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Today

1. Show that the computational nature of phonological

generalizations has implications for

• Typology

• Learning

• Psychology and memory

2. Argue that logic and automata are the best vehicles for

expressing phonological generalizations
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Part I

What is phonology?
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The fundamental insight

The fundamental insight in the 20th century which shaped the

development of generative phonology is that the best explanation

of the systematic variation in the pronunciation of morphemes is to

posit a single underlying mental representation of the phonetic

form of each morpheme and to derive its pronounced variants with

context-sensitive transformations.

(Kenstowicz and Kisseberth 1979, chap 6; Odden 2014, chap 5)
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Example from Finnish

Nominative Singular Partitive Singular

aamu aamua ‘morning’

kello kelloa ‘clock’

kylmæ kylmææ ‘cold’

kømpelø kømpeløæ ‘clumsy’

æiti æitiæ ‘mother’

tukki tukkia ‘log’

yoki yokea ‘river’

ovi ovea ‘door’
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Mental Lexicon

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

æiti tukki yoke ove

mother log river door

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)
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If your theory asserts that . . .

There exist underlying representations of morphemes which are

transformed to surface representations. . .

Then there are three important questions:

1. What is the nature of the abstract, underlying, lexical

representations?

2. What is the nature of the concrete, surface representations?

3. What is the nature of the transformation from underlying

forms to surface forms?

Theories of Phonology. . .

• disagree on the answers to these questions, but they agree on

the questions being asked.
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Phonological generalizations are infinite objects

Extensions of grammars in phonology are infinite objects in the

same way that perfect circles represent infinitely many points.

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)

Nothing precludes these grammars from operating on words of any

length. The infinite objects those grammars describe look like this:

(ove,ovi), (yoke,yoki), (tukki,tukki), (kello,kello),. . .

(manilabanile,manilabanili), . . .
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Truisms about transformations

1. Different grammars may generate the same transformation.

Such grammars are extensionally equivalent.

2. Grammars are finite, intensional descriptions of their (possibly

infinite) extensions.

3. Transformations may have properties largely independent of

their grammars.

• output-driven maps (Tesar 2014)

• finite-state functions (Elgot and Mezei 1956, Scott and

Rabin 1959)

• subsequential functions (Oncina et al. 1993, Mohri 1997,

Heinz and Lai 2013)

• strictly local functions (Chandlee 2014)
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Part II

Phonological Generalizations are Finite-state
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What “Finite-state” means

A generalization is finite-state provided the memory required is

bounded by a constant, regardless of the size of the input.

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

size of input

amount of

memory

Finite-state

✻

✲

sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
ss

size of input

amount of

memory

Infinite-state

Any finite-state device “processing any input with respect to the

generalization” has a finite number of distinct internal states

(constant memory capacity).
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Processing an input with respect to the

generalization

• For given constraint C and any representation w:

– Does w violate C?
– (Or, how many times does w violate C?)

• For given grammar G and any underlying representation w:

– What is the surface representation when G transforms w?

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

size of input

amount of

memory

Finite-state

✻

✲
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sss
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sss
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sss
sss
sss
sss
sss
sss
ss

size of input

amount of

memory

Infinite-state
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Example: Vowel Harmony

Progressive

Vowels agree in backness with the first vowel in the underlying

representation.

Majority Rules

Vowels agree in backness with the majority of vowels in the

underlying representation.

UR Progressive Majority Rules

/nokelu/ nokolu nokolu

/nokeli/ nokolu nikeli

/pidugo/ pidige pudugo

/pidugomemi/ pidigememi pidigememi

(Bakovic 2000, Finley 2008, 2011, Heinz and Lai 2013)
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Progressive and Majority Rules Harmony

✻

✲

sssssssssssssssssssssssssssssssssssssssssssssssssssssss

size of input

amount of

memory

Finite-state

✻

✲

sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
sss
ss

size of input

amount of

memory

Infinite-state

Progressive Majority Rules
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Discussion

• Majority Rules is not finite-state (Riggle 2004, Heinz and Lai

2013).

• Majority Rules is unattested (Bakovic 2000).

• Human subjects fail to learn Majority Rules in artificial

grammar learning experiments, unlike progressive harmony

(Finley 2008, 2011).

• There exists a CON and ranking over it which generates

Majority Rules: Agree(back)>>IdentIO[back].

• Changing CON may resolve this, but does this miss the forest

for the trees?
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Phonological generalizations are finite-state

Evidence supporting the hypothesis that phonological

generalizations are finite-state originates with Johnson (1972) and

Kaplan and Kay (1994), who showed how to translate any

SPE-style rewrite rule into a grammar known to be finite-state.

Consequently:

1. Any phonological transformation expressible with SPE-style

rewrite rules is finite-state.

2. Phonological grammars defined by an ordered sequence of rules

are finite-state (since finite-state functions are closed under

composition).

3. Constraints on well-formed surface and underlying

representations are finite-state (since the image and pre-image

of finite-state functions are finite-state).

(Rabin and Scott 1959)
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Finite-state grammar formalisms

• Finite-state automata

• Regular expressions

• Monadic Second-Order logic
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Part III

Finite-state Automata and Logic
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Finite-state automata and logic

I am going to now argue that these grammar formalisms have much

to offer phonology and phonological theory with respect to:

1. generation

2. typological predictions

3. learnability and learning models

4. pyscholinguistic models and memory

. . . even when compared to rule-based and constraint-based

formalisms.
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1. Generation

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)

(ove,ovi), (yoke,yoki), (tukki,tukki), (kello,kello),. . .

(manilabanile,manilabanili), . . .

How do the above intensional grammars above relate to the

extension below?
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1. Generation with Rules

aa → b

• What is the output of this rule applied to aaa?

“To apply a rule, the entire string is first scanned for segments that

satisfy the environmental constraints of the rule. After all such

segments have been identified in the string, the changes required by

the rule are applied simultaneously.” Chomsky and Halle (1968,

p.344):
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1. Generation with OT

Given an OT grammar and an input form, there is a well-defined

solution to the generation problem.

Known Issues:

1. Are all relevant constraints present in EVAL?

2. Does EVAL consider all candidates produced by GEN?

3. Are violations counted properly?

Prince (2002 , p. 276) explains that if a constraint is ignored that

must be dominated by some other constraint then the analysis is

“dangerously incomplete.” Similarly, if a constraint is omitted that

may dominate some other constraint then the analysis is “too

strong and may be literally false.”
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1. Generation with OT (continued)

Solutions exist for limited cases

• Kartunnen 1998 (see also Gerdemann and van Noord 2000,

Gerdemann and Hulden 2012)

• Riggle 2004

GEN, and the constraints in CON must be finite-state, and

optimization must result in a finite-state grammar. (Albro 2005

allows GEN to be infinite-state.)

Software in use

• OT-Workplace addresses (1,3) with finite-state grammars.

• OT-Soft and OT-Help don’t address these issues.
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1. Generation with finite-state automata

• Well-studied and explained in many textbooks.

Post Nasal Voicing

A B

n:n

a:a

o:o

k:g

a:ao:ok:k

n:n

Input:

States: A

Output:
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1. Generation with finite-state automata
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Post Nasal Voicing

A B
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a:a

o:o

k:g
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1. Generation with finite-state automata

• Well-studied and explained in many textbooks.

Post Nasal Voicing

A B

n:n

a:a

o:o

k:g

a:ao:ok:k

n:n

Input: k o n k o

States: A → A → A → B → A → A

Output: k o n g o

Concatenating the outputs yields: /konko/ 7→ [kongo]
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1. Generation with finite-state automata (cont.)

• Well-studied and explained in many textbooks.

*Nasal-Voiceless Obstruent (categorical version)

A B

n:T

a:T

o:T

k:F

a:To:Tk:T

n:T

Input: k o n k o

States: A → A → A → B → A → A

Output: T T T F T

Conjunction of the outputs yields: /konko/ 7→ False
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1. Generation with finite-state automata (cont.)

• Well-studied and explained in many textbooks.

*Nasal-Voiceless Obstruent (counting version)

A B

n:0

a:0

o:0

k:1

a:0o:0k:0

n:0

Input: k o n k o

States: A → A → A → B → A → A

Output: 0 0 0 1 0

Summing the outputs yields: /konko/ 7→ 1
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1. Generation with MSO logic

• Logical expressions can translate one relational structure into

another.

Pϕ(x)
def
= Q(x) (1)

“Position x has property P in the output only if corresponding

position x in the input has property Q.”

voicedϕ(x)
def
= voiced(x) ∨ (∃y)[y ⊳ x ∧ nasal(y)] (2)

featureϕ(x)
def
= feature(x) (for other features feature) (3)

x ⊳ϕ y
def
= x ⊳ y (4)

(Courcelle and Engelfriedt 2001, 2011)
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1. Generation with MSO logic (cont.)

voicedϕ(x)
def
= voiced(x) ∨ (∃y)[y ⊳ x ∧ nasal(y)] (2)

featureϕ(x)
def
= feature(x) (for other features feature) (3)

x ⊳ϕ y
def
= x ⊳ y (4)

Post Nasal Voicing /gonk/ 7→ [gong]

1 2 3 4

stop syllabic nasal stop
dorsal back coronal dorsal
voiced mid

⊳ ⊳ ⊳INPUT:

1 2 3 4

stop syllabic nasal stop
dorsal back coronal dorsal
voiced mid voiced

⊳ ⊳ ⊳OUTPUT:

(Courcelle and Engelfriedt 2001, 2011)
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1. Generation with MSO logic (cont.)

*Nasal-Voiceless Obstruent (categorical version)

∗NT
def
= ¬(∃x, y)

[

x ⊳ y ∧ nasal(x) ∧ ¬voiced(y)

∧ ¬consonantal(y)
]

*Nasal-Voiceless Obstruent (counting version)

∗NT
def
= (∃x, y)

[

x ⊳ y ∧ nasal(x) ∧ ¬voiced(y)

∧ ¬consonantal(y)∧ 1
]

(Droste and Gastin 2009)
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Discussion

1. Well-studied methods from computer science can be used to

express phonological generalizations precisely, accurately, and

completely.

2. They are easy to learn with only a little practice.

3. They can be weighted to compute probabiltiies, count

violations, . . .

4. One advantage of logic is the flexibility of the representations.

5. Linguists can use and systematically explore different

representational primitives like features, syllables, etc

(Potts and Pullum 2002, Graf 2010, Jardine 2016).

6. Automata are best understood for strings and trees, but they

can be introduced for other representations as well.

7. For the string and tree cases, translations exist between MSO

logic and automata.

8. Both logic and automata will still be here in 100, 200 years. . . !!
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Discussion (continued)

So. . . Phonological generalizations are finite-state. Is that a theory

of phonology?

1. No.

2. As a hypothesis, it states a necessary condition of phonological

generalizations, not a sufficient one.

3. So not all finite-statable generalizations are going to be

phonological.

BTW, the word regular is often used as a synonym for finite-state.

2. Typology 3. Learnability 4. Psychology. . .
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Part IV

Phonological generalizations are less than

Finite-state
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Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)
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The Chomsky Hierarchy

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

Regular

NC

LTT

LT PT

SL SP

Finite
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Representing words with successor

hypothetical [sriS]

s r i S
⊳ ⊳ ⊳

• The information about order is given by the successor (⊳)

relation.
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Sub-structures

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• So [sr] is a sub-structure of [sriS]

s r i S
⊳ ⊳ ⊳
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Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• Strictly Local constraints are ones describable with a finite

list of forbidden sub-structures (with words represented using

the successor relation).

• Here is the string abab. If we fix a diameter of 2, we have to

check these substrings.

ok? ok?ok? ok? ok?

a⋊ a b b a a b b ⋉

(Rogers and Pullum 2011, Rogers et al. 2013)
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Strictly Local constraints for strings

When words are represented with successor, sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the substructures, checking

to see if it is forbidden or not. The whole structure is

well-formed only if each sub-structure is.

• Memory is limited to these specific chunks, taken one at a time.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)
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Examples of Strictly Local constraints for strings

• *aa

• *ab

• *NT

• NoCoda

Examples of Non-Strictly Local constraints

• *s. . . S (Hansson 2001, Rose and Walker 2004, Hansson 2010,

inter alia)

• Obligatoriness: Words must contain one primary stress (Hayes

1995, Hyman 2011, inter alia).
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Sarcee (Cook 1978, 1984)

a. /si-tSiz-aP/ → S ı́tS ı́dzàP ‘my duck’

*śıtS ı́dzàP

b. /na-s-GatS/ → nāSGátS ‘I killed them again’

• In Sarcee words, [−anterior] sibilants like [S] may not follow

[+anterior] sibilants like [s]. This constraint is called *s. . . S.
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Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

✉

✉ *s. . . S

✉

✉ *ab

(Heinz 2010, Rogers et al. 2010)41



The “MSO with successor” Theory

Is this a good theory of possible constraints in phonology?

NO! Because. . .

1. Typologically, it overgenerates.

(a) *EVEN-Sibilants

(b) 2 NT structures OK, but 3 is forbidden

2. There are no feasible algorithms for learning the whole class of

regular stringsets (Gold 1967, inter alia).
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Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

✉

✉ *s. . . S

✉✉

✉ *ab

(Heinz 2010, Rogers et al. 2010)43



Representing Order in Sequences

hypothetical [sriS]

1. Successor

s r i S
⊳ ⊳ ⊳

2. Precedece

s r i S
<

<

<

<

<

<
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When words are represented with precedence, sub-structures are

sub-sequences of a certain size.

• So s < S is a sub-structure of [sriS]

s r i S
<

<

<

<

<

<

• Strictly Piecewise constraints are ones describable with a finite

list of forbidden sub-structures (with words represented using

the precedence relation).
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The CNL with Successor and Precedence Theory

Is this a better theory of possible constraints in phonology?

1. Typologically, it is better than “MSO with successor.”

(a) Admits phonotactic constraints which arguably drive

long-distance harmony patterns

(b) Provably excludes constraints like *EVEN-Sibilants and “2 NT

structures OK, but 3 is forbidden”.

2. Both Strictly Local and Strictly Piecewise constraints are feasibly

learnable (Garcia et al. 1991, Heinz 2010)

3. Human subjects learn SP patterns—but not similar LT ones—in lab

experiments (Lai 2015). 46



Morals of this Story

1. Precedence is the transitive closure of successor.

2. Providing the power of transitive closure (MSO-definabilty)

yields power to do lots of other things (so expands the typology

undesirably)

3. Putting precedence directly into the representation allows a

restricted expansion of the typology in a more desirable way.

4. The restriction also brings learnability benefits.

The interplay between representation and computation in linguistic

theory can be studied upon a firm mathematical foundation.
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Subregular Hierarchies of Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)
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Logical Characterizations of Subregular

Functions for Transformations

2way DFTs

aperiodic 2way DFTs?

? ?

ISL DFTs ∼ Quantifier Free

with ⊳ function ?

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(Chandlee and Lindell 2016, Filiot and Reynier 2016)
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Part V

Conclusion
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Conclusion

The computational nature of phonology matters because:

1. It provides well-studied solutions to the generation problem.

2. It provides a mathematical foundation for comparing

representation and logical power

3. It often directly leads to psychological models of

representation, memory and processing.

4. These models specify what learners must attend to, and thus

explains the kinds of phonological generalizations that can be

learned.

5. It makes typological predictions and provides explanations for

the phonological generalizations we do and do not observe.
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