
Learning Left-to-Right and Right-to-Left
Iterative Languages

Jeffrey Heinz

University of Delaware, Newark DE 19716, USA
heinz@udel.edu

Abstract. The left-to-right and right-to-left iterative languages are pre-
viously unnoticed subclasses of the regular languages of infinite size that
are identifiable in the limit from positive data. Essentially, these language
classes are the ones obtained by merging final states in a prefix tree and
initial states in a suffix tree of the observed sample, respectively. Strik-
ingly, these classes are also transparently related to the zero-reversible
languages because some algorithms that learn them differ minimally from
the ZR algorithm given in Angluin (1982). Second, they are part of the
answer to the challenge provided by Muggleton (1990), who proposed
mapping the space of language classes obtainable by a general state-
merging algorithm IM1. Third, these classes are relevant to a hypothesis
of how children can acquire sound patterns of their language—in par-
ticular, the hypothesis that all phonotactic patterns found in natural
language are neighborhood-distinct (Heinz 2007).

1 Introduction

One motivation behind the learning paradigm known as identification in the
limit from positive data [1] is the observation that children encounter only pos-
itive examples of natural language [2]. Gold’s (1967) result that no class of
languages including all finite languages plus one infinite language is learnable
this way—and hence the regular, context-free, and context-sensitive languages
are not either—launched research to find learnable subclasses which crosscut the
Chomsky Hierarchy [3,4,5,6,7,8,9,10,11,12,13]. This approach is also justifiable
from a linguistic perspective because language typologists repeatedly observe
that the extensive variation that exists in natural languages appears to be lim-
ited, though stating exact universals is difficult [14,15,16].

One focus of the grammatical inference community is finding learnable classes
of languages which reach higher regions of the Chomsky Hierarchy [11,12,13].
This is partly because the most complex known natural language patterns are
at least mildly context-sensitive [17,18], and partly because of the technical
challenge. However, the hypothesis that all phonological patterns—i.e. sound
patterns—are regular is well-supported [19,20,21]. In other words, although sen-
tence well-formedness seems to necessitate mildly-context sensitive computations
over words, word well-formedness seems only to require regular computations
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over individual sounds. Thus it remains an important open question what sub-
classes of the regular languages (if any) are identifiable in the limit from positive
data and which properly include word well-formedness patterns observed cross-
linguistically (see also [22]). This question is especially interesting in light of
acquisition research which indicates infants acquire many word well-formedness
patterns within one year of birth [23,24,25]; i.e. before they can talk.

This paper addresses this question by introducing and characterizing the left-
to-right iterative (LRI) and right-to-left iterative (RLI) languages, which are
relevant to natural language word well-formedness patterns (henceforth phono-
tactic patterns). Essentially, these language classes are the ones obtained by
merging final states in a prefix tree and initial states in a suffix tree of the
observed sample, respectively. They are interesting for at least four reasons.

First, [7] proposes a general state-merging algorithm IM1 for learning sub-
classes of the regular languages. Essentially, IM1 returns a nondeterministic
finite-state acceptor by merging states according to some state equivalence cri-
teria. To my knowledge, no systematic study of the language classes obtained in
this way has been undertaken. This paper contributes to this research program,
whose known results and open questions are summarized in §3. Second, this
work introduces the concept of head-canonical acceptor which is the smallest
reverse deterministic acceptor for a regular language (useful in understanding
RLI languages). Third, these two language classes are closely related to—but
incomparable with—the zero-reversible languages since algorithms that identify
them are essentially the same as algorithm ZR in [5] with one line removed.

Finally, LRI and RLI languages are relevant to phonotactic patterns. When
hundreds of phonotactic patterns are collected and placed in the Chomsky Hier-
archy, they all fall into the class of the regular languages [21]. More specifically,
they are Noncounting, a class known not to be identifiable in limit from positive
data [26,22]. [21] hypothesizes all phonotactic patterns belong to a smaller class
called neighborhood-distinct (defined in §3), which crosscuts the Subregular Hi-
erarchy. Neighborhood-distinctness is a complex property, making it difficult to
analyze. LRI and RLI languages are properly thought of as basic components
of this more complex class, and therefore this paper also makes a step towards
understanding neighborhood-distinctness.

This paper is organized as follows. §2 introduces notation and definitions. §3
discusses a general state-merging algorithm due to [7]. §4 presents the
neighborhood-distinct hypothesis. §5 characterizes the LRI languages in
automata- and language-theoretic terms and gives a procedure which identifies
this class in the limit from positive data, and §6 does the same for RLI languages.
§7 summarizes the contributions and open questions.

2 Preliminaries

This section establishes notation and basic definitions. A set π of nonempty
subsets of S is a partition of S iff the elements of π are pairwise disjoint and
their union equals S. Each block in π containing x ∈ S is denoted [x]π . A partition
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π refines another partition π′ iff every block of π’ is a union of blocks of π. If π is
a partition of a set S and S′ ⊆ S, then the restriction of π to S′ is the partition
π′ consisting of all sets B′ that are nonempty and are the intersection of S′ and
some block of π. The trivial partition is the unique partition where |π| = |S|.

2.1 Strings and Languages

Σ denotes a fixed finite set of symbols, the alphabet. Let Σn, Σ≤n, Σ∗ denote all
sequences over this alphabet of length n, of length less than or equal to n, and of
any finite length, respectively. For sequence s, range(s) is the set of elements in
s. λ denotes the empty string and |w| denotes the length of string w. The reverse
of string u is denoted ur. A string u is a prefix (suffix) of w iff there exists v in
Σ∗ such that w = uv (w = vu).

A language L is a subset of Σ∗. Lr = {ur : u ∈ L}. L1· L2 = {uv :
u ∈ L1 and v ∈ L2}. Like strings above, let L0 = {λ}, Ln+1 = Ln· L, and
L∗ =

⋃
n∈� Ln. Let L|k|, L≤|k| denote all strings in L with length exactly k

and length less than or equal to k, respectively. The length of a finite lan-
guage L is length(L) = Σw∈L|w|. The prefixes of language L are given by
Pref(L) = {u : ∃v so that uv ∈ L}. The suffixes of a language are defined
as Suff(L) = {u : ∃v so that vu ∈ L}. The tails of w given L, is denoted
by TL(w) = {u : wu ∈ L}. Also, the heads, of w given L, is denoted by
HL(w) = {u : uw ∈ L}. A language L naturally induces partitions πTL:
[u]πTL = [v]πT L iff TL(u) = TL(v) and πHL: [u]πHL = [v]πHL iff HL(u) = HL(v).
The Myhill-Nerode theorem states that a language is regular iff πTL is finite.

2.2 Identification in the Limit

A positive text S of a language L is an infinite sequence such that range(S) = L.
St denotes the first t elements of S. A learner φ is an algorithm which maps finite
sequences of words to grammars. The learner φ identifies a class of languages
L in the limit from positive data iff for all L ∈ L, for all positive texts S for L,
there is some i ∈ � such that for all j > i, φ(Sj) is a grammar recognizing L.
A language class with such a φ is identifiable in the limit from positive data. If
for each L ∈ L, there is a finite language SL ⊆ L such that for all other L′ ∈ L
which contain SL, L ⊆ L′, then L is identifiable in the limit from positive data
and SL is called a characteristic sample for L in L [4,5].

2.3 Finite State Acceptors

For a given Σ, a finite-state acceptor (FSA) is a quadruple A = (Q, I, F, δ)
such that Q is finite, I and F are subsets of Q and δ : Q × Σ → �

Q. δ is
extended recursively so that δ : �Q × Σ∗ → �Q. The language of an acceptor
A is L(A) = {w ∈ Σ∗ : δ(I, w) ∩ F �= ∅}. Languages recognizable by FSAs
are regular. We assume familiarity with regular expressions, which also define
regular languages.1 [27] provides other well-known characterizations of this class.
1 See [34] for the regular expression notation used in this paper.
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Consider two acceptors A = (Q, I, F, δ) and A′ = (Q′, I ′, F ′, δ′). Acceptors
A and A′ are equivalent iff L(A) = L(A′). A and A′ are isomorphic iff there is
a bijection h from Q to Q′ such that h(I) = I ′, h(F ) = F ′, and for all q ∈ Q
and a ∈ Σ it is the case that h(δ(q, a)) = δ′(h(q), a). A′ is a subacceptor of A iff
Q′ ⊆ Q, I ′ ⊆ I, F ′ ⊆ F , and for every q′ ∈ Q′ and a ∈ Σ, δ′(q′, a) ⊆ δ(q′, a). It
follows that if A′ is a subacceptor of A then L(A′) ⊆ L(A). The reverse of A is
Ar = (Q, F, I, δr), where δr(q, a) = {q′ : q ∈ δ(q′, a)} for all a ∈ Σ, q ∈ Q.

An acceptor A = (Q, I, F, δ) is forward deterministic iff |I| ≤ 1 and each
q ∈ Q has at most one b-successor for all b ∈ Σ. A is reverse deterministic iff
|F | ≤ 1 and each q ∈ Q has at most one b-predecessor for all b ∈ Σ. An acceptor
which is both forward and reverse deterministic is called zero-reversible [5].

An acceptor is trimmed iff for all q ∈ Q, there are u, v ∈ Σ∗ such that
q ∈ δ(I, u) and δ(q, v)∩ F �= ∅. An acceptor is cyclic iff it is trimmed and has at
least one loop. An acceptor which is not cyclic is acyclic. Two important acyclic
acceptors are prefix and suffix trees. The prefix (suffix) tree of a finite language
S is forward (backward) deterministic, and is defined below.

PT(S) ST(S)
Q = Pref(S)
I = {λ}
F = S

δ(u, a) = ua iff u, ua ∈ Q

Q = Suff(S)
I = S
F = {λ}

δ(au, a) = u iff u, ua ∈ Q

These acceptors are not mirror images of each other, though they are equivalent.
It is easy to show for any finite language S, PT r(S) is isomorphic to ST (Sr).

The tail-canonical acceptor for a regular language L is denoted AT (L) and
is defined below. Acceptors isomorphic to the tail-canonical acceptor are tail-
canonical. For a regular language L, a tail-canonical acceptor is the forward
deterministic acceptor with the fewest states.The head-canonical acceptor for
L is AH(L) is also defined below. Acceptors isomorphic to the head-canonical
acceptor are called head-canonical. A head-canonical acceptor is the acceptor
with the fewest states for a regular language L that is backward deterministic.

AT (L) AH(L)
Q = {TL(u) : u ∈ Pref(L)}
I = {TL(λ)}
F = {TL(w) : w ∈ L}

δ(TL(u), a) = TL(ua) iff u, ua ∈ Pref(L)

Q = {HL(u) : u ∈ Suff(L)}
I = {HL(w) : w ∈ L}
F = {HL(λ)}

δ(HL(au), a) = HL(u) iff u, au ∈ Suff(L)

Theorem 1 shows how one can obtain an equivalent head canonical acceptor
from a tail canonical one: reverse, determinize, minimize, and reverse again.

Theorem 1. Let L be a regular language. Then Ar
H(L) is isomorphic to AT (Lr).

The proof is omitted (see [21]), but the needed bijection is h(L) = Lr. Head
canonical acceptors allow another definition of zero-reversible languages: they
are those languages whose tail and head canonical acceptors are isomorphic.

The following notions are used in §§3-6. The k-leaders of a state q are denoted
Ik(q) = {u ∈ Σ≤k : ∃q′ ∈ Q such that q ∈ δ(q′, u)}. The k-followers of a state



88 J. Heinz

are denoted Ok(q) = {u ∈ Σ≤k : ∃q′ ∈ Q such that q ∈ δ(q′, u)}. (I and O
invoke incoming and outgoing, respectively.) The function final(q) = � if q ∈ F ,
else q. The function nonfinal(q) = �� if q �∈ F , else q. The function start(q) = �

if q ∈ I, else q. The function nonstart(q) = �� if q �∈ I, else q. For any q ∈ Q,
b ∈ Σ, the b-successors of q are δ(q, b) and the b-predecessors of q are δr(q, b).

For some acceptor A = (Q, I, F, δ), a sequence q0q1 . . . qk is a path in A iff for
all 0 ≤ i ≤ k − 1, there is a ∈ Σ such that qi+1 ∈ δ(qi, a). Paths q0q1 . . . qk such
that q0 = qk and for 1 ≤ i ≤ k − 1, qi �= q0 are called loops. Let loops(A) denote
the set of loops in A. Also, if p = q0q1 . . . qk is a path then strings(p) = {u : u =
a0a1 . . . ak−1 where for all 0 ≤ i ≤ k − 1, qi+1 ∈ δ(qi, ai)}.

3 Partitioning Acceptors

Let A = (Q, I, F, δ) be any acceptor. Any partition π of Q, defines another
acceptor A/π = (Q′, I ′, F ′, δ′) defined as follows:

Q′ = {B : [q]π such that q ∈ Q}
I ′ = {B : [q]π such that q ∈ I}
F ′ = {B : [q]π such that q ∈ F}

δ′([q]π , a) = {[q′]π : q′ ∈ δ(q, a)}

For any acceptor A and π over the states of A it follows that if p ∈ δ(q, u) then
[p]π ∈ δ′([q]π, u). Hence L(A/π) includes all strings in L(A), possibly more.

Remark 1. For any A and π over Q, if p = q0 . . . qk is a path in A which is not
a loop and [q0]π = [qk]π then p′ = [q0]π . . . [qk]π is a new loop in A/π.

Remark 2. Consider PT (S) and any π over the states of PT , and consider any
state B in PT (S)/π. If |B| = 1 then I1(B) ≤ 1. In other words, states which are
not merged with others have at most one 1-leader. Similarly for any state B in
ST (S)/π, if |B| ≤ 1 then O1(B) ≤ 1.

It is also known that if a sample of words of some regular language L is sufficient—
that is if generated by AT (L) then every transition in AT (L) would be exercised—
then there exists some partition πT of PT (S) such that PT (S)/πT is isomorphic
to AT (L) [5]. Similarly, it follows that if generating S exercises every transition in
the head canonical acceptor, that there is some some partition πH of ST (S) such
that ST (S)/πH is isomorphic to AH(L).

The merging procedure above is independent of the decision of state-equiva-
lence. The latter aspect determines the generalization strategy of the learner,
and ultimately the class of languages that can be learned (if any). [7] proposes
a general state-merging algorithm IM1 based partly on this observation, and
functions f : Q → A, which naturally induce a partition πf over Q: for all
q1, q2 ∈ Q, [q1]πf

= [q2]πf
iff f(q1) = f(q2). IM1 computes PT (S)/πf .

Here IM1 is generalized to compute M(S)/πf , where M(S) is any well-defined
FSA recognizing the sample. This study limits M to prefix and suffix trees. It
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follows that the class of languages obtained by an algorithm which computes
M(S)/πf depends not only on f but on M as well.

For example, if M = PT and f = Ik then the language class obtained is
the Locally (k + 1) Testable in the Strict Sense (LTSS) [6]. If only start states
are merged in the prefix tree (i.e M = PT and f = start), or only final states
in the suffix tree (M = ST and f = final), it is easy to see that Lfin is
the class of languages obtained (since no states are actually merged). In §§5-
6 it is shown that the left-to-right iterative languages (LRI) and right-to-left
iterative languages (RLI) are the language classes obtained by merging final
states in the prefix tree and start states in the suffix tree, respectively. Table
1 summarizes the known language classes identifiable in the limit from positive
data by varying parameters M and f . The fact that language classes of some cells
are the reverse of language classes of other cells reveals an underlying algebra,
whose exact properties await future discovery.

4 The Neighborhood-Distinct Hypothesis

Part of the motivation for filling in Table 1 comes from the hypothesis that all
natural language phonotactic patterns are 1-1 neighborhood-distinct [21]. The j-k
neighborhood of a state is the tuple

ndj
k(q) = (Ij(q), Ok(q), [q ∈ F], [q ∈ I])

For example, the 1-1 neighborhood of state 5 in Fig. 1 is ({g}, {h, i}, 0, 0). An
acceptor is j-k neighborhood-distinct iff every state has a unique j-k neighborhood.
The languages of such acceptors are called j-k neighborhood-distinct (j-k ND).

[21] shows three main classes of phonotactic patterns—patterns over adja-
cent segments, long distance patterns such as vowel and consonantal harmony,
and rhythmic patterns—are 1-1 ND. These patterns crosscut the Subregular Hi-
erarchy. For example, Navajo and Sarcee have sibilant harmony patterns [28].
In Navajo, this pattern is symmetric: the sibilant sound [s] may not precede [S]
(sounds s and sh, respectively) in a word, even if they are separated by arbitrarily
many other sounds, and vice versa. In Sarcee, the pattern is asymmetric: [S] may
precede [s] in a word, but [s] cannot precede [S]. The Navajo pattern is Locally
1-Testable since one can decide if a string obeys the sibilant harmony pattern by

Table 1. Language Classes Obtained by Merging States in Prefix and Suffix Trees

f PT (S)/πf ST (S)/πf

Ik (k + 1) LTSS ?
Ok ? (k + 1) LTSS

final LRI Lfin

start Lfin RLI

nonfinal ? {L∗
1 · L2 : L1, L2 ⊆ Σ1}

nonstart {L1· L∗
2 : L1, L2 ⊆ Σ1} ?
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checking whether [s] and [S] are both present in the string. This procedure does
not work for Sarcee since the order matters; hence it is Noncounting (also called
Locally Testable with Order [26]).2 These patterns are shown in Table 2 where
C represents any consonant except sibilants, s sibilants like [s], V any vowel, and
S sibilants like [S].

More examples comes from the different kinds of ways languages stress sylla-
bles in words [29]. In Sierra Miwok, main stress falls on the initial syllable if it is
‘heavy’, else on the peninitial syllable.3 Secondary stress falls on all other heavy
syllables. On the other hand, in Kwakwala, main stress falls on the leftmost
‘heavy’ syllable, but if there are none, on the final syllable. Patterns like Sierra
Miwok are called bounded and are mostly 3-LTSS. Patterns like Kwakwala are
called unbounded and Noncounting. Table 2 shows regular expressions for these
patterns. The symbols L and H indicate light and heavy syllables, and acute
and grave accents main and secondary stress, respectively. It is easy to verify
that the examples in Table 2 are all 1-1 ND by drawing acceptors for them.

Table 2. Phonotactic Patterns

Pattern Example Language Regular Expression

Symmetric Harmony Navajo (C+V+S)*+(C+V+s)*

Asymmetric Harmony Sarcee (C+V+S)*(C+V+s)*

Bounded Stress Sierra Miwok (LH́ + LĹ + H́)(H̀+L)*

Unbounded Stress Kwakwala (L*H́(H+L)*) + (L*L)

There is currently no language-theoretic characterization of the j-k ND class
due partly to its complexity. Also, [30,21,31] present an algorithm like IM1
which returns the intersection of the acceptors obtained by merging same-1-
1-neighborhood states in prefix and suffix trees of the observed sample. While
this algorithm appears to identify many 1-1 ND patterns (including almost all
attested phonotactic patterns), it does not identify the class.4 It remains an open
question exactly what class is identified by this procedure. The line of research
here aims to understand the primitive components that make up the neighbor-
hood (see Table 1). The idea is that this language class is some composition of
language classes obtained by simpler learners like the ones in Table 1 acting in
concert (cf. [33]). Classes LRI and RLI are a small step towards this goal since

2 [21] defines the precedence languages which contain long-distance harmony patterns.
This class is identifiable in the limit from positive data with a string extension
learner.

3 A heavy syllable is typically more sonorous than a light syllable. Languages may
make a heavy/light syllable distinction in different ways. See [29].

4 For fixed j-k, the j-k ND class is finite, and so there are many learners which can
learn this class [32]. However it is interesting to consider learners which generalize
on the basis of hypothesized universal properties of natural language patterns, see
[16] for discussion.
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they relate to the indicator functions [q ∈ F] and [q ∈ I], which are boolean
compositions of the functions final, nonfinal and start, nonstart, respectively.

5 Left-to-Right Iterative Languages

LRI languages are defined as the intersection of the following two classes:

1. L1fd = {L : whenever u, v ∈ L, TL(u) = TL(v)}.
2. LLL∗fin = {L1· L∗

2 : L1, L2 ∈ Lfin}

LRI languages are so named because words fix some strings to the left edge and
then may iterate other strings rightward. As shown below, LRI languages are
exactly the ones recognizable by acceptors which are forward deterministic, have
at most one final state, and whose loops, if there are any, pass through the final
state, if there is one. A schematic is given in Fig. 1.

Additionally, LRI is identifiable in the limit by a learner which computes
PT (S)/πfinal. Although this acceptor is not necessarily deterministic, it has
one final state, all of its loops pass through this final state, and it can be made
deterministic without altering those properties or the language recognized.

0
1a

2
b

4

c

e

3

d

5
g

f

6

h

7

i

k
j

l

Fig. 1. Schematic of acceptors recognizing LRI languages

Call the class of languages recognized by acceptors which are forward deter-
ministic with at most one final state 1-final-deterministic and denote this class
with L1fd. The proof of Theorem 2 is straightforward and thus omitted.

Theorem 2. L is 1-final-deterministic iff whenever u, v ∈ L, TL(u) = TL(v).

Note that neither LLL∗fin nor L1fd are identifiable in the limit from positive
data. LLL∗fin contains all finite languages and at least one infinite language. As
for L1fd, a limit point proof [32] establishes this claim, which is sketched here.
Since {abc}, {abc, abbc}, {abc, abbc, abbbc}, . . . ab∗c all belong to L1fd, no learner
can identify this subset in the limit from positive data—and hence not L1fd.
Although neither LLL∗fin nor L1fd is identifiable in the limit, their intersection
(LRI) is. Below is an automata-theoretic characterization of LRI.

Theorem 3. L ∈ LRI iff (1) AT (L) = (Q, I, F, δ) is 1-final-deterministic and
(2) if L is infinite, then every loop in AT (L) passes through the final state, i.e.
F ⊆

⋂
p∈loops(A) range(p).
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Proof. Consider any L ∈ LRI. Both directions of (1) follow from Theorem 2.
Now assume L is infinite and let qf denote the unique final state. Note L = L1· L∗

2
where L1, L2 ∈ Lfin. Suppose there is a loop p = q0q1 . . . qkq0 in A such that
no qi = qf . Let v ∈ strings(p). Since AT (L) is trimmed, there are u, w such
that δ(I, u) = q0 and δ(q0, w) = qf . It follows that uv∗w ⊆ L. Since L = L1· L∗

2
and since p does not contain qf , either uv∗ ⊆ L1 or v∗w ⊆ L2. But this is
a contradiction, since L1, L2 ∈ Lfin. Thus every loop must pass through qf .
It remains to be shown that if all loops pass through the unique final state of
AT (L), that L = L1· L∗

2, L1, L2 ∈ Lfin. It can be shown that L1 is the language
recognized by the largest trimmed acyclic subacceptor of AT (L) and L2 is the
union of strings(p) for all loops p = qf q1 . . . qkqf . 
�
Remark 3. It follows if L ∈ LRI then the language of any subacceptor of AT (L)
is also left-to-right iterative.

Remark 4. In terms of regular expressions, it follows that a language L belongs
to LRI if L = (a0 + a1 + . . . an)(b0 + b1 + . . . bm)* for n, m ∈ �, ai, bi ∈ Σ∗ and
for all i, j, no ai (bi) is a proper prefix of aj (bj).

With Theorem 3 and Remark 4 it is easy to see that the stress pattern of Miwok
is in LRI, but not the other patterns in Table 2. LRI languages do not appear
to characterize phonotactic patterns in general, even though they are related to
them via the composition which constructs the neighborhood.

Also, it can be shown that LRI languages are incomparable with the ZR
languages. In Fig. 1 if j = i then the acceptor still accepts a language in LRI,
but it is no longer backward deterministic and therefore its language is not in
ZR. Similarly if instead we add a transition from state 1 to itself labeled g, then
the language of the acceptor belongs to ZR, but not LRI.

The next lemma illustrates how generalization takes place, and is used to
establish the fact that every language in LRI has a characteristic sample.

Lemma 1. Let L ∈ L1fd and let x, yi ∈ Σ∗ for 0 ≤ i ≤ k such that x, xyi ∈ L.
Then x(y1 + y2 + . . . + yk)∗ ⊆ L.

Proof. For some k ∈ �, let x, xy1, xy2, . . . xyk ∈ L. By induction on n, it is
shown x(y1 + y2 + . . . + yk)n ⊆ L. Clearly when n = 0, x ∈ L. Now assume for
some n ∈ �, if x, xy1, xy2, . . . xyk ∈ L then x(y1 +y2 + . . .+yk)n ⊆ L. It remains
to be shown that for all 1 ≤ i ≤ k, x(y1 + y2 + . . . + yk)nyi ⊆ L. For any w ∈ L,
yi ∈ TL(w) because x, xyi ∈ L and L ∈ L1fd so by Theorem 2, TL(w) = TL(x).
By the inductive hypothesis, for all w ∈ x(y1 + y2 + . . . + yk)n, w ∈ L and so
therefore wyi ∈ L. It follows that x(y1 + y2 + . . . + yn)n+1 ⊆ L. 
�
Theorem 4. For L ∈ LRI, there exists a characteristic sample SL.

Proof. For any L ∈ LRI, let L1, L2 ∈ Lfin such that L = L1· L∗
2. Then S =

L1∪L1· L2 is characteristic. Note S is finite. Let L′ ∈ LRI containing S. Consider
any w ∈ L. It is sufficient to show that w ∈ L′. Since w ∈ L and L ∈ LRI, there
is some k ∈ � such that w = xy1y2 . . . yk where x ∈ L1 and for any 1 ≤ i ≤ k,
yi ∈ L2. It is also the case that x, xyi ∈ S. Since S ⊆ L′, x(y1+y2+. . .+yk)∗ ⊆ L′

by Lemma 1. Clearly w ∈ x(y1 + y2 + . . . + yk)∗ and thus is in L′. 
�
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As an example, if L = L1· L∗
2 is in LRI and L1 = {u, v} and L2 = {x, y, z}

then SL = {u, v, ux, uy, uz, vx, vy, vz}. Since a characteristic sample SL for any
L ∈ LRI exists, a learner guessing L after exposure to SL is picking the smallest
LRI language consistent with S.

For all L in LRI, the size of SL grows polynomially with respect to the size
of AT (L) (usually measured in states, see [35]). This is primarily because L =
L1· L2 where L1 and L2 are finite languages, and thus the size of AT (L) is in the
worst case approximates length(L1) + length(L2). Now the length of SL equals
(|L2|+1)length(L1)+ |L1|length(L2). Since for finite L, |L| ≤ length(L)+1, the
size of SL is bounded by a quadratic function over length(L1) and length(L2).

PT (S)/πfinal is not necessarily deterministic. We show that application of S-
UPDATE, an algorithm which merges states that are b-successors of some state,
returns an equivalent acceptor which is deterministic.

Algorithm 1. Pseudo-code for S-UPDATE (forward determinize)
Input: an acceptor A.
Output: a forward deterministic acceptor A′.
Initialization
Let A0 = (Q0, I0, F0, δ0), π0 the trivial partition of Q0, and i = 0.
Let LIST contain all pairs (q1, q2) such that q1 and q2 are distinct b-successors of
some q0 ∈ Q for all b ∈ Σ.
Merging
while LIST �= ∅ do

Remove some element (q1, q2) from LIST.
Let πi+1 be the one obtained by merging blocks [q1]πi and [q2]πi

For all [q], [r], [s] in πi+1, b ∈ Σ, add (r, s) to LIST iff [r] and [s] are distinct
b-successors to [q].
Increase i by one.

end while
Termination: Let f = i and output the acceptor A0/πf .

In Fig. 1, for example, if h = i then S-UPDATE removes this nondeterminism
by merging states 6 and 7. Note this merge does not alter the relevant character
of the acceptor or the language recognized by the acceptor. If merging two states
creates additional nondeterminism (e.g. l = k in Fig. 1), then the b-successors
of the source of non-determinism are added to LIST.

Theorem 5. Let S be any finite sample. Then L(PT (S)/πfinal) ∈ LRI.

Proof. Let A = PT (S)/πfinal. Let A′ be the acceptor obtained by submitting A
to S-UPDATE which removes sources of nondeterminism by merging states. It
is sufficient to show L(A′) ∈ LRI and L(A′) = L(A). The proof is by induction.
The assumptions here are inductive hypothesis. Assume there is a partition of
πi such that A/πi = (Qi, Ii, Fi, δi) where

1. there is only one final state [qf ]πi ,
2. all loops in A pass through [qf ]/πi,
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3. no state other than [qf ]πi has more than one 1-leader,
4. L(A/πi) = L(A).
5. if there exist distinct q0, q1, q2 ∈ Qi, and b ∈ Σ such that [q1]πi and [q2]πi

are b-successors to [q0]πi , then any path connecting [q1]πi to [q2]πi (or vice
versa) goes through [q0]πi

Note if the conditional in (5) is false and (1-5) holds, then L(A/πi) is determin-
istic and hence A/πi belongs to LRI.

If the conditional in (5) is true, we show the acceptor obtained by merging
[q1]πi and [q2]πi eliminates this nondeterminism but maintains properties (1-
4). Let πi+1 obtain by merging [q1]πi and [q2]πi . Since πi has only one final
state, πi+1 must as well (1). If [q1]πi �= [qf ]πi and [q2]πi �= [qf ]πi then it follows
that the 1-leaders of [q1]πi is {b}, as it is for for [q2]πi . Therefore [q1]πi+1 =
[q2]πi+1 also has one 1-leader, namely {b}. On the other hand, if either [q1]πi or
[q1]πi equals [qf ]πi then the b-successors of [qf ]πi+1 = [qf ]πi . In any situation, it
follows that no state other than [qf ]πi+1 has more than one 1-leader (3). Thus
merging [q1]/πi and [q2]/πi creates no loops that do not go through [qf ]/πi+1.
It follows that all loops in A/πi+1 pass through [qf ]/πi+1 (2). Finally it follows
that L(A/πi+1) = L(A/πi) since any path connecting [q1]πi and [q2]πi (or vice
versa) goes through [q0]πi (4). Thus this merging eliminates the nondeterminism
at [q0]πi but maintains properties (1-4).

The base of the induction is established with π0 the trivial partition of A.
Since only final states are merged in PT (S), A contains only 1 final state (1).
Also, since PT (S) is acyclic, all loops in A pass through qf as any loops are the
result of merging states (Remark 1) (2). No state other than qf has more than
one 1-leader (Remark 2) (3). Also, clearly L(A/π0) = L(A) (4). This completes
the induction and so the final partition obtained by S-UPDATE πf is such that
L(A) = L(A/πf ) ∈ LRI. 
�

Supplementing PT (S)/πfinal with Algorithm 1 provides an algorithm almost
identical to the algorithm ZR in [5]. In ZR, pairs of states are placed on LIST if
they are to be merged. LIST is initialized to include all final states, and pairs of
states are added if they are a source of non-forward-determinism or non-reverse-
determinism. Adding S-UPDATE to the computation of PT (S)/πfinal is exactly
the same except there is no procedure for updating LIST when two blocks share
the same b-predecessors (i.e. reverse-determinism is not enforced). Because it
does strictly less than ZR, which is tractable, supplementing PT (S)/πfinal with
Algorithm 1 is also tractable.

The lemma and theorems below establish that a learner which computes
PT (S)/πfinal at each point in the text identifies LRI in the limit.

Lemma 2. Let S be any nonempty positive sample, PT (S) the prefix tree for S,
and πf the final partition found by applying Algorithm 1 to PT (S)/πfinal. Then
πf is the finest partition π such that (PT (S)/πfinal)/πf is LRI.

Proof. The proof (by induction) is essentially identical to the second part of
Lemma 25 in [5]. 
�



Learning Left-to-Right and Right-to-Left Iterative Languages 95

Theorem 6. Let S be any nonempty finite sample. Then L(PT (S)/πfinal) is
the smallest language in LRI which contains S.

Proof. Theorem 5 establishes that L(PT (S)/πfinal) ∈ LRI. Let L be any LRI
language containing S and let π be the restriction of the partition πLto the ele-
ments of Pref(S). Lemma 1 shows that PT (S)/π is isomorphic to a subacceptor
of AT (L), and it follows that L(PT (S)/π) is contained in L. Theorem 3 shows
that AT (L) is LRI, and thus PT (S)/π is LRI, by Remark 3. By Lemma 2, πf

therefore refines π. Hence, L(PT (S)/π) is contained in L, and L(PT (S)/πfinal)
is the smallest LRI language containing S. 
�

Theorem 7. LRI is identifiable in the limit from positive data.

Proof. Let φ(t) = PT (St)/πfinal. By Theorem 4, L contains a characteristic
sample S0. For any text T for L ∈ LRI, there is a i such that S0 ⊆ range(Ti). For
n ≥ i, L(PT (Ti)/πf ) is the smallest LRI language containing Ti by Theorems 5
and 6. Since Ti contains characteristic S0, this is L. Thus φ converges to L. 
�

6 Right-to-Left Iterative Languages

RLI languages are defined as the intersection of the one-start-reverse determin-
istic languages (L1srd) and the reverse of LLL∗fin:

1. L1srd = {L : wheneveru, v ∈ L, HL(u) = HL(v)}.
2. LL∗Lfin = {L∗

1· L2 : L1, L2 ∈ Lfin}

RLI languages are the reverse of languages in LRI. RLI languages are exactly
the ones recognizable by acceptors which are reverse deterministic, have at most
one start state, and whose loops, if there are any, pass through the start state,
if there is one. A schematic is obtained by reversing the acceptor in Fig. 1.
RLI is is identifiable in the limit from a process which essentially merges initial
states in suffix trees. The characteristic sample for language L∗

1· L2 ∈ RLI is
L1· L2 ∪ L2. The theorems establishing these results parallel exactly those of §5.
Simply subsitute ST (S), start, AH(L), b-predecessors, P-UPDATE and so on for
PT (S), f inal, AT (L), b-successors, and S-UPDATE, respectively. (P-UPDATE
eliminates reverse determinisim by merging states with the same b-predecessors.)

Finally, [10] introduces a family of function-distinguishable language classes,
of which ZR is one such class. It would be interesting to relate the results here
to the ones obtained in that work.

7 Conclusion

LRI and RLI languages are previously unnoticed language classes which are
infinite in size, identifiable in the limit from positive data, closely related to
the zero-reversible languages, and relevant to a hypothesis regarding a universal
property of phonotactic patterns. Understanding these classes not only begins
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to shed light on the neighborhood-distinct hypothesis, but also on the algebra
underlying the state-merging operations, the reverse operator, prefix and suffix
trees, and tail and head canonical acceptors. I hope this algebra is soon made
clear, that the question marks in Table 1 are soon filled, and that future re-
search investigates complex functions, like the neighborhood function, which are
defined compositionally in terms of simpler functions. Finally, the day is not far
off for three communities with overlapping interests to come together to develop
a successful research program: the grammatical inference community which un-
derstands how different kinds of logically possible patterns could be learned,
linguists who are familiar with natural language patterns, and acquisitionists
who are experimenting with models of how children acquire grammar.
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