
Representing and Learning Opaque Maps

with Strictly Local Functions

Jane Chandlee

Jeffrey Heinz

Adam Jardine

CNRS, Paris, France

April 18, 2015

GLOW 38: Workshop on Computational Phonology

1

Representing and Learning Opaque Maps

1. Chandlee 2014 defines and studies input strictly local functions

which are a class of string-to-string maps (see also Chandlee

and Heinz, in revision).

2. Here we show that many opaque phonological patterns can be

represented and modeled with these functions without any

additional modifications.

3. This matters because input strictly local functions are

efficiently learnable from positive evidence (Chandlee 2014,

Chandlee et al. 2014, and Jardine et al. 2014).

4. Other reasons why it matters—and the implications for

phonological theory more generally—will also be discussed.

2

Part I

Studying the nature of phonological maps

3

Transformations in Generative Phonology

• Theories of generative phonology concern transformations, or

maps from abstract underlying representations to surface

phonetic representations.

• A truism about maps:

Different grammars may generate the same map.

Such grammars are extensionally equivalent.

• Grammars are finite, intensional descriptions and maps are

their (possibly infinite) extensions

• Maps may have properties largely independent of their

grammars. . .

– output-driven maps (Tesar 2014)

– regular maps (Elgot and Mezei 1956, Scott and Rabin 1959)

– subsequential maps (Oncina et al. 1993, Mohri 1997, Heinz

and Lai 2013)

– . . .
4

Input Strict Locality: Main Idea

These maps are Markovian in nature.

x0 x1 . . . xn

↓

u0 u1 . . . un

where

1. Each xi is a single symbol (xi ∈ Σ1)

2. Each ui is a string (ui ∈ Σ∗

2)

3. There exists a k ∈ N such that for all input symbols xi its

output string ui depends only on xi and the k − 1 elements

immediately preceding xi.

(so ui is a function of xi−k+1xi−k+2 . . . xi)

5

Input Strict Locality: Main Idea in a Picture

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 1: For every Input Strictly 2-Local function, the output string

u of each input element x depends only on x and the input element

previous to x. In other words, the contents of the lightly shaded cell

only depends on the contents of the darkly shaded cells.

6

Example: Nasal Place Assimilation is ISL with

k = 2

/inpÄfEkt / 7→ [impÄfEkt]

input: ⋊ I n p Ä f E k t ⋉

output: ⋊ I λ mp Ä f E k t ⋉

7

Example: Nasal Place Assimilation is ISL with

k = 2

/inpÄfEkt / 7→ [impÄfEkt]

input: ⋊ I n p Ä f E k t ⋉

output: ⋊ I λ mp Ä f E k t ⋉

8

Example: Nasal Place Assimilation is ISL with

k = 2

/inpÄfEkt / 7→ [impÄfEkt]

input: ⋊ I n p Ä f E k t ⋉

output: ⋊ I λ mp Ä f E k t ⋉

9

Example: Nasal Place Assimilation is ISL with

k = 2

/inpÄfEkt / 7→ [impÄfEkt]

input: ⋊ I n p Ä f E k t ⋉

output: ⋊ I λ mp Ä f E k t ⋉

10

What can be modeled with ISL functions?

1. A significant range of individual phonological processes such as

local substitution, deletion, epenthesis, and synchronic

metathesis

2. Approximately 95% of the individual processes in P-Base

(v.1.95, Mielke (2008))

3. Opaque maps! (This talk, in a moment)

(Chandlee 2014, Chandlee and Heinz, in revision)

11

What cannot be modeled with ISL functions

1. progressive and regressive spreading

2. long-distance (unbounded) consonant and vowel harmony

(Chandlee 2014, Chandlee and Heinz, in revision)

12

What about spreading and long-distance

phonology?

• ISL functions naturally generalize Strictly Local (SL) stringsets

in Formal Language Theory.

• SL stringsets model local phonotactics and ISL functions model

phonological maps with local triggers.

• Output SL functions are another generalization of SL stringsets

which precisely models spreading (Chandlee et al. under

review).

• Stringly-Piecewise (SP) and Tier-based Strictly Local (TSL)

stringsets model long-distance phonotactics (Heinz 2010, Heinz

et al. 2011).

• We expect functional characterizations of SP and TSL

stringsets will model long-distance maps (work-in-progress).

13

Automata characterization of k-ISL functions

Theorem Every k-ISL function can be modeled by a k-ISL

transducer and every k-ISL transducer represents a k-ISL

function.

The state space and transitions of these transducers are

organized such that two input strings with the same k − 1

suffix always lead to the same state.

(Chandlee 2014, Chandlee et. al 2014)

14

Example: Fragment of k-ISL transducer for NPA

λ V:λ n:n

p:λ

g:λ

p:p

g:g

V:V n:λ

n:λ

n:λ

p:mp

g:Ng

V:V

V:V

p:p

g:g

/inpa/ 7→ [impa]

Not all transitions and states are shown, and vowel states and

transitions are collapsed. The nodes are labeled

name:output string.

15

Part II

Studying Opacity in Phonology

16

Defining Opaque maps

• Opaque maps are defined as the extensions of particular

rule-based grammars (Kiparsky 1971, McCarthy 2007).

• Baković (2007) provides a typology of opaque maps.

– Counterbleeding

– Counterfeeding on environment

– Counterfeeding on focus

– Self-destructive feeding

– Non-gratuitous feeding

– Cross-derivational feeding

• Subsequent examples are drawn from this paper.

17

Counterbleeding in Yokuts

‘might fan’

/Pili:+l/

[+long] → [-high] Pile:l

V → [-long] / C # Pilel

[Pilel]

18

Fragment of a 3-ISL transducer for Yokuts

l ı̄ l ⋉

l λ λ el

19

Counterfeeding-on-environment in Bedouin

Arabic

Bedouin Arabic

‘Bedouin’

/badw/

a → i / σ —

G → V / C # badu

[badu]

This is 4-ISL.

20

The other examples

• Counterfeeding on focus in Bedouin Arabic (3-ISL)

• Self-destructive feeding in Turkish (5-ISL)

• Non-gratuitous feeding in Classical Arabic (5-ISL)

• Cross-derivational feeding in Lithuanian (4-ISL)

21

What is k?

• If a function described by a rewrite rule A −→ B / C D is

ISL then k will be the length of the longest string in the

structural description CAD.

• For opaque maps describable as the composition of two rewrite

rules, it is approximately the length of the longest string in the

structural description of either rule (it may be a little longer).

• A k-value of 5 appears sufficient for the examples in Baković’s

paper.

22

Part III

Learning ISL functions

23

ISLFLA: Input Strictly Local Function Learning

Algorithm

• The input to the algorithm is k and a finite set of (u, s) pairs.

• ISLFLA builds a input prefix tree transducer and merges states

that share the same k − 1 prefix.

• Provided the sample data is of sufficient quality, ISLFLA

provably learns any function k-ISL function in quadratic time.

• Sufficient data samples are quadratic in the size of the target

function.

(Chandlee et al. 2014, TACL)

24

SOSFIA: Structured Onward Subsequential

Function Inference Algorithm

SOSFIA takes advantage of the fact that every k-ISL function can

be represented by an onward transducer with the same structure

(states and transitions).

• Thus the input to the algorithm is k-ISL transducer with

empty output transitions, and a finite set of (u, s) pairs.

• SOSFIA calculates the outputs of each transition by examining

the longest common prefixes of the outputs of prefixes of the

input strings in the sample (onwardness).

• Provided the sample data is of sufficient quality, SOSFIA

provably learns any function k-ISL function in linear time.

• Sufficient data samples are linear in the size of the target

function.

(Jardine et al. 2014, ICGI)
25

Part IV

Implications for a theory of phonology

26

Some reasons why Classic OT has been influential

• Offers a theory of typology.

• Comes with learnability results.

• Solves the duplication/conspiracy problems.

27

What have we shown?

1. Many attested phonological maps, including many opaque

ones, are k-ISL for a small k.

2. k-ISL functions make strong typological predictions.

(a) No non-regular map is k-ISL.

(b) Many regular maps are not k-ISL.

⇒ So they are subregular.

3. k-ISL functions are efficiently learnable.

28

How does this relate to traditional phonological

grammatical concepts?

1. Like OT, k-ISL functions do not make use of intermediate

representations.

2. Like OT, k-ISL functions separate marked structures from

their repairs (Chandlee et al. to appear, AMP 2014).

• k-ISL functions are sensitive to all and only those

markedness constraints which could be expressed as

*x1x2 . . . xk, (xi ∈ Σ).

• In this way, k-ISL functions model the “homogeneity of

target, heterogeneity of process” (McCarthy 2002)

29

Where is the Optimality?

• Paul Smolensky asked this question to Jane Chandlee at the

2013 AMP at UMass where ISL functions were first introduced.

• The answer is “Over there.”

• Perhaps the question ought to be “How does Optimality

Theory account for the typological generalization that so many

phonological maps are ISL?”

30

Undergeneration in Classic OT

• It is well-known that classic OT cannot generate opaque maps

(Idsardi 1998, 2000, McCarthy 2007, Buccola 2013)

(though Baković 2007, 2011 argues for a more nuanced view).

• Many, many adjustments to classic OT have been proposed.

– constraint conjunction (Smolensky), sympathy theory (McCarthy),

turbidity theory (Goldrick), output-to-output representations (Benua),

stratal OT (Kiparsky, Bermudez-Otero), candidate chains (McCarthy),

harmonic serialism (McCarthy), targeted constraints (Wilson),

contrast preservation (Lubowicz) comparative markedness (McCarthy)

serial markedness reduction (Jarosz), . . .

See McCarthy 2007, Hidden Generalizations for review,

meta-analysis, and more references to these earlier attempts.

31

Adjustments to Classic OT

- constraint conjunction (Smolensky), sympathy theory (McCarthy),

turbidity theory (Goldrick), output-to-output representations (Benua),

stratal OT (Kiparsky, Bermudez-Otero), candidate chains (McCarthy),

harmonic serialism (McCarthy), targeted constraints (Wilson), contrast

preservation (Lubowicz) comparative markedness (McCarthy) serial

markedness reduction (Jarosz), . . .

These approaches invoke different representational schemes,

constraint types and/or architectural changes to classic OT.

• The typological and learnability ramifications of these changes

is not yet well-understood in many cases.

• On the other hand, no special modifications are needed to

establish the ISL nature of the opaque maps we have studied.

32

Overgeneration in Classic OT

• It is not controversial that classic OT generates non-regular

maps with simple constraints (Frank and Satta 1998, Riggle

2004, Gerdemann and Hulden 2012, Heinz and Lai 2013)

33

OT’s greatest strength is its greatest weakness.

• The signature success of a successful OT analysis is when

complex phenomena are understood as the interaction of

simple constraints.

• But the overgeneration problem is precisely this problem:

complex—but weird—phenomena resulting from the

interaction of simple constraints (e.g. Hansson 2007 on ABC).

• As for the undergeneration problem, opaque candidates are not

optimal in classic OT.

34

In a picture

Logically Possible Maps

Regular Maps
(≈ rule-based theories)

Phonology OT

35

Conclusion

• Despite some limitations, k-ISL functions characterize well the

nature of phonological maps.

– Many phonological maps, including opaque ones, can be

expressed with them.

– k-ISL functions provide both a more expressive and

restrictive theory of typology than classic OT, which we

argue better matches the attested typlogy.

• Like classic OT, there are no intermediate representations, and

k-ISL functions can express the “homogeneity of target,

heterogeneity of process” which helps address the conspiracy

and duplication problems.

• k-ISL functions are learnable.

• Unlike OT, subregular computational properties like ISL—and

not optimization—form the core computational nature of

phonology. 36

Conclusion in a picture

Logically Possible Maps

Regular Maps
(≈ rule-based theories)

Phonology OT

ISL maps are in green

37

Questions

1. What is k? Can k be learned?

2. What about phonetics?

3. How do you learn underlying representations?

Acknowledgments

Thank You.

*Special thanks to Rémi Eyraud, Bill Idsardi, and Jim Rogers for

valuable discussion. We also thank Iman Albadr, Hyun Jin

Hwangbo, Taylor Miller, and Curt Sebastian for useful comments

and feedback.

38

Appendix

Some extra slides as needed

39

Formal Language Theory

• ISL functions naturally extend SL stringsets in Formal

Language Theory.

• For SL stringsets, well-formedness is determined by examining

windows of size k.

x

b a b b a ba aaa b... ...

Figure 2: A stringset is Strictly 2-Local if the well-formedness of

each word can be determined by checking whether each symbol x in

the word is licensed by the preceding symbol.

(McNaughton and Papert 1971, Rogers and Pullum 2011)

40

Subregular Hierarchies for Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Finite

Successor Precedence
Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

Figure 3: Subregular hierarchies of stringsets.

41

Subregular Hierarchies for Maps

MSO-definable

Regular

Left Subsequential Right Subsequential

Input

Strictly Local

Left Output

Strictly Local

Right Output

Strictly Local

Finite

Figure 4: Subregular hierarchies of maps (so far).

• We are currently generalizing other subregular classes of

stringsets to maps.

42

Formal Definition of ISL

Definition (Residual Function) Given a function f and input

string x, the residual function of f w.r.t. x is

rf (x)
def
=

{

(y, v) | (∃u)
[

f(xy) = uv ∧ u = lcp(f(xΣ∗))
]

}

where lcp(S) is the longest common prefix of all strings in S.

Definition (k-ISL Function) A function (map) f is Input

Strictly k-Local if for all input strings w, v:

if Suffk−1(w) = Suffk−1(v) then rf (w) = rf (v).

Note this definition is agrammatical !

43

Counterfeeding-on-focus

Bedouin Arabic

‘he wrote’

/katab/

i → ∅ / σ katab

a → i / σ kitab

[kitab]

This is 3-ISL.

44

Self-destructive feeding

Turkish

‘your baby’

/bebek+n/

∅ → i / C C # bebekin

k → ∅ /V +V bebein

[bebein]

This is 5-ISL.

45

Non-gratuitous feeding

Classical Arabic

‘write.MS’

/ktub/

∅ → Vi / # CCVi uktub

∅ → P / # V Puktub

[Puktub]

This is 5-ISL.

46

Cross-derivational feeding

Lithuanian

‘to strew all over’

/ap-berti/

∅ → i / C C apiberti

where Cs are homorganic stops

[−voice] → [+voice] / D apiberti

[apiberti]

This is 4-ISL.

47

Simple constraints in OT generate non-regular

maps

Ident, Dep >> *ab >> Max

anbm 7→ an, if m < n

anbm 7→ bm, if n < m

(Gerdemann and Hulden 2012)

48

