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This paper presents a previously unnoticed universal property of stress patterns
in the world’s languages: they are, for small neighbourhoods, neighbourhood-
distinct. Neighbourhood-distinctness is a locality condition defined in automata-
theoretic terms. This universal is established by examining stress patterns
contained in two typological studies. Strikingly, many logically possible – but
unattested – patterns do not have this property. Not only does neighbourhood-
distinctness unite the attested patterns in a non-trivial way, it also naturally pro-
vides an inductive principle allowing learners to generalise from limited data. A
learning algorithm is presented which generalises by failing to distinguish same-
neighbourhood environments perceived in the learner’s linguistic input – hence
learning neighbourhood-distinct patterns – as well as almost every stress pattern
in the typology. In this way, this work lends support to the idea that properties of
the learner can explain certain properties of the attested typology, an idea not
straightforwardly available in optimality-theoretic and Principle and Parameter
frameworks.

1 Introduction

It has been long observed that natural language patterns, despite their
extensive variation, are not arbitrary, though stating exact universals has
been difficult (Greenberg 1963, 1978, Mairal & Gil 2006, Stabler 2009).
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One reason to be interested in language universals is that they can help
solve the language-learning mystery. The idea is simple: universal
properties of language guide a learner towards the target language. This
idea has its roots in the philosophy of inductive logic, which state that no
generalisation from finite data is possible without some inductive principle
(Popper 1959; see also Piattelli-Palmarini 1980). This idea brings a subtle
but important shift in perspective: the inductive principles of language
learners determine the linguistic generalisations and are therefore one
of the factors which shape language typology. Once identified, these
inductive principles become properties of the learner which explain
properties of natural language typology. They are what Moreton (2008)
calls ‘analytic bias’.

This paper presents a previously unnoticed universal property of the
stress patterns in the world’s languages: they are, for small neighbour-
hoods, neighbourhood-distinct (these terms are defined in w4 below).
Informally, neighbourhood-distinctness is a locality condition on phono-
logical grammars. This universal is established by examining the stress
patterns contained in two recent typological studies, Bailey (1995) and
Gordon (2002), and is interesting for at least three reasons. First, it speaks
directly to the notion of locality in phonology. Second, many logically
possible – but unattested – patterns do not have this property. In other
words, despite the extensive variation present in the stress patterns in-
cluded in the typological studies of Bailey (1995) and Gordon (2002), the
property of neighbourhood-distinctness unites the attested patterns in a
non-trivial way. Third, neighbourhood-distinctness naturally provides
an inductive principle which learners can use to generalise correctly from
limited data.

1.1 Two hypotheses

This paper is in two parts. The first part motivates representing stress
rules (and phonotactic patterns in general) with regular sets (i.e. those sets
describable with finite-state automata; see also Idsardi 2008), motivates
and defines neighbourhood-distinctness as a locality condition in pho-
nology, and applies the definition to stress patterns in Bailey’s (1995) and
Gordon’s (2002) typologies to reveal the universality of this property.
This result constitutes this paper’s first hypothesis.

All phonotactic patterns are neighbourhood-distinct.
(1) Hypothesis 1

The hypothesis is stated in terms of phonotactic patterns, as opposed to
stress patterns, because in languages in which the stress pattern is pre-
dictable in some (given) domain, the pattern can be thought of as a con-
straint on the well-formedness of phonological strings within that domain.
Under this view, stress patterns become a class of phonotactic patterns,
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and in the interests of developing strong testable hypotheses, I frame the
hypothesis in (1) as strongly as possible.1

The second part addresses the significance of this finding, and how it
might be addressed in a theory of phonology. One possibility that is dis-
cussed is to place a condition on Con, that component of an optimality-
theoretic grammar (Prince & Smolensky 1993) in which universal
phonological constraints lie (cf. Eisner 1997b,McCarthy 2003). This paper
however explores another possibility: that stress patterns are neighbour-
hood-distinct because the learner itself is unable to distinguish between
‘same neighbourhood states’ present in the learner’s linguistic input and
thus generalises to neighbourhood-distinct grammars. In this way, the
learner explains why attested stress patterns are neighbourhood-distinct.
As it turns out, the proposed learner – called the Forward Backward

Neighbourhood Learner – is unable to learn every logically possible
neighbourhood-distinct pattern; however, it does succeed on 100 of the
109 patterns in the stress typology. Although the results are not perfect,
they are comparable to the results of previous learners (Dresher & Kaye
1990, Gupta & Touretzky 1991, Goldsmith 1994, Tesar 1998, Tesar &
Smolensky 2000). Furthermore, as is discussed, since the stress rules
obtained by the learner in these ‘failure’ cases do not differ greatly from the
rules proposed by phonologists, there is an open question as to whether
further empirical work on these languages vindicates the learning proposal.
In other words, the learning algorithm introduced here leads to a second
hypothesis.

(2)
Phonotactic patterns are in the range of the Forward Backward
Neighbourhood Learner.

Hypothesis 2

It is not known which of Hypotheses 1 and 2 is the stronger (i.e. the more
restrictive) hypothesis.
Hypotheses 1 and 2 are claims about the nature of locality in phonology.

I emphasise that neither claims that locality is the only relevant factor in
phonotactic patterns or phonotactic learning. There are clearly many rel-
evant factors in learning phonotactic patterns: articulatory, perceptual,
sociolinguistic, etc. The learning study here is best understood as an in-
vestigation into the contribution locality can make to learning stress pat-
terns. Factoring the learning problem in this way – i.e. investigating the
contributions individual factors can make to the learning process – helps
us understand which factors are necessary, sufficient or irrelevant, and
ultimately what the cumulative effects of different combinations of factors
yield.

1 Heinz (2007) shows other significant classes of phonotactic patterns are also
neighbourhood-distinct, including adjacency patterns describable with trigram
grammars (also called locally 3-testable languages in the strict sense; McNaughton
& Papert 1971) and long-distance phonotactic patterns.
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Together, Hypotheses 1 and 2 constitute a step towards developing a
learning-based theory of grammar, of which one goal might be construed
as explaining some natural language patterns with properties (or biases) of
the learner. In this respect, this work shares the same goal as other recent
proposals (Wilson 2006, Moreton 2008) in trying to determine to what
extent a learners’ biases can explain typological facts (see also related
discussion in Stabler 2009). Although this work differs from these others
in its focus – they investigate how phonetic factors or substantive bias af-
fect the way learners generalise, whereas here the focus is on a particular
formulation of locality – the goal is the same: learning-based explanations
of phonological typology. It is my hope that this paper will not only lead to
further investigation into the formal properties of these classes of patterns,
but will also guide future empirical work – typological, experimental and
descriptive.

1.2 Approaches to learning in phonology

This approach to the learning problem – where the generalisation strategy
of the learner directly relates to inherent properties of the hypothesis
space – is different from the ones taken in the Principles and Parameters
(P&P) and optimality-theoretic (OT) frameworks. In those approaches,
the proposed learning mechanisms operate over an additional layer of
structure provided by the grammatical framework which is independent
of any inherent properties of the hypothesis space.

It is easy to see that this is true by recognising that the learning al-
gorithms thathavebeenproposed forP&PandOTgrammars are essentially
the same no matter which particular set of constraints or parameters is
adopted – in other words, no matter what the predicted typology is. If
Universal Grammar (UG) carved out some other hypothesis space, the
proposed learning algorithms would not have to change. This is not con-
troversial. Indeed, Tesar & Smolensky (2000: 5–6) make this quite plain:

OT is a theory of UG that provides sufficient structure at the level of the
grammatical framework itself to allow general but grammatically in-
formed learning algorithms to be formally defined º Yet the structure
that makes these algorithms possible is not the structure of a theory of
stress, nor a theory of phonology: it is the structure defining any OT
grammar.

Dresher (1999: 64) makes the same point, also with respect to learners
proposed in the P&P framework:

the learning algorithm is independent of the content of the gram-
mar º for exampleº it makes no difference to the TLA [Triggering
Learning Algorithm; Gibson & Wexler 1994] what the content of a
parameter is: the same chart serves for syntactic word order parameters
as for parameters of metrical theory, or even for nonlinguistic para-
meters.
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In other words, in the P&P and OT frameworks, the proposed
learning mechanisms operate over the structure provided by the frame-
work, and not any inherent structure that may exist in the hypothesis
space itself.2

The approach taken here also differs from the recent work in
probabilistic-based learning: approaches based on OT (Boersma 1997,
Boersma & Hayes 2001), minimum description length (Ellison 1991,
Goldsmith & Riggle, ms), Bayes’ Law (Tenenbaum 1999, Goldwater
2006), maximum entropy (Goldwater & Johnson 2003, Hayes & Wilson
2008) and approaches inspired by Darwinian-like processes (Clark
1992, Yang 2000, Martin 2007). These models, whose advantages in-
clude being robust in the presence of noise and being capable of handling
variation, are primarily methods which effectively search a given hypoth-
esis space. Thus, these learners are structured probabilistic models. Again,
this is not controversial. For example, Goldwater (2006: 19) explains that
‘the focus of the Bayesian approach to cognitive modeling is on the
probabilistic model itself, rather than on the specifics of the inference
procedure’. Yang (2000: 22) describes one of the ‘virtues’ of his approach
this way: ‘UG provides the hypothesis space and statistical learning
provides the mechanism’. In other words, if UG provided some other
hypothesis space, there would be no need to alter the statistical learning
mechanism.
On the other hand, one focus of this paper (Hypothesis 2) is on the

shape, or structure, of the hypothesis space itself, as a consequence of the
inference procedure, as opposed to the search that takes place within it.
The generalisation strategy of the learner is what determines the hypoth-
esis space.
The observation above that most learning proposals in phonology do

not make use of properties inherent in the hypothesis space is only an
observation, not an argument. It is logically possible that human learners
only make use of the structure afforded by P&P or OT frameworks,
without any attention to the properties of the constraints or parameters
which largely determine the shape of hypothesis space. Here I only wish
to point out the idea that the hypothesis space as a consequence of the
learner – the idea that properties of the learner determine properties of the
typology – is a natural one that has not, to my knowledge, been sufficiently
explored in models of phonological acquisition.

2 Dresher (1999: 28) draws a distinction between the Triggering Learning Algorithm
and the ordered cue learning model of Dresher & Kaye (1990), explaining that ‘cues
must be appropriate to their parameters in the sense that the cue must reflect a
fundamental property of the parameter, rather than being fortuitously related to it ’.
This is a step in the right direction, but neither Dresher & Kaye (1990) nor Dresher
(1999) offer a precise explanation of what a ‘fundamental property’ of a parameter
would look like, or what properties of an associated cue make it appropriate. Thus it
is not exactly clear how different the ordered cue-based learner is from the
Triggering Learning Algorithm in this respect (see Gillis et al. 1995 for further
discussion on this point).
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1.3 Organisation

The paper is organised as follows. w2 describes the stress typology which
constitutes the empirical data used in this study. w3 motivates representing
phonotactic patternswith regular sets (i.e. finite-statemachines). w4 defines
neighbourhood-distinctness, makes clear its relevance to locality in pho-
nology and applies it to the stress patterns in the typology. w5 discusses
how the universality of neighbourhood-distinctness should be handled by
a theory of phonology. w6 introduces the learning framework, defines the
Forward Backward Neighbourhood Learner (FBL) and gives the results
of the study. w7 analyses and interprets these results, and w8 shows how
the learner can be modified to be made incremental. w9 compares the FBL
to other learning algorithms that have been evaluated in the domain of
stress. w10 summarises the results and suggests future research directions.

There are two appendices available as supplementary materials to this
paper. The first enumerates the distinct stress patterns in the typology,
describes the patterns, and shows the results of the learning algorithm.
The second appendix includes a proof of the convergence of the in-
cremental version of the learner.3

2 The stress typology

The choice to study stress systems was made primarily because they are a
well-studied part of phonological theory and the attested typology is well
established (Hyman 1977a, Halle & Vergnaud 1987, Idsardi 1992, Bailey
1995, Hayes 1995, Gordon 2002, Hyde 2002). Additionally, learning of
stress systems has been approached before (e.g. Dresher & Kaye 1990,
Goldsmith 1994, Gupta & Touretzky 1994, Gillis et al. 1995, Tesar 1998,
Tesar & Smolensky 2000), making it possible to compare learners and
results.

2.1 Summary of the typology

As was true for earlier researchers, ‘stress pattern’ refers to the dominant
stress pattern of the language, and thus the typology ignores lexical ex-
ceptions. The typology also does not distinguish stress patterns if they
differ only in the domain of their application – e.g. roots vs. phrases or
nouns vs. verbs. Also, as is fully explained in w3, stress patterns here are
conceived as patterns over strings of syllables, not segments.

Combining Bailey’s (1995) and Gordon’s (2002) stress typologies yields
a typology of 422 languages, exhibiting 109 distinct stress patterns, rep-
resenting over 70 language families.4

3 The appendices are available as supplementary online materials at http://journals.
cambridge.org/issue_Phonology/Vol26No02.

4 The stress database StressTyp, currently maintained by Harry van der Hulst and
Rob Goedemans, did not become available online until after this project was
underway. Many of the languages in Bailey (1995) and Gordon (2002) are included
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Stress patterns are broadly categorised into three groups by primary
stress placement: quantity-insensitive, quantity-sensitive bounded and
quantity-sensitive unbounded. Appendix A organises the stress patterns
in the typology into these three categories and shows the extensive vari-
ation documented in those studies. For the sake of completeness, I briefly
review these categories and some of the variation below, though most of
the discussion will undoubtedly be familiar to anyone with anything
greater than a passing interest in stress patterns. For further details, the
reader is referred to Bailey (1995), Hayes (1995) and Gordon (2002), and
the primary source references therein. Kager (2007) provides a thorough
overview of the different kinds of patterns.
Quantity-insensitive (QI) stress patterns, extensively reviewed in

Gordon (2002), are those in which the statement of the stress rule need not
refer to the quantity, or weight, of the syllables. 319 languages in the
typology are quantity-insensitive, exhibiting 39 distinct stress patterns.
These patterns can be divided into four kinds: single, dual, binary and
ternary systems (Gordon 2002). Single stress systems have a single stressed
syllable in each word. Dual stress systems have at most two stressed
syllables in each word. Binary and ternary systems have no fixed upper
bound on the number of stressed syllables in a word and place stress
on every second or third syllable respectively. All QI systems are
bounded – that is primary stress falls within some window of the word
edge. No other kind of QI stress system is attested.
Quantity-sensitive (QS) stress systems are unlike QI stress systems in

that stress placement is predictable only if reference is made to syllable
types. Because syllable distinctions are usually describable in terms of
the quantity, or weight, of a syllable, such patterns are called quantity-
sensitive.5 Bailey’s (1995) typology only describes the placement of pri-
mary stress; secondary stress information on each of those languages was
collected from primary sources when available.6 The resulting typology
includes 44 patterns which have quantity-sensitive bounded patterns.
Like theQIpatterns,QSboundedpatterns canbe subdivided into single,

dual, binary, ternary and ‘multiple’ types (‘multiple ’ is defined below).
Because of the weight distinction, each of these subtypes shows extensive
variation. There are 58 QS bounded languages in the typology, exhibiting
44 stress patterns.
Some languages assign primary stress like the single systems described

above, and place secondary stress only on heavy syllables, e.g. Cambodian.
These patterns I call ‘multiple’ QS patterns. They are similar to binary
and ternary patterns in that there is no clear principled upper limit on how

in StressTyp, but the latter includes more languages than the ones in the Bailey
(1995) and Gordon (2002) combined. The database is available (June 2009) at
http://www.unileiden.net/stresstyp. See also Goedemans et al. (1996).

5 Another proposed dimension along which syllable type can be distinguished is
prominence (Hayes 1995). See also Crowhurst & Michael (2005).

6 This was done with assistance from undergraduates Rachel Schwartz and Stephen
Tran at UCLA.
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many syllables in a word can receive stress. But they differ from binary
and ternary patterns in that any number of unstressed syllables can occur
between stresses. They are included here with QS bounded systems be-
cause the location of primary stress is bounded.

On the other hand, QS unbounded stress systems place no limits on the
distances between primary stress and word edges, as primary stress
usually falls on the leftmost (or rightmost) heavy syllable from the left (or
right) word edge. These are the four basic groupings, but again variation
exists within each of these subgroups. It is the non-local aspect of un-
bounded patterns which make them challenging for learning proposals.
45 languages with QS unbounded stress systems are in the typology,
exhibiting 26 distinct patterns.

2.2 Phonotactic restrictions

In addition to the different stress-assignment rules described below, there
is additional variation that is relevant to a learner of stress patterns. Some
languages place additional restrictions on which strings of syllables are
well-formed.Many languages prohibit monosyllabic words, or words con-
sisting of a single light syllable. Other languages require every word to
have at least (or at most) one heavy syllable. These phonotactic constraints
matter for a learner, because words which violate these phonotactic con-
straints are never present in the learner’s linguistic environment, not even
potentially. Therefore, whenever such a restriction was mentioned in a
source, it was noted. These restrictions are included in the typology and
contribute to the total number of distinct patterns. For example, Alawa
(Sharpe 1972) and Mohawk (Michelson 1988) both assign stress to the
penultimate syllable, but words in Mohawk are minimally disyllabic,
which as far as I know is not the case in Alawa, and so both of these
patterns, which differ minimally in this respect, are included in the ty-
pology as distinct patterns.

2.3 Unattested stress patterns

Despite the extensive variation recounted above, stress patterns are not
arbitrary. There are many logically possible ways to assign stress which
are unattested. No language places a stress on the fourth syllable from the
right (or left) in words of four syllables or longer, and on the first (or final)
syllable in words of three syllables or fewer. No stress pattern places stress
on every fourth or every fifth syllable (cf. the binary and ternary patterns
above which place stress on every second or third syllable).7 Moving fur-
ther afield, languages do not place stress on every nth syllable, where n is a
prime number, nor on every nth syllable, where n is equal to some prime
number minus one. When we consider the myriad of logically possible
ways stress can be assigned, the attested variation appears quite

7 Hammond (1987) reports that in Hungarian secondary stress falls on every fourth
syllable. However, this claim is controversial (Hayes 1995: 330).
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constrained. This is not a new observation – virtually every previous re-
searcher essentially makes the same point. I emphasise it only to spotlight
the question: what property or properties do the attested patterns share
which separates them from these unattested patterns?

3 Representing phonotactic patterns

3.1 Patterns as sets

A pattern can be represented as a set. All logically possible strings which
obey the pattern are in the set, and all the possible strings which do not
obey the pattern are not in the set. For example, consider the following
two attested stress patterns.

a.(3)

b.

Primary stress falls on the initial syllable and there is no secondary
stress.
Primary stress falls on the final syllable and secondary stress falls on
other odd syllables, counting from the right.

Afrikaans (Donaldson 1993) is an example of language said to have the
stress pattern of (3a) and Asmat (Voorhoeve 1965) the stress pattern de-
scribed in (3b). These patterns are given as sets in (4).

a.(4)
b.

{¡, ¡s, ¡ss, ¡sss, ¡ssss, ¡sssss, …}
{¡, s¡, ¿s¡, s¿s¡, ¿s¿s¡, s¿s¿s¡, …}

Following Chomsky (1957), I use the word ‘language’ interchangeably
with ‘pattern’ to mean sets like those above.
The linguistic competence of speakers of Afrikaans and Asmat with

respect to stress patterns can be characterised by knowledge of sets (4a)
and (4b) respectively. For example, these speakers can presumably decide
whether a logically possible word obeys the relevant pattern or not. For
example, a word represented as sSsSsSsSsSsT obeys the stress pattern of
(3b), whereas a word with the representation ssSsSsSsSsT does not. The
decision a speaker makes regarding whether a particular word obeys the
pattern is akin to deciding whether that word is in set (4b).
One item of interest about the sets in (4) is that they are infinite. It is

therefore not possible to write out these sets in their entirety as a list.
Grammars, however, are a finite way of writing an infinite set. There are
many grammars that can define the sets above. For example, if we use the
perfect grid (Prince 1983), have parameters which allows us to align a peak
of this grid with the right edge of the word and set the End Rule parameter
to Right, we can generate the infinite set in (4b). Different settings of such
parameters (along with a parameter which essentially removes secondary
stress) generate the stress pattern in (4a). On the other hand, if we adopt
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parameters which give us disyllabic iambic feet (sS) and foot assignment
from the right edge, and set a Head Foot parameter to Right, then it is
possible to develop a grammar which generates the same infinite set (4b)
above (Hayes 1995). Different settings of these parameters again generate
(4a). Additionally, a number of studies show how those sets can be gen-
erated in OTwith different kinds of constraints (Tesar & Smolensky 2000,
Gordon 2002, Hyde 2002).

This paper addresses many of the simple, fundamental questions which
arise when we view stress patterns – or any linguistic pattern – as sets.
What properties do sets such as the ones in (4) have? What properties set
possible stress patterns apart from some of the logically possible but
phonologically unnatural stress patterns discussed in w2.3? How can such
an infinite set (or a grammar which generates it exactly) be acquired from
just finitely many examples? In other words, what inductive principles, in
the sense of Popper (1959), allow one to obtain set (4a) from the finite
set {T, Ts, Tss, Tsss}? These last questions have been studied extensively
by the grammatical inference community, whose research the learner
presented in w6 draws upon. De la Higuera (2005, in press) provides an
excellent introduction to grammatical inference.

3.2 Phonotactic patterns are regular sets

Interestingly, phonotactic patterns like the stress patterns in (4) above are
all REGULAR sets. Regular sets are those than can be generated by finite-
state acceptors.8 A finite-state acceptor (FSA) is a grammar which con-
tains a finite number of states, some of which are START states and some of
which are FINAL states, along with labelled TRANSITIONS between those
states. A FSA is said to GENERATE a string if and only if there is a path from
a start state to a final state which ‘exhausts’ the string.9 Examples which
make this notion clear are given below. There are several excellent in-
troductions to finite-state acceptors, including Partee et al. (1990), Sipser
(1997), Hopcroft et al. (2001) and Coleman (2005), to which I refer
readers. The focus on finite-state representations here follows earlier
work in phonology (Johnson 1972, Koskenniemi 1983, Ellison 1992,
Kaplan & Kay 1994, Eisner 1997b, Frank & Satta 1998, Karttunen 1998,
Riggle 2004, Albro 2005).

As examples, consider the FSAs in Fig. 1, which I call FSA Afrikaans
(a) and FSA Asmat (b). In the finite-state diagrams in this paper, start

8 The Chomsky Hierarchy classifies all logically possible patterns (i.e. sets) according
to the kinds of grammars that can generate them (Harrison 1978). The major classes
in this hierarchy are finite sets, regular sets, context-free sets and context-sensitive
sets.
Like the other classes in the Chomsky Hierarchy, there are many ways to define

regular sets – as right-branching rewrite grammars, as regular expressions or as
those strings which make true statements written in monadic second order logic.
See Kracht (2003: ch. 2) for additional characterisations of regular sets.

9 In addition to ‘generate’, FSAs are also said to equivalently ACCEPT or RECOGNISE

such strings.
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states are indicated by hexagons, and final states by circles with double
lines, unless mentioned otherwise. The numbers which label the states are
irrelevant to the process of generating strings; they are just names of the
states to facilitate discussion. FSA Afrikaans generates the string Tss.
This can be seen by checking whether there is path through the machine
that begins at a start state and ends at a final state, along transitions that
exhaust Tss. FSA Afrikaans is a very simple machine, so it is easy to see
that such a path exists. Beginning at state 0, a start state, we travel on the
arc labelled T to state 1. Then we travel along the arc labelled s, which
brings us back to state 1. We traverse this arc again returning to state 1 one
more time. At this point we have exhausted the string and, since state 1 is a
final state, there is in fact a path from a start state to a final state which
exhausts the string. FSA Afrikaans does not accept the string sTs, because
there is no start state that has a transition leaving it which is labelled s. It is
easy to see that FSA Afrikaans accepts all and only those strings that begin
with T followed by zero or more s. Although FSA Asmat is more complex,
in the sense that there are more states and arcs, it is also straightforward to
see that the only strings it accepts are the ones which obey the stress
pattern of Asmat in (3b).
FSAs Afrikaans and Asmat are faithful representations of the stress

patterns in (3), because they generate exactly the sets in (4). Like the
generative grammars of earlier researchers, these grammars recognise in-
finitely many well-formed words. FSAs are categorical phonotactic
grammars, because they are devices that can answer yes or no when asked
if some logically possible word is possible, which is the minimum re-
quirement of a phonotactic grammar (Chomsky & Halle 1965, 1968, Halle
1978). Stress patterns are usually described as categorical patterns, as
opposed to gradient ones, although notice that gradient phonotactic pat-
terns can be described with weighted FSAs.10

0 1
¡

s

0 3
s

1

2
¿

¡
s

¿

¡

FSA Afrikaans FSA Asmaat

(a) (b)

Figure 1

The stress patterns of (a) Afrikaans and (b) Asmat.

10 The FSAs above represent functions which maps any string to yes or no, or
equivalently 1 or 0. Hayes & Wilson (2008) provide extensive arguments that many
phonotactic patterns are gradient and not categorical. Weighted FSAs, where
transitions departing each state are subject to a probability distribution, can be used
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In fact, the hypothesis that all phonotactic patterns – not just stress
patterns – are regular is well supported.11 The general form of the argu-
ment begins with recognising that phonological alternations can be de-
scribed as relations. A relation is simply a set of pairs. An underlying form
u surfaces as a phonological string s and thus can be written as the pair
(u, s). The set of such pairs for a language constitutes the phonological
alternations in the language. In the same way that sets can be classified
according to their complexity, so can relations. For example, REGULAR

RELATIONS are those recognised by finite-state transducers. A finite-state
transducer is like an acceptor, except the transitions on the labels are pairs
of symbols. Since the righthand side of a regular relation – the set of sur-
face forms s – is a regular set (Sipser 1997, Hopcroft et al. 2001), it follows
that if all phonological processes which map underlying forms to surface
forms can be described with regular relations then all phonotactic patterns
are regular sets.

This argument is made by Johnson (1972) and Kaplan & Kay (1994),
who show how to construct a finite-state transducer from traditional SPE-
style ordered rule-based phonological grammars (see also Koskenniemi
1983). Similarly, Gerdemann & van Noord (2000) and Riggle (2004),
building on work by Ellison (1994), Eisner (1997b), Frank & Satta (1998),
Karttunen (1998) and Albro (2005), show how to construct a finite-state
transducer from OT grammars, provided the constraints in Con can be
written as vector-weighted finite-state transducers.

For example, consider the (different) OT analyses given in Tesar (1998)
and Gordon (2002) of the stress pattern of Asmat (3b). If these analyses
were encoded in finite-state OT, applying Gerdemann & van Noord’s
(2000) or Riggle’s (2004) transducer-construction algorithm would yield
the (same) acceptor shown above in Fig. 1.12 In a sense, FSA Asmat
(Fig. 1a) implicitly embodies all the constraints and the rankings used in
those analyses (and all the parameters and their settings in a P&P analysis,
as well as all the rules and orderings in a derivational analysis). This seems
to imply that FSAs can serve as a lingua franca between derivational, P&P
and OT approaches to phonology.

There are two other reasons to be interested in the hypothesis that all
phonotactic patterns are regular. First, the grammatical inference com-
munity has developed a considerable literature on learning regular sets.
For example, the class of regular languages is not Gold-learnable from
positive data (Gold 1967, Angluin 1980), but certain subsets of it are
(Angluin 1982, Muggleton 1990, Denis et al. 2002, Fernau 2003) (Gold-
learnability is explained in more detail in w6). Thus it becomes possible

to model gradient phonotactic patterns. In this case, the FSAs are functions map-
ping strings to real numbers.

11 This contrasts with syntactic patterns, which are argued to be more complex
(Chomsky 1957, Shieber 1985, Kobele 2006).

12 Since Tesar (1998) uses constraints to place metrical feet in strings, the acceptors
above are obtained after removing foot boundaries (which presumably are un-
pronounced anyway).
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to ask: what subset of the regular languages delimits the class of possible
phonotactic patterns and do the properties of this class provide inductive
principles for learners? Hypotheses (1) and (2) are essentially one answer
to this question.
Second, insights made with respect to regular sets can be extended if

it is determined that more complex types of grammars are needed. For
example, Albro (2005) makes restricted extensions to a finite-state system
in order to handle reduplication (see also Roark & Sproat 2007 for a finite-
state approach to reduplication). Also, if the working assumption that
phonotactic constraints are categorical is relaxed, finite-state automata
whose transitions are labelled with real-valued weights (i.e. stochastic
or probabilistic FSAs) are a natural extension, in which gradient well-
formedness patterns can be described.

3.3 QS patterns

The patterns of Afrikaans and Asmat above are QI patterns. QS stress
patterns can be represented with FSAs as well. For example, consider the
unbounded stress pattern ‘leftmost heavy, otherwise rightmost’ in (5).

(5) Place stress on the leftmost heavy syllable in the word. If there are no
heavy syllables, stress the rightmost syllable.

(6) shows all strings with four syllables or fewer which obey the pattern
in (5). Fig. 2 shows a finite-state acceptor which represents this pattern.
Again, it is worthwhile to take a moment to verify that the acceptor in
Fig. 2 accepts only those strings which obey the pattern in (5) and rejects
all strings which do not obey it.

Words of four or fewer syllables which obey the ‘leftmost heavy, otherwise
rightmost’ stress pattern

(6)

H
LF
LHL
LHLH
LHHL
HHHH

F
HLL
LHH
HLLL
LHHH
LLHL

HL
HLH
LFL
HLLH
HLHL
LLHH

HH
HHL
LLH
HHLL
HLHH
LLLF

LH
HHH
LHLL
HHLH
HHHL
LLLH

0

2H

L,H

L

1

F

Figure 2

The ‘leftmost heavy, otherwise rightmost’ stress pattern.
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The set of symbols on the transitions in the acceptor in Fig. 2 is not the
same as the one in Fig. 1. This set of symbols is referred to as the
ALPHABET. There are some important issues regarding the choice of
alphabet. To avoid a loss of continuity, this discussion is postponed
until w6, where it becomes relevant.

To sum up this section, it has been established that phonotactic patterns
such as stress patterns can be represented faithfully with finite-state ac-
ceptors.

4 The neighbourhood-distinct hypothesis

In this section, neighbourhood-distinctness is defined and shown to be a
locality condition for grammars.

4.1 Locality in phonology

It is generally agreed that locality is an important feature of phonological
grammars. McCarthy & Prince (1986: 1) write: ‘Consider first the role of
counting in grammar. How long may a count run? General considerations
of locality º suggest that the answer is probably ‘up to two’: a rule
may fix on one specified element and examine a structurally adjacent
element and no other’. Similarly, Kenstowicz (1994: 597) refers to ‘the
well-established generalization that linguistic rules do not count beyond
two’.

Within the particular domain of stress, the thinking is no different.
Halle & Vergnaud (1987: ix) note that ‘ it was felt that phonological pro-
cesses are essentially local and that all cases of nonlocality should derive
from universal properties of rule application’. Hayes (1995: 34) writes:
‘metrical theory forms part of a general research program to define the
ways in which phonological rules may apply non-locally by characterizing
such rules as local with respect to a particular representation’.

Focusing exclusively on the role of locality does not mean other factors
are unimportant or irrelevant to systems of stress. There are two reasons
for the attention given to it here: (i) to see in precisely what way the stress
patterns in the typology of stress are local, and (ii) to obtain a clear
understanding of the contribution this a priori notion of locality can make
to learning.

4.2 Definition of the neighbourhood

The concept ‘neighbourhood’ aims to capture the insight that phono-
logical environments are defined locally, while ‘distinct’ aims to capture
the notion that these environments are unique. The main idea is that each
state in a finite-state acceptor represents a phonological environment the
grammar must be sensitive to. For example in Fig. 1a, state 0 of FSA
Afrikaans represents the environment at the beginning of a word, and state
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1 represents every other environment (for some related discussion, see
Riggle 2004). These two classes of environments are the ones any gram-
mar generating the initial stress pattern of Afrikaans must be sensitive to.
Given the idea that phonological environments are ‘ local ’, we identify

each state with its local characteristics. Thus the neighbourhood of a state
is defined as in (7) (to be revised).

a.
b.
c.
d.

(7) the set of incoming symbols to the state
the set of outgoing symbols from the state
whether it is a final state or not
whether it is a start state or not

The neighbourhood of a state can be determined by looking solely at
whether or not it is final, whether or not it is a start state, the set of symbols
coming into the state and the set of symbols departing the state.
Pictorially, all the information about the neighbourhood of a state is found
within the state itself, as well as the transitions going into and out of that
state. For example, suppose states p and q in Fig. 3 belong to some larger
acceptor. We can decide that states p and q have the same neighbourhood
because they are both non-final, non-start states, and both can be reached
by some element of {a, b}, and both can only be exited by observing a
member of {c, d}.

The size of the neighbourhood can be parameterised by adjusting parts
(a) and (b) of the definition in (7). Instead of referring not just to incoming
and outgoing symbols – which are really just paths of length one – those
definitions can refer to incoming and outgoing paths of lengths j and k
respectively. I call a path of length k a k-path. Thus we define the j-k
neighbourhood as in (8).

a.
b.
c.
d.

(8) the set of incoming j-paths to the state
the set of outgoing k-paths from the state
whether it is a final state or not
whether it is a start state or not

It is now possible to define acceptors that are j-k neighbourhood-
distinct.

q
b

a c

d
p

b

a c

d
a

Figure 3

Two states with the same neighbourhood.
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(9) An acceptor is said to be j-k neighbourhood-distinct i‰ no two states
have the same j-k neighbourhood.13

The class of neighbourhood-distinct languages is defined in (10).

(10) The j-k neighbourhood-distinct languages are those for which there
is an acceptor which is j-k neighbourhood-distinct.

When the values of j and k are understood from context, I just write
neighbourhood-distinct.

For example, FSA Asmat is 1-1 neighbourhood-distinct. This can be
determined by listing the neighbourhood of each state and checking to
make sure that each neighbourhood is unique. Table I shows the neigh-
bourhoods of each state in FSA Asmat; no neighbourhood is repeated
twice.

Examples of non-neighbourhood-distinct patterns are given by logically
possible unattested stress patterns such as those which place stress on
every fourth, fifth, sixth or nth syllable, which are not 1-1 neighbourhood-
distinct. To see why, consider the acceptor in Fig. 4, which generates the
logically possible stress pattern which assigns stress to the initial syllable
and then secondary stress to every fourth syllable.

Table I
The 1-1 neighbourhoods of FSA Asmat in Fig. 1b.

0
1
2
3

state

0
{¡}
{¿}
{s}

incoming 1-paths final?

{s, ¿, ¡}
0

{s}
{¿, ¡}

outgoing 1-paths

no
yes
no
no

start?

yes
no
no
no

0 1
¡

s
2 3

s

4
s
s

¿

Figure 4

The FSA for a quaternary stress pattern.

13 Also, the acceptor must consist only of useful states – i.e. every state must be
reachable from some start state, and the final state must be reachable from any state.

318 Jeffrey Heinz



This acceptor generates the strings in (11).

(11) {¡, ¡s, ¡ss, ¡sss, ¡sss¿, ¡sss¿s, ¡sss¿ss, ¡sss¿sss, ¡sss¿sss¿, …}

In the acceptor in Fig. 4, states 2 and 3 have the same neighbourhood. It
is not possible to write some other acceptor for this language that would
not have two states like states 2 and 3 above with the same neighbourhood
(because the pattern requires exactly three unstressed syllables between
stresses). In contrast, the ternary pattern of Iowoy-Oto, for example,
which stresses the peninitial syllable and every third syllable afterwards as
shown in (11), is neighbourhood-distinct, as can be easily verified from
Fig. 5.

(12) {¡, s¡, s¡s, s¡ss, s¡ss¿, …}

Generally speaking, neighbourhood-distinctness characterises a locality
condition, which is shared by binary and ternary patterns, but not quat-
ernary patterns or higher n-ary patterns. In ww4.5–4.6 below, I establish
that almost all stress patterns, including the long-distance unbounded
types, are neighbourhood-distinct. But first, there is some technical
ground to cover.

4.3 Neighbourhood-distinct acceptors and languages

Neighbourhood-distinct languages are defined as those that can be gen-
erated by neighbourhood-distinct acceptors. However, many different
acceptors can recognise exactly the same language, and it is useful to dis-
tinguish certain types of acceptors.
For example, Fig. 6 shows another acceptor which represents exactly

the stress pattern of Asmat (3b) (the reader can verify that this is true).
Like FSA Asmat (Fig. 1), the acceptor in Fig. 6 has a path from a start
state to a final state which exhausts the string for any string which obeys
the Asmat pattern. What makes this acceptor unlike FSA Asmat is
that there are two start states, and so the acceptor is said to be non-
deterministic, because when determining whether the acceptor recognises
a particular string there is a choice of which state to begin with.

0

s
4

3
¡

5
¿

s
¡

2

1

s

Figure 5

The FSA for the stress pattern of Ioway-Oto.
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Although there are many acceptors which generate a particular set,
some are more useful than others. An acceptor like FSA Asmat in Fig. 1b
is FORWARD DETERMINISTIC. This means it has one start state, and for each
state q in the machine and each symbol a in the alphabet, there is at most
one transition labelled a departing q. A forward deterministic acceptor
with the fewest states for a language is called the language’s TAIL

CANONICAL ACCEPTOR, and typically regular patterns are represented with
this acceptor. However, another algebraically equivalent choice is the
HEAD CANONICAL ACCEPTOR (Heinz 2007). The head canonical acceptor is
the smallest REVERSE DETERMINISTIC acceptor recognising some pattern.
An acceptor is reverse deterministic if and only if there is at most one final
state, and for every state q in the acceptor and each symbol a in the al-
phabet, there is at most one transition labelled a entering q. The acceptor
in Fig. 6 is a head canonical acceptor for the pattern in (3b) (the reader
may verify that it is reverse deterministic). The tail and head canonical
acceptors can be computed from any acceptor which recognises a given
pattern (Hopcroft et al. 2001).

The head canonical acceptor for the Asmat pattern is more compact
than the tail canonical acceptor, as it has one fewer state and fewer tran-
sitions. This is probably due to the fact that it is a right-edge based pat-
tern. Generally, right-edge based stress patterns have smaller head
canonical acceptors, whereas left-edge based stress patterns have smaller
tail canonical acceptors. This is an interesting observation, which becomes
relevant in w8.

I refer to tail canonical acceptors which are j-k neighbourhood-distinct
(and the languages they recognise) as TAIL-CANONICALLY j-k NEIGH-

BOURHOOD-DISTINCT. It is useful to refer to head canonical acceptors which
are neighbourhood-distinct (and the languages they recognise) as j-k
HEAD-CANONICALLY NEIGHBOURHOOD-DISTINCT. Finally, I refer to patterns
which are either tail or head canonically neighbourhood distinct simply as
j-k CANONICALLY NEIGHBOURHOOD-DISTINCT. These notions will become
useful in w4.5.

4.4 Properties of neighbourhood-distinct languages

An analysis of neighbourhood-distinct languages based on its component
parts is begun in Heinz (2007, 2008). The results so far show that the class

¿

0

2

1
¡

s

Figure 6

A head canonical acceptor for the stress pattern of Asmat.
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is finite, that the j-k neighbourhood-distinct languages form a structured
hierarchy of classes and that it does not have certain closure properties.
These are discussed in turn.
1-1 neighbourhood-distinctness is restrictive. The neighbourhood-

distinct languages not only form a proper subset of the regular languages
over some alphabet S, there are only a finite number of them: all regular
languages whose smallest acceptors have more than 22|$|+1 states cannot be
1-1 neighbourhood-distinct (since at least two states would have the same
neighbourhood). Thus most regular languages are not 1-1 neighbourhood-
distinct.14

Also, it is obvious that if a pattern is j-k neighbourhood-distinct then it
is jD-kD neighbourhood-distinct when the jD-kD neighbourhood is larger
(i.e. where jD}j+1 or for some kD}k+1). Thus neighbourhood-distinct
languages form a hierarchy, with language expressiveness increasing as
one moves up the hierarchy.
Finally, Heinz (2007: ch. 6) shows that the j-k neighbourhood-distinct

languages are not closed under union, intersection or complement. A
language class is said to be closed with respect to some operation if ap-
plication of the operation to one (or more) languages in the class always
yields another language in the class. Since languages here are conceived
as sets of strings, union, intersection and complement have their
usual meanings. The absence of these properties – in particular inter-
section – matters, as we will see below.

4.5 Universality

For each of the distinct patterns in the typology, I constructed a finite-
state acceptor such that only those words which obey the language’s stress
rules are recognised by the acceptor.15

In the typology of stress patterns, 97 patterns are tail-canonically 1-1
neighbourhood-distinct and 105 are head-canonically 1-1 neighbourhood
distinct. Only two languages are neither tail- nor head-canonically 1-1
neighbourhood-distinct (though they are canonically 2-2 neighbourhood-
distinct). In other words, 107 of the 109 types of languages in the
stress typology are canonically 1-1 neighbourhood-distinct. One of these
two non-canonically 1-1 neighbourhood-distinct stress patterns is
provably not 1-1 neighbourhood distinct, the pattern of Içu± Tupi
(Abrahamson 1968). It remains an open question whether there is some
neighbourhood-distinct acceptor which recognises the other one, which
is the pattern of Hindi as described by Kelkar (1968). Nevertheless,
canonical 1-1 neighbourhood-distinctness is a near-universal property
of attested stress patterns, and every attested stress pattern is canonically
2-2 neighbourhood-distinct.

14 By similar reasoning, one can see that for any particular values of j and k, most
regular patterns are not j-k neighbourhood-distinct.

15 These machines are available (June 2009) as part of a stress typology database
available at the author’s website (http://phonology.cogsci.udel.edu/dbs/stress).
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To sum up, with two controversial (see below) exceptions, 1-1 neigh-
bourhood-distinctness is a universal property of attested stress patterns. It
unites the attested single, dual, binary, ternary and unbounded properties,
to the exclusion of quaternary and higher n-ary patterns.

4.6 Discussion

How seriously do the two languages which are not canonically 1-1 neigh-
bourhood-distinct challenge the hypothesis that all phonotactic patterns
are canonically 1-1 neighbourhood-distinct (Hypothesis 1)? If the two
stress patterns in question were common, or from languages whose pho-
nology was well studied and uncontroversial, the challenge to the hy-
pothesis would obviously be more serious. As it is however, we would like
to know more about the patterns in the languages themselves.

Unfortunately, in the case of Içu± Tupi, this is likely impossible, as
Abrahamson (1968: 6) notes that the tribe is ‘almost extinct’, with only
two families alive at the time of his studies. According to his paper, Içu±
Tupi places stress on the penult in words of four syllables or fewer, and on
the antepenult in longer words. In metrical theory, one would say that
final syllable extrametricality is invoked in words with five or more syl-
lables, but not invoked in words with four or fewer syllables. Although his
paper devotes only a few lines to the topic of word stress, there are no
obvious errors, and the description of the pattern is clear, as are the il-
lustrative examples. I see little alternative but to accept the pattern as
genuine. Figure 7 shows the tail canonical FSA for this stress pattern
(states 6 and 8 have the same neighbourhood).

There are other possibilities which render the Içu± Tupi pattern ca-
nonically 1-1 neighbourhood-distinct. One possibility is that stress may
optionally be placed on the penult or the antepenult in words with five or
more syllables (as in Walmatjari ; Hudson 1978). Although it may be
unfair to assume this (as we can expect Abrahamson to have noted it), this
alteration makes the pattern neighbourhood-distinct. In Fig. 7, this
change would amount to eliminating states 7 and 8 and their associated
transitions, and adding a transition from state 5 to itself, labelled s.

2

0 1
s

¡

5
s

7

s
3

s s¡
6

¡

8
¡

4
s

ss

Figure 7

The stress pattern of Içu± Tupi.
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In the case of Kelkar’s (1968) description of Hindi, it is important to
recall that the stress pattern of Hindi has been the subject of many dif-
ferent proposals, and there is little consensus as to what the pattern actu-
ally is (Ohala 1977, Hayes 1995). Hayes (1995: 162–163, 178) points out
that Fairbanks’ (1981) analysis is based on additional evidence (metrics),
whereas Kelkar’s evidence relies on subjective intuitions, which differ
from those published in Sharma (1969) and Jones (1971). (The patterns
described by Fairbanks, Jones and Sharma are all 1-1 neighbourhood-
distinct.)
Nonetheless, even if each different description of Hindi were correct

(perhaps because speakers belong to different dialect groups), as in the
Içu± Tupi case, a small change to Kelkar’s (1968) description renders it
1-1 neighbourhood-distinct. According to Kelkar, Hindi is a QS un-
bounded systemwith a three-way quantity distinction, with primary stress
falling on the rightmost (non-final) superheavy, or if there are none, on the
rightmost (non-final) heavy syllable, or in words with all light syllables,
the penult. Secondary stresses fall on heavy syllables, and on alternate
light syllables on both sides of the primary stress. This may also be
the most complicated pattern in the typology, as measured by the number
of states in its tail and head canonical acceptors: 32 and 29 respectively (cf.
Pirah±, which has 33 and 18). Kelkar’s description of the stress patterns,
however, rests on words that are only a few syllables in length. In other
words, although his description makes clear predictions about how stress
falls in longer words, it is far less clear that these predictions are actually
correct. The size of the relevant FSAs prohibits inclusion here, but if, in
words longer than four syllables, lapses were optionally allowed across two
adjacent light syllables and final heavy syllables could optionally bear
primary stress instead, then this pattern also becomes neighbourhood-
distinct.
To sum up, it is premature to reject the hypothesis that all patterns are

canonically 1-1 neighbourhood-distinct because of the counterexamples of
Içu± Tupi and Hindi (in Kelkar’s analysis). The proposed descriptions of
these patterns ought to be investigated further if possible to see if they
hold up as counterexamples. A small change in the description of the
pattern can render it neighbourhood-distinct. Finally, the hypothesis that
all stress patterns are canonically 1-1 neighbourhood-distinct is supported
by the many established stress patterns in the typology which fall into this
class.

5 Significance of the hypothesis

How can a theory of phonology accommodate the universality of
neighbourhood-distinctness? The issue is raised because neighbourhood-
distinctness is a constraint on the well-formedness of an aspect of the
total grammar – here, the stress domain. One logical possibility is that
neighbourhood-distinctness is just an epiphenomenon of a particular set
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of parameters or constraints that are motivated on independent grounds.
Another possibility – the one pursued here – is that it is not an accident
that proposed theories all conspire to predict typologies wherein all pat-
terns are neighbourhood-distinct.

In OT, one approach might be to require that individual constraints
be neighbourhood-distinct (cf. Eisner 1997b, McCarthy 2003). Recall
that under finite-state implementations of OT, a constraint is represented
as a finite-state transducer (Eisner 1997a, Frank & Satta 1998, Riggle
2004). Thus this approach requires that the notion of neighbourhood-
distinctness be translated from acceptors to transducers, something which
can be done reasonably, though certain details will have to be worked
out.16

This proposal is interesting and, if pursued further, the following
remarks apply. First, most phonological constraints are neighbourhood-
distinct. The most obvious constraints which are not neighbourhood-
distinct are the ALIGN constraints, which have already been shown to be
problematic on other grounds (Eisner 1997b, McCarthy 2003). When
computing the typology, having only neighbourhood-distinct constraints
would have the desirable effect that many of the unattested patterns – like
those describable with feet with four or more syllables – are not found
within the typology.

However, since the transducer construction algorithm intersects
the individual constraints, and closure under intersection is not a prop-
erty of neighbourhood-distinct languages, simply ensuring the indi-
vidual constraints are neighbourhood-distinct does not guarantee the
neighbourhood-distinctness of the stress domain as observed above. It is a
worthwhile endeavour to determine (i) whether concrete proposals of
OT constraints from such a restricted Con predict a typology where
every pattern is neighbourhood-distinct, (ii) what properties are present
which ensure this outcome, (iii) if not, whether the Içu± Tupi and Hindi
patterns can be explained in this way, and so on. To sum up, it appears
that restricting Con to include only neighbourhood-distinct constraints
can help explain the neighbourhood-distinctness of stress patterns, but
there are plenty of unanswered questions, and pursuing them may prove
fruitful.

This paper pursues another explanation of the neighbourhood-
distinctness of stress patterns. Namely, stress patterns are neighbour-
hood-distinct because the learner itself is unable to distinguish between
the same-neighbourhood environments observed in its linguistic en-
vironment. The idea underlying this approach is that it is impossible to
separate the learner from the hypothesis space, because they stand in a
natural, intimate relationship: the hypothesis space is the range of the
learning function.

16 For example, in Riggle’s (2004) framework, where transitions in a machine are
marked with an input symbol, an output symbol and a violation vector, we may
decide to count the symbols, but not the vector, as part of the neighbourhood.
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6 Learning neighbourhood-distinct patterns

6.1 The learning framework

It is useful to make the learning framework, schematised in Fig. 8,
explicit. The idea is that the target language is generated from some
grammar G. The learner, however, does not hear every word of the
language (as it is infinite in size), but only some small finite sample.
The learner is a function which maps finite samples to grammars. The
central question we are interested in is: what is the learner such that
the Language of GD=Language of G? The paradigm schematised in
Fig. 8 is known as exact identification in the limit from positive data
(Gold 1967). A learner successfully learns language L if, upon being
presented with ever larger finite samples from L, the grammars returned
by the learning function converge to one which generates exactly L.
The class of languages for which a learner can do this is said to be identi-
fiable in the limit from positive data. Nowak et al. (2002) provide an
accessible overview of this learning framework and de la Higuera (in
press) provides an excellent in-depth introduction to this learning frame-
work and others (see Jain et al. 1999 and Niyogi 2006 for more detailed
presentations).
One key result in framing the learning problem this way is that it is

known that learning cannot take place unless the hypothesis space is re-
stricted (Gold 1967, Angluin 1980). In particular, no learner can identify
the class of all regular languages in the limit from positive data.17 This
result holds even though learners (i) are given only clean, non-noisy
learning data and (ii) may take up as much time or space as they like before
returning a hypothesised grammar. The utility of a framework that makes
these choices is it focuses the problem squarely on generalisation and
whether proposed inductive principles allow one to generalise in the de-
sired ways at all. The fact that, despite the generous conditions learners

Language
of G

SampleGrammar G

Language
of G¢

Grammar G¢
learner

Figure 8

The learning framework.

17 This result holds even in other learning frameworks with different criteria for suc-
cess, e.g. the Probably Approximately Correct framework (Valiant 1984; see
Anthony & Biggs 1992 and Kearns & Vazirani 1994 for overviews of this frame-
work).
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are allowed to operate under, no learner can learn an unrestricted hy-
pothesis space from positive data makes us confront the problem of gen-
eralisation directly.

It follows that for learning to be able to take place at all, GD is not drawn
from an unrestricted set of possible grammars. The hypotheses available
to the learner ultimately determine the kinds of generalisations made and
the range of possible natural language patterns. Under this perspective,
UG is this set of available hypotheses.

Given that neighbourhood-distinct patterns are a restricted class of
languages, it is natural to ask whether there is any learning function
which can learn them. Because there are only finitely many neighbour-
hood-distinct languages (see w4.4), there are actually very many
learning functions which can identify this class of patterns in the limit
(Jain et al. 1999). However, many of these learners are uninteresting
because they make no use of any property of the language class beyond
its finiteness.

Therefore, we are interested in a learner for this particular hypothesis
space. We might conceive of the learner as making use of the properties
defining the space, or more boldly, we might conceive of the properties
of the hypothesis space as a consequence of the way the learner works.
The Forward Backward Neighbourhood Learner presented below is
such a learner, because it generalises to neighbourhood-distinct patterns
by its inability to distinguish same-neighbourhood states. Note that to
the extent this learner succeeds, it explains why stress patterns are
neighbourhood-distinct.

6.2 Overview of the proposed learner

Here I introduce a simple learner which only uses the concept of neigh-
bourhood to generalise. The idea is to merge same-neighbourhood states
in the finite-state representation of the input (cf. Angluin 1982, Oncina
et al. 1993). In particular the algorithm is one instantiation of a general
algorithm given by Muggleton (1990: ch. 6), who provides an accessible
introduction to algorithms of this sort (see also de la Higuera, in press:
chs 4, 11). As it turns out, this learner does not identify the class of
neighbourhood-distinct patterns in the limit, though it does succeed for
most of the attested patterns. Code to run the learner is available from the
author’s website (see note 15).

For ease of exposition, I introduce the learner in two steps. The first
step introduces the Forward Neighbourhood Learner, which succeeds on
many, but not all, of the attested patterns. I argue that analysis of the
languages which the Forward Neighbourhood Learner fails to learn re-
veals that it is handicapped by the choice of representation of the input.
In the second step, I propose an additional alternative representation of
the input and a revised learner, the Forward Backward Neighbourhood
Learner, which succeeds on many more (but not all) of the attested
patterns.
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6.3 Prefix trees

A PREFIX TREE is a structured finite-state representation of a finite sample.
The idea is that each state in the tree corresponds to a unique prefix in the
sample. Here ‘prefix’ is not used in the morphological sense of the word,
but rather in a mathematical sense meaning ‘initial sequence’. Construct-
ing a prefix tree is a standard algorithm (Angluin 1982, Muggleton 1990).
Basically, one can imagine building the tree one word at a time, following
an existing path in the tree for as long as possible, and then making a new
branch as needed.
For example, consider Fig. 9, which shows two prefix trees. The tree in

Fig. 9a is a finite-state representation of linguistic experience consisting of
all words up to length three syllables. If we add the word Tsss to this finite
sample, we obtain the tree in Fig. 9b.

Figure 10 shows the prefix tree constructed from words up to eight
syllables in length from the Asmat pattern.

The prefix tree accepts only the finitely many forms that have been
observed. There has been no generalisation at this point. These simple
examples show that there is structure in the prefix trees and this structure
repeats itself. State-merging, described below, can eliminate this redun-
dant structure, possibly leading to generalisation.
I denote the function which maps some finite sample S to a prefix tree

PT, which accepts exactly S with PT. Note that PT(S) can be computed
efficiently in the size of the sample S (Angluin 1982, Muggleton 1990).
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Figure 9

Prefix trees generated by words from the initial stress pattern.
(a) PT accepting {T, Ts, Tss ; (b) PT accepting {T, Ts, Tss, Tsss}.
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Prefix tree for Asmat words of eight syllables or fewer.
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6.4 State-merging as a generalisation strategy

The next stage is to generalise by merging states in the prefix tree, a pro-
cess where two states are identified as equivalent and then MERGED (i.e.
combined). One key concept behind state-merging is that transitions are
preserved. Another is that if a final (or start) state is merged with a non-
final (or non-start) state, then the merged state is final (or start) (Angluin
1982, Muggleton 1990, Hopcroft et al. 2001). Generalisations may there-
fore occur as a consequence of state-merging – because the post-merged
machine accepts everything the pre-merged machine accepts, and possibly
more.

For example, in Fig. 11 Machine B is the machine obtained by
merging states 2 and 3 in Machine A. It is necessary to preserve the
transitions in Machine A in Machine B. In particular, there must be a
transition from state 2 to state 3 in Machine B. There is such a transition,
but because states 2 and 3 are the same state the transition is now a
loop. Whereas Machine A only accepts only four words {T, Ts, Tss,
Tsss}, Machine B accepts an infinite number of words {T, Ts, Tss,
Tsss, Tssss, º}.

The machines in Fig. 11 are familiar. Machine A is the prefix tree in
Fig. 9b and Machine B generates the same language as FSA Afrikaans in
Fig. 1a. Note that states 2 and 3 are the only states with the same neigh-
bourhood in Machine A, and these are the states that are merged. This is
the central insight that the learner below makes use of: merging same-
neighbourhood states in a structured representation of the input can result
in a correct generalisation.

The merging process itself does not specify which states should be
merged. It only specifies a mechanism for determining a new machine
once it has been decided which states are to be merged. If other states had
been merged in Machine A in Fig. 11, e.g. states 0 and 4, a different (in
this case, incorrect) generalisation would have been made. If all states are
merged, the result is a one-state machine, with all transitions self-looping
to this state. This machine accepts any string of symbols, indicating a
massive overgeneralisation. Thus, choosing which states are to be merged
determines the kinds of generalisations that occur (Muggleton 1990,
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An example of generalisation by state-merging.
(a) Machine A; (b) Machine B.
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Heinz 2008).18 Amerging strategy is thus a generalisation strategy. It is an
inductive principle, in the sense of Popper (1959).
There is one key result regarding state-merging: given any canonical

acceptorA for any regular language L and a sufficient sample S of L – that
is, a sample which exercises every transition in A – there is some way to
merge states in the prefix tree of S which returns acceptor A (Angluin
1982). This result does not tell us how to merge the states for a particular
acceptor; it just says that such a way exists. Nonetheless, the result is
important because it leaves open the possibility that natural language
patterns which form proper subsets of the regular languages (such as stress
patterns) can be learned with a state-merging strategy.

6.5 The Forward Neighbourhood Learner

The Forward Neighbourhood Learner (FL) merges states in the prefix
tree which have the same 1-1 neighbourhood. I use Mnd to denote the
function which maps an acceptor A to the neighbourhood-distinct ac-
ceptor obtained by merging all states in A with the same 1-1 neighbour-
hood. Note that computingMnd is efficient in the size ofA. This is because
(i) merging two states is efficient (Hopcroft et al. 2001), (ii) at most all
pairs of distinct states need be checked for neighbourhood-equivalence to
determine if they should be merged and (iii) determining the neighbour-
hood-equivalence of two states is efficient. It is now possible to state the
Forward Neighbourhood Learner precisely.

(13) Algorithm 1: The Forward Neighbourhood Learner
Input: a positive sample S
Output: an acceptor A
Let A=Mnd(PT(S)) and output acceptor A

Figure 11 showed one example of how merging same-neighbourhood
states in a prefix tree can lead to successful generalisation. Adding ad-
ditional words to the prefix tree does not change this result, as the
additional states add no new neighbourhoods. Figure 12 shows the result
of applying the Forward Learner to the Asmat prefix tree in Fig. 10.
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Figure 12

The acceptor obtained by merging same-neighbourhood states in Fig. 10.

18 In fact, n-gram based learning (see e.g. Jurafsky & Martin 2000) can be described
exactly as a particular state-merging procedure (Garcia et al. 1990, Heinz 2007).
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This machine accepts the same language as FSA Asmat, though it is not
exactly the same machine. In general, the acceptors obtained by the
Forward Learner are not necessarily the same as the tail canonical ac-
ceptors, nor are they even deterministic. Machine B in Fig. 11 has a source
of non-determinism at state 2–3, and the machine in Fig. 12 has a source
at 4-7-10-13-19.

However what matters is whether the languages generated by the ac-
ceptors are the same as the target patterns. In both examples above, the
obtained acceptors do generate the target languages exactly. This can be
easily seen by recognising that it is possible to transform these acceptors
to the tail canonical ones without adding or losing words to the languages
they recognise. In Machine B, for example, state 4 (and its associated
transition) can be removed. In Fig. 12, state 17-20 can be removed, along
with the transitions associated with it.

6.6 Evaluating the learners

Because the learners in this paper are described in automata-theoretic
terms, it is possible that future work will provide proven theorems charac-
terising exactly their behaviour (see Heinz 2008 for the beginning of such
an analysis). But since those characterisations are presently unknown, the
proposed learners, such as the Forward Learner above, are evaluated in
simulations in the following manner. The input samples presented to the
learner consist of all words from one to n syllables which obey the stress
pattern.19 Such a sample is referred to as a sample of size n. If the acceptor
returned by the algorithm did not accept exactly the same language as the
target pattern, this was considered a failure. In such cases, the learner was
applied to a sample of size n+1. If the learning did not occur with samples
of size nine, or in some cases eight, I concluded there was no input sample
with which the learner would succeed. Note that simulations show if the
learner succeeded for some input sample of size n, then it also succeeded
for sample of sizem, where 9>m>n. I take this to mean that, for the kinds
of samples provided, the learner converges when given the smaller sample
of size n.

Learners were only given words which made the necessary syllable
distinctions. For example, QI systems were not given syllables coded for
light and heavy, but QS systems which distinguished between syllables
of these types were. For example, Table III in Appendix A (see note 3)
shows that the Forward Backward Neighbourhood Learner succeeds in
learning the stress pattern of Amele when provided a sample which con-
sisted of all possible words with one to five syllables. Because this language
distinguishes light from heavy syllables, there are 21+22+23+24+25=62
word types in the sample in the simulation.

19 This decision was made primarily for convenience. The alternative is to consider
every subset of words from one to n syllables – an impractical task.
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Although this suggests that the learner’s success depends on ‘knowing’
the weight distinction beforehand, this is not so. The choice of alphabet
makes the simulation faster to run on a computer, but does not change the
nature of the problem. To see why, consider the initial stress pattern in
Fig. 1, where the alphabet consists of {T, s}. Suppose we changed the
alphabet to include the following symbols {V, CV, CVC, CVV, Y, CY,
CYC, CYV}. The machine would now look like the one in Fig. 13.

The first thing to notice is that changing the alphabet like this does not
change the character of the neighbourhoods in the target grammars. This
is important, because the learners operate only on the basis of what dis-
tinguishes neighbourhoods. Therefore, with such an alphabet, the learners
in fact return a machine like the one in Fig. 13. Thus it is fair to say that
the learners discover that the distinctions between the syllable types are
irrelevant.
It is true that as the alphabet gets larger, the size of the sample also

becomes larger. For example, if we use the four-way syllable distinction
above, there would be 41+42+43+44+45=1364 word types in a sample
consisting of all words from one to five syllables. Given that what counts
as a heavy or light syllable varies across languages, an alphabet which
includes every distinction made in any language may get quite large. As
the syllable inventory gets larger, so does the concern whether the size of
the sample is reasonable, i.e. likely to be present in the lexicon available to
a child. This issue is a matter of future research, since it is separate from
whether the learners here can be said to discover whether the target pat-
tern is QI or QS when given an alphabet which does not make the dis-
tinction overtly.
With these evaluation procedures explained, it can be stated that the

Forward Learner successfully learns 85 of the 109 pattern types, as shown
in Appendix A.

6.7 Interpreting the results of the Forward Learner

These results also show that the languages in the range of the learning
function are not the same as the neighbourhood-distinct languages. The
two classes of languages clearly overlap, but the Forward Learner does not
identify the class of neighbourhood-distinct languages in the limit. The
Forward Learner does not even identify the tail-canonically neighbour-
hood-distinct languages, falsifying the conjecture of Heinz (2006) that it

0 1

V,CV,CVC,CVV

æ,Cæ,CæC,CæV

Figure 13

The initial stress pattern with multiple syllable types.
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does. Nonetheless, the results are promising, because the languages for
which the Forward Learner succeeds cross-cuts the QI, QS bounded and
QS unbounded stress patterns, suggesting the learner is on the right
track.20

When we examine the languages which the Forward Learner fails to
learn we find that the error is always one of overgeneralisation. This
happens because states are merged which should be kept distinct.
Consequently, the grammar returned by the learner accepts a language
strictly larger than the target language. This means that there is some
word for which the learner’s grammar accepts different stress assign-
ments. This can be construed as optionality – a particular string of syl-
lables can be stressed in one way or another.

For example, the dual stress pattern of Lower Sorbian requires words
with four or more syllables to place primary stress initially, and secondary
stress on the penult (e.g. TsSs). However, the Forward Learner returns an
acceptor which can stress such words in one of two ways: either the same
as the target pattern or by placing primary stress on the initial syllable and
having no secondary stress at all (e.g. both TsSs and Tsss are generated).
The reader is referred to Heinz (2006) for details.

Another characteristic that all stress patterns for which the Forward
Learner fails (except Kashmiri) share is that they are typically analysed
with a metrical unit at the right word edge.21 Why would such languages
be problematic for the Forward Learner? One idea is that the prefix
tree’s inherent left-right bias fails to distinguish the necessary states,
and this occurs more commonly in languages analysable with a
metrical unit at the right word edge. If this were the case, the problem
is not with the generalisation procedure per se, but rather with the
inherent left-right bias of the prefix tree. Below I propose another way the
input to the learner can be represented as a finite-state acceptor: suffix
trees.

6.8 Suffix trees

If the input were represented with a SUFFIX TREE, then the structure ob-
tained has the reverse bias, a right-to-left bias. Like a prefix tree, a suffix
tree is a finite-state representation of the input: it accepts exactly the
words from which it was built and nothing else. A suffix tree is structured
differently from a prefix tree, however, because each state now represents
a unique suffix in the sample instead of a prefix. Whereas a prefix tree is
forward-deterministic, a suffix tree is reverse-deterministic. A suffix tree
can be constructed in terms of a prefix tree, given some sample. This

20 For example, n-gram-based learners cannot learn unbounded patterns, unless
augmented with a priori projections (Hayes & Wilson 2008).

21 According to Walker (2000), the Kashmiri data comes from Kenstowicz (1993),
citing Bhatt (1989).
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procedure runs as follows. Given a sample of words, build a prefix tree
reading each word in reverse. Since the resulting prefix tree accepts exactly
the reverse of each word in the sample, reverse this tree by changing all
final states to start states and all start states to final states, and changing the
direction of each transition. The resulting acceptor is a suffix tree, and
accepts exactly the words in the sample.
Figure 14 shows the suffix tree for the words with eight or fewer syl-

lables which obey the stress pattern of Asmat.

The structure of the suffix tree of this representation is very different from
the structure in the prefix tree shown in Fig. 10. Yet both accept exactly
the same (finite) set of words. Because they have different structures, the
states in a suffix tree may have different neighbourhoods than the states in
a prefix tree. Consequently, the generalisations acquired by merging states
with the same neighbourhoods may be different. In the case of Asmat, the
language obtained by merging same-neighbourhood states in the suffix
tree is the same as the one returned by merging same-neighbourhood
states in the prefix tree – it is the target language. But in the case of Lower
Sorbian, the language obtained by merging same-neighbourhood states
(in the suffix tree) is exactly the target language. In other words, this
procedure avoids the overgeneralisation that the Forward Learner makes
(again, see Heinz 2006 for details).
The learner which merges same-neighbourhood states in the suffix tree

is called the Backward Neighbourhood Learner (BL). This learner
identifies 96 of the 109 distinct patterns in the database, 82 of which the
FL also identifies. As in the case of the FL, the error cases are ones of
overgeneralisation. However, unlike the FL’s errors, these occur pre-
dominantly in languages which are left-edge based.
Of course it is desirable to have a learner which does not know in ad-

vance whether to use a prefix or suffix tree. The FBL below is one such
learner.

6.9 The Forward Backward Neighbourhood Learner

The FBL is very simple. LetMnd be the function which maps an acceptor
to the acceptor obtained by merging same-neighbourhood states. Let PT
and ST denote functions which map a finite sample to the prefix tree and
suffix tree respectively, which accepts exactly the given sample. The
learner simply applies Mnd to the prefix and suffix tree representations of
the samples and intersects the results.
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Suffix tree for Asmat words of eight syllables or fewer.
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(14) Algorithm 2: The Forward Backward Neighbourhood Learner
Input: a positive sample S
Output: an acceptor A
Let A1=Mnd(PT(S))
Let A2=Mnd(ST(S))
Let A=A1 ú A2 and output acceptor A 

The product (X) of two acceptorsA and B is also called the intersection of
two machines, because this operation results in an acceptor which only
accepts words accepted by both A and B (Hopcroft et al. 2001). In other
words, L(AXB)=L(A)8L(B). This learner succeeds on 100 of the 109
patterns (413 of 422 languages), a considerable improvement over the
Forward and Backward Learners. Appendix A provides these results,
along with those of the BL and FL. The following discussion below ad-
dresses why the learner works, and compares the learnable and unlearnable
patterns to the attested typology.

7 Discussion

7.1 Basic reasons why the FBL works

The reason the FBL succeeds in more cases than the FL and BL is simple:
intersection preserves the robust generalisations. The robust generali-
sations are the ones made by merging states in both the prefix and suffix
trees. Overgeneralisations that are made by the FL are not always made by
merging same-neighbourhood states in the suffix tree. Consequently, such
overgeneralisations do not survive the intersection process. Likewise, it is
also true that overgeneralisations made by merging same-neighbourhood
states in the suffix tree are not always made in the prefix tree.

For example, recall that the pattern obtained by the FL for Lower
Sorbian is an overgeneralisation – words with four or more syllables are
stressed in two ways: primary on the initial and secondary on the penult,
or simply primary on the initial (e.g. both TsSs and Tsss are generated).
However, the pattern obtained by the BL is exactly the target pattern
which requires secondary stress on the penult in words with four or more
syllables. The intersection cuts out the overgeneralisationmade by the FL.

However, it is the generalisation strategy itself – the merging of same-
neighbourhood states – which is the real reason for the algorithm’s
success. Consider again the FL. By merging states with the same neigh-
bourhood, the algorithm guarantees that its output is neighbourhood-
distinct. Similarly, when the same-neighbourhood states are merged
in the suffix tree, the resulting acceptor is neighbourhood-distinct.
The learner – by merging same-neighbourhood states – generalises to
neighbourhood-distinct patterns. Thus if people generalise similarly, it
explains why nearly all stress patterns are neighbourhood-distinct.
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There is one caveat, however. As explained in w4.4, the class of neigh-
bourhood-distinct languages is not closed under intersection. Thus when
the Forward Backward Neighbourhood Learner intersects the two ac-
ceptors obtained by merging same-neighbourhood states in the prefix and
suffix trees, the resulting language is not guaranteed to be neighbourhood-
distinct. Little is understood about what additional properties are
necessary to ensure that neighbourhood-distinctness survives the inter-
section process. Whatever those properties are, they appear to be in play
here. The patterns obtained via the intersection process in the current
study produced a tail- or head-canonically neighbourhood-distinct pattern
for every pattern in the study (except Ashéninca; Payne 1990).

7.2 Unlearnable unattested patterns

It is also interesting to note that most unattested patterns cannot be
learned by the FBL. Intuitively, this follows from the fact that neither the
FL nor BL can ever learn a non-neighbourhood-distinct pattern (of which
there are infinitely many).
For example, logically possible unattested stress patterns such as those

which place stress on every fourth, fifth, sixth or nth syllable cannot be
learned. To see why, consider again the acceptor in Fig. 4, which gen-
erates the logically possible stress pattern which assigns stress to the initial
syllable and then every fourth syllable. The reason that this pattern cannot
be learned by the FBL is because states 2 and 3 have the same neigh-
bourhood. Consequently, neither the FL nor the BL could ever arrive at
this pattern by merging same-neighbourhood states, since states 2 and 3
(or more precisely, their corresponding states in the prefix and suffix trees)
would always be merged. Furthermore, since this overgeneralisation is
made by both FL and BL learners, it survives the intersection process.
Thus the result obtained by the FBL is that secondary stresses must occur
at least two syllables apart. In a sense, the learner fails because it cannot
distinguish ‘exactly three’ from ‘at least two’. Thus, the idea that
‘ linguistic rules cannot count past two’ (Kenstowicz 1994: 597) is a direct
consequence of the way the FBL generalises. Specifically, it is a conse-
quence of generalising by merging same-neighbourhood states.
Albert Einstein is claimed to have said: ‘Many of the things you can

count, don’t count. Many of the things you can’t count, really count’. In
the context of language learning, this quotation has new meaning, because
not being able to count really matters. Learners that cannot count are
unable to make certain distinctions, and this will lead to the acquisition of
certain types of patterns, but not others.
It is not immediately obvious that the notion of locality ought to be

sufficient for learning any stress patterns at all. This paper has shown that
a particular formulation of an a priori notion of locality can make a sig-
nificant contribution to language learning. Thus, at the very least, the
FBL predicts that logically possible stress patterns like the quaternary one
above should be significantly more difficult to learn than ternary or binary
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patterns. Whether children or adults behave as the FBL predicts – which
can conceivably be investigated in artificial language learning exper-
iments – is an open question.

7.3 Unlearnable attested patterns

In this section, I discuss the nine languages which the FBL fails to learn,
which constitute a direct challenge to the viability of Hypothesis 2. Recall
that the learner fails if the acceptor obtained does not generate exactly the
same language as the target one. One question to keep in mind throughout
this discussion is the extent of the difference between the obtained patterns
and the target ones.

In every case the FBL fails because it overgeneralises. Thus for certain
word types, although the grammar obtained by the learner places stress in
the correct positions, it can also place stress in other ways. In other words,
the learner allows a certain degree of optionality. This happens because
there are two states which are merged which should not be. In other
words, the learner does not distinguish phonological environments where
it should have. To make it more concrete than this requires careful
examination of the canonical acceptors and the prefix and suffix trees, and
space and time prohibit such an extended discussion. Therefore in what
follows, I only make a few observations.

Two of the languages for which it fails, Içu± Tupi and Hindi (in
Kelkar’s analysis), are not canonically neighbourhood-distinct, and are
discussed in w4.6.

Mingrelian (Klimov 2001) is a neighbourhood-distinct pattern de-
scribed as placing primary stress initially and secondary stress on the
antepenult. The FBL fails because it cannot distinguish the sequence of
two unstressed syllables at the end of the word from similar sequences in
the middle of the word.

The stress patterns of Palestinian Arabic (Brame 1974), Cyrenaican
Bedouin Arabic (Mitchell 1975: 75–98), Negev Bedouin Arabic
(Kenstowicz 1983) and Hindi (in the analysis of Fairbanks 1981) are not
learnable by this learner, though they are neighbourhood-distinct. It is
striking that these are precisely the patterns in the typology that have been
analysed with extrametrical feet (Hayes 1995), suggesting that the FBL
cannot identify in the limit from positive data the class of patterns de-
scribable with extrametrical feet.

Ashéninca (Payne 1990) and Pirah± (Everett 1988) are two other
patterns which are neighbourhood-distinct but also beyond the reach
of the FBL. These patterns are well-known prominence systems (Hayes
1995). However, I suspect the reason the FBL fails has less to do with
this than with the fact that both of these languages, like the ones above,
can place stress on the third syllable (or the fourth in the case of
Ashéninca) from the right edge in particular circumstances. It seems that
the FBL can learn only some patterns of this type (e.g. Walmatjari ;
Hudson 1978).
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The fact that the FBL fails for stress patterns that are describable with a
rule of foot extrametricality (Palestinian Arabic, Cyrenaican Bedouin
Arabic, Hindi per Fairbanks; see Hayes 1995) shows that not all patterns
describable in standard metrical theory (Hayes 1995) can be learned by the
FBL.22 The source of this conflict is not well understood except at the
most superficial level : the locality conditions imposed by the FBL learner
are not met in all patterns describable with extrametrical feet. This ought
to be investigated more closely in future research to obtain a better
understanding.
Since nine of the stress patterns are not learned by the algorithm, we

might conclude that Hypothesis 2 is incorrect. However, such a con-
clusion is premature for two reasons: the patterns obtained by the learner
do not differ greatly from the described patterns, and the described
patterns for which the learner fails are ones where consensus – if it
exists – has formed over a somewhat small data set.
One instructive case comes from Mingrelian (Klimov 2001), which

places primary stress on the initial and secondary stress on the antepenult.
A similar pattern is found in Walmatjari (Hudson 1978), which places
stress on the penult in words of four syllables (presumably to avoid a
clash) and optionally places stress on the penult or antepenult in longer
words. The pattern of Walmatjari is learnable because the states in the
acceptor which generate the pattern are made distinct in the suffix tree by
the optional penult pattern that occurs in longer words. Interestingly,
these are the only two QI dual languages in the typology which place
primary stress close to the left word edge and secondary stress on the
antepenult. Furthermore, if Mingrelian places secondary stress on the
penult in trisyllabic words (or quadrisyllabic words to avoid a clash), even
optionally, the stress pattern is now learnable (as the relevant states are
now distinct in the suffix tree). However, further descriptive research is
needed, as Klimov’s (2001) study makes no mention of secondary or op-
tional stress, or whether Mingrelian permits a clash in words with four
syllables.
In other cases, the differences between the acceptor obtained by the

FBL and the target pattern are slight. Consider Içu± Tupi, for example:
the FBL acceptor predicts that secondary stress may fall optionally on the
penult instead of the antepenult in words five syllables or longer. In

22 It is worth asking if there are other stress patterns that are predicted to exist in
metrical stress theory (or any of its derivatives) that are either non-neighbourhood-
distinct or non-learnable by the FBL. This is a project beyond the scope of this
paper. One way to proceed might be to see whether the stress patterns generated in a
factorial typology of OT constraints are learnable by the FBL. Proposals include
Eisner (1998), Tesar (1998), Kager (1999) and Hyde (2002).
One potentially problematic pattern is one where alternating stress occurs on

both sides of a primary stress. Different states for the alternating pattern are re-
quired to keep track of whether the primary stress has been seen, but the states
themselves may have the same neighbourhoods. This is like the pattern in Yidi^,
except that Yidi^ is neighbourhood-distinct and FBL learnable, because of the
distinction it maintains between heavy and light syllables.
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Ashéninca (Payne 1990), the FBL predicts that words ending with a long
vowel followed by three syllables with a high front vowel, like attested
[pma:kiriti] ‘ type of bee’, could have two pronunciations: reported
[pma:kiriti], but also [mma:kipriti]. According to Fairbanks, stress in Hindi
falls on the initial syllable in disyllabic words. The only overgeneralisation
made by the FBL is in disyllabic words ending with a superheavy syllable:
the initial syllable may be stressed or the superheavy syllable may be
stressed (but not both).

The idea that the earlier descriptions are inaccurate does not mean
that the actual patterns are completely different from those described
by previous researchers. In fact, the patterns can differ minimally in in-
teresting ways, and even include the same set of words that earlier re-
searchers used to develop their own hypotheses. The two ways that I am
suggesting here are (i) in certain words there will be optionality and (ii)
in languages currently described as lacking secondary stress there may in
fact be secondary stress. Because theory helps direct the course of in-
vestigation, it is plausible that these might have been overlooked (or in
the case of secondary stress, difficult to detect) in earlier hypothesis for-
mation.23

Not all the overgeneralisations made by the learner may be as plausible
as the above discussion might suggest. For example, the only over-
generalisation made by the FBL when learning Kelkar’s description of
Hindi occurs in words of five syllables or longer. However, some of the
optionally acceptable forms include no primary stress. Instead, secondary
stress occurs where primary stress should fall (in addition to the positions
where it is expected). The FBL acceptor obtained for Pirah± can place
stress according to the Pirah± pattern or in some words optionally on
the final syllable. Descriptions of Negev Bedouin Arabic say that if the
final syllable is not superheavy and the penult is heavy, stress falls on the
penult. However, the acceptor obtained by the FBL accepts words with
stress on the penult or final syllable when the last two syllables are heavy
(but not both). The overgeneralisations in Palestinian Arabic involve only
words at least four syllables in length whose penult and antepenult are
light, and in Cyrenaican Bedouin Arabic the overgeneralisation occurs in
certain words of three syllables or more. In these cases, the degree of
optionality appears greater than optional processes in phonology admit.
Nonetheless, a careful review of the descriptions is warranted, as is de-
veloping a deeper understanding of the nature of the FBL and neigh-
bourhood-distinctness.

23 We might also expect that removing secondary stress from some attested patterns
may also have an effect. In fact, this makes some learnable patterns unlearnable. For
example, it was discovered that if secondary stress is excluded from the grammars of
Klamath (Barker 1963, 1964, Hammond 1986) and Seneca (Chafe 1977, Stowell
1979) then the FBL fails to learn these grammars. It fails because, in the actual
grammars of Klamath and Seneca, the presence of secondary stress distinguishes the
neighbourhoods of certain states of the prefix and/or suffix trees.
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Finally, note that if the FBL is modified so that it only merges states
with the same 2-2 neighbourhoods, then all overgeneralisation is elim-
inated – the FBL successfully learns every pattern in the typology.24

7.4 Learnable unattested patterns

The FBL can also learn many unattested patterns that are unnatural
and not present in the typology. However, the learners developed here
primarily examine the contribution that locality can make to learning.
This contribution is significant – it is a sufficient property for learning to
occur. However, in no way should we expect locality to be the only factor
in learning stress patterns, or the only factor which plays a role in de-
termining the typology of human phonotactic patterns.
For example, consider the logically possible stress pattern ‘leftmost

light, otherwise rightmost’. To my knowledge, no such stress pattern is
attested. Whether or not humans can learn such a pattern is an open
question, and, as far as I know, there is no experimental evidence bearing
on it. However, even if it were shown that ‘ leftmost light, otherwise
rightmost’ is more difficult to learn than the more natural ‘ leftmost heavy,
otherwise rightmost’ pattern (providing evidence for our intuitions
that the gap in the typology is systematic and not accidental), the fact
is plausibly due to considerations separate from locality (e.g. the Weight-
to-Stress Principle; Prince 1990).

8 Incremental learning

The learners presented above were batch learners, and it was shown that
for particular input samples, those learners can return the target pattern
from limited data in most instances. This section shows how the learners
can be modified to become iterative, and shows that these iterative learners
converge to the correct grammar.
I begin this discussion by pointing out one fact about the input samples

described earlier. Making the samples consist of words from one to n
syllables guarantees in prefix and suffix tree construction that many states
fully realise their possible outgoing transitions. I will call a state in a
prefix or suffix tree which has every possible incoming and outgoing path
realised (as determined by the sampling language) SATURATED. As illus-
tration, consider the prefix tree for the ‘ leftmost heavy, otherwise right-
most’ words in Table I shown in Fig. 15, where shading indicates final
states. Because of the kind of sample used to construct the trees, every
non-terminal state in Fig. 15 is saturated.
When we consider iterative learners, it is not the case that all states

up to a certain depth in the prefix and suffix trees will be saturated. For
example, if the sample in Table I for the ‘leftmost heavy, otherwise

24 Though one undesirable consequence of 2-2 neighbourhood learning is that pat-
terns describable with feet with four syllables are predicted to exist.
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rightmost’ pattern excluded word typesHL,HLH,HLHH,HLHL, then
the branch in the prefix tree from state 12 to 23 would be missing, and
state 12 would be non-final. If LLF, LLH, LLHL, LLHH were also
excluded, then the branches from states 4 to 5 and 4 to 10 would also be
missing. For such a sample, the Forward Learner would merge states 4
and 12, since they would both be non-final and non-start, and each would
have only one incoming transition, labelled L, and one outgoing transition,
also labelled L. Such amerge would be an error, since the resulting pattern
obtained would include forms like HLLH.

This suggests that although the learner may obtain the correct grammar
when the sample includes all words of length equal to or less than some n,
it does not necessarily succeed for intermediate-sized samples – i.e. those
samples which include some proper subset of words of length less than
or equal to n. However, it can be shown that if the sample is sufficient
(i.e. certain states in the trees are saturated), then same-neighbourhood
merging of states in the prefix or suffix tree of any larger sample returns an
acceptor which recognises a language which is a superset of the target
language (see Appendix B). Consequently, the following iterative pro-
cedure provably converges to the target grammar if it has a sufficient
sample.

I illustrate the idea with the Forward Neighbourhood Learner. Imagine
that it obtains one word from the target pattern at each time step, and at
each time step the learner is allowed to make a hypothesis. Recall that the
learner converges if (i) there is some time step t where the learner hy-
pothesises a grammar generating the target pattern, (ii) for all future time
steps, the learner’s hypothesis stays the same and (iii) t can be obtained
after some finite number of time steps.
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Prefix tree of the ‘leftmost heavy, otherwise rightmost’ words in Table I.
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We modify the FL by giving it a memory: essentially, it can maintain
the prefix tree in one memory bank, and maintain its most recent hy-
pothesis H in another. At the next time step, when a word w is presented,
the word is added to the prefix tree. The learner keeps this tree in memory
but also merges same-neighbourhood states to obtain another acceptor
HD. If w is not accepted by the most recent hypothesis H, then H is dis-
carded and replaced withHD, and we move on to the next time step. On the
other hand, if w is accepted by H, then the learner must choose between
the current hypothesis HD and H. Since H and HD are both acceptors, it is
possible to check to see whether one pattern is a subset of the other,25 in
which case the acceptor representing the smaller pattern is chosen.26

As an illustration, in the case above, suppose that the current hypothesis
H the learner obtains is based on the sample described, and so incorrectly
accepts words like HLLH. If the next word heard by the learner is HLH,
then the updated prefix tree now distinguishes states 12 from 4, and they
will not be merged. Since H does not accept HLH, the learner chooses
the new hypothesisHD obtained by merging same-neighbourhood states in
the updated prefix tree. Similarly, if the next word is HL, then state 12 is
saturated, and the new hypothesis HDD, which merges state 12 with 15 and
19 to make the right generalisation, will be selected.
It is easy to show that this iterative learner eventually converges to the

target patterns the batch learner succeeds on, no matter the order of the
presentation of the learner’s input. This is because in these cases there is a
finite sample such that the prefix tree contains states which are saturated
up to a certain depth and that merging same-neighbourhood states in this
prefix tree returns an acceptor equal to the target pattern.27 Therefore, by
the theorem in Appendix B, merging same-neighbourhood-states in the
prefix tree built from any larger sample returns a language which is a
superset of the target pattern. Thus, at this point, the iterative learner
above rejects any new hypothesis and keeps the hypothesised grammar
that generates the target language. Therefore we have exact identification
in the limit.28

The incremental learner above requires maintaining the prefix tree in
its memory; as such, it is not a memoryless online learner. However, the
prefix tree is really a representation of the lexicon, which is needed inde-
pendently. The only controversial aspect is the use of suffix trees, which

25 One pattern is a subset of another provided the intersection of the complement of
one acceptor and the other acceptor is empty.

26 If neither is a subset, it does not matter which is chosen. This case can (provably)
only happen finitely many times because there will be some point in the text after
which one acceptor will always be a subset of the other.

27 The reason the learner is guaranteed to see this sample after finitely many time steps
is the sample size is finite and each word in the sample is guaranteed to occur at
some time step (because the learner is given a positive text from the target language;
see Gold 1967).

28 Admittedly, we are in the strange position of not knowing exactly what class of
languages is being identified in the limit. See Heinz (2007, 2008) for early results
towards this end.
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provides an additional, unorthodox representation of the lexicon. A re-
viewer points out that right-to-left representations are undesirable from a
processing point of view, which always proceeds temporally, i.e. from left
to right. This raises a real question, which has not been investigated to my
knowledge, which is how undeniably right-to-left patterns such as Asmat
in (3b) are processed in time. What the FSA representation makes clear
is that such patterns are more usefully dealt with in right-to-left terms
(i.e. represented with reverse deterministic FSAs, obtained from merging
states in suffix trees, etc.). This leaves open the question of how patterns
like Asmat can be reconciled with left-to-right processing models.

9 Comparison to other learning models

Here I compare the FBL to the ordered cue-based learner in the
Principles and Parameters framework (Dresher & Kaye 1990, Gillis et al.
1995), a perceptron-based learner (Gupta & Touretzky 1994) and an OT-
based learner (recursive constraint demotion with robust interpretive
parsing) (Tesar 1998, Tesar & Smolensky 2000). Like the FBL, each of
these learning models was evaluated with respect to a typology of stress
patterns. However, exact comparisons are not possible because each
learner was tested on a different set of stress patterns with different kinds
of input samples.

There are other learning models which tackle stress patterns, but be-
cause those models have different goals, I exclude them from comparison.
For example, Pearl (2007) applies a stress learner designed to handle noise
and lexical exceptions to English. While this work is interesting and in-
sightful, it differs from the other learners above, which are evaluated ac-
cording to some collected typology of languages, and which ignore noise
and lexical exceptions in the input to their learners.

Gillis et al. (1995) implement the cue-based model presented in Dresher
& Kaye (1990). The ten parameters yield a language space consisting of
216 languages. The language space is based on actual stress patterns but
does not include all attested stress types. The learner discovers parameter
settings compatible with 75% to 80% of these languages when provided a
sample of all possible words from one to four syllables. As Dresher (1999)
notes, whether accuracy increases if longer words are admitted into the
sample is unknown, but it is perfectly conceivable (and in my opinion
quite likely).

Gupta & Touretzky (1994) present a perceptron with 19 stress patterns,
of which it successfully learns 17. The training input consists of a sample
of all words of seven syllables or fewer, and is presented to the perceptron
at least 17 times. This is the smallest number that results in successful
learning of any of the 19 patterns (e.g. the perceptron learned Latvian
(Fennell &Gelsen 1980), a QI single system with word-initial stress, when
presented with such training input). The largest number of presentations
of the sample is 255 (for Lakota (Boas & Deloria 1941), a QI single system
which places stress on the peninitial syllable). If the perceptron is given a
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training sample of shorter words, it is able to learn the two patterns which
it otherwise fails to learn.
Tesar & Smolensky (2000) report twelve constraints, which yield a

typology of 124 languages. Like the language space in the P&P model
above, this is an artificial language space based on actual languages. If the
initial state of the learner is monostratal – that is, no a priori ranking – then
the learner succeeds on about 60% of the languages. When a particular
initial constraint hierarchy is adopted, the learner achieves~97% success.
The FBL is certainly simpler than the P&P and OT learners in the

sense that it uses fewer a priori parameters. How exactly these a priori
parameters are to be counted is not clear, since the models are not on a
level playing field. But the FBL, which has no a priori P&P parameters or
OT constraints, is certainly much simpler. The speed at which the FBL
converges (measured by sample size) appears slower than both of these
models; this is almost certainly related to the fact that the hypothesis space
of the FBL is larger.
When the FBL is compared to the perceptron learner, it is less clear

which is the simpler model. However, the perceptron learner is very much
slower than the FBL, as it requires repeated presentations of words.29

However, the main advantage the FBL has over the other models is that
the locus of explanation of some aspects of the typology of stress patterns
now resides in the learning process. In fact (with the one caveat mentioned
earlier) we can say that the reason stress patterns are neighbourhood-
distinct is because learners generalise from their experience in the way
predicted by the FBL. In this way, the FBL is more explanatory than the
other models, where the locus of explanation lies in the parameters or
constraints (which may be derived from other principles or which may be
stipulated), or is obfuscated.

10 Conclusion

Explaining how children infer grammatical rules based on their limited
finite experience is one of the central goals of modern linguistics. Because
children and languages are complex, and many factors influence acqui-
sition – physiological, sociolinguistic, articulatory, perceptual, phonologi-
cal, syntactic, semantic – a simpler question is often asked: how could
anything learn some aspect of language from the kinds of evidence to
which children are exposed? In this paper, the aspect under investigation
is the set of stress rules found in the world’s languages. However, the
learning problem was factored even further: what contribution can a
particular inductive principle – here a particular notion of locality – make
to learning stress rules?
To answer this question, an examination of each stress pattern – rep-

resented by a finite-state acceptor – in two recent surveys (Bailey 1995,

29 This should not necessarily be seen as a disadvantage. The perceptron does not have
a memory to store words in the same way that these other learners do.
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Gordon 2002), which yield a typological survey of 422 stress languages
and 109 distinct stress patterns, revealed that 107 of them are tail- or head-
canonically 1-1 neighbourhood-distinct. In other words, the grammars of
these stress patterns refer to phonological environments (states) that are
uniquely defined by local properties. Furthermore, many logically possible
unattested stress patterns are not 1-1 canonically neighbourhood-distinct.
Thus neighbourhood-distinctness approximates the attested typology in a
non-trivial way. This leads to one hypothesis put forward in this paper,
that all phonotactic patterns (of which stress patterns form a subclass) are
canonically 1-1 neighbourhood-distinct.

Neighbourhood-distinctness is not only interesting because it is a novel
formulation of locality in phonology and a (near) universal of attested
phonotactic patterns, but also because it naturally provides an inductive
principle learners can use to generalise. The Forward Backward
Neighbourhood Learner, which merges same-state neighbourhoods in
prefix and suffix trees correctly learns 100 of the 109 stress patterns. This
learner is interesting for three reasons. First, it is unable to learn many
non-neighbourhood-distinct patterns, such as logically possible but un-
attested stress patterns that are describable with feet with four or more
syllables. Indeed, it was discovered that learners which generalise in
this way are, in a sense, unable to count past two, thereby deriving the
non-counting nature of phonological patterns from this notion of local
environment. Secondly, the learner’s use of the reverse-deterministic
suffix trees appears particularly suited for right-to-left based stress
patterns. Finally, the learner shows that a formulation of locality in
phonology makes a significant contribution to learnability, as this factor
alone is sufficient for identification in the limit from positive data of
almost all stress patterns in the typology. Since investigation of the
‘failure’ cases revealed that the patterns obtained by the learner are either
slight overgeneralisations or plausible optional stress patterns involving
secondary stress, another hypothesis was put forward: stress patterns fall
within the range of the FBL learning function. We conclude that if human
learners generalise in the way predicted by the FBL, it can explain certain
aspects of the typology of the attested stress patterns.

These results lead to new formal, typological, descriptive and experi-
mental questions for researchers, some of which have already been men-
tioned.

(i) In OT, what are the typological consequences of requiring con-
straints in Con to be neighbourhood-distinct?

(ii) Are there additional characterisations of neighbourhood-distinct
patterns and languages learnable by the FBL, and what are they?

(iii) As the languages which contest Hypotheses 1 and 2 are more care-
fully investigated, do the challenges hold up?

(iv) As we enlarge the stress typology, do additional stress patterns of
languages conform to Hypotheses 1 and 2, or not?

(v) Do adults or children learn neighbourhood-distinct patterns more
easily than non-neighbourhood-distinct patterns?
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In addition to these questions, I would like to mention two other av-
enues of research that appear fruitful. First, where do stress patterns fall in
the Subregular Hierarchy? This is a hierarchy which categorises regular
languages according to their inherent complexity, much like the Chomsky
Hierarchy does for languages in general. McNaughton & Papert (1971)
show that various independent measures of complexity of regular sets – in
automata-theoretic terms, in terms of regular expressions and in terms of
logic – coincide exactly to define this hierarchy. Some relevant recent re-
sults can be found in Edlefsen et al. (2008) and Graf (to appear).
More generally, Rogers & Pullum (2007) argue that the Subregular

Hierarchy provides fertile ground for investigating the cognitive abilities
of humans and other species. They suggest language-learning experiments
be performed (on both children and adults, including those from other
species), to see whether the subjects can learn patterns which differ ac-
cording to those various degrees of complexity. Given that stress patterns
(and phonotactic patterns in general) are describable as regular sets, it is
reasonable to make them one focus of the inquiry proposed by Rogers &
Pullum. Artificial language learning experiments such as poverty of the
stimulus experiments (Onishi et al. 2002, Chambers et al. 2003) appear
capable of shedding light on this kind of question.
The second goal is to determine more precisely what kind of sample is

needed to guarantee correct generalisation by the FBL. It is possible that
the sample size needed to identify the pattern exactly in the limit requires
more word types than what we may reasonably expect to find in a child’s
linguistic environment. If this is indeed the case, it is likely to lead to
the discovery of additional factors that plausibly play a role in human
language learning.
Gildea & Jurafsky (1996) provide an example of the kind of research

that this last line of inquiry can lead to. Realising that the English rule of
flapping can be represented with a subsequential transducer – a particular
kind of finite-state machine – they asked whether the flapping rule can be
discovered from underlying/surface pairs based on words found in the
Carnegie Mellon University English Pronouncing Dictionary. This question
is relevant because Oncina et al. (1993) show that the rules representable
by subsequential transducers are identifiable in the limit from positive
data (here, a sequence of underlying/surface pairs). On the other hand,
Gildea & Jurafsky show that the flapping rule is not inferred from the
50,000 underlying/surface pairs based on the dictionary.30 They go on to
add phonologically motivated inductive principles to the algorithm given
by Oncina et al. and show the rule obtained from the same input sample is
much closer to the target flapping rule. This example reinforces the point
that there are multiple factors in the learning process and that studying the
contributions each particular factor makes to learning will lead to new

30 These are not conflicting results ; it just means the input sample needed for exact
identification in the limit is not present in the particular sample used by Gildea &
Jurafsky, which arguably offers the learner a richer linguistic environment than that
which children are exposed to.
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insights. In this case, it also remains an open question how these ad-
ditional factors reduce the size of the necessary input sample for correct
generalisation to occur.31
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