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1 Introduction

How can anything (such as a child or any other computing device) automatically
acquire (any aspect of) a phonological grammar on the basis of ifs experience?

This is the fundamental (and unresolved) question of phonological learnability,
and it is essentially independent of whether the grammar is taken to be ihe best
description of the cognitive state of the language faculty, or whether the grammar
is taken to be the best description of a language pattern, independent of its
cognitive status. The problem of learning a general pattern from a finite set of
observations has roots in the philosophical problem of inductive logic (Popper
1959; Sober 2008). Though language learning is simply a specific instance of this
problem, it has played a perennially central role in the discussion. In fact. the
modern formal study of learnability was inspired by the problem of lenguage
acquisition and much of the learnability literature is couched in formal Janguage
theory, whose early period was also influenced by the founding of generative
linguistics. There have been many developments in formal learning theory and
related disciplines, such as grammatical inference, computational learning theory,
and machine learning. For the purposes of this chapter we will refer to all of these
areas with the term learning theory.

All characterizations of learning — whether the domain is syntax, phonology,
or gardening, and whether the models are connectionist, Bavesian, or syibaolic
- are subject to the results of learning theory. Even if theyv are not intended
as such, answers to the question posed at the outset of this chapter vonstitute
hypotheses about the broad characteristics of the computations that humans
perform in learning the phonology of their language(s). OQur goal in this chapter
is to motivate the applicability of learning theory to the problem of learning

- phonological grammars. In this pursuit, we discuss but a fraction of the many
grammatical formalisms and models of phonological learning that have been
proposed (space does not permit a comprehensive survey, so we apologize
in advance to those whose work is omitted in our brief discussion of the
literature). Our main points are that learning theory: (i) makes clear what it is
that is being learned; (ii) reveals little conceptual difference in the problems of
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learning gradient vs. categorical distinctions; (iii) makes a theory of universal
grammar inevitable; (iv) can make clear which properties of phonological patterns
are important for learnability; (v) emphasizes understanding the general behavior
of learning models.

§2 reviews the foundations of formal language theory and its relevance to
phonology. §3 covers the main contributions of a few of the theoretical Jeam-
ing frameworks to our understanding of the problem of learning phonological
grammars. §4 examines the role of structure in generalization. §5 reviews several
phonological learning models from the perspective of learning theory.

2 Formal language theory and phonology

How do we represent the patterns (i.e. languages) that a learner might attempt
to learn? (See also CHAPTER 101 THE INTERPRETATION OF PHONOLOGICAL PATTERNS
IN FIRST LANGUAGE ACQUISITION for a different perspective.) In formal language
theory, languages are characterized as sets, relations, or, equivalently, functions
(Harrison 1978; Hopcroft of al. 1979). This abstraction focuses attention on the
patterns themselves rather than the particalar grammars that describe the patterns.
Though grammars typically reflect the generalizations that we are interested in,
there can be many different ways to describe the same language.

2.1 Phonotactic patterns

For a concrete example, consider the set of all and only the words that obey
a given phonotactic pattern. In this case, the phonotactic pattern makes a
binary distinction between well-formed and ill-formed words (gradient dis-
tinctions are discussed later). For example, suppose that (1) designates all and
only those words which obey the constraint that obstruents in codas do not
disagree in voice.

(1) {fist, deeft, rabd, .. .}

Already the connection between the foundations of gencrative grammar and
formal language theory are apparent. {f the “three dots” in (1) are meant to include
only actual English words, then clearly the set is finite. Generative phonologists
reject such finite “list” representations, because the evidence is overwhelming
that phoenaological competence goes beyond the tinitely many words a speaker
actually knows. In other words, the “three dots” are mweant to include every
conceivable word which includes many things that are not words of English, such
as those in (2).

(2) [plrst, Bzeft, wabd, .. ., peifist, .. .}
The fact that these sets can be infinite is what necessitates a generative grammar

— that is, some finite device capable of generating all and only those logically
possible words which obey the phonotactic pattern.
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2.2 Alternations

(Morpho)phonological alternations can be represented as relations (i.e. sets con-
sisting of all and only the pairs of words that obey the alternation). The example
in (3) represents word-final obstruent devoicing found in languages like Dutch
{CHAPTER 69: FINAL DEVOICING AND FINAL LARYNGEAL NEUTRALIZATION}. Again,
all logically possible pairs that obey the alternation are included (which, in the
case of Dutch, inciudes pairs like (ag, ak) even though Dutch lacks /g/).

(3) {(ab, ap), (ad, at), (ag, ak), ..., (bab, bap), (bad, bat), (bag, bak), ...}

The pairs can be taken to mean that underlying /ab / is realized as lap], and so on.
When an underlying form u is paired with a surface form s, we write (i, 5). Again,
much depends on how the “three dots” are interpreted. If they are interpreted as
strictly as possible, then the alternation could be generated by the SPE ruie:

{4) |+voice
-son

] — [-voice] / __#

In introductory phonology, it is often pointed out that the feature [+voice] in the
target of the rule is unnecessary. In the interests of having shorter rules and rules
which apply maximally without being falsified, the feature [+voice] is omitted in
favor of the following.

(5) [-son] — [—voice] / _#

This would mean that the “three dots” are intended to include pairs like those
in (6).

(6) |(ap, ap), (at, at), (ak, ak},. ..}

Thus the rule in (5) applies even to hypothetical form like /ap/, mapping it to
[ap]. Koskenniemi (1983) takes this one step further, and considers the “three dots”
to include pairs like those in (7).

(7 (a, a), (as, as), (af, af), (ar, ax), (an, an), . . .}

In other words, all hypothetical underlying forms are included in the left-hand side
of some pair. The corresponding SPE rule could be said to apply to all pessible
underlying forms, though in most cases its application is vacuous. The appli-
cation only results in a change when the final consonant is a voiced obstruent,
Mainstream phonology never adopted this perspective, for two reasens: it made
the standard SPE rules more difficult to write {(and sometimes more complex
according to the SPE simplicity metric), and there were some discouraging com-
plexity results (Barton 1986; Barton et al. 1987). But Koskenniemi observes a
conceptual shift when thinking of the patterns in this way: rules can be thought
of as constraints on alternations.

Note that all phonological knowledge can be deduced from the alternation
pattern. In the case of phonotactic knowledge, this is straightforward: the set of
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forms in the right-hand side (the “surface forms”) of the alternation pattern con-
stitutes the infinite set of all forms that obey the surface phonotactic constraints
of the language. Similarly, the set of forms in the left-hand side (the “underlying
forms”} is an infinite set which constitutes all forms that obey the Morpheme
Structure Constraints (MSCs) of the language (CHAPTER 86! MORPHEME STRUCTURE
consTRAINTS). If the notion of the rich base is adopted, there are no morpheme
structure constraints, and the left-hand side becomes all logically possible under-
lying forms. Finally, the alternation pattern itself determines the contrasts. Generally,
any two segments that are mapped to the same surface segment in all contexts
{i.e. are neutralized) are not contrastive. Because knowledge of MSCs, phonotac-
tics, and contrasts can all be deduced from alternations, the problem of devising
learners for phonological alternations is one of the most important frontiers of
phonological learnability.

2.3 Gradience

The above discussion only makes binary distinctions of well-formedness. Recently,
however, many phonologists have argued for the importance of gradient dis-
tinctions (Coleman and Pierrehumbert 1997, Zuraw 2000; Albright and Hayes 2003;
Coetzee 2008; Hayes and Wilson 2008). Gradient distinctions have been used to
model the confidence of speakers in the face of lexical exceptions, variation in
the productions of individual speakers, and variation across speakers in experi-
mental settings.

The scope of formal language theory is not limited to binary distinctions. The
sets and relations above can be thought of as functions whose domain is all
logically possible words, or pairs of words, and whose co-domain is simply 0
and 1, for “ill-formed” and “well-formed,” respectively; i.e. as indicator functions.
Phonological patterns can also be thought of as functions whose co-domain is
real-valued. Moreover, if these values sum fo one, then the function is a prob-
ability distribution.!

From the perspective of formal language theory and learning theories, the
differences between indicator functions and distributions are not particularly
significant. Consider the Chomsky Hierarchy:

(8) finite < regular © context-free < context-sensitive < recursively enumerable

This inclusion hierarchy classifies patterns (e.g. sets of (pairs of ) forms) in terms of
the complexity of the kinds of formal devices {e.g. grammars) needed to generate
them (see, e.g. Harrison 1978; Hoperoft ef al. 197%; Thomas 1997). A remarkable
range of ways to characterize complexity all converge on the distinctions in (8),
which is why the hicrarchy is considered to be so illuminating.

Crucially, the place of a function in the Chomsky Hierarchy is entirely inde-
pendent of whether its co-domain is Boolean or real-valued. For learning theory
—and the central problem of generalization - the co-domain matters littie. Vapnik
(1998: 8) writes:

' Formally, let £* be the set of all logically possible words given a finite alphabet X A pattern L is
an indicator function if L1 2% ~ {0, 1} 1t is real~valued if L1 £* =+ R and it is a probability distribu-
tion iff £, Llw) = L 1f A is another alphabet, then L : 5% A* = {0, 1} is a Boolean alternation and
L:Z*x A* -3 R is a real-valued one.
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Generalizing the results obtained for estimating indicator functions (pattern recog-
nition) to the problem of estimating real-valued functions (regressions, density
functions, etc.) was a purely technical achievement. To obtain these generalizations,
no additional concepts needed to be introduced.

Thus the choice of binary vs. gradient distinctions should depend simply on wlat
one is trying to model.

24 Properties of phonological patterns

What are the properties of phonological patterns? When we consider alternations,
it is the case that they can be described with any grammar capable of describ-
ing regular relations (Johnson 1972; Kaplan and Kay 1981, 1994; Karttunen 1993,
1998; Eisner 19972, 1997b; Riggle 2004).” It is known that all regular relations have
regular domains and co-domains, so it follows that all phonotactic patterns are
regular as well. This is a striking hypothesis in light of the fact that some syntactic
patterns appear to belong to higher levels of the Chomsky Hierarchy (Chomsky
1956; Joshi 1985; Shieber 1985; Kobele 2006).

Though limiting phonology to regular patterns is a significant restriction, it is
not nearly restrictive enough. For instance, consider a hypothetical stress pattern
consisting of all forms with an even number of stressed syllables. This pattern is
regular, but it is wildly uniike those observed in natural language (see e.g. Haves
1995; Gordon 2002; CHAPTER 41: THE REPRESENTATION OF WORD 8TRESs). Further-
more, though assuming that phonology is regular provides significant structure
to the hypothesis space, there are many learning frameworks where this i5 still
too little structure to guarantee learnability.

Learning theorists are interested in the properties that make patterns learnabie,
Linguistic properties are just now beginning to be investigated for their contribu.
tions to learnability. In the case of phonological patterns, it seems likely that the
relevant properties will be subregular; that is, properties that carve out some praper
subclass of the regular languages. Rogers and Pullum (2007} draw attention to
the Subregular Hierarchy (McNaughton and Papert 1971), which ¢lassifies regular
patterns according to the properties of different kinds of grammars capable of
generating them. Additional recent work which attempts to relate phonotogical
patterns to their place in the Subregular Hierarchy include Edletsen of wl, {2008)
Graf (2010), and Heinz (2010).

3 Learning theory

3.1 Goals

There are many good resources on formal learning theory for phonohsygists,
Nowak et al. (2002) provides an excellent, short introduction. Niyogi {2008) and
de la Higuera (2010} provide detailed, accessible treatments, and Anthony and

? The notable exception to this is reduplication (CHAPTER 100 REDUPLICATION! CHAFTER 1
REDUPLICATION IN SANSKRIT), which is arguably a morphological process (Inkelas and Zoli 20058 For
regular (finite-state) approaches to reduplication, see Roark and Sproat {27}
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Biggs (1992), Kearns and Vazirani (1994), and Jain ¢t al. (1999) provide technical
introductions. Here we summarize some of the main ideas and common results.

Learning theory characterizes learing, and the necessary and sufficient con-
ditions required for learning strategies to be successful, or to exhibit some other
particular behavior. This focus on characterizing a learner’s behavior helps us
understand precisely why a particular learning strategy succeeds in some cases,
and helps us to characterize the class of cases where it may fail.

Learning theory defines learners as functions which map experience to grammars.
The experience of the learner is necessarily finite, but the target languages typically
are not. Any learning procedure can be characterized in this way, including
learners that are connectionist (e.g. Rumelhart and McClelland 1986) or Bayesian
(Griffiths ¢t al. 2008), and learners based on maximum entropy (e.g. Goldwater
and Johnson 2003), as well as those embedded within generative models such
as Recursive Constraint Demotion (Tesar 1995; Tesar and Smolensky 1998) and
minimal generalization (Albright and Hayes 2002; Albright 2009). Results of formal
learning theory apply to all of these particular proposals and many others.

By characterizing learning algorithms as functions, it is possible to focus on the
functional behavior of a learning strategy rather than its procedural description.
This allows one to identifv relevant properl:ms of the mapping — like the linguistic
typology predicted by a function’s range — that are independent of the algorithm’s
implementation. Moreover, these properties are often c¢rucial in understanding
precisely what kinds of patterns learners are guaranteed to learn, and where they
can fail.

Learning functions can also be characterized in terms of their computational
complemty Some learnjng p:medurm may require unreasonable resources and
time. The exact meaning of “unreasonable” is studied in a number of works,
including Pitt (1989) and de la Higuera (1997).

3.2 Learning frameworks

In §3.2.1-83.3 we survey three learning frameworks: Identification in the Limit
from Positive Data (C;old 1967), Probably Approximately Correct learning (Valiant
1984), and the Mistake Bounds model (Littlestone 1988). Other frameworks are
discussed in §3.3.1, and the major results of learning theory are given in §3.4.
Across the frameworks, precisely the same conclusion explicates the necessity
of (some form of) Universal Grammar: namely, without a structured, restricted
hypothesis space, feasible learning is impossible.

3.2.1 Identification in the Limit from Positive Data

In the Identification in the Limit from Positive Data (ILPD) framework, there
are no limits on the learner’s computational resources or time, and the input
is assumed to consist of an infinitely long noise-free text that contains at least
one instance of every form in the target pattern. Learners are partial functions,
which map initial finite portions of these texts to grammars. A learner is said
to converge to a grammar G if and only if at some finite point every future
hypothesis is G. The learner is said to identify a language (or class of languages)
in the limit just in case the learner converges to a grammar that generates the
target language for any text from the target language (for any member of the class
of languages).
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Though the learner’s input is generously assumed to include every potentially
useful finite collection of forms from the target, the criterion for success is very strict:
for any logically possible text for the language, the learner must find a grammar
that generates the target pattern without a single deviation. This scenario focuses
the learning problem squarely on generalization. Given as much finite experience
as desired, can any learning device, no matter how powerful, exactly learn some
language pattern, which may be infinite in size? How can the learning device
cover the gap between its finite experience and the infinite set which represents
the capacity of a normal speaker?

3.2.2  Probably Approximately Correct learning

Another mode] that has received a great deal of attention in learning theory is
the Probably Approximately Correct (PAC) framework, first introduced by Valiant
(1984) and subsequently developed by Kearns et al. (1987), Angluin (198%a), and
Blumer et al. (1989), among others.” This model offers a probabilistic perspective
on efficiently learning a class of languages in terms of the probability of attaining
a hypothesis that has a low likelihood of making errors modulo the number of
training samples observed.

The input to the learners is determined by drawing elements from the instance
space X of data points, according to a probability distribution I'T. Instead of exact
identification, the quality of a learner’s hypothesis I is evajuated in terms of the
probability that /i disagrees with the target language ! for any x € X, randomly
drawn according to distribution IT. The i mgemom aspect of the’ I‘A( maodel is that
it does not matter what the distribution is, only that the same distribution 11 is
used for training and for evaluation.

The error of a hypothesis, denoted error(l), is the sum of the probability that I}
assigns fo data points where h disagrees with the target. Analysis of learnability
in the PAC model centers on the following question:

(9) For a given level of error ¢, if a learner is presented with m samples drawn
from X at random according to IT, what is our confidence d that ersorths of
the learner’s hypothesis h is less than ¢?

For a language class £ and any given Jearning strategy, the sanple complenst is
the number of samples m needed to ensure that, for any / ¢ £, and any distribue
tion I, the likelihood is at least & that a learner will generate a hvpothesis whuose
error is at most ¢. This leads to the following definition of PAC-lcarnability:

(10) £is PAC-learnable iff the sample complexity of £ is a poivnomial function
of ¢ and d.

The PAC-learning framework differs from IDLP in two important respects. In one
sense, the PAC model is more stringent because the required training data and
computation must be feasible (i.e. polynomial). But, in another sense, the PAC pusdel

? Sea Maussler et al. (1992) and Haussler (1995) for overviews of work in lesrnability theory and wwdghi
into the deep connections between the PAC, Bayesian, and mistake-bound perspectives
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is less stringent than the Gold model, in that it loosens the definition of success
from exact identification of a language to approximate identification that is likely
to be correct niost of the time.

3.3 Mistake bounds

Littlestone (1988) observes that, in many cases of interest, learnability can be
characterized by the fact that the number of mistaken classifications — and sub-
sequent corrections —~ is bounded. In this online framework, a learning algorithm
A must classify each form it observes according to its current hypothesis /1, which
may be updated after the correct classification is revealed. The mistake bowund for
A on language class £, denoted M,(£), is the number of mistaken classifications
that 4 might make when facing a diabolical adversary who knows A's strategy
and has boundless computing resources to choose the hardest language in Z, and
the least helpful presentation of examples. The optimal mistake bound for L, denoted
Opt(L), is the smallest M (L) for any possible A.

Littlestone (1988) shows that if Opt(L) is finite, then it is the case that the class
L 1s both identifiable in the limit and PAC-learnable. The converse, however, does
not hold; neither PAC nor Geld learnability guarantees a finite mistake bound. In
the former case there might be an infinite sequence of imperfect hypotheses that
all have error fess than ¢, and in the latter case one might be able to guarantee that
the number of mistakes will be finite without being able to give a specific bound.

3.3.1 Other frameworks

There arc other learning frameworks. Some enrich the learner’s input in particular
ways, which gives the learner more information and generally leads to stronger
positive results. For example, Gold (1967) also considers the case of learning
from positive and negative data. In this scenario, the entire class of recursively
enumerable languages is learnable in principle, though no learner is efficiently
computable for even the regular languages {(Gold 1978). Gold also shows that
restricting texts to those with certain useful kinds of structure (for example, by
only allowing texts whose structure is describable with primitive recursive funce-
tions; see also Rogers 1967) can also guarantee the learnability of the recursively
enumerable languages. This means that knowing crucial properties of the pres-
entations of the data can, like negative evidence, make a huge contribution to
pattern learning. However, it is highly doubtful that the natural language data
children observe have either of these properties (note that occasional overt cor-
rections do not necessarily constitute negative evidence).

Similarly, Horning (1969) shows that, when learning stochastic languages
(distribution learning), if it is the case that learners are required to succeed only
on texts generable by the target distribution then it follows that probabilistic
context-free languages can be learned (sce also Osherson of al. 1986). Angluin
(1988b) supersedes Horning’s result, and shows that the entire class of recursively
enumerable distributions is in fact learnable in this sense. Like Gold’s result
above, these results suggest that knowing properties of the presentations of the
input data dramatically increases what is learnable in principle. Crucially, how-
ever, the learners in these proofs are not remotely feasible, so these results do not
inform human language learning.
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3.4 Main results

In the ILPD, PAC, and MB frameworks surveyed above, there are significant
negative results: none of the major classes in the Chomsky Hierarchy is learnable.
Int the case of identification in the limit from positive data, no class which is a
proper superset of the finite languages is learnable. In the PAC and MB models,
not even the finite class of languages is learnable. In other words, there is no learner,
not even in principle, that can PAC-learn or identify in the limit from positive
data all regular, context-free, or context-sensitive language patterns.

There are many ways to interpret this result (see, for example, Pinker 19793,
Gold mentions restricting the problem so that not all regular (or context-sensitive)
patterns are permitted in natural language. This possibility is promising for threc
reasons. First, the field of grammatical inference has identified many classes of
languages that are ILDP and PAC-learnable (Angluin 1982; Muggleton 1990; Clark
and Eyraud 2007; Heinz 2008; de la Higuera 2010). Many of these classes contain
infinitely many patterns, and some include contexi-free, even confext-sensitive
patterns. In virtually every case, the successes occur because the language classes
are nop-arbitrary in important ways: the hypothesis space is structured. Secandly,
this possibility makes sense from the studies of distribution learning above
while recursively enumerable distributions are learnable in principle they are not
feasibly learnable in practice. The efficiency issues can be overcome by restricting
the class of distributions to be learned (if doing so adds sufticient siravtere i
the hypothesis space). Finally, this possibility also matches well with languagy
typologists” repeated observations that the extensive variation that exists in
natural languages appears to be limited, though stating exact universals is ditficuis
(Greenberg 1963, 1978; Mairal and Gil 2006; Stabler 2009).

The results surveyed above lead to the following conclusion: structure masters
In particular, if the collection of language patterns to be learned has the right kit
of structure ~ the right kind of properties ~ then learning is possible, The s
interesting learners will use the structure or propertics in the language viass
license the right generalizations from their finite exporicnee to an infinite pattvrs
Conversely, these results show that there is essentially no hope of Tearning in s
where the range of possible patterns is too unstructured.

4 The role of structure in generalization

The structure of the hypothesis space is what allows for peneralization I thos
section, we discuss very general structurai properties important to eaenabibily
We begin with a discussion of finite hypothesis spaces, then furn o structure pedaged
to what has been called the subset problem, and conclude with a generad swiric of
structure known as the Vapnik-Chervonenkis Dimension,

4.1 Finiteness as a kind of structure

Many linguistic theories, such as Principles and Parameters and Optimatity Thoory,
only allow finitely much variation in the typology, thereby providing & Snite
collection of languages. This property of hypothesis spaces is a suffivient propeyty
for success in many frameworks, including PAC and IDLP. A common brate-Foroe
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strategy for any finite hypothesis space is to essentially match all grammars with
the learning data, and choose the one that is the most consistent.

Although it is a sufficient property for learning, finiteness is hardly an inter-
esting property. To see why, recall the earlier discussion of quantity insensitive
(QI) stress patterns, and let us artificially place an upper bound on word length
so that we only have finitely many patterns to consider. For ease of illustration
we set the bound at four). If we restrict ourselves to just one string of each length,
then there are 2'° = 1,024 logically possible patterns, of which eight are shown
in (11).

(11)  Some logically possible stress patterns over 1-4 syllables

natural Q1 stress systems unpatural systems
Initial 110100 1000 001 100 0101
Final 1 01 001 0001 110 101 0119
Edges 111 101 1001 1 00 000 1010
Binary-initial 110101 1010 101 101 1100

The artificial bound limits the class in a very significant but uninteresting way,
because almost all of these 1,024 patterns belong in the “unnatural” column. The
properties that determine which patterns belong to the “natural” column are going
to be precisely those same linguistic properties that hold regardless of whether
the class is finite or infinite. It is of far greater interest how those properties ~ and
not finiteness — structure the hypothesis space.

Finiteness is hardly a necessary property for learnability — many infinite lan-
guage classes are efficiently learnable because they have structure that learners
can utilize (Jain of al. 1999; de Ia Higuera 2010). On the other hand, brute-force
learners that simply traverse an enumeration of all hypotheses are not gener-
ally feasible {since finite classes can still be very large). Even for the finite case,
the interesting learners are those that make use of structure (see e.g. Recursive
Constraint Demotion; Tesar and Smolensky 2000).

4.2 Tell-tale sets and the subset problem

Angluin (1980) provides one benchmark for necessary and sufficient structure
in a hypothesis space. If every language pattern L in the hypothesis space con-
tains a finite set 5, such that no other language pattern L' in the hypothesis space
is simultancously a superset of 5 and proper subset of L. (see Figure 3.1), then
this hypothesis space is sufficiently structured to be identified in the limit from
positive data. The finite set S is called a fell-tale sef, and we call the above property
of hypothesis spaces the fell-tale property.

The tell-tale property is sufficient for learning, because a learner that guesses
L after exposure to its tell-tale set is guaranteed to have hypothesized the smallest
language in the class consistent with the sample. Characterizing the tell-tale sets
of a hypothesis space - and more generally, characterizing the finite experience
a learner needs to generalize correctly to the language patterns in a hypothesis
space - is one of the important lessons of learning theory. It adds to the func-
tional characterization of the learner. This is because once the tell-tale sets are
characterized, when given a learner and a language pattern L from the learner’s
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No such language L’

Figure 3.1 The tell-tale property

hypothesis space, one knows whether the learner will succeed given some finite
sample S (by checking whether S is a tell-tale set).

Identifying properties of the tell-tale sets is important to phonologists for
two reasons. First, it provides an additional way to evaluate learning proposals,
since the tell-tale sets can be compared with the actual linguistic forms available
to children. Secondly, knowledge of the properties of tell-tale sets allows one to
understand how the learner generalizes, and may provide insight into stages of
the learning process.

4.3 The Vapnik—Chervonenkis dimension

One particularly simple and robust metric of structure for concept classes is the
combinatorial measure of complexity known as the Vapnik-Chervonenkis (VC)
dimension (Vapnik 1998; Vapnik and Chervonenkis 1971). For a given concept
class £, the VC dimension (VCD) of £ is the cardinality of the largest set of data
S such that there is at least one language in L for each of the 2 possible ways
of labeling the data points in § as “ungrammatical” or “grammatical.” if S has
this property it is said to be shattered by L.* If sets of arbitrary size are shatter-
able then the VCD is said to be infinite.

For an illustration, suppose that we represent coda clusters as points in # (the
x-y plane) where the x-axis encodes the sonority of the second consonant and
the y-axis the sonority of the first. Suppose further that £ is the (infinite) sel of
languages corresponding to “half-spaces” defined by straight lines that split 4
into two regions, one for licit clusters and the other for illicit clusters. Figure 3.2
provides a rough example that situates the clusters sz, pl, pf in K% In this example,
a grammar that includes all three clusters can be obtained by drawing a line off
to one side so that the illicit (shaded) area does not include the points. Grammars
that include any two of the points can be obtained by drawing a line between the
point to be excluded and the other two, and shading the side with the excluded
point. These four possibilities make up the top row of Figure 3.2. The other four
possibilities are illustrated in the bottom row of Figure 3.2; these are obtained by
inverting the grammars in the top row. Since there is a grammar (i.. a half-space}

* Formally, sample § = {x,,..., x,} € X, is shatterable if V(v,, ..., z) € (0, 1}, A & £ such that

Vi e(xi) = v The VC dimension of £ is the cardinality of the largest shatterable sample: tefil) =
max(|S| : S is shatterable).
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Figure 3.2 A set of three poings that is shatterable by half-spaces in &

for each of the cight logically possible grammatical/ungrammatical distinctions over
these three points, we say that this set of points is shattered by the class £

Because there is a shatterable set of three points, the VC dimension of £ is at
least three, This does not entail that vawry set of three points is shatterable. For
instance, any set of three collinear points cannot be shattered, because one of the
points lies directly between the other two and thus cannot be separated by a
half-space. This same logic explains why no set of four peins in &' is shatterable;
either one point is inside a triangle whose corners are the other points, or the four
points are the corners of a convex polygon. In the former case, no hyperplane can
include the interior point while excluding all the points at the corners and, in the
latter case, no hvperplane can include two opposing corners while excluding both
points at the other cormers. The fact that there are shatterable sets of three points,
but no shatterable sets of four, places the VO dimension of half-spaces in R at
three (for ®7 it is w41). What this means in terms of learnability is that, for any
dataset with more than three points, there must be points whose grammaticality
is interdependent,

To understand the role this structure plavs in fearning, consider a class £
whose VU dimension is o and a learner with m data points. As long as m = d, it
is possible that the labeling of every point is totally independent of the others.
But, as soon as m > d, some generalization/prediction is abways possible, because
there are fewer than 2V distinet ways to label the data points as grammatical
or ungrammatical according to tanguages in £ {otherwise the VO would be higher).
Furthermore, it turns out that when pr > d, the number of possible labelings is
a polynomind function of m. In essence, there is a sort of “phase transition” from
exponentially many labelings when m < d to only polynomially many when s =4,
which makes the complexity of the hypothesis space a polynomial function of
m when the VCD is finite.”

By complexity, we mean information-theoretic complenity in the sense that £ makes it possible to
deseribe any labeling of a1 = d data points with fewer than log, s bits. See Kearns and Varirani {1994)
for more discussion and for proots.
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A finite VCD is both necessary and sufficient for PAC-learnability (Blumer
et al. 1989), and thus not even the class of finite languages (which has infinite
VCD) is learnable in the PAC framework. It follows that none of the major classes
of the Chomsky Hierarchy are PAC-learnable, which again suggests that the right
characterization of the class of patterns in phonology is some class that cross-cuts
the Chomsky Hierarchy. '

Finally, we should note that substantive linguistic restrictions will shrink the
VC dimension below the upper bound that follows from more general structural
properties of the class. For example, in the grammars of Figure 3.2, phonetic
factors such as ease of articulation or perception might rule out the possibility
of languages that admit [pt] clusters while excluding [sl] and [sn] clusters. When
additional properties such as implicational universals over sonority sequencing
restrict a concept class, the VCD can quantify the structure that such factors bring
to the learning problem.

4.4 Summary

The three kinds of structure surveyed here — finiteness, the tell-tale property, and the
VC dimension - provide a foundation for phonologists to investigate the contribu-
tion phonological properties make to learning. Phonologists widely agree that there
is intricate structure in phonological patterns. How this phonological structure relates
to the structures that are relevant to learnability is a promising new research area,

5 Phonological learners

5.1 Learning rule-based alternations from pairs

Johnson (1984) presents an algorithum that takes as input a set of {1, s) pairs and
returns segment substitution rules and their orderings that are logically consistent
with the data. The class £ of all languages (sets of {1, 5) pairs) that are representable
by ordered sequences of substitution rules is superfinite, and thus we know that this
strategy cannot identify £ in the limit from positive data. Johnson notes that this
set of induced rules and orderings can be reduced via evaluation metrics and other
heuristics grounded in language universals. The need for the latter shows that, while
logical properties of phonological rules can restrict the hypothesis space, additional
structure in linguistic systems must play a role in choosing among hypotheses.
Gildea and Jurafsky (1996) present an algorithm that takes as input {u, s} pairs
from a dataset with some alternation, and returns a rule, which unlike Johnsom's
system can include deletion and epenthesis. Their work begins with a result from
Oncina et al. (1993), who present an algorithm dubbed OSTIA, which identifics
in the limit from positive data a subclass of regular relations describable by
subsequential finite state transducers. Since the flapping rule of English can be
represented this way, Gildea and Jurafsky ask whether OSTIA will acquire the

4

Since the CMU dictionary does not include allophonic information, Gildea and Jurafsky mudified
the dictionary to replace [t] and [d] with [r] in every instance where the rule would apply.
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flapping rule from an appropriately modified version of the Carnegic Melion
University Pronouncing Dictionary (CMU 1993).° Essentially, they ask whether the
CMU contains a tell-tale set (for OSTIA). Because OSTIA fails to learn the flapping
rule from the CMU dictionary, the answer is no, probably because a tell-tale set
would need to include non-English forms like £

Gildea and Jurafsky then augment OSTIA with three phonologically motivated
principles. These are Faithfulness: underlying-surface pairs tend to be similar;
Community: similar segments tend to behave similarly; and Context: phonological
rules can access variables in their context. This modified OSTIA algorithm gets
much closer to acquiring a rule that represents the English flapping alternation.
Gildea and Jurafsky conclude that these biases aid leaming, and argue for a research
program for evaluating the contributions of such biases. We agree wholeheartedly;
domain-appropriate biases that add structure to or otherwise reduce the hypothesis
space are likely to aid learning by also reducing the size of tell-tale sets. However,
it is critical to ask exactly how and why this occurs, and most crucially what class
of rules are learnable with the biases in place. To our knowledge, neither of these
interesting questions has been addressed.

Albright and Hayes (2003) also aim to learn alternations expressed by phono-
logical rules. Their algomhm takes as input {u, ) pairs and returns a set of rewrite
rules with confidence scores. A central idea in their rule construction procedure
is a strategy called minimal generalization. The idea is that if two sounds are known
to undergo some alternation, then one may conclude that all sounds in the smallest
natural class containing those two sounds also undergoes the alternation (cf. the
Community principle). In addition, the algorithm assigns a confidence score to
each rule based on the frequency of the rule’s application in the corpus. The con-
fidence score can be used to analyze free variation, or phonologically conditioned
allomorphy {as with the irregular English past tense).

Albright and Hayes do not focus on an analytical characterization of the class
of languages that their algorithm can learn, but instead compare the behavior
of their algorithm to the judgments of native speakers on “wug” tests (Berko 1958;
CHAPTER Y6 EXPERIMENTAL APPROACHES IN THEORETICAL PHONOLOGY). These com-
parisons reveal intriguing correlations, but they are somewhat difficult to interpret.
On the one hand, a shift in focus from the analysis of properties that define
various tearnable classes of languages to the behavior of humans is undoubtedly
appealing to any who feel that the results of learnability theory are too abstract and
remote from real-world learning problems. On the other hand, having observed
that an algorithm 2 and human subject # give similar responses for a particular
set of test items T after being exposed to a set of training data [, it is not clear
what we can conclude about Hor the relationship between A and 2 because they
might wildly diverge for some other data T" and I, The goal of determining which
properties of the data critically underlie learnability - or in this case the correla-
tion between A and # - is precisely why learning theory focuses mainly on the

It should be emphasized that OSTIA learns a rule that is consistent with the data, [t is just that the
alternation that this rule describes is not the same infinite set of {underlying form, surface form) pairs
that phonologists think the flapping rule ought to describe,
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properties of classes of languages or the general behavior of specific algorithms, as opposed
to the specific behavior of specific algorithms.

5.2 Learning OT grammars

Optimality Theory (Prince and Smolensky 1993) is a theory of grammar which
characterizes alternations by a strict ranking of constraints which evaluate possible
{u, s) pairs. A (i, s) pair belongs to the alternation just in case it is optimal among
the (possibly infinite) range of (i, s") pairs according to the ranked constraints.
(CHAPTER 63! MARKEDNESS AND FAITHFULNESS CONSTRAINTS).

For a fixed (universal) set of k constraints there are at most k! languages
and thus any set of constraints defines a finite class of languages that is learn-
able in the limit. Though the members of any finite class of languages can be
identified in the limit by enumerating the languages, such an approach is not
feasible in practice. An early positive result for OT learning was provided by
Tesar and Smolensky’s (1993) Recursive Constraint Demotion (RCD) algorithm.
Tesar and Smolensky {1996: 26} subsequently showed that the structure that ranked
constraints given to the hypothesis space guarantees that RCD will success-
fully identify languages with a polynomial mistake bound (unlike a brute-force
enumeration),

5.3 The VC dimension of OT and HG

As mentioned earlier, finitude is itself a very simple kind of structure for concept
classes. With regard to the VC dimension, this is reflected by the fact that the VCD
of any finite set of grammars is at most log, of the cardinality of the set. This
follows because it takes at least 2" concepts to shatter a set of 7 data points. Hence
the VCD of any set of OT grammars over a fixed set of k constraints is at most
log, k!, because there are only k! possible rankings. By contrast, if we take the
same constraints and consider grammars defined by real-valued weightings (as in
Harmonic Grammar; HG)® there are infinitely many possible grammars and thus
no a priori bound on the VCD.

This pair of cases proves to be quite illuminating. Though the finitude of &
(or lack thereof) provides some information about its learnability, the charac-
terization is both coarse and incomplete. In the case of OT, the finitude of the
concept class bounds the VC dimension at log, of k! (which is on the order of &
log, k). Unsurprisingly, the hypothesis space has more structure than its mere
finitude, and this structure bounds OT’s VC dimension at k-1 (Riggle 2004).
By contrast, one might expect the infinite hypothesis space of HG to have much
less structure, but it turns out that learning weightings can be represented as
the problem of learning half-spaces in ®* (as in Figure 3.2), so the VC dimension
cannot be greater than k+1 and in fact is k-1 (Bane ¢t al. 2010). This parity means
not only that both models are efficiently learnable, but that the learning problems
are essentially of equal complexity (recalling Vapnik’s observation in §2.3).

¥ In addition to HG (Legendre et al. 1990; Smolensky and Legendre 2006; Pater 2009), a range of
weighted models have been proposed by Goldsmith (1990, 1991, 1993a, 1993b) and a few others,
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54 PAC learning of rankings and weightings in
OT and HG

Both OT and HG have the same VC dimension: k-1 for grammars with k con-
straints. For a concrete example of what this means in terms of learnability,
consider the three hypothetical tableaux in (12).

(12) |inputl|c jc|c|cy

Cand a * implication: a > b iff w, > w, in HG or ¢, >> ¢, in OT

Candd | * implication: > a iff w, > 10, in HG or ¢, »> ¢, in OT

input2 | ¢, [ |cy|e

Cand ¢ * implication: ¢ > d iff w, > w, in HG or ¢; >> ¢;in OT
Cand d % implication: d > ¢ iff ie; > w, m HG or ¢; >> ¢, in OT
input3 o |l

Cand e * | implication: e > fiff wy > w, in HG or ¢ »> ¢, in OT

Cand f * implication: {> ¢ itf @y > w, in HG or ¢, >> ¢; in OT

In both OT and HG it is possible to formulate sets of k-1 binary tableaux like
those in (12), in which each of the exponentially many (i.e. 2"} ways to choose
a set of winners is possible under some grammar. However, as soon as a learmer
has scen k or more tableaux - in either model - there are only polynomially
many ways to choose a set of winners (Le. there is no set of four tableaux in
which all patterns of winners are possible). The remarkable consequence of this
fact is that any learner that meets the simple condition that its hypotheses are
always consistent with all previous observations is guaranteed to PAC-learn a
ranking /weighting from a set of training data whose size is a linear in the number
of constraints.”

Given a constraint set and a dataset comprising (winner, loser) pairs, Recursive
Constraint Demotion (Tesar and Smolensky 1993, 1998, 2000; Tesar 1995, 1997,
19984, 1998b) constructs a stratified hicrarchy #(i.e. a weak ordering) that is con-
sistent with the data by constructing strata consisting of constraints for which, in
cach remaining e, [} pair, @ has no more vielations than /, and then discarding
any pair in which w is optimal according to the # constructed thus far. This
process is reiterated until all (e, ) pairs are gone {or until no constraint favors a
winner, in which case no ranking is consistent with the data). If, in addition to
H, RCD records the ranking conditions that support its correct predictions, then
it can generate hypotheses consistent with all previous observations and thereby
be guaranteed to PAC-learn rankings from in the order of k random samples (the
extra record-keeping is needed to ensure consistency because “accidentally”
correct predictions can be undone by subsequent updates to #).

Ll

The bound on sample complexity i, according to VC dimension d, is m £ [(4/4) [ In (12/¢) +
In (2/0)]; see e Blumer ef al. (1989).
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For HG grammars, Potts ef al. (2010) propose a consistent learner that finds a
constraint-weighting @ = {w,, w,, . . ., w,) € R that simultaneously satisfies all the
linear inequalities that correspond to a set of (winner, loser) pairs — such as those
in (12) - using a technique from linear programming called the simplex algorithm
(see e.g. Papadimitriou and Steiglitz 1998: chapter 2). Though their learner is
intended to operate over batches of (w, [} pairs, they could conceivably be recast
as an “error-driven” learner, so that, rather than generating a new hypothesis
for each new datum based on all prior observations, a new hypothesis would be
generated only in the event of an erroneous prediction.

RCD also has an error-driven formulation, and an especially useful property of
error-driven learners is that they only need to “remember” data points that they
misclassified (often called “supports”) in order to faithfully reconstruct correct
predictions for all forms in the training sequence. This allows a mistake bound
to double as a memory bound on the amount of information that a learner could
ever need to store.

Pater (2008) observes that Rosenblatt’s (1958) “perceptron” can be straight-
forwardly applied to HG learning. The perceptron is an error-driven learner
that maintains a weighting w = (w;, w,, ..., w,) € &, with which they make
predictions as follows. For candidates a and b, the value A(g, b) € Z' is the result
of subtracting b’s violations from #’s violations (e.g. in (10), Ala, b) = (-1, 1,0, ()).
This point in k-dimensional space is “in” just in case it lies within the half-space
described by w-(i.e. if the inner product w - A(s, b} is greater than zero; this is
a linear-classifier like the ones in Figure 3.2). Upon misclassifying a data point,
the hyperplane represented by the weight-vector w is nudged in the direction of
Afa, b). Though multiple errors on the same data point are possible (i.e. the update
rule is non-corrective), the perceptron is guaranteed to eventually converge to
a correct weighting if one exists. In the general case, the perceptron is not a
PAC-learner, because the sample complexity can be exponential in k when the
probability mass of TT is concentrated on positive and negative data points that
are packed too close to the hyperplane that separates them. Moreover, though
the perceptron will converge eventually, it is precisely these “hard” probability
distributions that lead to many mistakes.

5.5 Mistake bounds in OT and HG

Regarding optimal mistake bounds, Littlestone (1988) shows that, while a lower
bound on Opt(£) is set by L's VC dimension, in cases where Lis finite, the upper
bound of Opt(L) is log,| L]. This follows because the strategy of making predictions
that accord with a plurality of the hypotheses consistent with previous observations
only errs on data points that half or fewer of the remaining hypotheses correctly
classify (else the correct prediction would have been made) and, as such, each error
halves the set of viable hypotheses which allows no more than log,)| £| errors.
This suggests room for improvement over RCD'’s quadratic mistake bound of
k(k=1)/2, which follows from the maximum number of stratified hierarchies that
RCD can entertain on the way from all k constraints in a single stratum to a total
order (Tesar and Smolensky 1996: 26). To implement Littlestone’s halving algorithm
for OT, Riggle (2008) proposes a recursive function for calculating the fraction of
the space of possible rankings that are consistent with a set of optimal candidates,
a quantity he calls the r-volume. For just two candidates 2 and b, if A denotes the
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constraints for which a has fewer violations and B those for which b has fewer
violations, then the fraction of rankings that select a is precisely |A| / {|A|+B)).

(13) |input |c¢ ic|c|c

Cand a *1* | * |the r-volume of candidate # is '/ (i.e. 8 rankings)

Cand b | ** * the r-volume of candidate a is 24 (i.e. 16 rankings)

Unfortunately, though computing r-volume for larger sets of candidates can
often be done in ways vastly more efficient than exhaustive search, there are
“hard” cases where computation will always be intractable.” This highlights the
core tension between power and efficiency in learning; RCD's mistake bound
may be sub-optimal but it is still polynomial and it is obtainable at amazingly
low computational cost, whereas the halving algorithm yields a nearly optimal
mistake bound (i.e. within a logarithmic factor of k-1), but does so by introducing
computation that is intractable in the worst case.

Analysis of mistake bounds illuminates a significant point of divergence between
OT and HG. Though the two models have the same VC dimension, the mistake
bound of the former is finite, while the mistake bound of the latter is not. This is so
because it is pessible to construct a sample sequence of arbitrary length in which each
new data point causes an error that leads to an ever smaller change in the weight-
ing. Thus, though learners that use strategies such as the perceptron algorithm will
eventually converge to a correct constraint weighting for any HG grammar (see
Pater 2008), there is no general bound on the rate of convergence (i.e. the number
of mistakes along the way) that holds for all possible sets of training data.

Partially due to this fact, much of the work on learning linear classifiers has focused
on the way that specific properties of samples affect learnability. For instance, the
quantity v, known as the margin, measures the distance (in high dimensional space)
between the grammatical and ungrammatical points and the line that separates
them. Given y, one can derive bounds on the number of mistakes and the rate of
convergence. In fact, if the margin is large enough, it supplants the dimensionality
of the sample space in determining the VC dimension of the learning problem.
Thus, with large margins, HG grammars with thousands of constraints might
nonetheless have very low mistake bounds and sample complexity, suggesting that
searching for so-catled large-margin classitiers might provide tinguistic insights.

5.6 Learning segmental adjacency patterns

Hayes and Wilson (2008} develop a learner that takes as input a list of words and
outputs a maximum entropy grammar consisting of a finite set of weighted con-
straints that define a probability distribution over forms. The algorithm has several
properties of interest. First, the constraints it retumns are essentially #-grams and thus,
in its simplest form, the algorithm can learn adjacency patterns, but not harmony
patterns. Secondly, the units in these constraints are feature bundles denoting
natural classes. Thirdly, the algorithm is designed to first search for more general
constraints (i.c. those with smaller 17 and fewer features). Fourthly, following the

® This follows from the fact that pairs of candidates can be used toy define partial orders over the
constraints and the fact that the problem of counting the linear extersions of partial orders is #2-Complete.
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principle of maximum entropy, the model weights constraints so that their observed
number of violations in the training data matches the expected number.

The authors provide case studies using corpus data suggesting that phono-
logical features play a crucial role in generalization. However, Albright (2009)
explores feature-based generalization in Hayes and Wilson's model, as well as
one based on minimal generalization, and shows that the specific contribution
features make to learning remains unclear (CHAPTER 17: DISTINCTIVE FEATURES).
This is an interesting class of models, and the phonological biases with the hypo-
thesis space are in many ways appealing. However, as with the biases in Gildea
and Jurafsky (1996), formal analysis of their contribution is needed.

5.7 Learning Harmony Patterns

Hayes and Wilson (2008} show that when representations are enriched by allow-
ing segments with certain features to project onto tiers (where segments without
such features are not projected) (see CHAPTER 14: AUTOSEGMENTS; CHAPTER 105 TIER
SEGREGATION), if the algorithm is allowed to search for n-gram-like constraints on
these additional levels of representation then it is possible to learn long-distance
phonotactic constraints (i.e. harmony; see CHAPTER 91: VOWEL HARMONY: OPAQUE
AND TRANSPARENT VOWELS). Haves and Wilson (2008: 32) conclude that “in
controlled comparative simulations, [tiers] makes phonotactic learning possible
where it would not otherwise be so0.” It is, however, critical to bear in mind that this
result tells us something about a particular algorithm, and not something about
the linguistic phenomenon of harmony (i.e. a class of languages). Indeed, Heinz
(2007, 2010) shows that long-distance phonotactic constraints can be learned with-
out tiers (see below). Furthermore, the tiers that are critical to the success of the
algorithm are taken by Hayes and Wilson to be antecedently given, but this does
not entail (nor do the authors claim) that they must be antecedently given.
Goldsmith and Riggle {forthcoming) offer a strategy for learning long-distance
patterns that has many similarities to Hayes and Wilson’s approach, but begins
with an algorithm from Goeldsmith and Xanthos (2009) for “discovering” tiers via
unsupervised categorization of the sounds of corpus into vowels and consonants.

Heinz (2007, 2010) shows that phonotactic patterns derived from long-distance
agreement patterns (Hansson 2001; Rose and Walker 2004) can be learned with-
out tiers, using the notion of a discontiguous subsequence of length two. This idea
is similar to bigram learning where learners keep track of contiguous subsequences
of length two. Heinz provides proofs and formal analysis of classes of patterns
this algorithm is able to identify in the limit. Unfortunately, the absence of analysis
of what classes are learnable by the previously discussed phonotactic learners hin-
ders comparisons of the models.

5.8 Learning stress patterns

Stress patterns can be thought of as word-well-formedness conditions, and hence
a kind of phonotactic pattern. Since stress typologies are diverse and well estab-
lished, learning stress patterns has become a popular and challenging proving
ground for learning algorithms (CHAPTER 39: STRESS: PHONOTACTIC AND PHONETIC
EVIDENCE; CHAPTER 41: THE REPRESENTATION OF WORD STRESS; CHAPTER 44 THE
IAMBIC-TROCHAIC LAW; CHAPTER 57: QUANTITY-SENSITIVITY).
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Dresher and Kaye (1990) propose a learning model in the Principles and
Parameters framework for leamning stress patterns. In this framework, a grammar
is a vector of parameters. The learner takes as input a list of words, and for each
word, sets parameters as determined by checking whether the word consists
of particular properties, called cues. Gillis ef al. (1995) implement the model with
interesting discussion regarding what constitutes an appropriate cue. They only
provide input words up to four syllables in length, and demonstrate that the
learner succeeded in learning 75 percent of the patterns. Related work includes
Gibson and Wexler’s (1994) Triggering Learning Algorithm (see also Frank and
Kapur 1996 and Niyogi 2006: chapter 3 for discussion).

Goldsmith (1994) and Gupta and Touretzky (1994) investigate how quantity-
insensitive stress patterns can be learned using dynamic networks. Although the
models differ in their specifics - Goldsmith employs a different updating procedure
than Gupta and Touretzky, who use a standard perceptron — these methods achieve
a certain level of success in learning the patterns for which data is presented.

Tesar and Smolensky (2000) discuss twelve OT constraints which yield a typo-
logy of quantity-sensitive stress patterns. The OT constraints make reference to
feet (CHAPTER 40: THE FOOT), which are not part of the leaming input. Consequently,
another procedure is necessary to parse the learner’s input data, so that it can
be processed by RCD (the underlying form is assumed to be a string of the right
number of unstressed syllables). This procedure is non-trivial, as there may be
different parses (i.e. foot assignments) for a given stress pattern. Tesar (1998a)
proposes a procedure called robust interpretive parsing. To test their system, Tesar
and Smolensky hand-selected a test set consisting of 124 languages containing
most of the “familiar metrical phenomena” analyzable with their constraints
{Tesar and Smolensky 2000: 68). Note, however, that they acknowledge this set is
not necessarily representative of the whole typology generated by their constraints.
Using robust interpretive parsing, they report that if the initial state of the tearner
is monostratal - that is, no a priori ranking - then the learner succeeds on about
60 percent of the Janguages in the test set. When a particular initial constraint
hierarchy is adopted, the leamer achieves ~97 percent success. So in this case, robust
interpretive parsing (mostly) addresses the problem RCD has with hidden struc-
ture (for this particular set of test data).

Heinz (2007, 2009} proposes that all phonotactic patterns are neighborhood-
distinct, which is a locality condition defined in automata-theoretic terms. It is
shown that all but two of 109 descriptions of the world’s stress patterns are
neighborhood-distinct and that a particular learner that uses this property can
learn 100 of these 109 patterns exactly. Although not every pattern can be
learned, the patterns acquired in the “failure” cases differ only slightly from the
target patterns. Heinz concludes that this particular notion of locality structures
the hypothesis space in a way that makes a significant contribution to phono-
tactic learning,.

6 Conclusions
We have argued that learning theory affirms the role of structure as a solution

to the problem of generalization, and that there are ideas and methods within
learning theory that allow one to measure this structure and the class of languages
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which have such structure. These tools offer phonologists a way to characterize
the contribution various structural properties of phonological patterns can make
to learning.

With the exception of a substantial amount of work on learning in Optimality
Theory (and Heinz 2010, on phonotactics), it is striking that most proposed
learning algorithms have been evaluated only with case studies. Though such
studies are suggestive and can be vital in the development of models, in order to
know whether a given case study illustrates general properties of a problem we
need analytical results that show why the algorithm succeeds, what properties of
the training sample are critical to success, and how the algorithm maps experience
to grammars.

Finally, we have emphasized what we believe to be the most fruitful direction
for future research. Phonologists ought to identify properties of phonological
patterns that structure the hypothesis space or reduce its size (cf. Heinz 2009;
Tesar, forthcoming). This approach works in tandem with, rather than in lieu of,
formal analysis.
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