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Theories of Phonology

F1 × F2 × . . . × Fn = P

2 / 45



Theories of Phonology - The Factors

F1 × F2 × . . . × Fn = P

• The factors are the individual generalizations.

• In SPE, these are rules.

• In OT, HG, and HS, these are markedness and faithfulness
constraints.

(Chomsky and Halle 1968, Prince and Smolenksy 1993/2004,

Legendre et al. 1990, Pater et al. 2007, McCarthy 2000, 2006 et seq.)
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Theories of Phonology - The Interaction

F1 × F2 × . . . × Fn = P

SPE The output of one rule becomes the input to the next.
(transducer composition)

OT Optimization over ranked constraints.
(transducer lenient composition, or shortest path)

HG Optimization over weighted constraints.
(shortest path, linear programming)

HS Repeated incremental changes w/OT optimization until
convergence. (no computational characterization yet)

(Johnson 1992, Kaplan and Kay 1994, Frank and Satta 1998,

Karttunen 1998, Riggle 2004, Pater et al. 2007, Riggle, submitted)
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Theories of Phonology - The Whole Phonology

F1F1 × F2 × . . . × Fn = P

• The whole phonology is an input/output mapping given by
the product of the factors.

• SPE, OT, HG, and HS grammars map underlying forms to
surface forms.

• What kind of mapping is this?
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Questions for theories of phonology

1. What is the nature of whole phonologies?

2. What is the nature of the individual generalizations?

- I.e. what is the theory of possible rules?
- Or what is the theory of Con?

3. How can these things be learned?
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What is the nature of whole phonologies and individual
generalizations?

Recursively Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

Figure: The Chomsky hierarchy classifies logically possible patterns.
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Hypothesis: Phonology is Subregular.

F1 × F2 × . . . × Fn = P

1. The individual factors and the whole phonologies cannot be
any regular pattern. Instead they belong to well-defined
subregular regions.

2. We ought characterize necessary and sufficient properties of
these regions.

3. We ought to aim to prove that these regions are feasibly
learnable (under various definitions).

4. We ought to investigate the empirical consequences.
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What is at stake if phonology is subregular?

F1 × F2 × . . . × Fn = P

1. We obtain more precise characterizations of possible
phonological patterns.

• We can decide whether some logically possible pattern is a
possible phonological one.

• We can cross-classify to help understand why this is so. For
example, we can formulate more precise theories which
ground phonology in (articulatory or perceptual) phonetics.
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What is at stake if phonology is subregular?

F1 × F2 × . . . × Fn = P

2. The computational complexity issues may resolve.

• The complexity problems noticed by Barton et al., Eisner
and Idsardi stem from the the known fact that the
intersection/composition of arbitrarily-many arbitrary
regular sets/relations is NP-Hard.

• But if actual phonological patterns belong to more
“well-behaved” subregular regions, these issues may
disappear.

(Barton et. al 1997, Eisner 1997, Idsardi 2006, Heinz et al. 2007)
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What is at stake if phonology is subregular?

Recursively Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

3. The learning problems
may become easier to
solve.

• No superfinite class of languages is identifiable in the limit from
positive data (or with probability p > 2/3)

• The finite languages are not PAC-learnable.

• While the class of r.e. languages and stochastic languages is

identifiable from positive data from computable classes of texts,

• these learners are not feasible, and
• the learning criteria is much weaker than these others

• But many non-superfinite classes of languages are feasibly learnable
and include patterns found in natural language (proofs are often
constructive)

(Gold 1967, Horning 1969, Angluin 1980, 1982, 1988, Osherson et al. 1984, Wiehagen et. al
1984, Pitt 1985, Valiant 1984, Blum et. al 1989, Garcia et al. 1990, Muggleton 1990, Jain et.
al 1999, Kearns and Vazirani 1994, Yokomori 2003, Clark and Thollard 2004, Oates et al. 2006,
Niyogi 2006, Chater and Vitanýı 2007, Clark and Eryaud 2007, Heinz 2008, 2010, Yoshinaka
2008, Case et al. 2009, de la Higuera 2010) 11 / 45
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What is at stake if phonology is subregular?

Recursively Enumerable

Context-
Sensitive

Mildly

Context-
Sensitive

Context-FreeRegularFinite

4. The learning solutions can help explain the limits of
phonological variation.
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Regular Patterns and Markedness Constraints

Phonological Patterns Nonphonological Patterns

Words do not have NT strings. Words do not have 3 NT
strings (but 2 is OK).

Words must have a vowel (or a
syllable).

Words must have an even
number of vowels (or conso-
nants, or syllables, . . . ).

If a word has sounds with [F]
then they must agree with re-
spect to [F]

If the first and last sounds in a
word have [F] then they must
agree with respect to [F].

Words have exactly one pri-
mary stress.

These six arbitrary words
{w1, w2, w3, w4, w5, w6} are
well-formed.

(Pater 1996, Dixon and Aikhenvald 2002, Baković 2000, Rose and Walker

2004, Liberman and Prince 1977)
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Dual subregular hierarchies (simplified)

cont iguous  subsequences subsequences

Locally Testable

Locally Testable in the Strict Sense
 = Strictly Local

Piecewise Testable

Piecewise Testable in the Strict  Sense
 = Strict ly Piecewise

Regular

NonCount ing = Star-Free

• Each class has independent, equivalent characterizations from
formal language theory, group theory, logic, and automata
theory.

(McNaughton and Papert 1971, Simon 1975, Rogers and Pullum 2007,

Rogers et. al 2010)
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Dual subregular hierarchies (simplified)

cont iguous  subsequences subsequences

Locally Testable

Locally Testable in the Strict Sense
 = Strictly Local

Piecewise Testable

Piecewise Testable in the Strict  Sense
 = Strict ly Piecewise

Regular

NonCount ing = Star-Free

Hypotheses:

• Segmental patterns are largely Strictly Local or Strictly
Piecewise.

• Stress patterns are more complex (NonCounting), but have
simpler factors.

(McNaughton and Papert 1971, Simon 1975, Rogers and Pullum 2007,

Rogers et. al 2010)
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Strictly k-Local: Adjacency—Substrings

⋊ C V C V ⋉

Definition
u is a factor of w iff w = xuy for some x, y ∈ Σ∗.

u is a k-factor of w iff u is a factor and |u| = k.

Fk(w) =

{

{v ∈ Σk : v is a k-factor of w} when |w| ≥ k
{w} otherwise

Example

1. F2(⋊CV CV⋉) = {⋊C,CV, V C, V⋉}

2. F8(⋊CV CV⋉) = {⋊CV CV⋉}
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Strictly k-Local Grammars and Languages (simplified)

Definition
A strictly k-local grammar is the set of permissible k-factors.

G ⊆ Fk({⋊} · Σ∗ · {⋉})

The strictly k-local language of G is all and only those words
whose k-factors belong to G.

L(G) = {w : Fk(⋊w⋉) ⊆ G}

The strictly k-local languages (SLk) are those languages that
can be described by all such grammars G.

Example

G = {⋊C, CV, V C, V⋉}

L(G) = {⋊CV⋉, ⋊CV CV⋉, ⋊CV CV CV⋉, . . .}
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Examples: Strictly K-Local Markedness Constraints

F1 × F2 × . . . × Fn = P

1. *a is SL1.

2. *[F] is SL1.

3. *NT is SL2.

4. *σ́⋉ is SL2.

5. *CCC is SL3.
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Examples: Stress Patterns

F1 × F2 × . . . × Fn = P

Edlefsen et. al (2008) classify the 109 patterns in the Stress
Pattern Database (Heinz 2007,2009).

9 are SL2 Abun West, Afrikans, Maranungku, Cambodian, . . .
44 are SL3 Alawa, Arabic (Bani-Hassan), . . .
24 are SL4 Arabic (Cairene), . . .
3 are SL5 Asheninca, Bhojpuri, Hindi (Fairbanks)
1 is SL6 Icua Tupi
28 are not SL Amele, Bhojpuri (Shukla Tiwari),

Arabic Classical, Hindi (Keldar), Yidin, . . .

72% are SLk for k ≤ 6. 49% are SL3.
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Learnability: Identification in the limit from positive
data of SLk languages

Example

Consider the SL2 Language which forbids ba. I.e.
L = {⋊}·Σ∗\Σ∗baΣ∗· {⋉}

time Word w F2(w) Grammar G Language of G

-1 ∅ ∅

0 aaaa {⋊a, aa, a⋉} {⋊a, aa, a⋉} aa∗

1 aab {⋊a, aa, ab, b⋉} {⋊a, aa, a⋉,ab,
b⋉ }

aa∗ ∪ aa∗b

2 ǫ {⋊⋉} {⋊a, aa, a⋉, ab,
b⋉,⋊⋉}

a∗ ∪ a∗b

3 bbbbb {⋊b, bb, b⋉} {⋊a, aa, a⋉, ab,
b⋉⋊⋉,⋊b, bb}

Σ∗\Σ∗baΣ∗

4 abbb {⋊a, ab, bb, b⋉} {⋊a, aa, a⋉, ab,
b⋉⋊⋉,⋊b, bb}

Σ∗\Σ∗baΣ∗

. . .
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Cognitive Interpretation of SL

• Any cognitive mechanism that can distinguish member
strings from non-members of an SLk stringset must be
sensitive, at least, to the length k blocks of events that
occur in the presentation of the string.

• Any cognitive mechanism that is sensitive only to the
length k blocks of events in the presentation of a string will
be able to recognize only SLk stringsets.

Rogers and Pullum 2007, to appear
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What is not SLk

For any k:

1. Unbounded Stress Patterns (because the primary stress
may occur arbitrarily far from a word edge)

2. Long-distance Harmony patterns (because arbitrarily long
material may occur between segments)
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Strictly Piecewise

S o t k o S

Definition
u is a subsequence of w iff u = a0a1 · · · an and
w ∈ Σ∗a0Σ

∗a1Σ
∗ · · ·Σ∗anΣ

∗.

u is a k-long subsequence of w iff u is a subsequence of w and
|u| = k.

P≤k(w) = {v ∈ Σ≤k : v is (≤ k)-long subsequence of w}

Example

1. P≤2(SotkoS) =
{ǫ,S,o,t,k,o,s,So,St,Sk,SS,ot,ok,oo,oS,tk,to,tS,ko,kS}
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Strictly k-Piecewise Grammars and Languages

Definition
A strictly k-piecewise grammar is the set of permissible
subsequences up to length k.

G ⊆ Σ≤k

The strictly k-piecewise language of G is all and only those
words whose subsequences up to length k belong to G.

L(G) = {w : P≤k(w) ⊆ G}

The strictly k-local languages (SLk) are those languages that
can be described by all such grammars G.

Example

1. G = Σ≤2/{sS} and so L(G) = Σ∗/Σ∗sΣ∗SΣ∗

(Rogers et al. 2010, Heinz 2007, 2010, in press)24 / 45



Examples: What is and is not SPk

SP2 includes

1. Asymmetric consonantal Harmony
• Sibilant Harmony in Sarcee (Cook 1978a,b, 1984)
• *s. . . S

2. Symmetric consonantal Harmony
• Sibilant Harmony in Navajo (Sapir and Hojier 1967,

Fountain 1998)
• *S. . . s and *s. . . S

3. Vowel harmony patterns with transparent vowels
• Finnish, Korean sound-symbolic harmony, . . .

For any k, these are not SPk:

1. Consonantal harmony with blocking (unattested)
(Hansson 2001, Rose and Walker 2004)

2. Vowel harmony with blocking, i.e. opaque vowels (attested)
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Learnability: Identification in the limit from positive
data of SPk

Let L = Σ∗\Σ∗bΣ∗bΣ∗

time Word w P2(w) Grammar G Language of G

-1 ∅ ∅

0 aaaa {ǫ, a, aa} {ǫ, a, aa} a∗

1 aab {ǫ, a, b, aa, ab} {ǫ, a, aa, b, ab} a∗ ∪ a∗b

2 baa {ǫ, a, b, aa, ba} {ǫ, a, b, aa, ab ba} Σ∗\(Σ∗bΣ∗bΣ∗)

3 aba {ǫ, a, b, ab, ba} {ǫ, a, b, aa, ab, ba} Σ∗\(Σ∗bΣ∗bΣ∗)

. . .
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data of SPk

Let L = Σ∗\Σ∗bΣ∗bΣ∗
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Cognitive Interpretation of SP

• Any cognitive mechanism that can distinguish member
strings from non-members of an SPk stringset must be
sensitive, at least, to the length k (not necessarily
consecutive) sequences of events that occur in the
presentation of the string.

• Any cognitive mechanism that is sensitive only to the
length k sequences of events in the presentation of a string
will be able to recognize only SPk stringsets.

Rogers and Pullum 2007, to appear
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Characterizing those learners: Lattice-structured
hypothesis spaces

Each node represents a block
in the partition of Σ∗ given
by f (E.g. Fk or Pk).

Each node N also represents
a language. The language is
all words in all blocks of all
nodes dominated by N .

Each node also represents a
grammar - a finite description
of this potentially
infinitely-sized language.

Heinz, Kasprzik, and Kötzing, submitted
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Characterizing those learners: Lattice-structured
hypothesis spaces

Learners can make inferences
in two ways:

1. If a node is part of the
language, everything
below it is too.

2. If two nodes are part of
the language, the least
upper bound is too.

Assume the starting point is
the least element in the
example.

Heinz, Kasprzik, and Kötzing, submitted
28 / 45



Characterizing those learners: Lattice-structured
hypothesis spaces

Suppose the learner observes
w1 and f(w1) maps to the
node shown.
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words in blocks below that
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Characterizing those learners: Lattice-structured
hypothesis spaces

And the learner can infer
words in the least upper
bound are also in the
language.

Heinz, Kasprzik, and Kötzing, submitted
28 / 45



Locally Testable and Piecewise Testable

cont iguous  subsequences subsequences

Locally Testable

Locally Testable in the Strict Sense
 = Strictly Local

Piecewise Testable

Piecewise Testable in the Strict  Sense
 = Strict ly Piecewise

Regular

NonCount ing = Star-Free

• The Locally k-Testable (LTk) class of languages is the smallest
class which closes SLk under boolean operations.

(McNaughton and Papert 1971)

• The Piecewise k-Testable (PTk) class of languages is the smallest
class which closes SPk under boolean operations.

(Simon 1975, Rogers et al. 2009)

• For fixed k, LTk and PTk are identifiable in the limit from
positive data, but not feasibly.

(Garcia and Ruiz 2004, Heinz 2010)
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Examples: What is and what is not LT or PT

1. Consonant Harmony (Heinz, in press)
• Symmetric consonantal harmony patterns are LT1.
• Asymmetric consonantal harmony patterns are not LTk for

any k.

2. Stress Patterns:
• Culminativity is PT2.
• The stress pattern of Yidin is the intersection of PT2 and

SL2 (Rogers, p.c.)
• Factoring Culminativity out of unbounded stress patterns

leaves you with SP2 patterns (Heinz, in progress)
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NonCounting (also known as Star-Free)

Definition
A language L is NonCounting iff there exists some n > 0 such
that for all strings u, v, w ∈ Σ∗, it is the case that if uvnw
belongs to L then uvn+iw,for all i ≥ 1, belongs to L as well.
(McNaughton and Papert 1971)

Example

1. All stress patterns in the Stress Pattern Database (Heinz
2007, 2009) are NonCounting (Edlefsen et al. 2008, Rogers,
p.c.).

2. Patterns like “has an even number of vowels, consononants,
syllables, etc.” are not noncounting.
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Learning Stochastic Strictly Piecewise Patterns

• Heinz and Rogers (2010) define a family of stochastic
languages whose categorical counterpart is the strictly
piecewise languages.

• For the k = 2 case, the probability of the next symbol in a
sequence is determined by a function of the probability of
this symbol given each preceding symbol.

• For given k, they prove this family yields a family of
well-defined probability distributions with on the order of
|Σ|k parameters.

• They show how to find the maximum likelihood estimates
of these parameters from a set of positive data.
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Samala (Chumash) Corpus

• 4800 words drawn from Applegate 2007, generously
provided in electronic form by Applegate (p.c).

35 Consonants
labial coronal a.palatal velar uvular glottal

stop p pP ph t tP th k kP kh q qP qh P

affricates ⁀ts ⁀tsP ⁀tsh
>
tS

>
tSP

>
tSh

fricatives s sP sh S SP Sh x xP h

nasal m n nP

lateral l lP

approx. w y

6 Vowels
i 1 u
e o

a
(Applegate 1972, 2007)
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Samala: results of SP2 estimation

x
P (x | {y} <) >

tS S
>
ts s

>
tS 0.0313 0.0455 0. 0.0006

y S 0.0353 0.0671 0. 0.0009
>
ts 0. 0.0009 0.0113 0.0218
s 0.0002 0.0011 0.0051 0.0335

(Collapsing laryngeal distinctions)
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Finnish: Corpus

• 44,040 words from Goldsmith and Riggle (to appear)

19 Consonants
lab. lab.dental cor. pal. velar uvular glottal

stop p b t d c k g q
fricatives f v s x h
nasal m n
lateral l
rhotic r
approx. w j

8 Vowels
-back +back

i y u
e oe o
ae a

Back vowels and front vowels don’t
mix (except for [i,e], which are trans-
parent).

35 / 45



Results of SP2 Estimation

b
P (b | {c} <)

i e y oe ae u o a

i 0.092 0.08 0.012 0.006 0.026 0.033 0.033 0.099
e 0.094 0.073 0.014 0.005 0.032 0.035 0.028 0.082
y 0.092 0.071 0.047 0.03 0.066 0.015 0.017 0.039

c oe 0.097 0.067 0.029 0.014 0.053 0.023 0.026 0.059
ae 0.095 0.077 0.038 0.015 0.09 0.015 0.015 0.036
u 0.086 0.07 0.006 0.002 0.007 0.059 0.045 0.12
o 0.111 0.071 0.005 0.002 0.007 0.047 0.034 0.121
a 0.099 0.063 0.005 0.002 0.007 0.049 0.035 0.134
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Whither tiers?

Q: Since long-distance patterns are learnable by tier-based
n-gram models, do we need SP distributions?
(Goldsmith 1976, Clements 1985, Sagey 1986, Mester 1988,Hayes and Wilson 2008,

Goldsmith and Xanthos 2009, Goldsmith and Riggle to appear)

A: The models make different predictions, making it a fruitful
area for future research.

tier-based SL (n-gram) models SP models

Predicts unattested blocking ef-
fects in consonantal harmony

Predicts absence of blocking in
consonantal harmony

Captures blocking effects in
vowel harmony

Unable to capture blocking ef-
fects in vowel harmony

Only able to describe patterns
with transparent vowels if they
are “off” the tier

Able to describe patterns with
transparent vowels

Requires independent theory of
tiers

Does not require independent
theory of tiers

Requires independent theory of
similarity

Requires independent theory of
similarity
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Vowel harmony in sound-symbolic morphemes in
Korean

(joint work with Darrell Larsen)

front front mid back
rounded

high i ü 1 u ‘dark’
mid e ö @ o
low æ a ‘light’

• Vowels [i] and [1] are ‘dark’ in initial syllables, transparent in
noninitial syllables (Kim-Renaud 1976, Cho 1994, inter alia)

• Extracted 4,006 sound-symbolic morphemes from Korea’s
National Institute of the Korean Language’s ‘The Great
Standard Korean Dictionary’
http://www.hangeul.pe.kr/symbol/words.htm

• Only unique morphemes of 2 or 3 syllables were selected from
reduplicating examples in the corpus for ease of extraction.
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Goal of the study

• Compare tier-based SL2 bigram models to a tier-based SP2

models.

• These models have the same number of parameters!

• The parameters identify different kinds of phonological
relationships.

SL2

L N L

SP2

L N L
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Bigram Model (Strictly 2-Local distributions)

• A trained probabilistic bigram model over the vowel tier
(Jurafsky & Martin, 2008) fails to make the right
distinctions:

Word Prob(word)

LNL 0.003611
DND 0.006353

LND 0.007325
DNL 0.003132
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Learning Strictly 2-Piecewise Distributions

• A trained probabilistic SP2 learner (Heinz & Rogers 2010)
learns the transparency of noninitial N vowels, and to some
extent, the behavior of initial-syllable N vowels.

Word Prob(word)

LNL 0.002893
DND 0.004357

LND 0.000142
DNL 0.000255
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Quantitative Comparison
Using the trained SP2 and SL2 probability distributions, we
calculated the expected number of each word type.

word type actual SP2 SL2

DD 455 502.5 473.4
DL 47 56.5 10.8
DN 637 563.6 237.5
. . .

Then we computed the correlation (Spearman’s r) between the
expected number and the actual number:

SP2 SL2 # of words

All 0.95 0.55 4006

Disyllabic words 0.97 0.87 3020

Trisyllabic words 0.47 0.31 986

SL2 distributions and SP2 distributions have the same number
of parameters!
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Local Summary

1. These results are evidence that SPk constraints are present
and active insofar as they extract the right generalization.

2. These results do not mean we don’t need SLk constraints!
(or SL-based learners)

3. SPk patterns don’t capture long-distance dissimilation or
opaque vowels in vowel harmony patterns, not to mention
any kind of local dependency!

4. The view of phonological learning espoused is here is
modular. Different kinds of patterns have different kinds
of learners—both SL-type and SP-type learners are needed.
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Conclusion: Future Work

1. Further restrict the SLk and SPk′ classes with phonological
features

(Hayes and Wilson 2008, Albright 2009, Heinz and Koirala 2010)

2. Learning non-surface true-generalizations.
(Heinz and Idsardi in prep)

3. Define new subregular classes relevant to phonology.
• E.g. while Culminativity is PT2, it’s unclear that PT2 is

the natural class of patterns that we are looking for.
• What subregular class describes blocking patterns?

(characterizing tier-based SLk classes)

4. Develop subregular hierarchies and subregular classes of
regular relations and classify patterns of alternation

(cf. Tesar 2009, output-directed maps)
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Conclusion: Phonology is Subregular.

F1 × F2 × . . . × Fn = P

1. We can develop constrained, precise theories of whole
phonologies and phonological factors by classifying them
with respect to subregular language classes.

2. If factor-interaction is well-defined then we ought to be
able to prove conclusions about whole phonologies from
characterizations of these factors. E.g. we ought to be able
to reduce the computational load.

3. We can profitably investigate the learnability of these
classes.
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