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the fruit fl y intestine, the hindgut, starts out 

as a simple tube along the embryo’s midline. 

Through a process that occurs without cell 

division, this tube fi rst dips ventrally (toward 

the fl y’s “belly”), and then rotates leftward by 

90° to create a net rightward bend. Seeking a 

cellular basis for the rotation, Taniguchi et al. 

make the key observation of a small statisti-

cal bias in hindgut cell shapes with respect 

to the embryo’s left-right axis. Cell-cell 

boundaries that make angles between −90° 

and 0° with the tube’s long axis (left bound-

aries) appear more frequently than bound-

aries that make angles between 0° and 90° 

(right boundaries). The authors call this pat-

tern planar cell-shape chirality (PCC). They 

identify the cell-cell adhesion molecule Dro-

sophila E-cadherin (DE-cadherin) as a fac-

tor required for both PCC and gut rotation, 

showing that it is preferentially enriched on 

left boundaries. Mutations in a motor protein 

involved in intracellular movement, known 

as unconventional myosin ID (MyoID), 

reverse the polarity of DE-cadherin accu-

mulation and PCC. This is consistent with 

MyoID’s previously identifi ed role in setting 

the direction of gut rotation ( 5,  6).

Because mutations in DE-cadherin cause 

all cell boundaries to expand, Taniguchi et 

al. suggest that DE-cadherin limits bound-

ary expansion by increasing boundary ten-

sion. They propose that left-biased tension is 

suffi cient to produce a leftward tissue rota-

tion. Indeed, computer simulations iden-

tify one possible mechanism by which this 

might work. First, left-biased tension drives 

cell shape change and rearrangement while 

the endpoints of the tube remain fi xed. Then, 

rotation occurs in the absence of asymmetric 

tension, and the tube twists as the cells relax 

back toward more regular shapes.

Together, Tang et al. and Taniguchi et al. 

highlight how statistical differences in cell 

behavior across a large population can lead 

to stereotyped, tissue-level morphogenesis. 

They also highlight several key ways in which 

mathematical models provide an essential 

predictive bridge between cell- and tissue-

level dynamics. In the mouse lung, it is intui-

tively clear that biases in cell division orien-

tations could cause differential increases in 

tube length versus circumference, and previ-

ous work had shown that oriented cell divi-

sions can contribute to tube shape ( 7– 10). A 

model, however, was essential to show quan-

titative suffi ciency. In the case of the fruit fl y 

hindgut, it is far from obvious how biasing 

tension on left boundaries will produce a left-

ward twist. Here, mathematical models step 

in when intuition fails, and provide plausible 

testable hypotheses.

For both systems, the mathematical mod-

els provide a framework for exploring the 

molecular mechanisms that control local cell 

polarity and coordinate its tissue-wide effects. 

One obvious candidate in both cases is the 

signaling pathway known as the planar cell 

polarity (PCP) pathway, which controls cell 

division orientations and cellular polarities in 

many other contexts ( 11,  12). In the experi-

ments conducted by Tang et al. and Taniguchi 

et al., however, disrupting PCP function had 

no effect on these developmental processes, 

suggesting that other mechanisms are at work.

In the mouse lung, a key question is: How 

does ERK signaling shape the distribution of 

cell division angles? The nature of the wild-

type distribution suggests that cells partition 

between two qualitatively distinct orientation 

states: strictly longitudinal or random. Tang 

et al. hypothesize that the longitudinal state 

is the default, that ERK signaling overrides 

this default to randomize division axes, and 

that Spry1/2 tune ERK signaling to achieve 

a balance between longitudinal and random 

divisions. But how does a graded change in 

ERK levels control the fraction of cells that 

inhabit these two states? Does ERK signal-

ing merely gate the response to a longitudi-

nal cue, or does it directly control a transition 

between distinct phenotypic states?

Likewise, the Taniguchi et al. study pro-

vides a starting point for thinking about how 

local left-right asymmetries in force genera-

tion could drive chiral rotation, but how do 

these asymmetries arise? The observation 

that MyoID mutants exhibit reversed PCC 

and gut rotation implies an intrinsic mecha-

nism for breaking chiral symmetry that can 

be biased in either direction. The genetic 

requirements for DE-cadherin and MyoID 

suggest that symmetry breaking occurs 

shortly before hindgut rotation and requires 

local interaction across cell-cell boundaries. 

By contrast, in vertebrates, establishment of 

left-right asymmetry occurs far in space and 

time from the organs undergoing chiral mor-

phogenesis, which suggests that it may be 

easier to identify the mechanisms involved.

These studies signal a growing trend 

in which classical molecular and genetic 

approaches merge with quantitative micros-

copy, image analysis, and modeling to pro-

vide new insights into the cellular dynamics 

of tissue morphogenesis. It is likely, however, 

that we are seeing just the tip of an iceberg. 
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Do humans learn the sentence and sound patterns of natural languages through distinct learning 

mechanisms?

        O
ur understanding of human learning 

is increasingly informed by fi ndings 

from multiple fields—psychology, 

neuroscience, computer science, linguistics, 

and education. A convergence of insights is 

forging a “new science of learning” within 

cognitive science, which promises to play a 

key role in developing intelligent machines 

( 1,  2). A long-standing fundamental issue in 

theories of human learning is whether there 

are specialized learning mechanisms for cer-

tain tasks or spheres of activity (domains). 

For example, is learning how to open a door 

(turning the handle before pulling) the same 

kind of “learning” as putting up and taking 

down scaffolding (where disassembly must 

be done in the reverse order of assembly)? 

Surprisingly, this issue plays out within the 

domain of human language.

Language perception is organized at dif-

ferent levels, each with its own internal orga-

nizing principles: the organization of sounds 

into words (phonology), the organization of 

roots and affi xes into words (morphology), 

and the organization of words into phrases 

into sentences (syntax). Are there any differ-

ences among the patterns observed at each 

level? And if there are, are specialized or 
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Neuroscience and Cognitive Science, University of Mary-
land, 1401 Marie Mount Hall, College Park, MD 20742, 
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nonspecialized learning mecha-

nisms better or worse at explain-

ing them?

Theoretical computer science 

provides a mathematically rigor-

ous way to characterize patterns 

in terms of strings, i.e., sequences 

of more basic units. For exam-

ple, sentences are sequences of 

words; words are sequences of 

sounds. Patterns in any domain 

can be described as a set of strings 

or a probability distribution over 

strings. The Subregular and 

Chomsky hierarchies ( 3) arrange 

all logically possible patterns 

into nested regions of complex-

ity (see the fi gure). These regions 

have multiple, convergent defi nitions 

which distill the necessary properties 

of devices (such as grammar, in the case 

of language) that can recognize or gener-

ate the strings comprising the pattern (or, in 

the case of distributions, their probabilities). 

This mathematical framework permits the 

comparison of patterns and their complexity 

across different levels or domains, linguistic 

or otherwise.

Every natural language distinguishes 

well-formed and ill-formed sentences and 

words. Every sentence in this article is well-

formed; ill-formed sentences are obtained 

by shifting every period one word to the 

left. Likewise, English words must contain 

proper sequences of English sounds ( 4). For 

example, “gdansk” and “srem” are not pos-

sible native English words, though they are 

possible words in other languages. English 

speakers can readily assent to new coinages 

(“bling”) while avoiding others (“gding”).

An important, but perhaps overlooked, 

difference is that sound patterns are less 

complex than sentence patterns according 

to the Subregular and Chomsky hierarchies. 

Capturing which patterns of words are well-

formed sentences can require context-free 

or even mildly context-sensitive computa-

tions ( 5). Thus, similar to the assembly and 

disassembly of scaffolding, English exhibits 

recursion, because sentences (“The mouse 

ran away”) can be contained in larger ones 

(“The mouse that the cat chased ran away”). 

The recursive nature of sentence patterns is 

a defi ning characteristic of natural language 

( 6), and demonstrably makes such sentence 

patterns at least context-free.

By contrast, sound patterns are mea-

surably simpler because identifying well-

formed patterns of sounds does not require 

context-free computations ( 7). One kind of 

sound pattern restricts adjacent sounds (such 

as “gding”). Another kind of sound pattern 

restricts sounds over long distances ( 8). For 

example, Samala, a language native to Cali-

fornia, does not allow words containing both 

“s” and “sh.” Consequently, there are words 

such as “shtoyonowonowash” (which means 

“it stood upright”) but none like “shtoyono-

wonowas” ( 9). Moreover, all sound patterns 

fall into the “regular” region (less restricted) 

of the Chomsky hierarchy ( 7), and probably 

belong to even less complex regions ( 10).

What are the possible explanations for 

this computationally measurable differ-

ence between sentence patterns and sound 

patterns? One possibility is that sound pat-

terns are constrained by the human nervous, 

motor, and auditory systems in ways that sen-

tence patterns are not. That is, the moment-

to-moment configurations of the vocal tract 

constrain the moment-to-moment articula-

tion of sounds. However, long-distance sound 

patterns cannot be due to articulation alone 

because the tongue does not retain the “sh” 

posture throughout “shtoyonowonowash.”

Because humans do learn languages, 

another possibility is that the properties of 

sentence patterns and sound patterns refl ect 

properties of how they do this. It follows that 

if humans employ distinct learning mecha-

nisms for phonology and syn-

tax, the complexity differential 

could be explained. There is a 

convergence of results from phi-

losophy, psychology, and com-

puter science ( 1,  11– 13), show-

ing that learning is only possible 

if learners (humans or machines) 

are restricted in the generaliza-

tions they are allowed to con-

sider. Indeed, the successes in the 

“new science of learning” care-

fully tailor hypothesis spaces so 

that learners succeed with reason-

able amounts of data and effort. 

In fact, recent, distinct computa-

tional models for learning sound 

patterns ( 10,  14) and sentence pat-

terns ( 15,  16) succeed because they 

exclude certain patterns from consider-

ation. For instance, algorithms for sound-

pattern learning exclude context-free pat-

terns. In this way, these results demonstrate 

the utility of multiple, differentiated algo-

rithms for language learning.

Task-specific knowledge and its acquisi-

tion are familiar in robotics ( 17) and biology 

( 18). Human and robot locomotion, for exam-

ple, are often modeled with systems with less 

than context-free power ( 19). Thus, modular 

learning proposals may be based not on the 

content of the domains (language versus loco-

motion), but rather on the informational com-

plexity of the patterns in each domain.

Although single, general-purpose lan-

guage-learning models ( 20) cannot be ruled 

out, they face a series of challenges. Such 

models predict that no complexity differ-

ential between sound patterns and sentence 

patterns should exist: Any sentence pattern 

ought to be a possible sound pattern and vice 

versa. Moreover, such unitary algorithms 

must enable the learning of both sound pat-

terns and sentence patterns from reasonable 

amounts of data. Finally, these models should 

also offer some explanation for the observed 

difference in complexity between sentence 

and sound patterns (or disprove it).

While complexity differentials do not 

entail distinct learning mechanisms, the 

hypothesis that humans learn sound patterns 

separately from sentence patterns provides a 

viable explanation for the difference in com-

plexity observed between them. The utility of 

specialized or general learning mechanisms 

(or perhaps even both) for language learning 

will become clearer through further empiri-

cal collaborations. Indeed, psychologists and 

linguists are currently testing these hypoth-

eses with artifi cial language-learning experi-

ments ( 21), an approach that can determine 

A• B• C• D•

Multiple, distinct

language learners
Single language

learner

Complexity hierarchies for patterns. The Sub-
regular and Chomsky hierarchies divide all logically 
possible patterns into nested regions ( 4). A is a pat-
tern of permissible consonant clusters in English 
( 14); B is the long-distance sound pattern of Samala 
( 9); C is the recursive pattern of sentences within 
sentences in English; D is a particular sentence pat-
tern in Swiss German ( 5).
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        Z
eolites are aluminosilicate crys-

tals that have internal networks of 

angstrom-size pores, similar to the 

dimensions of small molecules. They are 

among the most widely used materials in 

heterogeneous catalysis ( 1,  2) because of 

their defined structure and composition. 

Although zeolites are very potent solid-

acid catalysts, their catalytic applications 

have been limited to processing smaller 

molecules; their internal pores are not read-

ily accessed by molecules exceeding 1 nm 

in size. Major efforts have been directed to 

overcoming this limitation. On page 328 of 

this issue, Na et al. ( 3) present a new strat-

egy for creating thin zeolite walls, contain-

ing small pores, that grow into structures 

forming larger pores that can catalyze reac-

tions with larger molecules.

To date, two major synthesis strategies 

have been explored to create zeolites with 

additional larger pores. One is to form a 

secondary pore system of larger size than 

the zeolitic micropores within the zeolite 

crystal, thereby allowing faster diffusion of 

larger molecules into the zeolite particles. 

In many zeolite synthesis routes, molecular 

“templates” are added to aid the growth of 

the aluminosilicate crystals; when the syn-

thesis is completed and the template mol-

ecules are removed, zeolitic pore spaces 

remain. Traditional methods in zeolite syn-

thesis use a single molecular template with 

a size similar to or smaller than the micro-

pore dimensions. This micropore size bar-

rier was broken in the early 1990s with the 

synthesis of mesoporous oxides by using 

larger amphiphilic surfactant templates ( 4). 

However, the local order in the resulting 

(alumino-)silicates was lost, and with it their 

strong acidity. Efforts to recrystallize these 

amorphous walls into zeolitic structures 

were usually unsuccessful.

Dual-templating approaches are now being 

explored that combine the advantages of zeo-

lites and the mesoporous oxides. In addition to 

the molecular zeolite templates, larger assem-

blies such as the above surfactant micelles ( 5), 

polymers ( 6), or objects such as carbon beads 

or fi bers ( 7) were used to create mesoporos-

ity. Alternative approaches include chemical 

treatments that partially dissolve the crystal-

line zeolite lattice and create larger intrapar-

ticle cavities ( 8). The need for a secondary 

template can also be avoided by the direct 

assembly of nanosized zeolite particles, thus 

creating mesoporous interparticle voids ( 9).

The other approach for allowing access 

of larger molecules to zeolite pores is to pre-

Pores Within Pores—How to Craft 

Ordered Hierarchical Zeolites

CHEMISTRY

Karin Möller and Thomas Bein  

Thin walls of crystalline zeolites can be 

assembled into hexagonal nanopore networks, 

which expands the range of their catalytic 

reactions to larger molecules.

Department of Chemistry, Ludwig-Maximilians University, 
81377 Munich, Germany. E-mail: karin.moeller@cup.uni-
muenchen.de; bein@lmu.de
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B

Ordering the walls. Na et al. have used large molecular templates to grow thin walls of zeolites into mor-
phologies that create ordered mesopores. (A) Two electron microscopy images of the hexagonally grown 
mesoporous MFI-type zeolite with extremely high surface area. The inset shows a schematic of the hierarchi-
cal structure and the MFI pore framework of the zeolite walls. (B) Examples of the bifunctional templating 
molecules used in the synthesis that bear ammonium groups and long alkyl chains (white spheres, hydrogen; 
gray spheres, carbon; red spheres, nitrogen).

whether people make the same kind of gen-

eralizations when they encounter both words 

and sentences. 
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