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1. Introduction

Explaining how children infer grammatical rules based on their limited finite experience

is central to the hypothesis of universal grammar—that collection of inductive princi-

ples which allows learning to happen. Because children and languages are complex and

many factors influence acquisition—physiological, sociolinguistic, articulatory, perceptual,

phonological, syntactic, semantic—a simpler question is often asked: How could any-

thing learn some aspect of language? In this paper, the aspect under investigation is the

unbounded stress rules found in the world’s languages (described in §1.3). It is useful,

however, to factor the problem even further: What contribution can a particular inductive

principle—here a particular notion of locality—make to learning such stress rules?

To this end, this paper reveals a previously unnoticed universal property of the un-

bounded stress systems which I call neighborhood-distinctness. This property is interesting

because (1) it speaks directly to the notion of locality in phonology and (2) the quantity-

insensitive stress systems (Gordon 2002) have the same property (Heinz 2006), allowing a

unified analysis of these seemingly disparate types of stress systems. This paper shows that

the same learner in Heinz (2006), which uses neighborhood-distinctness to make general-

izations, succeeds in learning every attested unbounded stress system described by Bailey

(1995), in a sense made precise below.

This paper is organized as follows. The remainder of the introduction makes ex-

plicit the framework within which this learning study takes place, and describes the class of

unbounded stress systems. §2 explains how the grammars of these stress patterns are repre-

sented, and defines the property neighborhood-distinctness in terms of this representation.

§3 describes the learner in detail and explains why it works. §4 shows what predictions fol-

low from the hypothesis that all stress patterns are neighborhood-distinct. §5 summarizes

the main findings and makes some comparisons to other learning models. The appendix

summarizes the target patterns and results.
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1.1 Locality in Phonology

What contribution can an a priori notion of locality make to learning? It is generally agreed

that locality is an important feature of phonological grammars:

“Consider first the role of counting in grammar. How long may a count run?

General considerations of locality, . . . suggest that the answer is probably ‘up

to two’: a rule may fix on one specified element and examine a structurally

adjacent element and no other.” (McCarthy and Prince 1986:1)

Kenstowicz (1994:597) also notes “. . . the well-established generalization that lin-

guistic rules do not count beyond two . . . ”. Even in the domain of stress it has been thought

that the notion of locality is indispensable. In their Essay on Stress, Halle and Vergnaud

write “. . . it was felt that phonological processes are essentially local and that all cases of

nonlocality should derive from universal properties of rule application” (1987:ix).

Focusing exclusively on the role of locality does not mean other factors are unim-

portant or irrelevant. The attention given to it here is made only to obtain a clear under-

standing of the contribution an a priori notion of locality can make to learning.

1.2 Models of Learning in Phonology

Figure 1 makes explicit the learning framework adopted here. In this framework, there is

a grammar G which generates a language L . The learner, exposed to a finite sample of

the language, hypothesizes a grammar G2. The learner is thus a function which maps finite

samples to grammars. If, for successively larger samples, the language of G2 is the same as

the language of G, then the learner has succeeded—the learner has learned the language L

from finitely many observations.1 A class of languages is said to be learnable iff the learner

can learn every language L in this class in this way from finite samples.2 The interested

reader should consult Nowak et al. (2002) for an excellent overview of this framework (and

others), and more in-depth treatments are given by Niyogi (2006), Jain et. al. (1999), and

Osherson et al. (1986).

This framework is implicitly adopted in many models of phonological grammar

acquisition. For example, in Optimality Theory (Prince and Smolensky 1993, 2004), the

grammar consists of a total ordering of a a priori constraints which generate a language of

input/output pairs. If a sufficient sample of these input/output pairs is given to the Recursive

Constraint Demotion (RCD) algorithm, it provably returns the target ranking of constraints

(Tesar 1995, Tesar and Smolensky 1998). Similarly, the cue-based learner in Dresher and

Kaye (1990) takes the grammars to be a finite set of parameter values. Learning occurs

by detecting cues present in the sample to set the correct parameter values. Thus, the

framework above is independent of any particular grammatical formalism.

1Of course this is obtained whenever G2 = G. Identity of languages is preferable to identity of

grammars as a criterion for successful language learning since, for any language, there are (infinitely) many

different grammars which can generate it.
2This is called exact identification in the limit (Gold 1967).
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Figure 1: The learning framework.

1.3 Unbounded Stress Systems

Unbounded stress systems have received much attention in phonology (Stowell 1979, Hayes

1981, Prince 1983, Halle and Vergnaud 1987, Idsardi 1992, Hayes 1995, Bailey 1995,

Walker 2000, Baković 2004). Two features distinguish unbounded stress systems. First,

they are quantity-sensitive, which means the stress rule must distinguish between syllables

which are light, and those which heavy. Different languages make the light/heavy distinc-

tion in different ways (see Hayes (1995) for an overview), but in this paper I abstract away

from the segmental representation of words and represent words with strings of heavy or

light syllables.

Second, unbounded stress systems place no limits on the distances between stress

and word edges, or between stress and other stresses. In this way they differ from other

quantity-sensitive systems which require stress to fall within a certain window of the word

edge or of another stress. For example, Kwakwala assigns stress according to the ‘Leftmost

Heavy Otherwise Rightmost’ stress rule, stated below in (1) (Walker 2000).

(1) Place stress on the leftmost heavy syllable in the word. If there are no heavy sylla-

bles, stress the rightmost syllable.

The words in (2) reveal the stress pattern in Kwakwala. Stressed syllables can occur in any

position—the first, last or a middle syllable—as long as the rule in (1) is obeyed.

(2) H́ Ĺ H́ L H́ H L H́
L Ĺ H́ L L H́ L H H́ H L H́ H H
L H́ L L H́ H L L Ĺ L L H́ L H́ L L
L H́ L H H́ L L L H́ L L H H́ H L L H́ H L H
L H́ H L L H́ H H H́ L H L H́ L H H H́ H H L
H́ H H H L L H́ L L L H́ H L L L Ĺ L L L H́

Bailey’s (1995) typological survey of primary stress assignment in the world’s lan-

guages includes 197 languages, of which 44 assign stress in an unbounded manner like the

ones above. Table 2 (in the appendix) gives 22 schematic variations found among these

44 types. These variations include whether the left or rightmost heavy is stressed, which

syllable is stressed in words without heavy syllables, whether there is a three-way distinc-

tion among syllable types (light, heavy, and superheavy), restrictions on the distribution of
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these syllable types, and secondary stress patterns (if any).

2. Representations

2.1 Finite-state acceptors

I use finite-state acceptors to represent the unbounded stress systems. There are several

reasons for this. First, finite-state acceptors are well-defined, simple objects whose basic

properties are well-understood (see Hopcroft et. al. (2001) for a good introduction).

Second, it has long been observed that virtually all phonological processes are reg-

ular (Johnson 1972, Kaplan and Kay 1981, 1994, Karttunen 1998, Frank and Satta 1998,

Albro 2005), meaning that the function which maps underlying forms to surface forms is

a finite-state function. It is well known that the range of a finite-state function is a regular

set, i.e. describable by a finite-state acceptor. For phonological grammars, the range of this

function is properly interpreted as the set of possible well-formed words. Thus it appears

that almost all, if not all, phonotactic patterns can be represented as finite-state acceptors.

Finally, it is possible to compute an acceptor which represents well-formed words

of a natural language given a phonological grammar made up of finite-state rules (Johnson

1972, Kaplan and Kay 1994). Riggle (2004), building on work in finite-state Optimality

Theory (Ellison 1994, Eisner 1997, Albro 1998, Frank and Satta 1998), shows how a finite-

state acceptor can be constructed from OT constraints, written as finite state machines. Not

only can finite-state descriptions of grammars be obtained from other kinds of descriptions,

insights in this domain can be extended if it is determined that more complex types of

grammars are needed (e.g. Albro 2005).

As an example, the finite state acceptor in Figure 2 is a representation of the Left-

most Heavy Otherwise Rightmost stress pattern of Kwakwala. In finite-state diagrams in

this paper, start states are indicated by triangles, and final states with shading.

0

2

1

H́

Ĺ

H

L

L

Figure 2: The Leftmost Heavy Otherwise Rightmost (LHOR) stress pattern.

This acceptor meets the minimum requirement for a phonotactic grammar– a de-

vice that at least answers Yes or No when asked if some word is possible (Chomsky 1957,

Chomsky and Halle 1968, Halle 1978). It is easy to verify that every word this gram-

mar accepts obeys the LHOR stress rule and every word it rejects disobeys it. In fact,

this grammar recognizes infinitely many legal words, just like the generative grammars of

earlier researchers.
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The grammar in Figure 2 can also be related to finite state OT models. Riggle

(2004) provides an algorithm which takes constraints, written as finite state machines, and

outputs a transducer equivalent to Eval—that is, it maps any underlying form to an output.

It is a simple matter to convert this transducer to an acceptor which only accepts words

which are legal outputs of the constructed transducer. In fact, if the (different) OT analyses

of the LHOR pattern given in Walker (2000) and Baković (2004) were encoded in finite-

state OT, Riggles (2004) algorithm yields the (same) acceptor shown above.

Finally, it is possible to build on results in formal learning theory. It is known

that learning is impossible if the learner’s hypothesis space is too large. For example, the

regular languages cannot be learned (Gold 1967, Osherson et. al. 1986, Jain et. al. 1999),

though certain nontrivial subsets of this class can be (e.g. Angluin 1982, Kontorovich et. al.

2006). This work provides mechanisms which show how to generalize from finitely many

instances of a finite-state function to the function itself. Therefore, it becomes possible to

ask what subset of the regular languages delimits the class of unbounded stress patterns.

2.2 Neighborhood-distinctness

Here I describe a universal property of unbounded stress systems which speaks directly to

the notion of locality in phonology. I call this property neighborhood-distinctness. It is

helpful to first introduce the notion of a canonical acceptor for a regular language.

There is only one smallest forward deterministic acceptor for a regular language,

called the canonical acceptor.3 Each state in a canonical acceptor uniquely determines

what sequences of symbols may follow the prefixes that lead to that state (Khoussainov

and Nerode 2001). The acceptor in Figure 2 is canonical.

Interestingly, the states of the canonical acceptors for every unbounded stress pat-

terns given in Table 2 (see appendix) can also be uniquely defined by locally-determined

characteristics; i.e. what transitions go into and out of them, and whether they are start or

final states. In other words, each state in the canonical acceptor is uniquely represented by

its local environment. I call this environment the neighborhood, and it is has four parts.4

(3) The neighborhood of a state is defined by

1. the set of incoming symbols to the state

2. the set of outgoing symbols to the state

3. whether it is a final state or not

4. whether it is a start state or not

I call these acceptors neighborhood-distinct because no two states in any of those machines

have the same neighborhood. For example, the three states in the Leftmost Heavy Other-

wise Rightmost acceptor in Figure 2 have different neighborhoods.

3An acceptor is forward deterministic iff it has exactly one start state and for all states q , there are

no two transitions bearing the same label departing q .
4Readers of (Heinz 2006) may notice the addition of part 4. This addition makes no difference to

the learning algorithm presented there, and allows for a simpler statement of the learning algorithm in §3.
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Table 1: Neighborhoods of the acceptor in Figure 2.

The Neighborhood
State Incoming Symbols Outgoing Symbols Is Final Is Start

0 {L} {L,H́,Ĺ} NO YES

1 {Ĺ} ∅ YES NO

2 {H́,L,H} {H,L} YES NO

Because every attested unbounded stress pattern has a neighborhood-distinct canon-

ical acceptor, neighborhood-distinctness is a universal property of these patterns.

3. The Learner

Neighborhood-distinctness provides an inductive principle a learner can use to infer gram-

mars from surface forms. I describe a simple version of the learner first (the Forward

Neighborhood Learner), and then the actual learner used in this study (the Forward Back-

ward Neighborhood Learner). Learning works in two stages. First, a structured represen-

tation of the input is built with a ‘prefix’ tree. Second, generalization occurs by merging

states with the same neighborhood.

3.1 Prefix Trees

A prefix tree is a structured representation of a finite sample. The idea is that each state

in the tree corresponds to a unique prefix in the sample. Constructing one is a standard

algorithm (Angluin 1982). The prefix tree for the words in (2) is shown in Figure 3.
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Figure 3: A prefix tree of the LHOR words in (2).
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The prefix tree accepts only the finitely many forms that have been observed. I

denote the function which maps some finite sample S to a prefix tree which accepts exactly

S with PT . Note that PT (S) can be computed efficiently in the size of the sample S

(Angluin 1982).

3.2 State Merging

The next stage is to generalize by state-merging, a process where two states are identified

as equivalent and then merged (i.e. combined). A key concept behind state merging is that

transitions are preserved (Hopcroft et al. 2001, Angluin 1982). This is how generalizations

may occur—because the post-merged machine accepts everything the pre-merged machine

accepts, possibly more.

For example, in Figure 4 Machine B is the machine obtained by merging states 1

and 2 in Machine A. It is necessary to preserve transitions in Machine A in Machine B. In

particular, there must be a transition from state 1 to state 2 in Machine B. There is such a

transition, but because states 1 and 2 are the same state in Machine B, the transition is now

a loop. Whereas Machine A only accepts one word aaa, Machine B accepts an infinite

number of words aa, aaa, aaaa, . . . .

0 1
a

2
a

3
a

0 12
a

a

3
a

Machine A Machine B

Figure 4: Machine B is obtained by merging states 1 and 2 in Machine A.

Note that the merging process does not specify which states should be merged.

It only specifies a mechanism for determining a new machine once it has been decided

which states are to be merged. Thus choosing which states are to be merged determines the

kinds of generalizations that occur. A merging strategy is thus a generalization strategy.

Furthermore, it has been proven that for any particular acceptor A, and a sufficient sample

of words S generated by A, there exists some way to merge the states in the prefix tree of S

which returns A (Angluin 1982). At this point the learning question comes into its sharpest

focus: What merging strategy exists (if any) which can return acceptors for any unbounded

stress pattern from sufficiently large finite samples?

3.3 The Forward Neighborhood Learner

The Forward Neighborhood Learner merges states in the prefix tree with the same neigh-

borhood. If two environments in the prefix tree are locally the same, then they are, as far

as the learner can tell, actually the same and are thereby merged.

In the machine in Figure 3 above, for example, states 2 and 4 are merged because

they have the same neighborhood. States 2 and 4 are actually different environments in the

prefix tree (they are different states), but because the learner is unable to distinguish them
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on the basis of their neighborhood, they are merged. Note that the order in which states are

merged does not matter since state-merging does not alter the neighborhood of any state.

Furthermore note that when all states with the same neighborhoods have been merged in

the prefix tree, the merging process ends as the resulting acceptor is neighborhood-distinct.

I denote by Mnd the function which maps a prefix tree T to the neighborhood-

distinct acceptor obtained by merging all states in T with the same neighborhood. Note

that computing Mnd is efficient in the size of T . This is because (1) merging two states is

efficient (Hopcroft et al. 2001), (2) an algorithm need at most check every pair of distinct

states for neighborhood-equivalence to determine if they should be merged, and (3) deter-

mining the neighborhood-equivalence of two states is efficient.5 It is now possible to state

precisely the Forward Neighborhood Learner (FNL).

(4) The Forward Neighborhood Learner

Input: a nonempty sample S.

Ouput: an acceptor A.

1. Let A = Mnd(PT (S)) and output acceptor A.

Given the sample shown in (2), the FNL returns a machine which accepts exactly those

words which obey the Leftmost Heavy Otherwise Rightmost stress pattern. In other words,

the learning procedure generalizes exactly as desired.6

To summarize, the FNL does two things: (1) it builds a prefix tree of the observed

words and (2) merges states in this machine that have the same neighborhood. As shown

in the appendix, this learner successfully learns 17 of the 22 systems.7

Interestingly, the five patterns the FNL fails to learn— Buriat, Hindi (per Kelkar),

Kashmiri, Klamath, and Sindhi— are typically analyzed as having a metrical unit at the

right word edge. In each of these five cases, the learner fails by overgeneralizing. In other

words, the grammar returned by the learner accepts a language strictly larger than the target

language because too many states were merged.

3.4 The Forward Backward Neighborhood Learner

This section presents an elaboration of the Forward Neighborhood Learner, which learns

every attested unbounded stress system. The Forward Backward Neighborhood Learner

uses the same generalization strategy—merging states with the same neighborhood. It

differs from the FNL in that it addresses the inherent left-to-right bias present in prefix

trees. This must be addressed since it is known that stress patterns can be sensitive to the

5How efficient depends on the representation of the acceptors (i.e. as matrices or as tuples of sets).
6Although the machine obtained by Mnd is not necessarily identical to the one shown in Figure 2,

it does accept exactly the same language. The acceptor in Figure 2 can be obtained from the machine the

learner returns by a process of determinization and minimization. Determinization is known not to be an

efficient procedure given any acceptor (Hopcroft et al. 2001), but there are classes of acceptors for which

determinization can proceed efficiently. It is a current conjecture that the machines obtained by the algorithm

here can be determinized efficiently.
7This falsifies the conjecture made in Heinz (2006) that the FNL learns any language whose canon-

ical acceptor is neighborhood-distinct.
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left edge, the right edge, or sometimes both (Hayes 1995). Thus the few failures of the

Forward Learner are attributed not to the generalization strategy but rather to an inherent

bias of the (independent) choice of how the input is represented.

If the input were represented with a suffix tree, then the structure obtained has the

reverse bias, a right-to-left bias. Figure 5 shows a suffix tree constructed from words the

words in (2). This representation of the input is not a mirror image of the prefix tree

shown in Figure 3. The two trees have different structures—though both accept exactly

the same (finite) set of words. Because they have different structures, the states in a suffix

tree may have different neighborhoods than the states in a prefix tree. Consequently, the

generalizations acquired by merging states with the same neighborhoods may be different.
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Figure 5: A suffix tree of the LHOR words in (2).

I denote the function which maps some finite sample S to a suffix tree which accepts

exactly S with ST . ST (S) can be computed efficiently in the size of the sample S.8

(5) The Forward Backward Neighborhood Learner (FBNL)

Input: a nonempty sample S.

Ouput: an acceptor A.

1. Let A1 = Mnd(PT (S)).

2. Let A2 = Mnd(ST (S)).

3. Let A = A1 ∩ A2 and output the acceptor A.9

The FBNL successfully learns every unbounded stress system in Bailey’s (1995)

database (see appendix). Furthermore, because steps 1 and 2 of the algorithm are efficient

8This is because a suffix tree can be computed by reversing each word in the sample, building a

prefix tree of this ‘reversed’ sample, and then reversing the prefix tree. Since each of these operations is

efficient (in the size of its input), a suffix tree is efficiently computable as well.
9Intersection (∩) of two acceptors A and B results in an acceptor which only accepts words accepted

by both A and B (Hopcroft et al. 2001).
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in the size of S, and intersecting two machines is efficient, the algorithm in (5) is efficient

in the size of S.

The reason the FBNL succeeds is simple: intersection keeps the robust general-

izations. The robust generalizations are the ones made in both the prefix and suffix trees.

For instance, the overgeneralizations that are made by the Forward Neighborhood Learner

with Buriat, Hindi (per Kelkar), Kashmiri, Klamath, and Sindhi, are not made by merging

same-neighborhood states in the suffix tree. Consequently, these overgeneralizations do

not survive the intersection process.10

However, the generalization strategy itself—the merging of same-neighborhood

states—is the real reason for the algorithm’s success. By merging states with the same

neighborhood, the algorithm guarantees that its output is neighborhood-distinct, which is

a universal property of the canonical acceptors of attested unbounded stress patterns. The

necessity of utilizing both prefix and suffix trees appears to be a consequence of a curious

fact about stress systems: that they can be sensitive to either word edge, or both.

4. Predictions

Most logically possible stress assignment rules cannot be learned by the Forward Back-

ward Neighborhood Learner. For example, it is relatively straightforward to see that stress

patterns describable with feet of size four or larger cannot be learned by the FBNL. This is

because in longer words there are sequences of at least three unstressed syllables. Such pat-

terns are not neighborhood-distinct since there are always two states with the same neigh-

borhood in any acceptor for this pattern. In this way, the FBNL is unable to distinguish

numbers larger than three from ‘more than two’.

More subtle predictions are also made by this learner. It was discovered that if sec-

ondary stress is excluded from the grammars of Klamath (Barker 1963, 1964, Hammond

1986, Hayes 1995) and Seneca (Chafe 1977, Stowell 1979, Prince 1983, Hayes 1995),

then the Forward Backward Neighborhood Learner fails to learn these grammars. It fails

because, in the actual grammars of Klamath and Seneca, the presence of secondary stress

distinguishes the neighborhoods of certain states. Removing secondary stress causes the

patterns to no longer be neighborhood-distinct and hence unlearnable. It is an open ques-

tion whether humans exhibit similar behavior. To my knowledge, this is not a prediction

made in Optimality-Theoretic approaches, nor in Principles and Parameters approaches.

If this prediction is correct, it is true that parameters or constraints could be added to the

current pantheons in order to make such a prediction. However, without accompanying

independent reasons, the explanatory force of such additions is questionable.

Finally, the Forward Backward Neighborhood Learner can learn unattested patterns

such as Leftmost Light Otherwise Rightmost (LLOR). Whether or not humans can learn

such a pattern is an open question. However, even if it were shown that LLOR is more

difficult to learn than the Leftmost Heavy Otherwise Rightmost pattern, the fact is plausibly

due to considerations separate from locality (e.g. factors related to syllable weight).

10The Backward Neighborhood Learner—which outputs an acceptor by merging same-state neigh-

borhoods in the suffix tree of the sample— only fails to learn the Seneca pattern, which arguably builds iambs

from the left word edge.
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5. Discussion

Figure 6 summarizes the findings of this paper. The attested unbounded stress systems, just

like the attested quantity-insensitive stress systems, belong to a small subset of the regular

languages, those that are learnable by the Forward Backward Neighborhood Learner. This

learner succeeds because it generalizes using a particular notion of locality, ensuring that

the grammars obtained are neighborhood-distinct, a property which the attested patterns

demonstrably possess. It remains to be determined to what extent the quantity-sensitive

bounded patterns, and other phonotactic patterns, belong to this subset as well.

Attested Unbounded Stress Patterns

Attested Quantity−Insensitive Stress Patterns

Patterns Learnable by the FBNL 

Regular Languages

Figure 6: Attested stress patterns and their relation to the FBNL.

Appendix

Table 2 is interpreted as follows. In the FNL, BNL, and FBNL columns, circled num-

bers mean the Forward Neighborhood Learner, the Backward Neighborhood Learner, and

Forward Backward Neighborhood Learner identifies the pattern, respectively. The num-

ber inside the circle indicates which forms were necessary for convergence. Specifically,

©n means the learner succeeded learning the pattern with a sample of words consisting of

one to n syllables. The Notes column indicates whether or not there are any phonotactic

restrictions (which the sample obeys) and other relevant stress patterns (such as optional or

secondary stress), which are explained in Table 3.

Finally, The Syllable Priority Code (SPC) was developed by Bailey (1995) as a

shorthand for indicating primary stress assignment rules. The SPC is read as a series of

if/then/else statements. For example, the SPC for Amele 12..89/1L unpacks to the fol-

lowing: If the first syllable counting from the left is heavy then it receives primary stress

else if the second syllable counting from the left is heavy then it receives primary stress

. . . otherwise (if there are no heavy syllables) the first syllable counting from the left re-

ceives primary stress. The L or R at the right edge indicates which word edge Left or Right,

respectively, is relevant. Each number indicates a syllable relative to the relevant word

edge. Slashes demarcate syllable weight. Since words are unbounded in length, Bailey

uses ..89 to indicate “and so on” in the increasing order for any length. Thus 89 do not

literally mean the 8th or 9th syllable. Rather 9 means the farthest syllable from the relevant

edge and 8 means the next-to-farthest syllable from the relevant edge and so on. See Bailey

(1995) for more details.
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Table 2: Types of Unbounded Stress Systems and Results

SPC Notes Example Language FNL BNL FBNL

1. 12..89/1L Amele ©4 ©5 ©5
2. 12..89/1L A Murik ©4 ©4 ©4
3. 12..89/1L B Serbo, Croatian ©4 ©4 ©4
4. 12..89/12..89/1L Maori ©5 ©5 ©5
5. 12..78/12..78/1L Kashmiri × ©6 ©6
6. 12..89/2L Mongolian, Khalkha ©5 ©5 ©5
7. 12..89/9L Komi ©4 ©4 ©4
8. 23..891/9R Buriat × ©5 ©5
9. 23..89/9R C Cheremis, Eastern ©4 ©4 ©4

10. 23..89/9R Nubian, Dongolese ©5 ©5 ©5
11. 12..89/9R Chuvash ©4 ©4 ©4
12. 1/23..89/9R Arabic, Classical ©4 ©4 ©4
13. 12..89/1R Golin ©5 ©4 ©5
14. 12..89/1R A Mayan, Aguacatec ©4 ©4 ©4
15. 23..89/2R D Cheremis, Mountain ©6 ©5 ©6
16. 23..89/2R Cheremis, Western ©6 ©5 ©6
17. 23..89@s@w2/0R E Seneca ©7 × ©7
18. 23..891/2R Sindhi × ©5 ©6
19. 1/23..891/1R Cheremis, Meadow ©5 ©4 ©5
20. 23..891/23..891/2R Hindi (per Kelkar) × ©5 ©6
21. 12..89/23/3R F Klamath × ©6 ©6
22. 12..89/12..89/12/2R Mam ©5 ©5 ©5

Table 3: Notes on Table 2.

Note

A At most one heavy syllable per word.

B At least one heavy syllable per word.

C Words optionally place stress word-finally.

D Words with no heavies have lexical stress.

E According to Chafe (1977), the rightmost nonfinal even-numbered syllable

attracts stress if it’s either heavy or followed by a heavy syllable. No stress is

assigned if there no heavy syllable in the word. If primary stress is assigned,

secondary stress is also assigned on even syllables.
F According to Hammond (1986), secondary stress falls on a heavy (or super-

heavy) penult if there is a superheavy syllable to its left
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