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• Rémi Eyraud (Marseilles)

• Jie Fu (Penn)

• Adam Jardine (Delaware)

• Bill Idsardi (Maryland)

• Regine Lai (HKIEd)

• Bert Tanner (Delaware)

• Ryo Yoshinaka (Kyoto)

Jim Rogers (circa 2010)

2



Regular Sets, Functions, and Relations

• They can be defined over different data structures:

strings, trees, and graphs.

• They have applications in several domains:

natural language, planning, control, verification, . . .

• They have independently motivated characterizations:

MSO-definability, finite-state automata, regular expressions,

finite monoid property, . . . .

• They have many useful properties:

sets are closed under boolean operations, relations are closed

under composition, . . .

3



Today’s talk: The specific goal

1. For strings, an alphabet Σ is fixed.

2. A string is a sequence of events. Which events are latent and

which are observable?

3. Theorems by Medvedev (1964) and Elgot and Mezei (1965) tell

us the choice of alphabet matters.

4. This choice, along with determinism, also matter for learning

regular sets and functions.
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Today’s talk: More general goals

1. Introduce you to literature on subregular classes of sets and

functions.

• Like the regular class, these classes are natural and have

multiple characterizations.

• Unlike the regular class, some of them are feasibly learnable

from positive evidence only.

2. Introduce you to literature on learning regular sets and

functions (grammatical inference).

3. Main lesson: For applications, better characterizations

of the problem space lead to better solutions.
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Subregular Hierarchies (strings of finite length)

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

Regular

SF

LTT

LT PT

SL SP

Finite

(McNaughton and Papert 1971, Thomas 1997, Rogers and Pullum 2011, Rogers

et al. 2013)
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Regular stringsets and functions

• Regular stringsets have multiple, equivalent representations.

L(DFA) ≡ L(NFA) ≡ L(MSOL) ≡ L(RE) ≡ L(GRE)

• The expressive capacity of these representations separate when

we consider probabilty distributions over strings.

L(PDFA) ( L(PNFA)

• And they separate when we consider regular functions.

L(DFT) ( L(NFT) ( L(MSOf )

(Kleene 1956, Scott and Rabin 1959, Büchi 1960, Berstel 1979, Vidal et al.

2005, Engelfriet and Hoogeboom 2001)
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How can one learn regular stringsets and

functions from examples?

Answer

1. Define ‘learning.’

2. Define ‘examples.’

de la Higuera (2010) provides a compre-

hensive survey of research that addresses

these questions and definitions.
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Defining ‘learning’

Let T be a class, and R a class of representations for T.

Definition 1 (Strong characteristic sample) For a

(T,R)-learning algorithm A, a sample CS is a strong characteristic

sample of a representation r ∈ R if for all samples S for L(r) such

that CS ⊆ S, A returns r.

Definition 2 (Strong identification in polynomial time and data)

A class T of functions is strongly identifiable in polynomial time

and data if there exists a (T,R)-learning algorithm A and two

polynomials p() and q() such that:

1. For any sample S of size m for t ∈ R, A returns a hypothesis

r ∈ R in O(p(m)) time.

2. For each representation r ∈ R of size k, there exists a strong

characteristic sample of r for A of size at most O(q(k)).

(de la Higuera 1997, 2010, Eyraud et al. to appear)
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Defining ‘examples’

1. Positive examples are ones labeled as belonging to the target

stringset or function.

2. Negative examples are ones labeled as not belonging to the

target stringset or function.
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Learning results

1. The class of regular stringsets is strongly identifiable in

polynomial time and data with positive and negative

examples by the algorithm RPNI, which uses DFA.

(Oncina and Garćıa 1992)

2. Any class properly containing FIN is not so identifiable with

only positive examples. This holds even if the polynomial

bounds are removed, and ‘strong’ identification is relaxed.

⇒ Regular stringsets are not learnable from positive data only.

(Gold 1967)

3. OTOH, deterministic, but not nondeterministic, total regular

functions (and distributions) are strongly identifiable in

polynomial time and data from only positive examples by the

algorithm OSTIA (ALEGRIA) which uses DFT (PDFA).

(Oncina, Garćıa, and Vidal 1993, Carrasco and Oncina 1994, 1999)
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Models of strings

Suppose Σ = {a, b, c}. Two models:

substring model : 〈D,⊲, Pa, Pb, Pc〉

subsequence model : 〈D,�, Pa, Pb, Pc〉

• D is the domain (positions in the string)

• Pσ ⊆ D are labeling predicates (positions labeled σ)

• ⊲ is the successor relation (x⊲ y ⇔ x+ 1 = y).

• � is the precedence relation (x � y ⇔ x ≤ y).
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Example Models

Suppose Σ = {a, b, c}. Two models:

substring model : 〈D,⊲, Pa, Pb, Pc〉

subsequence model : 〈D,�, Pa, Pb, Pc〉

a b c c a b

Under the substring model: bcc is a sub-structure of abccab.

Under the subsequence model: aab is a sub-structure of abccab.
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Building the Hierarchies

SL SP

Finite

⊲ �

Conjunction of Negative Literals
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Strictly Local: Conjunctions of negative literals

under the substring model

L = {ab, abab, ababab, . . .}

ϕ = (¬⋊ b) ∧ (¬aa) ∧ (¬bb) ∧ (¬a⋉)
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Strictly Local: Conjunctions of negative literals

under the substring model

L = {ab, abab, ababab, . . .} =

L(ϕ) = bΣ∗ ∩ Σ∗aaΣ∗ ∩ Σ∗bbΣ∗ ∩ Σ∗a

ϕ = (¬⋊ b) ∧ (¬aa) ∧ (¬bb) ∧ (¬a⋉)

16



A Strictly Local automaton is a scanner

a b a b a b a b a babababa

a a b b

ba

b a

b

a

∈

START S Q

R
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Strictly k-Local stringsets

1. A SLk stringset is one whose longest forbidden substring is of

length k.

2. SL stringsets are those that are SLk for some k.

• Theorem: (∀k)[SLk ( SLk+1].

• Theorem: (∀L ∈ FIN)(∃k)[L ∈ SLk].

• Theorem: L ∈ SL ⇔ L is closed under suffix substitution.

• Theorem: For all k, SLk is strongly identifiable in polynomial

time and data from positive examples only.

(McNaughton and Papert 1971, Garcia et al. 1990, Rogers and Pullum 2011,

Heinz et al. 2012, Heinz and Rogers 2013, Rogers et al. 2013)
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Building the Hierarchies

SL SP

Finite

⊲ �

Conjunction of Negative Literals
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Strictly Piecewise: Conjunctions of negative

literals under the subsequence model

ϕ = (¬aa) ∧ (¬bc)
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Strictly Piecewise: Conjunctions of negative

literals under the subsequence model

L(ϕ) = Σ∗aΣ∗aΣ∗ ∩ Σ∗bΣ∗cΣ∗

ϕ = (¬aa) ∧ (¬bc)
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Strictly k-Piecewise stringsets

1. A SPk stringset is one whose longest forbidden subsequence is

of length k.

2. SP stringsets are those that are SPk for some k.

• Theorem: (∀k)[SPk ( SPk+1].

• Theorem: L ∈ SP ⇔ L is closed under subsequence.

• Corollary: There are finite languages not in SP.

• Theorem: For all k, SPk is strongly identifiable in polynomial

time and data from positive examples only.

(Heinz 2007, 2010, Rogers et al. 2010, 2013, Heinz et al. 2012, Heinz and

Rogers 2013)
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Building the Hierarchies

LT PT

SL SP

Finite

⊲ �

Conjunction of Negative Literals

Propositional Logic
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Locally Testable: Propositional logic with the

substring model

ϕ = b ∨ (ab ⇒ bc)
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Locally Testable: Propositional logic with the

substring model

L(ϕ) = Σ∗bΣ∗ ∪ (Σ∗abΣ∗acΣ∗ ∪ Σ∗acΣ∗abΣ∗)

ϕ = b ∨ (ab ⇒ ac)
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A Locally Testable automaton is a boolean

network

a b a b a b a b a babababa

a a b b

Boolean
Network

Yes

No

Accept

Reject

a

b

a a

a b

b a

b b

a

b X

X

X

X
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Locally k-Testable stringsets

1. A LTk stringset is one defined with a formula whose longest

string is of length k.

2. LT stringsets are those that are LTk for some k.

• Theorem: (∀k)[LTk ( LTk+1].

• Theorem: SL ( LT

• Theorem: LT is the smallest class which is closed under

boolean operations and contains SL.

• Theorem: L ∈ LT ⇔ (∃k)(∀u, v)[ if u, v have the same k-long

substrings then either u, v ∈ L or u, v 6∈ L].

• Theorem: For all k, LTk is strongly identifiable from positive

examples only, but not in polynomial time and data.

(McNaughton and Papert 1971, Garćıa and Ruiz 1996, 2004, Rogers and

Pullum 2011, Heinz et al. 2012, Heinz and Rogers 2013, Rogers et al. 2013)
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Piecewise Testable: Propositional logic with the

subsequence model

L(ϕ) = Σ∗bΣ∗cΣ∗ ∪ Σ∗aΣ∗bΣ∗

ϕ = bc ∨ (¬ab)
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Piecewise k-Testable stringsets

1. A PTk stringset is one defined with a formula whose longest

string is of length k.

2. PT stringsets are those that are PTk for some k.

• Theorem: (∀k)[PTk ( PTk+1].

• Theorem: SP ( PT

• Theorem: PT is the smallest class which is closed under

boolean operations and contains SP.

• Theorem: L ∈ PT ⇔ (∃k)(∀u, v)[ if u, v have the same k-long

subsequences then either u, v ∈ L or u, v 6∈ L].

• Theorem: For all k, PTk is strongly identifiable from positive

examples only, but not in polynomial time and data.

(McNaughton and Papert 1971, Simon 1975, Garćıa and Ruiz 1996, 2004,

Rogers and Pullum 2011, Heinz et al. 2012, Heinz and Rogers 2013, Rogers et

al. 2013)
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Building the Hierarchies

SF

LTT

LT PT

SL SP

Finite

⊲ �

Conjunction of Negative Literals

Propositional Logic

First Order Logic
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Locally Threshold Testable: First order logic with

the substring model

substring model : 〈D,⊲, Pa, Pb, Pc〉

ϕ = (∃w, x, y, z)[ Pa(w) ∧ Pb(x) ∧ w ⊲ x

Pa(y) ∧ Pb(z) ∧ y ⊲ z

∧w 6= x 6= y 6= z]
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Locally Threshold Testable: First order logic with

the substring model

substring model : 〈D,⊲, Pa, Pb, Pc〉

L(ϕ) = Σ∗abΣ∗abΣ∗

ϕ = (∃w, x, y, z)[ Pa(w) ∧ Pb(x) ∧ w ⊲ x

Pa(y) ∧ Pb(z) ∧ y ⊲ z

∧w 6= x 6= y 6= z]
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A LTT automaton is a LT automaton which

counts up to some threshold t

a a b b

a b a a a b a b a bbababab

Boolean
Network

Yes

No

Accept

Reject

φ

a

b

a

a

b

b

b

ab

a b

a

X

XX

XX

X

X

X

X

X

X
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Locally Threshold t, k-Testable stringsets

1. LTT strings are parameterized by the length of substrings k

and a maximum counting capacity t.

2. LT stringsets are those that are LTk for some k.

• Theorem: (∀k)[LTTt,k ( LTt,k+1].

• Theorem: (∀t)[LTTt,k ( LTt+1,k].

• Theorem: LT ( LTT

• Theorem: L ∈ LTT ⇔ (∃k, t)(∀u, v)[ if u, v have the same

number of k-long substrings (up to t) then either u, v ∈ L or

u, v 6∈ L].

• Theorem: For all t, k, LTTt,k is strongly identifiable from

positive examples only, but not in polynomial time and data.

(McNaughton and Papert 1971, Thomas 1997, Rogers and Pullum 2011, Heinz

et al. 2012, Rogers et al. 2013)
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Building the Hierarchies

SF

LTT

LT PT

SL SP

Finite

⊲ �

Conjunction of Negative Literals

Propositional Logic

First Order Logic
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Star-Free: First order logic with the subsequence

model

subsequence model : 〈D,�, Pa, Pb, Pc〉

L(ϕ) = Σ∗aΣ∗bΣ∗aΣ∗bΣ∗ ∪ Σ∗aΣ∗aΣ∗bΣ∗bΣ∗

ϕ = (∃w, x, y, z)[ Pa(w) ∧ Pb(x) ∧ w � x

Pa(y) ∧ Pb(z) ∧ y � z

∧w 6= x 6= y 6= z]
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Star-free Stringsets

• Theorem: PT ( SF.

• Theorem: LTT ( SF (⊲ is first-order definable from �

but not vice versa).

• Theorem: L ∈ SF ⇔ (∃k)(∀u, v, w)[uvkw ∈ L ⇒ uvk+1w ∈ L]

(so SF is also called NonCounting).

• Theorem: L ∈ SF ⇔ (∃r ∈ GRE)[ L(r) = L

∧ r is a star-free expression].

• Theorem: SF is the smallest class of languages obtained by

closing LT under concatenation

(so SF is also called Locally Testable with Order).

• Theorem:
(

∀ϕ ∈ FO(�)
)

[∃ϕ′ ∈ TL(until,since) such that

L(ϕ) = L(ϕ′)] and vice versa (these are ω-regular languages).

(Kamp 1968, McNaughton and Papert 1971, Rogers et al. 2013)
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Building the Hierarchies

Regular

SF

LTT

LT PT

SL SP

Finite

⊲ �

Conjunction of Negative Literals

Propositional Logic

First Order Logic

Monadic Second Order Logic
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Other subregular learnable classes

• Theorem: Every DFA defines a class of languages in terms of

its sub-DFA that is strongly identifiable in the limit from

positive examples.

(For each k, t, SLk, LTk, LTTt,k, PTk are such classes).

• Theorem: Classes formed by the intersection of languages

drawn from learnable classes are also strongly identifiable in

the limit from positive examples.

Example. L = {X ∩ Y | X ∈ SLk ∧ Y ∈ SPℓ}.

• Theorem: Every list of DFA defines a class of languages in

terms of their sub-DFA that is strongly identifiable in the limit

from positive examples. Also, this list representation may be

exponentially smaller than the single DFA rep. (For each k,

SPk is such a class.)

(Heinz et al. 2012, Heinz and Rogers 2013)
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Medvedev’s Theorem (1956/1964)

Every regular stringset is a projection (the image under an

alphabetic homomorphism) of a Strictly 2-Local stringset.

〈0, 1, a〉, 〈0, 0, b〉, 〈1, 2, a〉, 〈1, 1, b〉, 〈2,> 2, a〉, 〈2, 2, b〉, 〈>2,> 2, a〉, 〈>2,> 2, b〉

a

b b
a

b a, b

a0 1 2 >2

• Possible runs through a DFA is a sequence of transitions.

abbab ≈ 〈0, 1, a〉〈1, 1, b〉〈1, 1, b〉〈1, 2, a〉〈2, 2, b〉

• The transitions themselves are symbols, forming an alphabet.

• The set of runs leading to final states in a DFA with this

alphabet is a SL2 stringset.

〈p, q, σ〉 7→h σ
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Moral (Medvedev’s Theorem)

• If there is no latent information, and a finite alphabet,

everything is SL2. So if all the possible world states are known,

learning becomes trivial in one sense. On the other hand, the

size of the alphabet may be astronomical. . .

• If there is latent information, but the underlying structure is

known, then learning is also straightforward. The results on

the previous slide for instance can be thought of in a

Medvedevian way.
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What about regular functions? (Recent work)

f : Σ∗ → Γ∗.

• Theorem: Nondeterministic regular functions L(NFT) are not

identifiable in the limit.

• Theorem: Total determinstic regular functions are strongly

identifiable in polynomial time (and data?) from positive

examples. (Two types of determinism: Left and Right)

L(LDFT) and L(RDFT)

• Theorem: There are subclasses of deterministic regular

functions, which include partial functions, are strongly

identifiable in polynomial time and data from positive

examples.

(Oncina et al. 1993, Chandlee 2014, Jardine et. al 2014, Chandlee et al. 2014)
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Subregular functions?

Regular

SF

LTT

LT PT

SL SP

Finite

• No comparable body of the-

ory for subregular func-

tions exists.

• But one of the aforementioned

learnable subclasses general-

izes the notion of Strict Lo-

cality from stringsets to func-

tions (Chandlee 2014).

• Other such subclasses are on

their way. . .
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Elgot and Mezei’s Theorem (1965)

Let T : A∗ → C∗ be a function. Then T ∈ L(NFT) iff there exists

L : A∗ → B∗ ∈ L(LDFT), and R : B∗ → C∗ ∈ L(RDFT) with

A ⊆ B such that T = R ◦ L.

• Notice how the alphabet may grow in the intermediate step!

• Moral: Nondeterminism and latent information are deeply

connected. . .
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That’s it!

1. Theorems by Medvedev (1964) and Elgot and Mezei (1965) tell

us the choice of alphabet matters.

2. This choice, along with determinism, also matter for learning

regular sets and functions.

3. Main lesson: For applications, better characterizations

of the problem space lead to better solutions.

4. Many subregular classes of sets and functions have a variety

of characterizations (=tools) and well as an array of available

learning algorithms.

Thanks!
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