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1 Introduction 

How can anything (such as a child or any other computing device) autonMtically 
acquire (any aspect of) a phonological grammar on the basis of its l~Xp\~ricnct>? 

This is the fundamental (and unresolved) question of phonological lt:><Hnabilily, 
and it is essentially independent of whether the grammar is t,1kcn tt> bt.• thl' hvst 
description of the cognitive s tate of the language faculty, or whether tlw gn.irnm<1r 
is taken to be the best description of a language pattern, itKkpendt:nt nf its 
cognitive status. The problem of learning a general pattern from " finite St:'t .,,( 

observations has roots in the philosophical problem of inductiw h'~it'. (Popper 
1959; Sober 2008). Though language learning is simply a sp('dfi<:· instM<:v of this 
problem, it has played a perennially central role in the db;cussinn. In fact. tlw 
modern formal study of learnability was inspired by thl> problem n ( langu,1gi• 
acquisition and much of the leamability literature is couched in formal l .m~tt.lgP 
theory, whose early period was also influenced by the founding of gprwr,1tivt• 
linguistics. There have been many developments in formal learning tlwory .1nd 
related disciplines, such as grammatical inference, compuh1tirnlt1l karnin~ tht1 i ry , 
and machine learning. For the purposes of this chapter we will r~for to ,1 ll of thl>Sl' 

areas with the term learning theory. 
All characterizations of learning - whether the domain is synt'''· ph•1ll\ilog~', 

or gardening, and whether the models are connectionist, Bayesian, ur symbo(i,· 
- are subject to the results of learning theory. Even if thl'y elf<.' n1 it inh•ndt?d 
as such, answers to the question posed at the outset of this dMptl'J' nm-.tihi l~· 
hypotheses about the broad characteristics of the comput.1t ions t!Mt hum.ins 
perform in learning the phonology of their language(s). Our go<1I in this <"harh:r 
is to motivate the applicability of learning theory to thl' probkrn of lt~;\ming 
phonological grammars. In this pursuit, we discuss but a fraction of tlw m<iny 
grammatical formalisms and models of phonological l~arning that h,wi• b("t'n 
proposed (space does not permit a comprehensive survey, so Wt~ apolo~i:w 
in advance to those whose work is omitted in our brief dis<:1.1s.'ii<111 of tlw 
literature). Our main points are that learning theory: (i) makt~s dear wJmt it is 
that is being learned; (ii) reveals little conceptual difference in the prob!t•nlli of 
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learning gradient vs. categorical distinctions; (iii) makes a theory of universal 
grammar inevitable; (iv) can make dear which properties of phonological patterns 
are important for learnability; (v) emphasizes understanding the general behavior 
of learning mod€~b. 

§2 reviews the found ations of formal language theory and its relevance to 
phonology. §3 covers the main contributions of a few of the theoretical learn­
ing frameworks to our understanding of the problem of learning phonological 
grammars. §4 examines the role of structure in generalization. §5 reviews several 
phonological learning models from the perspective of learning theory. 

2 Formal language theory and phonology 

How do we represent the patterns (i.e. languages) that a learner might attt'mpt 
to learn? (Sec nlso CHAPTER 101: THE INTERl'RETATION Of PHONOLOGICAL PATTERNS 

I N FIRST LANGUAGE ACQUlSlTtON for a different perspective.) In formal language 
theory, languages arc ('haracterizcd as sets, rdations, or, equivalently, functions 
(Harrison 1978; Hopcroft: et 11/. 1979). This abstraction focuses attention on the 
patterns themselves rather than the particular grammars that describe the patterns. 
Though grammars typically reflect th1; g-enernlizations th<.1t we arc interested in, 
there can be rnnny difft•rmt ways to dt?scribc the samt..' fonguagt'. 

2.1 Phonotactic patterns 
For n concrete exampk, consider the set of nil and only the words that obey 
a givt.'n pht)Jh)tadic pattt'rn. In this case, tht~ phonotactic pattern makes a 
binary distinction betwet•n wdl-formed and ill-formed words (gradient dis­
tinctions are discussed l.1l'er). For cxampk', suppose that (]) dt>signates at! and 
only those \VNds whkh t1bey the constraint that obstruents in codas · do not 
d isagret' in voic..'t'. 

(I) !fist, d.'t'ft. rabd, ... f 

Already the connection hetvv·1:•en the foundntions oi generative grammar and 
formal languagt~ tlwory Mt.~ apparent. If tlw ''three dots" in (1) are me<mt to indw:k 
only actual English words, then dt•arly the sd is finite. Ct.'ncrative phonologists 
reject such finik "list" rcpresentJ. tions, be(<1use the <.'\'idence is overwhdming 
that phonological compeh.>nct' goi.•:-; beyond the finitdy many words a s peaker 
actually knows. In other words, the "three dots" are mt:ant to indudt> every 
conceivable word which includes many things that .:irt' not words of English, such 
as those in (2). 

(2) lplrst, 8~ft, wabd, ... , peif1st, ... } 

The fact that these sets can be infinite is what necessitates a generative grammar 
- that is, some finite de>vice capable of generating all and only those logically 
possible words which obey the phonotactic pattem. 
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2.2 Alternations 
(Morpho )phonological alternations can be represented as relations (i.e. sets con­
sisting of all and only the pairs of words that obey the alternation). The example 
in (3) represents word-final obstruent devoicing found in languages like Dutch 
( CHAPTER 69: FINAL DEVOICING AND FINAL LARYNGEAL NEUTRALIZATION). Again, 
all logically possible pairs that obey the alternation are included (which, in the 
case of Dutch, includes pairs like (ag, ak) even though Dutch lacks /g/ ). 

(3) {(ab, ap), (ad, at), (ag, ak), ... , (bab, bap), (bad, bat), (bag, bak), ... } 

The pairs can be taken to mean that underlying /ab/ is realized as [ap], and so <in. 
When an underlying form u is paired with a surface forms, we write <11, s). Again, 
much depends on how the "three dots" are interpreted. If they are interpreted a:-; 
strictly as possible, then the alternation could be generated by the SPE rult•: 

(4) [+voice] [ . ] I # ~ - voice _ 
-son 

In introductory phonology, it is often pointed out that the feature [+voice] in lh~ 
target of the rule is unnecessary. In the interests of having shorter rult-s .md rule~ 
which apply maximally without being falsified , the fea ture (+voice! is omi ttt•J in 
favor of the following. 

(5) [-son] -t [-voice] I _ # 

This would mean that the "three dots" are intended to include pair~ likl' tJ\os~· 
in (6). 

(6) l(ap, ap), (at, at), (ak, ak), ... } 

Thus the rule in (5) applies even to hypothetical form lik~ / ap/, mapping it to 
[ap]. Koskenniemi (1983) takes this one step further, and considers the " llm.'l' dots'' 
to include pairs like those in (7). 

(7) ((a, a), (as, as), (af, af), (ar, ar), (an, an), . .. } 

In other words, all hypothetical underlying forms are includ~d in th(.' ldt-h<md side• 
of some pair. The corresponding SPE rule could be said to apply to all ptissibk· 
underlying forms, though in most cases its application is v111.·uou~. Th1.• .lppli · 
cation only results in a change when the final consonant is <t voin~d obstrmmt. 
Mainstream phonology never adopted this perspective, for two n•,,sons: it made 
the standard SPE rules more difficult to write (and som<:.~tinws mon.· comp!t">: 
according to the SPE simplicity metric), and there were $Omt~ discouraging com­
plexity results (Barton 1986; Barton et al. 1987). But Kos kenniemi nb~erws a 
conceptual shift when thinking of the patterns in this way: rules can be th1.lught 
of as constraints on alternations. 

Note that all phonological knowledge can be deduced from the alternation 
pattern. In the case of phonotactic knowledge, this is straightforward: the set o f 
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forms in the right-hand side (the "surface forms") of the alternation pattern con­
stitutes the infinite set of all forms that obey the surface phonotactic constraints 
of the language. Similarly, the set of forms in the left-hand side (the "underlying 
forms") is an infinite set which constitutes all forms that obey the Morpheme 
Structure Constraints (MSCs) of the language (CHAPTER 86: MORPHEME STRUCTURE 

CONSTRAINTS). If the notion of the rich base is adopted, there are no morpheme 
structure constraints, and the left-hand side becomes all logically possible under­
lying forms. Finally, the alternation pattern il<>elf determines the contrasts. Generally, 
any two segments that are mapped to the same surface segment in all contexts 
(i.e. are neutralized) arc not contrastive. Because knowledge of MSCs, phonotac­
tics, and contrnsts can all be deduced from alternations, the problem of devising 
learners for phonological alternations is one of the most important frontiers of 
phonological lcarnability. 

2.3 Gradien.ce 
The above discussitm only makes binnry distinctions of well-formedness. Recently, 
however, many phonologists havt~ argued for the importance of gradi<mt dis­
tinctions (Colt'man and Pierrehumbert 1997; Zuraw 2000; Albright and Hayes 2003; 
Coetzee 2008; Hayes and Wilson 2008). Gradient distinctions have been used to 
model thv confidence of spea kers in tht: face of lexical exceptions, variation in 
the productions of individual spt'akers, and variation across speakers in experi­
mental settings. 

The scope of formal language theory is not limited to binary distinctions. The 
sets and r<.~lations abnve can be thlntght of <lS functions whose domain is all 
logically possible words, or pairs of words, and whose co-domain is simp ly 0 
and 1, for "ill-formed" and "well-forml!d,'' respectively; i.e. as h1dicntorf11nctio11s. 
Phonological patterns can also bt• thlluf;ht of as functions whose co-domain is 
real-valued. fl...1or0over, if these V<lhws sum to one, then the function is a prob­
ability distribution. 1 

from th(• pl'rspt•cth'l' of forn1,1 l langu<1ge theory and lt•aming thl'ories, tht• 
differences bdwl'en indicntnr functions and dbtributions are not particuhwly 
signifirnnt. Consider the Chomsky Hiernrchy: 

(8) finitl' c regular c wntext-free c Clinte:xt-sensitive c recursively enumNabll' 

This inclusion hierarchy dassifil•s patterns (e.g. sets of (pairs of) forms) in tl'rrns of 
the complexity of the kinds of formal devices (i:.g. grammars) m~l~ded to gene rate 
them (see, e.g. Harrison 1978; Hopcroft l'I al. 1979; Thomas FJ97). A rema rkable 
range of ways to chanKterize cornpll'xity all convcrgt~ on the distinctions in (8), 
which is whv the hierarchv is cnnsidt:.•rcd to be so illuminating. 

Crucially, ·the pl.Ke of ,; function in the Chomsky 1-lieran:hy is entirely irn.fo· 
pendent of whether its co-domain is Book>,'l.n or real-valued. For IC'arning tlwnry 
- and the central problem of generalization-· the co-domain matters little. Vapnik 
(1998: 8) writes: 

1 FQrmnl!y, let r:• b<> the sl't of .111 ll,~ical!y possibll· wnrds givt•n ,, fin ite •ilph.1bd L A p.ttt~·rn l. h 
an indicator function if L: ~· -t {0, I}. !t is real-valued if L : ~· ~ ~'\.and it is ,1 pmb.1bilit~' d is tril:>\1-
tion iff r."~~· l.(w) = l. lf l\ is annt!wr alphiibet, tht-n L : ~:* x A• ~ {0, I) is a Boolcnn ,1llt~rn.1tinn .md 
L. : .£• x A• ·-+ !R.is a rcal-vdlucd one. 
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Generalizing the results obtained for estimating indicator functions (pattern recog­
nition) to the problem of estimating real-valued functions (regressions, density 
functions, etc.) was a purely technical achievement. To obtain these generalizations, 
no additional concepts needed to be introduced. 

Thus the choice of binary vs. gradient distinctions should depend simply on what 
one is trying to model. 

2.4 Properties of phonological patterns 
What are the properties of phonological patterns? When we consider altc:.~rnations, 
it is the case that they can be described with any grammar capable of describ­
ing regular relations (Johnson 1972; Kaplan and Kay 1981, 1994; Karttwwn 19Y3, 
1998; Eisner 1997a, 1997b; Riggle 2004).2 It is known that all regular relations h,m,• 
regular domains and co-domains, so it follows that all phonotuctic patterns •lrt• 
regular as well. 111is is a striking hypothesis in light of the fact that some synt;irtic 
patterns appear to belong to higher levels of the Chomsky Hierarchy (Chomsky 
1956; Joshi 1985; Shieber 1985; Kobele 2006). 

Though limiting phonology to regular patterns is a significant rt.>strktion, it is 
not nearly restrictive enough. For instance, consider a hypothetical stress pa!tt•rn 
consisting of all forms with an even number of stressed syllables. This p.1ttcrn b 
regular, but it is wildly unlike those observed in natural language (s<.•c ~.g. H.1yes 
1995; Gordon 2002; CHAPTER 41: THE REPRESENTATION OF WORD STKESS). Furtlwr­
more, though assuming that phonology is regular providt~s signific.ml slrnl.'.h1n• 
to the hypothesis space, there are many learning frameworks where this is still 
too little structure to guarantee leamability. 

Learning theorists are interested in the properties that nMke pattern::. lcarn;1bk-. 
Linguistic properties are just now beginning to be investigated for thdr c(intriht.i· 
tions to leamability. In the case of phonological patterns, it St'<'ms likt.>ly th.it th1..• 
relevant properties will be subregular; that is, properties that carve out !'i\\IT\t' pmpt•r 
subclass of the regular languages. Rogers and Pullum {2007} dr,\w att1m ti11n h\ 
the Subregular Hierarchy (McNaughton and Papert 1971), which d ,1s:-;ifil'S n·;;til;\r 
patterns according to the properties of different kinds of grnmm<:trs L\1pabll• of 
generating them. Additional recent work which a ttempts tn rd<ltt• pb1moh1gk ;ll 
patterns to their place in the Subregular Hierarchy i.ndudl~ failt•fscn <'I 11!. (2008) . 
Graf (2010), and Heinz (2010). 

3 Learning theory 

3.1 Goals 

There are many good resources on fom1al learning theory for phonolo~bt;-;. 
Nowak et al. (2002) provides an excellent, short introduction. Niyogi (2006) t.1!'\d 
de la Higuera (2010) provide detailed, accessible treatments, .'Ind Anthony and 

2 The notable exception to this is reduplication (cHAJ>'rER 100: RrnUt'LICA1'10!1;; \ ' lio\!>H-:tl \N, 

REDUPLICATION IN SANSKRIT), which is arguably a morphologic<il process (lnkela.-; and 7,.oU 2tli}[:) h)f 
regular (finite-state) approaches to reduplication, see Roark and Sproat (21Xl7). 
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Biggs (1992), Kearns and Vazirani (1994), and Jain et al. (1999) provide technical 
introductions. Here we summarize some of the main ideas and common results. 

Learning theory characterizes learning, and the necessary and sufficient con­
ditions required for I.earning strategies to be successful, or to exhibit some other 
particular behavior. This focus on characterizing a learner' s behavior helps us 
understand precisely why a particular learning strategy succeeds in some cases, 
and helps us to characterize the class of cases where it may fail. 

Learning theory defines learners as functions which map experience to grammars. 
The experience of the learner is necessarily finite, but the target languages typically 
are not. Any learning procedure can be characterized in this way, including 
learners that are connectionist (e.g. Rumelhart and McClelland 1986) or Bayesian 
(Griffiths et al. 2008), and learners based on maximum entropy (e.g. Goldwater 
and Johnson 2003), as well as those embedded within generative models such 
as Recursive Constraint Demotion (Tesar 1995; Tesar an d Smolensky 1998) and 
minimal generalization (Albright and Hayes 2002; Albright 2009). Results of formal 
learning theory apply to all of these particular proposals and many o thers. 

By characterizing learning algorithms as functions, it is possible to focus on tht~ 
functional behavior of a learning strategy rather than its procedural description. 
This allows one to identify relevant properties of the mapping - like the linguistic 
typology predicted by a function's range - that are independen t of the a lgorithm's 
implementation. Moreover, these properties are often crucial in understanding 
precisely what kinds of patterns learners are guaranteed tl) k>arn, and where they 
can fail. 

Leaming functions can also be characterized in terms of their computational 
complexity. Some learning procedures may require unreasonable resources and 
time. The exact rneaning of "unreasonable" is studied in a number of works, 
including Pitt (1989) and de la Higuera (1997). 

3.2 Learning frameworks 
In §3.2.1-§3.3 w0 surwy three lt•arning frameworks: Identification in the:: Limit 
from Positive DatJ (Cold 1967), Probably Approximately Corn~ct learning (Valiant 
1984), and the Mistake Bounds model (Littk•stone 1988). O ther fra nw.,vorks arl' 
discussed in §3.3. l, and the major res ults o f learning theo ry an.· gin •n in ~'.).4. 
Across the frameworks, p recisely the same conclus ilm cxplic.1 tes the nect•ssity 
of (somt.:' form of) Universal Grnmmar: namely, vvithout a stru ctured, restrktt•d 
hypothesis space, feasible learning is impossibk. 

3.2.1 Identification in the Limit from Positive Data 
In the Ide ntification in the Limit from Positive Da t;:i (ILPD) framework, tlwre 
are no limits on the learner's comput<1tional resourct•s or time, and the input 
is assumed to consist of an infinitely long noise-free text that contains <1t least 
one instance of every form in the target pattern. L1.•arnt~rs <ire p<trtial funct ions, 
which map initial finite portions of these texts to grammars. A learner is said 
to converge to a gra1nmar G H and only if at some finite point every future 
hypo thesis is G. The learner is said to identify a language (or class of languag<:'s) 
in the limit just in case the learner converges to a grammar that generates the 
target language for any text from the target language (for any member of the class 
of languages). 
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Though the learner's input is generously assumed to include every potentially 
useful finite collection of forms from the target, the criterion for success is very strict: 
for any logically possible text for the language, the learner must find a grammar 
that generates the target pattern without a single deviation. This scenario focuses 
the learning problem squarely on generalization. Given as much finite experience 
as desired, can any learning device, no matter how powerful, exactly learn some 
language pattem, which may be infinite in size? How can the learning dev ice 
cover the gap between its finite experience and the infinite set which represents 
the capacity of a normal speaker? 

3.2.2 Probably Approximately Correct learning 
Another model that has received a great deal of attention in k'arning theory is 
the Probably Approximately Correct (PAC) framework, first introduced by Vali<mt 
(1984) and subsequently developed by Kearns et al. (1987), Ang!uin (1988a), and 
Bhuner et al. (1989), among others.3 This model offers a probabilistic pe rspcdiw 
on efficiently learning a class of languages in terms of the probability of .1ttilining 
a hypothesis that has a low likelihood of making errors modulo the number of 
training samples observed. 

The input to the learners is determined by drawing elements from the instant(' 
space X of data points, according to a probability distribution n. lnstl·ad of l!X<ld 

identification, the quality of a learner's hypothesis h is ev<1 luatl'd in lt•nns of tlw· 
probability that h disagrees with the target language l for any x E X, randomly 
drawn according to distribution n. The ingenious aspect of tlw PAC 01<k it.•l is th<lt 
it does not matter what the distribution is, only that tlw snnw distribution 11 is 
used for training and for evaluation. 

The error of a hypothesis, denoted error(h), is the s um of tlw prob,1bility tha t r l 
assigns to data points where h disagrees with the target. Analysis nl k•,1nwhility 
in the PAC model centers on the following question: 

(9) For a given level of error f., if a learner is presented w ith 111 sMnpks dr.iwn 
from X at random according to TI, w hat is our confiJcn<:(' ?\ that 1•1-nirOi! i1f 

the learner's hypothesis h is less than i::? 

For a language class Land any given learning s trah:•gy, th1.' :-:.mnpf1• ~·1•1111d1•1itu i~ 
the number of samples m needed to ensure that, for any l e l. and any distribu· 
tion IT, the likelihood is at least i.'l that a learner will gl•nt:r,lt\• ,1 hypotlw:--b \dl\ l"t' 

error is at most f.. This leads to the following de finition of PAC-!l-,1rn.1bility: 

(10) Lis PAC-learnable iff the sample C011"tplexity of £ .. b <1 p,1lynomi.JI furwti1m 
of i: and b. 

The PAC-learning framework differs from IOLI' in two impMtnnt rt·s~wds. In um• 
sense, the PAC model is more stringent because the n.•quired trninin~~ Jata <mi.I 
computation must be feasible (i.e. polynomial). But, in another sense, tlw PAC rt!odd 

3 ~ Haussler cl al. (1992) and Haussler (1995) for overviews of work in lc;im.ibility th1;~J."'V .'ltt.:l im.i~ht;; 
into the deep connections between the PAC, Bayesian, and mi.stilk~lx•und pt•rsr~u:fro1t'!> 
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is Jess s tringent than the Gold model, in that it loosens the definition of success 
from exact identification of a language to approximate identification that is likely 
to be correct most of the time. 

3.3 Mistake bounds 
Littlestone (1988) observes that, in many cases of interest, learn.ability can be 
characterized by the fact that the number of mistaken classifications - and sub­
sequent corrections - is bounded. In this online framework, a learning algorithm 
.'ii. must classify each form it observes accord ing to its current hypothesis h, which 
may be updated after the correct classification is revealed. The mistake bound for 
JI on language class L, denoted M.q(L), is the number of mistaken classifications 
that."! might make when facing a diabolical adversary who knows R's strategy 
and has boundless computing resources to choose the hardest language in L, nnd 
the least helpful presentation of examples. The optimal mistake bound for L, denoted 
Opt(L), is the sm;:1llest M :iL) for any possible ::i. 

Littlestom~ (1988) shows that if Opt(L) is finite, then it is the case that the class 
Lis both identifiable in the limit and PAC-karnable. The convers<:.>, howt•ver, does 
not hold; neither PAC nor Gold learnability guarantees a finite mistakt~ bound. In 
the former case there might be an infinite sequence of imperfect hypotheses that 
all have error less than f, and in the la tter case one might be abl.e to guarantee that 
the number of mistakes will be finite without being nblc to give a specific bound. 

3.3.1 Other framework.-:-. 
There are other' leaming frameworks. Some enrich the learner's inpllt in particubr 
ways, which gives the learner mor<:~ information and generally leads to stronger 
positive results. For exnmple, Gold (1967) also considers the case of learning 
from positive and negative data. In this scenario, the entire class of recursivdy 
enumembtt.~ languages is le<1rnnble in principle, thciugh no learner is efficiently 
computable for even tlw regular languages (Gold 1978). Cold also shov .. •s that 
restricting texts to those with certain useful kinds of structure (for example, by 
only allowing texts \Vhnse structure i::; describable •vith primitive recursive fun<:-­
tions; see ,1Jso Rogers 1%7) can also guarantee the learnability of the n.•nirsivt'ly 
enumerable languages. This means that knm·ving crucial properties of the pres­
entations of the data c:an, like negative evidence, make a huge contribution to 
pattern learning. However, it is highly doubtful that the natural language d;1t<l 

children obs1..•rvt.' have either of thest~ propertit'S lnote th<1t occasional ov<::rt cor­
rections do 11\.)t necessarily constitut~> negati\'<:: l~videnet'). 

Similarly, Horning (1969) shows that, \Vhcn learning stochastic languagl~s 
(distribution learning), if it is the case thnt learners arc required to succeed only 
on texts generabk by the target distribution tht•n it follows that probabilb tic 
context-free langLrngt~s can be learned (see also Osherson ct al. 1986). Angluin 
(1988b) supersedes Homing's result, and s hm'l-·s that the e ntire class of recursh·t•ly 
enumerable distributions is in fact learnablc in this sense. Like Gold's result 
above, these results suggest that knowing properties of the presentations of thl' 
input data dramatically increases ,..,,hat is Jearnable in principle. Crucially, how­
ever, the learners in these proofs are not re1notely feasible, so these rt.'sults do not 
inform human language learning. 
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3.4 Main results 
In the ILPD, PAC, and MB frameworks surveyed above, there are significan t 
negative results: none of the major classes in the Chomsky Hierarchy i-; learnable. 
In the case of identification in the limit from positive data, no class which is ~~ 
p roper superset of the finite languages is learnable. In the PAC and MB modeb, 
not even the finite class of languages is leam able. In other \.'\fords, tht~re is no learner, 
n ot even in principle, that can PAC-learn or identify in the limit from poiiitiw 
data all regular, context-free, or context-sensitive lang uage patterns. 

There are many ways to interpret this result (see, for ex•11npil-, Pinker 1979). 
Gold mentions restricting the problem so that n o t all regular (or context-sensitiw) 
patterns are permitted in natural language. This possibility is promising for thrct• 
reasons. First, the field of grammatical inferen ce has idt!ntified many das~·s c11' 
languages that are ILDP and PAC-Ieamable (An gluin 'l 982; Muggk·ton 1990; Clark 
and Eyraud 2007; H einz 2008; de la Higuera 2010). Many of tht:st' d,1sses nmtain 
infinitely many patterns, and some include context-fr<.~<:', t•ven conll·xt#s(•nsitivt• 
patterns. In virtually every case, the successes occm bt'e<1use the l ;mgu,\~t.' cl.1 \'.St.;~ 
are non-arbitrary in important ways: the hypo thesis spaet .. ' is stru;:tun.•d . SP1;nn<Hy, 
this possibility makes sense from th e stud ies of Lfo•tribution lt\1rning abmi': 
while recursively enumerable d istributions a re karnabk in prindpll' tlwy Mt' no t 
feasibly leamable in practice. The efficiency issues can lw ovt'rnmw by n·~trktirig 
the class of distr ibutions to be learned (if doing su ad ds Sl1 ftki~·nt slrudlm.' h; 
the hypothesis space). Finally, this possibility ,1lso matchl's 1,,v(.'{( with l,H1);ll.l ~l' 

typologists' repeated observations that the <.'Xtt•nsive v,Hi.ltion th<1I t•xi"'ib in 
natural languages appears to be limited, though s tating t~Xi'\d univvrsals is diffo.·ult 
(Greenberg 1963, 1978; Mairal and Gil 2006; Stabler 2009). 

The results surveyed above lead to the following Ctiflclttsh 1n: "tnictun: m.i?tt'l'" · 
In particular, if the collection of language patterns to bt• lt•Mrwd h,1:-; tlw ri!d1t 1-;ind 
of structure - the right kind of p roperties - lfam learnin~ is pt1:->:·dbll'. nw l ~!;.h~ 
interesting learners will use the s tructure or prnpl'rti<.•s in Hw l.rnAH<ll{1 ' d.b·'' h• 
license the right generalizations from th eir finite ~·x1x·rkn(t' to .m infin itc r :i th·rn 
Conversely, these results show that there is 1..'SSL'nti.\Ily no hnp .. ' of 11.•.m·1ing in' 11•.,~. 
where the ran ge of possible patterns is too tmstrudun'd. 

4 The role of structure in generalization 

The structure of the hypothesis sp ace is wh.1t ;:i!lo\v:-; for gt•rwr.11i1.;1tmn Jr, tht'< 
section, we discuss very general structural pmpt•rtit•s impurt,rnt tn k·.m1<1 i-1i ht ~, 

We begin with a discussion of finite hypothesis ~pact~, then !tirn lo ~tmdtm: n·iiih..._t 
to what has been called the subset problem, and conclude.,,, ith ,1 ~t.·iwro! 1~w!ri~· "~ 

structure known as the Vapnik-Chervornmkb Dimi:·nsion . 

4.1 Finiteness as a kind of structure 
Many linguistic theories, such as Principles and Pamm(~\'ers and C>ptirru,iity l~-. 
only allow finitely much variation in the typology, th~reby p roviding ~ finitf' 
collection of languages. This property of hypothesis spaces is tl suf6s.:"lt'11t pro~~-m'•Y 
for success in many frameworks, including PAC and fDLP. A common b-rut~·f™"t~ 
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s trategy for an y finite hypothesis sp ace is to essentially m atch all grammars with 
the learning da ta, and choose the one that is the most consistent. 

Although it is a sufficient property for learning, finiteness is hardly an inter­
esting property. To see why, recall the earlier discussion of quantity insensitive 
(QI) stress patterns, and let us artificially place an upper bound on word length 
so that we only have finitely many patterns to consider. For ease of illustration 
we set the bound at four). If we restrict ourselves to just one string of each length, 
then there are 210 = 1,024 logically possible patterns, of which eight arc shown 
in (11). 

(11) Some logically possible stress patterns over 1-4 .syllables 

Initial 
Final 
Edges 
Binary-initia 1 

natural Ql stress systems 
1 10 100 1000 
1 01 001 0001 
1 11 101 1001 
l 10 101 1010 

1m11atuml :>ystems 
0 01 100 0101 
1 10 101 0110 
l 00 000 1010 
l 01 101 1100 

The artificial bound limits the class in a very significant but uninteresting way, 
because almost all of these 1,024 patterns be long in the "unnatural" column. The 
prop1;~rties that determine which patterns b elong to the "natural" column are going 
to be precisely those same lingu istic properties that hold regardless of whether 
the class is finite or infinite. It is of fa r greater interest how those p roperties - and 
no t finiteness - s tructure the hypothesis space. 

Finiteness is hardly a necessary property for learnability - many infinite lan­
gm1gt~ classes are efficiently learnable because they ha ve structure that learners 
can utilize (Jain ct al. 1999; de la Higuera 2010). On the other hand, brutt>-force 
learners that simply traverse an enumeration of all hypntht.>ses are not gener­
ally feasibk (since finite classes can sti ll be very large). Even for th(.~ finite L\\Sl\ 

the interesting learners urt' those that nH1ke us~· of structu re (see l'.g . RL•cursi\·1~ 

Constraint Demotion; Tesar a nd Srnok-nsky 2000). 

4.2 Tell-tale sets and the subset problem 
Angluin ( ! 980) prov ides one benchm<1rk for IK'ccssary and suffidt•nt structun~ 
in a h ypothesis space. If t'\"t'ry language pattt•rn L in the h yp()thcsis sp.Kl~ ('011-

tains a finite set S, such that no other language pattern L' in the hypothesis srace 
i.:; simultaneously a sup0rsct of S and proper subset of L (sl'e Figure 3.1 ), tlll'n 
this hypothesis space is :;ufficiently structured to be id t•nti ficd in the limit from 
positive data. The fini te St't S is called n tcll-tah' ::;ct, ;ind we call tlw above property 
of hypothesis spaces the fell-talc property. 

The tell-tale p roperty is sufficit~nt for lea rning, b1;•i.:au s~· <1 learnt•r that gm'SSl~S 
L after exposure to its tell-tale set is guaranteed to have hypothesized llw smallest 
language in the class consistent with the sample. Characterizing the tell-to le sets 
of a hypothesis space - and m ore generally. characterizing the fin ite exp(.'rii.'HCL' 
a learner needs to generalize correctly to the language patterns in a hypotht>Sis 
space - is one of the important lessons of learning theory. It adds to the func­
tional characterization of the learner. This is because once the tdl-tale sets are 
characterized, when given a learner and a language pattern L from the learner's 
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No such language L' 

L 

Figure 3.1 The tell-tale property 

hypothesis space, one knows whether the learner will succeed given some finite 
sample S (by checking whether S is a tell-tale set). 

Identifying properties of the tell-tale sets is important to phonologists for 
two reasons. First, it provides an additional way to evaluate learning proposa l~, 
since the tell-tale sets can be compared with the actual linguistic forms availabll' 
to children. Secondly, knowledge of the properties of tell-tale sets alkwvs om' to 
understand how the learner generalizes, and may provide insight into sl<i~t's tif 

the learning process. 

4.3 The Vapnik-Chervonenkis dimension 
One particularly simple and robust metric of structure for concept classes is th1..· 
combinatorial measure of complexity known as the Vapnik-Chervonenkis (VC) 
dimension (Vapnik 1998; Vapnik and Chervonenkis 1971). For a given conn·pt 
class L, the VC dimension (VCD) of £., is the cardinality of the largest st't tif d,1t.1 
S such that there is at least one language in L for each of the 2isi p{)Ssiblt• WilJ'S 
of labeling the data points in S as "ungrammatical" or "grammatical." If 5 has 
this property it is said to be shattered by L.4 If sets of arbitrary siz(.' a H' sh,1ttN~ 
able then the VCD is said to be infinite. 

For an illustration, suppose that we represent coda clusters as p()ints in ~R..~ (tlw 
x-y plane) where the x-axis encodes the sonority of the se<:ond cnns1>n<H1t ,md 
the y-axis the sonority of the first. Suppose further that L is the (infinik·) sd of 
languages corresponding to "half-spaces" defined by stTaight l.ines that split •,I( 
into two regions, one for licit clusters and the other for illicit dusters. fi~ort' '.L2 
provides a rough example th.at situates the dusters sn, pl, pt in 'ft. ln this e\arnpk 
a grammar that includes all three clusters can be obtained by drnwing a line df 
to one side so that the illicit (shaded) area does not include the p{)ints. Grammar~ 
that include any tvvo of the points can be obtained by drawing a line bt•tcNt>en tlw 
point to be excluded and the other two, and shading the side with the exdudt·d 
point. These four possibilities make up the top row of Figure 3.2. The otfa.'r four 
possibilities are illustrated in the bottom row of Figure 3.2; these are obtaint.>d by 
inverting the grammars in the top row. Since there is a grammar (i.e. a half-space) 

4 Formally, sample S = lx1, • • • , x, l s;; X., is shatterable if V(v1, • •. , t1,.) e (0, 11", :JI E l such th.it 
"Tli c(xl) = ll;. The VC dimension of Lis the cardinality of the largest shatterable s..1mpll~ t '<:d{I. ) "" 
max(ISI : S is shatterable). 
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0 sn •Sn o sn • sn 

0 p! • pt 0 pl 0 pt ·Pl 

js11,pl,ptl jp!,pt) !sn,pll !sn,pf} 

.,n l 0 Sn • sn • sn 

• pt • pl I 
, ____ !)_] 

0 pt • pl • pt 0 pl 

lptf __ p_ll ----
• pt • pl 

!sn] 

Figure 3.2 /I. S\.'t of thrL'e points that b shatterable by half-spaces in 'f( 

for each of the eight logically possible grarnrn<ltical/ungrammatical distinctions over 
these three points, vve say that this set of points is shattered by the class L 

Bec.iuse tlwn;> is a shatte1«1ble set of thr~'e points, the VC dimension of Lis at 
least three. This does not entail that C'i.Nry set of three points is shatt~~rJ.ble. For 
instance, any sd of three collint'M points cannot be shattered, bernuse one of the 
points lies directly betwet..~n tht..~ otht..'r two and thus cmmot be sepdrated by a 
half-space. This same logic explains why no set of four points in '!\.~is shatterable; 
either one point is inshk a triangle whose corners are the other points, or the fom 
points nre the corners of ,1 convex pnly~on. In the former C<lSl', no hyperplane t'an 
inclLHfo the inkrior point while excluding all the points at the corners and, in t!w 
latter caSl', nu hyFwrpbne can includ(' t\vo oppnsing corners \Vhill, excluding both 
points at tlw ntlwr corners. The fact that tht>re are shatternhle sds ~)f thn.'e points, 
but no shattt•rabk sets of fom, plact'S the VC dimension of half-spnet.'S in '!( :it 
thn't' (for '.!\. '.' ii is 11+·1 ). What this me,ms in terms of learnability is that, for .1ny 
dah1st>l \Vtth mort' than thn•t· pnints, tht'rt• 11111 . .;f be points whosL' grammaticality 
is inten.fopendent. 

Tn und~~rstand llw roll' this structure plays in lt~arning, considt~r a c!,1ss L: 
whost~ VC: dinwnsion is d and a leanwr \vith 111 cbta points. As lnng as /11 -:;; d_, it 
is possibk' that the labelin~ \)f L'\'t.'ry point is totally indt'pl·ncknt of the others. 
But., as srn.m as 111 > d, some gcneralization/prt>diction is always possibk', bc(,1ust' 
tlwrL' are fower than '.2."' distinct i,vays to lalwl t!w data points as grammatical 
or ungramm,1tical <lC('.nrding to languag('S in L (otht'twise the VCD would bt' higher). 
l~urthermon>, it turns out that whl'n 111 > d, the numb~'r of pps::;ible l<)bdings is 
a pnly11m11ial function of 111. In t:.•ssence, there is a sort of "phase transition'' frnm 
exponentially m;my labelings whl'n /11 $ d to only polynomially many \v}wn 111 > d, 
which makes the complt..-xity of the hypothesis six1cc <1 polynomial function of 
171 when the VCD is fin ik.' 

•, By con1pl('xity, W(~ mP<\n infnrmatil>n· tht'{)rt'tic cnmplt~:xity in tlw ~l'nst• that i: milkt'S it possiblt• tu 
describe any [ab~~lin~ pf 111 > ti data points with fower th.1n lo~: m hit:;. St'e Kt·.,rns and Va;drani (1994) 
for more discussion c1nd for prnnfa. 
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A finite VCD is both necessary and sufficient for PAC-learnability (Blumer 
et al. 1989), and thus not even the class of finite languages (which has infinite 
VCD) is leamable in the PAC framework. It follows that none of the major classes 
of the Chomsky Hierarchy are PAC-learnable, which again suggests that the right 
characterization of the class of patterns in phonology is some class that cross-cuts 
the Chomsky Hierarchy. 

Finally, we should note that substantive linguistic restrictions will shrink the 
VC dimension below the upper bound that follows from more general structural 
properties of the class. For example, in the grammars of Figure 3.2, phonetic 
factors such as ease of articulation or perception might rule out the possibility 
of languages that adroit [pt] clusters while excluding [sl] and [sn] dusters. Wlwn 
additional properties such as implicational universals over sonority sequencing 
restrict a concept class, the VCD can quantify the structure that such factors bring 
to the learning problem. 

4.4 Summary 
The three kinds of structure surveyed here - finiteness, the tell-tale property, and th(• 
VC dimension -provide a foundation for phonologists to investigate the contribu­
tion phonological properties make to learning. Phonologists widely agree that tht>re 
is intricate structure in phonological patterns. How this phonological structure rdalt's 
to the structures that are relevant to leamability is a promising new re&.•,uch are,,. 

5 Phonological learners 

5.1 Learning rule-based alternations from pairs 

Johnson (1984) presents an algorithm that takes as input a set of (11, s) pairs and 
returns segment substitution rules and their orderings that are logically consistl'nt 
with the data. The class L of all languages (sets of (u, s) pairs) that art> reprl':it'ntablt• 
b y ordered sequences of substitution rules is superfinite, and thus W€! know th,1t thi:-­
strategy cannot identify Lin the limit from positive data. Johnson nott•s that this 
set of induced rules and orderings can be reduced via evaluation metric$ and ntlwr 
heuristics grounded in language universals. The need for the latter shows th,1t, \..:hilc 
logical properties of phonological rules can restrict the hypothesis space, ndditio1MI 
structure in linguistic systems must play a role in choosing among hypothc~e:;. 

Gildea and Jurafsky (1996) present an algorithm that takes as input (11 , :>) p.1irs 
from a dataset with some alternation, and returns a rule, which unlike .lohnson ·~ 
system can include deletion and epenthesis. Their work begins with n result fnm1 
Oncina et al. (1993), who present an algorithm dubbed OSTIA, which id~mtifil~S 
in the limit from positive data a subclass of regular relations describable by 
subsequential finite state transducers. Since the flapping rule of English can b(• 
represented this way, Gildea and Juraisky ask whether OSTIA will ac~1uirt:> the 

(, Since the CMU dictionary does not include allophonic information, Gildea and Jurafsky modifi'-~:l 
the dictionary to replace [t] and [d] with [r] in every instance where the rule would apply. 
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flapping rule from an appropriately modified version of the Carnegie Mellon 
University Pronounci11g Dictionary (CMU 1993)." Essentia lly, they ask whether the 
CMU contains a tell-tale set (for OSTIA). Because OSTlA foils to learn the flapping 
rule from the CMU dic tionary, the answer is no, probably because a teJl-tale set 
would need to include non-English forms like ttt.7 

Gildea and Jurafsky then augment OSTIA with three phonologicalLy motiva ted 
principles. These are Faithfulness: underlying-surface pairs tend to be similar; 
Community: similar segments tend to behave sim ilarly; and Context: phonolog ical 
rules can access variables in their context. This modified OST!A algorithm gets 
much closer to acquiring a rule that represents the English flap ping alternation. 
Gildea and Jurafsky conclude that these biases aid Icaming, and argue for a research 
program for evaluating the contributions of such biases. We agree wholeheartedly; 
domain-approprinte biases that add structure to or otherwise reduce the hypothesis 
space are likely to aid .learning by also reducing the size of tell-tale sets. Howt~ver, 
it is critical to ask exactly how and why this occurs, and most crucially w hat class 
of rules are learnable with the biases in place. To our knowledge, neither of theSt.· 
interesting questions has bC'en addressed. 

Albright and H ayes (2003) also aim to lea rn alternations expressed by phono­
logical rules. Their algorithm takes as input (u, s) pairs and returns a set of rewrite 
rules with confidenc~~ scores. A central idea in their rule cons truction procedttre 
is a strategy calkd minimal generalization. The idea is that if two sounds are known 
to und('rgo some alternation, then one may conclude that all sounds in the smallest 
natura l class containing those two sounds a lso undergoes the a lternation (cf. the 
Community p rinciple). In addition, the a.lgori thm assigns a confidence score to 
each rule based on the frequency of the rule's application in the corpus. The con­
fid(;~n1..~e score can be ust'd to analyze free variation, or phonologically conditioned 
n!lomorphy (as with th~' irregulur English past tense). 

Albright and Hayes do no t focus on an ana lytical characterization. of the class 
of langua~cs that their algorithm can learn, but instead compare the behavior 
of their algorithm to the judgnwnts of native speakers on Hwug'' tests (Berko l g58; 
CHAPTER 'ltt: EX PERIMENTAL APPROA(.'HES IN 'HIF.ORr.-n CAL PHONOLOGY). These c:om­

pnrisons ren'al intriguing correlations, but they are some\vhat d ifficu lt to in terpret. 
On th<.~ mw hand, a shift in focus from tht' a rli1lysis o f propertil's that d<.•fitw 
various learnab!C' dnsses of lnnguages kl the behavior o f hum,ms i.s undoubted ly 
appenling to any who fed that the n•sults of learnability theory a re::• too ,1bstract and 
remolt' from rea l-world b1rning problem::;. On tlw other hand, having observed 
that an a lgorithm 51. and human s ubject :1lgive similar rt>sponscs for a particu lar 
set of test items T aftl~r being c:xposcd to a st>t of training dat,1 D, it is not dear 
what we can condude aboi.1t :iior the rd,1tionship bt>h'l'een .:-l <1nd :11; because they 
might wild ly diwrgt? for some other data T' and D'. The goal of determ ining which 
properties of the data critic<1lly undt~rlie lcarnnb ili ty - o r in this case the corrt!l,,­
tim1 bt~t\Vl.'L'n 51 and :Jf- is p recisely why learning tlwory focusc~ mainly on the 

' It should l:>c cmpha!->iZl'd th.it C:>STIA lt•am~ a rule th,\t is cvn..,istL•nt with thl' 1.fa t;i . It is jtL'it th~lt the 
alternation that this m il"' tk:;('rib~ is not the :;aml' infinit ~· ~et 11f (undl•rlyin~ form, surf,1cl' form) p.1irs 
th<1t phnnokigists think the f1 .1pping rult> ou~ht to d~cribt>. 
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properties of classes of languages or the general behavior of specific algorithms, as opposed 
to the specific behavior of specific algorithms. 

5.2 Learning OT grammars 
Optimality Theory (Prince and Smolensky 1993) is a theory of grammar which 
characterizes alternations by a strict ranking of constraints which evaluate possible 
(u, s) pairs. A (u, s) pair belongs to the alternation just in case it is optimal among 
the (possibly infinite) range of (u, s') pairs according to the ranked constraints. 
(CHAPTER 63: MARKEDNESS AN D FAITH FULNESS CONSTRAINTS). 

For a fixed (universal) set of k constraints there are at most k! languages 
and thus any set of constraints defines a finite class of languages that is Jcarn­
able in the limit. Though the members of any finite class of languages can be 
identified in the limit by enumerating the languages, such an approach is no t 
feasible in practice. An early positive result for OT learning was providt!d by 
Tesar and Smolensky's (1993) Recursive Constraint Demotion (RCD) algorithm. 
Tesar and Smolensky (1996: 26) subsequently showed that the structure that rank~·d 
constraints given to the hypothesis space guarantees that RCD will sucn•ss­
fully identify languages with a polynomial mistake bound (unlike a brute-fore{' 
enumeration). 

5.3 The VC dimension of OT and HG 
As mentioned earlier, finitude is itself a very simple kind of structure for concq.1t 
classes. With regard to the VC dimension, this is reflected by the foct that tht' VCD 
of any finite set of grammars is at most log2 of the cardinality of the set. This 
follows because it takes at least 211 concepts to shatter a set of n data points. H t:!r'\Ct_' 
the VCD of any set of OT grammars over a fixed set of k constraints is at rnust 
log2 k!, because there are only k! p ossible rankings. By contrast, if Wt~ take tlw 
same constraints and consider grammars defined by real-valued wl'iglrtings (as in 
Harmonic Grammar; HG)8 there are infinitely many possible grammars and thus 
no a priori bound on the VCD. 

This pair of cases proves to be quite illuminating. Though the finitudc of L~ 
(or lack thereof) provides some information about its learnability, the l'har.K­
terization is both coarse and incomplete. In the case of OT, the finitude nf the 
concept class bounds the VC dimension at log2 of k! (which is on the order of k 
log2 k). Unsurprisingly, the hypothesis space has m ore structure than its nwrL' 
finitude, and this structure bounds OT's VC dimension at k-1 (Riggle 20llC/). 
By contrast, one might expect the infinite hypothesis space of HG t,l have mm:h 
less structure, but it turns out that learning weightings can be reprcsentt~d ,1s 
the problem of learning half-spaces in !Ji!. (as in Figure 3.2), so the VC dimension 
cannot be greater than k+l and in fact is k~l (Bane et al. 2010). This parity mt~a ns 
not only that both models are efficiently learnable, but that the learning probl(!ms 
are essentially of equal complexity (recalling Vapnik's observation in §2.3). 

" In addition to HG (Legendre et al. 1990; Smolensky and Legendre 2006; Pater 2009), it range t)f 

weighted models have been proposed by Goldsmith (1990, 1991, 1993a, 1993b) and a few others. 
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5.4 PAC learning of rankings and weightings in 

OT and HG 
Both OT and HG have the same VC dimension: k-1 for grammars with k con­
straints. l~or a concrete example of what this means in terms of leamability, 
consider the three hypothetical tableaux in (12). 

(12) input 1 C1 C2 C3 C-1 

Canda * 

Cand b * 

-
input2 Ci C2 c 3 c 4 

Candc .. 
Candd * 

irput 3 C1-t-C-~-C_:1 +-l_:.1_-1 

implication: a> /7 iff w1 > w2 in HG or c1 >> c2 in OT 

implication: b > a iff w2 > w 1 in HG or c2 >> Ci in OT 

implication: c > d iff w2 > w J in HG or c2 >> C.i in OT 

implication: d > c iff w3 > w2 in HG or c.1 >> c2 in OT 

Cand l' * implication: c >-f iff w3 > w4 in HG or c.~ >> c4 in OT 

C:and_l ·k implication:/> c iff w.1 >11';1 in HG or c4 >> c~ in OT 

In both OT and HG it is possible to formulate sets of k-1 binary tableaux like 
those in (12), in which t'nch of the exponentially many (i.e. 2• ·1

) ways to choose 
a set of winners is possible under somt' grammar. Howeve r, as soon as a lea111er 
has seen k l)r mon~ tabk'aux - in either modd - there are only polynomially 
m<1ny ways to choose <1 sl'l of winm~rs (i.e. th.1;~rc is no set of four tableaux in 
which all patte:.•rns of winners are possible). The:.~ remarkable consequence of this 
fact is thnt any learner that meds th(' simplt~ condition that its hypotlws<;~s are 
always consistent w ith all p re\'ious l)bsen-.1tions is guMantl~ed to PAC-learn ,1 
ranking/wl.'ighting from a set of training lfota \.vhose size is a line<ir in the numlwr 
of constmints." 

Cive>n a constrnint· Sl'l •md a dataset comprising (winrwr, loser) pairs, Rectirsive 
Constraint Demotion (TL's.lt· .md Smolensky 1993, 1998, 2000; TL'Sar 1995, !997, 
l998a, 1998b) constructs a stratific-d hkran.:hy :1-((i.l'. u \.v1 . .><1k ordi:·ring) that is con­
s istent vvith tlw data b y wnstructing str.lta ctmsisting of constraints for which, in 
each remaining (w, /) pair, w has no mor~ violations than /, ,md then discdrdin~ 
any pnir in which w is optimal according h) tht:> :~( c<.w1structcd thus far. Thi~ 
process is n: itt>mted un ti l all (u 1, I} p<1irs cHe ~Ont.' (or until no constraint favors a 
winm.·r, in whkh cast;> no rnnking is Cl)nsistL'nt with the data). If, in additiLm to 
:1{ RCD records the ranking conditions that support its correct pn~dktions, tlwn 
it can generate hypotheses consistent with all pn~vious observntions and thereby 
be guaranteed to PAC-knrn rankings from in the order of k random :::;.:im.pks (tlw 
extra rt;>cord-keeping is nl'l'ded to ensure consistency because "accidentally" 
com~ct predictions can be undone by subst:-quent updates to :~{ ). 

'' Th~ bound on sampil· complexity m, accordi11g to \IC dimcn;;ic>n d, i;: m:;; ((4/d [d In (12h) l· 
In (2/?l) j; i;ce e.g. Blumer ,•111/. (1989). 
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For HG grammars, Potts et al. (2010) propose a consistent learner that finds a 
constraint-weighting w = (w1, w21 . •• , wk) e ~that simultaneously satisfies all the 
linear inequalities that correspond to a set of (winner, loser) pairs - such as those 
in (12) - using a technique from linear programming called the simplex algorithm 
(see e.g. Papadimitriou and Steiglitz 1998: chapter 2). Though their learner is 
intended to operate over batches of (w, l) pairs, they could conceivably be recast 
as an "error-driven" learner, so that, rather than generating a new hypothesis 
for each new datum based on all prior observations, a new hypothesis woL1ld be 
generated only in the event of an erroneous prediction. 

RCD also has an error-driven formulation, and an especially useful property of 
error-driven learners is that they only need to "remember" data poinL-; that they 
misclassified (often called "supports") in order to faithfully reconstruct corn~ct 
predictions for all forms in the training sequence. This allows a mistake bound 
to double as a memory bound on the amount of information that a learner could 
ever need to store. 

Pater (2008) observes that Rosenblatt's (1958) "perceptron" can be straight­
forwardly applied to HG learning. The perceptron is an error-driven learner 
that maintains a weighting w = (w1, w2, • •• , wk) E 1{;, w ith which they ma kt• 
predictions as follows. For candidates a and b, the value b.(a, b) E zk is th1;~ !'L'~ult 
of subtracting b's violations from a's violations (e.g. in (10), f.\(a, b) = (-l, l, 0, 0)). 
This point ink-dimensional space is "in" just in case it lies within the half-spa('t' 
described by w (i.e. if the inner product w · 6.(a, b) is greater than zero; this i::; 
a linear-classifier like the ones in Figure 3.2). Upon misclassifying a data point, 
the hyperplane represented by the weight-vector w is nudged in the dirc(tion cif 
11.(a, b). Though multiple errors on the same data point are possible (i.e. the upda tl' 
rule is non-corrective), the perceptron is guaranteed to eventually converge to 
a correct weighting if one exists. In the general case, the perceptron is not a 
PAC-learner, because the sample complexity can be exponential in k when the 
probability m ass of IT is concentrated on positive and negative data points th<lt 
are packed too close to the hyperplane that separates them. Moreover, though 
the perceptron will converge eventually, it is precisely these "hard" probability 
distributions that lead to many mistakes. 

5.5 Mistake bounds in OT and HG 
Regarding optimal mistake bounds, Littlestone (1988) shows that, while a low~·r 
bound on Opt(L) is set by L's VC dimension, in cases where L is finite, tht• upper 
bound of Opt(£) is log21 £1. This follows because the strategy of making predictions 
that accord with a plurality of the hypotheses consistent with previous obS0rvatinns 
only errs on data points that half or fewer of the remaining hypotheses corn~ctly 
classify (else the correct prediction would have been made) and, as such, each error 
halves the set of viable hypotheses which allows no more than l.og21 LI errors. 

This suggests room for improvement over RCD's quadratic mistake bound of 
k(k-1)/2, which follows from the maximum number of stratified hierarchies th•~t 
RCD can entertain on the way from all k constraints in a single stratum to a total 
order (Tesar and Smolensky 1996: 26). To implement Littlestone's halving algorithm 
for OT, Riggle (2008) proposes a recursive function for calculating the fraction of 
the space of possible rankings that are consistent with a set of optimal candidates, 
a quantity he calls the r-volume. For just two candidates a and b, if A denotes the 
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cons traints for which a has fewer violations and B those for which b has fewer 
violations, then the fraction of rankings that select a is precisely IA! / (IAl+JBI). 

(13) input C1 C2 

Canda * 
Cand b ** 

C• 
·' 

* 
* 

C4 

* the r-volume of candidate a is 1/3 (i.e. 8 rankings) 

the r-volume of candidate a is 2/1 (i.e. 16 rankings) 

Unfortunately, though computing r-volume for larger sets of candidates can 
often be done in ways vastly more efficient than exhaus tive search, there are 
"hard" cases where computation will always be intractable.10 This highlights the 
cor(~ tension between power and efficiency in learning; RCD's mistake bound 
may be sub-optimal but it is still polynomial and it is obtainable at amazingly 
low computational cost, whereas the halving algorithm yields a nearly optimal 
mistake bound (i.e. within a logaritlunic factor of k-1), but does so by inh·oducing 
computation thot is intractable in the wors t case. 

Analysis of mistake bounds illuminates a significant point o f divergence between 
OT and HG. Though the two models have the same VC dimension, the mistake 
bound of the former is finite, while the mistake bound of the latter is not. This is so 
because it is possible to constmct a snmple sequence of arbitrary length in which each 
ne\"-' data point causes an error that leads to an ever smaller change in the weight­
ing. Thus, though learners that use strategies such as the perceptron algorithm will 
eventually converge to a correct constraint weighting for any HG grammar (see 
Pater 2008), there is no g1mcral bound on the ra te of convergence (i.e. the number 
of mistakt's along tlw way) that ho lds for all possible sets of training data. 

Partially due to this fod, much of tht.• work on learning linear dnssificrs has focused 
on the •vay t11at spt•dfk properties of samples affect learnabili ty. For instance, the 
qu<mtity y, known as tlw mm;~in, measures the distance (in high dimensional spa<::l"') 
between th(• grammatkal and ungrammntical points and the line that separates 
t!wm. Gin.'n y, cHw nm <foriVt' bounds on thl' number of mistakes and the rate of 
rnm·c>rgt~ncl'. In foct, if the margin is large cnou~h, it suppbnts the dimensionality 
of th<.~ s<1 mp!t• spact' in determining the VC d iml'nsinn of the learning pmblem. 
Thus, w ith larg<' m ,1rgins. HC g rammars with thousands o f C(H\S trn ints might 
no1w thd<:•ss have Vt'ry low mistakl' bounds and sample complexity, sugge:-;ting th;1t 
senrching for so-called larg~'-nrnrgin classifiers might provide lingLtistic insights. 

5.6 Learning segmental adjacency pattems 
J·fayt>s ,1nd Wilson (2008) dt•n'lop a learner that takes as input ,\ fo;t of W<)rd!> and 
outputs a ma ximurn t•ntropy gra mmar consisting of <l finitt• sl't of wl•ighh.•d con­
strain ts that ddine <l prob;1bil ity distribution on·r forms. The <i lgorithm has St:'\l'rill 
pr~)pertit's of intl'rt'sl". First, the constraints it returns an: esscntinlly 11-grams ,1nd thus, 
in its simplt·st form, the i'.l lgnrithm can k,1rn adjacency patterns, but not harmony 
rntt1;.'rnS. Secondly, the unib in these constraints are featurt' bundli.'S tfonoting 
natura l dasses. Thirdly, the algorithm is d.esigrwd to first search for mort' genl'ral 
constraints (i.e. those with 5maller 11 and fewer fontures). Fourthly, following the 

1 ~ This follows from tht• f,1..;t t.h.it pairs <>f i.";md id .1tc:s i:.1n bt• u~tl tn ddiru.' pMti,11 m d,•rs (lVN thr 
rm~trainl'> and the: f~c.t that the pr11l>ll'm <1f wunting the linl'dr (•xh.·n..~i(lns <>f parti,l! onfor,.; is #P·Compld~. 
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principle of maximum entropy, the model weights constraints so that their observed 
number of violations in the training data matches the expected number. 

The authors provide case studies using corpus data suggesting that phono­
logical features play a crucial role in generalization. However, Albright (2009) 
explores feature-based generalization in Hayes and Wilson's model, as well as 
one based on minimal generalization, and shows that the specific contribution 
features make to learning remains unclear (CHAPTER 17: DISTINCTIVE FEATURES). 

This is an interesting class of models, and the phonological biases with the hypo­
thesis space are in many ways appealing. However, as with the biases in Gildea 
and Jurafsky (1996), formal analysis of their contribution is needed. 

5.7 Learning Harmony Patterns 
Hayes and Wilson (2008) show that when representations are enriched by allow­
ing segments with certain features to project onto tiers (where segments without 
such features are not projected) (see CHAPTER 14: AUTOSEGMENTS; CHAPTER 10.r;: TlER 

SEGREGATION), if the algorithm is allowed to search for 11-gram-like constraints on 
these additional levels of representation then it is possible to learn long-distanct: 
phonotactic constraints (i.e. harmony; see CHAPTER 91: VOWEL HARMONY: Ol'AQUX;: 

AN D TRANSPARENT VOWELS). Hayes and Wilson (2008: 32) conclude that "in 
controlled comparative simulations, [tiers] makes phonotactic learning possib le 
where it would not otherwise be so." It is, however, critical to bear in mind that th i:> 
result tells us something about a particular algorithm, and not something abou t 
the linguistic phenomenon of harmony (i.e. a class of languages). Indeed, Hein:t. 
(2007, 2010) shows that long-distance phonotactic constraints can be learned with­
out tiers (see below). Furthermore, the tiers that are critical to the success of th1.• 
algorithm are taken by Hayes and Wilson to be antecedently given, bt1t this does 
not entail (nor do the authors claim) that they must be antecedt~ntly giv« .. 'n . 
Goldsmith and Riggle (forthcoming) offer a s tra tegy for learning long-distance 
patterns that has many similarities to Hayes and Wilson's approach, but begins 
with an algorithm from Goldsmith and Xanthos {2009) for "discovering" tiers vi<l 
unsupervised categorization of the sounds of corpus into vowels and consonant~ . 

Heinz (2007, 2010) shows that phonotactic patterns derived from long-distarn:e 
agreement patterns (Hansson 2001; Rose and Walker 2004) can be learned \·vith# 
out tiers, using the notion of a discontiguous subsequence of length two. This idc.i 
is similar to bigrarn learning where learners keep track of contiguous subst~quence:­
of length two. Heinz provides proofs and formal analysis of classes of p<tttt>rn:> 
this algorithm is able to identify in the limit. Unfortunately, the absence of analy:;is 
of what classes are leamable by the previously discussed phonotactic learners hin­
ders comparisons of the models. 

5.8 Learning stress patterns 
Stress patterns can be thought of as word-well-formedness conditions, and hence 
a kind of phonotactic pattern. Since stress typologies are diverse and well estub­
lished, learning stress patterns has become a popular and challenging proving 
ground for learning algorithms (CHAPTER 39: STRESS: PHONOTACTIC AND PHONETIC 

EVIDENCE; CHAPTER 41: THE REPRESENTATION OF WORD STRESS; CHAPTER 44: THE 

IAMBIC-TROCHAIC LAW; CHAPTER 57: QUANTITY-SENSITIVITY). 
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Dresher and Kaye (1990) propose a learning model in the Principles and 
Parameters framework for learning stress patterns. In this framework, a grammar 
is a vector of parameters. The learner takes as input a list of words, and for each 
word, sets parameters as determined by checking whether the word consists 
of particular properties, called cues. Gillis ct al. (1995) implement the model with 
interesting discussion regarding what constitutes an appropriate cue. They only 
provid~~ input words up to four syllables in length, and d emonstrate that the 
learner succeeded in learning 75 percent of the patterns. Re lated work includes 
Gibson and Wexler's (1994) Triggering Leam.ing Algorithm (see also Frank and 
Kapur 1996 and Niyogi 2006: chapter 3 for discussion). 

Goldsmith (1994) and Gupta and Touretzky (1994) investigate how quantity­
insensitive stress patterns can be learned using dynamic networks. Although the 
models differ in their specifics - Goldsmith employs a different updating procedure 
than Gupta and Touretzky, who use a standard perceptron - these methods achieve 
a certain level of success in learning the patterns for which data is presented. 

Tesar and Smolensky (2000) discuss twelve OT constraints which yield a typo­
logy of quantity-sensitive stress patterns. 111e OT constra ints make reference to 
feet (CHAPTER .io: THE FOOT), which are not part of the learning inpu.t. Conscqmmtly, 
another procedure is necessary to parse the learner's input data, so that it can 
be processed by RCD (the underlying form is assumed to be a string ()f the right 
number of unstressed syllables). This procedure is non-trivia l, as there may be 
different parses (i.e. foot assignments) for a given stress pattern. Tesar (1998a) 
proposes a procedure called robust interpretive parsing. To test their system, Tesar 
and Smolensky hand-selected n test set consisting of 124 languages containing 
most of the "familiar metrical phenomena" analyzable with their constraints 
(Tesar and Smolensky 2000: 68). Note, however, that they acknowlt:•dge this set is 
not ncct~ssMily r<..~prt?sentativc of the whole typology generated by their constraints. 
Using robust int('rpr<.~t ivc parsing, they report that if the initial stat1:~ of the learner 
is monostratal - that is, rn.1 a priori ranking - then the lea nwr succl•eds on about 
60 pi:.•rcent of the langungl~S in the test set. When a pnrticulnr initial constn.1int 
hi<:>rarchy is adopted, thl' b\mer achieves -97 percent su<.:ct•ss. So in this caSl', robust 
interpretive parsing (mostly) addresses the problem RCD h,1s with hidd en s truc­
ture (for this pnrticular s~·t of t!.'st data). 

Heinz (2007, 2009) propos<.~:; that all phtmotnctic patterns arl' ncighborh{)Od­
distind, which is a k)cality condition defined in autornata-theon~tk terms. It is 
shown that a ll but tv;o ·t)f 109 descriptions of th~ \Vorld's strt•ss patterns an.• 
neighborhood-distinct and that a particular le<trn(~r that uses this property c<m 
learn 100 tlf tht•sc 109 pat!L'rns exactly. Although not every pattern can bt.> 
learned, the patterns acquired in the "failure" cas~'s differ only s lightly from th<.' 
target patt<.>rns. Heinz concludes that this particular notion of kl<:ality !'tructurcs 
the hypotlwsis sp<Ke in a way that makes a signifk.mt contributinn to p hono­
tactic learning. 

6 Conclusions 

We have argued that learning theory affirms the rol£' of structure as a :m!ution 
to the problem of generalization, and that there arc ideas and methods within 
learning theory that allow one to measure this structure and the class of languag1..-s 
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which have such structure. These tools offer phonologists a way to characterize 
the contribution various structural properties of phonological patterns can make 
to learning. 

With the exception of a substantial amount of work on learning in Optim<:1lity 
Theory (and Heinz 2010, on phonotactics), it is striking that most proposed 
learning algorithms have been evaluated only with case studies. Though such 
studies are suggestive and can be vital in the development of models, in order to 
know whether a given case study illustrates general properties of a problem. w1;~ 

need analytical results that show why the algorithm succeeds, what propertil~s of 
the training sample are critical to success, and how the algorithm maps experience 
to grammars. 

Finally, we have emphasized what we believe to be the most fruitful direction 
for future research. Phonologists ought to identify properties of phonological 
patterns that structure the hypothesis space or reduce its size (cf. Heinz 2009; 
Tesar, forthcoming). This approach works in tandem with, rather than in lieu of, 
formal analysis. 
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