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We present a theory of phonology based on the computational properties of
input-output mappings. These properties define restrictive classes of mappings which
are learnable by a provably correct, efficient algorithm. The algorithm learns both the
active surface constraints and the repairs, including opaque mappings.

e Output-oriented theories of phonological grammars are in part motivated by
‘conspiracies’ in which the same marked structure is targeted by a range of
different processes.

@)) Fusion (Indonesian)

/moN-+pilih/ — [momilih], ‘to choose’
2) Voicing (Quechua)

/kam+pa/ — [kamba], ‘yours’

3) Denasalization (Toba Batak) (Hayes, 1986)
/maginum tuak/ — [maginup tuak], ‘drink palm wine’

e In OT a single markedness constraint (*NC) ranked with respect to a set of
faithfulness contraints accounts for this variation (Pater, 2004).

o We likewise propose a learner that separates the marked structure and the repair
and can furthermore learn opaque input-output mappings.

Both rule- and constraint-based theories of generative phonology concur on the
existence of a mapping from input (underlying) to output (surface) forms.

We model these mappings with functions with the goal of identifying
computational properties that are independent of these grammatical formalisms
(i.e., rules and constraints).

4) f(kam+pa) = [kamba]

In particular, identifying the most restrictive computational properties leads us to
a better characterization of the components of phonological grammars (Johnson,
1972; Kaplan and Kay, 1994; Mohri, 1997).

FSTs are a finite means of representing an infinite function like (4).
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Figure 1: Quechua obstruent voicing

o This FST belongs to a restricted class called Input Strictly Local (ISL C
Subsequential C Regular) (Mohri, 1997; Chandlee, 2014; Chandlee et al., 2014).

¢ Structured Onward Subsequential Function Inference Algorithm (SOSFIA)
(Jardine et al., 2014)

e Input: set of input/output pairs (data) and an output-empty subsequential FST
(eFST) (structure)

Figure 2: An output-empty FST for learning repairs with T, D, V, and N

e SOSFIA uses data input/output pairs to fill in the blank outputs of the eFST.
e The eFST defines the class of functions in the range of the learner.

Toba Batak denasalization

Indonesian fusion

Figure 3: Two FSTs in range of SOSFIA, given Figure 2

¢ In a phonological context, this determines the range of constraints for which it is
possible to learn repairs—with Figure 2, SOSFIA only learns local constraints
concerning the natural classes of vowels, nasals, and voiced and voiceless
obstruents.

e Provably learns any transduction in the class defined by eFST from positive data.

e Like ISLFLA of Chandlee (2014); Chandlee et al. (2014), but uses knowledge of
structure to be very efficient: the learner is fast (linear in size of input) and
requires a small amount of data (linear in size of eFST).

o Consistent with research showing phonological processes to be subsequential
(Chandlee and Heinz, 2012; Heinz and Lai, 2013; Payne, 2014), with the
majority in the more restrictive ISL class (Chandlee. 2014).

e Learns opaque
processes without
recourse to
intermediate
representations (see
Figure 3).

e Can learn
long-distance
phenomena if

supplied the correct
eFST Figure 4. FSTs for long-distance sibilant harmony typology

Samala Sarcee
(Applegate, 1972)  (Cook, 1978)

o The eFST represents the learner’s a priori knowledge about the target mapping it
is trying to learn.

o When the target is part of a highly-structured class of mappings (such as the ISL
ones), this a priori knowledge greatly facilitates learning.

e In the case of phonology, a process is ISL provided it can be described with a rule
that applies simultaneously in which the target and triggering context are a
contiguous substring of bounded length (Chandlee, 2014; Chandlee and Heinz,
2014).

e Like classical OT,

1) there are no intermediate representations,
2) the constraints are given a priori (here in the structure of the class), and
3) we can provide strong learnability results.
e Unlike classical OT,
1) opaque mappings are representable and learnable,

2) non-regular mappings cannot be generated
(cf. Riggle, 2004; Gerdemann and Hulden, 2012).

e One of these classes, the ISL class, is well defined (Chandlee, 2014; Chandlee
et al., 2014). Non-local classes (such as in Figure 4) are not well understood.
What non-local class(es) is (are) there? How do they relate to the ISL class?

o Given that there are multiple classes towards which human learners are biased,
they learn different kinds of mappings. How are these mappings composed into a
single, unified phonology? This is a different question than the ‘rule-ordering’
composition of, ex., Kaplan and Kay (1994).

e Given that optimization of simple constraints under particular rankings can result
in complex mappings (Riggle, 2004; Gerdemann and Hulden, 2012), it appears
unlikely that OT can account for the computational properties of phonological
mappings mentioned here, but this certainly deserves further investigation.
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