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Introduction

• I will present an unsupervised batch learning algorithm for
phonotactic grammars without a priori Optimality-theoretic
(OT) constraints (Prince and Smolensky 1993, 2004).

• The premise: linguistic patterns (such as phonotactic
patterns) have properties which reflect properties of the
learner.

• In particular, the learner leads to a novel, nontrivial
hypothesis: all phonotactic patterns are
neighborhood-distinct (to be defined momentarily).
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Learning in phonology

Learning in Optimality Theory (Tesar 1995, Boersma 1997,
Tesar 1998, Tesar and Smolensky 1998, Hayes 1999, Boersma and
Hayes 2001, Lin 2002, Pater and Tessier 2003, Pater 2004, Prince
and Tesar 2004, Hayes 2004, Riggle 2004, Alderete et al. 2005,
Merchant and Tesar to appear, Wilson 2006, Riggle 2006)

Learning in Principles and Parameters (Wexler and Culicover
1980, Dresher and Kaye 1990)

Learning Phonological Rules (Gildea and Jurafsky 1996, Albright
and Hayes 2002, 2003)

Learning Phonotactics (Ellison 1994, Frisch 1996, Coleman and
Pierrehumbert 1997, Frisch et al. 2004, Albright 2006, Goldsmith
2006, Hayes and Wilson 2006)
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Overview

1. Representations of Phonotactic Grammars

2. ATR Harmony Language

3. The Learner

4. Other Results

5. The Neighborhood-distinctness Hypothesis

6. Conclusions
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Finite state machines as phonotactic
grammars

• They accept or reject words. So it meets the minimum
requirement for a phonotactic grammar– a device that at
least answers Yes or No when asked if some word is possible
(Chomsky and Halle 1968, Halle 1978).

• They can be related to finite state OT models, which allow us to
compute a phonotactic finite state acceptor (Riggle 2004), which
becomes the target grammar for the learner.

• The grammars are well-defined and can be manipulated (Hopcroft
et al. 2001). (See also Johnson (1972), Kaplan and Kay (1981,
1994), Ellison (1994), Eisner (1997), Albro (1998, 2005), Karttunen
(1998), Riggle (2004) for finite-state approaches to phonology.)
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The ATR harmony language

• ATR Harmony Language (e.g. Kalenjin (Tucker 1964, Lodge
1995). See also Baković (2000) and references therein).

• To simplify matters, assume:

1. It is CV(C) (word-initial V optional).

2. It has ten vowels.

– {i,u,e,o,a} are [+ATR]
– {I,U,E,O,A} are [-ATR]

3. It has 8 consonants {p,b,t,d,k,g,m,n}

4. Vowels are [+syllabic] and consonants are [-syllabic] and
have no value for [ATR].
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The ATR harmony language target
grammar

• There are two constraints:

1. The syllable structure phonotactic

– CV(C) syllables (word-initial V OK).

2. ATR harmony phonotactic

– All vowels in word must agree in [ATR].
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The ATR harmony language

• Vowels in each word agree in [ATR].

1. a 7. bedko 13. I 20. Ak

2. ka 8. piptapu 14. kO 21. kOn

3. puki 9. mitku 15. pAkI 22. pAtkI

4. kitepo 10. etiptup 16. kUtEpA 23. kUptEpA

5. pati 11. ikop 17. pOtO 24. pOtkO

6. atapi 12. eko 18. AtEtA 25. AtEptAp

19. IkUp 26. IkU
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Question

Q: How can a finite state acceptor be learned from a finite list of
words like badupi,bakta,. . . ?

A: – Generalize by writing smaller and smaller descriptions of
the observed forms

– guided by the notion of natural class and a structural
notion of locality (the neighborhood)
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The input with natural classes

• Partition the segmental inventory by natural class and
construct a prefix tree.

• Examples:

– Partition 1: i,u,e,o,a,I,U,E,O,A p,b,t,d,k,g,m,n

[+syl] and [-syl] divide the inventory into two
non-overlapping groups.

– Partition 2: i,u,e,o,a I,U,E,O,A p,b,t,d,k,g,m,n

[+syl,-ATR], [+syl,+ATR] and [-syl] divide the inventory
into three non-overlapping groups.

• Thus, [bikta] is read as [CVCCV] by Partition 1.
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Prefix tree construction

• A prefix is tree is built one word at a time.

• Follow an existing path in the machine as far as possible.

• When no path exists, a new one is formed.
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Building the prefix tree
using the [+syl] | [-syl] partition

0 1
C

2
V

3
C

4V

• Words processed: piku
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Building the prefix tree
using the [+syl] | [-syl] partition

0 1
C

2
V

3
C

4V

5

C

6
V

• Words processed: piku, bItkA
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Building the prefix tree
using the [+syl] | [-syl] partition

0 1
C

2
V

3
C

4V

5

C

6
V

• Words processed: piku, bItkA, mA
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The prefix tree for the ATR harmony

language
using the [+syl] | [-syl] partition

0

1V

2
C

8C

3
V

9
V

10

11
V

16
C

17
V

12 13
V

14
C

15
V

18
C

4
C C

5

V

6
C

7
V

C

• A structured representation of the input.
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Further generalization?

• The learner has made some generalizations by structuring
the input with the [syl] partition– e.g. the current grammar
can accept any CVCV word.

• However, the current grammar undergeneralizes:
it cannot accept words of four syllables like CVCVCVCVCV.

• And it overgeneralizes:
it can accept a word like bitE.
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State merging

• Correct the undergeneralization by state-merging.

• This is a process where two states are identified as equivalent
and then merged (i.e. combined).

• A key concept behind state merging is that transitions are
preserved (Hopcroft et al. 2001, Angluin 1982).

• This is one way in which generalizations may occur (cf.
Angluin (1982)).

0 1
a

2
a

3
a

0. 12.
a

a

3.
a
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The learner’s state merging criteria

• How does the learner decide whether two states are
equivalent in the prefix tree?

• Merge states if their immediate environment is the same.

• I call this environment the neighborhood. It is:

1. the set of incoming symbols to the state

2. the set of outgoing symbols to the state

3. whether it is final or not.
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Example of neighborhoods

• State p and q have the same neighborhood.

q

a c

db
p

a
c

d
a

b

• The learner merges states in the prefix tree with the same
neighborhood.
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The prefix tree for the ATR harmony

language
using the [+syl] | [-syl] partition

0

1V

2
C

8C

3
V

9
V

10

11
V

16
C

17
V

12 13
V

14
C

15
V

18
C

4
C C

5

V

6
C

7
V

C

• States 4 and 10 have the same neighborhood.

• So these states are merged.
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The result of merging states with the same

neighborhood
(after minimization)

1

2
C

V

3

C

V

0

V

C

• The machine above accepts
V,CV,CVC,VCV,CVCV,CVCVC,CVCCVC, . . .

• The learner has acquired the syllable structure phonotactic.

• Note there is still overgeneralization because the ATR vowel
harmony constraint has not been learned (e.g. bitE).
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Interim summary of learner

1. Build a prefix tree using some partition by natural class of
the segments.

2. Merge states in this machine that have the same
neighborhood.
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The learner

(Now the learner corrects the overgeneralization, e.g. bitE)

3. Repeat steps 1-2 with natural classes that partition more
finely the segmental inventory.

4. Compare this machine to previously acquired ones, and
factor out redundancy by checking for distributional
dependencies.
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The prefix tree for the ATR harmony

language
using the [+syl,+ATR] | [+syl,-ATR] | [-syl] partition

0

2[+ATR]

1
[-ATR]

3

[-syl]

18[-syl]

9
[-syl]

13
[+ATR]

4

[-ATR]

10
[-ATR]

11
[-syl]

12[-ATR]

33
[-syl]

34[-ATR]

14
[-syl] 15[+ATR]

22

[-syl]
16

[-syl]

23
[+ATR]

17
[+ATR]

19[+ATR]

20[-syl]

21[+ATR]

26
[-syl]

27
[+ATR]

24
[-syl]

25
[+ATR]

28
[-syl]

29 30
[-ATR]

31
[-syl]

5

[-syl]

32
[-ATR]

35
[-syl]

[-syl]

6

[-ATR]

7
[-syl]

8
[-ATR]
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The result of merging states with the same

neighborhood
(after minimization)

0

4
[+ATR]

1
[-ATR]

7
[-syl]

5
[-syl]

2
[-syl]

[+ATR]

[-ATR]

[-ATR]
3

[-syl]

[-ATR]

[+ATR]
6

[-syl]

[+ATR]

• The learner has the right language, but redundant syllable
structure.
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Checking for distributional dependencies

1

2
C

V

3

C

V

0

V

C

1. Check to see if the distribution of the [ATR] features
depends on the distribution of consonants [-syl].

2. Ask if the vocalic paths in the syllable structure machine is
traversed by both [+ATR] and [-ATR] vowels.
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Checking for distributional dependencies

1. How does the learner check if [ATR] is independent of [-syl]?

1. Remove [+ATR] vowel transitions from the machine,
replace the [-ATR] labels with [+syl] labels, and check
whether the resulting acceptor accepts the same language
as the syllable structure acceptor.

2. Do the same with the [-ATR] vowels.

3. If it is in both instances then Yes. Otherwise, No.
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Checking for distributional dependencies

2. If Yes– the distribution of ATR is independent of [-syl]–
merge states which are connected by transitions bearing the
[-syl] (C) label.

3. If No– the distribution of [ATR] depends on the distribution
of [-syl]– then make two machines: one by merging states
connected by transitions bearing the [+ATR] label, and one
by those bearing the [-ATR] label.
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Checking for distributional dependencies

0

4
[+ATR]

1
[-ATR]

7
[-syl]

5
[-syl]

2
[-syl]

[+ATR]

[-ATR]

[-ATR]
3

[-syl]

[-ATR]

[+ATR]
6

[-syl]

[+ATR]

• Since the distribution of [ATR] is independent of the
distribution of [-syl], merge states connected by [-syl]
transitions.
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Checking for distributional dependencies

0

4
[+ATR]

1
[-ATR]

7
[-syl]

5
[-syl]

2
[-syl]

[+ATR]

[-ATR]

[-ATR]
3

[-syl]

[-ATR]

[+ATR]
6

[-syl]

[+ATR]

• Since the distribution of [ATR] is independent of the
distribution of [-syl], merge states connected by [-syl]
transitions.
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Merging states one more time

0-7

[-syl] 4-5-6
[+ATR]

1-2-3

[-ATR]

[-syl]
[+ATR]

[-syl]
[-ATR]

• The learner has acquired the vowel harmony constraint.
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What the algorithm returns

• The algorithm incrementally returns individual finite state
machines, each which encodes some regularity about the
language.

– Each individual machine is a phonotactic pattern.

– Each individual machine is a surface-true constraint.

• A phonotactic grammar is the set of these machines, all of
which must be satisfied simultaneously for a word to be
acceptable (i.e. the intersection of all the machines is the
actual grammar).

Learning 28



Summary of the learner

1. Build a prefix tree of the sample under some partition.

2. Merge states with the same neighborhood.

3. Compare this machine to one acquired earlier under some
coarser partition by natural class.

(a) If the refined blocks in the partition are independent of
the static blocks, merge states that are adjoined by static
blocks.

(b) If not, make two machines by merging states adjoined by
the refined blocks.

4. Repeat the process.
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Other results

• The above algorithm successfully learns the other languages
considered in this study (see appendix).

1. ATR Harmony Language (e.g. Kalenjin (Tucker 1964, Lodge
1995). See also Baković (2000) and references therein).

2. ATR Contrastive Language (e.g. Akan (Stewart 1967,
Ladefoged and Maddieson 1996))

– The [ATR] feature is freely distributed.

3. ATR Allophony Language (e.g. Javanese (Archangeli 1995)).

– -ATR vowels in closed syllables
– +ATR vowels elsewhere

• A variant of this algorithm learns all the quantity-insensitive stress
patterns in Gordon’s (2002) typology (Heinz, to appear).
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The Neighborhood-distinct Hypothesis:

All phonotactic patterns are neighborhood-distinct.

Conclusions 31



Neighborhood-distinctness

• A language (regular set) is neighborhood-distinct iff there is
an acceptor for the language such that each state has its own
unique neighborhood.

• Every phonotactic pattern considered to date is
neighborhood-distinct.
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The ATR harmony phonotactic

0

-syl] 1[+ATR]

2

[-ATR]

[-syl]
[+ATR]

[-syl]
[-ATR]

• Neighborhood of State 0

– Final?=YES

– Incoming Symbols = {[-syl]}
– Outgoing Symbols = {[+syl,+ATR],[+syl,-ATR]}
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The ATR harmony phonotactic

0

-syl] 1[+ATR]

2

[-ATR]

[-syl]
[+ATR]

[-syl]
[-ATR]

• Neighborhood of State 1

– Final?=YES

– Incoming Symbols = {[-syl],[+syl,+ATR]}
– Outgoing Symbols = {[+syl,+ATR],[-syl]}
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The ATR harmony phonotactic

0

-syl] 1[+ATR]

2

[-ATR]

[-syl]
[+ATR]

[-syl]
[-ATR]

• Neighborhood of State 2

– Final?=YES

– Incoming Symbols = {[-syl],[+syl,-ATR]}
– Outgoing Symbols = {[+syl,-ATR],[-syl]}
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Learning Neighborhood-distinctness

• Because the learner merges states with the same
neighborhood, it learns neighborhood-distinct patterns.
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Example of a non-neighborhood-distinct
language: a∗bbba∗

0

a

1
b

2
b

3
b

a

• It is not possible to construct an acceptor for a language
which requires words have exactly three identical adjacent
elements. . .

• because there will always be two states with the same
neighborhoods.
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Phonology cannot count higher than two

• “Consider first the role of counting in grammar. How long
may a count run? General considerations of locality,
. . . suggest that the answer is probably ‘up to two’: a rule
may fix on one specified element and examine a structurally
adjacent element and no other.” (McCarthy and Prince
1986:1)

• “Normally, a phonological rule does not count past two . . . ”
(Kenstowicz 1994:372)

• “. . . the well-established generalization that linguistic rules
do not count beyond two . . . ” (Kenstowicz 1994:597)
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Neighborhood-distinctness

• It is an abstract notion of locality.

• It is novel.

• It serves as a strategy for learning by limiting the kinds of
generalizations that can be made (e.g. cannot distinguish
‘three’ from ‘more than two’)

• It has global ramifications:

– It places real limits on machine size: only finitely many
languages are neighborhood-distinct.
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Conclusions

1. A simple unsupervised batch learning algorithm was
presented that succeeds in three case studies.

2. It generalizes successfully using only two notions, natural
class and an abstract local notion of environment, the
neighborhood.

3. Phonotactic patterns are neighborhood-distinct.
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Outstanding issues

1. Efficiency:

• There may be too many partitions by natural class. How
can the learner search this space to find the ‘right’ ones?

2. The algorithm only learns neighborhood-distinct languages,
but not the class of neighborhood-distinct languages.
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Future work

1. Are all phonotactic patterns neighborhood-distinct? I.e. how
will these results scale up to other phonotactic patterns and
real language data?

(a) Everyone gets simple cases, but are complex phonotactic
patterns learnable by this algorithm?

2. What kinds of patterns can the algorithm learn that are not
considered possible? Can they be eliminated by other
factors?

3. Adapting the algorithm to handle noise (Angluin and Laird
1988).
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Thank You.

• Special thanks to Bruce Hayes, Ed Stabler, Colin Wilson and Kie Zuraw

for insightful comments and suggestions related to this material. I also

thank Greg Kobele, Andy Martin, Katya Pertsova, Shabnam Shademan,

Molly Shilman, and Sarah VanWagnenen for helpful discussion.

Conclusions 43



Appendix: Languages in the study

• The languages in the study are all pseudo languages, based
on real counterparts.

1. ATR Harmony Language (e.g. Kalenjin (Tucker 1964,
Lodge 1995). See also Baković (2000) and references
therein).

2. ATR Contrastive (everywhere) Language (e.g. Akan
(Stewart 1967, Ladefoged and Maddieson 1996))

3. ATR Allophony Language (e.g. Javanese (Archangeli
1995)).

– -ATR vowels in closed syllables
– +ATR vowels elsewhere
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Assumptions

• To simplify matters, assume for all languages:

1. They are CV(C) (word-initial V optional).

2. They have ten vowels.

– {i,u,e,o,a} are [+ATR]
– {I,U,E,O,A} are [-ATR]

3. They have 8 consonants {p,b,t,d,k,g,m,n}

4. Vowels are [+syllabic] and consonants are [-syllabic] and
have no value for [ATR].
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Pseudo-Akan
Target Grammar

Syllable Structure Phonotactic ⇓

1

2
C

V

3

C

V

0

V

C

0

[+syl,+ATR]

[+syl,-ATR]

[-syl]

⇐ Free [ATR] Distribution Phonotactic
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Pseudo-Akan
Learning Results

1. i 8. montan 15. Ak 22. mitIpa

2. ka 9. I 16. IkU 23. AtetA

3. eko 10. kO 17. atEptAp 24. pAki

4. puki 11. kOn 18. dAkti 25. ikOp

5. atapi 12. IkUp 19. bedkO 26. etIptUp

6. kitepo 13. pAtkI 20. piptApu 27. potO

7. bitki 14. pOtkO 21. mUtku 28. kUtepA

29. kUptEpA

• With the words in the above table, the learner successfully
identifies the target grammar.
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Pseudo-Javanese
Target Grammar

1

2
C

V

3

C

V

0

V

C
⇐ Syllable Structure Phonotactic

0

[-syl]

+syl,-ATR]

1
[+syl,+ATR]

[-syl]

⇑ [+ATR] vowel must be followed by a consonant.
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Pseudo-Javanese
Learning Results

1. a 8. eko 15. Ak

2. i 9. ko 16. kOn

3. ka 10. paki 17. pAtki

4. puki 11. kutepa 18. kUptapa

5. kitepo 12. poto 19. pOtko

6. pati 13. ateta 20. atEptAp

7. atapi 14. iku 21. ikUp

• With the words in the above table, the learner successfully
identifies the target grammar.
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Pseudo-Javanese
Learning Results

• The learner also learns another phonotactic for this grammar
(shown below).

• This phonotactic says that a CC sequence and [-ATR]C
sequence must be followed by a vowel.

0

+syl,+ATR]

1

[+syl,-ATR]

[-syl]

[-syl]

Appendix 50



References

Albright, Adam. 2006. Gradient Phonotactic effects: lexical? grammatical?
both? neither? Talk handout from the 80th Annual LSA Meeting, Albu-
querque, NM.

Albright, Adam and Bruce Hayes. 2002. Modeling English past tense intuitions
with minimal generalization. SIGPHON 6: Proceedings of the Sixth Meeting
of the ACL Special Interest Group in Computational Phonology :58–69.

Albright, Adam and Bruce Hayes. 2003. Rules vs. Analogy in English Past
Tenses: A Computational/Experimental Study. Cognition 90:119–161.

Albro, Dan. 1998. Evaluation, implementation, and extension of Primitive
Optimality Theory. Master’s thesis, University of California, Los Angeles.

Albro, Dan. 2005. A Large-Scale, LPM-OT Analysis of Malagasy. Ph.D. thesis,
University of California, Los Angeles.

Alderete, John, Adrian Brasoveanua, Nazarre Merchant, Alan Prince, and
Bruce Tesar. 2005. Contrast analysis aids in the learning of phonological
underlying forms. In The Proceedings of WCCFL 24 . pages 34–42.

REFERENCES 50



Angluin, Dana. 1982. Inference of Reversible Languages. Journal for the
Association of Computing Machinery 29(3):741–765.

Angluin, Dana and Philip Laird. 1988. Learning from Noisy Examples. Ma-
chine Learning 2:343–370.

Archangeli, Diana. 1995. The Grounding Hypothesis and Javanese Vowels. In
Papers from the Fifth Annual Meeting of the Southeast Asian Linguistics
Society (SEALSV), edited by S. Chelliah and W. de Reuse. pages 1–19.
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