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This paper

1. We introduce a learning paradigm called sensor-identification in

the limit from positive data.

2. sensor is a perception module that obfuscates the learner’s

input.

3. Exact identification is eschewed for converging to a grammar

which generates a language approximating the target language.

4. Successful approximation is understood as matching up to

observation-equivalence.

5. Theoretical work exists which addresses other kinds of

imperfect presentations, oracles, and the kinds of results

obtainable with them [AL88, Ste95, FJ96, CJ01, THJ06].
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Motivation (part I)

1. A frontier in robotics is managing uncertainty.

2. Earlier work showed how to use grammatical inference to

reduce the uncertainty in environments with potentially

adversarial, but rule-governed behavior

[CFK+12, FTH13, FTHC14].

3. The robot’s capabilities, task, and environment were modeled

as finite-state transition systems and product operations

brought these elements together to form a game, allowing

optimal control strategies to be computed (if they exist).

4. However, that work assumed perfect information about the

environment.
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Motivation (part II)

1. Recent results in game theory [AVW03, CDHR06] shows that

optimal strategies can be found even for games with imperfect

information (where players only have partial information about

the state of the game).

2. The techniques in [CFK+12, FTH13, FTHC14] allow imperfect

games to be constructed from imperfect—but

consistent—models of the environment.

3. What is missing then is a way to identify such models from

imperfect observations.

4. (POMDPs and MDPs address 1-player stochastic games, not

2-player games.)
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Motivating Example
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Basic Strategy

1. Convert learning solutions in the identification in the limit

from positive data paradigm to solutions in the

sensor-identification paradigm.

2. We focus on learnable regular classes of languages, which are

well-studied [dlH10].
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Sensor models

Sensor models have been proposed [CL08, LEPDG11, FDT14]. The

definition below subsumes them all.

A sensor model is sensor = 〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉 where

• Θ and Σ are finite, ordered sets of alphabets (the former being

the sensor configurations).

• For all θ ∈ Θ, ∼θ is an equivalence relation on Σ. If σ1 ∼θ σ2

then σ1 is indistinguishable from σ2 under sensor configuration

θ. Let [σ]θ = {σ′ ∈ Σ | σ′ ∼θ σ}.

• LΘ ⊆ Θ∗ is regular and represents the permissible sequences of

sensor configurations.

We let Σ̂ denote the powerset of Σ. So [σ]θ ∈ Σ̂.
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Observations (part I)

1. A bi-word is an element of (Θ× Σ)∗.

2. Let π1 and π2 be the left and right projections of w ∈ (Θ×Σ)∗.

3. obs : (Θ× Σ)∗ → Σ̂∗ is defined inductively as follows.

• The base case: obs(λ) = {λ}.

• The inductive case:

obs(w · (θ, σ)) = obs(w) · [σ]θ

4. Thus obs(u, v) is the finite set of sequences in Σ∗ that are

indistinguishable from v given the sequence u of sensor

configurations.
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Running Example (1)

Let Θ = {θ},Σ = {0, 1, 2}, and [0]θ = {0} and [1]θ = [2]θ = {1, 2}.

Consider the biword w = (θ, 0)(θ, 1)(θ, 1)(θ, 0)(θ, 2)(θ, 2).

Then:

1. π1(w) = θθθθθθ.

2. π2(w) = 011022.

3.

obs(w) = [0]θ [1]θ [1]θ [0]θ [2]θ [2]θ

= {0}{1, 2}{1, 2}{0}{1, 2}{1, 2}
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Observations (part II)

Similarly, each u ∈ Θ∗, a sensor model inductively induces an

equivalence relation ∼u over Σ∗.

• The base case: λ ∼λ λ

• The inductive case: (∀σ1, σ2 ∈ Σ, v1, v2 ∈ Σ∗, θ ∈ Θ, u ∈ Θ∗)

[

v1 ∼u v2 ⇒ (v1σ1 ∼uθ v2σ2 ⇔ σ1 ∼θ σ2)
]

Let [v]u = {v′ ∈ Σ∗ | v ∼u v′}, which denotes equivalent strings in

Σ∗ according to u ∈ Θ∗.

Lemma 1. For all w ∈ (Θ× Σ)∗, [π2(w)]π1(w) = obs(w) is a finite

subset of Σ∗.
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Running Example (2)

Consider biwords

w1 = (θ, 0)(θ, 1)(θ, 1)(θ, 0)(θ, 2)(θ, 2)

w2 = (θ, 0)(θ, 2)(θ, 1)(θ, 0)(θ, 1)(θ, 2)

Then

1. obs(w1) = obs(w2)

2. w1 ∼θθθθθθ w2
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Facts and Observations

Facts on the Ground

Given LΘ and LΣ, the facts on the ground are

Lsystem

def
=

{

w ∈ (Θ× Σ)∗ | π1(w) ∈ LΘ and π2(w) ∈ LΣ

}

The Observations on the Ground

In contrast, the observations on the ground are:

Lsensor

def
=

{

ŵ ∈ (Θ× Σ̂)∗ | ∃w ∈ Lsystem and

π1(ŵ) = π1(w) and π2(ŵ) = obs(w)
}
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Running Example (3)

Consider the languages

LΘ = θ∗

LΣ =
{

w
∣

∣ |w|0, |w|1, |w|2 are each even
}

Then

1. w1 = (θ, 0)(θ, 1)(θ, 1)(θ, 0)(θ, 2)(θ, 2) and

w2 = (θ, 0)(θ, 2)(θ, 1)(θ, 0)(θ, 1)(θ, 2) belong to Lsystem.

2.
(

θ, {0}
)(

θ, {1, 2}
)(

θ, {1, 2}
)(

θ, {0}
)(

θ, {1, 2}
)(

θ, {1, 2}
)

is

an element of Lsensor.
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Observation-equivalence of Languages

Definition 1 (Observation-equivalence). According to model

sensor, languages L,L′ ⊆ Σ∗ are observation-equivalent if

(∀v ∈ L)(∃v′ ∈ L′)(∀u ∈ {u | (u, v) ∈ Lsystem})
[

v ∼u v′
]

and

(∀v′ ∈ L′)(∃v ∈ L)(∀u ∈ {u | (u, v′) ∈ L′

system})
[

v ∼u v′
]
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Running Example (4)

Fix LΘ = θ∗. Consider

Lt =
{

w
∣

∣ |w|0, |w|1, |w|2 are each even
}

Lh =
{

w
∣

∣ |w|0,
(

|w|1 + |w|2
)

are both even
}

Then

1. Lt is observation-equivalent to Lh.

Illustration: Let w3 = (θ, 1)(θ, 1)(θ, 1)(θ, 2)(θ, 2)(θ, 2).

Then π2(w3) = 111222 ∈ Lh but π2(w3) 6∈ Lt. Nonetheless,

obs(w3) = {1, 2}{1, 2}{1, 2}{1, 2}{1, 2}{1, 2} and there exists w4

such that π2(w4) = 112211 ∈ Lt such that obs(w4) = obs(w3).
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Sensor-identification in the limit

We consider a sensor model sensor = 〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉 and

family of languages L over Σ.

L is sensor-identifiable in the limit from positive data if there exists

an algorithm A such that for all L ∈ L, for any presentation φ of

Lsensor, there exists n ∈ N such that for all m ≥ n,

• A(φ[m]) = A(φ[n]) = G, and (convergence)

• L(G) is observation-equivalent to L. (“correctness”)
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Running Example (5)

If the target language is this one:

Lt =
{

w
∣

∣ |w|0, |w|1, |w|2 are each even
}

Then presentations draw elements from Lsensor:

not (θ, 0)(θ, 0)(θ, 1)(θ, 1)(θ, 2)(θ, 2) but
(

θ, {0}
)(

θ, {0}
)(

θ, {1, 2}
)(

θ, {1, 2}
)(

θ, {1, 2}
)(

θ, {1, 2}
)

not (θ, 1)(θ, 0)(θ, 2)(θ, 0)(θ, 1)(θ, 2) but
(

θ, {1, 2}
)(

θ, {0}
)(

θ, {1, 2}
)(

θ, {0}
)(

θ, {1, 2}
)(

θ, {1, 2}
)

. . .
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Learning regular languages

For any L, let ∼L be the Myhill-Nerode equivalence relation for L.

w ∼L w′ ⇔ {v ∈ Σ∗ | wv ∈ L} = {v ∈ Σ∗ | w′v ∈ L}

.

1. Given as input a finite sample S ⊂ Σ∗, a learning algorithm A

determines an equivalence relation ∼A over Σ∗.

2. For any regular L, for any presentation φ of L, if A(φ) outputs

∼A, which is of finite index and refines ∼L then A identifies L

in the limit from positive data.

3. If A does this for every L ∈ L then A identifies L in the limit

from positive data.
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Useful Lemma

Lemma 2. If LΘ and L are regular then ∼Lsystem
is of finite index

and a right congruence. Furthermore,

w ∼system w′ ⇔ π1(w) ∼LΘ
π1(w

′) ∧ π2(w) ∼L π2(w
′)
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Lifting congruences to Σ̂∗

A right congruence ∼ over Σ∗ induces a relation ≈ among elements

of P(Σ∗):

X ≈ Y ⇔ (∀x ∈ X)(∃y ∈ Y )(x ∼ y) ∧ (∀y ∈ Y )(∃x ∈ X)[x ∼ y]

Since elements of Σ̂∗ can be understood as subsets of Σ∗, ≈L is

meaningful on Σ̂∗.
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Lemma 3. If ∼system is of finite index and a right congruence then

so is ∼sensor. Furthermore,

w ∼sensor w
′ ⇔ π1(w) ∼LΘ π1(w

′) ∧ π2(w) ≈L π2(w
′)

1. By Lemmas 2 and 3, there is a DFA A accepting Lsensor. A

defines a class of languages Lsensor over Σ.

2. Each L ∈ Lsensor is obtained by replacing each label (which is

an element of Θ× Σ̂) of each transition in A with one element

drawn from the label’s right projection (thus the drawn

element belongs to Σ).

3. These choices can be made consistently since Σ is ordered.

Lemma 4. Any L′ ∈ Lsensor is observation-equivalent to L.
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Main result

Theorem 1. Let L be identifiable in the limit from positive data by

a state-merging algorithm A and consider

sensor = 〈Θ,Σ,∼θ (∀θ ∈ Θ), LΘ〉. There exists an algorithm B

which Sensor-identifies L in the limit from positive data.

Proof Sketch Algorithm B which takes as input a finite set

S ⊂ Lsensor is defined from A which identifies L, the equivalence

relations θ ∈ Θ on Σ, and LΘ.

B builds a PTA for S and merges prefixes according to ∼B,

defined as follows:

ŵ ∼B ŵ′ ⇔ π1(ŵ) ∼LΘ π1(ŵ
′) ∧ π2(ŵ) ≈A π2(ŵ

′).

(continued. . . )
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Proof sketch (con’t)

ŵ ∼B ŵ′ ⇔ π1(ŵ) ∼LΘ π1(ŵ
′) ∧ π2(ŵ) ≈A π2(ŵ

′).

1. Since LΘ is regular, we assume it is given in terms of its

minimal DFA and so ∼LΘ can be computed.

2. Also, ≈A can be computed since ∼A can be computed and

every obs(w) (w ∈ Lsystem) is a finite set.

3. In the limit, ∼B is of finite index because ∼A is of finite index.

4. Also in the limit, ∼B refines ∼sensor because ∼A refines ∼L in

the limit and by definition of ≈.

5. Thus this acceptor recognizes the same language as Lsensor, and

by Lemma 4, a language L′ observation-equivalent to L can be

obtained.

6. Convergence to L′ is guaranteed by drawing least elements to

find it. 23



Demonstration #1: Zero-reversible languages LZR

Lt =
{

w
∣

∣ |w|0, |w|1, |w|2 are each even
}

∈ LZR

With a sufficient sample, B outputs a DFA recognizing this

language.

Lh =
{

w
∣

∣ |w|0 and (|w|1 + |w|2) are both even
}

As mentioned, this hypothesized language Lh is

observation-equivalent to the target Lt.
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Demonstration #2: Robot motion planning
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1. The game is turn based. The robot can only move to an

adjacent room if the adjoining door is open.

2. The dynamic, adversarial environment opens and closes doors

according to a Strictly 2-Local language. For instance perhaps

the same door cannot be closed on consecutive terms.

3. The robot can only see which doors are open/closed which

adjoin to the room it is in.
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Conclusion

1. Using the aforementioned strategy, an observation-equivalent

language can be learned.

2. Techniques described in [CFK+12, FTH13, FTHC14] allow an

imperfect game to be constructed.

3. Techniques from algorithmic game theory [AVW03, CDHR06]

allow optimal strategies to be found.

4. Consequently, robots can deal with uncertainty better than

before.

Thank you.
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