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Charles Babbage

\On two occasions I have been asked [by members of Parliament],
`Pray, Mr. Babbage, if you put into the machine wrong �gures, will
the right answers come out?' I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question."

as quoted in de la Higuera 2010, p. 391
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Sequences in nature and engineering

1. Natural languages

2. Nucleic acids

3. Planning and executing actions

4. . . .
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This talk: A tale of two approaches to learning

and
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This talk

The judicial use of formal language theory and grammatical
inference (GI) can help illuminate the kinds of generalizations deep
learning networks can and cannot make.

Contributions

1. Simple regular languages discriminate naive LSTMs' ability to
generalize. Ultimate goal would try to formalize this
relationship.

2. GI algorithms can help us understand whether su�cient
information is present for successful learning to occur.
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Success of Deep Learning

\Our deep learning methods developed since
1991 have transformed machine learning and
Arti�cial Intelligence (AI), and are now avail-
able to billions of users through the �ve most
valuable public companies in the world: Ap-
ple (#1 as of 9 August 2017 with a market
capitalization of US$ 827 billion), Google (Al-
phabet, #2, 654bn), Microsoft (#3, 561bn),
Facebook (#4, 497bn), and Amazon (#5,
475bn) [1]."

J•urgen Schmidhuber, IDSIA

http:
//people.idsia.ch/ ~juergen/impact-on-most-valuable-companies.html
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Feed-forward neural network with two hidden
layers

(Goldberg 2017, page 42)7



Recurrent Neural Networks (RNNs) add a loop

http://colah.github.io/posts/2015-08-Understanding- LSTMs/
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Success of Deep Learning

\Most work in machine learning focuses on
machines with reactive behavior. RNNs,
however, are more general sequence proces-
sors inspired by human brains. They have
adaptive feedback connections and are in
principle as powerful as any computer. The
�rst RNNs could not learn to look far back
into the past. But our `Long Short-Term
Memory' (LSTM) RNN overcomes this fun-
damental problem, and e�ciently learns to
solve many previously unlearnable tasks."

J•urgen Schmidhuber, IDSIA

http://people.idsia.ch/ ~juergen/
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RNNs

LSTMs

http://colah.github.io/posts/2015-08-Understanding- LSTMs/
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Success of Deep Learning

\LSTM-based systems can learn to translate
languages, control robots, analyse images,
summarise documents, recognise speech and
videos and handwriting, run chat bots, pre-
dict diseases and click rates and stock mar-
kets, compose music, and much more, . . . "

J•urgen Schmidhuber, IDSIA
http:
//people.idsia.ch/ ~juergen/impact-on-most-valuable-companies.html
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A contrarian view

\Even the trendy technique of `deep learn-
ing,' which uses arti�cial neural networks
to discern complex statistical correlations in
huge amounts of data, often comes up short.
Some of the best image-recognition systems,
for example, can successfully distinguish dog
breeds, yet remain capable of major blun-
ders, like mistaking a simple pattern of yellow
and black stripes for a school bus. Such sys-
tems can neither comprehend what is going
on in complex visual scenes (`Who is chasing
whom and why?') nor follow simple instruc-
tions (`Read this story and summarize what
it means')."

Gary Marcus, NYU

NY Times, Sunday Review, July 29, 2017
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Rest of the talk

1. Formal Language Theory

2. Grammatical Inference

3. Learning Experiments

4. Discussion

12



Sequences, Strings

...

aaa, aab, aba, abb, baa, bab, bba, bbb

aa, ab, ba, bb

a, b

�

A string is a �nite sequence of symbols from some set of symbols �.
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Formal languages, sets of strings

The set of all possible strings is notated �� .

Every subset of � � is a formal language.

Examples

1. Let � = f a,b,c,..., z, � , . g. Then there is a subset of
� � which includes all and only the grammatical sentences of
English (modulo capitalization and with � representing
spaces).

2. Let � = f Advance-1cm, Turn-R-5 � g. Then there is a subset of
� � which includes all and only the ways to get from point A to
point B.

3. . . .
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The membership problem

M

S yes no

s 2 S s 62S

s 2 � �

Given a set of stringsS and any string s, output whether s 2 S .
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Example 1

A string belongs to S if it does not contain aa as a substring.

s 2 S s 62S

abba baab

abccba aaccbb

babababa ccaaccaacc

. . . . . .

a

b
c

b
c

a

a
b
c
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Example 2

A string belongs to S if it does not contain aa as asubsequence.

s 2 S s 62S

cabb baab

babccbc babccba

bbbbbb bbaccccccccccaccc

. . . . . .

a

b
c

b
c

a

a
b
c
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A Learning Problem: Positive Evidence Only

For any set S from some given collection of sets: Drawing �nitely
many example strings fromS, output a program solving the
membership problem forS.

A

algorithm
learning

M

yes no
S

D

s 2 S s 62S

s 2 � �
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A Learning Problem: Positive and Negative
Evidence

For any set S from some given collection of sets: Drawing �nitely
many strings labeled as to whether they belong toS or not, output
a program solving the membership problem forS.

AD+
algorithm
learning

M

yes no
S

D-

s 2 S s 62S

s 2 � �
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Generalizing the Membership and Learning
Problems

function Notes

f : � � ! f 0; 1g Binary classi�cation

f : � � ! N Maps strings to numbers

f : � � ! [0; 1] Maps strings to real values

f : � � ! � � Maps strings to strings

f : � � ! } (� � ) Maps strings to sets of strings
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Classifying membership problems (1)

Computably Enumerable

Context-
Sensitive

Mildly
Context-
Sensitive

Context-FreeRegularFinite
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RPNI: Regular Positive and Negative Inference

Theorem. For every regular languageS, there is a �nite set
D + � S and a �nite set D � 62S such that when the algorithm
RPNI takes any training sample containing D + and D � as input,
RPNI outputs a program which solves the membership problem for
S. Furthermore, RPNI is e�cient in both time and data.

(Oncina and Garica 1992, de la Higuera 2010)
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How does RPNI work?

1. RPNI �rst builds a �nite state machine representing the
training sample called a \pre�x tree."

2. It iteratively tries to merge states in a breadth-�rst man ner,
testing each merge against the training sample.

3. It keeps merges that are consistent with the sample and rejects
merges that are not.

4. At the end of this process, if the training data was su�cient
then the resulting �nite-state machine is guaranteed to solve
the membership problem forS.
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Let's use formal languages to study LSTMs

1. Grammars generating the formal languages are known.

(a) Conduct controlled experiments.

(b) Ask speci�c questions. Example: To what extent are the
generalizations obtained independent of string length?

2. Relative complexity of di�erent formal languages may provide
additional insight.

3. Grammatical inference results can inform whether the data was
rich enough.

4. May lead to proofs and theorems about abilities of types of
networks

5. May lead to new network architectures.
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Valid idea then, valid now

1. Predicting the next symbol of a string drawn from a regular
language

� Network Type: First-order RNNs,

� Target language: Reber Grammar (Reber 1967)

� (Casey 1996; Smith, A.W. 1989)

2. Deciding whether a string s belongs to a regular languageS

� Network Type: Second-order RNNs,

� Target language: Tomita languages (Tomita 1982).

� (Pollack 1991; Watrous and Kuhn 1992; Giles et al. 1992)

25



Later research targeted nonregular languages

� LSTMs correctly predicted the possible continuations of
pre�xes in words from an bn cn for n up to 1000 and more.

� (Schmidhuber et al. 2002; Chalup and Blair 2003; Prez- Ortiz
et al. 2003).
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Additional Motivation for current study:
Subregular complexity

The Reber grammars and Tomita languages were not understood
in terms of their abstract properties or pattern complexity.

� Regular languages chosen here are known to have certain
properties based on theirsubregular complexity (McNaughton
and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2010,
2013).
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Classifying membership problems (2)
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Classifying membership problems (3)

Regular

Non-Counting
Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic
Second Order

First
Order

Propositional

Conjunctions
of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2 011, Rogers
et al 2010, 2013)
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Subregular complexity

These classes are natural because they have multiple
characterizations in terms of logic, automata, regular expressions,
and abstract algebra.

1. SL is the formal language-theoretic basis of n-gram models
(Jurafsky and Martin, 2008),

2. SP can model aspects of long-distance phonology (Heinz, 2010;
Rogers et al. 2010)
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SL Characterizations

1. S is closed under su�x substitution. S 2 SL if there exists k
such that for all u; v; w; x; y if uvw and xvy belong to L and v
has length k � 1 then uvy belongs toS too.

2. SL stringsets can be de�ned with a �nite set of forbidden
substrings.

3. From a model-theoretic perspective, the order of elements in
strings is represented with the successor (+1) relation andthe
logical formula conjoin negative literals.
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SP Characterizations

1. S belongs to SP i� S is closed under subsequence.

2. SP stringsets can be de�ned with a �nite set of forbidden
subsequences.

3. From a model-theoretic perspective, the order of elements in
strings is represented with the precedence (< ) relation and the
logical formula conjoin negative literals.
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GI results for SL and SP with positive data only

Theorem. For each k, there is an algorithm A such that, for all
S 2 SL-k (SP-k), there is a �nite subset D � S such that when A
takes any �nite superset of D as input, A outputs a program which
solves the membership problem forS.
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Six Target Languages

� = f a; b; c; dg.

DFA

Language Class Forbiddenk-substrings in target stringsets size

SL2 o b, aa, bb, a n 3

SL4 o bbb, aaaa, bbbb, aaa n 7

SL8 o bbbbbbb, aaaaaaaa, bbbbbbbb, aaaaaaan 15

Language Class Forbiddenk-subsequences in target stringsets

SP2 ab 2

SP4 abba 4

SP8 abbaabba 8
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Training

The six target languages were implemented with �nite state
machines usingfoma, a publicly available, open-source platform
(Hulden, 2009).

Training Data

� Three training data sets: 1k, 10k, and 100k.

� Half of the words in each training set were positive examples
and the other half were negative examples.

� Training words were generated for each length between 1 and
25.

� Training sets were generated randomly withfoma and thus
may contain duplicates.
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Test Data

We developed two test sets: Test1 and Test2.

� Each contain 1k, 10k, 100k novel words (so not in training).

� Half of the test words belong to L and half do not.

� Test1: The length of the words are no longer than 25.

� Test2: Test2 words are of length between 26 and 50.
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Test Data
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The LSTMs in these experiments

� We constructed simple LSTM networks to test the capability of
the LSTM itself.

� We used a package for RNNs called Chainer
(http://chainer.org ) to implement them.
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LSTM architecture

!"#$

!!! ! !
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� The embed layer maps the one-hot vector of each symbol to a
real-valued vector.

� All outputs of the LSTM except for the last one are ignored.

� The last output of the LSTM is input to the softmax layer.

� The output of the softmax layer represents the positive and
negative probability.
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Learning Parameters

� Three fully connected LSTMs: vector sizes were 10, 30, and
100 for all layers.

� The weights of the forget gate of LSTM are initialized
according to the normal distribution with mean 1.

� The batch size is 128.

� The L2 norm of the gradient is clipped with 1.0.

� The optimization algorithm is Adam (Kingma et. al, 2014) .

� The lengths of strings in each batch are aligned through
padding with the zero vector.

� . . . many choices, but basically done in a standard fashion
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SL Results
< 0.60 < 0.80 < 0.99

LSTM type

Training v10 v30 v100

Regimen Test1 Test2 Test1 Test2 Test1 Test2

1k 0.9026 0.9238 0.9663 0.9978 0.9832 1.0000

SL2 10k 0.9798 0.9989 0.9942 1.0000 0.7495 0.7323

100k 0.6379 0.6180 0.7121 0.6980 0.7898 0.7645

1k 0.9111 0.8515 0.9522 0.8851 0.9691 0.9278

SL4 10k 0.7193 0.7116 0.9993 0.9999 1.0000 0.9987

100k 0.9871 0.9940 0.9904 0.9957 0.9934 0.9970

1k 0.9971 0.9941 0.9951 0.9902 1.0000 0.9902

SL8 10k 0.9950 0.9989 0.9420 0.9992 0.9190 0.9988

100k 0.9949 0.9997 0.8695 0.9989 0.9996 0.9995
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SP Results
< 0.60 < 0.80 < 0.99

LSTM type

Training v10 v30 v100

Regimen Test1 Test2 Test1 Test2 Test1 Test2

1k 0.9685 0.9873 0.9869 1.0000 0.9971 1.0000

SP2 10k 1.0000 1.0000 0.7722 0.7615 1.0000 1.0000

100k 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000

1k 0.9351 0.9603 0.9697 0.9635 0.8633 0.8624

SP4 10k 0.9991 0.9953 0.7223 0.8014 0.9872 0.9838

100k 0.9502 0.9600 0.7988 0.7930 1.0000 1.0000

1k 0.8846 0.5850 0.8902 0.6148 0.9153 0.6472

SP8 10k 0.7547 0.5151 0.9661 0.6099 0.8056 0.6471

100k 0.8485 0.6569 0.8599 0.6899 0.8214 0.7087
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Summary

1. Across-the-board success in SL4, SL8, SP2, SP4 experiments.

2. SL2 is not as successful, especially with 100k training examples.

3. SP8 is not as successful with Test 2 always worse than Test 1
across-the-board.
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SP8 100k v100 : accuracy per epoch
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SL2 100k v100 : accuracy per epoch
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SL8 100k v100 : accuracy per epoch

46



What can explain these worse outcomes?

1. The training data is not rich enough.

2. The architecture is too naive and the pattern is beyond the
capacity of the speci�c architecture employed.
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RPNI lets us answer Hypothesis 1: SL Results

< 0.60 < 0.80 < 0.99

LSTM

Training v100 Su�cient Data? RPNI

Regimen Test1 Test2 Test1 Test2

1k 0.9832 1.0000 NO 0.8550 0.8440

SL2 10k 0.7495 0.7323 YES 1.0000 1.0000

100k 0.7898 0.7645 YES 1.0000 1.0000

1k 0.9691 0.9278 NO 0.9180 0.8130

SL4 10k 1.0000 0.9987 NO 0.9946 0.9785

100k 0.9934 0.9970 YES 1.0000 1.0000

1k 1.0000 0.9902 NO 0.9910 0.9660

SL8 10k 0.9190 0.9988 NO 0.9980 0.9937

100k 0.9996 0.9995 NO 0.9998 0.9996

Implementation with gi-toolbox
(https://code.google.com/archive/p/gitoolbox/ )
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RPNI lets us answer Hypothesis 1: SP Results

< 0.60 < 0.80 < 0.99

LSTM

Training v100 Su�cient Data? RPNI

Regimen Test1 Test2 Test1 Test2

1k 0.9971 1.0000 YES 1.0000 1.0000

SP2 10k 1.0000 1.0000 YES 1.0000 1.0000

100k 1.0000 1.0000 YES 1.0000 1.0000

1k 0.8633 0.8624 YES 1.0000 1.0000

SP4 10k 0.9872 0.9838 YES 1.0000 1.0000

100k 1.0000 1.0000 YES 1.0000 1.0000

1k 0.9153 0.6472 NO 0.8710 0.5870

SP8 10k 0.8056 0.6471 NO 0.8729 0.63.38

100k 0.8214 0.7087 YES 1.0000 1.0000

49



Discussion

The data was su�cient in the SL2 and SP8 cases.

So the LSTM failed to generalize correctly despite it.

1. For SL2 case, over�tting

� The dropout method somewhat improved results but overall
picture is the same.

2. For SP8 case, the LSTM architecture is still challenged by
long-distance dependencies.
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Comparing SL8 vs SP8 cases

The di�erence between substring and subsequence|which reduces
logically to the di�erence between the successor and precedence
relations (Rogers et al., 2013)|is signi�cant for naive LST Ms.

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals
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Not about One-Upmanship

� Of course we can modify the network: more nodes, more
hidden layers, use Kalman �lters . . .

� But we can also increase thek value. We can move from
Strictly Local/Piecwise to Locally Testable/Piecewise.
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Goal

Establishing a relationship between architectures and subregular
complexity.

Conclusion

1. Simple subregular languages discriminate naive LSTMs' ability
to generalize.

2. GI algorithms can help us understand whether su�cient
information is present for successful learning to occur.
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Thanks for listening!

and
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