dynamics of the

other, by means of an interaction function , in
which a pair of states maps to the set of actions that player
can no longer take: .
Intuitively, the interaction happens at the level of the images of their
labeling functions, with some literals in , negating some literals
in ; by doing so they falsify the pre-condition of action

.
We assume that the objective of each player is given as a logic

formula over . By restricting this objective to either first-order
logic, or a fragment of Linear Temporal Logic (LTL) [21], the ob-
jective’s formula can be equivalently expressed as a DFA or DBA,
respectively. These automata are referred to as the objective automata

, where is total. Two types of objectives
can be considered: 1) Reachability or safety2 objectives, in which
is a DFA; and 2) Büchi objectives, in which is a DBA.

2A safety objective is the dual of a reachability objective [17].

Our game is constructed in a bottom-up fashion, through appropriate
product operations on the models of the players and the objective au-
tomaton. The first product introduced in Definition 1 constructs the
game arena, which captures all interactions between players.
Definition 1 (Turn-Based Product): Given two players

, , their turn-based product
, denoted , is defined as follows:

is the set of states , where the last
component is a Boolean variable denoting whose turn it is to
play: for player 1, for player 2.
is the transition function with
if and , and

if and
.

is the labeling function defined as
.

The following product completes the game construction by incorpo-
rating the players’ objectives.
Definition 2 (Game Automaton): Given the turn-based product

and the objective automaton
, a two-player turn-based game automaton

is defined, where

, where is the set of
states where player 1 moves, and
is the set of states where player 2 moves.

.

is the transition relation in which
is defined iff ,

and .
is the set

of initial game states.
is the set of final states.

For a given state , a projection operator is
defined such that is the th component in the tuple . The game
automaton has at most states. The labeling function is
first extended from to : for each state , we
define ; then it is extended to runs in
in the usual way. An initialized game is a tuple , where
is the initial state. If is a DFA, game is a reachability game. Run
is winning for player 1 in game if . Projecting the run on
, we see that also accepts since ,

which is a subset of . If is a DBA, game is a Büchi game and a
run is winning for player 1 in if and accepts

since .
With the game expressed as a finite state machine, one can use stan-

dard supervisory control techniques [16] to synthesize controllers for
player 1. As an alternative, we compute a winning strategy

in (which can be a reachability or a Büchi game)
using game-theoretic methods [17], [21]. Applying these algorithms
to games with transitions and states, results in time complexity

if they are reachability games, and in time complexity
if they are Büchi games [17].

IV. INCORPORATING GRAMMATICAL INFERENCE

Section III established that for a given task, an agent which 1) has full
knowledge of the dynamical environment it interacts with, and 2) is ini-
tialized at a state in , affords a controller that ensures that its
objective ismet. This section relaxes the condition on full knowledge by
incorporating a GIM. The GIM updates the agent’s model of the unknown
and rule-governed environment via observations made in the process of
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Fig. 1. Learning and planning with a grammatical inference module.

playing the game repeatedly, each time from an initial condition ran-
domly selected from all possible initial states. During this process, the
agent adjusts its behavior based on the latest instantiation of its envi-
ronment model. In the limit, the system refines its model to one that
accurately expresses its adversary’s behavior, and thus recovers the per-
formance achievablewhen full knowledge is assumed.
The assumptions that allow the implementation of the proposed

approach are the following: 1) Player 1 cannot restrict player 2, i.e.,
, ; 2) The model of player 2

is identifiable in the limit from positive presentations by a GIM; 3)
Player 1 has prior knowledge for selecting the correct GIM; and 4) the
observed behavior of player 2 suffices for a correct inference to be
made, i.e., it contains a characteristic sample.
These assumptions are for the most part conservative, and are justi-

fied as follows. The first assumption suggests that player 1 has a disad-
vantage: although player 2 can interfere with the execution of the plans
of player 1, the actions of player 1 have no effect on the actions player 2
can take. The second assumption requires positive presentations only,
because an adversary is unlikely to respond to queries (cf. [14]). This
assumption can be relaxed in other grammatical inference frameworks
(for instance, less prior knowledge is required when presentations con-
tain both positive and negative data). The third and fourth assumptions
simply state conditions for a GIM to converge; they are reasonable, in
the sense that it is not beneficial for an adversary to consistently with-
hold action solely for the purpose of privacy. Note that this set of as-
sumptions does not require that the environment cannot falsify the task
specification (cf. [6]). Here environmental actions, and poor—due to
ignorance—response by the system, can falsify the specification during
the learning process of a repeated game [22]. When this happens, the
game restarts from a new initial condition, with the agent retaining the
knowledge accumulated until then.
Given a game , let be the set of prefixes of all possible action

sequences made by interleaving the actions of player 1 with those of
player 2, and be the projection of on . The behavior
of player 2 is a language . Based on assumption 2) made
earlier in this section, for any positive presentation of , there
exists a GIM and such that for all ,

. In addition, the language of the grammar given by
is , i.e., .
Let the presentation of language obtained in the repeated game

to be , define , and denote the presentation obtained
after move . Since games are repeated, the move index
counts from the first move in the very first game until the current
move in the latest game. If move is the first in one of the repeated
games and player plays then ; otherwise

. The projection of on the alphabet of player 2 is a
positive presentation of , denoted .
Fig. 1 illustrates how identification in the limit proceeds. Through in-

teractions with player 2, player 1 observes a finite initial segment of a
positive presentation of , and uses the to update a hy-
pothesized model of player 2. Specifically, the output of
becomes a DFA (see Appendix), which after removing the initial state
and the finality of final states, yields a semiautomaton . The labeling
function in is defined as , where

; this is the set of
labels of incoming transitions of the state . The computation of labeling
function is of time complexity linear in the size of . Given , the
interaction function is updated in linear time .
Based on the interaction functions and the updated model for player 2,
player 1 constructs a hypothesis (model for) , capturing her3 best
guess of the game being played, and uses this model to compute ,
whichconverges to the true as converges to the true .Strate-
gies for , are the best responses for the system given the
information it has so far, but having been devised based on incorrect hy-
potheses about the game being played, they cannot guarantee winning.
There is no guaranteedupper boundon the number of games player 1 has
toplaybefore the learningprocess converges becauseonedoesnot know
atwhich point a characteristic sample of player 2’s behavior is observed.
However, as soonas thishappens, convergence is guaranteed.
The game learning procedure is summarized in the following se-

quence of steps.

1) The game starts with initial state , , and the
hypothesized game is .

2) At state , player 1 computes in . If
, a winning strategy exists in . Player

1 plays , and proceeds to step 4. If , player
1 loses and jumps to step 3; if , player 1 wins and
jumps to step 5.

3) With probability , player 1 makes a move randomly selected
from available moves at that time instance and jumps to step 4;
or player 1 jumps to step 5 with probability .

4) Player 2 makes a move. Player 1 observes the move, updates
to , and to . Player 1 sets and

goes to step 2.
5) The game is restarted at a random initial state and If

, player 1 makes a random move and goes to step 4;
otherwise, player 1 jumps to step 2.

When player 1 finds herself out of her assumed winning set she can
either quit and restart the game, or explore an action with some proba-
bility and keep playing hoping that her opponent’s response
allows her to improve her hypothesis of the game. She has nothing to
lose by trying to exploit her adversary’s desire to win in order to extract
information about her opponent’s behavior.
Having no particular reason to choose otherwise, we define the utility

or reward resulting from using a particular strategy as a binary function
awarding1 for awinand0 for a loss.This reward is realizedat theendof a
game, and the regret that the systemexperiences for not following a
strategy in theprocessof learning, is thedifferencebetween the reward
it gets while learning and the one it would have received if adhered to
[22]. The learning rule we introduce here is a no regret rule [22] in the
sense that the average regret for not using a true winning strategy from
the beginning—albeit there is no way to formulate it in advance based
on available information—tends to zero as the game rounds increase.
Specifically, if denotes the payoff (win: 1, lose: 0) of employing
strategy , realized at the end of the game, and is any truewinning
strategy for player 1, then .
This is due to the guaranteed convergence of the grammatical inference
module in the limit, combined with the derivation of winning strategies
on each hypothesized game .

V. PLAYING FOR REAL

A robot (player 1) must visit all four rooms in the environment of
Fig. 2, where doors connecting rooms are controlled by an adversary

3In this context,we refer to player 1 as a “she” and player 2 as a “he.”
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Fig. 2. Physical implementation of the game. A Khepera II is player 1.

(player 2). The rules of the game are:
Rule 1) at each round, either no door opens (thus ), or one

opens and another one closes;
Rule 2) doors closed must be opposite to each other, that is,

where , denotes doors and
being closed.

Rule 1 makes a strictly 2-local language [20], [23]. The
graph of this language acceptor can be represented with aMyhill graph.
Algorithms for deciding whether a language is strictly -local and for
which it is can be found in [24].
The prior knowledge used in this game is the following:

1) Initially, player 1 is aware of Rule 2 only,4 and 2) player
1 starts the game knowing that the language of player 2 is
strictly 2-local. Let robot in room
the door connecting rooms and is closed . Without any other
information about the doors’ behavior, player 1 starts the game
hoping that the doors will stay as they appear at the outset: all
open. Player 1 plans with this in mind, modeling her own dy-
namics as , where ,

, and transition
suggests movement from room to . We set . Player
2 is modeled as , where and

if , and . The labeling function
is understood graphically, for example,

as connects rooms 1, 2 and connects 3, 4. The objective au-
tomaton is , which is the canonical finite
state automaton (FSA) accepting the union of the shuffle ideals5 of the
permutations of string . The interaction function
indicates the rooms player 1 cannot go to from room due to doors
and being closed. The actions of player 1 do not inhibit that of

player 2: . Player 1 always moves first. A
fragment of the game automaton is shown in Fig. 3.
The game automaton has 370 states and 1202 transitions.

The computation of the winning set for player 1 takes
0.05 seconds to compute in python on a laptop with Intel Core
2 Duo CPU and 2 GB of RAM. For a game , where

, player 1 has a winning
strategy. Hence, with full knowledge of the game, player 1 has

chance of winning. But starting just knowing
that the opponent’s language is a strictly 2-local language, player 1
uses the following learner:

4This assumption can be lifted, and player 1 may know nothing. She can still
obtain the alphabet of player 2 through observations during the course of the
game.
5For , the shuffle ideal of is

.

Fig. 3. Fragment of the game automaton
for the door-robot game. A state, for example,

means the robot is in room 3, doors and is closed, now it is
robot’s turn and the rooms has been visited is {1,3}. The transition

in is briefly expressed by .

Fig. 4. Ratio of transitions learned versus all possible adversary transitions (see
Appendix), in terms of number of turns played.

Definition 3 ([23]): For all positive presentations , define as:
1) : ; 2) :
; 3) otherwise: .
Example 1: Let . Suppose

and . Then

.
The learning algorithm used by player 1 performs as fol-

lows: given the finite initial segment of a presentation ,
firstly the learner uses to compute a set of 2-factors

; then it constructs a DFA that accepts
with the method outlined in the Appendix.

By removing initial and final states from we obtain , based
on which the interaction function is updated and sequentially the
game is obtained (Fig. 1).
Fig. 4 shows that the learner converges after approximately 44

games, with turns. The probability in the learning pro-
cedure of Section IV is set to 0 which means no exploration if the
current state is not initial. Table I shows the outcomes of repeated
games in three different scenarios: 1) Full-Knowledge: player 1 knows

exactly; 2) No Learning: player 1 has no knowledge of and
no ability of learning; and 3) Learning: player 1 starts without a
model of player 2 but utilizes . Initial conditions are chosen
randomly. For the no learning case, player 1 does not win even once
in 300 games. When player 1 has full knowledge of the game our data
indicates a winning ratio of 27%, which is close to the theoretical
value of 25%. When player utilizes a learner, she reaches a win ratio
of 26%.
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TABLE I
COMPARISON RESULTS WITH THREE TYPES OF PLAYER 1. FOR THE CASE OF
no learning, PLAYER 1 EVENTUALLY MOVES OUT OF HER WINNING SET

Fig. 5. The (non)-canonical automaton accepting for
(top) and the automaton obtained for , where

, after removing transitions and the finality
of some states (bottom). (a) The (non)-canonical ; (b) automaton for

.

VI. DISCUSSION AND CONCLUSION

This note demonstrates the use of grammatical inference for plan-
ning in two-player zero-sum games involving (partially) unknown fi-
nite-state transition systems that interact adversarially. Starting with
an incomplete model of the adversary, a player iteratively updates the
model based on observations of the opponent’s behavior, using an ap-
propriate learning algorithm selected based on whatever prior knowl-
edge is available. If none is available, a hypothesis about the class
of models the adversary dynamics belongs to is made. If the correct
hypothesis is made, and a characteristic sample of the opponent’s be-
havior (language) is observed, the behavior of the learned model con-
verges to the actual opponent’s behavior in finitely many steps. As the
adversary model becomes more accurate, strategy development is in-
creasingly more effective. In the proposed architecture, learning and
control are combined in a modular way, in the sense that a range of
different methods can be adapted and used, in conjunction with gram-
matical inference, for control synthesis.

APPENDIX

Given a grammar in the form of a set of -factors that generates
a Strictly -Local language, an FSA accepting the language described
with is obtained through the following procedure: first consider a
(non)-canonical FSA that accepts ,
where 1) ; 2) iff

and otherwise; 3) is the initial state, and 4)
is the set of final states (all states are final). We denote the
FSA for . Fig. 5(a) shows the FSA for . Given a grammar
, a (non)-canonical FSA accepting can be obtained by removing

some transitions and the finality of some of the states6 in [25]. Given
a grammar , an FSA accepting

is given in Fig. 5(b). For example, transition is removed
because is not in . Thus, a learning algorithm for the class of
language is to first construct a FSA for and then modify the
transitions and finality of states in this automaton based on the learned
grammar for the target language.
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Stability of Nonlinear Networked Control Systems Over
Multiple Communication Links With Asynchronous

Sampling

Babak Tavassoli, Member, IEEE

Abstract—A nonlinear networked control system is considered in which
the measured values are asynchronously sampled and transmitted over
multiple communication links. The effects of communication in each
link (transmission delay, packet loss and sampling jitter) are captured
by a time-varying delay element. A sufficient condition for asymptotic
stability of the resulting nonlinear delayed model is provided using the
Lyapunov-Krasovskii method. This condition is in the form of a com-
pact linear matrix inequality (LMI) which depends on the amount of
communication effects in each link. The results are applied to a robot
arm networked control system to show the capabilities of the proposed
method. Comparison with the previous works indicates that a considerable
improvement in the delay bounds for stability is achieved.

Index Terms—Delay systems, networked control systems, nonlinear sys-
tems, robot manipulator control.

I. INTRODUCTION

A new means of implementing control engineering solutions is use
of communication networks in the feedback and command paths to in-
crease the flexibility of information exchange while reducing the costs
[1], [2]. The resulting system is known as a networked control system
(NCS). Communication effects such as delay and packet loss can desta-
bilize the NCS or deteriorate its performance. Therefore, several prob-
lems arise in regard with implementation of control systems over net-
works that range from analysis and design of control networks [3], [4]
to design of controllers that can cope with the communication effects
[5]–[9]. In the case of linear NCS, an important category of the works
are based on the Lyapunov-Krasovskii method [10] which can result
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in LMI conditions for studying stability and performance of NCS with
both communication delay and packet loss (e.g. see [8], [11]).
Nonlinear networked control is a difficult problem and the attempts

toward improved results are in progress. A class of existing results is
based on hybrid system modeling of the NCS. We mention the stability
analysis for NCS over multiple links in [12] which belongs to an im-
portant line of research originating from [13]. A discrete-time nonlinear
NCS over two links is analyzed in [14]. Amultichannel small gain The-
orem for NCS problems is developed in [15]. Model predictive con-
trol can calculate future control commands to overcome limited delays
at the cost of increased computations [16], [17]. Lyapunov-Krasovskii
functionals have not been applied to nonlinear NCS problems directly
and the existing results can be only used to design linear state feedback
for linear NCS with single delay and nonlinear perturbations which is
very restrictive [18].
In this work, a nonlinear NCS over multiple communication links is

considered. In each link, delays, packet loss, sampling jitter and miss-
ordering of the data packets are experienced. Moreover, sampling at
sensors need not to be synchronized. These phenomena are captured by
time-varying delay elements resulting in a continuous-time nonlinear
system with time-varying delays. The contribution of this paper to the
field is to find a means of using Lyapunov-Krasovskii functionals for
stability analysis of the nonlinear NCS. A simple LMI stability test
for nonlinear systems with multiple time-varying delays is obtained.
Nonlinear NCS over multiple links is also studied in [12] assuming that
the delays are bounded by transmission intervals. This assumption is
dropped in this work which extends the domain of applications to NCS
with data queues. The results are applied to a robot manipulator NCS
over a small network and a comparison is made with [12] which shows
the effectiveness of the proposed method. This paper improves [19] by
making the comparison with [12], a discussion on unified modeling of
the several effects of a network, and enhancements in the formulation
of paper and the degree of conservativeness of the results.
In the remaining, the NCS modeling is explained in Section II. The

main results for stability analysis of the nonlinear NCS are presented
in Section III. The robotic NCS example and the comparison of results
are presented in Section IV. Conclusions are made at the end.

II. NETWORK INDUCED DELAY

In this section, we introduce the network-induced delay as a time
varying delay which is the resultant of several effects of networked
communication that can affect the control performance including:
1) Transmission delays.
2) Queuing and processing delays.
3) Medium access delays (waiting times).
4) Data packet loss.
5) Sampling jitter.
6) Data packet miss-ordering.
It is then possible to study the above effects in a unified framework. It
is mentioned that quantization of values is not considered in this work.
This effect is usually unimportant since a few number of bytes in the
data field of a packet can result in a very high precision. However, in
some applications the trade-off between quantization and bit-rate can
be a problem which is studied in several works [20].
Consider a continuous-time signal which is sampled at a mono-

tonically increasing sequence of time instants , and
is transmitted in th data packet through a network link. Data

packets are subjected to the communication effects listed above. The
value of signal at the receiver buffer is where is the
sampling instant of the last sampled value arrived at the receiver until
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