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27.1 INTRODUCTION 

A computer is something that computes, and since modern theories of cognition assume 
that humans make computations when processing information, humans are computers. 
What kinds of computations do humans make when they learn languages? 

Answering this question requires the collaborative efforts of researchers in 
several different disciplines and sub-disciplines, including language science (e.g. 
theoretical linguistics, psycholinguistics, language acquisition), computer science, 
psychology, and cognitive science. The primary purpose of this chapter is explain 
to developmental psycholinguists and language scientists more generally the main 
conclusions and issues in computational learning theories. This chapter is needed 
because 

I. the mathematical nature of the subject makes it largely inaccessible to those with
out the appropriate training (though hopefully this chapter shows that the amount 
of training required to understand the main issues is less than what is standardly 
assumed); 

2. the literature contains a number of unfortunate, yet widely cited, misunderstand
ings of the relevance of work in computational learning for language learning. 
I will try to clarify these in this chapter. 
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Experience Languages 

FIGURE 27.1 Learners are functions from experience to languages. 

The main points in this chapter are: 

i. The central problem oflearning is generalization. 
2. Consensus exists that, for feasible learning to occur at all, restricted, structured 

hypothesis spaces are necessary. 
3. Debates pitting statistical learning against symbolic learning are misplaced. To 

the extent meaningful debate exists at all, it is about the learning criterion; i.e. 
how "learning" ought to be defined. In particular, it is about what kinds of experi
ence learners are required to succeed on in order to say that they have "learned" 
something. 

4. Computational learning theorists and developmental psycholinguists can profit
ably interact in the design of meaningful artificial language learning experiments. 

In order to understand how a computer can be said to learn something, a definition 
oflearning is required. Only then does it become possible to ask whether the behavior 
of the computer meets the necessary and sufficient conditions of learning required by 
the definition. Computational learning theories provide definitions of what it means to 
learn and then asks, under those definitions: What can be learned, how and why? Which 
definition is "correct" of course is where most of the issues lie. 

At the most general level, a language learner is something that comes to know a lan
guage on the basis of its experience. All computational learning theories consider learn
ers to be functions which map experience to languages (Figure 27.1). Therefore in order 
to define learning, both languages and experience need to be defined first. 

27.2 LANGUAGES, GRAMMARS, 

AND EXPERIENCE 

27.2.1 Languages 

Before we can speak of grammars, which are precise descriptions of languages, it will 
be useful to talk about languages themselves. In formal language theory, languages 
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are mathematical objects which exist independently of any grammar. Tuey are usually 
defined as subsets of all logically possible strings of finite length constructible from a 
?iven .alphabet. This can be generalized to probability distributions over all those strings, 
m which case they are called stochastic languages. 

The alphabet can be anything, so long as it is unchanging and finite. Elements of the 
alphabet can represent IPA symbols, phonological features, morphemes, or words in 
the dictionary. If desired, the alphabet can also include structural information such as 
labeled phrasal boundaries. It follows that any description of sentences and words that 
language scientists employ can be described as a language or stochastic language with a 
finite alphabet.1 

It is useful to consider the functional characterizations of both languages and stochas
tic languages because they are the mathematical objects of interest to language scientists. 
As functions, a language L maps strings to one only if the string is in the language and all 
other logically possible strings are mapped to zero. Stochastic languages, as functions, 
map all logically possible strings to real values between zero and one such that they sum 
to one. Figure 27.2 illustrates functional characterizations of English as a language and 

as a stoc~astic l.~gua?e. The functional characterization of English as a language only 
makes bmary d1stmctions between well-formed and ill-formed sentences. On the other 
h'.1°~' ~e functional characterization ofEnglish as a stochastic language makes multiple 
d1stmct10ns. In both cases, the characterizations are infinite in the sense that both assign 
nonzero values to infinitely many possible sentences. This is because there is no princi
pled upper bound on the length of possible English sentences. 2 

How stochastic languages are to be interpreted ought to always be carefully articu
lated. For example, if the real numbers are intended to indicate probabilities of occur
rence then the functional characterization in Figure 27.2 says that "John sang" is twice 
as likely to occur as "John and Mary sang" On the other hand, if the real numbers are 
supposed to indicate well-formedness, then the claim is that "John sang" is twice as well
formed (or acceptable) as "John sang and Mary danced"3 

As explained in the next section, from a computational perspective, the distinction 
between stochastic and non-stochastic languages is often unimportant. I use the word 
pattern to refer to both stochastic and non-stochastic languages in an intentionally 
ambiguous manner. 

1 
Languages with infinite alphabets are also studied (Otto 1985), but they will not be discussed in this 

chapter. 

2 
If there were, then there would be a value n such that "John sang and John sang would be well-

n-l times 

fi db "J hn and John sang,, orme ut o sang . would be as ill-formed as "John and sang:' ,.,..,.. 
3 

There is a technical issue here. If there are infinitely many nonzero values, then it is not always the 
case that ~ey can be normalized to yield a well-formed probability distribution. For example, if each 
sentence is equally acceptable, we would expect a uniform distribution. But the uniform distribution 
cannot be defined over infinitely many elements since the probability for each element goes to zero. 
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English as a language 

John sang -+ 1 

John and sang -+ o 

John sang and Mary danced -+ 1 

English as a stochastic language 

John sang -+ i.2 x 10- 12 

John and sang -+ o 

John sang and Mary danced -+ 2-4 x 10- 12 

FIG URE 2 7. 2 Fragments of functional characterizations of English as a language and 

a stochastic language. 

27.2.2 Grammars 

Grammars are finite descriptions of patterns. It is natural to ask whether every conceiv
able pattern has a grammar. The answer is No. In fact most logically possible patterns 
cannot be described by any grammar at all of any kind. There is an analogue to real num
bers. Real numbers are infinitely long sequences of numbers and some are unpredictable 
in an important kind of way: no algorithm exists (nor can ever exist) which can gener
ate the real number correctly up to some arbitrary finite length; such reals are called 
uncomputable. Sequences for which such algorithms do exist (liken) are computable. 

More concretely, a real number is computable if and only if a Turing machine 
exists which can compute the exact value of the real number to any arbitrary degree 
of precision (and so can always provide the nth digit in its decimal expansion). 
A Turing machine is one of the most general kinds of computing device, and, by 
the Church-Turing thesis, Turing machines can instantiate any algorithm. Turing's 
(1937) discovery was that uncomputable real numbers turn out to be the most com
mon kind of real number and so most real numbers cannot be computed by any algo
rithm! Such a result may be initially hard to understand (after all, what is an example 
of an uncomputable real number?),4 but it is the foundation for the modern study of 
computation. 

Like real numbers, most logically possible patterns cannot be described by any Turing 
machine or other kind of grammar. Grammars are algorithmic in the sense that they 
are of finite length but describe potentially infinitely-sized patterns. In this way, gram
mars are just like machines or any other computing device. The Chomsky Hierarchy 
classifies logically possible patterns into sets of nested regions (Figure 27.3). Recursively 
Enumerable (r.e.) patterns are those for which there exists a Turing machine which 
answers affirmatively when asked, for any nonzero valued strings belonging to the pat
tern, whether sin fact has a nonzero value (Turing 1937; Rogers 1967; Harrison 1978).5 

4 See Chaitin (2004). 
5 In contemporary theoretical computer science, the name "computably enumerable" is often used 

instead of"recursively enumerable:' This class is also called "semi-decidable:' 

English consonant dusters 
Cements and Keyser 1983 
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English nested embedding 
Chomsky 1957 

Kwakiutl stress 
Bach 1975 

Swiss German 
Shieber 1985 

Yoruba copying 
Kobele 2006 

Context
sensitive 

Primitive recursive 
Recursive 

Recursively enumerable 

FIGURE 27.3 The Chomsky Hierarchy with natural language patterns indicated. 

Recursive patterns are those for which a Turing machine exists, which, when asked 
what value the pattern assigns to any logically possible string, returns the right value. 6 

Therefore, language scientists which attribute the ability to discriminate well-formed 
from ill-formed sentences as part oflinguistic competence, are tacitly asserting that sen
tence patterns in natural language are recursive. Recursive patterns are also called com
putable, or Turing-computable. 

Smaller regions correspond to patterns describable with increasingly less power
ful machines (grammars). For example, the regular patterns are all those that can be 
described by machines that admit only finitely many internal states. In contrast, 
machines which generate nonregular patterns must have infinitely many internal states. 
The smallest region, the class of finite patterns, are those whose functional characteriza
tions have only finitely many sentences with nonzero values. For further details regard
ing the Chomsky Hierarchy, readers are referred to Partee et al. (1993) and Sipser (1997).7 

If the machines are probabilistic, then the stochastic counterparts of each class is 
obtained. Probabilistic machines are simply ones that may use random information 

6 
This class is also called "decidable" because for any recursive pattern, it is always possible to decide 

for any input, what its value is (o or I or som ething else). lhis is in contrast to the r.e. (or semi-decidable) 
class where the machine may not answer-and run forever-on inputs with zero values. 

7 
Harrison (1978), Hopcroft et al. (1979, 2001), and Thomas (1997) offer more technical treatments. 
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Learner 

Experience Grammars 

F 1 G URE 2 7.4 Learners are functions from experience to grammars. 

(like coin flips) while running. Stochastic recursive languages are those describable with 
probabilistic Turing machines. By definition, such machines describe all computable 
probability distributions over all possible sentences. Similarly, regular stochastic lan
guages are those describable by probabilistic machines which admit only finitely many 
states. Thus the crucial feature of regular patterns is not whether they are stochastic or 
not, but the fact they only require grammars that distinguish finitely many states. 

It is of course of great interest to know what kinds of patterns natural languages are. 
Figure 27.3 shows where some natural language patterns fall in the Chomsky Hierarchy. 
For example, phonological patterns do not appear to require grammars that distinguish 
infinitely many states unlike some syntactic patterns, which appear to require grammars 
that do.8 This distinction between these two linguistic domains is striking (Heinz and 
Idsardi 2011, 2013). 

It is also important to understand the goals of computational research of natural lan
guage patterns. In particular, establishing complexity bounds is different from hypotheses 
which state both necessary and sufficient properties of possible natural language patterns. 
For example the hypothesis that natural language patterns are mildly context-sensitive 
(Joshi i985), is a hypothesis that seeks to establish an upper bound on the complexity of 
natural language. Joshi is not claiming, as far as I know, that any mildly context-sensitive 
pattern is a possible natural language one. In my opinion, it is much more likely that pos
sible natural language patterns belong to subclasses of the major regions of the Chomsky 
Hierarchy. For example, Heinz (201oa) hypothesizes that all phonotactic patterns belong 
to particular subregular classes. I return to these ideas in section 27.5. 

Although from the perspective of formal language theory, grammars are the math
ematical objects of secondary interest, it does matter that learners return a grammar, 
instead of a language. This is for the simple reason that, as mathematical objects, gram
mars are of finite length and the functional characterizations of patterns are infinitely 
long. Thus while Figure 27.1 describes learners as functions from experience to lan
guages, they are more accurately described as functions from experience to grammars 
(Figure 27-4). 

8 For more on the hypothesis that all phonological patterns are regular Kaplan and Kay (1994); Eisner 
(1997); and Karttunen (1998). Readers are referred to Chomsky (1956) and Shieber (1985) for arguments 
concerning the nonregular nature of grammars for human syntax. 
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so 

Sl 

S2 

sn 

FIGURE 27.5 The learner's experience. 

While the distinctions in the Chomsky Hierarchy can be used to classify the compu
tational complexity of language patterns, they are much more general in the sense that 
they can be used to classify the complexity of many objects, such as real numbers, func
tions, or, as we will see, the kind of experience language learners receive in the course of 
learning. 

27.2.3 Experience 

There are many different kinds of experience learning theorists consider, but they agree 
that the experience is a finite sequence (Figure 27.5). It is necessary to decide what the 
elements S; of the sequence are. In this chapter we distinguish four kinds of experience. 
Positive evidence refers to experience where each s; is known to be a nonzero-valued 
sentence of the target pattern. Positive and negative evidence refers to experience where 
each s; is given as belonging to the target pattern (has a nonzero value) or as not belong
ing (has a zero value). Noisy evidence refers to the fact that some of the experience is 
incorrect. For example, perhaps the learner has the experience that some s; belongs to 
the target language, when in fact it does not (perhaps the learner heard a foreign sen
tence or someone misspoke). Queried evidence refers to experience learners may have 
because they specifically asked for it. In principle, there are many different kinds of que
ries learners could make. This chapter does not address these last two kinds; readers are 
referred to Angluin and Laird (1988) and Kearns and Li (1993) for noisy evidence; and to 
Angluin (1988a, 1990 ), Becerra-Bonache et al. (2006), and Tirnauca (2008) for queries. 

27.2.4 Learners as Functions 

Armed with the basic concepts and vocabulary all learning theorists use to describe tar
get languages, grammars, and experience, it is now possible to define learners. They are 
simply functions that map experience to grammars. For the most part formal learning 
theorists are concerned with computable functions. This is because an uncomputable 
learning function cannot be instantiated on any known computing device-such as a 
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human brain-and furthermore by the Church-Turing thesis it is impossible for it to be 
instantiated on any computing device. 

The characterization oflearners in this section is very precise, but it is also very broad. 
Any learning procedure can be thought of as a function from experience to grammars, 
including connectionist ones (e.g. Rumelhart and McClelland i986b), Bayesian ones 
(Griffiths et al. 2008), learners based on maximum entropy (e.g. Goldwater and Johnson 
2003), as well as those embedded within generative models (Wexler and Culicover 1980; 
Berwick 1985; Niyogi and Berwick 1996; Tesar and Smolensky 2000; Niyogi 2006). Each 
of these learning models, and I would suggest any learning model, takes as its input a 
finite sequence of experience and outputs some grammar, which defines a language or 
a stochastic language. Consequently, all of these particular proposals are subject to the 
results of formal learning theory. 

27.3 WHAT IS LEARNING? 

It remains to be defined what it means for a function which maps experiences to gram
mars to be successful. After all, there are many logically possible such functions, but 
we are interested in evaluating particular learning proposals. For example, we may be 
interested in those learning functions that are human-like, or which return human-like 
grammars.9 

27.3.1 Learning Criteria 

It is important to define what it means to learn so that it is possible to determine what 
counts as a success. The general idea in the learning theory literature is that learning has 
been successful if the learner has converged to the right language. Is there some point n 
after which the learner's hypothesis does not change (much)? Convergence can be defined 
in different ways, to which I return in the next paragraph. Typically, learning theorists con
ceive of an infinite stream of experience to which the learner is exposed so that it makes 
sense to talk about a convergence point. Is there a point n such that for all m ~ n, Grammar 
Gm~ G0 (given some definition of~)? Figure 27.6 illustrates. The infinite streams of expe
rience are also called texts (Gold i967) and data presentations (Angluin 1988b). All three 
terms are used synonymously here. 

9 This section draws on a large set oflearning literature. Readers are referred to Nowak et al. (2002) for 
an excellent, short introduction to computational learning theory. Niyogi (2006), de la Higuera (2010), 
and Clark and Lappin (2011) provide detailed, accessible treatments, and Anthony and Biggs (1992), 
Kearns and Vazirani (1994), Jain et al. (1999), Lange et al. (2008), and Zeugmann and Zilles (2008) 
provide technical introductions. I have also relied on the following research: Gold (1967); Horning 
(1969 ); Angluin (1980 ); Osherson et al. (1986); Angluin (1988b ); Angluin and Laird (1988); Vapnik (1995, 
1998); Case (1999). 
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datum The Learner¢> and its Hypotheses over time 

So ¢>((so)) = Go 

Sl ¢>((s0,s1)) = G, 

~ s, ¢>((so, s 1, s2 )) = G2 

time ... 

Sn ¢>((so. s 1• Sz, .... s.)) = G. 

... 

Sm ¢>((so, s 1, Sz .... , sm)) =Gm 

. .. 

FIGURE 27.6 If, for all m~n. it is the case that Gm~ G
0 

(given some definition of~). then 

the learner is said to have converged. 

Convergence has been defined in different ways, but there are generally two kinds. 
Exact convergence means that the learner's final hypothesis must be 100 percent correct. 
Alternatively, approximate convergence means the learner's final hypothesis need not be 
exact, but somehow "close" to 100 percent correct. 

Defining successful learning as convergence to the right language after some point 
n, raises another question with respect to experience: on which infinite streams must a 
learner converge? Generally two kinds of requirements have been studied. Some infinite 
streams are complete; that is, every possible kind of information about the target lan
guage occurs at some point in the presentation of the data. For example, in the case of 
positive evidence, each sentence in the language would occur at some finite point in the 
stream of experience. 

The second requirement is about whether the infinite streams are computable. This 
has two aspects. First, there are as many infinite texts as there are real numbers and so 
most of these sequences are not computable. Should learners be required to succeed on 
these? Or should learners only be required to succeed on those data sequences generable 
by Turing machines? The second aspect is more technical. Even if every sequence itself 
is computable, it may be the case that the set of all such sequences is not computable. 
1his happens because, for each individual infinite sequences in such a set, an algorithm 
exists which generates s, but no algorithm exists which can generate (all the algorithms 
for) all the sequences belonging to this set.10 

. 
10 

As an example, consider the halting problem. This problem takes as input a program p and an input 
1 for p, and asks whether p will run forever on i, or if p will eventually halt. It is known that there are 
infinitely many programs which do not halt on some inputs. For each such program p choose some input 
ifr ~ince ip is an input, it is finitely long and can be generated by some program. But no program exists 
which can generate every such ip. This is because if it could, it would follow that there is a solution to the 
halting problem. But in fact, the halting problem is known to be uncomputable; that is, no algorithm 
exists which solves it (Turing 1937 ). 
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The computablity of the data presentations is much more important than it may 
initially appear. In fact, its importance has been largely overlooked in interpreting the 
results of computational learning theory. As we will see, requiring learners to succeed 
on either all or only computable data presentations has important consequences for 
learnability. 

27.3.2 Definitions of Learning 

Table 27.1 summarizes the kinds of choices to be made when deciding what learning 
means. The division of the choices into columns labeled "Makes learning easier" and 
"Makes learning harder" ought to be obvious. Learners only exposed to positive evi
dence have more work to do than those given both positive and negative evidence. 
Similarly, learners who have to work with noisy evidence will have a more difficult task 
than those given noise-free evidence. Learners allowed to make queries have access to 
more information than those not permitted to make queries. Exact convergence is a 
very strict demand, and approximate convergence is less so. Finally, requiring learners 
to succeed for every logically possible presentation of the data makes learning harder 
than requiring learners only to succeed for complete or computable presentations sim
ply because there are far fewer complete and/or computable presentations. Figure 27.7 
shows the proper subset relationships among complete and computable presentations 
of data. 

Using the coarse classification provided by Table 27.1, I now classify several definitions 
oflearning (these are summarized in Table 27.2). The major results of these definitions 
are discussed in the next section. 

i. Identification in the limit from positive data. Gold (1967) requires that the learner 
succeed with positive evidence only (A), noiseless evidence (b ), and without queries 
( C). Exact convergence (D) is necessary: even if the grammar to which the learner con
verges generates a language which differs only in one sentence from the target language, 
this is counted as a failure. On the other hand, this framework is generous in that learn
ers are only required to succeed on complete data presentations ( e) but must succeed for 
any such sequence, not just computable ones (F). 

2. Identification in the limit from positive and negative data. This is the same except 
the learner is exposed to both positive and negative evidence (a) (Gold 1967). 

3. Identification in the limit from positive data with probability p. In this learning 
paradigm (Wiehagen et al. 1984; Pitt 1985), learners are probabilistic (i.e. have access to 
coin flips). Convergence is defined in terms of whether learners can identify the target 
language in the limit given any text with probability p. Thus this learning criterion is 
less strict than identification in the limit from positive data because exact convergence is 
replaced with a kind of approximate convergence ( d). Otherwise, it is the same as identi
fication in the limit from positive data. 
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Table 27.1 Choices providing a coarse classification oflearning 
frameworks according to whether they make the learning 
problem easier or harder 

Makes learning easier Makes learning harder 

a. positive and negative evidence A. positive evidence only 

b. noiseless evidence B. noisy evidence 

c. queries permitted c. queries not permitted 

d. approximate convergence D. exact convergence 

e. complete infinite streams E. any infinite sequence 

f. computable infinite streams F. any infinite sequence 

Complete and computable 

Computable 

Logically possible texts 

FIGURE 27.7 Subset relationships between all logically possible classes of texts, classes of com
plete texts, computable classes of texts, and both complete and computable classes of texts. 

4. Identification in the limit from distribution-free positive stochastic data with 
probability p. Angluin (1988b) considers a variant of Pitt's framework immedi
ately above where the data presentations are generated probabilistically from fixed, 
but arbitrary, probability distributions (including uncomputable ones). The term 
distributionjree refers to the fact that the distribution generating the data presen
tation is completely arbitrary. Like the previous framework, it is similar to iden
tification in the limit from positive data but makes an easier choice with respect to 
convergence (d). 

5. Identification in the limit from positive recursive data. Wiehagen ( 1977) considers a 
paradigm which is similar to identification in the limit from positive data except that the 
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learner is only required to succeed on complete, computable streams (f), and not any 
stream. The particular streams that learners are required to succeed on are those gener
able by recursive functions. 

6. Identification in the limit from positive primitive recursive data. This paradigm, 
also studied by Gold (1967), is similar to the one at point 5. In fact, in terms of the clas
sification scheme in Table 27.1, it is exactly the same. However, this paradigm makes 
stronger assumptions about the nature of the experience language learners receive as 
input. Here the data presentations that learners are required to succeed on are only those 
generable by primitive recursive functions. This class is nested between the recursive 
class and the context-sensitive class (see Figure 27-3). Therefore, learning in this frame
work is "easier" than in the one in point 5 because there are fewer data presentations 
learners need to succeed on. 

7- Identification in the limit from computable positive stochastic data. Horning (1969 ), 
Osherson et al. (1986), and Angluin (1988b) study learning stochastic languages from 
positive data. Horning studies stochastic languages generated by context-free gram
mars where the rules are assigned probabilities with rational values. I focus on Angluin's 
framework since she generalizes his study (and those of earlier researchers) to obtain 
the strongest result. 

Angluin studies approximately computable stochastic languages. Recall that a stochas
tic language, or distribution, D maps a strings to a real number, so D(s) = r. A distri
bution is approximately computable if and only if, for all strings s and for all positive 
rational numbers e, there is a total recursive function fwhich is a rational approximation 
of Dwithin e; that is, such that jD(s) - f(s,e)I < e. The approximately computable stochas
tic languages properly include the context-free ones. 

In Angluin (1988b), as in Horning (1969), the data presentations must be generated 
according to the target distribution, which is fixed and is approximately computable. In 
this way, this definition oflearning is like identification in the limit from positive recursive 
texts because learners do need to succeed on any data presentation, but only on com
plete and computable ones (f).11 On the other hand, instead of exact convergence, con
vergence need only be approximate ( d). 

8. Probably Approximately Correct (PAC). This framework makes a number of dif
ferent assumptions (Valiant i984; Anthony and Biggs i992; Kearns and Vazirani 1994). 
Both positive and negative evidence are permitted (a). Noise and queries are not per
mitted (b,c). Convergence need only be approximate (d), but the learner must suc
ceed for any kind of data presentation, both non-complete and uncomputable (E,F). 
What counts as convergence is tied to the degree of "non-completeness" of the data 
presentation. 

11 If a data presentation is being generated from a computable stochastic language, then it is also 
complete. This is because for any sentence with nonzero probability, the probability of this sentence 
occurring increases monotonically to one as the size of the experience grows. For example, it is certain 
that the unlikely side of a biased coin will appear if it is flipped enough times. 

COMPUTATIONAL THEORIES OF LEARNING 

Learner 

ExperieJtce 

FIGURE 27.8 Learners which are constant functions map all possible experience to a single 
grammar. 

To summarize this subsection, there have been many different definitions of what it 
means to "learn:' In the next section, the major results within each of these frameworks 
~11 be discussed. The factorization of these frameworks by the general properties listed 
m Table 27.1 makes it easier to interpret the results presented in the next section. 

27.3.3 Classes of Languages 

Before continuing to section 27-4, it is important to recognize that computational learn
ing theories are concerned with learners of classes of languages and not just single lan
guages. This is primarily because every language can be learned by a constant function 
(Figure 27.8). For example, with any of definitions given in the list above, it is easy to 
state a learner for English (and just English). Just map all experience (no matter what it 
is) to a grammar for English. Even if we do not know what this grammar is yet, the learn
ing problem is "solved" once we know it. Obviously, such "solutions" to the learning 
problem are useless, even if mathematically correct. · 

For this reason, computational learning theories ask whether a collection of more 
than ?ne language .can be learned by the same learner. This more meaningfully captures 
the kinds of question language scientists are interested in: Is there a single procedure 
that not only learns English, but also Spanish, Arabic, Inuktitut, and so on? 

27.4 RESULTS OF COMPUTATIONAL 

LEARNING THEORIES 
. .................................................................................................................................................................................. . 

Computational learning theorists have identified, given the definitions in the previous 
section, classes of languages that can and cannot be learned. Generally, formal learning 
theorists are interested in large classes of learnable languages because they want to see 
what is possible in principle. If classes of languages are learnable in principle, the next 
important question is whether they are feasibly learnable. This means whether learners 
can succeed with reasonable amounts of time and effort where reasonable is defined in 
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Table 27.2 Foundational results in computational learning theory. Letters 
in square brackets refer to properties in Table 27.1 

Definition oflearning 

1. Identification in the limit from positive 

data [AbcDeF] 

2. Identification in the limit from positive 
and negative data [ab c De F) 

3. Identification in the limit from positive 
data with probability p [Ab c de Fl 

4. Identification in the limit from 
distribution-free positive stochastic 
data with probability p [Ab c de F] 

5. Identification in the limit from positive 

recursive data [Ab c De fJ 
6. Identification in the limit from positive 

primitive recursive data [Ab c D e f] 

7. Identification in the limit from 
computable positive stochastic data [A 

bcdef] 

8. Probably Approximately Correct [ab 

cdEF) 

Feasible learnability of the major regions of the 

Chomsky Hierarchy 

Finite languages are learnable but no superfinite 
class oflanguages is learnable, and hence neither are 
the regular, context-free, context-sensitive, recursive, 

nor r.e. languages. 

Recursive languages are learnable but the regular 
languages are not feasibly learnable. 

For all p > 2/3: same as those identifiable in the limit 

from positive data. 

For all p > 2/3: same as those identifiable in the limit 

from positive data. 

Same as those identifiable in the limit from positive 

data. 

R.e. languages are learnable but not feasibly. 

Recursive stochastic languages are learnable but not 

feasibly. 

The finite languages are not learnable and hence 
neither are the regular, context-free, context
sensitive, recursive, nor r.e. languages. 

standard ways according to computational complexity theory (Garey and Johnson 1979; 

Papadimitriou 1994).12 
. 

This section provides the largest classes known to be provably learnable under the dif-
ferent definitions oflearning above. Where possible, I also indicate whether such classes 
can be feasibly learned. If one is not familiar with the regions in the Chomsky Hierarchy, 
it will be helpful to familiarize oneself with them before continuing (Figure 27.3). 

Table 27.2 summarizes the following discussion. 

27.4.1 No Major Region of the Chomsky Hierarchy is 
Feasibly Learnable 

Gold (1967) proved three important results. First, a learner exists which identifies 
the class of recursive languages in the limit from positive and negative data. Second, 

u Discussion of how to measure the computational complexity oflearning algorithms is discussed in 
detail in Valiant (1984); Pitt (1989); de la Higuera (1997, 2010); and Clark and Lappin (2011). 
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a learner exists which identifies the finite languages in the limit from positive data, 
but no learner exists which can identify any superfinite class in the limit from posi
tive data. Superfinite classes of languages are those that include all finite languages 
and at least one infinite language. It follows from this result that none of the major 
regions of the Chomsky Hierarchy are identifiable in the limit from positive data by 
any learner which can be defined as mapping experience to grammars. It is this result 
with which Gold's paper has become identified. Gold's third (and usually overlooked) 
result is that if learning is defined so that learners need only succeed given complete, 
positive, primitive recursive texts, then a learner does exist which can learn the class of 
r.e. languages. 

Wiehagen (1977) shows that if learning is defined so that learners need only suc
ceed given complete, positive, recursive texts, then only those classes identifiable in the 
limit from positive data are learnable. Therefore no superfinite class is learnable in this 
setting. In other words, comparison of this result with Gold's third result shows that 

restricting the data presentations to recursive texts does not increase learning power, 
but restricting them to primitive recursive texts does (see also Case 1999). 

Angluin (1988b), developing work begun in Horning (1969) and extended by 
Osherson et al. (1986), presents a result for stochastic languages similar in spirit to the 
ones above. She shows that under the learning criteria that learners are only required 
to succeed for presentations of the positive data generable by the target stochastic lan
guage, then the class of recursive stochastic languages is learnable.13 

This result contrasts sharply with other frameworks that investigate the power of 

probabilistic learning frameworks. Wiehagen et al. (1984) and Pitt (1985) show that 
the class of languages identifiable in the limit from positive data with probability p is 

the same as the class oflanguages identifiable in the limit from positive data whenever. 
Angluin (1988b: 5) concludes "These results show that if the probability of identification 
is required to be above some threshold, randomization is no advantage:' 

Angluin also shows that for all p, the class of languages identifiable in the limit from 
positive data with probability p from distribution-free stochastic data is exactly the same 
as the the class of languages identifiable in the limit from positive data with probabil

ity p. Angluin observes that the "assumption of positive stochastic rather than positive 
[data presentations] is no help, if we require convergence with any probability greater 

than 2/3," She concludes "the results show that if no assumption is made about the prob
ability distribution [generating the data presentations], stochastic input gives no greater 
power than the ability to flip coins:' 

Finally, in the PAC learning framework (Valiant i984), not even the class of finite lan
guages is learnable (Blumer et al. 1989). 

In the cases where learners are known to exist in principle, we may examine their 
feasibility. In the case of the identification in the limit from positive and negative data, 

13 Technically, she shows that the class of approximately computable distributions is learnable. The 
crucial feature of this class is that its elements are enumerable and computable, which is why I take some 
liberty in calling them recursive stochastic languages. 
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Gold (1978) shows that there are no feasible learners for even the regular class of lan
guages. In other words, while learners exist in principle for the recursive class, they con
sume too much time and resources in the worst cases. In the case of identification in 
the limit from primitive recursive texts and identification in the limit from computable 
positive stochastic data, the learners known to exist in principle are also not feasible.14 

Table 27.2 summarizes the results discussed in this section. It is worth examining this 
table to see exactly what makes learning the recursive class possible in principle. I will 
return to understanding this in section 27.5. 

27.4.2 Other Results 

The facts as presened appear to paint a dismal picture-either large regions of the 
Chomsky Hierarchy are not learnable even in principle, or if they are, they are not feasi
bly learnable. 

However, there are many feasible learners for classes of languages even in the frame
works with the most demanding criteria, such as identification in the limit from positive 
data and PAC-learning. This rich literature includes Angluin (1980, 1982); Muggleton 
(1990 ); Garcia et al. (1990 ); Anthony and Biggs (1992); Kearns and Vazirani (1994); Garcia 
and Ruiz (1996, 2004); Fernau (2003); Oates et al. (2006); Clark and Eyraud (2007); Heinz 
(2008, 2009, 2010a, 2010b); Yoshinaka (2008, 2011); Becerra-Bonache et al. (2010); Clark 
et al. (2010 ); Kasprzik and Kotzing (2010 ); Clark and Lappin (2011); and many others (see 
for example de la Higuera 2005, 2010 ). The language classes discussed in those works are 
not major regions of the Chomsky Hierarchy, but are subclasses of such regions. 

Some of these language classes are of infinite size and include infinite languages-but 
they crucially exclude some finite languages so they are not superfinite language classes. 
Figure 27.9 illustrates the nature of these classes. I return to this point in section 27.5-4 
when discussing why the fundamental problem oflearning is generalization. 

Also, the proofs that these classes are learnable are constructive, so concrete learning 
algorithms whose behavior is understood exist. The algorithms are successful because 
they utilize the structure inherent in the class, or equivalently, of its defining properties, 
to generalize correctly. Often the proofs of the algorithm's success involve characterizing 
the kind of finite experience learners need in order to make the right generalizations. 

To sum up, even though identification in the limit from positive data and PAC
learning make the learning problem harder by requiring learners to succeed for any data 
presentation, so that no learners exist for superfinite classes oflanguages even in prin
ciple, there are feasibly learnable language classes in these frameworks. Furthermore, 
many of the above researchers have been keen to point out the patterns resembling natu
ral language, which belong to these learnable subclasses. 

14 These learners essentially compute an ordered list of grammars for the patterns within the target class. 
With each new data point, they find the first grammar in this list compatible with the experience so far. 
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Primitive recursive 
Recursive 

Recursive! enumerable 

FIG URE 27.9 A non-superfinite class of patterns which cross-cuts the Chomsky Hierarchy. 

27.5 INTERPRETING RESULTS OF 

COMPUTATIONAL LEARNING THEORIES 
. ............................................................................ ..................................... ................................................................. . 

27.5.1 Wrong Reactions 

How have the above results been interpreted? Are those interpretations justified? 
Perhaps the most widespread myth about formal learning theory is the oft-repeated 
claim that Gold (1967) is irrelevant because 

1. Gold's characterization of the learning problem makes unrealistic assumptions; 
2. Horning (1969) showed that statistical learning is more powerful than symbolic 

learning. 

As this section shows, these claims have been made by influential researchers in cogni
tive science, computer science, computational linguistics, and psychology. 

In this section I rebut these charges. The authors cited here repeatedly fail to dis
tinguish different definitions oflearnability, fail to identify Gold (1967) with anything 
other than identification in the limit from positive data, and/or make false statements 
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about the kinds of learning procedures Gold (1967) considers. With respect to the 
claim that identification in the limit makes unrealistic assumptions, I believe it is fair 
to debate the assumptions underlying any learning framework. However, the argu
ments put forward by the authors discussed in this section are not convincing, usually 
because they say very little about what the problematic assumptions are and how their 
proposed framework overcomes them without introducing unrealistic assumptions of 
their own. 

Before continuing, I would like to make clear that these criticisms are not leveled at 
the authors' research itself, which is often interesting, important, and valuable in its own 
right. Instead I am critical of how these authors have motivated their work within the 
context of formal learning theory. 

Consider how Horning is used to downplay Gold's work. For example, Abney 
(1996) writes 

though Gold showed that the class of context free grammars is not learnable, 
Horning showed that the class of stochastic context free grammars is learnable. 
(Abney 1996: 21) 

The first clause only makes sense if, by "Gold;' Abney is referring to identification in 
the limit from positive data. After all, Gold did show that the context-free languages are 
learnable not only from positive and negative data, but also from positive data alone if 
the learners are only required to succeed on positive, primitive recursive data presenta
tions (#5 in Table 27.2). 

As for the second clause, Abney leaves it to the reader to infer that Gold and Horning 
are studying different definitions oflearnability. Abney emphasizes the stochastic nature 
of Homing's target grammars as if that is the key difference in their results, but it should 
be clear from section 27-4 and Table 2p that the gain in learnability is not coming solely 
from the stochastic nature of the target patterns. 

The fact that the only data presentations learners are required to succeed on are com
putable ones also plays an important role. Several comparisons make this clear. First, 
approximate, probabilistic convergence itself does not appreciably increase learning 
power. This is made clear by comparing identification in the limit from positive data with 
identification in the limit from positive data with probability p (#1 and #3 in Table 27.2). 
Second, learning stochastic languages instead of non-stochastic languages also does not 
increase learning power. This is made clear by comparing identification in the limit from 
positive data with probability p with identification in the limit from positive stochastic data 
with probability p (#3 and #4 in Table 27.2). Consideration of the PAC learning paradigm 
bolsters these comparisons. PAC allows approximate convergence and target classes of 
stochastic languages (in addition to positive and negative data), yet not even the finite 
class oflanguages is learnable. 

What is responsble for these results? In those frameworks, learners are required to suc
ceed for any data presentation. As Gold (1967) established in a non-stochastic setting (iden
tification in the limit from positive primitive recursive data), the picture changes dramatically 
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when learners are only required to succeed on data presentations which are not arbitrarily 
complex. Likewise, Homing's results follow in no small part from the fact that learners are 
only required to succeed on computable data presentations, instead of all arbitrary ones 
(choice f/F in Table 27-1). The same holds true for Angluin's (1988b) extension of Homing's 
work to recursive stochastic languages (approximately computable distributions). 

However, computability of the data presentations is not the only factor in Angluin's 
result. This is made clear by comparing identification in the limit from positive data with 
identification in the limit from positive recursive data (#1 and #5 in Table 27.2). In both 
cases, no superfinite class of languages is learnable. In non-stochastic settings, one has 
to reduce the complexity of the data presentations to primitive recursive ones for the r.e. 
class to become learnable (identification in the limit from positive recursive data). In other 
words, in non-stochastic settings, reducing the complexity of the data presentations to 
the computable, recursive class is not sufficient to make the recursive class learnable, but 
in stochastic settings, it is enough to make the recursive class learnable. In other words, 
the stochastic nature of the target patterns in combination with the reduced complexity of 
the data presentations is what makes the difference in Angluin's (and Homing's) results. 

However, most researchers fail to appreciate the distinctions drawn here. For 
example, in the introductory text to computational linguistics, Manning and Schutze 
(1999) write 

Gold (1967) showed that CFGs [context-free grammars] cannot be learned (in 
the sense of identification in the limit- that is whether one can identify a gram
mar if one is allowed to see as much data produced by the grammar as one wants) 
without the use of negative evidence (the provision of ungrammatical exam
ples). But PCFGs [probabilistic context-free grammars] can be learned from 
positive data alone (Horning 1969). (However, doing grammar induction from 
scratch is still a difficult, largely unsolved problem, and hence much emphasis 
has been placed on learning from bracketed corpora ... ). (Manning and Schutze 
1999: 386-7) 

Like Abney (1996), Manning and Schutze do not mention Gold's third result that CFGs 
can be learned if the data presentations are limited to primitive recursive ones. To their 
credit, they acknowledge the hard problem of learning PCFGs despite Homing's (and 
later Angluin's) results. Homing's and Angluin's learners are completely impractical and 
are unlikely to be the basis for any feasible learning strategy for PCFGs. For this reason, 
these positive learning results offer little insight on how PCFGs which describe natural 
language patterns may actually be induced from the kinds of corpus data that Manning 
and Schutze have in mind. 

Similarly, in his influential and important thesis on the unsupervised learning of syn
tactic structure, Klein (2005) writes: 

Gold's formalization is open to a wide array of objections. First, as mentioned above, 
who knows whether all children in a linguistic community actually do learn the 
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same language? All we really know is that their languages are similar enough to ena
ble normal communication. Second, for families of probabilistic languages, why not 
assume that the examples are sampled according to the target language's distribu
tion? Then, while a very large corpus won't contain every sentence in the language, 
it can be expected to contain the common ones. Indeed, while the family of context
free grammars is unlearnable in the Gold sense, Horning (1969) shows that a slightly 
softer form of identification is possible for the family of probabilistic context-free 
grammars if these two constraints are relaxed (and a strong assumption about priors 
over grammars is made). (Klein 2005: 4-5) 

Again, by "Gold's formalization;' Klein must be referring to identification in the limit 
from positive data. Klein's first point is that it is unrealistic to use exact convergence as 
a requirement because we do not know if children in communities all learn exactly the 
same language, and it is much more plausible that they learn languages that are highly 
similar, but different in some details. Hopefully by now it is clear that Klein is misplac
ing the reason why it is impossible to identify in the limit from positive data superfinite 
classes of languages. It is not because of exact convergence; it is because learners are 
required to succeed for any complete presentation of the data, not just the computable 
ones. In frameworks that allow looser definitions of convergence (PAC-learning, iden
tification in the limit from positive data with probability p ), the main results are more 
or less the same as in identification in the limit from positive data. A crucial component 
of Homing's success is made clear in Angluin (1988b ): identification in the limit from 
computable positive stochastic data only requires learners to succeed for data presenta
tions which are computable. As for the unrealistic nature of exact convergence, is it not a 
useful abstraction? It lets one ignore the variation that exists in reality to concentrate on 
the core properties of natural language that make learning possible. 

Klein then claims that it is much more reasonable to assume that the data presentations 
are generated by a fixed unchanging probability distribution defined by the target PCFG. 
This idealization may lead to fruitful research, but it is hard to accept it as realistic. That 
would mean that for each of us, in our lives, every sentence we have heard up until this 
point, and will hear until we die, is being generated by a fixed unchanging probability dis
tribution. It is hard to see how this could be true given that what is actually said is deter
mined by so many non-linguistic factors.15 So if realism is one basis for the "wide array of 
objections" that Klein mentions, the alternative proposed does not look any better. 

Like Klein (2005), Bates and Elman (1996) also argue that Gold (1967) is irrelevant 
because of unrealistic assumptions. They write: 

A formal proof by Gold [ 1967) appeared to support this assumption, although Gold's 
theorem is relevant only if we make assumptions about the nature of the learning 

15 Even if we abstract away from actual words and ask whether strings oflinguistic categories are 
generated by fixed underlying PCFGs, the claim is probably false. Imperative structures often have 
different distributions of categories than declaratives and questions, and the extent to which these are 
used in discourse depends entirely on nonlinguistic factors in the real world. 

COMPUTATIONAL THEORIES OF LEARNING 

device that are wildly unlike the conditions that hold in any known nervous system 
[Elman et al. 1996]. (Bates and Elman 1996: 1849) 

By now we are familiar with authors identifying Gold (1967) solely with identification 
in ~e limit fro~ positive data. What assumptions does Gold make that are "wildly 
unlike the conditions that hold in any known nervous system?" Gold only assumes that 
learners are functions from finite sequences of experience to grammars. It is not clear 
to me why this assumption is not applicable to nervous systems, or any other computer. 
Perhaps Bates and Elman are taking issues with exact convergence, but as mentioned 
above, learning frameworks that allow looser definitions of convergence do not change 
the main results, and even Elman et al. (1996) employ abstract models. 
. Perfors et al. (2010) partially motivate an appealing approach to language learn
mg that balances preferences for simple grammars with good fits to the data with the 
following: 

Traditional approaches to formal language theory and learnability are unhelpful 
?ecause they presume that a learner does not take either simplicity or degree of fit 
mto account (Gold 1967). A Bayesian approach, by contrast, provides an intuitive 
and principled way to calculate the tradeoff. ... Indeed it has been formally proven 
that an ideal learner incorporating a simplicity metric will be able to predict the sen
tences of the language with an error of zero as the size of the corpus goes to infinity 
(Solomonoff 1978, Chater and Vitanyi 2007); in many more traditional approaches, 
the correct grammar cannot be learned even when the number of sentences is infi
~te (Gold 1967). However learning a grammar (in a probabilistic sense) is possible, 
given reasonable sampling assumptions, if the learner is sensitive to the statistics of 
language (Horning 1969 ). (Perfors et al. 2010: 163) 

The first sentence is simply false. While it is true that Gold does not specifically refer 
~o le~rne~s which take either simplicity or degree of fit into account, that in no way 
imp hes his results do not apply to such learners. Gold's results apply to any algorithms 
that can be said to map finite sequences of experience to grammars, and the Bayesian 
models Perfors et al. propose are such algorithms. The fact that Gold does not spe
cifically mention these particular traits emphasizes how general and powerful Gold's 
results are. If Perfors et al. really believe Bayesian learners can identify a superfinite 
class of languages in the limit from positive data, they should go ahead and try to 
prove it. (Unfortunately for them, Gold's proof is correct so we already know it is use
less trying.) 

I address Chater and Vitanyi's (2007) work in section 27.5.2 so let us move now to 
the statement that learners that are "sensitive to the statistics of language" can learn 
probabilistic grammars. This is attributed to Horning with no substantial discussion 
of the real issues. Readers are left believing in the power of statistical learning, una
ware of the real issue of whether learning has been defined in a way as to require 
learners to succeed on complete and computable data presentations versus all com
plete data presentations. Again Gold showed that any r.e. language can be learned 
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from positive primitive recursive texts. Angluin (1988b) showed that learners that are 
"sensitive to the statistics oflanguage" are not suddenly more powerful (identification 
in the limit from distribution-free positive stochastic data with probability p ). Finally 
Perfors et al. (2010) hide another issue behind the phrase "under reasonable sampling 
conditions:' As mentioned previously in the discussion of Klein, I think there is every 
reason to question how reasonable those assumptions are. But I would be happy if the 
debate could at least get away from "the sensitivity of the learner to statistics" rhetoric 
to whether the assumption that actual data presentations are generated according to 
fixed unchanging computable probability distributions is reasonable. That would be 
progress and would reflect one actual lesson from computational learning theory. 

27.5.2 Chater and Vitanyi (2007) 

Chater and Vitanyi (2007), who extend work begun in Solomonoff (1978), provide a 
more accurate, substantial, and overall fairer portrayal of Gold's (1967) paper than these 
others, and corroborate some of the points made in this chapter. However, a couple of 

inaccuracies remain. Consider the following passage: 

Gold (1967) notes that the demand that language can be learned from every text may 
be too strong. That is, he allows the possibility that language learning from positive 
evidence may be possible precisely because there are restrictions on which texts are 
possible. As we have noted, when texts are restricted severely, e.g., they are inde
pendent, identical samples from a probability distribution over sentences, positive 
results become provable (e.g., Pitt, 1989 }; but the present framework does not require 
such restrictive assumptions. ( Chater and Vitanyi 2007: 153) 

This quote is misleading in a couple of ways. First, Gold (1967) goes much farther than 
just suggesting learning from positive evidence alone may be possible if the texts are 
restricted; in fact, he shows this (identification in the limit from positive primitive recur

sive texts). 
Second, the claim that their framework does not assume that the streams of experi

ence which are the inputs to the "ideal language learner" is not "restrictive" depends on 
what one considers to be "restrictive:'16 Section 2.1 of Chater and Vitanyi's (2007) paper 
explains exactly how the input to the learner is generated. They explain very clearly that 
they add probabilities to a Turing machine, in much the same way as probabilities can be 
added to any automaton. In this case, the consequence is they are able to describe recur
sive stochastic languages. In fact they conclude this section with the following sentence: 

16 The reference to Pitt (1989) is also odd given that this paper does not actually provide the positive 
results the authors suggest as it discusses identification in the limit from positive data with probability p. 
Horning (1969), Osherson et al. (1986), or Angluin (t988b) are much more appropriate references here. 
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The fundamental assumption concerning the nature of the linguistic input outlined 
in this subsection can be summarized as the assumption that the linguistic input is 
generated by some monotone computable probability distribution µc(x). (Chater 
and Vitanyi 2007: i38) 
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Thus in one sense their assumption is restrictive because the linguistic input is limited to 
computable presentations (option Fin Table 27.1). One important lesson from compu
tational learning theory that this chapter is trying to get across is that assuming that the 
data presentations (the linguistic input in Chater and Vitanyi's terms) are drawn from a 
computable class is a a primary factor in determining whether all recursive patterns can 
be learned in principle or whether only superfinite classes can be. 

On the other hand, the quoted passage from Chater and Vitanyi (2007: 153) above 
is correct that they are able to relax an assumption made by Angluin (1988b) (and 
Horning). The data presentations in Chater and Vitanyi's learning scenario do not 
need to be generated by a fixed probability distribution that does not change over time. 
Instead they obtain their result even allowing non-stationary distributions. This means 
the probability distribution at any given point in the data presentation depends on the 
sequence of data up to that point. In this way their learning framework overcomes the 
criticisms I leveled in earlier sections at other researchers who claim that Homing's 
learning framework is more realistic than identification in the limit from positive data. 
On these grounds, Chater and Vitanyi's result represents a real advance. 

But at what cost? There is another important difference between the "ideal language 
learner" and Angluin's (1988b) learner which should not be overlooked. As Chater and 
Vitnayi state clearly in their introduction (2007: 136): "Indeed, the ideal learner we con
sider here is able to make calculations that are known to be uncomputable:' In other 
words, not only is the ideal language learner not feasibly computable, it is not computable 
at all! The fact that the "ideal language learner" can learn all recursive stochastic languages 
from data presentations generated by computable, non-stationary probability distribu
tions therefore significantly departs from the learning results described in Table 27.2, all 
of which were assuming learners themselves must be computable functions! 

If uncomputable learners are worthy of discussion, then it is important to know that 
the picture changes dramatically in non-stochastic settings. In particular, uncomputable 
learners with recursive data presentations can learn the r.e. class (Jain et al. 1999: 183)! 
In other words, permitting uncomputable learners significantly changes the results for 
identification in the limit from positive recursive data (#5 in Table 27.2). Jain et al. write 
(1999: 183) "It should be noted that if caretakers and natural phenomena are assumed to 
be computer simulable, then there is no reason to consider ... noncomputable scientists 
and children:' 

Chater and Vitanyi also discuss the feasibility of the learner again towards the end 
of their paper, where they point to a "crucial set of open questions" regarding "how 
rapidly learners can converge well enough" with the kinds of data in a child's linguis
tic environment. Of course it may be that there is some subclass of the recursive sto
chastic languages that the algorithm is able to learn feasibly, and which may include 
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natural language patterns. In my view, research in this direction would be a positive 

development. 

27.5.3 Clark and Lappin (2011) 

Let us now turn to the landmark text by Clark and Lappin (2011). This book provides 
a thorough and welcome discussion of different computational learning theories and 
natural language acquisition. Many of the learning frameworks discussed in this chapter 
are surveyed there, and in many instances Clark and Lappin (2011) presents the same 
facts presented here. Nonetheless, Clark and Lappin argue forcefully against identifica
tion in the limit from positive data as an insightful learning paradigm, instead favoring 
probabilistic learning frameworks. It is remarkable to me how the same set of facts can 
be interpreted so differently. 

Clark and Lappin fault identification in the limit from positive data for making "overly 

pessimistic idealizing assumptions" (2011: 89 ). In particular, they identify the "the major 

problem with the Gold paradigm" as the fact that "it requires learning under every 
presentation" (2011: 102), including "an adversarial presentation of the data designed to 

undermine learning" ( 2011: 97). As they emphasize throughout, this learning paradigm 
"does not rule out an adversarial teacher who organizes a presentation in a way designed 

to undermine learning, for example by presenting a string an indefinite number of times 
at the beginning of a data sequence" (2011: 208). 

Instead, Clark and Lappin come down squarely in favor of probabilistic learning par
adigms. They write "Recent work in probabilistic learning theory offers more realistic 

frameworks within which to explore the formal limits of human language acquisition" 
(2011: 98) and that "it is formally more convenient to model language acquisition in a 
probabilistic paradigm" (2011: 106). Also: "When we abstract away from issues of com
putational complexity, learning [within a probabilsitic paradigm] is broadly tractable. 

The first results along these lines are from Horning (1969)" (2011: 109). 
I find many of Clark and Lap pin's arguments selective. For example, the last statement 

about ignoring issues of computational complexity is odd because 12 pages earlier this 
was a criticism of the paradigms in Gold (1967): They "suffer from a lack of computa

tional realism in that they disregard complexity factors and permit the learner unlimited 
quantities of time and data" (2011: 97). (An excellent discussion of computational com

plexity occurs in Chapter 7 to which I return in section 27.54) Another example comes 
from a defense of Homing's research: "Homing's work is indeed limited, but it is not 

the endpoint of this research. Subsequent work greatly extends his results:' (2011: io9). 
Surely such a defense applies to identification in the limit from positive data! Gold (1967) 

was certainly not the endpoint of research and has been extensively studied, extended, 
and used to better understand learning, notably by Angluin (1980, 1982, 1988a), respec

tively, and even by Clark in his own research with his colleagues (Clark and Eyraud 
2007; Clark et al. 2010; among others). Chapter 8 of Clark and Lappin (2011) is titled 
"Positive Results in Efficient Learning;' and highlights results set in the identification 
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in the limit from positive data paradigm! Gold's (1967) research has led to many variants 
and variations as described in the books by Osherson et al. (1986); Jain et al. (1999) and 
in the surveys by Lange et al. (2008) and Zeugmann and Zilles (2008), including vari
ants that specifically address questions relevant to natural language acquisition, such as 
U-shaped learning (Carlucci et al. 2004, 2007, 2013). 

Returning to the substantive argument regarding adversarial data presentations, it is 
true that requiring learners to succeed on every data presentation is a significant fac
tor which contributes to the result that only superfinite classes oflanguages are learn
able under the identification in the limit from positive data paradigm.17 But, as discussed 
above, this is a factor even in stochastic settings! Clark and Lappin are clearly aware of 
this. For example, on page 99 when comparing the results of identification in the limt 
from positive data with identification in the limit from positive and negative data and 
identification in the limit from distribution-free positive stochastic data with probability p 
((#1, #2 and #4 in Table 27.2), they write: 

[Angluin 1988b) summarizes the situation with respect to various probabilistic mod
els that we discuss later: "These results suggest that the presence of probabilistic data 
largely compensates for the absence of negative data:' 

However, this conclusion must be qualified, as it depends heavily on the class of 
distributions under which learning proceeds. (Clark and Lappin 2011: 99) 

And later, they discuss Angluin's (1988b) identification in the limit from distribution
free positive stochastic data with probability p and explain that: 

· allowing an adversary to pick the distribution over a presentation has the same effect 
as permitting an adversary to pick a presentation. This effect highlights an important 
fact: selecting the right set of distributions in a probabilistic learning paradigm is as 
important as selecting the right set of presentations in the [identification in the limit 
from positive data] paradigm. (Clark and Lappin 2011: m) 

This is one of the primary lessons of computational learning theory that this chapter has 
presented.18 

Finally, it is worth emphasizing that frameworks which require learners to succeed 
only on complete and computable data presentations are weaker than frameworks 
which require learners to succeed on all complete data presentations, computable 
and uncomputable, for the simple reason that there are more data presentations of 

17 However, the example given of an adversarial teacher is not persuasive to me because the problem 
is not adversarial teachers per se, but adversarial teachers that can generate data presentations that are 
more complex than those generable by primitive recursive functions. 

18 I suspect Clark and Lappin may have misread the sentence quoted on page 99 of their book from 
Angluin (1988b: 2). They present Angluin's sentence as a conclusion she has drawn from her study. 
But this sentence, which occurs in the introduction of Angluin's paper, is referring to earlier results, 
which suggest that probabilistic data play this kind of role. She is setting up the topic which her paper 
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the latter type (Figure 2n). Learners successful in these more difficult frameworks 
(mentioned in section 27.4.2) are more robust in the sense that they are guaranteed 
to succeed for any data presentation, even uncomputable ones. The fact that there are 
feasible learners which can learn interesting classes of languages under such strong 
definitions oflearning underscores how powerful the positive learning results in these 

frameworks are. 

27.5.4 Right Reactions 

Gold (1967) provides three ways to interpret his three main results: 

i. The class of natural languages is much smaller than one would expect from our 
present models of syntax. That is, even if English is context-sensitive, it is not true 
that any context-sensitive language can occur naturally .... In particular the results 
on [identification in the limit from positive data] imply the following: The class of 
possible naturallanguages, ifit contains languages of infinite cardinality, cannot con
tain all languages of finite cardinality. 

2. The child receives negative instances by being corrected in a way that we do not 

recognize ... 
3. There is an a priori restriction on the class of texts [presentations of data; i.e. infi-

nite sequences of experience] which can occur ... (Gold 1967: 453-4) 

The first possibility follows directly from the fact that no superfinite class oflanguages is 
identifiable in the limit from positive data. The second and third possibilities follow from 
Gold's other results on identification in the limit from positive and negative data and on 
identification in the limit from positive primitive recursive data (#2 and #6 in Table 27.2). 

Each of these research directions can be fruitful, if honestly pursued. For the case 
of language acquisition, Gold's three suggestions can be investigated empirically. We 

ought to ask 

i. What evidence exists that possible natural language patterns form subclasses of 

major regions of the Chomsky Hierarchy? 
2. What evidence exists that children receive positive and negative evidence in some, 

perhaps implicit, form? 

investigates. The next sentence in Angluin (1988) reads "These results also invite comparison with a new 
criterion for finite learnability proposed by Valiant ((Valiant 1984)] :•And she continues: 

Our study is motivated by the question of what has to be assumed about the probability distribution 
in order to achieve the kinds of positive results on language identification. We define a variant of 
Valiant's finite criterion for language identification, and show that in this case, the assumption of 
stochastically generated examples does not enlarge the class oflearnable sets oflanguages. 

In other words, Angluin's actual conclusion is not what Clark and Lappin (2ou: 99) suggest it is. 
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3. What evidence exists that each stream of experience each child is exposed to is 
guaranteed to be generated by a fixed, computable process (i.e. computable prob
ability distribution or primitive recursion function)? More generally, what evi
dence exists that the data presentations are a priori limited? 

My contention is that we have plenty of evidence with respect to question (1), some evi
dence with respect to (2), and virtually no evidence with respect to (3). 

Consider question (1). Although theoretical linguists and language typologists 
repeatedly observe an amazing amount of variation in the world's languages, there is 
consensus that there are limits to the variation, though stating exact universals is dif
ficult (Greenberg 1963, i978; Mairal and Gil 2006; Stabler 2009). Even language typolo
gists who are suspicious of hypothesized language universals, once aware of the kinds of 
patterns that are logically possible, agree that not any logically possible pattern could be 
a natural language pattern. 

Here is a simple example: many linguists have observed that languages do not appear 
to count past two (Berwick 1982, 1985; Heinz 2007, 2009). For example, no language 
requires sentences with at least n ~ 3 main constituents to have the nth one be a verb 
phrase (unlike verb-second languages like German). This is a logically possible language 
pattern. Here is another one: if an even number of adjectives modify a noun, then they 
follow the noun in noun phrases, but if an odd number of adjectives modify a noun they 
precede the noun in noun phrases. These are both recursive patterns; in fact, they are 
regular. 

According to Chater and Vitanyi (2007), if the linguistic input a child received con
tained sufficiently many examples of noun phrases which obeyed the even-odd adjec
tive rule above, they would learn it. It is an empirical hypothesis, but I think children 
would fail to learn this rule no matter how many examples they were given. Chater and 
Vitanyi can claim that there is a simpler pattern consistent with data (e.g. adjectives can 
optionally precede or follow nouns) that children settle on because their lives and child
hoods are too short for there to be enough data to move from the simpler generalization 
to the correct one. This also leads to an interesting, unfortunately untestable, prediction, 
that if humans only had longer lives and childhoods, we could learn such bizarre pat
terns like the even-odd adjective rule. In other words, they might choose to explain the 
absence of an even-odd adjective rule in natural languages as just a byproduct of short 
lives and childhoods, whereas I would attribute it to linguistic principles which exclude 
it from the collectio'n of hypotheses children entertain. But there is a way Chater and 
Vitanyi can address the issue: How much data does "the ideal language learner" require 
to converge to the unattested pattern? 

The harder learning frameworks-identification in the limit from positive data and 
PAC-bring more insight into the problem of learning and the nature of Iearnable 
classes of patterns. First, these definitions oflearning make clear that the central prob
lem in learning is generalizing beyond one's experience. This is because under these 
definitions, generalizing to infinite patterns requires the impossibility of being able to 
learn certain finite patterns (Gold's first point above). I think humans behave like this. 
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Consider the birds in Table 27.3. If I tell you birds ( a,b) are "warbler-barblers" and ask 
which other birds ( c,d,e,f,g) are warbler-barblers you are likely to decide that birds ( c,f,g) 
could be warbler-barblers but birds (d,e) definitely not. You would be very surprised to 
learn that in fact birds (a,b) are the onlywarbler-barblers of all time ever. Humans never 
even consider the possibility that there could just be exactly two "warbler-barblers:' This 

insight is expressed well by Gleitman (1990: 12): 

The trouble is that an observer who notices everything can learn nothing for there 
is no end of categories known and constructible to describe a situation. (Gleitman 

1990: 12; emphasis in original) 

Chater and Vitanyi (2007) can say that grammars to describe finite languages are more 
complex than regular or context-free grammars, and they are right, provided the finite 
language is big enough. Again, the question is what kind experience does "the ideal lan
guage learner" need in order to learn a finite language with exactly n sentences, and 

is this human-like? This question should be asked of all proposed language learning 
models. It is interesting to contrast "the ideal language learner" with Yoshinaka's (2008, 

2011) learners which generalize to context-free patterns (a"b") and context-sensitive 
patterns (a"b"c") with at most a few examples (and so those learners cannot learn, under 

any circumstances, the finite language that contains only those few examples). 
Second, classes which are learnable within these difficult frameworks have the poten

tial to yield new kinds of insights about which properties natural languages possess 
which make them learnable. As discussed in section 27.4.2, there are many positive 

results of interesting subclasses of major regions of the Chomsky Hierarchy which are 
identifiable in the limit from positive data and/or PAC-learnable, and which describe 
natural language patterns. The learners for those classes succeed because of the struc
ture inherent to the class-a structure which can reflect deep, universal properties of 
natural language. Under weaker definitions of learning, where the recursive class of pat

terns is learnable, such insights are less likely to be forthcoming. 
Clark and Lappin (2011) have anticipated one way such insight could be forthcoming. 

I have mentioned that many of the learners which can learn the recursive class oflan
guages in particular learning frameworks require more time and resources in the worst 
case than is considered to be reasonable. In chapter 7, Clark and Lappin (2ou) provide 

excellent discussion on interpreting the computational complexity oflearning algorithms 

Table 27.3 Birds ( a,b) are "warbler-barblers:' Which birds ( c-g) do you think are 

"warbler-barblers"? 

b. ·~ I c ~. d. l e. ~ £. ¥ g. ~ I 
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themselves. As they point out, such infeasibility results provide "a starting point for 
research on a set oflearning problems, rather than marking its conclusion" (2011: 148). 
This is because infeasible learning results always consider the worst-case. It may be that 
only some of the languages in a class require enormous time resources, but that others 
can be learned within reasonable time limits. Clark and Lappin explain that "to achieve 
interesting theoretical insight into the distinction between these cases, we need a more 

principled way of separating the hard problems from the easy ones" ( 2011: 148) which will 
"distinguish the learnable grammars from the intractable ones" ( 2011: 149 ). They go on to 
suggest that one possibility is to "construct algorithms for subsets of existing representa
tion classes, such as context-free grammars" (2011: 149). In other words, in the learning 
frameworks where the entire recursive class is learnable, one way to proceed would to be 
find those subclasses which are feasibly learnable (recall Figure 27.9 ). 

As for Gold's second point, there has been some empirical study into whether chil
dren use negative evidence in language acquisition (Brown and Hanlon 1970; Marcus 
1993). Also learning frameworks which permit queries (Angluin i988a, 1990), especially 
correction queries (Becerra-Bonache et al. 2006; Tirnauca 2008), can be thought of as 
allowing learners to access implicit negative evidence. 

As for the third question at the start of this section, I do not know of any research that 
has addressed it. It is a hypothesis that the universe is computable (and therefore all data 
presentations would be as well). It is not clear to me how this hypothesis could ever be 
tested. 

Nonetheless, it should be clear that the commonly-cited statistical learning frame
works that have shown probabilistic context-free languages are Jearnable (Horning 
1969), and in fact the recursive stochastic languages are learnable (Angluin i988b; 
Chater and Vitanyi 2007) are pursuing Gold's third suggestion. It also ought to be clear 
that the positive results that show recursive patterns can be learned from positive, com
plete, and computable data presentations are "in principle" results. As far as is known, 
they cannot learn these classes feasibly. Of course, as Clark and Lappin (2011) suggest, it 
may be possible that such techniques can feasibly learn interesting subclasses of major 
regions of the Chomsky Hierarchy which are relevant to natural language. If shown, this 
would be an interesting complement to the research efforts pursuing Gold's first sugges
tion, and could also reveal universal properties of natural language that contribute to 
their learnability. 

27.5.5 Summary 

There are many ways to define learning and how best to define learning to study the 
acquistion of natural language remains an active area of research, which is unfortunately 
sometimes contentious. Nonetheless, I hope the discussion in this section has made 
clear that feasible learning can only occur when target classes of patterns are restricted 
and structured appropriately. I have emphasized that the central problem of learning is 
generalization. Also, I hope to have made clear that debates pitting statistical learning 
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against symbolic learning have been largely misplaced. The real issue is about which 
data presentations learners should succeed on. Stochastic learning paradigms provide 
some benefit in learning power, but only when the class of presentations is limited to 
computable ones. Whether such paradigms are a step towards realism is debatable and 
not a fact to be taken for granted. 

27.6 ARTIFICIAL LANGUAGE 

LEARNING EXPERIMENTS 

Some key questions raised in the last section can in principle be addressed by artificial 
language learning experiments. These experiments probe the generalizations people 
make on the basis of brief finite exposure to artificial languages (Gomez and Gerken 
2000; Petersson et al. 2004; Folia et al. 2010). The performance of human subjects can 
then be compared to the performance of computational learning models on these exper
iments (Dell et al. 2000; Chambers et al. 2002; Onishi et al. 2003; Saffran and Thiessen 
2003; Goldrick 2004; Wilson 2006; Frank et al. 2007; Finley and Badecker 2009; Seidl 
et al. 2009; Finley 2011; Jager and Rogers 2012; Koo and Callahan 2012; Lai 2015). 

But the relationship can go beyond comparison and evaluation to design. Well
defined learnable classes which contain natural language patterns are the bases for 
experiments. As mentioned, there are non-trivial interesting classes oflanguages which 
are PAC-learnable, which are identifiable in the limit from positive data, and which con
tain natural language patterns. The proofs are constructive and a common technique is 
identifying exactly the finite experience the proposed learners need to generalize cor
rectly to each language in a given class. This critical finite experience is called the char
acteristic sample. The characteristic sample essentially becomes the training stimuli for 
the experiments. Other sentences in the language that are not part of the characteristic 
sample become test items. Finally, more than one learner can be compared by finding 
test items in the symmetric difference of the different patterns multiple learners return 
from the experimental stimuli. These points are also articulated by Rogers and Hauser 
(2010 ), and I encourage readers to study their paper. 

Let me provide a simple example to illustrate. Consider the mildly context-sensitive 
pattern ( anbncn) which can learned in principle by both Chater and Vitanyi's ( 2007) ideal 
language learner and Yoshinaka's (2011) learner. However, each model requires a differ
ent amount of data to converge to this target. Which is more human-like? What about 
a mildly context-sensitive pattern outside the class of patterns learnable by Yoshinaka's 
learner? Such a pattern can be learned by Chater and Vitanyi's ideal language learner 
from some data presentation. Can humans replicate this feat? This is just the tip of the 
iceberg, and many such experiments are currently being conducted in many linguistic 
subfields including phonology, morphology, and syntax. 

COMPUTATIONAL THEORIES OF LEARNING 663 

27.7 CONCLUSION 
.................................................................................................................................................................................... 

In this chapter I have tried to explain what computational learning theories are, and 
the lessons language scientists can draw from them. I believe there is a bright future for 
research which honestly integrates the insights of computational learning theories with 
the insights and methodologies of developmental psycholinguistics. 
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