
Cognitive and Sub-regular Complexity

James Rogers1, Jeffrey Heinz2, Margaret Fero1, Jeremy Hurst1,
Dakotah Lambert1, and Sean Wibel1

1 Earlham College, Richmond IN 47374, USA
2 University of Delaware, Newark DE 19716, USA

Abstract. We present a measure of cognitive complexity for subclasses
of the regular languages that is based on model-theoretic complexity
rather than on description length of particular classes of grammars or
automata. Unlike description length approaches, this complexity measure
is independent of the implementation details of the cognitive mechanism.
Hence, it provides a basis for making inferences about cognitive mech-
anisms that are valid regardless of how those mechanisms are actually
realized.

Keywords: Cognitive complexity, sub-regular hierarchy, descriptive
complexity, phonological stress.

1 Introduction

Identifying the nature of the cognitive mechanisms employed by various species,
and the evidence which helps determine this nature, are fundamental goals of
cognitive science. The question of the relative degree of difficulty of distinguishing
(proto-) linguistic patterns has received a considerable amount of attention in
recent Artificial Grammar Learning (AGL) research [1,2], as well as in current
research in phonology [3,4]. In the AGL research, as in the phonological research,
the complexity of the learning task has been central. This in no small part
depends on the complexity of the patterns being learned.

This paper studies the pattern complexity of subclasses of the class of regular
stringsets1 from a model-theoretic perspective, which has its roots in the seminal
work of McNaughton and Papert [5] (and, ultimately, Büchi [6] and Elgot [7]).
An important aspect of this analysis is that it is independent of any particular
representation. We argue that descriptive complexity of this model-theoretic
sort provides a more consistent measure of complexity than typical complexity
measures based on minimum description length. More importantly, we show
how this notion of cognitive complexity can provide concrete evidence about
the capabilities of the recognition mechanism that is valid for all mechanisms,
regardless of their implementation.

1 To minimize confusion between natural and formal languages will generally use the
term “stringset” to denote a set of strings rather than the more traditional “lan-
guage”, except that we will use the original terminology when referring by name to
concepts defined elsewhere in the literature.

G. Morrill and M.-J. Nederhof (Eds.): FG 2012/2013, LNCS 8036, pp. 90–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Cognitive and Sub-regular Complexity 91

This complexity analysis is exemplified with stress patterns in the world’s
languages. Stress patterns are rules that govern which syllables are emphasized,
or stressed, in words. The reason we use stress patterns to illustrate the com-
plexity hierarchy is because the cross-linguistic typology of stress patterns has
been well-studied [8,9] and because finite-state representations of these patterns
already exist [10,11].

In the next section, we explain why approaches based on minimum descrip-
tion length fail to provide an adequate notion of cognitive complexity in these
domains. We then (Section 3) develop a model-theoretic foundation for build-
ing hierarchies of descriptive complexity that do provide a consistent and useful
notion of cognitive complexity. In Section 4 we develop such a hierarchy based
on adjacency. This is the Local hierarchy of McNaughton and Papert, although
our presentation is more abstract and provides a basis for the generalizations
that follow. Section 4.1 treats the Strictly-Local sets. We do this in greater de-
tail than we do in the subsequent sections, providing the general framework and
allowing us to focus on specific variations at the higher levels of the hierarchy.
Sections 4.2, 4.3 and 4.4 treat the Locally Testable, Locally Threshold Testable
and Star-Free sets, respectively.

In Section 5 we repeat this structure for a hierarchy based on precedence rather
than adjacency. The Piecewise Testable level (Section 5.2) of this hierarchy is
well known, but the Strictly Piecewise level (Section 5.1) has only been studied
relatively recently. The two hierarchies converge at the level of the Star-Free
sets.

We conclude with a brief description of our current work applying these results
to the phonology of stress patterns.

While most of the language-theoretic details we present here are not new, we
present them within a more general framework that provides better insight into
the common characteristics of and parameters of variation between the classes.
Our main contribution, however, is the use of these descriptive hierarchies as
the basis of a measure of cognitive complexity capable of providing clear and
reliable insights about obscure cognitive mechanisms.

2 Cognitive Complexity of Simple Patterns

The formal foundation for comparisons of the complexity of patterns has primar-
ily been the information theoretic notion of minimum description length. This
compares the total number of bits needed to encode a model of computation—for
our purposes, a general recognition algorithm—plus the number of bits required
to specify the pattern with respect to that model.

Our focus, here, is on patterns that can be described as regular stringsets.
While there are many computational models that we might choose, we will fo-
cus on a few standard ones: Regular Grammars, Deterministic Finite State Au-
tomata (DFAs) and Regular Expressions [12]. All of these computational models
are equivalent in their formal power and there is no significant difference in the

92 J. Rogers et al.

size of the encodings of the computational models themselves2 (the recognition
algorithms), so there is no a priori reason to prefer one over another. The ques-
tion is how well the relative size of the descriptions of patterns with respect to a
given computational model reflects pre-theoretic notions of the relative complex-
ity of processing the patterns. So we will concentrate on comparing complexity
within a given computational model. This allows us to ignore the encoding of
the computational model itself.

One does not have to look far to find examples of pairs of stringsets in which
these three computational models disagree with each other about the relative
complexity of the stringsets. Moreover each get the apparent relative complexity
wrong on one or another of these examples. Figure 1 compares minimal descrip-
tions, with respect to each of these computational models, of the set of strings
of ‘A’s and ‘B’s that end with ‘B’, which we will refer to as EndB, and minimal
descriptions of the set of strings of ‘A’s and ‘B’s in which there is an odd number
of occurrences of ‘B’, which we will refer to as OddB.3 Thinking simply in terms
of what a mechanism has to distinguish about a string to determine whether it
meets the pattern or not, what properties of strings distinguish those that fit
the pattern from those that do not, EndB is clearly less complex than OddB. In
the first case, the mechanism can ignore everything about the string except the
last (or most recent) symbol; the pattern is 1-Definite, i.e., fully determined by
the last symbol in the string. In the second, it needs to make its decision based
on the number of occurrences of a particular symbol modulo two; it is properly
regular in the sense that it is regular but not star-free (see Section 4.4).

The Regular Grammars get this intuition right, as do the regular expressions.
The DFAs, on the other hand, differ only in the label of two transitions. There
is no obvious attribute of the DFAs, themselves, that distinguishes the two.

Figure 2 compares minimal descriptions of the set of strings of ‘A’s and ‘B’s in
which there is at least one occurrence of ‘B’s (SomeB) with minimal descriptions
of strings in which there is exactly one occurrence of ‘B’ (OneB). Here, there
can be no question of the relative complexity of the two stringsets: in order to
recognize that exactly one ‘B’ occurs, one must be able to recognize that at least
one ‘B’ occurs; in order to generate a string in which exactly one ‘B’ occurs, one
must be able to generate a string with at least one ‘B’. But for both the Regular
Grammars and the Regular Expressions the size of the description of SomeB is
greater than that of OneB. If we insist that DFAs be total, in the sense of having
a total transition function—an out edge from each state for each symbol of the
alphabet—then the minimal DFA for OneB is larger than that for SomeB. But
if we trim the DFAs, deleting states that cannot fall on paths from the start
state to an accepting state, the DFAs are identical except that OneB actually
requires one fewer transition.

2 Note that what is in question here is the encoding of the model, a representation
of, say, a Turing machine program to process the descriptions, not the descriptions
themselves. The encodings of the models vary in size by at most a constant.

3 In the case of the DFAs, the minimality is easy to verify. For the other computational
models minimality could be verified by enumeration, although this seems excessive.

Cognitive and Sub-regular Complexity 93

Sequences of ‘A’s and ‘B’s which end in ‘B’ (EndB)

Regular Grammar: S0 −→ AS0, S0 −→ BS0, S0 −→ B

DFA:
A B B

A

Regular Expression: (A+B)∗B

Sequences of ‘A’s and ‘B’s which contain an odd number of ‘B’s (OddB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ BS0, S1 −→ ε

DFA:
A B A

B

Regular Expression: (A∗BA∗BA∗)∗A∗BA∗

Fig. 1. Minimal descriptions: strings which end in ‘B’ vs. strings with an odd number
of ‘B’s

The point of these comparisons is that, even with just these four extremely
simple patterns, all of these computational models disagree with each other
about relative complexity and each of them gets some of the relative complexi-
ties wrong. Relative information theoretic complexity, at this level, depends on
the choice of computational model and none of these computational models con-
sistently reflects the actual pre-theoretic relative complexity of distinguishing
the patterns.

There are many ways to describe regular stringsets beyond the ones considered
here [13] so the above is not a deductive proof that no such computational
model exists. While searching for an appropriate computational model is one line
of research, this program faces a fundamental limitation. Encoding complexity
with respect to a particular computational model severely limits the validity
of conclusions we might draw about actual cognitive mechanisms from relative
complexity results. In the domain of language, the structure of the cognitive
mechanisms that an organism uses to recognize a pattern is hotly debated. If a
complexity measure is going to provide useful insights into the characteristics of
the cognitive mechanisms that can distinguish a pattern, it is an advantage if it
is agnostic about the operational details of the mechanisms themselves.

The alternative to searching for a computational model is to develop an ab-
stract measure of complexity. This measure should be invariant across all possible
cognitive mechanisms and depend only on properties that are necessarily com-
mon to all computational models that can distinguish a pattern. Such a measure

94 J. Rogers et al.

Sequences of ‘A’s and ‘B’s which contain at least one ‘B’ (SomeB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ BS1, S1 −→ ε

DFA:
A B

A,B

Regular Expression A∗B(A+B)∗

Sequences of ‘A’s and ‘B’s which contain exactly one ‘B’ (OneB)

Regular Grammar: S0 −→ AS0, S0 −→ BS1,
S1 −→ AS1, S1 −→ ε

DFA:
B

A,B
A B A

Regular Expression: A∗BA∗

Fig. 2. Minimal descriptions: strings that contain at least one ‘B’ vs. strings that
contain exactly one ‘B’

has to be based on intrinsic properties of the (generally infinite) set of stimuli
that match a pattern. We will take as the basis of the measure the properties of
the stimuli that distinguish those that satisfy a pattern from those that do not.
These are the things to which a cognitive mechanism needs to be sensitive—the
properties of strings it must be able to detect—in order to correctly classify a
stimulus with respect to a pattern.

3 Cognitive Complexity from First Principles

At the most fundamental level, we need to decide what kind of objects (entities,
things) we are reasoning about and what relationships between them we are
reasoning with. Since we are focusing on linguistic-like behaviors, we will assume
that the cognitive mechanisms of interest perceive (process, generate) linear
sequences of events.4

These we can model as strings, linear sequences of abstract symbols, which
we will take to consist of a finite discrete linear order (isomorphic to an initial

4 Historically, the term “event” has referred to the entire sequence. But, in general the
overall pattern may be hierarchically structured, i.e., sequences of subsequences each
of which would, itself, be an event. So the distinction, here, seems to be spurious
and we will refer to the elements of any sequence as an event.

Cognitive and Sub-regular Complexity 95

segment of the natural numbers) that is labeled with an alphabet of events. The
labeling partitions the domain of the linear order into subsets, each the set of
positions at which some event occurs. Representing these as ordinary relational
structures [14], we get word models of Figure 3, in which we use the symbol
‘�’ to denote successor (adjacency) and ‘�+’ to denote less-than (precedence).
Concatenation with respect to these models is just the ordered sum of the linear
orders.5 We take these models simply to be strings; we use no other formalization.

We will distinguish three classes of models: (+1)—models which include only
successor (restricted to be successor with respect to some linear order), (<)—
models which include only less-than, and models which include both (word mod-
els in general).

4 Adjacency—Substrings

The first hierarchy of complexity classes we will consider is based on reasoning
about adjacency, in general about substrings, i.e., blocks of consecutive symbols
within a string. This gives us a well known sequence of stringset classes, based
on generalizations of the Strictly Local Languages [5]. We formalize these classes
here in a way that will support generalization to stringset classes that are based
on other ways of reasoning about strings.

〈D, �, �+, Pσ〉σ∈Σ

(+1) 〈D, �, Pσ〉σ∈Σ (<) 〈D, �+, Pσ〉σ∈Σ
D — Finite domain
�+ — Linear order on D (⊆ D ×D)
� — Successor wrt �+ (⊆ D ×D)

Pσ — Subset of D at which σ occurs
(Pσ partition D)

Fig. 3. Word models. (+1) models are the restriction of the general word models to �;
(<) models are the restriction to ≤2.

All stringsets within these classes are defined in terms of their constituent
substrings with the variation between the classes corresponding to how descrip-
tions can be built from those substrings. Traditionally, the substrings that occur
within a string are referred to as its factors (with respect to concatenation).

5 That is to say, the concatenation of two word models is the disjoint union of their
domains and of their interpretations of the relation symbols extended so that the
minimum point of the domain of the right word is the successor of the maximum
point of the domain of the left. Note that the empty string is represented by a model
with an empty domain, which is usually avoided, but this presents no problems for
our applications.

96 J. Rogers et al.

Definition 1 (k-Factor).
v is a factor of w if w = uvx for some u, v ∈ Σ∗.
v is a k-factor of w if it is a factor of w and |v| = k.
The set of k-factors of a string w is:

Fk(w)
def
=

{{v ∈ Σk | (∃u, x ∈ Σ∗)[w = uvx]} if |w| ≥ k,
{w} otherwise.

This lifts to sets in the standard way Fk(L)
def
= {Fk(w) | w ∈ L}.

k-factors are essentially k-grams without probabilities. Note that the set of k-
factors of a word w which is shorter than k includes just w, itself. The set of all
k-factors over an alphabet Σ is Fk(Σ

∗) = {w ∈ Σ∗ | |w| ≤ k}, where |w| denotes
the length of w. Fk(Σ

∗) properly includes Fk−i(Σ
∗) for all i < k.

4.1 Strictly Local Sets

Definition 2 (Strictly Local Sets). A strictly k-Local definition G, over some
alphabet Σ, is a set of k-factors over Σ ∪ {�,�}, where ‘�’ and ‘�’ are new
symbols: initial and final markers, respectively.

G ⊆ Fk({�} ·Σ∗ · {�})

A string w satisfies G (w |= G) iff the set of k-factors of � · w ·� is a subset of
G.

w |= G def⇐⇒ Fk(� · w ·�) ⊆ G
The stringset licensed by a description G is the set of words that satisfy it.

L(G) def
= {w | w |= G}

A set of strings is Strictly k-local (SLk) iff it is L(G) for some strictly k-local
definition G. It is Strictly Local (SL) iff it is SLk for some k.

The expression � · w · � denotes w augmented with explicit initial and final
markers. A strictly k-local description is the set of k-factors that are licensed
to occur in the augmented string. Again, Fk({�} ·Σ∗ · {�}) contains factors of
length less than k, but in this case they all begin with ‘�’ and end with ‘�’.
Hence, they license only words of length less than k − 1.

The characteristic property of Strictly k-local sets is that they are closed under
substitution of suffixes that start with the same (k − 1)-factor.

Theorem 1 (Suffix Substitution Closure). A stringset L is strictly k-local
iff whenever there is a string x of length k − 1 and strings w, y, v, and z, such
that

w ·
k−1︷︸︸︷
x · y ∈ L and v ·

k−1︷︸︸︷
x · z ∈ L⇒ w ·

k−1︷︸︸︷
x · z ∈ L

Cognitive and Sub-regular Complexity 97

(Sketch of proof:) Closure of SLk stringsets under substitution of suffixes in this
way is nearly immediate. If w · x · y and v · x · z ∈ L(G) for some SLk definition
G, and |x| = k − 1 then

Fk(� · w · x · z ·�) ⊆ Fk(� · w · x · y ·�) ∪ Fk(� · w · x · y ·�) ⊆ G
For the other direction, suppose that a stringset L is closed under substitution
of suffixes that start with the same (k − 1)-factor. Let GL = Fk({�} · L · {�}).
That L ⊆ L(GL) is immediate by construction. One can show that L(GL) ⊆
L by constructing an arbitrary w ∈ L(GL) in stages from strings in L that
share successively long prefixes of w, extending the prefix, at each stage, by
substitution of suffixes.

Note that this is a characterization: every SLk stringset is closed under sub-
stitution of suffixes in this way and every stringset that is SSC-closed for some
k can be defined by a SLk definition.

SLk and SL, as a whole, are closed under intersection but not union, comple-
ment, concatenation or Kleene-∗ [5].

Example 1. Stress in the language Alawa is governed by two (actually three)
phonological rules [11]:

– In words of all sizes, primary stress falls on the penultimate syllable.
– In words of all sizes, there is no secondary stress.

The third rule is implicit in all stress patterns

– Every word has exactly one syllable that receives primary stress.

This pattern is not SL2 as witnessed by:

�σ σ́ σ� ∈ LAlawa, � σ́ � ∈ LAlawa, but �σ σ́ � ∈ LAlawa.

On the other hand, we can capture LAlawa with the constraints:

1. Do not permit 3-factors with multiple primary stress.
2. Do not permit unstressed penultimate syllables.
3. Do not permit primary stress to be followed by more than one syllable.
4. Do not permit unstressed monosyllables.
5. Do not permit empty words.

LAlawa = L(F3(� ·Σ+ ·�)
− { �σ́σ́, σ́σ́�, σσ́σ́, σ́σσ́, σ́σ́σ, σ́σ́σ́, (1)

σσ́�, σσ�, (2)
σ́σσ, (3)
�σ�, (4)
��}) (5)

= L({�σσ, �σσ́, �σ́σ, σσσ, σσσ́, σσ́σ, σ́σ�, �σ́�})

Hence LAlawa ∈ SL3 − SL2.

98 J. Rogers et al.

The strictly local classes form a proper hierarchy in k.

Theorem 2 (SL-Hierarchy).

SL1 � SL2 � SL3 � · · · � SLi � SLi+1 � · · · � SL

(Sketch of proof) The inclusions follow nearly immediately from the definition
of an SLk definition. The separations are easy to obtain using generalizations of
the proof that the Alawa stress pattern is not SL2.

The proper inclusions reflect the intuition that distinguishing a pattern that
requires attending to a larger block of symbols is likely to be cognitively more
difficult than distinguishing one that can be recognized by attending to smaller
blocks.

While every finite stringset is SLk for some k, there is no k for which SLk

includes all finite stringsets. Note, also, that given fixed k and Σ, there are only
finitely many SLk stringsets. SLk is learnable in the limit from positive data in
the sense of Gold [15]; SL as a whole is not [16].

Example 2. Edlefsen, et al. [17] have categorized the 109 patterns in Heinz’s
Stress Pattern Database [18]:

9 are SL2 Abun West, Afrikans, . . . Cambodian, . . .Maranungku
44 are SL3 Alawa, Arabic (Bani-Hassan), . . .
24 are SL4 Arabic (Cairene),6. . .
3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)
1 is SL6 Icua Tupi
28 are not SL Amele, Bhojpuri (Shukla Tiwari), Arabic Classical,

Hindi (Keldar), Yidin,. . .
72% are SL, all k ≤ 6. 49% are SL3.
This suggests that the majority of stress patterns in natural languages are

cognitively very simple, and perhaps even learnable in the limit.

Cognitive Interpretation of SL. It is important to note that the definition
of the class SL and its characterization by suffix substition closure make no
reference to any computational model of any sort. They are stated purely in
terms of the structure of the stringset itself. Members of an SLk stringset are
distinguished from non-members purely on the basis of their k-factors. This
assumes nothing about how those distinctions might be made by a particular
computational mechanism. Any mechanism that can distinguish members of an
SLk stringset from non-members must be able, at least, to distinguish strings in
this way. Any capabilities they may have beyond that are, in a sense, wasted, at
least with respect to that stringset.

This gives us a general characterization of cognitive mechanisms that are
capable of recognizing SLk stringsets.

6 The formalization of Arabic (Cairene) is controversial. Thomas Graf formalizes this
in a way that is properly regular [19].

Cognitive and Sub-regular Complexity 99

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SLk stringset must be sensitive, at least, to the
length k blocks of consecutive events that occur in the presentation of the
string.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the immediately
prior sequence of k − 1 events.

Note, again, that the cognitive mechanism is not required to analyze strings in
terms of blocks of consecutive events, even if they are presented as sequences
of events in time. It just needs to be able to make judgements, at each point
in the presentation of the string, that depend on the sequences of k − 1 events
which occur prior to that point. Every regular stringset can be generated by a
context-free grammar that is not a regular grammar, that does not analyze the
string in terms of contiguous blocks of symbols. Nevertheless, if the stringset is
strictly local, it will still need to get the judgements right; the set of all strings
that it generates will be closed under substitution of suffixes; it will differ from
the set it does not generate only in the blocks of consecutive symbols that occur
in the strings.

4.2 Locally Testable Languages

The standard phonological assumption that in every word there is some syllable
that receives primary stress [20] is problematic for SL. Letting Σ = {σ, σ́, σ̀}
(representing unstressed syllables, those with primary stress and those with sec-
ondary stress, respectively), this assumption can be described with the following
regular expression: Σ∗σ́Σ∗. Note that we are not (yet) ruling out the possiblity
that more than one syllable receives primary stress. To see that this is not SL,
suppose, for contradiction, that it was. Then it would necessarily be SLk for
some particular k. But then

�

k−1︷ ︸︸ ︷
σ · · ·σ σ́�, �σ́

k−1︷ ︸︸ ︷
σ · · ·σ� ∈ LSomeσ́ but �

k−1︷ ︸︸ ︷
σ · · ·σ� ∈ LSomeσ́

SL patterns cannot, in general, require a factor to occur; they can, at most,
forbid factors from occurring. Hence, they cannot enforce the requirement that
primary stress occurs unless either the stress is required to fall within a fixed
radius of one end of the word (as in the case of Alawa) or the factors preceding
the stress can be distinguished in some other way from those following it.

The next level of the Local Hierarchy, the class of Locally Testable (LT) lan-
guages is the closure of SL under Boolean operations. Since this includes com-
plement, it allows one to require the occurrence of specific factors. Rather than
taking LT descriptions to be Boolean combinations of SL descriptions, we use a
simple propositional calculus to describe LT sets. This provides a foundation for
extending the descriptions to First Order descriptions.

100 J. Rogers et al.

Definition 3 (Local k-expressions). The logic of Local k-expressions is based
on the smallest set including the following forms, with the intended semantics
as indicated.

f ∈ Fk(� ·Σ∗ ·�) w |= f
def⇐⇒ f ∈ Fk(� · w ·�)

ϕ ∧ ψ w |= ϕ ∧ ψ def⇐⇒ w |= ϕ and w |= ψ

¬ϕ w |= ¬ϕ def⇐⇒ w |= ϕ

The k-factors serve as our atomic propositions. While these are not devoid of
internal structure, they are either a factor of a string or not. Hence, strings can
be seen as valuations of the factors in the ordinary propositional sense. The
calculus of k-expressions is just an idiosyncratic propositional calculus.

Definition 4 (Locally Testable Sets). A stringset L over Σ is k-Locally
Testable iff (by definition) there is some local k-expression ϕ over Σ (for some
k) such that L is the set of all strings that satisfy ϕ:

L = L(ϕ)
def
= {w ∈ Σ∗ | w |= ϕ}

A stringset is LT iff it is LTk for some k.

Note that SLk descriptions can be interpreted by local k-expressions:

L(G) = L(
∧
fi �∈G

[¬fi])

Thus SLk � LTk. In particular, SL stringsets are exactly those LT stringsets
that can be expressed as conjunctions of negative constraints.

Since strings are, in effect, propositional valuations, the Locally Testable
stringsets can be characterized by the fact that they must be the union of finitely
many classes of strings that are equivalent with respect to the k-factors they
comprise.

Theorem 3 (Local Test Invariance). A stringset L is Locally Testable iff
there is some k such that, for all strings x and y, if � · x ·� and � · y ·� have
exactly the same set of k-factors then either both x and y are members of L or
neither is.

In other words, if

w ≡L
k v

def⇐⇒ Fk(�w�) = Fk(�v�)

the LTk stringsets cannot break the equivalence classes of Σ∗ with respect to
≡L

k . (The superscript L here refers to the fact that this is an equivalence with
respect to Local criteria.)

LTk and LT as a whole are closed under Boolean operations, by definition,
but are not closed under concatenation or Kleene-∗ [5].

Since there are finitely many ≡L
k equivalence classes, for fixed k, there are

finitely many LTk stringsets over a given alphabet. LTk is learnable in the limit,
although LT is not [21].

Cognitive and Sub-regular Complexity 101

Example 3. Stress in the Mongolic language Buriat is governed by two explicit
constraints:

– Primary stress falls on the right-most non-final heavy syllable, else on the
final syllable if it is heavy, else on the initial syllable.

– Secondary stress falls on the initial syllable and on heavy syllables.

The second constraint forbids any unstressed H . One of the consequences of
these constraints is that if a word ends with H́ then there is no non-final H̀ .
This is LT2 as witnessed by the 2-expression:

¬(H́� ∧ H̀σ)

It is not, on the other hand, SL since

�H̀

k−1︷ ︸︸ ︷
L · · ·L H́L�, �L̀

k−1︷ ︸︸ ︷
L · · ·L H́� ∈ LBuriat but �H̀

k−1︷ ︸︸ ︷
L · · ·LH́� ∈ LBuriat

Furthermore, it is not LT1, either:

�H̀H́H̀� ≡L
1 �H̀H̀H́�

Theorem 4 (LT-Hierarchy).

LT1 � LT2 � LT3 � · · · � LTi � LTi+1 � · · · � LT

Again, the hierarchy reflects the intuition that attention to larger blocks is likely
to be cognitively more difficult than attention to smaller blocks (because, for
one thing, it requires more memory).

Local Test Invariance implies that, in order to distinguish strings that satisfy
an LTk pattern from those that do not, a mechanism has to be sensitive to the
set of k-factors that occur in a string, not just whether specific k-factors occur
or not.

Cognitive Interpretation of LT

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) LTk stringset must be sensitive, at least, to the set
of length k contiguous blocks of events that occur in the presentation of the
string—both those that do occur and those that do not.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the set of length k
blocks of events that occurred at any prior point.

Here again, this interpretation is fully independent of the way that the mech-
anism actually parses the strings. However it may do that, it must be able to
distinguish strings purely on the basis of their sets of k-factors.

102 J. Rogers et al.

4.3 FO(+1)—Locally Threshold Testable Languages

LT constraints can require primary stress, but they cannot rule out multiple
occurrences of primary stress. To see this, let LOneσ́ be the set of strings over
{σ, σ́, σ̀} in which exactly one σ́ occurs. Suppose, for contradiction, that it is LT,
hence LTk for some k. Then

�

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ� ≡L

k �

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ σ́

k−1︷ ︸︸ ︷
σ · · ·σ�

but the former is in LOneσ́ while the latter is not. The problem is that LT
automata cannot count. Or, more precisely, they can count only to 1.

In order to distinguish strings in which some σ́ occurs from those in which
more than one occurs, we will need to be able to distinguish one instance of
σ́ from another. We need to state our constraints in terms of specific positions
within a string. We do this with a standard First Order language for our (+1)
word models, strings with successor but not less-than.

Definition 5. FO(+1) is the standard First Order logical system over the mod-
els 〈D, �, Pσ〉σ∈Σ with equality on the domain:

x � y w, [x �→ i, y �→ j] |= x � y
def⇐⇒ j = i+ 1

x ≈ y w, [x �→ i, y �→ j] |= x ≈ y
def⇐⇒ j = i

Pσ(x) w, [x �→ i] |= Pσ(x)
def⇐⇒ i ∈ Pσ

ϕ ∧ ψ ...

¬ϕ ...

(∃x)[ϕ(x)] w, s |= (∃x)[ϕ(x)] def⇐⇒ w, s[x �→ i] |= ϕ(x)]
for some i ∈ D

where w, s[x �→ i] |= ϕ(x) says that the string w satisfies the formula ϕ(x), in
which the variable x possibly occurs, with the position i taken to be the value of
x. (So i witnesses that there is some position which satisfies the formula.)

We take FO(+1) to denote the class of FO(+1)-definable stringsets, as well.
A stringset L is in the class FO(+1) iff it is FO(+1)-definable:

L = L(ϕ)
def
= {w | w |= ϕ}.

Note that local k-expressions can be captured in FO(+1) by Boolean combi-
nations of existential formulae with k variables. (The same k variables can be
reused in each existential subformula.) Hence LT � FO(+1).

Example 4. LSomeσ́ is FO(+1) as witnessed by the formula (∃x)[σ́(x)].
LAt-Most-Oneσ́ is FO(+1) as witnessed by (∀x, y)[¬(σ́(x) ∧ σ́(y) ∧ x ≈ y)]
Consequently, LOneσ́ is also FO(+1).

Cognitive and Sub-regular Complexity 103

Thomas [22] characterizes FO(+1) in terms of Local Threshold Testability, equiv-
alence in terms of the multiplicity of k-factors up to some fixed finite threshold t.

Definition 6 (Locally Threshold Testable). A set L is Locally Threshold
Testable (LTT) iff there is some k and t such that, for all w, v ∈ Σ∗:

if for all f ∈ Fk(� · w ·�) ∪ Fk(� · v ·�)
either |w|f = |v|f or both |w|f ≥ t and |v|f ≥ t,

then w ∈ L ⇐⇒ v ∈ L.

So a stringset is LTTk,t iff it does not distinguish between strings that, for any
k-factor w, either have the same number of occurrences of w or have at least t
occurrences; a stringset is LTT iff it is LTTk,t for some k and t.

Theorem 5 ([22]). A set of strings is First-order definable over 〈D, �, Pσ〉σ∈Σ

iff it is Locally Threshold Testable.

Once again, there are only finitely many stringsets over a given alphabet if k
and t are fixed. So LTTk,t is learnable in the limit, although LTT, and FO(+1),
are not.

Cognitive Interpretation of FO(+1)

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) FO(+1) stringset must be sensitive, at least, to the
multiplicity of the length k blocks of events, for some fixed k, that occur in
the presentation of the string, distinguishing multiplicities only up to some
fixed threshold t.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being able to count up to some fixed threshold.

4.4 FO(<)—Star Free Languages

While FO(+1) formulae can distinguish strings on the multiplicity of their k-
factors, they cannot distinguish the order in which those factors occur.

Example 5. A second primitive constraint on stress in Buriat is that no syllable
with primary stress can properly precede a non-final heavy syllable (which, nec-
essarily would have secondary stress). But this is not a constraint that is FO(+1)
definable since

�L̀

k−1︷ ︸︸ ︷
L · · ·L H̀

k−1︷ ︸︸ ︷
L · · ·L H́

k−1︷ ︸︸ ︷
L · · ·L�

and
�L̀ L · · ·L︸ ︷︷ ︸

k−1

H́ L · · ·L︸ ︷︷ ︸
k−1

H̀ L · · ·L︸ ︷︷ ︸
k−1

�

have the same number of each k-factor.
This is a constraint that can be enforced in terms of less-than:

¬(∃x, y)[σ́(x) ∧ H̀(y) ∧ x < y]

104 J. Rogers et al.

Note that less-than is not FO definable from successor (as witnessed by the
example) although successor is FO definable from less-than. Hence FO(+1) �

FO(<).
The characterization of FO(<) is the primary result of McNaughton and Pa-

pert [5].

Definition 7 (Local Testability with Order). The class of stringsets that
are Locally Testable with Order (LTO) is the closure of LT under concatenation
and Boolean operations.

Note that threshold testability is not required, since it can be reduced to con-
catenation. Any fixed number of occurrences of a factor can be captured as the
concatenation of a fixed number of single occurrences [5].

Definition 8 (Star-Free Languages). The class of star-free stringsets is the
closure of the class of finite stringsets under union, concatenation and comple-
ment with respect to Σ∗.

This is the class of stringsets that are the denotation of regular expressions
extended with a complement operator but without Kleene star.

Theorem 6 ([5]). For any stringset L, the following are equivalent

– L is First-order definable over 〈D, �+, Pσ〉σ∈Σ

– L is LTO
– L is Star-Free.

This class of languages is not learnable in the limit because it contains every
finite language and at least one infinite language [15].

Cognitive Interpretation of SF (FO(<))

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SF stringset must be sensitive, at least, to both the
order and the multiplicity of the length k blocks of events, for some fixed
k, that occur in the presentation of the string, distinguishing multiplicities
only up to some fixed threshold t.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being able not only to count events up to some threshold but also
to track the sequence in which those events occur.

5 Precedence—Subsequences

The Buriat constraint of Example 5 is a simple negative constraint on the order
of syllables. If we specify our constraints in terms of precedence rather than
adjacency this can be captured at the level corresponding to SL. We can do this
simply by interpreting our atomic formulae as subsequences rather than factors.
Let:

v � w
def⇐⇒ v = σ1 · · ·σn and w ∈ Σ∗ · σ1 ·Σ∗ · · ·Σ∗ · σn ·Σ∗

So v � w iff v is a subsequence of w.

Cognitive and Sub-regular Complexity 105

The logic of Piecewise k-expressions is identical in form and meaning to that
of local k-expressions except that the atomic formulae are now strings of length
less than or equal to k over Σ (with no end markers) which are interpreted as
subsequences.

s ∈ Σ≤k w |= s
def⇐⇒ s � w

To emphasize that we are working with subsequences rather than substrings, we
will generally write the subsequence σ1σ2 as σ1 . . σ2.

5.1 Strictly Piecewise Testable Sets

Strictly k-Piecewise Testable sets are those sets that are definable as conjunctions
of negative atomic piecewise k-expressions. As with SL these are closed under
intersection but not union, complement, concatenation or Kleene-∗. And they
form a proper hierarchy in k.

The class of SP constraints was characterized by Rogers, et al. [23]. Strikingly
these are exactly the sets of strings that are closed under subsequence. The
parameter k is the length of the longest string that is not included although all
of its subsequences are. One immediate consequence of this is that no set of SP
constraints will suffice to define the stress pattern of a human language since SP
constraints cannot require some primary stress to occur.

Example 6. While SP constraints cannot require primary stress to occur, they
can prohibit more than one primary stress, as witnessed by the piecewise 2-
expression ¬σ́ . . σ́.

The Buriat constraint of Example 5 is SP3, as witnessed by ¬σ́ . . H̀ . . σ.
Since the sequence σ́H̀σ must be excluded but none of its subsequences may

be (on the basis of this constraint) it is not an SP2 definable constraint.

Note that while SP constraints can neither require strings to start or end with
a particular symbol nor require them not to start or end with a particular sym-
bol, they can forbid particular symbols from occurring anywhere except at the
beginning or end of a string.

As with SLk, SPk is learnable in the limit if k is fixed. SP in general is not.

Cognitive Interpretation of SP

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) SPk stringset must be sensitive, at least, to the
length k (not necessarily consecutive) sequences of events that occur in the
presentation of the string.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to up to k − 1 events
distributed arbitrarily among the prior events.

106 J. Rogers et al.

5.2 Piecewise Testable Sets

Continuing to follow the pattern of the local hierarchy, the Piecewise Testable
sets are those which are definable by arbitrary piecewise k-expressions. These
are well studied, having been introduced in Simon [24]. As with the LT sets,
they can be characterized as the union of finitely many equivalence classes, but
with strings being equivalent if they share the same set of subsequences, rather
than the same set of factors.

Theorem 7 (k-Subsequence Invariance). A stringset L is Piecewise Testable
iff there is some k such that, for all strings x and y, if x and y have exactly the
same set of subsequences of length less than or equal to k then either both x and
y are members of L or neither is.

Example 7. PT constraints can require primary stress to occur on exactly one
syllable: σ́ ∧ ¬σ́ . . σ́.

In general, they cannot require a syllable to occur initially or finally unless that
syllable cannot occur more than once. Hence the Buriat constraint of Example 3
can be captured in PT2 with the expression (H́ ∧ ¬H́ . . σ) → ¬H̀ . This asserts
that if there is some H́ but no non-final H́ (thus there is a final H́) then there
are no H̀ .

In parallel with LTk, PTk for fixed k is learnable in the limit, but PT in general
is not [21].

Cognitive Interpretation of PT

– Any cognitive mechanism that can distinguish member strings from non-
members of a (properly) PTk stringset must be sensitive, at least, to the
set of length k subsequences of events that occur in the presentation of the
string—both those that do occur and those that do not.

– If the strings are presented as sequences of events in time, then this corre-
sponds to being sensitive, at each point in the string, to the set of all length
k subsequences of the sequence of prior events.

5.3 First Order

Still following the pattern of the local hierarchy, the next step is to move to a
First Order language over (<) models. But successor is FO definable from less-
than, so at the FO level (<) models are equivalent to models with both successor
and less-than. It is at this point, the Star-Free sets, that the local and piecewise
hierarchies meet.

6 Further Work

From a practical point of view, one of the most important characteristics of these
hierarchies is that all of the classes are closed under intersection. This means that

Cognitive and Sub-regular Complexity 107

complicated patterns can be factored into the co-occurrence of primitive patterns
of one type or the other (local or piecewise), as we have done here with Alawa
and (partially) Buriat, with the overall complexity being the supremum of the
complexities of the primitive constraints.

We are currently factoring all of the stress patterns in Heinz’s database into
primitive constraints for which we have determined the complexities with re-
spect to the local and piecewise hierarchy. The results, though preliminary, are
exciting. With the possible (controversial) exception of Cairene Arabic, all of
the patterns are at worst Star-Free. Moreover, while there are patterns that are
properly Star-Free from either the local or piecewise perspective (Buriat is an
example), all of the patterns we have factored (nearly all of the patterns in the
database) are co-occurrences of either LT and SP constraints or SL and PT con-
straints. This suggests that stress in every human language can be factored into
co-occurrence of simple constraints, all of which are potentially learnable in the
limit at least in principle if an upper bound on the length of the (sub)sequence
is established.

These preliminary results are made possible by the abstract complexity mea-
sures introduced here. It is unclear how an approach based on the minimal
description length of a particular model could have obtained this result. Further-
more, this complexity analysis, while introduced with examples from phonology,
is much more far-reaching than that. They can be, and are being, applied to
syntactic structures [25]. One reason this is possible is because these measures
are sufficiently and appropriately abstract. They are agnostic about the opera-
tional details of models themselves, and therefore they provide a basis for making
inferences about cognitive mechanisms that are valid, regardless of how those
mechanisms are actually realized.

References

1. Folia, V., Uddén, J., de Vries, M., Forkstam, C., Petersson, K.M.: Artificial lan-
guage learning in adults and children. Language Learning 60, 188–220 (2010)

2. Hauser, M.D., Chomsky, N., Fitch, W.T.: The faculty of language: What is it, who
has it, and how did it evolve? Science 298(5598), 1569–1579 (2002)

3. Heinz, J.: Learning long-distance phonotactics. Linguistic Inquiry 41(4), 623–661
(2010)

4. Heinz, J., Idsardi, W.: Sentence and word complexity. Science 333(6040), 295–297
(2011)

5. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)
6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)
7. Elgot, C.C.: Decision problems of finite automata and related arithmetics. Trans-

actions of the American Mathematical Society 98, 21–51 (1961)
8. Hayes, B.: Metrical Stress Theory. Chicago University Press (1995)
9. van der Hulst, H., Goedemans, R., van Zanten, E. (eds.): A survey of word accentual

patterns in the languages of the world. Mouton de Gruyter, Berlin (2010)
10. Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University

of California, Los Angeles (2007)

108 J. Rogers et al.

11. Heinz, J.: On the role of locality in learning stress patterns. Phonology 26(2),
303–351 (2009)

12. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley (2001)

13. Kracht, M.: The Mathematics of Language. Mouton de Gruyter (2003)
14. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)
15. Gold, E.: Language identification in the limit. Information and Control 10, 447–474

(1967)
16. Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict

sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, pp. 325–
338 (1990)

17. Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M., Wellcome, D.: De-
ciding strictly local (SL) languages. In: Breitenbucher, J. (ed.) Proceedings of the
Midstates Conference for Undergraduate Research in Computer Science and Math-
ematics, pp. 66–73 (2008)

18. Heinz, J.: UD phonology lab stress pattern database (March 2012),
http://phonology.cogsci.udel.edu/dbs/stress/

19. Graf, T.: Comparing incomparable frameworks: A model theoretic approach to
phonology. University of Pennsylvania Working Papers in Linguistics 16(2), Article
10 (2010), http://repository.upenn.edu/pwpl/vol16/iss1/10

20. Hyman, L.M.: How (not) to do phonological typology: the case of pitch-accent.
Language Sciences 31(2-3), 213–238 (2009); Data and Theory: Papers in Phonology
in Celebration of Charles W. Kisseberth

21. Garćıa, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars 7, 125–140 (2004)

22. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
Systems Sciences 25, 360–376 (1982)

23. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel,
S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G.,
Michaelis, J. (eds.) MOL 10. LNCS (LNAI), vol. 6149, pp. 255–265. Springer,
Heidelberg (2010)

24. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)

25. Graf, T.: Locality and the complexity of minimalist derivation tree languages. In: de
Groote, P., Nederhof, M.-J. (eds.) Formal Grammar 2010/2011. LNCS, vol. 7395,
pp. 208–227. Springer, Heidelberg (2012)

http://phonology.cogsci.udel.edu/dbs/stress/
http://repository.upenn.edu/pwpl/vol16/iss1/10

	Cognitive and Sub-regular Complexity
	1 Introduction
	2 Cognitive Complexity of Simple Patterns
	3 Cognitive Complexity from First Principles
	4 Adjacency—Substrings
	4.1 Strictly Local Sets
	4.2 Locally Testable Languages
	4.3 FO(+1)—Locally Threshold Testable Languages
	4.4 FO(<)—Star Free Languages

	5 Precedence—Subsequences
	5.1 Strictly Piecewise Testable Sets
	5.2 Piecewise Testable Sets
	5.3 First Order

	6 FurtherWork
	References

