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The Talk in a Nutshell

Previously

I Efficient Learning of subregular languages and functions

I Question: How to extend these learners for multiple, shared
properties?

Today

I Describe model-theoretic characterization of strings and trees

I Describe the partial order structure of the space of
feature-based hypotheses

I Showcase a learning algorithm which exploits this structure to
generalize from data to grammars.

3



Learning Features Grammars Learning Algorithm References

The Talk in a Nutshell

Previously

I Efficient Learning of subregular languages and functions

I Question: How to extend these learners for multiple, shared
properties?

Today

I Describe model-theoretic characterization of strings and trees

I Describe the partial order structure of the space of
feature-based hypotheses

I Showcase a learning algorithm which exploits this structure to
generalize from data to grammars.

3



Learning Features Grammars Learning Algorithm References

Finite Word Models

‘word’ is synonymous with ‘structure.’

I A model of a word is a representation of it.
I A (Relational) Model contains two kinds of elements.

I A domain: a finite set of elements.
I Relations over domain elements.

I Every word has a model.

I Different words have different models.
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Finite Word Models

1. Successor (Immediate Precedence)

1

a

2

b

3

b

4

a
/ / /

2. General precedence

1

a

2

b

3

b

4

a
< < <

<

<

<
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Tree Models (Rogers 2003)

Pic courtesy of Rogers 2014 ESSLLI course.
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Subregular Hierarchy (Rogers et al 2013)
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Local Factors

Pics courtesy of Heinz and Rogers 2014 ESSLLI course.
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Locality and Projection

Theorem (Medvedev) A set of strings is Regular iff it is a
homomorphic image of a Strictly 2-Local set.

Theorem (Thatcher) A set of Σ-labeled trees is recognizable by a
finite-state tree automaton (i.e. regular) iff it is a projection of a
local set of trees.

Theorem (Thatcher) A set of strings L is the yield of a local set
of trees (equivalently, is the yield of a recognizable set of trees) iff
it is Context-Free.
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Unconventional Word Models

Successor (Immediate Precedence)

1

vowel
back
low

2

voiced
labial
stop

3

voiced
labial
stop

4

vowel
back
low

/ / /

stop
voiced
stop

/
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The Challenge of Features

Distinctive Feature Theory

“part of the heart of phonology” — Rice (2003)
“The most fudamental insight gained during the last century”

— Ladefoged & Halle (1988)
*NT →{ *nt, *np, *nk, *mt, *mp, *mk, . . .}

Wilson & Gallagher 2018

“Could there be a non-statistical model that learns by memorizing
feature sequences? The problem confronting such a model is that
any given segment sequence has may different featural
representations. Without a method for deciding which
representations are relevant for assessing wellformedness (the role
that statistics plays in Maxent) learning is doomed.”
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Example

Imagine the sequence nt is not present in a corpus. There are
many possible equivalent constraints:

*nt
*[+nasal][+coronal]

*[+consonant][+coronal,-continuant]
*[+sonorant][-sonorant]

....

How can a learner decide which of these constraints is responsible
for the absence of nt?
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Constraint Explosion (Hayes and Wilson 2008)

As we add segments and features, the amount of possible
hypotheses grows larger. How much larger?
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Some definitions

Definition (Restriction)

A = 〈DA;�,RA
1 , . . . ,R

A
n 〉 is a restriction of B = 〈DB;�,RB

1 , . . . ,R
B
n 〉 iff

DA ⊆ DB and for each m-ary relation Ri, we have
RA

i = {(x1 . . .xm) ∈ RB
i | x1, . . . ,xm ∈ DA}.

Intuition: Identifies a subset A of the domain of B and strips B of
all elements and relations which are not wholly within A.
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Some definitions

Definition (Subfactor)

Structure A is a subfactor of structure B (Av B) if A is connected,
there exists a restriction of B denoted B′, and there exists
h : A→ B′ such that for all a1, . . .am ∈ A and for all Ri in the model
signature: if h(a1), . . .h(am) ∈ B′ and Ri(a1, . . .am) holds in A then
Ri(h(a1), . . .h(am)) holds in B′. If Av B we also say that B is a
superfactor of A.

Intuition: Properties that hold of the connected structure A also
hold in a related way within B.
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Subfactor Ideals

Definition (Ideal)

A non-empty subset S of a poset 〈A,≤〉 is an ideal iff

I for every x ∈ S, y≤ x implies y ∈ S, and

I for all x,y ∈ S there is some z ∈ S s.t x≤ z and y≤ z.

Example

[-N]

[-N,+V] [-N,+C]

[-N,+V,+C]
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Grammatical Entailments

Subfactor Ideals

If s is a subfactor of t for G and G generates t,
then G generates s.

Example

[-N]

[-N,+V] [-N,+C]

[-N,+V,+C]
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Example with Singular Segments
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NLP Example
In many NLP applications, text symbols are treated independently

Alphabet = {a, . . . ,z,A, . . . ,Z} = 52 symbols
Forbidding maybe all capitals → Explosion!

If we use feature [capital], only 27! 26 letters + [capital]
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Unbounded Linguistic Dependencies
I Samala Sibilant Harmony

Sibilants must not disagree in anteriority.
(Applegate 1972)

(1) a. * hasxintilawaS

b. * haSxintilawas

c. haSxintilawaS

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

I But: Sibilants can be arbitrarily far away from each other!

$ s t a j a n o w o n w a S $∗
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Example: Samala Long-Distance *sS

Banned Structure

1

+str
+ant

2

+str
-ant

<
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Two Ways to Learn (De Raedt 2008)

Specific-to-General Induction

I Start at the most specific points (highest) in the space

I Remove all the subfactors that are present in the data.

I Collect the most general substructures remaining.

General-to-Specific Induction

I Beginning at the lowest element in the space,

I Check whether this structure is a subfactor of the input data.

I If no, extend the structure by either adding a domain element,
or a relation on an existing element and repeat.
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Learning Algorithm
Bottom-Up Relational Learner

I Prunes Hypothesis space according to ordering relation

I Provably identifies correct constraints for sequential data

I Uses data sparsity to its advantage!
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Learning Guarantees

This learner is provably guaranteed to find the responsible
constraints. With What measures?

Theorem

Given a finite positive data sample, the bottom-up learner finds a
constraint grammar G such that:

1 G is consistent, i.e. it covers the data:
I D⊆ L(G)

2 L(G) is the smallest language in L which covers the data
I for all L ∈L where D⊆ L, L(G)⊆ L

3 the largest forbidden substructure is of size k
4 G includes structures S that are restrictions of structures S′

included in other grammars G′ that also satisfy (1,2,3)
I for all S′ ∈ G′, there exists S ∈ G such that Sv S′.
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Extensions

Things To Do

I Determine the trade-off between data sparsity and time
complexity. We hypothesize sparser data should yield faster
generalization.

I Extend algorithm to learning subregular functions.
I Incorporation/Comparison to Statistical Learning

I what is the efficiency tradeoff between statistics and structure?
I MaxEnt models perform well, can they accommodate

structure?
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Conclusion

Today’s Results

I Learning is due to representations and structured hypothesis
spaces

I There is rich structure in features that partially orders the
hypothesis space

I These entailments allow bottom-up inference of collections of
constraint ideals and filters to succeed
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Thanks!

Special thanks to Jim Rogers for immensely helpful
discussions

This work was supported by NIH under grant
#R01HD87133-01
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