
The computational nature of
phonological generalizations

Jeffrey Heinz

Linguistics Department

University of Pennsylvania

November 16, 2017
1



Conclusion

The computational nature of phonology matters because:

1. It provides well-studied methods for relating extensional and

intensional descriptions of generalizations.

2. It provides a mathematical foundation for comparing

representation and logical power.

3. It often directly leads to psychological models of

representation, memory and processing.

4. These models specify what learners must attend to, and thus

explains the kinds of phonological generalizations that can be

learned.

5. It makes typological predictions and provides explanations for

the phonological generalizations we do and do not observe.

2



Today

I will argue that the computational nature of phonological

generalizations is

1. not only “regular”, but also

2. “less than” regular in a particularly “local” way

3



Topics covered second half

1. Constraints on local structures (Rogers)

2. Constraints on long-distance segmental structures (Heinz)

3. Constraints on tonal patterns of well-formedness (Jardine)

4. Segmental transformations based on local structures

(Chandlee)

5. Syllabification is also a local computation (Strother-Garcia)

4



Part I

What is phonology?

5



The fundamental insight

The fundamental insight in the 20th century which shaped the

development of generative phonology is the following.

The best explanation of the systematic variation in the

pronunciation of morphemes is to posit a single underlying mental

representation of the phonetic form of each morpheme and to derive

its pronounced variants with context-sensitive transformations.

(Kenstowicz and Kisseberth 1979, chap 6; Odden 2014, chap 5)

6



Example from Finnish

Nominative Singular Partitive Singular

aamu aamua ‘morning’

kello kelloa ‘clock’

kylmæ kylmææ ‘cold’

kømpelø kømpeløæ ‘clumsy’

æiti æitiæ ‘mother’

tukki tukkia ‘log’

yoki yokea ‘river’

ovi ovea ‘door’

7



Mental Lexicon

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

æiti tukki yoke ove

mother log river door

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)

8



If your theory asserts that . . .

There exist underlying representations of morphemes which are

transformed to surface representations. . .

Then there are three important questions:

1. What is the nature of the abstract, underlying, lexical

representations?

2. What is the nature of the concrete, surface representations?

3. What is the nature of the transformation from underlying

forms to surface forms?

Theories of Phonology. . .

• disagree on the answers to these questions, but they agree on

the questions being asked.
9



Phonological constraints and transformations are

infinite objects

Extensions of grammars in phonology are infinite objects in the

same way that perfect circles represent infinitely many points.

Word-final /e/ raising

1. *e#

2. *e# >> Ident(high)

3. e −→ [+high] / #

Nothing precludes these grammars from operating on words of any

length.

(ove,ovi), (yoke,yoki), (tukki,tukki),

(kello,kello),. . . (manilabanile,manilabanili), . . .

10



Grammars as functions

function Notes

f : Σ∗ → {0, 1} Binary classification (well-formedness)

f : Σ∗ → N Maps strings to numbers (well-formedness)

f : Σ∗ → [0, 1] Maps strings to real values (well-formedness)

f : Σ∗ → ∆∗ Maps strings to strings (transformation)

f : Σ∗ → ℘(∆∗) Maps strings to sets of strings (transformation)

11



Truisms about grammars

1. Different grammars may generate the same constraints and

transformations.

Such grammars are extensionally equivalent.

2. Grammars are finite, intensional descriptions of their

(possibly infinite) extensions.

3. Transformations may have properties largely independent of

their grammars.

• regular sets and functions (Kleene 1956, Elgot and Mezei

1956, Scott and Rabin 1959)

• output-driven maps (Tesar 2014)

• strict locality (Rogers and Pullum 2011, Chandlee 2014)

12



Part II

Phonological Generalizations are Regular

13



What “Regular” means

A set or function is regular provided the memory required for

the computation is bounded by a constant, regardless of

the size of the input.

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

input size

memory

Regular

✻

✲

sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss

input size

memory

Non-regular

14



Some computations important to grammar

• For given constraint C and any representation w:

– Does w violate C? How many times?

• For given grammar G and any underlying representation w:

– What surface representation(s) does G transform w to?

With what probabilities?

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

input size

memory

Regular

✻

✲

sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss

input size

memory

Non-regular

15



Regular grammars for sets and transformations

1. Regular expressions

2. Finite-state automata

3. Logic with models of strings

16



Example: Vowel Harmony

Progressive

Vowels agree in backness with the first vowel in the underlying

representation.

Majority Rules

Vowels agree in backness with the majority of vowels in the

underlying representation.

UR Progressive Majority Rules

/nokelu/ nokolu nokolu

/nokeli/ nokolu nikeli

/pidugo/ pidige pudugo

/pidugomemi/ pidigememi pidigememi

(Bakovic 2000, Finley 2008, 2011, Heinz and Lai 2013)
17



Progressive and Majority Rules Harmony

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

input size

memory

Regular

✻

✲

sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss

input size

memory

Non-regular

Progressive Majority Rules

18



Some Perspective

Typological: Majority Rules is unattested. (Bakovic 2000)

Psychological: Human subjects fail to learn Majority Rules in

artificial grammar learning experiments, unlike progressive

harmony. (Finley 2008, 2011)

Computational: Majority Rules is not regular. (Riggle 2004, Heinz

and Lai 2013)

19



Optimality Theory

1. There exists a CON and ranking over it which generates

Majority Rules: Agree(back)>>IdentIO[back].

2. Changing CON may resolve this, but this solution misses the

forest for the trees.

20



Phonological generalizations are regular

Evidence supporting the hypothesis that phonological

generalizations are finite-state originate with Johnson (1972) and

Kaplan and Kay (1994), who showed how to translate any

phonological grammar defined by an ordered sequence of SPE-style

rewrite rules into a finite-state automaton.

Consequently:

1. Constraints on well-formed surface and underlying

representations are regular (since the image and pre-image of

finite-state functions are finite-state). (Rabin and Scott 1959)

2. Since virtually any phonological grammar can be expressed as

an ordered sequence of SPE-style rewrite rules, this means

“being regular” is a property of the functions that any

phonological grammar defines.

21



Part III

Phonological Constraints are “less than”

Regular

22



The Chomsky Hierarchy

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

Regular

NC

LTT

LT PT

SL SP

Finite

23



Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)
24



Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

LiteralsLO
CA

L

G
LO

BA
L

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)
25



Representing words with successor

hypothetical [sriS]

s r i S
⊳ ⊳ ⊳

• The information about order is given by the successor (⊳)

relation.

26



Sub-structures

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• So [sr] is a sub-structure of [sriS]

s r i S
⊳ ⊳ ⊳

27



Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• Strictly Local constraints are ones describable with a finite

list of forbidden substrings.

¬s1 ∧ ¬s2 . . . ∧ ¬sn (⊳)

• For string ⋊abab⋉, if we fix a diameter of 2, we have to check

these substrings.

ok? ok?ok? ok? ok?

a⋊ a b b a a b b ⋉

(Rogers and Pullum 2011,
Rogers et al. 2013)

28



Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the substructures, checking

to see if it is forbidden or not.

• The whole structure is well-formed only if each sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

29



Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the substructures, checking

to see if it is forbidden or not.

• The whole structure is well-formed only if each sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

29



Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the substructures, checking

to see if it is forbidden or not.

• The whole structure is well-formed only if each sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

29



Examples of Strictly Local constraints

• *ab

• *NT

Example of Non-Strictly Local constraints

• *EVEN-Nasal

• *3-NT (so 2 NT structures OK, but not 3)

• *s. . . S (Hansson 2001, Rose and Walker 2004, Hansson 2010, inter alia)

30



Sarcee (Cook 1978, 1984)

a. /si-tSiz-aP/ → S ı́tS ı́dzàP ‘my duck’

*śıtS ı́dzàP

b. /na-s-GatS/ → nāSGátS ‘I killed them again’

• In Sarcee words, [−anterior] sibilants like [S] may not follow

[+anterior] sibilants like [s]. This constraint is called *s. . . S.

31



Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

✉

✉ *s. . . S

✉

✉ *ab

(Heinz 2010, Rogers et al. 2010)32



The “MSO with successor” Theory

Is this a good theory of possible constraints in phonology?

NO! Because. . .

1. Typologically, it overgenerates.

(a) *EVEN-Nasal

(b) *3-NT (so 2 NT structures OK, but not 3)

2. There are no feasible algorithms for learning the whole class of

regular stringsets (Gold 1967, inter alia).

33



Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

✉

✉ *s. . . S

✉✉

✉ *ab

(Heinz 2010, Rogers et al. 2010)34



Representing Order in Sequences

hypothetical [sriS]

1. Successor

s r i S
⊳ ⊳ ⊳

2. Precedence

s r i S
<

<

<

<

<

<

35



Strictly Piecewise Constraints

When words are represented with precedence, sub-structures are

sub-sequences of a certain size.

• So s < S is a sub-structure of [sriS].

s r i S
<

<

<

<

<

<

• Strictly Piecewise constraints are ones describable with a finite

list of forbidden sub-structures (with words represented using

the precedence relation).

¬s1 ∧ ¬s2 . . . ∧ ¬sn (<)

36



The CNL with Successor and Precedence Theory

Is this a better theory of possible constraints in phonology?

1. Typologically, it is better than “MSO with successor.”

(a) Admits phonotactic constraints which arguably drive

long-distance harmony patterns

(b) Provably excludes constraints like *EVEN-Sibilants and

“*3-NT”.

2. Both Strictly Local and Strictly Piecewise constraints are feasibly

learnable (Garcia et al. 1991, Heinz 2010)

3. Human subjects learn SP patterns—but not similar LT ones—in lab

experiments (Lai 2015). 37



Morals of this Story

1. Precedence is the transitive closure of successor.

2. Providing the power of transitive closure (MSO-definabilty)

yields power to do lots of other things (so expands the typology

undesirably)

3. Putting precedence directly into the representation allows a

restricted expansion of the typology in a more desirable way.

4. The restriction also brings learnability benefits.

The subregular hierarchies demonstrate a firm mathematical

foundation upon which the interplay between representation and

computation in linguistic theory can be studied.

38



Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

LiteralsLO
CA

L

G
LO

BA
L

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)
39



Autosegmental Representations

1. Jardine (2016, 2017) shows these ideas to

autosegmental representations (ASRs), where

the sub-structures are now sub-graphs of the

autosegmental structure.

2. He argues this approach captures the typology better than

Zoll’s 2003 approach in OT and earlier derivational approaches.

3. He shows that his grammars can be learned from strings (not

ASRs!) because ASRs are fundamentally stringlike (Jardine

and Heinz 2015).

Some well-studied patterns of tonal association

1. Position-specific contours (Mende, Hausa, Northern Karanga)

2. Position-specific plateaus (Mende, Hausa, Northern Karanga)

3. Melody constraints (Mende)

4. Quality-dependent plateaus (Kukuya)
40



Tone and Autosegmental Representations

(Jardine 2016, 2017)

• Autosegmental representations are graphs (Goldsmith 1976,

Coleman and Local 1991)

félàmà HLL ‘junction’

(Mende)

H L

σ σ σ

H L

σ σ σ

• A sub-structure is a finite, connected piece of a graph.

L H

σ σ

L H

σσσ σσσ σ σ σ

41



Case study: Mende — Plateaus

φ
NF-H

2 = H L

σ σ

φ
NF-L

2 = L H

σ σ

* H L

σσσ σσσ σ σ

* L H

σσσ σσσ σ

háwámá

HHH

‘waist’

H

σ σ σ

félàmà

HLL

‘junction’

H L

σ σ σ

• Kukuya will use φ
NF-H

2 but not φ
NF-L

2

(Jardine 2016, 2017)

42



Case study: Mende — Contours

φNF-Cont = H L

σ σ

* L H L

σσσ σσσ

* H L

σσσ σσσ σ

• c.f. (Zhang 2000)

(Jardine 2016, 2017)

43



Case study: Mende — Melody Constraint

φHLH = H L H

* L H L H

σ σ σ σ

(Jardine 2016, 2017)

44



Case study: Mende — Summary

¬φHLH ∧ ¬φNF-Cont ∧ ¬φ
NF-H

2 ∧ ¬φ
NF-L

2

Evaluation procedure now ‘crawls’ through graph

H L

σ σ σ

H L

σ σ σ

H L

σ σ σ

H L

σ σ σ

. . .

(Jardine 2016, 2017)

45



Part IV

Phonological Transformations are “less than”

Regular

46



Input Strictly Local Transformations

1. Chandlee (2014 et seq.) extends these ideas to

segmental transformations.

2. She argues this approach better captures the

typology than OT and earlier derivational approaches.

3. She establishes theoretical, efficient learning results from

(UR,SR) pairs.

ISL defined

x0 x1 . . . xn 7→ u0 u1 . . . un

where

1. Each xi is a single symbol and each ui is a string.

2. There exists a k ∈ N such that for all input symbols xi its

output string ui depends only on xi and the k − 1 elements

immediately preceding xi.
47



Input Strict Locality: Main Idea in a Picture

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 1: For every Input Strictly 2-Local function, the output string

u of each input element x depends only on x and the input element

previous to x. In other words, the contents of the lightly shaded cell

only depends on the contents of the darkly shaded cells.

48



Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

49



Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

50



Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

51



Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

52



What can be modeled with ISL functions?

1. Many individual phonological processes.

(local substitution, deletion, epenthesis, and synchronic

metathesis)

Theorem: Transformations describable with a rewrite rule R:

A −→ B / C D where

• CAD is a finite set,

• R applies simultaneously, and

• contexts, but not targets, can overlap

are ISL for k equal to the longest string in CAD.

(Chandlee 2014, Chandlee and Heinz 2018)

53



What can be modeled with ISL functions?

2. Approximately 95% of the individual processes in P-Base

(v.1.95, Mielke (2008))

3. Many opaque transformations without any special modification.

(Chandlee 2014, Chandlee and Heinz 2018, Chandlee et al. to appear)

54



Opaque ISL transformations

• Opaque maps are typically defined as the extensions of

particular rule-based grammars (Kiparsky 1971, McCarthy

2007). Tesar (2014) defines them as non-output-driven.

• Baković (2007) provides a typology of opaque maps.

– Counterbleeding

– Counterfeeding on environment

– Counterfeeding on focus

– Self-destructive feeding

– Non-gratuitous feeding

– Cross-derivational feeding

• Each of the examples in Baković’s paper is ISL.

(Chandlee et al. to appear)

55



Example: Counterbleeding in Yokuts

‘might fan’

/Pili:+l/

[+long] → [-high] Pile:l

V −→ [-long] / C# Pilel

[Pilel]

56



Example: Counterbleeding in Yokuts is ISL with

k=3

/Pili:l/ 7→ [Pili:l] ‘might fan’

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

56



Example: Counterbleeding in Yokuts is ISL with

k=3

/Pili:l/ 7→ [Pilel] ‘might fan’

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

57



Example: Counterbleeding in Yokuts is ISL with

k=3

/Pili:l/ 7→ [Pilel] ‘might fan’

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

57



Interim Summary

Many phonological patterns, including many opaque ones, have the

necessary information to decide the output contained within a

window of bounded length on the input side.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

58



What CANNOT be modeled with ISL functions

1. progressive and regressive spreading

• But these are Output Strictly Local (Chandlee et al. 2015)!

2. long-distance (unbounded) consonant and vowel harmony

• Stay tuned!

(Chandlee 2014, Chandlee and Heinz, 2018)

59



Learning Results in a nutshell

• Particular finite-state transducers can be used to represent ISL

functions.

• Automata-inference techniques (de la Higuera 2010) are used

to learn these transducers.

• Theorems: Given k and a sufficient sample of (u, s) pairs any

k-ISL function can be exactly learned in polynomial time and

data.

– ISLFLA (Chandlee et al. 2014, TACL) (quadratic time and

data)

– SOSFIA (Jardine et al. 2014, ICGI) (linear time and data)

60



Logical Characterizations of Subregular

Functions for Transformations

2way DFTs

aperiodic 2way DFTs?

? ?

ISL DFTs ∼ Quantifier Free

with ⊳ function ?

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(Chandlee and Lindell 2016, Filiot and Reynier 2016)
61



Logical Characterizations of Subregular

Functions for Transformations

2way DFTs

aperiodic 2way DFTs?

? ?

ISL DFTs ∼ Quantifier Free

with ⊳ function ?

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

LiteralsLO
CA

L

G
LO

BA
L

(Chandlee and Lindell 2016, Filiot and Reynier 2016)
62



Part V

Logical Characterizations of Transductions

63



Defining Transductions Logically

• Logical expressions can translate one relational structure into

another.

P ′(x)
def
= Q(x) (1)

“Position x has property P in the output only if corresponding

position x in the input has property Q.”

(Courcelle 1994, Courcelle and Engelfriedt 2001, 2011)

64



Defining “Post Nasal Voicing” Logically

voiced’(x)
def
= voiced(x) ∨ [pred(x) = y ∧ nasal(y)] (2)

feature’(x)
def
= feature(x) (for other features feature) (3)

pred’(x)
def
= pred(x) (4)

/gonk/ 7→ [gong]

1 2 3 4

stop syllabic nasal stop
dorsal back coronal dorsal
voiced mid

⊳ ⊳ ⊳INPUT:

1 2 3 4

stop syllabic nasal stop
dorsal back coronal dorsal
voiced mid voiced

⊳ ⊳ ⊳OUTPUT:

(Courcelle 1994, Courcelle and Engelfriedt 2001, 2011)

65



Quantifier Free (QF) transductions

Chandlee and Lindell show that ISL transductions from a logical

perspective are QF.

Compare:

• P ′(x)
def
= Q(x) ∧ (∃y)[R(y)] (First Order Definable)

• P ′(x)
def
= Q(x) ∧R(succ(x)) (QF Definable)

66



Transformation incorporating phonological

representations

Strother-Garcia (to appear) shows

1. Translations between different syllabic

representations is QF.

2. Syllabification in IT Berber is QF, with

a “window size” of 3.

She concludes

• “. . . syllabification in ITB can be represented by a QF graph

transduction, a formalism restricted to substantially lower

computational complexity than [traditional] phonological

grammars. . . Establishing that ITB syllabification is QF

highlights an insight not apparent from [those traditional]

grammatical formalisms. . . ”

67



This matters for syntax too.

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

Regular

NC

LTT

LT PT

SL SP

Finite

✉

✉ Syntax

✉

✉ Phonology

(Heinz and Idsardi 2011, 2013)
68



Syntax

✻

✛
strings

Non-regular

Regular

✉

✉Syntax

✉

✉Phonology

(work with Thomas Graf)

69



Syntax

✻

✛
trees strings

Non-regular

Regular

✉

✉Syntax

✉

✉Phonology

(work with Thomas Graf)

69



Syntax

✻

✛
trees strings

Non-regular

Regular✉

✉Syntax

✉

✉Phonology

(work with Thomas Graf)

69



Syntax

✻

✛
trees strings

Non-regular

Regular

Subregular
(Relativized Locality)

✉

✉Syntax

✉

✉Phonology

(work with Thomas Graf)

69



Syntax

✻

✛
trees strings

Non-regular

Regular

Subregular
(Relativized Locality)

✉

✉Syntax

✉

✉Phonology

(work with Thomas Graf)

69



Additional Areas of Inquiry

1. Systematically compare representations of features, syllables,

feet, . . .

2. Phonetics/Phonology Interface

3. Morphology/Phonology Interface

4. Learning lexicons, grammars, exceptions, variation

5. Learning representations

70



Discussion

1. Well-studied methods from computer science (logic and

automata) can be used to express phonological generalizations

precisely, accurately, and completely.

2. They are easy to learn with only a little practice.

3. They can be weighted to compute probabilties, count

violations, handle optionality, . . .

4. One advantage of logic is the flexibility of the representations.

5. One advantage of automata is the previous literature on

learning them.

6. Both logic and automata will still be here in 100, 200 years. . . !!

71



Conclusion

The computational nature of phonology matters because:

1. It provides well-studied methods for relating extensional and

intensional descriptions of generalizations.

2. It provides a mathematical foundation for comparing

representation and logical power.

3. It often directly leads to psychological models of

representation, memory and processing.

4. These models specify what learners must attend to, and thus

explains the kinds of phonological generalizations that can be

learned.

5. It makes typological predictions and provides explanations for

the phonological generalizations we do and do not observe.

72



Acknowledgments

• Alëna Askenova (Stony Brook)
• Jane Chandlee (Haverford)
• Aniello DeSantos (Stony Brook)
• Hossep Dolatian (Stony Brook)
• Rémi Eryaud (Marseilles)
• Thomas Graf (Stony Brook)
• Hyun Jin Hwangbo (UD)
• Bill Idsardi (UMCP)
• Adam Jardine (Rutgers)
• Regine Lai (HKIEd)
• Kevin McMullin (Ottawa)
• Jon Rawski (Stony Brook)
• Jim Rogers (Earlham)
• Kristina Strother-Garcia (UD)
• Herbert G. Tanner (UD)

73


